
Topology-dependent Abstractions of
Broadcast Networks

Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

Informatics and Mathematical Modelling
Technical University of Denmark
{nanz,nielson,riis}@imm.dtu.dk

Abstract. Broadcast semantics poses significant challenges over point-
to-point communication when it comes to formal modelling and ana-
lysis. Current approaches to analysing broadcast networks have focused
on fixed connectivities, but this is unsuitable in the case of wireless net-
works where the dynamically changing network topology is a crucial
ingredient. In this paper we develop a static analysis that automatically
constructs an abstract transition system, labelled by actions and con-
nectivity information, to yield a mobility-preserving finite abstraction of
the behaviour of a network expressed in a process calculus with asyn-
chronous local broadcast. Furthermore, we use model checking based on
a 3-valued temporal logic to distinguish network behaviour which differs
under changing connectivity patterns.

1 Introduction

Broadcast communication, in contrast to point-to-point message passing, is em-
ployed in a wide range of networking paradigms such as Ethernet and wireless
LAN, mobile telephony, or mobile ad-hoc networks. These can be further distin-
guished into approaches where broadcast is taken to be global, i.e. all nodes of
the network receive a broadcast message, or local, such that only neighbours of
the broadcasting node are able to receive. In order to obtain a formal model for
the latter case, the network topology has to be encoded by the chosen modelling
formalism to express the notion of a neighbourhood. Furthermore, the connec-
tivity may change over time, caused by node mobility or similar changes in
environment conditions which are not controlled by the nodes’ protocol actions.

This mix of broadcast behaviour and mobility has turned out to be a chal-
lenge for automated verification and analysis techniques. For instance, model
checking of mobile ad-hoc networks, in a line of work started by [2], has re-
mained limited to fixed connectivities. In our previous work on static analysis of
mobile ad-hoc networks [11], topology changes are considered in the modelling,
but abstracted into a fixed representation for the sake of the analysis, hence
achieving a safe description of the network, but losing the ability to expose
network behaviour related to connectivity change.

In this paper we address these deficiencies by defining abstract transition
systems which provide finite abstractions of the behaviour of broadcast net-
works specified in the broadcast calculus bKlaim, which is also introduced in

this paper. The abstractions preserve mobility in the sense that their transitions
depend on connectivity information, and hence reflect changes in connectivity.
We present a 3-valued interpretation of formulae of Action Computation Tree
Logic (ACTL) [13] on abstract transition systems, which captures the nature of
the abstraction by evaluating to “unknown” whenever the abstraction prevents
definite conclusions about the concrete behaviour of the related bKlaim network.

We also show how abstract transition systems can be algorithmically con-
structed from networks specified in bKlaim. This is done using a static analysis,
based on the idea of Monotone Frameworks [14], which also gives us fine-grained
control over the coarseness of the abstraction. This analysis has been imple-
mented, and we show how the complete framework enables us expose the influ-
ence of the network dynamics on the resulting network state.

The remainder of the paper is structured as follows. In §2 we present the syn-
tax and operational semantics of bKlaim. In §3 we introduce abstract transition
systems, and describe 3-valued ACTL and its relation to the concrete transition
system of bKlaim. We develop a Monotone Framework and worklist algorithm
to construct abstract transition systems for bKlaim networks in §4. We conclude
in §5. A technical report [12] contains full proofs.

2 bKlaim

Process calculi of the Klaim family [1] are centred around the tuple space paradigm
in which a system is comprised by a distributed set of nodes that communicate
by placing tuples into and getting tuples from one or more shared tuple spaces.
In this paper we use this basic paradigm to model systems communicating via lo-
cal broadcast, i.e. only nodes within the neighbourhood of the broadcasting node
may receive a sent message tuple; this distinguishes bKlaim from the broadcast
calculus CBS [19], where all broadcast is global. In contrast to the standard
Klaim semantics, where tuple spaces are shared resources among all nodes, we
instrument this approach for the modelling of local broadcast: broadcast mes-
sages are output into the tuple spaces of neighbouring nodes to the sending node,
where they can be picked up only by the processes residing at the respective lo-
cations; this yields an asynchronous version of local broadcast, in contrast to
the calculi CBS] [11] and CMN [9] which both feature synchronous behaviour.
The notion of neighbourhood is expressed by connectivity graphs, which spec-
ify the locations currently connected with a sender and may change during the
evolution of the network.

2.1 Syntax

The bKlaim calculus comprises three parts: networks, processes, and actions.
Networks give the overall structure in which processes and tuple spaces are
located, and processes execute by performing actions. An overview of the syntax
is shown in Table 1.

N ::= l ::P located node

| l ::S located tuple space

| N1 ‖ N2 net composition

P ::= nil null process

| a`.P action prefixing

| P1 | P2 parallel composition

| A process invocation

a` ::= bcst`(t) broadcast output

| out`(t) output

| in`(T) input

T ::= F | F, T templates

F ::= f | !x template fields

t ::= f | f, t tuples

f ::= v | l | x tuple fields

Table 1. Syntax of a fragment of bKlaim

Tuples are finite lists of tuple fields, which comprise values v ∈ Val, locations
l ∈ Loc, and variables x ∈ Var. We assume in general that locations are just
distinguished values, i.e. Loc ⊆ Val. A ground tuple t is an element of Val∗.
Templates are used as patterns to select tuples in a tuple space. They are finite
lists of tuple fields and formal fields !x which are used to bind variables to values;
within a template, x must not occur both as a variable and a formal field, or in
more than one formal field. The set fv(t) containing the free variables of tuple t
are defined as usual, and the definition of fv can be extended to templates, ac-
tions, and processes. Values are free as there are no binding statements for them.

