
Design and Simulation of a high performance Emergency data delivery
Protocol

Kevin Swartz and Di Wang
Computer Science and Engineering division at Informatics and Mathematical Modelling

Technical University of Denmark (DTU), 2800 Lyngby, Denmark
 {swartzk,diwangbruce}@gmail.com

Abstract

The purpose of this project was to design a high
performance data delivery protocol, capable of
delivering data as quickly as possible to a base station
or target node. This protocol was designed particularly
for wireless network topologies, but could also be
applied towards a wired system. An emergency is
defined as any event with high priority that needs to be
handled immediately. It is assumed that this emergency
event is important enough that energy efficiency is not
a factor in our protocol. The desired effect is for fast as
possible delivery to the base station for rapid event
handling.

1. Introduction

This protocol is intended for use with wireless
sensor networks as sort of a back up protocol, or
second state for the general topology. Since it is not
designed to be easy on power consumption, it should
not be used as the general system protocol; rather it
should switch to this protocol in the event of an
emergency, and then revert back to its normal state
once the emergency event has been dealt with. It is also
important that data is reliably transferred to its
destination, as if it is an emergency; the data is likely
important and time sensitive.

 The network simulation program ns-2 was decided
upon to be the best simulation program for this stage of
protocol development. As of present time, ns-2 offers
the best testing environment and tools for simulation.
NS-2 is able to simulate complex networks of wireless
topologies, as well as offer an effective analysis
package and online information resource.

 There are many applications for this protocol; one
such example being structural weakness detection, in
which pressure sensors are placed inside the structural

Figure 1: Emergency operation cycle

supports of a building to detect abnormal symptoms.
Another application could be in the area of
automobiles, in the sense that the temperature and
condition of the car could be monitored in order to
gracefully handle a wearing part or low fluid.

It should also be noted that this protocol can be used
to varying degrees of effectiveness based on the
underlying ‘normal’ mode of operation. For example,
if the normal mode of operation involves a protocol
that stores optimized paths to the base station, this
protocol will be faster than with a normal mode of
operation that doesn’t. The reason for this will be
discussed in later sections.

2. The Protocol

A. Assumptions

There are three main assumptions for this protocol.
1. Power is not a Factor

It is assumed that in an emergency event, the
emergency that has occurred has a greater priority over
energy conservation, which is sacrificed in order to
deliver emergency information to its destination as
quickly and reliably as possible.

2. A base station cannot go down.
This must be an assumption with any network, as a

network without a base station has no external control
and no purpose if not reporting to something outside of
itself. This is generally considered a fatal error for any
network, and this is particularly true for a network
running under this protocol.
3. Data can flow across a network faster if no other
nodes are broadcasting information.

This is the central idea of this protocol. If no other
nodes are transmitting, then the only limitations set
upon transferring data between nodes are the physical
characteristics of the system. No collisions yield the
effect of no needless repeat broadcasting, which will
keep wasted time to a minimum.

.
B. One Emergency

Since this protocol functions as a back-up, or
secondary protocol, there will be a finite amount of
time in which the network operations under this
protocol. The time it takes to complete one cycle of
this protocol will be defined as the time from when a
node first detects an emergency, until the time when
the network has returned to a normal state of operation.

Assume that an event occurs at a certain point in the
network. The node detecting this event decides that this
event is an emergency. This node immediately sets
itself into an emergency state, in which no messages
pertaining to normal protocol operation are sent. At
this point, the node, or nodes which detected the
emergency send out a special type of packet, which for
now will be called the emergency packet.

This emergency packet causes any node that
receives it to set itself to emergency mode as well, and
while in this state will also not send any packets
pertaining to ‘normal’ operation. This packet is fully
flooded across the network, with only a small impact
from collisions due to the small size of this packet.
Once a node is shut down it will not broadcast
anything except for more emergency packets and data
packets from the node which initiated the emergency.

The negligible effect of collisions can be deduced
from having an extremely small packet size for this
emergency packet. The point of this packet is to shut
down the network as fast as possible, so it must be
small and fast. At this point the node detecting the
emergency could conceivably re-broadcast the
emergency packet again in another flood, in an attempt
to shut down as many nodes as possible that weren’t
shut down by the first broadcast. This second broadcast
may be determined to be beneficial through network
simulation and testing.

After this emergency packet flood has been
initiated, the node at which the emergency originated
begins to send the data pertaining to the emergency.
The protocol used to locate and route to the base
station or data target can be customized depending on
the ‘normal’ operational mode.

