

The Claims about Test Driven Development

Mingsheng Bai

Lyngby/Denmark 2007

 II

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

 III

Summary

In the traditional software development process, unit- and functional tests are written
after the code is implemented. However, recently agile software development methods
were introduced which also change traditional testing practice. Test driven
development (TDD) is a practice of eXtreme Programming (XP) where unit- and
functional tests drive the development of the code. This means that the tests are
written before the actual code that is going to be tested. It is claimed, among others,
that TDD produces better code quality.

The goal of this thesis is to collect all the claims. Evaluation is done in two steps. The
first step is studying the literature for supporting or contradictory evidences. The
second step is implementing two case studies: a GUI based cinema reservation system
and a GUI based shop stock management system. One case study is done using a
traditional software process, where the tests are written after the implementation, and
the second case study is done using XP and TDD. The results of the case studies are
then compared with the results from the literature.

 IV

 V

Preface

This thesis was prepared at Informatics and Mathematical Modelling, the Technical
University of Denmark in partial fulfilment of the requirements for acquiring the
master degree in Computer System Engineering. This thesis was supervised by Hubert
Baumeister at IMM.

This thesis introduces the eXtreme Programming and Test Driven Development. The
main focus is on collecting claims about Test Driven Development, and evaluated
those claims.

I would like to thank my supervisor, the professor Hubert Baumeister. Thanks for
Hubert’s guidance, correction and advice throughout the whole project.

Copenhagen, Denmark, 2007

Mingsheng Bai

 VI

 Contents

Contents

Summary Ⅰ

Preface Ⅱ

Contents ...1
1. Introduction...4

1.1 Background ...4
1.2 Thesis scope ..4
1.3 Outline...5

2. Agile software development ..7
2.1 The principle of agile method-The Agile Manifest...7
2.2 Comparison with other method...8

Compare with iterative and Incremental development8
Compare with waterfall model...8

3. Extreme Programming ... 11
3.1 Values, Principles and Practice ... 11
3.2 Benefits ...13
3.3 Limitation..13

4. Test Driven Development ..16
4.1 TDD, a software development practice...16

4.1.1 Test-Driven Development Cycle...17
4.1.2 Three laws of using TDD..18

4.2 Claims concerning TDD ...18
5. Literature Research ..21

5.1 The Literature Research ..21
5.1.1 Boby George and Laurie Williams..21
5.1.2 Lei Zhang, Shunsuke Akifuji, Katsumi Kawai, and Tsuyoshi Morioka23

5.2 The evaluation criteria ..24
5.3 The evaluation of claims by literature study...24

6. Experiments ...31
6.1 Experiments Description...31

6.1.1 Experiment purpose ..31
6.1.2 Experiment subject..32
6.1.3 Experiment Tools and Methodology...32
6.1.4 Evaluation Strategy ...33
6.1.5 Experiment Procedure...35
6.1.6 Experiment Validity ..35

6.2 Experiment Process...36
6.2.1Cinema reservation system ..36
6.2.2 Shop stock management system ..47

The Claims About Test Driven Development 1

 Contents

6.3 Evaluation of the claims by experiment result..59

7. Conclusion ...65

The Achievement of this Thesis..65
Evaluation of claims ...65
The Thoughts and Further work..66

Reference ...69

Appendices A ...74

A-1 Time recording log for Cinema reservation system.......................................75
A-2 Bug recording log for Cinema reservation system ..78
A-3 Modify recording log for Cinema reservation system...................................79
A-4 PSP Project Summery Form for Cinema reservation system80
A-5 Time recording log for Shop stock management system...............................81
A-6 Modify recording log for Shop stock management system...........................84
A-7 Bug recording log for Shop stock management system85
A-8 Design changing injection for Shop stock management system86
A-9 PSP Project Summery Form for Shop stock management system87

Appendices B ...88

The Claims About Test Driven Development 2

 Contents

The Claims About Test Driven Development 3

 Introduction

1. Introduction

Test Driven Development is a new practice of t eXtreme Programming (XP). Some
studies or researches have been executed with the aim of understanding or comparing
it with a traditional practice. Some claims concerning TDD which are positive or
negative were emerged. In this thesis I will collect some claims about TDD, and the
evaluation on these claims will be done.

1.1 Background

Test-Driven Development has been invented by Kent Beck and is a development
practice which is part of a software development methodology called eXtreme
Programming (XP) [1]. TDD began to receive publicity in the early twenty-first
century as an aspect of Extreme Programming [28].

TDD is based on the idea to create tests for the program before you develop the
program code. This is the opposite of what is usual in current software development
methodologies. The availability of tests before actual development ensures rapid
feedback after any change. Practitioners emphasize that test-driven development is a
method of designing software, not merely a method of testing [26].

As a member of the eXtreme Programming best practices, TDD is most often
associated with agile software development process [6].

The TDD practice starts with thoughts on how to test the required functionality. After
writing automated test cases that generally will not even compile, the programmers
write implementation code to pass these test cases [25]. It follows steps like: write a
test case quickly, run the test case to see it failed, write a little production code, run
the test case and see it succeed, refactor the code. Such kind of iterations will go
through all the user stories.

1.2 Thesis scope

In this thesis I will collect some claims concerning Test Driven Development, which
are both supporting TDD and non-supporting TDD. Evaluation of those claims will be
done in two steps. The first step, evaluation is to be done by literature study. And the
second step, evaluation is to be done by experiment. Due to some claims concern the
comparison between XP with TDD and waterfall model, the experiment is designed to
develop two systems by using XP with TDD and waterfall model respectively. The

The Claims About Test Driven Development 4

http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Software_engineering

 Introduction

two systems to be developed in the experiment are cinema reservation system and
shop stock management system. The cinema reservation system will be developed by
using the waterfall model. The shop stock management system will be developed
using XP with TDD. Finally, this thesis will evaluate those claims by the thesis
finding and the combination of literature study and experiment result.

1.3 Outline

This thesis consists of 7 main parts. The chapter 1 is the introduction part, gives the
introduction for the background of the TDD and the scope of the thesis. The chapter 2
will introduce agile software development. The chapter 3 will introduce eXtreme
Programming and the benefits & shortcomings. The chapter 4 will introduce the Test
Driven Development by details and the claims are collected from literature papers.
The chapter 5 is the literature research part, contains three sub sections. The first
section introduces 2 of the researched papers for this thesis. The second section
introduces the evaluation criteria for the evaluation. The third section gives the
evaluation on claims by literature research. The chapter 6 is the experiments part,
contains three main parts. The first part documents the experiment’s description. The
second part documents the experiment’s process. The third part gives the evaluation
on those claims based on the experiments’ result. Finally, the chapter 7 is the
conclusion part, gives the achievement of this thesis, final evaluation on the claims
and the thoughts & further work.

The Claims About Test Driven Development 5

 Introduction

The Claims About Test Driven Development 6

 2. Agile software development

2. Agile software development

Agile software development is a conceptual framework for software engineering that
promotes development iterations throughout the life-cycle of the project. There are
many agile development methods; most minimize risk by developing software in short
amounts of time. Software developed during one unit of time is referred to as an
iteration, which may last from one to four weeks [10]. Iteration consists of the whole
software develop process: requirement analysis, design, implementation and test.
Iteration may not achieve the full functionalities of the software but the goal is to have
an available release (without bugs) at the end of each iteration. At the end of each
iteration, the team re-evaluates project priorities.

This chapter will introduce the principles of agile software development and
comparison to other methods.

2.1 The principle of agile method-The Agile Manifest

In 2001, 17 prominent1 figures in the field of agile development came together at the
Snowbird ski resort in Utah to discuss ways of creating software in a lighter, faster,
more people-centric way. They created the Agile Manifesto, widely regarded as the
canonical definition of agile development, and accompanying agile principles [7].
Some of the principles behind the Agile Manifesto are [8]:

• Customer satisfaction by rapid, continuous delivery of useful software
• Working software is delivered frequently (weeks rather than months)
• Working software is the principal measure of progress
• Even late changes in requirements are welcomed
• Close, daily cooperation between business people and developers
• Face-to-face conversation is the best form of communication
• Projects are built around motivated individuals, who should be trusted
• Continuous attention to technical excellence and good design
• Simplicity
• Self-organizing teams
• Regular adaptation to changing circumstances [8]

1 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James
Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor,
Ken Schwaber, Jeff Sutherland, Dave Thomas

The Claims About Test Driven Development 7

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Snowbird_ski_resort
http://en.wikipedia.org/wiki/Utah
http://en.wikipedia.org/wiki/Agile_Manifesto
http://en.wikipedia.org/wiki/Kent_Beck
http://en.wikipedia.org/w/index.php?title=Mike_Beedle&action=edit
http://en.wikipedia.org/w/index.php?title=Arie_van_Bennekum&action=edit
http://en.wikipedia.org/wiki/Alistair_Cockburn
http://en.wikipedia.org/wiki/Ward_Cunningham
http://en.wikipedia.org/wiki/Martin_Fowler
http://en.wikipedia.org/w/index.php?title=James_Grenning&action=edit
http://en.wikipedia.org/w/index.php?title=James_Grenning&action=edit
http://en.wikipedia.org/wiki/Jim_Highsmith
http://en.wikipedia.org/wiki/Andy_Hunt_%28author%29
http://en.wikipedia.org/wiki/Ron_Jeffries
http://en.wikipedia.org/w/index.php?title=Jon_Kern&action=edit
http://en.wikipedia.org/wiki/Brian_Marick
http://en.wikipedia.org/wiki/Robert_C._Martin
http://en.wikipedia.org/wiki/Steve_Mellor
http://en.wikipedia.org/wiki/Ken_Schwaber
http://en.wikipedia.org/wiki/Jeff_Sutherland
http://en.wikipedia.org/wiki/Dave_Thomas_%28programmer%29

 2. Agile software development

2.2 Comparison with other method

Agile methods are sometimes characterized as being opposite to the plan-driven or
disciplined methodologies. This distinction is misleading, as it implies agile methods
are unplanned or undisciplined. A more accurate distinction is to say that methods
exist on a continuum from "adaptive" to "predictive". Agile methods exist on the
"adaptive" side of this continuum [9].

Adaptive methods focus on adapting quickly to changing realities. When the needs of
a project change, an adaptive team changes as well. An adaptive team will have
difficulty describing exactly what will happen in the future [7].

Predictive methods, in contrast, focus on planning the future in detail. A predictive
team can report exactly what features and tasks are planned for the entire length of the
development process. Predictive teams have difficulty changing direction [7].

This section will compare the agile software development with an iterative and
Incremental development and a waterfall model.

Compare with iterative and Incremental development

Iterative and Incremental development is a cyclical software development process
developed in response to the weaknesses of the waterfall model. It is an essential part
of the Rational Unified Process, the Dynamic Systems Development Method,
Extreme Programming and generally the agile software development frameworks
[11].

The iterative development and Agile development have the same trait, as they
emphasis on building software release in short time period. However, Agile
development differs from other development models as in this model time periods are
measured in weeks rather than months and work is performed in a highly
collaborative manner, and most agile methods also differ by treating their time period
as a strict timebox [7].

Compare with waterfall model

The waterfall model is a sequential software development model (a process for the
creation of software) in which development is seen as flowing steadily downwards
(like a waterfall) through the phases of requirements analysis, design, implementation,
testing (validation), integration, and maintenance [12].

The Claims About Test Driven Development 8

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Dynamic_Systems_Development_Method
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Timebox
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Software_development_model
http://en.wikipedia.org/wiki/Waterfall
http://en.wikipedia.org/wiki/Requirements_analysis
http://en.wikipedia.org/wiki/Software_design
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Enterprise_application_integration
http://en.wikipedia.org/wiki/Software_maintenance

 2. Agile software development

As of 2004, the waterfall model is still in common use [13]. The waterfall model is a
typical predictive method, which predicts the future and stepping through requirement
analysis, design, coding and test in a pre-planned sequence. The progress is general
measured by the requirement specification, design documents, test strategy and etc.

The main problem of the waterfall model is the inflexible nature of the division of a
project into separate stages, so that commitments are made early on, and it is difficult
to react to changes in requirements. Iterations are expensive. This means that the
waterfall model is likely to be unsuitable if requirements are not well understood or
are likely to change radically in the course of the project [14].

The agile methods produce developed feature in short time period, and phases on
obtaining small piece of function to deliver business value early. The agile methods
don’t fear the requirement changing. However, some agile teams use the waterfall
model on a small scale, repeating the entire waterfall cycle each iteration [15].

The Claims About Test Driven Development 9

 2. Agile software development

The Claims About Test Driven Development 10

 3. Extreme Programming

3. Extreme Programming

Extreme Programming (XP) is one of several Agile Software Development
methodologies in Software Engineering. XP is created based on observations on what
made software development faster and what made it slower [16]. Despite the many
arguments for and against this kind of methodology, Extreme programming has been
embraced by the commercial sector during the last ten years [17].

XP emphasizes on close collaboration between the developer team and the customer
through face-to-face communication, frequent delivery, self-organizing teams, and
rapid response to changes in requirements [16]. XP has advantage in adapting in
changing user requirement at any point of project lifecycle. There is no full prescribed
activity sequence specified in XP. According to the adaptive approaches,
implementation of the projected product starts quickly leading to an incremental
delivery of the product [16]. XP initially start with getting a rough requirement
involve the importance of the system. And the overall very general architecture of the
system and implementation will be built up. With getting more requirements of the
system, the full architecture of the system with full functionalities accomplished. The
project will complete after several iterations. In predictive system development
methods the requirements for the system are determined at the beginning of the
development project and often fixed from that point on. This obviously is different
from the predictive approach.

The table 3.1 shows the substantial difference between the predictive approach and
the XP.