Networks consist of located processes and tuple spaces. In contrast to Klaim,
a tuple space S is taken to be a multiset (rather than a set) of tuples, i.e. a
total map from the set of tuples into N0. We say that a tuple t is in the domain
dom(S) of S if S(t) > 0, and use the following notation to express that a copy
of tuple t is added to or removed from a multiset S:

S[t]↑ = λu.


S(u) + 1 if u = t
S(u) otherwise

S[t]↓ = λu.


S(u)− 1 if u = t ∧ S(u) > 0
S(u) otherwise

We also introduce below a well-formedness condition which ensures that there
is exactly one tuple space per location. This is because tuple spaces in bKlaim
are not seen as freely shared among nodes, but as private components (stores)
associated with the processes residing at the same location.

A process is either the terminated process nil, a process prefixed with an
action to be executed, a parallel composition, or a process invocation to express
recursive behaviour. Process definitions are of the form A , P , where P is closed,
i.e. contains no free variables. As an abbreviation, we may sometimes use the
notation A(t) , P and have P parameterised in the free variables of t.

Actions are equipped with labels ` ∈ Lab which facilitate the analysis in
§4. The action bcst`(t) places a tuple t into the set of tuple spaces belonging
to the current neighbours of the sending node, thus describing local broadcast.
Neighbourhoods are defined at the semantic level via the notion of connectivity
graphs. The action out`(t) models the output of a tuple to the private tuple
space of the node performing this action. Using in`(T), processes retrieve tuples
which match the template T from their private tuple space and remove it. Note

that there is no statement corresponding to Klaim’s creation of new locations
newloc(l) because we want to deal with a given set of located nodes which cannot
spawn themselves by process actions. Because of space constraints, some actions
contained in the full version of bKlaim (such as process migration) are omitted
in this description. We refer the reader to the companion technical report [12].

Example 1. We describe a simple protocol for information retrieval in mobile
ad-hoc networks. A mobile ad-hoc network is a special kind of wireless network,
where participating nodes form temporary multi-hop connections and may act
as both host and router, i.e. both sending own requests and relaying messages
for others. The protocol is specified in bKlaim as follows:

Snd(x) , bcst1(ask, x).Rec(x)

Rec(x) , in2(has, !l , x , !y).Rec(x)

Prc(l) , in3(ask, !x).(in4(x , !y).bcst5(has, l , x , y) | bcst6(ask, x).Prc(l))

Rel , in7(has, !l , !x , !y).bcst8(has, !l , x , y).Rel

Net , l1 ::Snd(t) ‖ l2 :: (Prc(l2) | Rel) ‖ l2 :: [[t, i2] 7→ 1]
‖ l3 :: (Prc(l3) | Rel) ‖ l3 :: [[t, i3] 7→ 1]

The protocol is initiated on network Net when node l1 executes the process Snd
to search for information on topic t. Node l1 then enters a state where it waits
for (possibly multiple) answers of the form (has, l , x , y), meaning that the node
at location l sent content y concerning topic x .

Nodes l2 and l3 can process ask-messages using Prc. Upon reception, each of
the nodes check whether they have content available in their tuple spaces which
match topic x . If so, they broadcast a has-message containing this content. In
order to make sure that the ask-message is propagated across the whole of the
network, they also rebroadcast this message, and restart process Prc to be ready
to receive other requests.

Rel is a simple relay process for has-messages. Note further that l2 and l3
have tuple spaces with contents i2 and i3 associated with topic t.

2.2 Operational Semantics

As a prerequisite for defining the operational semantics of bKlaim, we have to
give a notion of connectivity between nodes. A connectivity graph as in [11,10]
is a directed graph G on a subset of the set of locations Loc. As usual, V (G)
denotes the set of vertices of G and E(G) its set of edges. Given a graph G, we
write

G(l) = {l′ : (l, l′) ∈ E(G)}

to denote the neighbourhood of a location l.
In this way, a connectivity graph G gives a straightforward notion of connec-

tivity to a network N : a node at location l′ may receive a message sent by a node
at location l if and only if (l, l′) ∈ E(G). Because the graph is directed, both
unidirectional and bidirectional links can be expressed. Note that by separating
connectivity from process actions (which most readily distinguishes bKlaim from

the bπ-calculus [5] for example) we are able to express the behaviour of a va-
riety of networks in which the connectivity may change through changes in the
environment conditions, which are not expressed by process actions. Wireless
networks are one example, where node movements trigger both link failures and
the establishment of new links.

Connectivity graphs provide a snapshot of the network connectivity. In con-
trast, a network topology T is a set of connectivity graphs which share the same
set of vertices. We use network topologies to express the set of possible configu-
rations a particular network may be in.

