
Goal-oriented Composition of Services

Sebastian Nanz and Terkel K. Tolstrup

Informatics and Mathematical Modelling
Technical University of Denmark

{nanz,tkt}@imm.dtu.dk

Abstract. One fundamental issue in service-oriented computing con-
cerns the question whether services can be composed in a manner that
allows them to achieve their individual goals. In this paper we use a
variant of interface automata as an abstraction of the input/output be-
haviour of services, which are themselves represented as terms in the
π-calculus extended with an action for expressing service collaboration.
In this setting, the question whether two or more services can mean-
ingfully compose is then reduced to checking a simple property of the
product automaton of the involved interfaces.

1 Introduction

Service-oriented computing [17] has evolved from component-based software de-
velopment as an effective approach to building distributed applications. A service
can be described as a process that can be addressed and used by other services
on a network, based on its published interface that identifies the capability it
provides. Two of the main research problems arising from this approach are thus
concerned with the design of this interface: in order for it to enable the discovery
of services that may achieve a certain computational task; and, to facilitate the
composition of services.

Web Services [1] are the example of the services paradigm that is currently
developed furthest. Here, the static interface of a service can be described in the
Web Services Description Language (WSDL) [4], an XML-based format which
contains a definition of the messages and ports that are involved in a communi-
cation with a service. This description limits severely the behavioural complexity
the service can implement, since interactions can only be described with a lim-
ited variety of message exchange patterns. In an advanced service model, services
could offer complex functionality that likewise may result in more complex in-
teractions with other services. For such a model to be successful, it has to be
supported by interface descriptions that allow to check the compatibility of ser-
vices with respect to their communication behaviour, e.g. to ensure that services
do not deadlock waiting for each other’s input.

In this paper we suggest a variant of interface automata [5] as a means
to provide this interface information. Transitions in an automaton are labelled
with the types of ports and message formats or internal actions, and describe the
input/output behaviour of the service. We view these automata as abstractions

P ::= 0 nil process

| P
i∈I πi.Pi guarded sum

| P1 | P2 parallel composition

| (new x) P restriction

| !P process replication

π ::= xỹ reception

| xỹ sending

| com x collaboration initiation

| τ unobservable action

Table 1. Syntax of the polyadic π-calculus with service collaborations

of processes which implement the actual service. Such processes are written in
a variant of the polyadic π-calculus [15] that enriches the usual syntax with
an action to express the initiation of a service collaboration. We define a type
system to statically describe the conformance of the abstract interface with its
implementing process. We prove for typed processes whose interface automata
compose optimistically [5] (i.e. there is some sequence of interactions to lead to
a final state) that the process composition also evolves in a way that the goals
of the collaboration can be achieved.

The remainder of this paper is structured as follows. In Section 2 we de-
scribe our extension of the π-calculus syntax and semantics that allows us to
describe service collaborations, and we introduce the running example of the pa-
per. Section 3 presents interface automata and their use as process abstractions.
Also, a non-standard semantics is introduced which describes the execution of
interface-conformant processes. In Section 4 we complement this dynamic view of
conformance with static type checking, and in Section 5 we discuss goal-oriented
compositions of interface automata. We present related work in Section 6 and
conclude in Section 7.

2 Modelling of Service Composition

The π-calculus [15] is a fundamental process algebraic approach to describing
concurrent systems whose configuration may change during the computation. We
use the π-calculus in its polyadic form as a basis for the description of services
with complex interactive behaviour, adding an action which explicitly describes
the agreement of two processes to collaborate.

2.1 A Process Model for Services

The polyadic π-calculus models two entities: processes and names. Processes
interact by synchronising on channels where they exchange a sequence of data
values; both channels and data are uniformly described by names. Names are
(unstructured) values drawn from the infinite set N .

The syntax of processes is shown in Table 1 and its entities can be infor-
mally described as follows. The terminated process is represented by 0. The

P | 0 ≡ P
P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R
!P ≡ !P | P

(new x) (P | Q) ≡ P | (new x) Q if x 6∈ fn(P)
(new x) 0 ≡ 0

(new x) (new y) P ≡ (new y) (new x) P

Table 2. Structural congruence of the π-calculus

term
∑

i∈I πi.Pi models an external choice, that allows one action πi to be exe-
cuted and to continue with Pi. In our syntax variant, there are the four types of
actions; we describe first the three classical ones: an input process xỹ.P receives
a sequence of names along channel x and substitutes it for ỹ in P; an output
process xỹ.P sends ỹ along channel x; and an internal action τ executes without
interaction.