Methodology XP Predictive
Iteration Short(weeks) Long(months)
Design During process Upfront
Test Test first Test last
Costumer
involvement

During whole process At initial and final phases

Table 3.1 the difference between predictive approach and XP

The XP carried out based on the basic values, principles and practices. In the section
2.1, the values, principles and practice will be introduced.

3.1 Values, Principles and Practice

XP is built up based on several values, principles and practice. And principles have to
be in accordance with values, practice have to be in accordance with principles. The

The Claims About Test Driven Development 11

 3. Extreme Programming

values are the central part of XP. XP could only be used under agreement of values.
There are five values were introduced at present.

Communication
XP promotes communication between your team and your project stakeholders as
well as between developers on your team. To achieve this, Extreme Programming
favors simple designs, common metaphors, collaboration of users and programmers,
frequent verbal communication, and feedback.

Simplicity
XP encourages starting with the simplest solution and refactoring to better ones [18].
This more emphasize on designing or coding for the needs of today instead of
tomorrow even future. Due to the requirements possibly changed any time, spending
resources on something may not be needed is unwise.

Feedback
With the XP, the feedback should concern these three aspects:

 The feedback from system: Write a unit test, the programmer can directly get
the feedback from system after implementing changed.

 The feedback from costumer: The costumer or the end user should
communicate with developers periodically to get the up-to-date requirement.

 The feedback from team: After the requirement changed, the team member
should communicate each other to get the news.

Courage
Developers should dare to face anything, includes throw the source code away.

Respect (Humility)
People under a project team should care about each other and about the project.

The principles that form the basis of XP are based on the values just described and are
intended to foster decisions in a system development project. The principles are
intended to be more concrete than the values and more easily translated to guidance in
a practical situation [25].

Assuming simplicity is about treating every problem as if its solution were
"extremely simple". Traditional system development methods say to plan for the
future and to code for reusability. Extreme programming rejects these ideas.

The advocates of Extreme Programming say that making big changes all at once does
not work. Extreme Programming applies incremental changes: for example, a system
might have small releases every three weeks. By making many little steps the
customer has more control over the development process and the system that is being
developed.

The Claims About Test Driven Development 12

http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Simplicity
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Courage
http://en.wikipedia.org/wiki/Respect

 3. Extreme Programming

The principle of embracing change is about not working against changes but
embracing them. For instance, if at one of the iterative meetings it appears that the
customer's requirements have changed dramatically, programmers are to embrace this
and plan the new requirements for the next iteration.

There are 12 practices categorized into 4 areas, in the Extreme Programming, derived
from the best practices of software engineering. They were shown at table 3.2:

Area Fine scale

feedback
Continuous process Shared understanding Programm

er wefare
Practice Pair Programming

Planning Game
TDD
Whole Team

Continuous Integration
Design Improvement
Small Releases

Coding Standard
CollectiveCodeOwnership
Simple Design
System Metaphor

Sustainable
Pace

Table 3.2 the practices of Extreme Programming

3.2 Benefits

eXtreme Programming do has benefits of using it. This thesis will introduce the
benefit of using XP from three aspects, which are from developers, customers and
management [56].

For Developers, XP allows developers to focus on coding and avoid needless
paperwork and meetings. It provides a more social atmosphere, more opportunities to
learn new skills.

For the Customer, XP creates working software faster, and that software tends to
have very few defects. It allows customer to change your mind whenever you need to,
with minimal cost and almost no complaining from the developers. XP do has
strong adaptability of changing requirement.

For Management, XP delivers working software for less money, and the software is
more likely to do what the end users actually want.

3.3 Limitation

The exact limits of XP aren't clear yet. But there are some controversial aspects.

Unstable Requirements: Proponents of Extreme Programming claim that by having
the on-site customer request changes informally, the process becomes flexible, and

The Claims About Test Driven Development 13

 3. Extreme Programming

saves the cost of formal overhead. Critics of XP claim this can lead to costly rework
and project scope creep beyond what was previously agreed or funded [18].

User Conflicts: Change control boards are a sign that there are potential conflicts in
project objectives and constraints between multiple users. XP's expedited
methodology is somewhat dependent on programmers being able to assume a unified
client viewpoint so the programmer can concentrate on coding rather than
documentation of compromise objectives and constraints. This also applies when
multiple programming organizations are involved, particularly organizations which
compete for shares of projects [18].

XP might be limited in an environment where a long time is needed to gain feedback.
For example, if the system takes 24 hours to compile and link, developer will have a
hard time integrating, building, and testing several times a day [56].

The Claims About Test Driven Development 14

http://en.wikipedia.org/wiki/Rework
http://en.wikipedia.org/wiki/Scope_creep

 3. Extreme Programming

The Claims About Test Driven Development 15

 4. Test Driven Development

4. Test Driven Development

Studies indicate that testing accounts for at least 50% of the total development time
[20], [21]. One reason for this is that the verification activities late in development
projects tend to be loaded with defects that could have been prevented or at least
removed earlier (when they are cheaper to find and remove [19], [20], and [23]).
When many defects remain to be found late in a project, schedules are delayed and the
verification lead-time increases [22]. Test Driven Development was popularized as a
practice of defects-reduced, defect-detection-early and high flexibility. It (TDD) has
emerged as a novel software development approach that involves writing automated
unit tests in an iterative Test-First manner. When applying TDD, a software developer
writes one small automated unit test [24]. The developer then writes just enough code
to make the test pass. After possible refractory, the cycle then quickly repeats with the
developer writing another test and code to satisfy the test. This chapter will introduce
the Test Driven Development in three subsections. The first section is to introduce the
Test Driven Development as a software development practice, the second section is to
introduce the benefit of the TDD and the last one is to give the shortcoming of using
TDD.

4.1 TDD, a software development practice

Test Driven Development (TDD), a software development practice used sporadically
for decades [36, 37], has gained added visibility recently as a practice of Extreme
Programming (XP) [1]. The practice involves the implementation of a system starting
from the unit test cases of an object. Writing test cases and implementing that object
or object methods, triggers the need for other objects/methods. An important rule in
TDD is: ‘If you can’t write a test for what you are about to code, then you shouldn’t
even be thinking about coding’ [38].

Test-driven development should be used combine with Unit Testing. TDD requires
that an automated unit test, defining requirements of the code, is written before each
aspect of the code itself. These tests contain assertions that are either true or false.
Running the tests gives rapid confirmation of correct behavior as the code evolves and
is refactored. Testing frameworks based on the xUnit concept provide a mechanism
for creating and running sets of automated test cases [26].

The followed section will introduce the formal development cycle of TDD. And R.
Martin defined “three laws of using TDD”. The three-laws help the new
practitioners to use TDD. The second section will introduce the three laws of using
the TDD.

The Claims About Test Driven Development 16

http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Assertion_%28computing%29
http://en.wikipedia.org/wiki/Refactoring
http://en.wikipedia.org/wiki/XUnit

 4. Test Driven Development

4.1.1 Test-Driven Development Cycle

Kent Beck proposed a sequence of using TDD in his book. The TDD process start
with add a test quickly, and run all the tests and see the new one fail, make a little
change of the code, then run the automated tests and see them succeed, at last refactor
to remove duplication. The each step of TDD will be introduced as follow [52]:

Quickly add a test
In test-driven development, each new feature begins with writing a test. This test must
inevitably fail because it is written before the feature has been implemented. In order
to write a test, the developer must understand the specification and the requirements
of the feature clearly. This may be accomplished through use cases and user stories to
cover the requirements and exception conditions. This could also imply an invariant,
or modification of an existing test. This is a differentiating feature of test-driven
development versus writing unit tests after the code is written: it makes you focus on
the requirements before writing the code, a subtle but important difference.

Run all tests and see the new one fail
This validates that the test harness is working correctly and that the new test does not
mistakenly pass without requiring any new code.
The new test should also fail for the expected reason. This step tests the test itself, in
the negative. A "negative test" is something familiar to testers, to make sure a feature
fails when it should fail (e.g. bad input data). It typically follows or is "paired" with
one or more "positive tests" that make sure things work as expected (e.g. good input
data). ("Make sure it works, and then change one thing to make it break and make
sure it breaks.") The entire suite of unit tests act to serve this need, cross-checking
each other to make sure "negative tests" fail for the expected reasons.
This technique avoids the syndrome of writing tests that always pass, and therefore
aren't worth much. Running the new test to see it fail the first time is a vital "sanity
check".

Make a little change
The next step is to write some code that will cause the test to pass. The new code
written at this stage will not be perfect and may, for example, pass the test in an
inelegant way. That is acceptable because later steps will improve and hone it. It is
important that the code written is only designed to pass the test; no further (and
therefore untested) functionality should be predicted and 'allowed for' at any stage.

Run the automated tests and see them succeed
If all test cases now pass, the programmer can be confident that the code meets all the
tested requirements. This is a good point from which to begin the final step of the
cycle.

Refactor to remove duplication

The Claims About Test Driven Development 17

http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/User_story

 4. Test Driven Development

Now the code can be cleaned up as necessary. By re-running the test cases, the
developer can be confident that refactoring is not damaging any existing functionality.
The concept of removing duplication is an important aspect of any software design. In
this case, however, it also applies to removing any duplication between the test code
and the production code — for example magic numbers or strings that were repeated
in both, in order to make the test pass in step 3.

Repeat
Starting with another new test, the cycle is then repeated to push forward the
functionality. The size of the steps can be as small as the developer likes, or get larger
if s/he feels more confident. If the code written to satisfy a test does not fairly quickly
do so, then the step-size may have been too big, and maybe the smaller testable steps
should be used instead. When using external libraries it is important not to make
increments that are so small as to be effectively merely testing the library itself [10].

4.1.2 Three laws of using TDD

The TDD practitioners follow a so-called three laws by using the TDD, which are as
follows:

1) You may not write production code unless you’ve first written a failing unit test.
2) You may not write more of a unit test than is sufficient to fail.
3) You may not write more production code than is sufficient to make the failing unit

test pass.

These three laws lock you into a tight loop in which you first write a portion of a unit
test that fails, and then you write just enough production code to make that test pass.
This loop is perhaps two minutes long and almost always ends in success [27].

4.2 Claims concerning TDD

This thesis is aimed to collect claims concerning Test Driven Development, and
evaluate these claims. Due to the limitation of time, this thesis only collects 7 of claims.
And the 7claims are 6 positive and 1 negative. This section will introduce these 7
claims.

1. XP with TDD has better productivity than waterfall model [53]
This claim concerns programmer’s productivity, which means programmers who
practice XP with TDD, will develop code faster than programmers who develop code
with a more traditional waterfall-like practice. The higher productivity is, the faster
programmer developing code. Programmers’ productivity will be measured by the
lines Source Line of Code (SLOC) per hour.

The Claims About Test Driven Development 18

http://en.wikipedia.org/wiki/Magic_number_%28programming%29

 4. Test Driven Development

2. TDD has advantage in defect reduction [44]
This claim concerns defect reduction, which means using TDD, will reduce the number
of defects injection. Compare with a test-after technique, the number of the defects is
less.

3. XP with TDD has better Flexibility than waterfall model [39]
This claim concerns the flexibility, which means XP with TDD handles changes in
requirements better than traditional approaches, a waterfall model like.

4. TDD has a nearly 100% code coverage for test cases [39]
This claim concerns test quality, which means using TDD, will improve quality of the
code. The quality of code here is measured by code coverage for test cases. And the
code coverage for test cases nearly 100%.

5. Test Driven Development drives the design [43]
It claims that using TDD can drive the design.

6. XP with TDD detects defect earlier [26]
This claim concerns the defect injunction detection, which means using XP with TDD
can detect defect earlier.

7. TDD is limited on applicability of practice [25]
It claims that TDD has limitation of applicability in practice, which means TDD may
not suitable for some project, e.g. the GUI application, large system etc.

The Claims About Test Driven Development 19

 4. Test Driven Development

The Claims About Test Driven Development 20

 5. Literature Research

5. Literature Research

This chapter consists of three subsections. The first section will briefly introduce 2 of
researched papers in this thesis. The second section will introduce the criteria of
evaluating the claims in this thesis. The last section will evaluate the claims by
literature research based on evaluation criteria.

5.1 The Literature Research

While some practitioners have applied some form of TDD for several decades [42],
academic and industry studies have only more recently emerged [43]. These studies
have examined the effects of TDD on external quality and programmer productivity
with somewhat mixed results. This section will briefly introduce 2 of researched
papers, which performed case study concern the comparison between using XP with
TDD and the waterfall model. Literature research is purpose on giving a literary
evaluation on those claims.

5.1.1 Boby George and Laurie Williams

The Boby George and Laurie Williams’s paper examine two hypotheses which are: 1.
The TDD practice will yield code with superior external code quality when compared
with code developed with a waterfall-like practice. External code quality will be
assessed based on the number of functional, black-box test cases passed. 2.
Programmers who practice TDD will develop code faster than programmers who
develop code with a more traditional waterfall-like practice. Programmers’
productivity will be measured by the time (hours) to complete the development [25].
The hypotheses were evaluated by carrying out an experiment. The experiment and
the conclusion of the paper can be seen as follow:

Experiment Design
In Boby George and Laurie Williams’s paper, the experiment was aimed to evaluate
the External code quality, Productivity, Correlating productivity and quality and Code
coverage between using the TDD and the classical model.

Experiment Details
The experiment consists of two trials:
1) Professional programmers randomly assigned to two groups: TDD (Test first) and

Control (Test after). The two groups were asked to develop a bowling game
application with a same set of requirements. All programmers used the pair
programming. Participants were asked to turn in their programs upon completing
the activities as outlined.