In order to ensure that a network topology and a network agree, we introduce
a well-formedness condition. We first extend the definition of the vertex function
V from graphs to networks:

V (l ::P) = V (l ::S) = {l} and V (N1 ‖ N2) = V (N1) ∪ V (N2)

We say that the pair (N, T) of a network N and network topology T is well-
formed if there is exactly one located tuple space l ::S for each l ∈ V (N), and if
furthermore T contains only connectivity graphs G with V (G) = V (N).

Example 2. Continuing Example 1, we define the following network topologies
over V (Net):

Network topology T1 Network topology T2

?>=<89:;l2 ?>=<89:;l3

?>=<89:;l1

aaBB !!
BB

?>=<89:;l2 ?>=<89:;l3

?>=<89:;l1

>>||
~~ ||

?>=<89:;l2 // ?>=<89:;l3

?>=<89:;l1

aaBB
?>=<89:;l2 ?>=<89:;l3

?>=<89:;l1

>>||
~~ ||

G1 G2 G3 G2

We give the operational semantics of bKlaim by a reduction relation of the
form T ` M

l−→G N , defined in Table 2, together with a straightforward struc-
tural congruence M ≡ N and template matching semantics in Table 3. Deriva-
tions of a network N via the reduction relation are with respect to a network
topology T where (N, T) are well-formed; the operational semantics ensures that
well-formedness is preserved over all derivations. A derivation is parametrised
with a connectivity graph G ∈ T to express that the derivation holds under
the connectivity expressed by G. We may drop the parameter G and write
T ` M

l−→ N when a transition does not depend on the actual choice of G ∈ T .
For the sake of the analysis in §4, transitions are labelled with labels l of the
form (l, `) and (l, `[t]), to express that the action labelled ` has executed at loca-
tion l, and – in the case of the in`-action only – that the tuple t has been input
at location l.

The bcst-rule puts a tuple t into all tuple spaces in the current neighbourhood
G(l) of the sender location l, where the current neighbourhood is nondetermin-
istically chosen from the network topology T . Rule out puts a tuple t into the
private tuple space at location l. The in-rule inputs (deletes) a tuple contained in
the private tuple space S if it matches to the template T , and continues with the
process Pσ, where σ captures the bindings introduced by the template matching.

G ∈ T

T ` l ::bcst`(t).P ‖
Q

l′∈G(l) l′ ::Sl′
(l,`)−−−→G l ::P ‖

Q
l′∈G(l) l′ ::Sl′(t)

↑

T ` l ::out`(t).P ‖ l ::S
(l,`)−−−→ l ::P ‖ l ::S(t)↑

S(t) > 0 match(T, t) = σ

T ` l :: in`(T).P ‖ l ::S
(l,`[t])−−−−→ l ::Pσ ‖ l ::S(t)↓

T ` M
l−→ M ′

T ` M ‖ N
l−→ M ′ ‖ N

N ≡ M T ` M
l−→ M ′ M ′ ≡ N ′

T ` N
l−→ N ′

Table 2. Reduction relation of bKlaim

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)
l ::P ≡ l ::P | nil

l ::A ≡ l ::P if A , P
l ::P1 | P2 ≡ l ::P1 ‖ l ::P2

match(v, v) = ε match(!x, v) = [v/x]

match(F, f) = σ1 match(T, t) = σ2

match((F, T), (f, t)) = σ1 ◦ σ2

Table 3. Structural congruence and template matching of bKlaim

3 Abstract Transition Systems

For a given network, the operational semantics of bKlaim gives rise to a (possibly
infinite) transition system where the transitions are determined by the actions
performed at each step and the connectivity the network has to abide by when
performing a step. For the sake of analysis, we are interested in transforming
this transition system into a finite one which still preserves the influence of the
network topology on the resulting network states. For this purpose this section
introduces abstract transition systems, and a version of Action Computation
Tree Logic (ACTL) [13] to describe their properties. In order to accommodate
the notion of abstraction in the logic, we use a 3-valued interpretation on ab-
stract transition systems so that a formula evaluates to “unknown” whenever
the abstraction prevents us from obtaining a definite result; when evaluating to
“true” or “false” however, an embedding theorem ensures that the same formula
holds (resp. fails) in its 2-valued interpretation on the concrete transition system.

3.1 Exposed Actions

This section introduces the notion of exposed actions which is used to express
abstract network configurations; abstract transition systems, introduced in the
following section, will then describe transitions between such abstract configu-
rations, which are related to transitions between concrete networks.

An exposed action is an action (or tuple) that may participate in the next
interaction. In general, a process may contain many, even infinitely many, occur-

rences of the same action (all identified by the same label) and it may be that
several of them are ready to participate in the next interaction. To capture this,
we define an extended multiset M as an element of:

M = Loc× (Lab ∪Val∗) → N ∪ {∞}

The idea is that M(l, `) records the number of occurrences of the label `, and
analogously M(l, t) the number of occurrences of the tuple t, at a location l;
there may be a finite number, in which case M(ll) ∈ N, or an infinite number, in
which case M(ll) = ∞ (where ll ranges over (l, `) or (l, t)). The set M is equipped
with a partial ordering ≤M defined by:

M ≤M M ′ iff ∀ ll. M(ll) ≤ M ′(ll) ∨M ′(ll) = ∞

The domain (M,≤M) is a complete lattice, and in addition to least and greatest
upper bound operators, we shall need operations +M and −M for addition and
subtraction, which can be defined straightforwardly.