As an extension of the standard syntax, we add an action com x which de-
scribes the readiness of a process to compose with some other process on channel
x; in the term com x.P , the action com x binds x in P . Two processes running
in parallel com x.P | com y.Q, which are both ready to compose, can then evolve
to (new z) (P [z/x] | Q[z/y]), i.e. collaborate using a fresh name z as a common
channel. The intuition is that executing a com-action describes a handshake tak-
ing place between two processes. While this could be expressed also with stan-
dard syntax, having an explicit syntax element available enables us to identify
the starting points of a collaboration, which is important for our analysis.

Processes are composed in parallel by P1 | P2, and replication !P represents
an infinite number of copies of P . The expression (new x) P creates a new name
with scope P .

As in the original π-calculus, we present a formal semantics based on a struc-
tural congruence and a reaction relation. The structural congruence is the least
equivalence relation that is generated by the rules in Table 2, and is standard.

Also the reaction rules of Table 3 are standard, with the exception of the rule
for composition which implements the semantics explained informally above. In
addition, we introduce a typing environment Γ that maps names into a finite
set of channel types, and require that collaborations can only take place if both
collaboration partners expect the same channel type. We omit to associate Γ
explicitly with the reaction rules, as Γ is defined globally.

2.2 Example: Web Auctions

In order to illustrate our π-calculus extension as a formalism to describe service
interactions, we present an example from the area of web-based auctions.

Buyer , !com buyer.

(new bid) (new item) buyer(bid, item, buyer).
(buyer(lost, item).0 + buyer(won, item, product).0)

τ.P + M → P
|ỹ| = |z̃|

(xỹ.P + M) | (xz̃.Q + N) → P [z̃/ỹ] | Q

Γ (x) = Γ (y) z fresh

(com x.P + M) | (com y.Q + N) → (new z) (P [z/x] | Q[z/y])

P → P ′

P | Q → P ′ | Q
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′
P → P ′

(new x) P → (new x) P ′

Table 3. Reaction rules of the π-calculus with service collaborations

A buyer can place a bid on a certain item, using a channel buyer that will be
determined by a new collaboration. We imagine that the buyer might both try
to directly collaborate with the web auction or through an auction agent, both
of which are services as well. The buyer immediately places his maximum bid.
As the result of the auction, the buyer expects to receive either the message to
have lost the auction, or to have won, and then get the product.

Auction , !com auction.
auction(bid, item, buyer).

!(auction(higherbid, item).
(auction(bid, item, buyer).0 + τ.0)

+
auction(won, item, product).0)

The auction service waits for bids on items it receives via the auction channel
which is also determined by a new collaboration. On this channel, it can an-
nounce two outcomes. First, it can send a message to the bidder that it has
received a higher bid than the current bid. It will then give the bidder the pos-
sibility to raise its bid by sending another bid message on the same channel, or
it terminates after executing τ , meaning that the auction is over and lost by the
bidder. Second, it can output the message that the bidder has won the item, and
send along the product.

Note that throughout the examples we resolve + with external choice,
which would be problematic for example in the case of a buyer missing the
buyer(lost, item).0 branch: the buyer could then always force the winning branch
of the auction. In this case we could however modify our examples by using in-
ternal choice, i.e. by prefixing the actions in sums with τ .

Finally, the auction agent can collaborate with two other services in order
to bid on behalf of a service in a certain auction. With its first collaborator,
it expects a bidding instruction via the client channel. On reception it will
start a second collaboration on the bidding channel, in order to pass on this
bidding instruction. The agent then expects either to be outbid and receive the
higherbid message, or to win the item and receive the product. In the first case,
it will decide according to its bidding algorithm either to place another bid (and

restart, using replication), or communicate on the client channel that this item
is considered lost. In the second case, it will send the product on to the service
that placed the original bidding instruction.

Agent , !com client.
client(bid, item, client).

com bidding.

(new bid′) bidding(bid′, item, client).
!(bidding(higherbid, item).

(client(higherbid, item).0
+
(new bid′) bidding(bid′, item, client).0)

+
bidding(won, item, product).

client(won, item, product).0)

In terms of composition, we may confirm by inspection that it should be possible
for Buyer to use Agent in order to bid conveniently on a certain item offered by
Auction. However, it is hard to establish this compatibility automatically when
working directly with process descriptions. We therefore propose in the following
section interface automata as a process abstraction, that enables the automatic
inference of this result.