The Claims About Test Driven Development 21

 5. Literature Research

2) All programmers with same organizing into team. But all programmers were
asked to handle error conditions gracefully and were not provided acceptance test
cases. Additionally, the control group were asked to write automated test cases
after development.

External Validity
The strength of the experiment is that the experiment was done with practitioners in
there own environment.
The experiment also has following limitations:
1) Sample size was very small(six TDD pairs and six Control pairs)
2) The experiment requirement changed in the second trial
3) The experiment carried out by the combination of TDD and pair programming
4) The application used in the evaluation process was very small
5) The programmers have different background with using TDD [25].

Experiment Result
The experiment results were introduced based on:
1) External code quality:
The TDD pairs’ code passed approximately 18% more test cases than the control
group pairs.
2) Productivity:
On average, the TDD pairs took approximately 16% more time to develop the
application than the control group pairs.
3) Correlating productivity and quality:
The two-tailed Pearson correlation had a value of 0.661, which was significant at the
0.019 level. This analysis indicates that the higher quality may be the result of the
increased time taken by the TDD pairs and not solely due to the TDD practice itself.
4) Code coverage:
The TDD programmers’ test cases achieved a mean of 98% method, 92% statement
and 97% branch coverage.

Conclusion
1) TDD practice appears to yield code with superior external code quality, as
measured by conformance to a set of black-box test cases, when compared with code
developed with a more traditional, waterfall-like model practice.
2) The experiment results showed that TDD programmers took more time (16%) than
control group programmers. However, the variance in the performance of the teams
was large and these results are only directional. Additionally, the control group pairs
did not primarily write any worthwhile automated test cases, making the comparison
uneven.
3) On an average, survey results indicate that, 80% of the professional programmers
thought TDD was an effective practice and 78% believed the practice improves
programmers’ productivity. The survey results are statistically significant.
4) Survey results also indicated that TDD practice facilitates simpler design and that

The Claims About Test Driven Development 22

 5. Literature Research

lack of upfront design is not a hindrance. However, for some, transitioning to the TDD
mindset is difficult. [25]

Obviously, the hypothesis 1 is hold from the experiment and the hypothesis 2 is not
hold.

5.1.2 Lei Zhang, Shunsuke Akifuji, Katsumi Kawai, and Tsuyoshi Morioka

In order to popularize the Test Driven Development (TDD) practice in Chinese
offshore companies, an experimental research was firstly conducted to compare TDD
with the traditional waterfall development in a small-scale project. The result of the
experiment can be seen as follow:

Experiment Design
The experiment was designed to evaluate the efficiency of the TDD.

Experiment Details
8 students divided into 2 groups, which were group “T” and “C”. The two groups
were assigned same project of “Working Attendance Management System”.

External Validity
The experiment size was small

Experiment Result
1) The superiority of TDD to Waterfall on productivity is 10%.
2) The superiority of TDD to Waterfall on reliability is 28%.
3) The superiority of TDD to Waterfall on maintainability is 8%.
4) The superiority of TDD to Waterfall on flexibility is 30%.
5) The superiority of TDD to Waterfall on efficiency is 33%.
6) The superiority of TDD to Waterfall on Tester quality is 10%.

Conclusion
(1) The TDD developers took less time (10%) than the traditional developers. This
stated that the TDD approach had higher productivity.
(2) The TDD approach appeared to yield code with the superior reliability,
maintainability, flexibility and efficiency. The bugs found during the developing
process were 28% less than those of the traditional group. The average time used to
remove one bug in the TDD group was 8% shorter than that of the traditional group.
The time used for the requirement variation of TDD was 30% shorter, and the code
size was 33% smaller than those of the traditional group, respectively.
(3) The test code coverage of the TDD approach was about 10% higher than that of
the traditional group [45]

The Claims About Test Driven Development 23

 5. Literature Research

5.2 The evaluation criteria

As mentioned before, this thesis focusing on evaluating those claims about the TDD.
Some of those claims involve the comparison between the using XP with TDD and
Waterfall model. And the comparison concerns 4 aspects in productivity, defect
reduction, flexibility and test quality as parameters. Those 4 parameters are introduced
as follows:

1. Productivity: Programmers’ productivity is measured by productivity metric, e.g.
Function Points (FPs) per month or Source Line of Code (SLOC) per month. The
higher productivity is, the faster programmer developing code.

2. Defect reduction: The defect reduction measured by defect rate. The defect rate
here is the total defects’ number (DN) during the developing process divide to the
lines of LOC. It can be simply expressed as DN/nLOC. The lower defect rate leads
good defect reduction.

3. Flexibility: The flexibility of system is measured by the time used to adapt the
requirement variations per LOC. The number lines of LOC here is calculated by the
number of SLOC after modify minus the number lines of LOC before modify. The
shorter time spending on per modified LOC, the better flexibility is.

4. Test quality: The test quality of system is measured by the results of the code
coverage on methods, blocks and lines for test cases.

So the claim 1 refers the productivity, the claim 2 refers defect reduction, the claim 3
refers the flexibility and the claim 4 refers the test quality.

5.3 The evaluation of claims by literature study

In this section, those claims will be evaluated by literature studies, and the results can
be seen as follow:

1. XP with TDD has better productivity than waterfall model
Keith Ray [53] claims that using XP with will produce code faster than using waterfall
model. And Keith Ray argued, in Test-Driven Development, testing is part of the
design process; it doesn't take much time to write a small test that represents a part of
your thinking about a problem. Test-after is slower because the traditional design/code
process -- without tests -- takes about the same amount of time as the TDD
design/code process, and then the traditional coding time is followed by writing tests
that take even more time [53].

The Claims About Test Driven Development 24

 5. Literature Research

K. Beck [24] said no studies have categorically demonstrated the difference between
TDD and any of the many alternatives in quality, productivity, or fun. However, the
anecdotal evidence is overwhelming, and the secondary effects are unmistakable.
Programmers really do relax, teams really do develop trust, and customers really do
learn to look forward to new releases.

This thesis also researched several papers concerning comparing productivity between
using XP with TDD and waterfall model.

Lei Zhang [5.1.2] performed an experiment to evaluate the productivity between using
XP with TDD and waterfall model. Two groups were formed, which are one using XP
with TDD and one using waterfall model. The two groups worked with the same
subject “Working Attendance Management System”. The productivity were measured
by the total time spend for the project. As a result, the less time spend, the higher
productivity is. The experiment’s result is the XP with TDD team spend less 10% time
than waterfall model, which means using XP with TDD has higher productivity [45].

The David and Hossein [6] also performed an experiment, which contain two groups
(TDD and water) doing the same subject “Graph Base”. The experiment results that
the XP with TDD team produce almost twice features than the waterfall team in the
same time. And the paper concludes that using XP with TDD is more productive than
using waterfall model.

So, as K. Beck said, no studies have categorically demonstrated the difference
between TDD and any of the many alternatives in quality, productivity, or fun. But the
empirical research can also give some valuable information, although it can’t provide
hard evidence. So, this claim is supported by literatures.

2. 2 TDD has advantage in defect reduction
The authors [44] claim that using XP with TDD has benefit at reducing defect injection.
The authors argued, debugging and software maintenance is often viewed as a
low-cost activity in which working code defect is “patched” to alter its properties, and
specifications and designs are neither examined nor updated [30]. Unfortunately, such
fixes and “small” code changes may be nearly 40 times more error prone than new
development [31], and often new faults are injected during the debugging and
maintenance. The TDD test cases are a high-granularity low-level regression test. By
continuously running these automated test cases, one can find out whether a change
breaks the existing system. The ease of running the automated test cases after changes
are made should allow smooth integration of new functionality into the code base and
reduce the likelihood that fixes and maintenance introduce new permanent defects
[44].

The authors [44] also performed a case study at IBM, which two teams (TDD and
waterfall) were formed. The two teams developed two different systems separately.

The Claims About Test Driven Development 25

 5. Literature Research

The TDD team developed a legacy system for seventh version on existing platform.
And the waterfall team developed the legacy system for first version on new platform.
The case study concludes that TDD team has about 40% reduction in FVT detected
defect density of new/changed code when compared with waterfall team.

Lei Zhang [5.1.2] performed an experiment to evaluate the productivity between using
XP with TDD and waterfall model. Two groups were formed, which are one using XP
with TDD and one using waterfall model. The two groups worked with the same
subject “Working Attendance Management System”. The experiment results that the
TDD group has less 28% bugs than the waterfall group [45].

Patrick [54] also mentioned that the clearest benefit is verification: you get an
exhaustive suite of automated unit tests that constantly protect your system from
defects, no matter what changes are made. You get drastically fewer defects
throughout the system lifecycle, because your tests enable you to find and kill most
bugs as soon as they are born [54].

So, the literature study implies that the short loop test – code – test will reduce the
defect injection. Since the test cases running all the time, the defect will be remove
immediately. This claim is supported by literatures.

3 XP with TDD has better Flexibility than waterfall model
H. Wasmus [39] claims that using XP with TDD has better flexibility than using
waterfall model. And H. Wasmus argued that using XP with TDD makes the
development process more suitable for changes in requirements. Because of an iterative
based process, which results in working prototypes, possible change request can be
identified earlier. In the traditional development process, the final prototyping/product
delivered to the use at the end. At that point, simple change can require immense
amount of time. A result is that once a product is delivered, developers will try to avoid
or ignore change requests. XP with TDD makes changes easier to implement with a
better suited final product as result [39].

“The flexibility is quit important issue in the software development. The programmers
do not like and afraid of changing code. The old maxim, “If it isn’t broke, don’t fix it!”
is a common attitude among software developers. TDD alleviates this fear because
you can check any change to the software almost instantly. If the tests all pass, it’s
unlikely that the change broke something unexpected. The tests make small changes
virtually risk free [3]. The TDD is adoptive to change code by correction or
requirement changing”. Robert C. argued so.

K. Beck also mentioned that XP shortens the release cycle, so there is less change
during the development of a single release. During a release, the customer is welcome
to substitute new functionality for functionality not yet completed. The team doesn't
even notice if it is working on newly discovered functionality or features defined

The Claims About Test Driven Development 26

 5. Literature Research

years ago [1].

Lei Zhang’s [5.1.2] experiment result also shows that the TDD group using the time
for requirement variation is 30% shorter than the waterfall group.

Using XP with TDD embraces change, the literatures are supportive for this claims.

4 TDD has a nearly 100% code coverage for test
H. Wasmus claims that using TDD has higher code coverage for test and it is nearly
100%. H. Wasmus also argued that the quality of the code will also improve with TDD.
Due to creating test first, a nearly 100% code coverage of tests will be acquired
automatically [39].

Paper [5.1.1] [25] analyzed code coverage as an indication of the quality of the test
cases written by TDD programmers. The industry standard for coverage is in the range
80–90%, although ideally the coverage should be 100% [46]. The Boby and Laurie
found that the TDD programmers’ test cases achieved a mean of 98% method, 92%
statement and 97% branch coverage from their experiment. This result is excluding
the main method from the code coverage. Including the main method into the code
coverage analysis will have lowered the TDD programmers’ coverage results [25].

“Since the fine granularity of the test-then-code cycle gives continuous feedback to
programmer [25], the code were written to pass the test; hence the trashy code won’t
be written. So the code coverage with TDD will be higher and nearly 100%”, Boby
argued.

K. Beck also mentioned that statement coverage certainly is not a sufficient measure of
test quality, but it is a starting place. TDD followed religiously should result in 100
percent statement coverage [52].

So, the literature study implies to write test before coding, and the production code
followed written, this is a way ensures code coverage. The literatures support this
claim.

5. Test Driven Development drives the design
David and Hossein claim that TDD is not just for test, and it drives design. They also
argued that TDD is the craft of producing automated tests for production code, and
using that process to drive design and programming. For every tiny bit of
functionality in the production code, you first develop a test that specifies and
validates what the code will do. You then produce exactly as much code as will enable
that test to pass. Then you refactor (simplify and clarify) both the production code and
the test code [43]. The TDD idea that a test can be written before the program or that
test can aid in deciding what program code to write and what that program’s interface
should look like is a radical concept for most software developers [43].

The Claims About Test Driven Development 27

 5. Literature Research

It is also argued from Wiki, Test-driven development can help to build software better
and faster. It offers more than just simple validation of correctness, but can also drive
the design of a program. By focusing on the test cases first, one must imagine how the
functionality will be used by clients (in this case, the test cases). Therefore, the
programmer is only concerned with the interface and not the implementation [26].

K. Beck also mentioned that if it's hard to write a test, it's a signal that you have a
design problem, not a testing problem. Loosely coupled, highly cohesive code is easy
to test [16].

So, the literatures support that TDD drives design.

6. XP with TDD detects defect earlier
This claim is collected from Wiki [26]. And it was argued as large numbers of tests
help to limit the number of defects in the code. The early and frequent nature of the
tests helps to catch defects early in the development cycle, preventing them from
becoming endemic and expensive problems. Eliminating defects early in the process
usually avoids lengthy and tedious debugging later in the project [26].

Boby and Laurie [25] also argued that the fine granularity of the test-then-code cycle
gives continuous feedback to programmer. With TDD, faults are identified quickly as
new code is added to the system; hence the source of the problem is more easily
determined.

So, with the TDD, the test goes alone with the whole development process, even the
very beginning phase or the end. And the defect will be discovered immediately when
running test failed. So the literatures support that using XP with TDD may detect fault
earlier, compared with waterfall model, the test executes after implementing the
whole system.

7. TDD is limited on applicability of practice
Boby and Laurie claimed that TDD is limited on applicability, and argued that some
codes are inherently hard to test using TDD (for example GUIs [32]). Further, the
TDD practice requires considerable effort to be expended on writing mock test objects.
Additionally, since no formal documentation takes place, the rationale behind
important decisions is not documented and can get lost [25].