To calculate exposed actions, we shall introduce the function E : Net → M
which takes a network and calculates its extended multiset of exposed actions;
this function is defined as follows:

EJN1 ‖ N2K = EJN1K +M EJN2K
EJl ::P K = ElJP K
EJl ::SK =

P
M,t ⊥M[(l, t) 7→ S(t)]

ElJnilK = ⊥M

ElJa`.P K = ⊥M[(l, `) 7→ 1]
ElJP1 | P2K = ElJP1K +M ElJP2K

ElJAK = ElJP K if A , P

Note that in the case for tuple spaces, every tuple t ∈ S is recorded with ac-
cording multiplicity S(t) at location l. In the case of actions a`.P , the label ` is
recorded at location l with multiplicity 1. The remaining cases are straightfor-
ward. The operations involved in the definition of E are all monotonic such that
a least fixed point is ensured by Tarski’s fixed point theorem.

Example 3. Continuing Example 1, it is easy to check that

EJNetK = [(l1, 1) 7→ 1, (l2, 3) 7→ 1, (l2, 7) 7→ 1, (l3, 3) 7→ 1,
(l3, 7) 7→ 1, (l2, [t, i2]) 7→ 1, (l3, [t, i3]) 7→ 1].

We can show that the exposed actions are invariant under the structural
congruence and that they correctly capture the actions that may be involved in
the first reduction step.

Lemma 1. If M ≡ N , then EJMK = EJNK. Furthermore, if T ` M
l−→G N and

l = (l, `), then l ∈ dom(EJMK); and if l = (l, `[t]), then (l, `), (l, t) ∈ dom(EJMK).

3.2 Abstract Transition Systems

An abstract transition system is a quadruple (Q, q0, δ, E) with the following com-
ponents: A finite set of states Q where each state q is associated with an extended
multiset E[q] and the idea is that q represents all networks N with EJNK ≤M E[q];
an initial state q0, representing the initial network N0; a finite transition relation
δ, where (qs, (G, l), qt) ∈ δ reflects that starting in state qs, under connectivity
G, the action l may execute and give rise to qt.

Definition 1. We say that a state denoting the multiset E represents a network
N , written N � E, iff EJNK ≤M E.

Definition 2. We say that an abstract transition system (Q, q0, δ, E) faithfully
describes the evolution of a network N0 if:

M � E[qs] and T ` N0 →∗ M
l−→G N,

imply that there exists a unique qt ∈ Q such that

N � E[qt] and (qs, (G, l), qt) ∈ δ.

In §4 we shall show how to construct an abstract transition system that faithfully
describes the evolution of a given network N .

Example 4. For the network (Net, T1) of Example 1, the static analysis of §4
generates an abstract transition system with 27 states and 46 transitions. We
look at one of these transitions in detail, namely (q3, (G1, (l2, 4[t, i2])), q6) ∈ δ.
For the states q3 and q6 involved in this transition, it holds that

dom(E[q3]) = {(l1, 2), (l2, 4), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l2, [t, i2]), (l3, [t, i3])}
dom(E[q6]) = {(l1, 2), (l2, 5), (l2, 6), (l2, 7), (l3, 3), (l3, 7), (l3, [t, i3])}

and therefore state q3 represents a network of the form

l1 :: in2(...).Rec(t) ‖ l2 :: (in4(...).bcst5(...) ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) 7→ 1] ‖ ...

and after a transition under connectivity graph G1 with action (l2, 4[t, i2]) (and
analogously for G2, as label 4 denotes a (local) input action which thus does not
depend on connectivity), we end up in state q6 that represents

l1 :: in2(...).Rec(t) ‖ l2 :: (bcst5(...). ... | bcst6(...).Prc(l2)) ‖ l2 :: [(t, i2) 7→ 0] ‖

3.3 Interpretation of ACTL Properties

In order to express properties about a network, we are using a variant of Action
Computation Tree Logic (ACTL) [13], which allows us to utilise the labels (G, l)
on the edges of an abstract transition system to constrain the set of paths we are
interested in; in this way we may for example determine which properties hold
if only node movements specified by a subset T ′ ⊆ T of the original topology
are considered. The following grammar describes the syntax of path formulae φ
and state formulae γ:

φ ::= tt | ll | ¬φ | φ ∧ φ | ∃γ
γ ::= XΩ φ | φ UΩ φ

Here, ll denotes (l, `) or (l, t), ∃ is a path quantifier, Ω is a set of transition
labels (G, l) and will be used to constrain the paths a formula is evaluated on,

and XΩ and UΩ are next and until operators, respectively. We shall give two
interpretations of this logic; the first relates to the concrete semantics of §2.