Furthermore, if we assume that all collaboration channels exhibit the same
channel type, i.e. Γ (buyer) = Γ (auction) = Γ (client) = Γ (bidding), collabora-
tions turn out to be completely promiscuous: in addition to the already described
collaborations, Buyer might potentially bid directly using the Auction service,
or – as depicted below – auction agents might rely on other auction agents
(maybe with advanced algorithms for specific types of auctions) in order to do
the bidding.

Buyer Agent · · · Agent Auction

As a matter of fact, entities may also try to compose with themselves, for ex-
ample Buyer with Buyer. Not all these compositions would lead to successful
computations (clearly, Buyer with Buyer would not), but using our approach,
we will be able to select the meaningful ones.

3 Automata-based Abstractions of Processes

Interface theory provides an approach to describing the interfaces of components,
where each component is represented by its input and output behaviour, and
interface composition is the key operator. One is usually interested to have two
properties on interfaces, namely that a component conforms to its interface,
and that composed components have compatible interfaces. In the following we
shall use a variant of a popular interface theory, interface automata [5], as an
abstraction that describes the behaviour of services.

3.1 Interface Automata

Interface automata [5] are finite state transition systems in a concurrent set-
ting. An interface automaton describes a computational component by its in-
put, output, collaboration, and internal actions. The automata synchronise on
communications and are interleaved on internal actions.

Definition 1 (Interface Automaton). An interface automaton A is a 5-tuple
(S, Σ, δ, s0, F) where S is a finite set of states, Σ = ΣO ∪ ΣI ∪ ΣC ∪ {τ} an
alphabet with output actions ΣO, input actions ΣI , collaboration actions ΣC ,
and the internal action τ , δ : S×Σ → S a transition function, s0 ∈ S an initial
state, and F a set of final states.

Note that interface automata are deterministic, and that we can thus use equa-
tions like δ(s, σ) = s′ to describe the transition function; given an interface
automaton A with transition function δ, we may then also write A(s, σ) = s′.

Interface automata distinguish themselves from I/O automata [13,14] by not
being input-enabled, i.e. it is not required that the transition function δ is defined
on all combinations of states and input actions. Instead one takes an optimistic
approach by assuming that the environment never generates unmatched inputs.
Interface automata come with a theory for interface conformance and the com-
position of components. In our variant approach, we redefine these terms in
order to have interface automata serve as abstractions for π-processes, and to
describe their goal-oriented composition. For this reason we have added in Defi-
nition 1 a notion of final states (that correspond to goals), which is not present
in the original approach. In the following, we describe informally how processes
are abstracted by automata, and elaborate on this using our running example;
Section 3.2 establishes the formal connection.

The main idea of the abstraction is to have the actions of a process matched
by transitions in the interface automata. The alphabet Σ of the interface au-
tomaton is defined and interpreted as follows: in the case of input and output
actions, we take α〈k〉 and α〈k〉, respectively, where α is the type and k the ar-
ity of the channel; in the case of collaboration actions, we take α〈c〉; and for
τ actions simply τ . For example, an output process xỹ.P with Γ (x) = α and
|ỹ| = 3 can be described by the following automaton, where the behaviour of P
is described starting with state 2:

//?>=<89:;1
α〈3〉 //?>=<89:;2

... //

We use the meta-variable σ to range over the elements of Σ, and may sometimes
write σ to denote α〈k〉 when σ is given by α〈k〉.

We shall abstract each parallel process and each process in a sum by its own
interface automaton. If a process splits into several processes, e.g. in the case of
τ.(xy.P | uv.Q) or τ.(xy.P +uv.Q), we abstract this by having a branch for each

?>=<89:;/.-,()*+4

//?>=<89:;1
β〈c〉 //?>=<89:;2

β〈3〉//?>=<89:;3

β〈2〉 ::vvvvv

β〈3〉 $$HHH
HH

?>=<89:;/.-,()*+5

?>=<89:;v

?>=<89:;iv

α〈3〉 88rrrrr

τ %%KKK
KK

//?>=<89:;i
α〈c〉// ?>=<89:;ii

α〈3〉// ?>=<89:;iii

α〈2〉 99rrrrr

α〈3〉 %%LLL
LL

?>=<89:;76540123vi

GFED@ABC?>=<89:;vii

Buyer Auction

Fig. 1. Interface automata for the processes Buyer and Auction

process in the automaton:

?>=<89:;3
... //

//?>=<89:;1
τ //?>=<89:;2

Γ (x)〈1〉 ;;vvvvv

Γ (u)〈1〉 ##HHH
HH

?>=<89:;4
... //

An automaton abstracting process replication !P is given by the automaton ab-
stracting P . The introduction of new names is likewise ignored in the abstraction.