For the TDD with GUI, it is argued from Wiki, TDD is difficult to use in some
situations, such as graphical user interfaces or relational databases, where systems
with complex input and output were not designed for isolated unit testing or
refactoring. [26].

David Astels [54] also mentioned that using TDD to develop the Graphical User

The Claims About Test Driven Development 28

http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Refactoring
http://www.informit.com/safari/author_bio.asp?ISBN=0131016490

 5. Literature Research

Interface (GUI) of an application is tricky. Part of the problem is that GUIs are, by
definition, graphical [54].

For the TDD with mock test object, it is also argued [26], the use of the Mock Object
design pattern is necessary in order to control the scope of dependencies involved in
unit tests. However, when creating mock objects to interact with the module being
tested, it is necessary that the developer have a good understanding of the behavior of
the entities that are being mocked. Failure to achieve this understanding can lead to
problems when the modules are deployed into a "real life" environment and they
receive input they were not expecting or give output the environment can not handle.
In many instances, creating mock objects that function realistically enough to allow
for appropriate unit testing can be difficult and time consuming [26].

This claim is controversial but supported by literatures.

The Claims About Test Driven Development 29

http://en.wikipedia.org/wiki/Mock_Object
http://en.wikipedia.org/wiki/Extreme_Programming#Controversial_aspects

 5. Literature Research

The Claims About Test Driven Development 30

 6. Experiments

6. Experiments

This chapter contains three sub sections, a section for describing the experiment, a
section for documenting the experiment’s process and a section for evaluation of the
claims by the experiment’s result.

Why Experiment?
Experimentation in software engineering can be difficult. Formal, controlled
experiments, such as those conducted with students or professionals, over relatively
short periods of time are often viewed as “research in the small” [50]. These
experiments may suffer from the external validity limitations (or perceptions of such).
On the other hand, case studies can be viewed as “research in the typical” [50].
Concerns with case studies involve the internal validity of the research, or the degree
of confidence and generalization in a cause-effect relationship between factors of
interest and the observed results [51]. There is also an apprehension with case studies
of the ability to make a valid comparison between the baseline and the new treatment,
since the same project is generally not replicated. Finally, case studies often cannot
yield statistically significant results due to a small sample size. Nonetheless, case
studies can provide valuable information on a new technology or practice. By
performing multiple case studies and recording the context variables of each case
study, researchers can build up knowledge through a family of experiments [5] which
examine the efficacy of a new practice. In this thesis, the evaluation of the claims
concerning the TDD practice will be made by performing an experiment to give a
hand-on perception.

6.1 Experiments Description

This section is literal description of the experiment. It will describes the experiment’s
purpose, the experiment’s subject, the procedure of the experiment, the evaluation
strategies for evaluating each claim, the methodology be used in the experiment and
the validity of the experiment.

6.1.1 Experiment purpose

The experiment is purposing on collecting data between using XP with TDD and the
Waterfall Model in productivity, defects reduction, flexibility, test quality and the
external code quality. Also the experimenter’s perception during the experiment will
also be recorded, because the claims which are not related with those 5 parameters
will be evaluate these perceptions. This experiment will give a hand-on experience of
evaluation.

The Claims About Test Driven Development 31

 6. Experiments

6.1.2 Experiment subject

The experiment consists of two small scale project, which going to develop a Cinema
reservation system and a Shop stock management system. Those two systems are both
local GUI based application. And both the systems use database to store data. The
Shop stock management system is going to be developed using XP with TDD. And
the Cinema reservation system is going to be developed using waterfall model. The
table 6.1 and 6.2 give an overview of the functions of the two systems had
respectively.

Function Description

Add The user can use this function to add new film information
into the database.

Remove The user can use this function to remove film information
from the database.

Show all film info The user can use this function to show all the films
information from the database.

Reserve Seat The user can use this function to reserve a seat for a film.
Show Reservation The user can use this function to show the reservation

information for one film.
Table 6.1 the functionalities of Cinema reservation system

Function Description
Add The user can use this function to add new product information

into the database.
Remove The user can use this function to remove product information

from the database.
Modify The user can use this function to modify the product information

from the database.
Show OOS The user can use this function to show the products, which are

out of stock. The product out of stock is interpreted as the
amount of the product less than 50.

Show Stock The user can use this function to show the current stock.
Table 6.2 the functionalities of Shop stock management system

6.1.3 Experiment Tools and Methodology

The below list out the tools and methodology have been used in the experiment:

MySQL 5.0: The both two systems will use the MySQL 5.0 as the database system.
Eclipse: The Eclipse will be the development environment for the both experiments.
JAVA: The java will be the main programming language in the experiment.

The Claims About Test Driven Development 32

 6. Experiments

JUnit: The test will be carried out under the JUnit framework.
Test Driven Development: The Shop stock management system will be developed
under the Test Driven Development.
Waterfall Model: The cinema reservation system will be developed under the
Waterfall Model.
EclEmma: EclEmma is a free Java code coverage tool for Eclipse and is based on
EMMA code coverage tool. EclEmma is used to calculate the code coverage for test
cases.
Metrics 1.3.6: Metrics is a free eclipse plug-in used to gather metrics for both
systems.
PSP (Personal Software Process): There are 9 PSP tables will be used during the
experiments.

 The table of Time recording log for Cinema reservation system will record the
time spend on each activity of the development in Cinema reservation system.

 The table of Bug recording log for Cinema reservation system will record the
number of bug and the bug injection from Cinema reservation system.

 The table of Modify recording log for Cinema reservation system will record the
time of modify function from Cinema reservation system.

 The table of PSP Project Summery Form Cinema reservation system will give
all the results from the Cinema reservation system.

 The table of Time recording log for Shop stock management system will record
the time spend on each activity of the development in Shop stock management
system.

 The table of Design changing injection for Shop stock management system will
recode the times of changing design from the Shop stock management system
development.

 The table of Bug recording log for Shop stock management system will record
the number of bug and the bug injection from Shop stock management system.

 The table of Modify recording log for Shop stock management system will
record the time of modify function from Shop Stock Manage System.

 The table of PSP Project Summery Form Shop stock management system will
give all the results from the Shop stock management system.

6.1.4 Evaluation Strategy

This section will introduce how the claims will be evaluated from the experiment.
Reflect on the claims, the thesis has the following strategies for each claim:

1) XP with TDD has better productivity than waterfall model
The sum time of using XP with TDD and the sum time of using waterfall model will
be recorded and calculated by using PSP time log table. And the SLOC for each
system will be calculated. Finally, the productivity will be calculated and be
compared.

The Claims About Test Driven Development 33

http://www.eclemma.org/
http://www.venukb.com/blog/2006/11/22/eclemma-java-code-coverage/
http://www.eclipse.org/
http://emma.sourceforge.net/

 6. Experiments

2) TDD has advantage in defect reduction
The number of bugs found in both systems will be recorded into PSP table. And the
defect rate will be calculated and compared.

3) XP with TDD has better Flexibility than waterfall model
The experiment was designed to change the requirement once in both systems. For the
Cinema reservation system, the function of Reserve is required to be modified. For the
Shop stock management system, the function of login is required to be added. The
period time of successful modifying/adding this function will be recorded in PSP table.
The number of modified LOC will be calculated. And the comparison on flexibility
will be made.

4) TDD has a nearly 100% code coverage for test cases
In this experiment, the code coverage for test cases of the Shop stock management
system will be calculated by the tool of EclEmma.

5) Test Driven Development drives the design
This claim will be evaluated by the perceptions from the experiment. The perception
will be recorded.

6) XP with TDD detect defect earlier
From this claim, the time when detect the bug will be recorded both in the TDD
development and the waterfall development. For instance, the whole project lifecycle
will calculate to a sum time, which is like 0 to 50 hours. And the time when detect the
bug could be at the 10th hour of the whole project lifetime.

7) TDD is limited on applicability of practice
The evaluation will be made by the observation during the experiment.

To achieve the above strategies, the following variables need to observe and record
during the experiment.

1. The sum time spend on from Cinema reservation system
2. The sum time spend on from Shop stock management system
3. The Source Line of Code for Cinema reservation system
4. The Source Line of Code for Shop stock management system
5. The number of the bugs from Cinema reservation system during the developing

process
6. The number of the bugs from Shop stock management system during the

developing process
7. The time of modify function from Cinema reservation system
8. The time of modify function from Shop stock management system
9. The modified SLOC for the Cinema reservation system
10. The modified SLOC for the Shop stock management system

The Claims About Test Driven Development 34

 6. Experiments

11. the code coverage of all test cases the system from Shop stock management system
12. the times of changing design from Cinema reservation system
13. the times of changing design from Shop stock management system

6.1.5 Experiment Procedure

The first system of the experiment is Cinema reservation system. This system is
developed using waterfall model, which follows the steps as analysis, design,
implementation and test. The project plan is made as the start. And then the functional
requirements for the system are addressed by using the use case specification. The
class diagram with method and attributes is drawing out after specifying the
requirement. The system will be implemented after the finished the class diagram.
Then the test strategy is written, and the test based on the test strategy is carried out.
The system is well developed after all the bugs removed. All the relevant data for
measurement will be recorded into PSP tables.

The second system to be developed is Shop stock management system. The system
will be developed using XP with TDD. The project plan for this system is written at
the beginning. And then the user story of the function Add is made. Then the test case
based on the use story is written and write the code to pass the test. The iteration for
each function is followed up. The system is integrated from each function and the
integration test will be made. All the relevant data for measurement will be recorded
into PSP tables.

6.1.6 Experiment Validity

Although experimentation is an accepted approach toward scientific validation in
most scientific disciplines, it only recently has gained acceptance within the software
development community [49]. In this thesis, the experiment is designed to evaluate
those claims concerning the Test Driven Development. So, it is necessary to validate
the experiment. The experiment for this thesis has strengths on evaluation strategy and
data collection.

Evaluation Strategy
There is one evaluation strategy for each claim. Each evaluation strategy is design to
evaluate on specific claim on purpose. The evaluation strategy defines the
measurement variables and data should be collected during the experiment. The
evaluation strategy also gives the methodology of how to collect the data should be
used from the experiment.

Data Collection
The Personal Software Process (PSP) table will be used to collect the data during the

The Claims About Test Driven Development 35

 6. Experiments

experiment. The PSP is a quantified method aimed to the improvement of the quality
and productivity of the personal work of individual software engineers.

6.2 Experiment Process

This chapter contains the development process of the experiment. The first section
documents the process of developing the Cinema reservation system, which will be
developed using waterfall model. And the second section documents the process of
developing the Shop stock management system, which will be developed using XP
with TDD.

6.2.1Cinema reservation system

As mentioned previously, the Cinema reservation system will be developed using
waterfall model. The system is a simple J2SE GUI based application with few
functions. This section will introduce the developing process of the Cinema
reservation system following as project plan, analysis, design, implementation, test
and maintenance.

a) Project Planning
The figure 6.1 shows the project plan of developing the Cinema reservation system.
The project starts from 15-09-2007 to 16-10-2007, and divides into 5 main phases,
which are project planning, system analysis, design, implementation and test.

The Claims About Test Driven Development 36

 6. Experiments

 Figure 6.1 project’s plan for Cinema reservation system

b) System Analysis
The functional requirement of the system is the main task during the system analysis
phase. And this paper uses the Use Case Specification to describe the user
requirement. The system has 6 use case can be seen as follow:

The table 6.3 shows the use case specification of the function Add.

The Claims About Test Driven Development 37

 6. Experiments

USE CASE 1 Add a film information

Summery The user can use the system to add one film’ information into
the database, it includes film’s name, showing time, date,
cinema and the price.

Actors user
Preconditions Database connection success
Basic course of
events

1. The user presses the ADD button from the GUI.
2. The system show the Add panel out
3. The user enters the film’s information (name, showtime, date,
cinema, and price) into each text field of Add panel.
4. The user presses the add button
5. the system prompt that add film info successful

Alternative
paths

4a. : The user enter wrong format data into the test field
1. The system give a error message of “data format error”

4b. : The film already exist in the database
 1. The system prompt that the film already exist

Post conditions Add a film information successfully
Notes

Table 6.3 use case specification for add a film

The table 6.4 shows the use case specification of the function Remove.

USE CASE 2 Remove film information

Summery The user can use the system to remove a film’s information
from the database.

Actors user
Preconditions The system should provide the all film’s information to the user

from a table
Basic course of
events

1. The system show all the film’s information from a table
2. The user identified the film which to be removed
3. The user clicks the row, which the film to be removed in
4. the user presses the Remove button
5. The system removes the film from database
6. The user presses the refresh button
7. The system shows the new table contains the updated data

Alternative
paths

4a. : No film selected, click remove button
 1. System print out error

Post conditions Remove a film’s information successfully
Notes

Table 6.4 use case specification for remove a film

The Claims About Test Driven Development 38

 6. Experiments

The table 6.5 shows the use case specification of the function show all film
information.

USE CASE 3 Show all film information

Summery The system shows all film’s information from a table
Actors
Preconditions The database load successful.
Basic course of
events

1. The system connect to the film database
2. The system load the data from database to vector
3. The system show the film’s information from table

Alternative
paths

1a. : The database connection failed
1. The system prints out error

2a. : Loading data failed
1. The system prints out error

Post conditions Show all film information successfully
Notes This function execute initially

Table 6.5 use case specification for show film

The table 6.6 shows the use case specification of the function Refresh.

USE CASE 4 Refresh film’s information

Summery The user can use the system to refresh film’s information
Actors user
Preconditions
Basic course of
events

1. the user presses the refresh button
2. The system connect to the film database
3. The system load the data from database to vector
4. The system show the film’s information from table

Alternative
paths

2a. : The database connection failed
1. The system prints out error

3a. : Loading data failed
1. The system prints out error

Post conditions refresh all film information successfully
Notes

Table 6.6 use case specification for refresh

The Claims About Test Driven Development 39

 6. Experiments

The table 6.7 shows the use case specification of the function Reserve a Seat.