We define two judgements N � φ and Π � γ for satisfaction of φ by a network
N , and γ by a path Π. A path Π is of the form (N0, (G0, l0), N1, (G1, l1), . . .)
where Π(i) li−→Gi Π(i+1) for i ≥ 0 (we write Π(i) for Ni, and Π[i] for (Gi, li)).

N � tt N � ll iff ll ∈ EJNK
N � ¬φ iff N 6� φ N � φ1 ∧ φ2 iff N � φ1 ∧N � φ2

N � ∃γ iff there exists a path Π such that Π(0) = N and Π � γ
Π � XΩ φ iff Π(1) � φ and Π[0] ∈ Ω
Π � φ1 UΩ φ2 iff there exists k ≥ 0 such that Π(k) � φ2 and for all 0 ≤ i < k :

Π(i) � φ1 and Π[i] ∈ Ω

Thus the semantics of formulae closely resembles that of ACTL, with the ex-
ception that for the novel clause ll to evaluate to satisfy network N , ll must be
exposed in N .

Clearly, we cannot directly establish satisfaction of a formula on a network
because the related transition system might be infinite. We therefore propose to
check formulae on the basis of abstract transition systems, and formally relate
the results obtained to the concrete network evolution.

The important question is how to represent the nature of the abstraction.
A natural way to model the uncertainty of whether an abstract edge is present
in the concrete transition system is to use a 3-valued logic. Here the classical
set of truth values {0, 1} is extended with a value 1/2 for expressing the uncer-
tainty. Several choices of 3-valued logics exist and we choose here to use Kleene’s
strongest regular 3-valued logic [7]; this is in line with the developments of [3,20].
Formulae defined over the abstraction may make use of all three truth values,
but unlike e.g. [20,15], the abstraction itself will only make use of the value 0
and 1/2.

A simple way to define conjunction (resp. disjunction) in this logic is as the
minimum (resp. maximum) of its arguments, under the order 0 < 1/2 < 1. We
write min and max for these functions, and extend them to sets in the obvious
way, with min ∅ = 1 and max ∅ = 0. Negation ¬3 maps 0 to 1, 1 to 0, and 1/2
to 1/2. Other operations can be lifted from the classical setting to the 3-valued
setting using the method of [16].

Let L(q, ll) = 0 if ll /∈ E[q], and 1/2 otherwise. Furthermore, let DΩ(qs, qt) = 0
if (qs, (G, l), qt) /∈ δ for all (G, l) ∈ Ω, and 1/2 otherwise. The satisfaction
relations [q �3 φ] and [π �3 γ] for states q and paths π = (q0, (G0, l0), q1, . . .) is
defined as follows:

[q �3 tt] = 1 [q �3 ll] = L(q, ll)
[q �3 ¬φ] = ¬3([q �3 φ]) [q �3 φ1 ∧ φ2] = min([q �3 φ1], [q �3 φ2])
[q �3 ∃γ] = max {[π �3 γ] : π(0) = q}
[π �3 XΩ φ] = min([π(1) �3 φ], DΩ(π(0), π(1)))

[π �3 φ1 UΩ φ2] = max {[π �3 φ1 Uk
Ω φ2] : k ≥ 0}

[π �3 φ1 Uk
Ω φ2] = min(min({[π(k) �3 φ2]} ∪ {[π(i) �3 φ1] : i < k}),

min {DΩ(π(i), π(i + 1)) : i < k})

We lift the notion of representation � from states to paths by defining:

Π � E[π] iff ∀ i ≥ 0. Π(i) � E[π(i)] ∧Π[i] = π[i]

Furthermore, we define an information order v on truth values by 1/2 v 0,
1/2 v 1, and x v x for all x ∈ {0, 1/2, 1}. Using this, we can formulate an
embedding theorem, which allows us to relate the 2- and 3-valued interpretations
of ACTL:

Theorem 1. Suppose (Q, q0, δ, E) faithfully describes the evolution of network
N0, and T ` N0 →∗ N . Then:

1. If N � E[q] then [q �3 φ] v [N � φ].
2. If Π � E[π] then [π �3 γ] v [Π � γ].

Example 5. For the abstract transition system for (Net, T1) of Example 1 and 2,
and an Ω containing all possible transition labels, we have

[q0 �3 ¬∃[tt UΩ ((l1, [has, l2, t, i2]) ∧ (l1, [has, l3, t, i3]))]] = 1

while on (Net, T2) we get the result 1/2. Using Theorem 1, this means that
(Net, T1) has no evolution such that both [has, l2, t, i2] and [has, l3, t, i3] are
exposed tuples at location l1. In other words, under topology T1, the node l1
requesting information on topic t cannot get replies from both l2 and l3. For
(Net, T2) the analysis states that the abstraction prevents a definite answer.

4 Constructing Abstract Transition Systems

In this section we develop an algorithm for constructing an abstract transition
system. The development amounts to adapting the approach of [17,18] from
the synchronous language CCS to the asynchronous message-passing language
bKlaim. This involves solving the challenge of how to deal with the name bind-
ings resulting from message passing. We employ a classical Control Flow Analysis
like in [6], using judgements of the form

(ρ̂, Ŝ) �G N.