We take a state in the abstraction to be a final state if the corresponding
process has reached a termination point 0, and if in addition the goal of the
interaction has been reached. Such goals should match the identified functional
goals [11] of the service. Final states are thus annotations that depend on the
intended process semantics. We could however generate them automatically from
a process by having an additional syntax element 0g for terminated goal states
that otherwise behaves like 0.

Example. We illustrate the abstraction of processes by interface automata by
considering our running example. The buyer process is ready to collaborate in the
start state and, after the handshake, accepts communication over the channel
buyer on which it outputs a bid message (arity 2) and accepts input that is
either win (arity 3) or lose (arity 2). Assuming β as type of the buyer channel,
the abstracting automaton Buyer is given in Figure 1. Note that both the win
and the lose situation determine goals of the buyer’s collaboration, and are thus
represented by final states. The process abstraction of Auction can be argued
for similarly, where α is the type of the auction channel.

The interface automaton for Agent is depicted in Figure 2. The automaton
communicates with the client, i.e. the Buyer or another Agent, on the channel
client with type γ1, and bids on an Auction (possibly through another Agent)
using the channel bidding with type γ2. The intuition behind these automata is
that they can compose by connecting all channels of a given type, thus one way
of composing the example automata would be connecting β ↔ α, this correspond

?>=<89:;g

?>=<89:;f

γ2〈3〉 ;;vvvvv

γ1〈2〉 ##GGG
GG

//?>=<89:;a
γ1〈c〉//?>=<89:;b

γ1〈3〉// 76540123c
γ2〈c〉//?>=<89:;d

γ2〈3〉//?>=<89:;e

γ2〈2〉 ;;wwwww

γ2〈3〉 ##GGG
GG

?>=<89:;/.-,()*+h

?>=<89:;j

γ1〈3〉 ##HHH
HH

?>=<89:;/.-,()*+k

Agent

Fig. 2. Interface automaton for the process Agent

to connecting the Buyer and Auction directly. Another composition would result
from connecting β ↔ γ1 and γ2 ↔ α, here the Buyer is connected to the Agent,
which in turn is connected to the Auction.

3.2 Interface Semantics

In order to formalise the conformance of an interface automaton with a process
in our π-calculus variant, we propose a non-standard semantics, called interface
semantics, that describes the behaviour of tagged processes. A tagged process
[P]A,s relates the process behaviour P with the interface automaton A abstract-
ing it, together with the state s the automaton is currently in. For example,
we have argued earlier that the Buyer automaton of Figure 1 describes the be-
haviour of the process Buyer in Section 2.2. This means we can use the tagging
[Buyer]Buyer,1. Once Buyer has agreed to a collaboration and sent its first bid,
the tagging corresponds to

[buyer(lost, item).0 + buyer(won, item, product).0]Buyer,3,

meaning that we are now in state 3 of the describing automaton.
The interface semantics checks this agreement of processes and their tags

explicitly. We first present in Table 4 a structural congruence ≡t for tagged
processes. The creation of new names is abstracted away by our automaton
model and therefore the new name construct can leave the tagged process. We
explicitly require a scope extrusion rule in the tagged semantics since it cannot
be inferred from the standard congruence in all cases. Parallel processes using
the same tag are equivalent to a tagging of their composition. And if processes
are equivalent using the standard congruence ≡, they are equivalent under the
same tag.

The equivalence rule for new name creation shows that we can have both
tagged and untagged elements in this semantics. We use calligraphic lettering to
express this situation:

Q ::= [P]A,s | Q1 | Q2 | (new x) Q

[(new x) P]A,s ≡t (new x) [P]A,s

(new x) ([P]A,s | [Q]B,t) ≡t [P]A,s | (new x) [Q]B,t if x /∈ fn(P)
[(P | Q)]A,s ≡t [P]A,s | [Q]A,s

[P]A,s ≡t [Q]A,s if P ≡ Q

Table 4. Structural congruence for tagged processes

Using this syntactic convention, we can now describe the reaction rules in
the interface semantics (Table 5). The rule for τ expresses that a process, tagged
with automaton A at state s, can only execute a τ -action if the automaton has
a corresponding τ -transition from s to a state s′; the resulting process is [P]A,s′ .
Likewise, in the case of an interaction where the input process is tagged with
(A, s) and the output process with (B, t), we require that these automata contain
transitions labelled with the channel type Γ (x), the communication direction,
and the arity |z̃| of the corresponding message. As an example, the buyer and
auction processes

[buyer(bid, item, buyer).P]Buyer,2 | [buyer(bid, item, buyer).Q]Agent,b

could interact by connecting the channels β and γ1, because Γ (buyer) = β and
in automaton Buyer there is a transition labelled β〈3〉 from state 2 and in the
Agent automaton there is a matching transition γ1〈3〉 from state b.