USE CASE 5 Reserve a Seat

Summery The user can use the system to reserve a seat for one specific
film

Actors user
Preconditions Data loaded success
Basic course of
events

1. The user choose a film from a combo box list to reserve
2. The user enter the customer’s name
3. The user choose the Row number of the reservation
4. The user choose the Column number of the reservation
5. The user click the Reserve button
6. The system add reservation into database
7. The system prompt reservation made

Alternative
paths

1a. : Empty film list
6a. : The seat has been reserved
 1. The system prompt that The seat already booked, try

again!
Post conditions Reserve a seat successfully
Notes

Table 6.7 use case specification for reserve a seat

The table 6.8 shows the use case specification of the function show reservation.

USE CASE 6 Show Reservation

Summery The user can use the system to show one specific film’s
reservation

Actors user
Preconditions Data load success
Basic course of
events

1. The user choose a film from a combo list
2. The user click on the show button
3. The system search from database
4. The system append the reservation to the text area

Alternative
paths

1a. : Empty film list
4a. : No reservation

The system append to the text area, no reservation found
Post conditions Add a film information successfully
Notes

Table 6.8 use case for show reservations

The Claims About Test Driven Development 40

 6. Experiments

c) Design Part
This part contains the design assumptions the class diagram of the system, the
Graphical User Interface and the database design.

Assumption
There are several design assumptions of the system as follow:
1) The film’s information is assumed as one film will only show once at the cinema.
2) The cinema has only one show room, which contains row (A-L) and column

(1-12).
3) The system assumed that one customer can only reserve one seat at once.

Class diagram
The figure 6.2 shows the class diagram of the Cinema reservation system. The system
contains 7classes and one interface.

Figure 6.2 the class diagram for Cinema reservation system

The Claims About Test Driven Development 41

 6. Experiments

Class description:
This section will introduce each class of the Cinema reservation system.

CinemaReservationGUI
This is the main Graphical User Interface of the cinema reservation system. It is a
JFrame class, which contains a JTabbedPane, and the tab pane contains two panel
are administration panel and reservation panel.

Add
This is a JFrame class, which contains the input text field of a new film’s information.

ResvationPanel
This is a JPanel class, which contains the functions of reserve and show.

Administration
This is a JPanel class, which contains the functionalities like add, remove and refresh.
The panel also contains a table to show all the film’s information.

CineamaInterface
This class is an interface of the Cinema reservation system, which contains all the
abstract functions of the system,

CineamaReservationSystem
This class implements the interface CineamaInterface.

Film
The Film class represent a film, which has 5 fields. A String filmName represent the
film name. A Time showTime represents the show time of the film. A Date date
represents the date of show. A String cinema represents the cinema’s name that shows
the film. And the last Double price represents the price of the film.

Reservation
The Reservation class represents a reservation, which has 4 fields. An Int resNo
represents the unique ID for a reservation. A String filmName represents the film’s
name. A String customer represents the name of the customer. And the last String
seatNo represents the reserved seat number.

Graphical User Interface
The figure 6.3 shows the GUI of the Cinema reservation system

The Claims About Test Driven Development 42

 6. Experiments

Figure 6.3 the Graphical User Interface for Cinema reservation system

Database Design
The database cinema has two tables, which are filminfo and reservation. The structure
of two tables can be seen as follow:

The table 6.9 shows the structure of the table filminfo.
filmname showtime date cinema price
Varchar(100) time date Varchar(100) double

Table 6.9 structure of filminfo

The table 6.10 shows the structure of the table reservation.
ReservationID filmName costumerName seatNo
int Varchar(100) Varchar(100) Varchar(100)

Table 6.10 structure of reservation

d) Implementation Part
The implementation part shows the implementation of the system. This section will
briefly introduce 3 aspects of the implementation. The whole source code can be
found at the CD. The 3 aspects are the database connection part, the GUI and the
Reserve function.

Database Connection
The system uses the mysql database and a JDBC driver. The database connection and
the sql execution by the following code:

The Claims About Test Driven Development 43

 6. Experiments

Class.forName("com.mysql.jdbc.Driver");

 Connection con = DriverManager.getConnection

("jdbc:mysql://localhost:3306/cinema",”root","");

 try {

 PreparedStatement stmt = con.prepareStatement(sql);

 ResultSet resultSet = stmt.executeQuery();

 ...

 } finally {

 con.close(); // release the connection

 }

 } catch (Exception e) {

 e.printStackTrace(); // "handle" errors

 }
Graphical User Interface
The system has a main JFrame class, which is CinemaReservationGUI.java. And this
frame class will add other two panel class when the system starts.

JTabbedPane jtp = new JTabbedPane(SwingConstants.LEFT);

...

Administration ad = new Administration();

ResvationPanel rp = new ResvationPanel();

public CinemaReservationGUI(){

...

 jtp.addTab("Administration", null, ad, "Add, Remove film info");

jtp.addTab("Reservation", null, rp, "Reserve a seat for a film");

...

}
Reserve function
The user can uses the system to reserve a seat by click the reserve button. To achieve
this function, a button action listener is used in the class of resvationPanel.java.

resButton.addActionListener(new ActionListener()

 {

 public void actionPerformed(ActionEvent ae)

 {

...

if(crs.isReserved(sqlstr)){

 jTextArea.setText("The seats already booked!");

 }else{

 crs.reserve(statement);

 jTextArea.setText("Reservation Made");

 }

 }

 }

The Claims About Test Driven Development 44

 6. Experiments

In order to make successful reservation, two functions will be referenced from the
class CinemareservationSystem.java. The two functions are reserve(statement) and
isReserved(sqlstr).

e) Test Part
The test section contains two parts, one is the test strategy part and the other one is the
test result part. The test is carried out manually.

Test Strategy
A test strategy based on the functional test will be carried out in this project. Scenarios
based on the use case will be made. The test will be carried out for each function as
follows:

 Add: For the function of add, the test will be based on 3 aspects. The first is that
inputting all correct format data to make the add film success. The second, input
the wrong format data into the system, the system should give an error. The last,
input film name that already exist in the database.

 Remove: For the function remove, the test will be based on 2 aspects. The first is
that remove a film by click the row, which the film in. The second click the
remove button without click the film.

 Show all film info: For the function show film info, the test will be based on 2
aspects. First, run the system and let the database listening. Second, stop the
database and run the system.

 Reserve Seat: For the function reserve, the test will be based on 2 aspects. First,
select a film, enter the customer name and select the seat number. Second, select
the same film the same seat, then make the reservation.

 Show Reservation: For the function Show reservation, the test will be based on 2
aspects. First, select a film that has reservation, and click the button show. Second,
select a film that has no reservation, and then click the button show.

Test Result
The follows shows the test result based on the test strategy mentioned above.

Test result for function of Add

Test Case 1: Enter Correct Format Film Data
Input: filmName: X-Men, showTime: 19:00:00, date: 2007-12-16, cinema:

cinemaX, price: 55
Result: Film has been added

Test Case 2: Enter wrong format film data
Input: filmName: filmName: spider men, showTime: 19:00:00, date:

2007-12-16, cinema: cinemaX, price: fifty

The Claims About Test Driven Development 45

 6. Experiments

Result: Wrong Data Format!

Test Case 3: Enter a exist film
Input: filmName: filmName: X-Men, showTime: 19:00:00, date: 2007-12-16,

cinema: cinemaX, price: 70
Result: The film already exist

Test result for function of Remove

Test Case 4: Remove a exist film
Action: Select the film, and click the remove button
Result: The film removed

Test Case5: Remove a non-exist film
Action: Only click the remove button
Result: Select a film First!

Test result for function of Show Film info

Test Case 6: Start System together with Database
Action: Start the system and Database
Result: All the film information shows in the table

Test Case 7: Start System without Database
Action: Start the system without Database
Result: No data shows in the table

Test result for function of Reserve

Test Case 8: Reserve a seat
Input: filmName: X-Men, customer: Bai, row: A, column: 4
Result: Reservation Made

Test Case 9: Reserve a booked seat
Input: filmName: X-Men, customer: Yu, row: A, column: 4
Result: The seat has been booked

Test result for function of Show reservation

Test Case 10: Show reservation for a film has reservation
Action: Select Speeding, and click show
Result: [2, Speeding, wang, A2]

[1, Speeding, bai, A1]

The Claims About Test Driven Development 46

 6. Experiments

Test Case 11: Show reservation for a film has no reservation
Action: Select Spider Men, and click show
Result: No reservation Info!

6.2.2 Shop stock management system

This chapter will introduce the entire process of developing the Shop stock
management system. The Shop stock management system will be developed using XP
with Test Driven Development. The project divides into 8 main phases, which are
project plan, iteration of function Add, iteration of function Remove, iteration of
function Modify, iteration of function Show OOS, iteration of function Show Stock,
the iteration of GUI Design & Integration Test and maintenance. The project plan
phase, which plans the project process and introduce the milestones of the project.
The Iteration of Function Add phase will firstly gather the user requirement by using
user story. And based on the add user story, the JUnit test case will be written. Run the
test case to see it failed. Then make a little change of the production code. Run the test
case to see it succeed. Then write the production code and remove duplicates. The
same procedure will go through the phase of remove, modify, show OOS, and show
Stock. This is also the reason of naming each phase as iteration. And the next phase
will firstly design and implement a GUI for the system, and after, the system will be
integrated, the integration test will be made based on the functional test at the end of
this phase. The last phase is maintenance phases; a new function login will be added
in this phase.

a) Project planning
The figure 6.4 shows the project plan of the Shop stock management system.

The Claims About Test Driven Development 47

 6. Experiments

Figure 6.4 project’s plan for Shop stock management system

b) The Iteration of Function Add
This iteration of function add follows 5 steps, which are write a JUnit test case
testAdd(), run the testAdd() to see it failed, make a little change for function of add,
run the testAdd() and see it succeed, refactor and remove duplication. This section will
introduce the user story of the function add, the test case testAdd() and the production
code of add only.

User Story

Add a product
The user can use the system to add a product’s information Shop stock management
system. The system will add the product into database if the product’s information
doesn’t exist in the database.

Table 6.11 user story for add a product
JUnit Test Case
The test case for the function Add can be seen as follow:

The Claims About Test Driven Development 48

 6. Experiments

 public void testAdd() {

 ss= new StockSystem();

 sqlstr ="";

 sqlstr ="insert into stock (Barcode, name, Color, Price, Amount)"+

 "values ('213212','Prince','red','11','200')";

 String sqlstr="";

 sqlstr="SELECT * from stock where Barcode= '213212'";

 if(ss.check(sqlstr)==0){

 assertTrue(ss.check(sqlstr)==0);

 }else{

 assertTrue(ss.Add(sqlstr));

 }

 }

Application Code
The application code for the function Add can be seen as follow:

public boolean Add(String addproduct) {

 boolean result=false;

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/shopstock","

root","");

 try {

 PreparedStatement stmt = con.prepareStatement(addproduct);

 stmt.execute(addproduct);

 result = true;

 } finally {

 con.close(); // release the connection

 }

 } catch (Exception e) {

 e.printStackTrace(); // "handle" errors

 result = false;

 }

 return result;

 }

c) The Iteration of Function Remove
This iteration of function Remove follows 5 steps, which are write a JUnit test case
testRemove(), run all the test cases to see the new one failed, make a little change for
function of remove, run all the test cases and see all succeed, refactor and remove
duplication. This section will only introduce the user story of the function remove, the
test case testRemove() and the production code of remove.

The Claims About Test Driven Development 49

 6. Experiments

User story

Remove a Product
The user can use the system to remove a product’s information. The system will
remove the product’s information from the database if the product exists.

Table 6.12 the user story for remove a product

JUnit Test Case
The test case for the function Remove can be seen as follow:

public void testRemove() {

 ss= new StockSystem();

 sqlstr = "delete from stock where Barcode = 213212";

 String sqlstr="";

 sqlstr="SELECT * from stock where Barcode= '213212'";

 if(ss.check(sqlstr)==0){

 assertTrue(ss.Remove(sqlstr));

 assertTrue(ss.check(sqlstr)==1);

 }else{

 assertTrue(ss.check(sqlstr)==1);

 }

 }

Application Code
The application code for the function Remove can be seen as follow:

public boolean Remove(String removeproduct) {

 boolean result=false;

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/shopstock","

root","");

 try {

 PreparedStatement stmt = con.prepareStatement(removeproduct);

 stmt.execute(removeproduct);

 result = true;

 } finally {

 con.close(); // release the connection

 }

The Claims About Test Driven Development 50

 6. Experiments

 } catch (Exception e) {

 e.printStackTrace(); // "handle" errors

 result= false;

 }

 return result;

 }

d) The Iteration of Function Modify
This iteration of function Modify follows 5 steps, which are write a JUnit test case
testModify(), run all the test cases to see the new one failed, make a little change for
function of modify, run all the test cases and see all succeed, refactor and remove
duplication. This section will only introduce the user story of the function remove, the
test case testModify() and the production code of modify.

User Story

Modify a product’s information
The user can use the system to modify a product’s information. The system will
modify the product’s information from database if the product exists.