For example, if the normal operational mode
utilizes some form of ant algorithm [3], it is very
possible that the node at which the emergency
originated will already know of a fast path to the base
station or target node. This will make for quick and
reliable data transfer. This is just one situation; many
other underlying protocols could be used successfully
for the correct balance of speed and reliability. For the
ease of testing, a network flood is used to transfer data
packets, but this is not considered optimal, and is used
more to detect the worst case of the protocol.

These data packets will travel through the network
mostly without interference; as most if not all nodes
have set themselves to emergency mode, and are
waiting on any packets from the emergency originator
it might receive. If any other packets not pertaining to
an emergency are broadcast, they are ignored
completely.

Once the emergency originating node has finished
broadcasting the emergency data, it stays in emergency
mode, and awaits further instructions. These
instructions could be information about other existing
emergencies, or a wake up call from the base station or
target node. Once the target node has handled the
emergency, it floods the network with a wake up
packet, which returns all affected nodes in the network
to their normal network state.

C. Inner workings

There are several types of packets sent across in this
scenario whose details were not discussed. It is
important to note the contents of these three different
types of packets. The initial emergency flood packet
contains only the ID of the node which encountered the
emergency, and a special emergency code. The
emergency code is interpreted by any receiving nodes
as a signal to set itself to emergency mode, and
forward only packets pertaining to emergencies. The
point of this packet is to be as small as possible, to
ensure quick propagation throughout the system.

The second set of packets sent is not as important to
this paper’s discussion. They contain emergency data
that for all relevant purposes need no more than to
arrive at the correct destination quickly. However this
packet needs to still include the emergency code and
node ID of emergency-originating node, else it will be
ignored.

The last type of packet, containing the wake up
command, contains only the wake up command, as
interpreted by the nodes, and also the node ID of the
emergency originator. The node ID is included in the
wake-up packet in order to handle multiple
emergencies, which are discussed in the following
section.

D. Multiple Emergencies

This protocol also needs to be able to handle
multiple emergencies, or possibly a distributed
emergency that is caught by multiple nodes. This is
possible due to several features of the protocol.

Figure 2: Target node states

When a node receives an emergency packet, it

becomes dormant, responding only to packets that
contain the node id of the originating node. However it
can also respond to other emergency packets it
receives, forwarding them accordingly. Each node
stores the originating node ID inside of a queue of
some kind for each different emergency encountered.
As each node receives wake up packets containing
node IDs, the node ID entry is removed from each
node’s list, resuming normal activity only once the list
is empty.

The base station, or target node reacts similarly. It
goes into an idle state if it receives an emergency
packet and waits for emergency data, and similarly
wakes up upon emptying its queue of emergency
processes. The only difference in this case is that the
target node can also send out wake up packets if one of
the current emergencies has been dealt with. If there
are multiple emergencies with data intended for the
same base station, it sends out a wake up packet for
each emergency.

It may also be necessary to keep a timeout value for
each emergency entry in each nodes emergency queue
list. This is to protect nodes on the network from
becoming non-functional in the case that wake up
packets are lost or unsent. It will be important to fine
tune the time-out time for the entries in the emergency
queue. A time-out too short could prevent correct
handling of an emergency, while too long a time could
significantly decrease network performance.

As an example of a multiple emergency situation,
let two emergencies occur at the same time. Each node
detecting the emergency will send out a wave of

emergency packets, setting the nodes to stand-by. This
is possible because nodes set to emergency mode will
only transmit other emergency packets that it hasn’t
seen before. The nodes set to emergency mode will
then have two node IDs in their respective queues, and
will not re-activate until wake-up packets for each
node ID has been received, or there is a timeout on the
queued node IDs.

If the emergency target nodes are different nodes,
the emergencies are handled separately, and wake-up
packets are sent independently. If the emergency
target nodes are the same node, then the emergencies
will be handled as they are received, and wake-up
packets will be sent out accordingly.

There is yet one unresolved issue with multiple
emergency handling, which is that since emergencies
are identified by the node ID that detected it, only one
emergency at a time can be handled per a single node.
If a node in the network detects an emergency, and
then the same node detects a second emergency right
after it, the network will have no way of keeping track
of two different emergencies for the same node. The
first emergency would have to be taken care of before
the same node could create a second emergency. This
issue could be dealt with by adding an extra field to the
emergency packet, which is incremented if the node as
an unresolved emergency tied to its node ID already.