In the collaboration rule note that we require collaboration channels to be of
the same type. The remaining rules for parallelism, structural congruence, and
name creation are straightforward.

The following result for the interface semantics is straightforward: if processes
can be executed under some tagging, they can be executed in the standard
semantics. In order to formulate the theorem we introduce the notation bPc
which strips all tags off the processes of P:

b[P]A,sc = P
bQ1 | Q2c = bQ1c | bQ2c
b(new x) Qc = (new x) bQc

Then the theorem can be presented in the following concise form:

Theorem 1. If P →t P ′ then bPc → bP ′c.

Proof. The result is proved by induction over the inference of P →t P ′, using
Table 5 and Table 3. ut

4 Interface Conformance

In this section we present an approach for checking conformance between pro-
cesses and their abstractions, which are given as interface automata. We use a

A(s, τ) = s′

[τ.P + M]A,s →t [P]A,s′

A(s, Γ (x)〈|ỹ|〉) = s′ B(t, Γ (x)〈|z̃|〉) = t′ |ỹ| = |z̃|
[xỹ.P + M]A,s | [xz̃.Q + N]B,t →t [P [z̃/ỹ]]A,s′ | [Q]B,t′

A(s, Γ (x)〈c〉) = s′ B(t, Γ (y)〈c〉) = t′ Γ (x) = Γ (y) z fresh

[com x.P + M]A,s | [com y.Q + N]B,t →t (new z) ([P [z/x]]A,s′ | [Q[z/y]]B,t′)

P →t P ′

P | Q →t P ′ | Q
Q ≡t P P →t P ′ P ′ ≡t Q′

Q →t Q′

P →t P ′

(new x) P →t (new x) P ′

Table 5. Reaction rules with interface semantics

type system for specifying whether an abstraction conforms to a process. The
judgements are of the following form:

Γ, s ` P : A

Here Γ is a typing environment (see Section 2.1), s is the state in which the
conformance check starts, and A is the smallest interface automaton that con-
forms to the process P . The typing rules for processes are given in Table 6 and
for actions in Table 7.

The rules match the intuition behind the abstractions we have introduced
informally in Section 3.1. A nil-process can be abstracted by a single state s.
In the rule for replication, we only require the conformance of the replicated
process and the automaton. The conformance of the automaton associated with
parallel processes follows from the union of the automata that conform to each
process. The introduction of new names is abstracted away.

The rule for summation makes use of the auxiliary judgement for actions,
and requires that for every occurring action πi, we can find an outgoing edge
abstracting it and leading to some state si, and a conformance check taken
from si will take care of the continuation process Pi. The judgements for actions
simply ensure that actions are directly matched by transitions in the automaton.

Type soundness. Before stating the soundness of the type system we first intro-
duce a convention. Note that if we have two typings Γ, s ` P : A and Γ, s ` P : B,
the automata A and B have isomorphic structure but may differ in the names of
the states they contain. When relating two automata, we will therefore assume
in the following that their states are already renamed in the proper manner.

The following two simple properties express that conformance is preserved
under substitution and structural congruence.

Γ, s ` 0 : s
Γ, s ` πi : {s σ−→ si} Γ, si ` Pi : Ai

Γ, s `
P

i∈I πi.Pi :
S

i({s
σ−→ si} ∪Ai)

Γ, s ` P : A

Γ, s `!P : A

Γ, s ` P1 : A Γ, s ` P2 : B

Γ, s ` P1 | P2 : A ∪B

Γ, s ` P : A

Γ, s ` (new x) P : A

Table 6. Type checking of processes

Γ, s ` xỹ : {s Γ (x)〈|ỹ|〉−−−−−−→ s′} Γ, s ` xỹ : {s Γ (x)〈|ỹ|〉−−−−−−→ s′}

Γ, s ` com x : {s Γ (x)〈c〉−−−−−→ s′} Γ, s ` τ : {s τ−→ s′}

Table 7. Type checking of actions

Lemma 1. If Γ, s ` P : A and Γ (x) = Γ (y) then Γ, s ` P [y/x] : A.

Lemma 2. If Γ, s ` P : A and P ≡ Q then Γ, s ` Q : A.