Table 6.13

JUnit Test Case
The test case for the function Modify can be seen as follow:

 public void testModify() {

 ss= new StockSystem();

 sqlstr ="";

 sqlstr ="UPDATE shopstock.stock SET "+

 "Barcode='213212', "+

 "name='Prince', "+

 "Color='red', "+

 "Price='11', "+

 "Amount='100' "+

 "where Barcode = '213212'";

 String sqlstr="";

 sqlstr="SELECT * from stock where Barcode= '213212'";

 if(ss.check(sqlstr)==0){

 assertTrue(ss.Modify(sqlstr));

 }else{

 assertTrue(ss.check(sqlstr)==1);

 }

 }

The Claims About Test Driven Development 51

 6. Experiments

Application Code
The application code for the function Modify can be seen as follow:

public boolean Modify(String modifyproduct) {

 boolean result=false;

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/shopstock","

root","");

 try {

 PreparedStatement stmt = con.prepareStatement(modifyproduct);

 stmt.execute(modifyproduct);

 result = true;

 } finally {

 con.close(); // release the connection

 }

 } catch (Exception e) {

 e.printStackTrace(); // "handle" errors

 result = false;

 }

 return result;

 }

e) The Iteration of Function Show Stock and Show OOS
This section contains two parts. One part is for the function of Show Stock, and the
other part is for the function Show Out Of Stock. The table 6.14 shows the user story
of the function Show Stock.

Show Stock
The user can use the system to show the stock of the shop. The user clicks the Show
Stock button. The system will show the stock information into a table.

Table 6.14 user story for show stock

The table 6.15 shows the user story of the function Show out Of Stock.

Show out Of Stock
The user can use the system to show the stock of the shop. The user clicks the Show
Stock button. The system will show the stock information into a table.

Table 6.15 user story for show out of stock

The Claims About Test Driven Development 52

 6. Experiments

Due to the validation for JUnit test case using on GUI, the test case for these two
functions were hard to write. So these two functions will be implemented at the
integration phase.

g) Graphical User Interface and Database Design
According the user requirement of the system, the Graphical User Interface is needed
to be achieved. The figure 6.5 shows the GUI of the Shop stock management system.

Figure 6.5 the Graphical User Interface for Shop stock management system

The database for Shop stock management system contains two tables, which are
shown as following:

The table 6.16 shows the structure of table stock
Barcode Name Color Price Amount
Varchar(30) Varchar(30) Varchar(30) double int

Table 6.16 structure of table stock
The table 6.17 shows the structure of table member
username password
Varchar (100) Varchar(100)
 Table 6.17 structure of table member

h) Integration system

The Claims About Test Driven Development 53

 6. Experiments

This section contains two parts. The one part will introduce the class diagram of the
whole integrated system. And the other part will introduce each class of the system.

Class Diagram
The figure 6.6 shows the class diagram of the Shop stock management system.

Figure 6.6 the class diagram for Shop stock management system

Class Description
The Shop stock management system contains 6 classes and 1 interface. This section
will introduce each class and interface of the system.

ShopStockGUI
This is the main GUI of the Shop stock management system. It provides a

The Claims About Test Driven Development 54

 6. Experiments

JTabbedPane that will add other panels on it. Those panels are Add, Modify, Remove
and ShowStock.

Add
This JPanel based GUI class, which will be integrated into the main GUI. It provides
the input and output of the function Add.

Modify
This JPanel based GUI class, which will be integrated into the main GUI. It provides
the input and output of the function Modify.

Remove
This JPanel based GUI class, which will be integrated into the main GUI. It provides
the input and output of the function Remove.

ShowStock
This JPanel based GUI class, which will be integrated into the main GUI. It provides
the input and output of the function Show Stock and Show OOS.

StockSysI
This is the interface of the Shop stock management system and provides the all
functions that the system has.

StockSystem
This class implements the interface StockSysI.

Product
The class product represents a product. And it contains 5 fields, which are barcode,
name, color, price and amount. A String type barcode represents the bar code of the
product. A String type name represents the name of the product. A String type color
represents the colour of the product. A Double type price represents the price of the
product. An Int type amount represents the amount of the product.

i) Integration Test
The Integration Test is based on the functional test and carried out manually. And this
section contains two parts, one part is for the test strategy and the other part is for the
test result.

Test Strategy
A test strategy based on the functional test will be carried out in the Integration Test
phase. The test will be carried out for each function as follows:

 Add: For the function of add, the test will be based on 3 aspects. The first is that
inputting all correct format data to make the add product success. The second,

The Claims About Test Driven Development 55

 6. Experiments

input the wrong format data into the system, the system should give an error. The
last, input product’s barcode that already exist in the database.

 Remove: For the function remove, the test will be based on 2 aspects. The first is
that remove a product by inputting the product’s barcode and click the Remove
button, the product information was stored in the database. The second aspect is
removing a product that is not stored in the database.

 Modify: For the function Modify, the test will be based on 3 aspects. The first is
that inputting all correct format data to make the Modify product success. The
second, input the wrong format data into the system, the system should give an
error. The last, input product’s barcode that doesn’t exist in the database.

 Show OOS: For the function Show OOS, the test will be based on 2 aspects. First,
for the database contains product’s information, clicking the button Show OOS.
Second, for the database contains no product’s information, clicking the button
Show OOS.

 Show Stock: For the function Show Stock, the test will be based on 2 aspects. First,
for the database contains product’s information, clicking the button Show Stock.
Second, for the database contains no product’s information, clicking the button
Show Stock.

Test Result
The follows shows the test result based on the test strategy mentioned above.

Test result for function of Add

Test Case 1: Enter Correct Format product Data
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 100
Result: Product has been added

Test Case 2: Enter wrong format product data
Input: Barcode: 123400 Name: Coffee, Color: yellow, price: 12, amount: a

hundred
Result: Wrong Data Format!

Test Case 3: Enter a exist product
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 100
Result: The product already exist

Test result for function of Remove

Test Case 4: Remove a exist product
Action: Enter the product’s barcode, and click the remove button
Result: The product removed

Test Case5: Remove a non-exist product

The Claims About Test Driven Development 56

 6. Experiments

Action: Enter the product’s barcode, and click the remove button
Result: the product doesn’t exist

Test result for function of Modify

Test Case 6: Enter Correct Format product Data
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 90
Result: Product’s information has been modified

Test Case 7: Enter wrong format product data
Input: Barcode: 123400 Name: Coffee, Color: yellow, price: 12, amount: five
Result: Wrong Data Format!

Test Case 8: Enter a non-exist product
Input: Barcode: hhh111 Name: Juice, Color: yellow, price: 12, amount: 100
Result: The product doesn’t exist

Test result for function of Show Stock

Test Case 10: Show Stock with full database
Action: Click the Show stock button
Result: All products’ information show in the table

Test Case 11: Show Stock with empty database
Action: Click the Show stock button
Result: No products’ information show in the table

Test result for function of Show OOS

Test Case 12: Show OOS with full database
Action: Click the Show OOS button
Result: All products’ information with amount less than 50 show in the table

Test Case 13: Show OOS with empty database
Action: Click the Show OOS button
Result: No products’ information show in the table

The Iteration of Function Login
The login function is added into system after the system developed. The aim of adding
this login function is to record a time of changing a requirement. This section contains
5 parts, which are user story, JUnit test case, the application code, the test strategy and

The Claims About Test Driven Development 57

 6. Experiments

the test result.

User Story

login
The user can only use the system after successfully login.

Table 6.18 user story for login

JUnit Test Case
The test case for the function login can be seen as follow:

public void testLogin() {

 ss= new StockSystem();

 sqlstr = "select * from members where username = 'baijohn427'" +

 " and password = '123456'";

 assertTrue(ss.login(sqlstr));

 }

Application Code
The application code for the function login can be seen as follow:

public boolean login(String login) {

 boolean result = false;

 try{

 Class.forName("com.mysql.jdbc.Driver");

 Connection con =

DriverManager.getConnection("jdbc:mysql://localhost:3306/shopstock","

root","");

 try {

 PreparedStatement stmt = con.prepareStatement(login);

 stmt.execute(login);

 ResultSet resultSet = stmt.executeQuery();

 if(resultSet.next()){

 return result=true;

 }else{

 return result = false;

 }

 } finally {

 con.close(); // release the connection

 }

 } catch (Exception e) {

 e.printStackTrace(); // "handle" errors

The Claims About Test Driven Development 58

 6. Experiments

 }

 return result;

}

Test Strategy

For the function Login, the test will be based on 2 aspects. First enter the correct
username and password, press login. Second, enter the wrong username of password,
press login.

Test result for function of Login

Test Case 14: login success
Input: username: baijohn427, password: 123456
Result: Login successfully

Test Case 15: Enter a non-exist user
Input: username: yuliana, password: 1111111
Result: Wrong username or password, try again!

6.3 Evaluation of the claims by experiment result

This section will introduce the evaluation for those claims by using the experiment’s
result and perception.

1) XP with TDD has better productivity than waterfall model
The programmer’s productivity in this experiment is measured by lines of code per
hour. The higher productivity is, the faster programmer producing code.

73.25 hours is spending to develop the Cinema reservation system (waterfall). And
78.75 hours is spending to develop the Shop stock management system (TDD). A free
tool Metric 1.3.6 was used to calculate the Source Line of Code. Total lines of code
were counted as non-blank and non-comment lines in a compilation unit. The total
lines of code for Cinema reservation system are 710 lines. The total lines of code for
Shop stock management system are 818 lines.

So, the waterfall model programmer’s productivity is 710/73.25, which are
approximately 9.69 lines per hour. And the XP with TDD programmer’s productivity
is 818/78.25, which are approximately 10.45 lines per hour.

So, the XP with TDD programmer’s productivity is greater than the waterfall model
programmer from the experiment’s result. So, the experiment’s result supports this
claim.

2) TDD has advantage in defect reduction

The Claims About Test Driven Development 59

 6. Experiments

The defect reduction is measured by defect rate in this experiment. The defect rate is the
total number of defect divides the total lines of code. The lower defect rate is, the better
defect reduction is.

There are 6 defects were found at the implementation and testing phase from the
Cinema reservation system (waterfall). The first defect is about Database connection
error. When I run the system after me finishing the function of addFilm, the system
prints out a database connection error. This is because I write wrong database name.
The second defect concerns the function of add. I add a film (Speeding) into database
twice. And the system gives an error of key duplicated. The third defect concerns
function of remove. I remove a film that does not exist in the database. The system can
not found the object. The fourth defect concerns the function of remove. I didn’t
initialize the variable of vector index. When I refer the filmname from vector, the
system give an error of array out of bound. The fifth defect concerns sql syntax error for
function reserve. I wrote wrong sql statement for the function of reserve. The sixth
defect concerns the JavaNullPointer exception for function show. I didn’t call a new
object of DefaultTableModel, so the data can’t load into JTable.

There are 2 defects were found from the Shop stock management system during the
developing process. The first defect concerns the function of remove. I wrote wrong sql
statement to remove a product. The system replies a sql syntax error. The second defect
concerns the function of modify. I wrote wrong sql statement to modify a product’s
information. The system replies a sql syntax error.

The total lines of code for Cinema reservation system are 710 lines, and the total lines
of code for Shop stock management system are 818 lines.

So the defect rate for Cinema reservation system is 6/710 (approximately 0.0085 defect
per LOC), the defect rate for Shop stock management system is 2/818 (approximately
0.0025 defect per LOC). Obviously, the defect rate for Cinema reservation system is
greater than Shop stock management system. So the experiment’s result support that
TDD is advantage in defect reduction.

3) XP with TDD has better Flexibility than waterfall model
The flexibility of system is measured by the time used to adapt the requirement
variations per modified LOC. The number of modified LOC in this experiment is
calculated by the number of SLOC after modify minus the number of LOC before
modify. The shorter time spending on per modified LOC, the better flexibility is.

The experiment result shows that the Shop stock management system uses one hour to
add a new function of login. The initial of the system is supposed to any user can use
the system. And the requirement is changed to only the registered user can use the
system. A new GUI for login is added into this system. And the login function will
fetch the username and password from database. If both username and password are

The Claims About Test Driven Development 60

 6. Experiments

matched, then the user login successfully. And the Cinema reservation system uses half
hour to modify the function of reserve. The initial of this function is supposed to the
user can reserve the seat by typing the film name into the film text field. And the
function is required to change to the user can select a film from a JComboBox list and
make the reservation. A new java swing component JComboBox is added into this
system. And the JComboBox will fetch the film names from the database.

The total number of LOC before modify for Cinema reservation system is 685, and the
total number of LOC after modify is 710. So the number of modified LOC is 25. The
flexibility rate for modifying function reserve of Cinema reservation system can be
indicated as approximately 0.02 (0.5/25) hour per LOC. The total number of LOC
before modify for Shop stock management system is 693, and the total number of LOC
after modify is 818. So the number of modified LOC is 125. The flexibility rate for
adding function login of Shop stock management system can be indicated as
approximately 0.008 (1/125) hour per LOC.

The experiment’s result shows the Cinema reservation system spends more time on per
modified LOC than the Shop stock management system. So, this claim is supported
from this experiment.