The analysis states that ρ̂ correctly describes the name bindings and Ŝ the
contents of tuple stores that may take place during the execution of the net
N using the connectivity graph G. In the subsequent development we shall not
need the Ŝ component as it will be modelled more precisely using the multisets
of exposed labels. We leave the details to the technical report [12].

4.1 Transfer Functions

The abstraction function E only gives us the information of interest for the initial
network. We shall now present auxiliary functions allowing us to approximate
how the information evolves during the execution of the network.

Once an action has participated in an interaction, some new actions may
become exposed and some may cease to be exposed. We shall now introduce two
functions GG

ρ̂ and K approximating this information. The relevant information
will be an element of:

T = Loc× (Lab ∪Val∗) → M

As for exposed actions it is not sufficient to use sets: there may be more than
one occurrence of an action that is either generated or killed by another action.
The ordering ≤T is defined as the pointwise extension of ≤M.

Generated Actions. To calculate generated actions, we shall introduce the func-
tion GG

ρ̂ : Net → T which takes a network N and computes an over -approximation
of which actions might be generated in N :

GG
ρ̂ JN1 ‖ N2K = GG

ρ̂ JN1K tT GG
ρ̂ JN2K

GG
ρ̂ Jl ::P K = GG

ρ̂,lJP K
GG

ρ̂ Jl ::SK = ⊥T

GG
ρ̂,lJnilK = ⊥T

GG
ρ̂,lJa

`.P K = G̃G
ρ̂,lJa

`.P K tT GG
ρ̂,lJP K

GG
ρ̂,lJP1 | P2K = GG

ρ̂,lJP1K tT GG
ρ̂,lJP2K

GG
ρ̂,lJAK = GG

ρ̂,lJP K if A , P

G̃G
ρ̂,lJbcst`(t).P K = ⊥T[(l, `) 7→ ElJP K +M (

P
M,l′∈G(l),u∈ρ̂JtK ⊥M[(l′, u) 7→ 1])]

G̃G
ρ̂,lJout`(t).P K = ⊥T[(l, `) 7→ ElJP K +M (

P
M,u∈ρ̂JtK ⊥M[(l, u) 7→ 1])]

G̃G
ρ̂,lJin

`(T).P K = ⊥T[(l, `) 7→ ElJP K]

Note that the function carries two more parameters, namely a connectivity graph
G and the environment ρ̂ which we obtain from the Control Flow Analysis (see
above) and which describes the occurring name bindings. The connectivity graph
G is needed because it determines at which locations tuples are generated when
using broadcast. Likewise, we need ρ̂ to correctly determine which tuples might
be output; it is therefore assumed in the following that (ρ̂, Ŝ) �

F
T N0 holds

(where
⊔
T is the graph which contains the edges of all G ∈ T), as it can be

shown to imply (ρ̂, Ŝ) �G N0 for all G ∈ T .
All actions a`.P then expose ElJP K, i.e. the actions of the continuation pro-

cess. Furthermore, bcst`(t) exposes the tuples u ∈ ρ̂JtK for all locations l′ ∈ G(l)
in the neighbourhood of the sending process; note that ρ̂JtK describes an overap-
proximation of the ground tuples t can evaluate to. The action out`(t) exposes
all u ∈ ρ̂JtK only at location l. Analogous to the case for exposed actions, a least
fixed point of GG

ρ̂ can be obtained.
We can show that the the information computed by GG

ρ̂ is invariant under
the structural congruence and potentially decreases with network reduction:

Lemma 2. Suppose (ρ̂, Ŝ) �
F

T M holds. If M ≡ N , then GG
ρ̂ JMK = GG

ρ̂ JNK.

Furthermore, if T ` M
l−→G N , then GG

ρ̂ JNK ≤T GG
ρ̂ JMK.

Note that the function GG
ρ̂ is defined on pairs of locations and actions only.

It can be trivially extended to the general label l = (l, `[t]) which is used in the
reduction rule for in by defining GG

ρ̂ JNK(l, `[t]) = GG
ρ̂ JNK(l, `).

Killed Actions. We define the function K : Net → T which takes a network N
and computes an under -approximation of which actions might be killed in N :

KJN1 ‖ N2K = KJN1K uT KJN2K
KJl ::P K = KlJP K
KJl ::SK = >T

KlJnilK = >T

KlJa`.P K = >T[(l, `) 7→⊥M[(l, `) 7→ 1]] uT KlJP K
KlJP1 | P2K = KlJP1K uT KlJP2K

KlJAK = KlJP K if A , P

Note that when actions a`.P execute at location l, it is clear that one occurrence
(l, `) can be killed. A greatest fixed point of K can be obtained.

We can show that the the information computed by K is invariant under the
structural congruence and potentially increases with network reduction:

Lemma 3. If M ≡ N , then KJMK = KJNK. Furthermore, if T ` M
l−→G N

then KJMK ≤T KJNK.