In order to formulate the theorem we introduce the notation E(Q) for the set
of tagged processes in Q:

E([P]A,s) = {[P]A,s}
E(Q1 | Q2) = E(Q1) ∪ E(Q2)
E((new x) Q) = E(Q)

Furthermore we write A 's B whenever the same states are reachable from a
state s in both A and B, i.e. if the following holds

A 's B iff ∀ ω. A∗(s, ω) = B∗(s, ω)

where as usual δ∗(s, σω) = δ∗(δ(s, σ), ω).
The subject reduction result states that conformance of processes to the

associated automata is preserved under the operational semantics.

Theorem 2 (Subject Reduction). If [Pi]Ai,si ∈ E(P) and Γ, si ` Pi : Bi

such that Ai 'si Bi and bPc → P ′ then there exists a P ′ and indices k and j
such that P ′ = bP ′c and [Qj]Aj ,tk

∈ E(P ′) and Γ, tk ` Qj : Bj and Ak 'tk
Bj.

Proof. The result follows from induction in the shape of P, matching the con-
ditions from the type system to those of the interface semantics while applying
Lemmas 1 and 2. ut

5 Goal-oriented Compositions

In the previous sections we have seen how interface automata can be used as
abstractions for processes. The aim of this development is to obtain a strong

GFED@ABC3, g

GFED@ABC3, f

γ2[3] 88rrrrr

τ %%LLLLL

// GFED@ABC1, a
τ // GFED@ABC2, b

τ // GFED@ABC3, c
γ2[c]// GFED@ABC3, d

γ2[3]// GFED@ABC3, e

γ2[2] 99rrrrr

γ2[3] %%LLLLL
GFED@ABC?>=<89:;4, h

GFED@ABC3, j

τ %%LLLLL

GFED@ABC?>=<89:;5, k

Fig. 3. Composed Automaton: Buyer⊗β↔γ1 Agent

compositionality result for processes from the composition of interface automata,
which we define in this section. We define the composition of interface automata
as the following product automaton:

Definition 2 (Composition of Interface Automata). The composition
A1 ⊗α1↔α2 A2 of two interface automata A1 = (S1, Σ1, δ1, s1, F1) and A2 =
(S2, Σ2, δ2, s2, F2) with σ1 = α1〈k〉 ∈ ΣI

1 and σ2 = α2〈k〉 ∈ ΣI
2 is defined by

A1 ⊗α1↔α2 A2 = (S1 × S2, (Σ1 ∪Σ2) \ {σ1, σ1, σ2, σ2}, δ, (s1, s2), F1 × F2)

where δ is given by:

1. If δ1(s1, σ1) = s′1 and δ2(s2, σ2) = s′2 then δ((s1, s2), τ) = (s′1, s
′
2)

2. A symmetrical rule to 1.
3. If δ1(s1, σ) = s′1 and σ /∈ {σ1, σ1, σ2, σ2} then δ((s1, s2), σ) = (s′1, s2)

for all s2 ∈ S2

4. A symmetrical rule to 3.
5. If δ1(s1, α1〈c〉) = s′1 and δ2(s2, α2〈c〉) = s′2 then δ((s1, s2), τ) = (s′1, s

′
2)

Note that although ⊗α1↔α2 is a binary operator, we can of course com-
pose arbitrarily many automata together by composing them in sequence, i.e.
A1 ⊗α1↔β1 A2 ⊗α2↔β2 · · · ⊗αn↔βn

An, where we assume left-associativity of the
composition operator.

In contrast to the approach of [5] where all shared channels are used for com-
position, we explicitly parametrise the composition operator ⊗α1↔α2 with the
channels α1 and α2 that get connected in the resulting system. These channels
are subsequently removed from the alphabet of the resulting automaton, and this
automaton contains a τ -transition instead (rules 1 and 2). Channels that are not
mentioned in the composition parameter are kept in the result automaton (rules
3 and 4). Also matching collaborations are replaced by a single τ -transition (rule
5). The product thus coincides with the composition of input-enabled automata,
such as I/O-automata [14], however, some steps present in A or B may not be
present in the product, as not all inputs have to be matched by outputs.

ONMLHIJK3,g,v ONMLHIJK4,h,iv

τ ''PPPP
P

ONMLHIJK3,f,iv
τ

ggPPPPP
τ 66nnnnn

τ ((PPP
PP

ONMLHIJKGFED@ABC4,h,vi

// ONMLHIJK1,a,i
τ // ONMLHIJK2,b,i

τ // ONMLHIJK3,c,i
τ // ONMLHIJK3,d,ii

τ // ONMLHIJK3,e,iii

τ 77nnnnn

τ ''PPPP
ONMLHIJK3,f,vi

τ

77nnnnn

WVUTPQRS3,j,vii

τ ((PPPP
P

WVUTPQRSONMLHIJK5,k,vii

Fig. 4. Composed Automaton: Buyer⊗β↔γ1 Agent⊗γ2↔α Auction

As shown in Definition 2, we also extend the common notion of composition to
take the final states of the automata into account by saying that a composition is
goal-oriented or meaningful if a final state is reachable, and hence the individual
goals of the services are preserved.