4) TDD has a nearly 100% code coverage for test cases
The code coverage for test cases is calculated by a free tool EclEmma. The test is
carried out manually in this experiment. The code coverage of test cases for each
function can be seen as follow:

Test for function of Add
Test Case 1: Enter Correct Format product Data
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 100
Test Case 2: Enter wrong format product data
Input: Barcode: 123400 Name: Coffee, Color: yellow, price: 12, amount: a

hundred
Test Case 3: Enter a exist product
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 100

The table 6.19 shows the code coverage for test of function add
name Class,% Method,% Block,% Line,%
Add.java 100%(3/3) 100% (5/5) 100%

(490/490)
100 %(85/85)

Table 6.19 code coverage for function add

Test result for function of Remove
Test Case 4: Remove a exist product
Action: Enter the product’s barcode, and click the remove button
Test Case5: Remove a non-exist product

The Claims About Test Driven Development 61

 6. Experiments

Action: Enter the product’s barcode, and click the remove button

The table 6.20 shows the code coverage for test of function remove
name Class,% Method,% Block,% Line,%
Remove.java 100%(3/3) 100% (5/5) 100%

(216/216)
100% (43/43)

Table 6.20 code coverage for function remove

Test for function of Modify
Test Case 6: Enter Correct Format product Data
Input: Barcode: 222334 Name: Juice, Color: yellow, price: 12, amount: 90
Test Case 7: Enter wrong format product data
Input: Barcode: 123400 Name: Coffee, Color: yellow, price: 12, amount: five
Test Case 8: Enter a non-exist product
Input: Barcode: hhh111 Name: Juice, Color: yellow, price: 12, amount: 100
Result: The product doesn’t exist

The table 6.21 shows the code coverage for test of function modify
name Class,% Method,% Block,% Line,%
Modify.java 100%(3/3) 100% (5/5) 100%

(486/486)
100% (81/81)

Table 6.21 code coverage for function modify

Test for function of Show Stock and Show OOS
Test Case 10: Show Stock with full database
Action: Click the Show stock button
Test Case 11: Show Stock with empty database
Action: Click the Show stock button
Test Case 12: Show OOS with full database
Action: Click the Show OOS button
Test Case 13: Show OOS with empty database
Action: Click the Show OOS button

The table 6.22 shows the code coverage for test of function show stock and show oos
name Class,% Method,% Block,% Line,%
ShowStock.java 100%(3/3) 100% (5/5) 97% (477/493) 90% (81.7/91)

Table 6.22 code coverage for function show stock and show oos

The experiment’s result shows that the code coverage for testing the function add,
remove and modify are all 100%. The median code coverage for testing the function
show stock and show oos are 96.75%. The lines are not covered in the ShowStoc.java
are the throw exception lines.

So, the experiment’s result is supportive for this claim.

The Claims About Test Driven Development 62

 6. Experiments

5) Test Driven Development drives the design
During the process of the TDD project, 2 design decisions were changed. The design
changes occurred during the iteration of function Add. The user story told me that the
system will give a correct message if the system successfully adds a product’s
information. And the system will also give a failed message if the system adds a
product’s information. I initially design the function add as a void type function. But I
soon discovered that it is very hard to make an assertion for a void type function. Then
I change the function type from void to Boolean. Then I run the test case and see the test
failed. Again, I write few lines of code to pass the test. At that moment, I discovered
that it is not just sufficient to add a product’s information into the database. It is a need
to have a function that can check if the product already in the database before run the
add function. So, I change my design again. And I design a check function that will
check the product whether has been in the database. These are the two design decision
change. There is no design decision changed from the waterfall model project.

Also, when I write the test cases for the function add, I also image how the user will
interact with this function. So, I am concerned to design the interface too.

So, these perceptions are supportive that TDD drives the design.

6) XP with TDD detects defects earlier
The first defect from the Cinema reservation system (waterfall) was detected at 16th
day after the project started. And it can be converting to the 50.25th hour of the whole
project lifetime (73.25 hours total). This defect is about Database connection error.
When I run the system after me finishing the function of addFilm, the system prints out
a database connection error. This is because I write wrong database name.

The first defect from Shop stock management system (TDD) was detected at fifth day
after the project started. And it can be converting to the 13.25th hour of the whole
project lifetime (78.75 hours total). This defect concerns the function of remove. I
wrote wrong sql statement to remove a product. The system replies a sql syntax error.

So, the 13.25/78.75 is less than 50.25/73.25. The experiment’s result is supportive for
using XP with TDD detects defect earlier.

7) TDD is limited on applicability of practice
This claim will be evaluated by perception during the experiment. During the
developing of the Shop stock management system, the two plans of two iteration of the
function Show Stock and Show OOS is changed. Because these two function require
event and a GUI to output data. Due to the validation of automated test framework for
GUI, it is very difficult to write JUnit test case for them. So, the TDD has some
limitations for Shop stock management system. The experiment’s result supports this
claim.

The Claims About Test Driven Development 63

 6. Experiments

The Claims About Test Driven Development 64

 7. Conclusion

7. Conclusion

This chapter contains three sub sections, which are the achievements of this these, the
evaluation of claims and the thoughts & further work. The first section will
summarize the achievement of this thesis, which is what the thesis has done. The
second section will finally evaluate those claims by the thesis finding combine with
the result of literature research and experiment. The last section will introduce the
thoughts and further work.

The Achievement of this Thesis

Test Driven Development (TDD) is a practice of eXtreme Programming (XP) where
unit- and functional tests drive the development of the code. This thesis has collected
some of claims about Test Driven Development, and evaluations were done from both
literature research and experiment.

The literature research gives a literary evaluation of claims. This thesis has studied
some of papers concerning those collected claims. The evaluation based on those
papers was done. The experiment gives a hand-on perception of evaluating claims.
This thesis has developed two systems, which are Cinema reservation system using
waterfall model and Shop stock management system using XP with TDD. All the
relevant data from the experiment has been recorded into PSP table. The evaluation
was done by the experiment’s result.

Evaluation of claims

This section will finally evaluate those claims, which were collected in this thesis. The
evaluation will be made based on the literature study and the experiment result. And
the thesis’s finding will also be concluded in this section.

 XP with TDD has better productivity than waterfall model
The productivity in this thesis is measured by the lines of LOC produced per hour by
the programmer. The literature research and experiment’s result are both supportive for
this claim. This thesis also found that using XP with TDD will save time on writing
formal analysis and design document, e.g. use case specification. Since TDD focusing
on creating test cases first, programmer design and implement the function faster. So,
the thesis supports this claim.

 TDD has advantage in defect reduction

The Claims About Test Driven Development 65

 7. Conclusion

The defect reduction in this thesis is measured by defect rate, which the number of
defects during the developing process per LOC. The literature research and
experiment’s result are both supportive for this claim. This thesis also found that by
continuously running those test cases, one can find out whether a change breaks the
existing system. This will avoid bugs. So, the thesis confirms this claim.

 XP with TDD has better Flexibility than waterfall model
The flexibility in this thesis is measured by the spending time per modified/added LOC.
The literature research and experiment’s result are both supportive for this claim. This
thesis also found that using XP with TDD has strength in the unstable requirement
project. Due to iterative based process, possible change request can be identified
earlier.

 TDD has a nearly 100% code coverage for test
The literature research and experiment’s result are both supportive for this claim. This
thesis also found that due to writing test cases firstly, the production code written to
pass the test. This way of proceeding ensures code coverage,

 Test Driven Development drives the design
The literature research and experiment’s result are both supportive for this claim. This
thesis also found that writing the test cases firstly will lead programmer image the
interaction between the user and system. And this also drive programmer to design the
interface of system.

 XP with TDD detects defect earlier
The literature research and experiment’s result are both supportive for this claim. This
thesis also found that using XP with TDD, the test goes alone with the whole
development process, the defect will be discovered immediately when running test
failed.

 TDD is limited on applicability of practice
The literature research and experiment’s result are both supportive for this claim. This
thesis also found that the TDD relying on the automated unit test framework. If the
developer has lack knowledge of automated unit test, then the TDD has limitation of
applicability.

The Thoughts and Further work

This section will cover some thoughts based on a personal vision which is developed
during the execution of experiment. These thoughts can be a topic for further research
and are not covered by hard evidence in this study.

The Claims About Test Driven Development 66

 7. Conclusion

The main thought that I possess is the influence of unit test framework on TDD. Since
the TDD replying on the unit test, possession of knowledge for unit test framework is
required to use TDD. Developer may not play TDD well if the developer has lack
knowledge of unit test framework. Another thought is that TDD shows advantages
with XP. What will be if a system is developed using waterfall model with TDD? Are
advantages of TDD kept also? Furthermore, it is controversial for using TDD with
GUI, is this really challenge of TDD?

Due to the lack of time, this thesis just collected some of the claims about TDD. In
further, I would like to collect some more claims and evaluate them. These can be
some claims like TDD is lack of design; the test cases are test asset; TDD enhances
programmer’s code comprehension and etc.

The Claims About Test Driven Development 67

 7. Conclusion

The Claims About Test Driven Development 68

 Reference

Reference

[1] K. Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999. first
edition

[2] Gerardo canfora, Aniello Cimitile, Felix Garcia, Mario Piattini and Corrado Aaron Visaggio,

Productivity of Test Driven Development: A controlled Experiment with Professionals,
Research Center on Software Technology, University of Sannio, Italy

[3] Robert C. Matin, Professionalism and Test Driven Development

[4] Raghvinder S. Sangwan, Phillip A. LaPlante LaPlante, "Test-Driven Development in Large

Projects," IT Professional, vol. 8, no. 5, pp. 25-29, Sept/Oct, 2006

[5] V. R. Basili, F. Shull, and F. Lanubile, "Building Knowledge Through Families of

Experiments," IEEE Transactions on Software Engineering, vol. 25, pp.456 - 473, 1999.

[6] David S. Janzen Hossein Saiedian, On the Influence of Test-Driven Development on Software

Design. Electrical Engineering and Computer Science University of Kansas, Lawrence, KS
USA

[7] http://en.wikipedia.org/wiki/Agile_software_development#_note-2

[8] http://www.agilemanifesto.org/principles.html

[9] Boehm, B.; R. Turner (2004). Balancing Agility and Discipline: A Guide for the Perplexed.

Boston, MA: Addison-Wesley. ISBN 0-321-18612-5. Appendix A, pages 165-194

[10] http://www.mariosalexandrou.com/methodologies/agile-software-development.asp

[11] http://en.wikipedia.org/wiki/Iterative_and_incremental_development

[12] http://en.wikipedia.org/wiki/Waterfall_model

[13] Laplante, P.A.; C.J. Neill (February 2004). ""The Demise of the Waterfall Model Is

Imminent" and Other Urban Myths". ACM Queue 1 (10). Retrieved on 2006-05-13.

[14] Sommerville, Ian [1982] (2007). "4.1.1. The waterfall model", Software engineering, 8th
edition, Harlow: Addison Wesley, pp 66f.

[15] http://heavylogic.com/agile.php

The Claims About Test Driven Development 69

http://en.wikipedia.org/wiki/Agile_software_development#_note-2
http://www.agilemanifesto.org/principles.html
http://en.wikipedia.org/wiki/Barry_Boehm
http://en.wikipedia.org/wiki/Richard_Turner_%28software%29
http://en.wikipedia.org/w/index.php?title=Special:Booksources&isbn=0321186125
http://www.mariosalexandrou.com/methodologies/agile-software-development.asp
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Waterfall_model
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=110
http://www.acmqueue.com/modules.php?name=Content&pa=showpage&pid=110
http://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://en.wikipedia.org/wiki/2006
http://en.wikipedia.org/wiki/May_13
http://en.wikipedia.org/wiki/Ian_Sommerville
http://en.wikipedia.org/wiki/Addison_Wesley
http://heavylogic.com/agile.php

 Reference

[16] Beck, K.: Extreme Programming Explained: Embrace Change. 2 edn. Addison-
Wesley (2004)

[17] Ming Huo; Verner, J.; Liming Zhu; Babar, M.A., "Software quality and agile methods,"
Computer Software and Applications Conference, 2004. COMPSAC 2004. Proceedings of
the 28th Annual International, vol., no.pp. 520- 525 vol.1, 28-30 Sept. 2004

[18] http://en.wikipedia.org/wiki/Extreme_Programming#_note-0

[19] B. W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

[20] B. Hambling, “Realistic and Cost-effective Software Testing”, in Kelly, M.: Management and

Measurement of Software Quality, UNICOM SEMINARS, Middlesex, UK, 1993, pp.
95-112.

[21] M. J. Harrold, “Testing: a roadmap”, International Conference on Software Engineering,
ACM, 2000, pp. 61-72.

[22] W.S. Humphrey, Winning with Software, Addison-Wesley, 2002.

[23] D. J. Mosley and B. A. Posey, Just Enough Software Test Automation, Prentice Hall, 2002.

[24] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2003.

[25] Boby George and Laurie Williams. A structured experiment of test-driven development.

Information and Software Technology, 46(5):337–342, 2004.

[26] http://en.wikipedia.org/wiki/Test-driven_development

[27] R. Martin, “The Bowling Game Kata,” June 2005

[28] Newkirk, JW and Vorontsov, AA. Test-Driven Development in Microsoft .NET, Microsoft

Press, 2004

[29] T. A. Corbi, Program understanding challenge for the 1990s, IBM Systems Journal 28 (1989)

294–306.

[30] D. Hamlet, J. Maybee, the Engineering of Software, Addison-Wesley, Boston, 2001.

[31] W.S. Humphrey, Managing the Software Process, Addison-Wesley, Reading, MA, 1989.

[32] K. Beck, Aim, fire, IEEE Software 18 (2001) 87–89.

The Claims About Test Driven Development 70

http://en.wikipedia.org/wiki/Extreme_Programming#_note-0
http://en.wikipedia.org/wiki/Test-driven_development

 Reference

[33] A. van Deursen, Program comprehension risks and opportunities in Extreme Programming,
CWI, Amsterdam, SEN-R0110, ISSN 1386-369X, 2001

[34] A. van Deursen, L. Moonen, A. vandenBergh, G. Kok, Refactoring test code, presented at XP

2001, 2001

[35] F.P. Brooks, The Mythical Man-Month, Addison-Wesley, Reading, MA, 1995.

[36] D. Gelperin, W. Hetzel, Software quality engineering, presented at Fourth International

Conference on Software Testing, Washington, C, June 1987

[37] C. Larman, V. Basili, A history of iterative and incremental development, IEEE Computer 36

(2003) 47–56.

[38] D. Chaplin, Test first programming, TechZone (2001).