Analogously to the case of GG
ρ̂ we can define an extension of K by

KJNK(l, `[t]) = KJNK(l, `)+M ⊥M [(l, t) 7→ 1]

i.e. an input action additionally removes a tuple t from the tuple space.
We can use GG

ρ̂ and K to obtain a transfer function as in a classical Mono-
tone Framework, where E represents a set of exposed actions, and KJN0K(l)
(resp. GG

ρ̂ JN0K(l)) represent the actions which are no longer (resp. newly) ex-
posed by a transition with label l:

transfer(G,l),ρ̂(E) = (E −M KJN0K(l)) +M GG
ρ̂ JN0K(l)

Example 6. Continuing Example 4, we can calculate that

KJNetK(l2, 4[t, i2]) = [(l2, 4) 7→ 1, (l2, [t, i2]) 7→ 1]
GG

ρ̂ JNetK(l2, 4[t, i2]) = [(l2, 5) 7→ 1]

and hence that E[q6] = (E[q3]−M KJNetK(l2, 4[t, i2])) +M GG
ρ̂ JNetK(l2, 4[t, i2]).

Correctness. The following result states that the transfer function provides safe
approximations to the exposed actions of the resulting network:

Theorem 2. Consider the network let A1 , P1; . . . ;Ak , Pk in N0 and suppose
(ρ̂, Ŝ) �

F
T N0. If T ` N0 →∗ M

l−→G N then EJNK ≤M transfer(G,l),ρ̂(EJMK).

4.2 Worklist Algorithm

We are interested in analysing networks N0 for which we assume in the following
that (ρ̂, Ŝ) �

F
T N0 holds. We shall now construct an abstract transition system

which faithfully describes the evolution of N0 as specified in §3.2.
The key algorithm is a worklist algorithm, which starts out from the initial

state and constructs the abstract transition system by adding more and more
states and transitions. The algorithm makes use of several auxiliary operations:

– Given a state qs representing some exposed actions, enabled selects those
labels l that represent actions that may interact in the next step.

– Once the labels l have been selected, we can use the function transfer of §4.1.
– Finally, update constructs an appropriate target state qt and records the

transition (qs, (G, l), qt).

The algorithm’s main data structures are: A set Q of the current states; a worklist
W being a subset of Q and containing those states that have yet to be processed;
and, a set δ of the current transitions. The algorithm has the following form:

1 Q := {q0}; E[q0] := EJN0K; W := {q0}; δ := ∅;
2 while W 6= ∅ do
3 select qs from W; W := W\{qs};
4 foreach G ∈ T do
5 foreach l ∈ enabled(ρ̂,Ŝ)(E[qs]) do

6 let E = transfer(G,l),ρ̂(E[qs]) in update(qs, (G, l), E)

In line 1 both the set of states and the worklist are initialised to contain the
initial state q0, and q0 is associated with the set of the exposed actions of the
initial network EJN0K. The transition relation δ is empty.

The algorithm then loops over the contents of the worklist W by selecting a qs

it contains, and removing it from W (line 3). For each G ∈ T and enabled action
l ∈ enabled(ρ̂,Ŝ)(E[qs]) (lines 4–5) the procedure transfer(G,l),ρ̂(E[qs]) returns an
extended multiset describing the denotation of the target state. The last step is
to update the automaton to include the new transition step, and this is done in
line 6 by the procedure call update(qs, (G, l), E).

Procedure update. The procedure update is specified as follows:

1 procedure update(qs, (G, l), E)
2 if there exists q ∈ Q with H(E[q]) = H(E) then qt := q
3 else select qt from outside Q; Q := Q ∪ {qt}; E[qt] :=⊥M;
4 if ¬(E ≤M E[qt]) then E[qt] := E[qt]∇ME; W := W ∪ {qt};
5 δ := δ\{(qs, (G, l), q) : q ∈ Q} ∪ {(qs, (G, l), qt)};

First, the target state qt is determined in lines 2–3, where the reusability of a
state is checked by using a granularity function H, which is described below.

In line 4 it is ensured that the description E[qt] includes the required infor-
mation E by using a widening operator ∇M in such a way that termination of
the overall algorithm is ensured. We shall return to the definition of ∇M below.

The transition relation is updated in line 5. The triple (qs, (G, l), qt) is added,
but we also have to remove any previous transitions from qs with label (G, l),
as its target states may be no longer correct. As a consequence, the automaton
may contain unreachable parts, which can be removed at this point or after the
completion of the algorithm by a simple clean-up procedure for Q, W, and δ.

Granularity Function. The most obvious choice for a granularity function H :
M → H might be the identity function, but it turns out that this choice may
lead to nontermination of the algorithm. A more interesting choice is H(E) =

dom(E), meaning that only the domain of the extended multiset is of interest; we
have used this choice to compute our examples. We can show that termination
of the algorithm is ensured once H is chosen to be finitary, meaning that H is
finite on all finite sets of labels.

Widening Operator. The widening operator ∇M : M×M → M is defined by:

(M1∇MM2)(ll) =

8<:
M1(ll) if M2(ll) ≤ M1(ll)
M2(ll) if M1(ll) = 0 ∧M2(ll) > 0
∞ otherwise

It will ensure that the chain of values taken by E[qt] in line 8 always stabilises
after a finite number of steps. We refer to [4,14] for a formal definition of widening
and merely note that M1 tM M2 ≤M M1∇MM2.