Definition 3 (Goal-oriented Composition). A composition A1 ⊗α1↔α2 A2

is said to be goal-oriented if it contains a reachable final state.

A composition is said to be closed whenever all the necessary interactions
are available in the composed processes (and hence no interaction from the en-
vironment is needed) and furthermore a final state is reachable in the product
automaton.

Definition 4 (Closedness). (A, s) is said to be closed if, starting from s, there
is a final state reachable following only τ transitions.

Observe that the traditional definition of closedness is more restrictive than
ours, as we only require the existence of one path consisting of internal actions,
and not every transition to be internal. This allows us to be more flexible because
a service may have more than one option to achieve some acceptable goal, and
we require that only one is reachable. As an example, consider a scenario where a
service acting on behalf of a traveller wishes to compose with either a train ticket
service or a plane ticket service. Here it is the case that although the traveller
has goals representing both successful train and plane ticket reservations, the
agencies provide only one kind of tickets.

Example. As an example of goal-oriented composition, Figure 3 shows the prod-
uct automaton Buyer ⊗β↔γ1 Agent. The automata is connected on the channels
β and γ1, resulting in τ -transitions replacing these in the product automaton.
The γ2 channel present in the Agent remains unconnected, hence making fur-
ther composition possible. Indeed, the automaton can be composed further with
Auction, as shown in Figure 4. Observe that the resulting composition is closed,
as there exists paths containing only τ -transitions that reach final states.

GFED@ABC4,iv

τ &&MMMMM

// GFED@ABC1,i
τ // GFED@ABC2,ii

τ // ONMLHIJK3,iii

τ 88ppppp

τ &&NNNNN
GFED@ABC?>=<89:;4,vi

ONMLHIJKGFED@ABC5,vii

Fig. 5. Composed Automaton: Buyer⊗β↔α Auction

The composition of the buyer and auction automaton, illustrated in Figure 5,
shows how transitions might be lost during composition. Here the buyer places
his maximum bid immediately and, when outbid, accepts defeat. The auction
however is willing to take another bid from the buyer after the first one is out-
bid. The composition succeeds because there are still goal states present in the
composed automaton; in fact the resulting automaton is closed.

Properties. The main result we establish in this section tells us under which
conditions the composition of services leads to a situation where common goals
are achieved. More precisely it expresses the following: if the product automaton
of process-conformant automaton is closed, then there exists an execution of the
processes such that they reach their common goal as specified in the automaton.

Theorem 3. For i = 1, . . . , n, let [Pi]Ai,si ∈ E(P) and Γ, si ` Pi : Ai be a
typing, and let A = A1 ⊗α1↔β1 A2 ⊗α2↔β2 · · · ⊗αn↔βn An be the composition of
all Ai. If (A, (s1, . . . , sn)) is closed, then P | Q →∗

t P ′ | Q′ and [P ′
i]Ai,s′

i
∈ E(P ′)

and (s′1, . . . , s
′
n) is a final state in A.

Note that the property expressed in this theorem can be seen as a relaxation of
the common notion of liveness by exploiting the optimistic approach: we ensure
that from the state we compose in we can always choose a right path to end up
in a desired state (i.e. such a path will always exist).

6 Related Work

Previous work on service oriented computing has primarily focused on web ser-
vices, for which the Web Services Description Language (WSDL) [4] has been
influential in describing the static interfaces of services. Another line of work has
focused on the choreography of web services, for which the Web Services Chore-
ography Description Language (WS-CDL) [10] is a recent attempt at a standard.
In this paper we deal with the orthogonal topic of composing services. Several
approaches to composing systems based on process algebras and automata have
been proposed. However, many of these [16,20,19] have limitations that do not
allow them to describe systems in a modular manner, and checking compat-
ibility cannot be performed with a feasible complexity. Canal et al. [3,2] use

roles to define protocol specifications, making them modular, yet the computa-
tional complexity of composing systems remains NP-hard. One main benefit of
choosing interface automata over other alternatives such as process algebras or
input-enabled automata is that the compatibility of services can be checked in
linear time [5].