[39] Hans. Wasmus, the evaluation of the Test Driven Development, Software Engineering

Research Group, Department of Software Technology, Faculty EEMCS, Delft University of
Technology Delft, the Netherlands

[40] Lars-Ola Damm, Lars Lundberg, David Olsson, Introducing Test Automation and Test-Driven

Development: An Experience Report

[41] M. M. Müller, O. Hagner, Experiment about test-first programming, presented at Empirical
Assessment In Software Engineering EASE ’02, Keele, April 2002

[42] Craig Larman and Victor R. Basili. Iterative and incremental development: a brief history.

IEEE Computer, 36(6):47–56, June 2003.

[43] D. Janzen and H. Saiedian. Test-driven development: concepts, taxonomy and future

directions. IEEE Computer, 38(9):43–50, Sept 2005

[44] L. Williams, E. M. Maximilien, M. Vouk, Test-driven development as a defect-reduction

practice, presented at IEEE International Symposium on Software Reliability Engineering,
Denver, CO, 2003

[45] Lei Zhang1, Shunsuke Akifuji1, Katsumi Kawai2, and Tsuyoshi Morioka2, Comparison

Between Test Driven Development and Waterfall Development in a Small-Scale Project

[46] S. Cornett, Code Coverage Analysis, Bullseye Testing Technology, 2002

[47] http://en.wikipedia.org/wiki/Software_testing, visit at 20-09-2007

The Claims About Test Driven Development 71

 Reference

[48] http://en.wikipedia.org/wiki/Test_case visit at 21-09-2007

[49] Marvin V. Zelkowitz, Dolores Wallace, EXPERIMENTAL VALIDATION IN

SOFTWAREENGINEERING, Keele University, Staffordshire, U.K., 24-26 March 1997.

[50] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and Practical Approach:

Brooks/Cole Pub Co., 1998.

[51] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental Design for Research.

Boston: Houghton Mifflin Co., 1963.

[52] Beck, K. Test-Driven Development by Example, Addison Wesley, 2003

[53] http://homepage.mac.com/keithray/blog/2005/01/16/

[54] http://adaptionsoft.com/tdd.html

[55] David Astels, Test Driven Development: A Practical Guide, Prentice Hall PTR July 02, 2003

[56] http://qualitycode.com/html/Essay10.html

The Claims About Test Driven Development 72

http://en.wikipedia.org/wiki/Test_case%20visit%20at%2021-09-2007
http://www.informit.com/safari/author_bio.asp?ISBN=0131016490

 Reference

The Claims About Test Driven Development 73

 Appendices A

The Claims About Test Driven Development 74

Appendices A

The Appendices A contains all the PSP tables from the experiments.

 Appendices A

A-1 Time recording log for Cinema reservation system

Date Start Stop Interruption
(hours)

Delta
Time(hour)

Task Comments

2007-09-17 10:00 12:00 0.25 1.75 Start Project plan Interruption for break

2007-09-17 13:00 14:00 1.00 Make Project plan

2007-09-18 10:00 11:00 1.00 Start Requirement analysis

2007-09-18 12:00 15:00 0.5 2.5 Write Use case for Add Interruption for break

2007-09-19 12:00 15:00 1.00 2.00 Write Use case remove Interruption for answering call

2007-09-20 10:00 15:00 1.00 4.00 Write use case for show film info and
refresh

Interruption for break and lunch

2007-09-21 10:00 15:00 1.00 4.00 Write use case for Reserve a seat and
Show reservation

Interruption for break and lunch

2007-09-24 10: 00 15:00 1.00 4.00 GraphicaL User Interface Design Interruption for break and lunch

2007-09-25 10:00 15:00 1.00 4.00 Class diagram Design Interruption for break and lunch

The Claims About Test Driven Development 75

 Appendices A

Date Start Stop Interruption

(hours)
Delta
Time(hour)

Task Comments

2007-09-26 10:00 15:00 1.00 4.00 Class Diagram design Interruption for break and lunch

2007-09-27 10:00 12:00 0.5 1.50 Database Design Interruption for break

2007-09-28 10:00 12:00 0.5 1.5 Create Database and table Interruption for break

2007-10-01 10:00 15:00 1.00 4.00 Coding for Main GUI and panel
Administration.

Interruption for break and lunch

2007-10-02 12:00 15:00 1.00 2.00 Coding for panel Reservation Interruption for break

2007-10-03 10:00 15:00 1.00 4.00 Coding for function of Add and
Remove

Interruption for break and lunch

2007-10-04 10:00 15:00 1.00 4.00 Coding for function refresh and show
all film info

Interruption for break and lunch

2007-10-05 10:00 15:00 1.00 4.00 Coding for function Reserve And
Show Reservation

Interruption for break and lunch

2007-10-08 10:00 15:00 1.00 4.00 Debugging Interruption for break and lunch

The Claims About Test Driven Development 76

 Appendices A

Date Start Stop Interruption
(hours)

Delta
Time(hour)

Task Comments

2007-10-09 10:00 15:00 1.00 4.00 Debugging Interruption for break and lunch

2007-10-10 10:00 15:00 1.00 4.00 Debugging Interruption for break and lunch

2007-10-12 10:00 15:00 1.00 4.00 Test the function add and remove Interruption for break and lunch

2007-10-15 10:00 15:00 1.00 4.00 Test the function refresh and show all
film info

Interruption for break and lunch

2007-10-16 10:00 15:00 1.00 4.00 Test the function reserve and show
reservation, modify the function
reserve

Interruption for break and lunch

Table A-1 the time recording log for Cinema reservation system

The Claims About Test Driven Development 77

A-2 Bug recording log for Cinema reservation system

Bug No. Date Bug detected
time

Stop Delta
Time (minites)

comment

1 2007-10-08 11:00 11:20 20 Database connection error

2 2007-10-08 14:00 14:35 35 key duplicated for function add

3 2007-10-09 10:20 10:50 30 The system can not found the object (remove a nonsexist
film)

4 2007-10-09 13:00 13:15 15 Array out of bound for function remove

5 2007-10-10 11:00 11:20 20 Sql syntax error for function reserve

6 2007-10-10 14:12 15:00 48 JavaNullPointer exception for function show

Table A-2 Bug recording log for Cinema reservation system

A-3 Modify recording log for Cinema reservation system

Date Modify start Interruption stop Delta Time(hour) Comment

2007-10-16 14:00 14:30 0.5 hour Modify the function of reserve. The function initially gets the

film name from test field. The function change to get the film
name from a combo box list.

Table A-3 Modify recording log for Cinema reservation system

A-4 PSP Project Summery Form for Cinema reservation system

 Time in

hours
Amount Time in

whole
project
lifetime

Code
coverage
%

The sum time spend
on

73.25

The number of the
bugs

--- 6

The time when detect
the bug

 69%

The time of modify
function reserve

 0.5

1

The number of
changing design by

 0

Table A-4 the summery form for Cinema reservation system

A-5 Time recording log for Shop stock management system

Date Start Stop Interruption

(hours)
Delta
Time(hour)

Task Comments

2007-10-16 10:00 12:00 0.25 1.75 Start Project plan Interruption for break

2007-10-16 13:00 14:00 1.00 Make Project plan

2007-10-17 10:00 11:00 1.00 Start Requirement analysis of
function Add

2007-10-17 12:00 15:00 0.5 2.5 Write User story for Add Interruption for break

2007-10-18 12:00 15:00 1.00 2.00 Write the test case of Add and the
application code

2007-10-22 10:00 15:00 1.00 4.00 Start requirement analysis of function
remove and write user story of
remove

Interruption for break and lunch

2007-10-23 10:00 15:00 1.00 4.00 Write the test case of remove and the
application code

Interruption for break and lunch

2007-10-25 10: 00 15:00 1.00 4.00 Start requirement analysis of function
Modify and write the user story

Interruption for break and lunch

 Appendices A

Date Start Stop Interruption

(hours)
Delta
Time(hour)

Task Comments

2007-10-26 10:00 15:00 1.00 4.00 Write the test case for function
Modify and the application code

Interruption for break and lunch

2007-10-30 10:00 12:00 2.00 Start requirement analysis and write
the use story for function show OOS

2007-10-31 10:00 12:00 2.00 Start requirement analysis and write
the use story for function show Stock

2007-11-01 10:00 16:00 1.00 5.00 Design and implement the main
application GUI

Interruption for break and lunch

2007-11-02 10:00 16:00 1.00 5.00 Design and implement the panel Add,
Remove, Modify and the Show Stock

Interruption for break and lunch

2007-11-03 10:00 16:00 1.00 5.00 Design each class and draw class
diagram

Interruption for break and lunch

2007-11-05 10:00 16:00 1.00 5.00 Design and implement the function
Show OOS and show Stock

Interruption for break and lunch

2007-11-06 10:00 16:00 1.00 5.00 Integrate the system Interruption for break and lunch

2007-11-07 10:00 16:00 1.00 5.00 Debugging Interruption for break and lunch

The Claims About Test Driven Development 82

 Appendices A

Date Start Stop Interruption

(hours)
Delta
Time(hour)

Task Comments

2007-11-08 10:00 16:00 1.00 5.00 Debugging Interruption for break and lunch

2007-11-09 10:00 16:00 1.00 5.00 Integration Test Interruption for break and lunch

2007-11-12 10:00 16:00 1.00 5.00 Integration Test Interruption for break and lunch

2007-11-13 10:00 16:00 1.00 5.00 Integration Test Interruption for break and lunch

2007-11-14 10:00 11:00 1.00 Write the new function login

Table A-5 time recording log for Shop stock management system

The Claims About Test Driven Development 83

 Appendices A

A-6 Modify recording log for Shop stock management system

Date Modify start Interruption stop Delta Time(hour) Comment

2007-11-14 10:00 11:00 1 hour Add a new function login into the system. The system will be

only used by authorized user.

Table A-6 modify recording log for Shop stock management system

The Claims About Test Driven Development 84

 Appendices A

The Claims About Test Driven Development 85

A-7 Bug recording log for Shop stock management system

Bug No. Date Bug detectted

time
Stop Delta

Time (minites)
comment

1 2007-10-23 11:00 11:10 20 Sql syntax error for function remove

2 2007-10-26 14:00 14:30 30 Modify function can’t modify the data from database

Table A-7 bug recording log for Shop stock management system

A-8 Design changing injection for Shop stock management system

Injection
No.

Date Time Comments

1 2007-10-17 12:00 The function add initially designed to
be a void type. And it changes to a
Boolean function.

2 2007-10-30 10:00 The function check was designed
besides add

Table A-8 Design changing injection for Shop stock management system

 Appendices A

A-9 PSP Project Summery Form for Shop stock management system

 Time in

hours
Amount Time in

whole
project
lifetime

Code
coverage
%

The sum time spend
on

78.75

The number of the
bugs

 2

The time when detect
the bug

 17%

The time of add
function login

1 hour

1

The number of
changing design

 2

Table A-9 the summery form for Shop stock management system

The Claims About Test Driven Development 87

 Appendices B

Appendices B

The Appendices B contains the screenshots of the code coverage report from tool
EclEmma.

The figure B-1 shows the code coverage for testing function Add

Figure B-1 the code coverage for function Add

The Claims About Test Driven Development 88

 Appendices B

The figure B-2 shows the code coverage for testing function remove

Figure B-2 code coverage for testing function remove

The Claims About Test Driven Development 89

 Appendices B

The figure B-3 shows the code coverage for test function of Modify

Figure B-3 code coverage for testing function modify

The Claims About Test Driven Development 90

 Appendices B

The figure B-4 shows the code coverage for testing the function Show stock and show
oos

Figure B-4 code coverage for the function show function and show oos

The Claims About Test Driven Development 91

	preface.pdf
	Summary
	 Preface

	master_thesis.pdf
	Contents
	1. Introduction
	1.1 Background
	1.2 Thesis scope
	1.3 Outline

	2. Agile software development
	2.1 The principle of agile method-The Agile Manifest
	2.2 Comparison with other method
	Compare with iterative and Incremental development
	Compare with waterfall model

	3. Extreme Programming
	3.1 Values, Principles and Practice
	3.2 Benefits
	3.3 Limitation

	4. Test Driven Development
	4.1 TDD, a software development practice
	4.1.1 Test-Driven Development Cycle
	4.1.2 Three laws of using TDD

	4.2 Claims concerning TDD

	5. Literature Research
	5.1 The Literature Research
	5.1.1 Boby George and Laurie Williams
	5.1.2 Lei Zhang, Shunsuke Akifuji, Katsumi Kawai, and Tsuyoshi Morioka

	5.2 The evaluation criteria
	5.3 The evaluation of claims by literature study

	 6. Experiments
	6.1 Experiments Description
	6.1.1 Experiment purpose
	6.1.2 Experiment subject
	6.1.3 Experiment Tools and Methodology
	6.1.4 Evaluation Strategy
	6.1.5 Experiment Procedure
	6.1.6 Experiment Validity

	6.2 Experiment Process
	6.2.1Cinema reservation system
	6.2.2 Shop stock management system

	6.3 Evaluation of the claims by experiment result

	 7. Conclusion
	The Achievement of this Thesis
	Evaluation of claims
	The Thoughts and Further work

	 Reference
	 Appendices A
	A-1 Time recording log for Cinema reservation system
	A-2 Bug recording log for Cinema reservation system
	A-3 Modify recording log for Cinema reservation system
	A-4 PSP Project Summery Form for Cinema reservation system
	A-5 Time recording log for Shop stock management system
	 A-6 Modify recording log for Shop stock management system
	A-7 Bug recording log for Shop stock management system
	A-8 Design changing injection for Shop stock management system
	A-9 PSP Project Summery Form for Shop stock management system

	Appendices B