Procedure enabled. Recall that E is the extended multiset of exposed actions
in the state of interest, and remember that (ρ̂, Ŝ) �

F
T N0 holds. Then:

enabled(ρ̂,Ŝ)(E) = dom(E) ∩ ({(l, `) : ` labels an bcst- or out-action} ∪
{(l, `[t]) : ` labels an in(T)-action, t ∈ ρ̂JT K and E(l, t) > 0})

First of all, enabled(ρ̂,Ŝ)(E) shall only contain labels l which are exposed in E,
hence l ∈ dom(E). Furthermore, if ` is the label of an bcst- or out-action, then
(l, `) ∈ enabled(ρ̂,Ŝ)(E), because these actions can always execute; and if ` is the
label of an in(T)-action, we have to check which tuples t contained in E match
the template T and can be input, and record (l, `[t]) ∈ enabled(ρ̂,Ŝ)(E).

Correctness. We can now establish the main result which implies that we can
use the worklist algorithm to produce abstract transition systems for which the
embedding theorem (Theorem 1) is applicable.

Theorem 3. Suppose (ρ̂, Ŝ) �
F

T N0 holds for a network N0 and a network
topology T , and furthermore that the worklist algorithm terminates and produces
an abstract transition system A. Then A faithfully describes the evolution of N0.

5 Conclusion

In this paper, we have dealt with the problem of analysing the behaviour of
broadcast networks under changing network connectivity. For networks modelled
in the calculus bKlaim, we have defined an algorithm which constructs a finite
automaton such that all transition sequences obtained by the evolution of a
network correspond to paths in this automaton. We captured the nature of our
abstraction by defining a 3-valued interpretation of a temporal logic such that a
formula evaluating to a definite truth value on the automaton would imply the
truth or falsity of that formula on the transition system of the concrete network.

As a main direction for future work, we would like to construct the abstract
transition system as a 3-valued structure itself [8], to model the cases where we
can show that progress is enforced.

References

1. L. Bettini et al. The Klaim project: theory and practice. In Global Computing
(GC’03), volume 2874 of Lecture Notes in Computer Science. Springer, 2003.

2. K. Bhargavan, D. Obradovic, and C. A. Gunter. Formal verification of standards
for distance vector routing protocols. Journal of the ACM, 49(4):538–576, 2002.

3. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In Computer Aided Verification (CAV’99), volume 1633 of Lecture
Notes in Computer Science, pages 274–287. Springer, 1999.

4. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Principles of Programming Languages (POPL’79), pages 269–282. ACM, 1979.

5. C. Ene and T. Muntean. A broadcast-based calculus for communicating sys-
tems. In Formal Methods for Parallel Programming: Theory and Applications
(FMPPTA’03), 2001.

6. R. R. Hansen, C. W. Probst, and F. Nielson. Sandboxing in myKlaim. In Avail-
ability, Reliability and Security (ARES’06), pages 174–181. IEEE, 2006.

7. S. C. Kleene. Introduction to Metamathematics, volume 1 of Biblioteca Mathemat-
ica. North-Holland, 1952.

8. K. G. Larsen and B. Thomsen. A modal process logic. In Logic in Computer
Science (LICS’88), pages 203–210. IEEE Computer Society, 1988.

9. M. Merro. An observational theory for mobile ad hoc networks. In Mathemati-
cal Foundations of Programming Semantics (MFPS’07), volume 173 of Electronic
Notes in Theoretical Computer Science, pages 275–293, 2007.

10. S. Nanz. Specification and Security Analysis of Mobile Ad-Hoc Networks. PhD
thesis, Imperial College London, 2006.

11. S. Nanz and C. Hankin. A framework for security analysis of mobile wireless
networks. Theoretical Computer Science, 367(1-2):203–227, 2006.

12. S. Nanz, F. Nielson, and H. R. Nielson. Topology-dependent abstractions of broad-
cast networks. Technical report IMM-TR-2007-11, Technical University of Den-
mark, 2007.

13. R. D. Nicola and F. W. Vaandrager. Action versus state based logics for transition
systems. In LITP Spring School on Semantics of Systems of Concurrent Processes,
volume 469 of Lecture Notes in Computer Science, pages 407–419, 1990.

14. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

15. F. Nielson, H. R. Nielson, and M. Sagiv. A Kleene analysis of mobile ambients. In
European Symposium on Programming (ESOP’00), volume 1782 of Lecture Notes
in Computer Science, pages 305–319. Springer, 2000.

16. F. Nielson, H. R. Nielson, and M. Sagiv. Kleene’s logic with equality. Information
Processing Letters, 80:131–137, 2001.

17. H. R. Nielson and F. Nielson. A monotone framework for CCS. Submitted for
publication, 2006.

18. H. R. Nielson and F. Nielson. Data flow analysis for CCS. In Program Analysis
and Compilation. Theory and Practice, volume 4444 of Lecture Notes in Computer
Science. Springer, 2007.

19. K. V. S. Prasad. A calculus of broadcasting systems. Science of Computer Pro-
gramming, 25(2-3):285–327, 1995.

20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In Principles of Programming Languages (POPL’99), pages 105–118. ACM, 1999.

	Topology-dependent Abstractions of Broadcast Networks
	Sebastian Nanz, Flemming Nielson, and Hanne Riis Nielson