Another approach that deals with these issues is session types. The use of
session types [8,9] was introduced to describe structured communication. Gay
and Hole [6,7] introduced subtypes for compatibility and conformance testing
of processes. Vallecillo et al. [18] continued the investigation of composition
of compatibility of session types, applying their approach in the commercial
environment CORBA. The present work differs from session types in a core
point, namely the fact that goal-oriented composition allows us to express when
composition is meaningful. Another novel feature is the ability to compose ser-
vices component-wise, allowing arbitrarily large dynamic composition scenarios,
rather than focusing on two sessions being dual or complementary.

Recently, Larsen et al. [12] have presented an interface theory, modal I/O
automata, that adds modalities to interface automata such that requirements of
the system can be directly modelled. As modal I/O automata are more general
than the interface automata, it would be interesting to see what benefits can be
gained by lifting our abstractions to this approach.

Goal-orientation is an important term in requirements engineering [11]. In
this field the term is used to describe techniques to identify and refine require-
ments guided by goals. In our work we use goals to guide the composition of
services. Hence our work is orthogonal to these techniques.

7 Conclusion

We have extended the π-calculus with an explicit action for service collabo-
rations, and have presented an interface automata-based abstraction of these
processes in order to reason about the meaningfulness of the arising process
compositions. A type checking algorithm has been provided for ensuring the
conformance between a process and its abstracting automaton, and we have
extended the theory of composition of interface automata by introducing goal
conditions. The notion of closedness of compositions could then be relaxed in a
way that only the required interactions needed to be part of a composition, thus
establishing a very flexible notion of compositionality.

In future work we would like to investigate the flexibility of having optional as
well as required goal states, resulting in an even more fine grained specification of
meaningful service composition. Furthermore, we could strengthen the semantics
of the collaboration action by transforming it from a mere annotation of the start
of a collaboration to an action which checks compositionality before executing,
allowing us to express statically when a process is safe with respect to goal-
oriented composition.

Acknowledgements. This work has been partially sponsored by the project
SENSORIA, IST-2005-016004.

References

1. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Ar-
chitecture and Applications. Springer Verlag, 2004.

2. C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles
to CORBA objects. IEEE Transactions on Software Engineering, 29(3):242–260,
2003.

3. C. Canal, E. Pimentel, and J. M. Troya. Compatibility and inheritance in software
architectures. Science of Computer Programming, 41(2):105–138, 2001.

4. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (WSDL). http://www.w3.org/TR/wsdl, Mar. 2001.

5. L. de Alfaro and T. A. Henzinger. Interface automata. In 9th Intl. Symposium on
Foundations of Software Engineering (FSE’01), pages 109–120. ACM, 2001.

6. S. J. Gay and M. Hole. Types and subtypes for client-server interactions. In 8th
European Symposium on Programming Languages and Systems (ESOP’99), volume
1576 of LNCS, pages 74–90. Springer, 1999.

7. S. J. Gay and M. Hole. Subtyping for session types in the pi-calculus. Acta
Informatica, 42(2-3):191–225, 2005.

8. K. Honda. Types for dynamic interaction. In 4th Intl. Conference on Concurrency
(CONCUR’93), volume 715 of LNCS, pages 509–523. Springer, 1993.

9. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-
pline for structured communication-based programming. In 7th European Sympo-
sium on Programming Languages and Systems (ESOP’98), volume 1381 of LNCS,
pages 122–138. Springer, 1998.

10. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto.
Web services choreography description language (WS-CDL). http://www.w3.org/
TR/ws-cdl-10/, Nov. 2005.

11. A. v. Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
5th IEEE Intl. Symposium on Requirements Engineering (RE’01), pages 249–262.
IEEE Computer Society, 2001.

12. K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O automata for interface and
product line theories. In 16th European Symposium on Programming Languages
and Systems (ESOP’07), volume 4421 of LNCS, pages 64–79. Springer, 2007.

13. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In 6th Annual Symposium on Principles of Distributed Computing (PODC’87),
pages 137–151, 1987.

14. N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-
Quarterly, 2(3):219–246, 1989.

15. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Parts I and
II. Information and Computation, 100(1):1–77, 1992.

16. O. Nierstrasz. Regular types for active objects. In 8th Annual Conference Con-
ference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA’93), pages 1–15. ACM, 1993.

17. M. P. Singh and M. N. Huhns. Service-oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, Ltd, 2005.

18. A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of software
components using session types. Fundamenta Informaticae, 73(4):583–598, 2006.

19. H. Wehrheim. Behavioral subtyping relations for active objects. Formal Methods
in System Design, 23(2):143–170, 2003.

20. D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors.
ACM Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/

	Goal-oriented Composition of Services
	Sebastian Nanz and Terkel K. Tolstrup