3. Simulation

A. NS-2

NS-2 has the potential to be a very powerful
simulation program. The scripts are written in TCL,
which is a fairly versatile language, in addition to
being fairly readable. It can be installed on any Linux
system, as well as Cygwin under Windows.

There were some difficulties in installing ns-2. It
was found to be necessary to manually change some of
the configuration files. A find and replace for .relid’`
with .relid` was necessary in order for it to installed on
Debian Linux, or under Cygwin.

NS-2 also comes as a package, with several
different packages and visualization programs in order
to make the ns-2 output more readable. NAM is an
important part of ns-2, in that it animates the events of
the network, and is usually started directly in the ns-2
TCL script.

 There were also some difficulties with the trace file
output of ns-2. One of the waveform generating
programs packaged with the ns-2 all-in-one package,
Xgraph, was difficult to get working at first due to

some incorrect parameters initially set in the ns-2
script.

B. Network simulation

The network topology and program design is
designed with help from the flooding protocol example
in the ns-2.29/tcl folder, enclosed in the installation
package. This was found to create a good network
topology that would provide a good environment to
test the emergency protocol. This basic topology is
pictured in Figure 3.

Figure 3: Network Topology

This is a good topology due to the many bottlenecks

in the network grid, set on the side of ever four node
cluster. The node at the bottom left was said to be the
origin of the emergency, while the node at the top right
was said to be the emergency target node.

It should be noted that the emergency data transfer
protocol is set to be a simple network flood in this
simulation. This was chosen because a network flood
is the worst case scenario for transferring the data. It is
possible to design or implement custom protocols
using C++, but the timeframe was not enough to write
and synchronize the C++ and ns-2 scripts.

The main test program involved a few stages of
programs. The first program simply tested that the
sequence of events occurred and finished correctly.
This meant that no other network activity was detected
on the system after the time of the emergency packet
flood. Subsequent testing involved anywhere from
small amounts of network traffic to massive storms of
network traffic at precisely the same time as the
emergency flood occurred, thus covering best to worst
case scenarios.

Difficulties were encountered when it was found
that in ns-2 simulations, the animation is the same

regardless of packet size. Since one of the key ideas to
this protocol involves the size difference in emergency
and data packets, another method of performance
testing had to be found for this simulation.

The technique used involved timing two methods of
delivering emergency data. Method one involved using
the discussed emergency protocol, while method two
involved simply sending the data as a normal packet to
the base station. The generated network traffic is the
same in both cases, in order to keep the tests as equal
as possible.

Using the discussed emergency protocol, method
one, the clock was started at the time of emergency,
and was stopped once the network had returned to a
normal state of operation. In method two, the clock
was started at the time of emergency, but was stopped
as soon as the data arrived at the target node, since the
network is already functioning in a normal state.
However it should be noted that this test still does not
test the function of small packet sizes within this
protocol.

C. Simulation Results

The emergency protocol was found to respond very
well to medium amounts of traffic. For best simulation
results, the emergency packet is transmitted only once
at the source of the emergency, and then once it is
received it gets re-transmitted between nodes 3 times.
This is implemented by a simple counter inside the
packet receiving function that keeps forwarding
emergency packets until it has seen the same packet 3
times. This sounds like it is time consuming, but it
appeared not to have a large effect on performance,
though it is taxing on network activity.

The graph of this can be seen in Figure 5. This
graph is of the number of packets received vs. time for
several key nodes in the system. These nodes are: node
0, which originates the emergency wave, node 10,
which is in the middle of the topology as one of the
bottlenecks, and node 23, which is the emergency
target node. This graph represents only the initial
emergency packet wave, and no data transfer. It can be
observed at the beginning to have normal traffic
operating on the network. At a certain time, the traffic
spikes, the spike being the emergency wave packet.
Now at this point, the network is programmed to still
attempt to emit ‘normal’ packets for the rest of the
simulation, but it can be seen to have no effect on
accurate delivery of emergency data.

The serious test involved creating extremely high
traffic across the length of the network. This is done by
creating network floods every .01 seconds from

random nodes throughout the network. This high
traffic can be seen in Figure 4.

This high traffic scenario was used to test two
protocols against each other, the emergency protocol,
and a general network flood.

For the network flood test, the network attempted to
flood a data packet from the same node (node 0) every
.01 seconds for .3 seconds, meaning 30 attempts at
transmission. Due to a high volume of collisions the
packet was unable to make its way to the base station.

The emergency protocol test was next, and worked
wonderfully. Due to its emergency packet re-
transmissions, it was able to set the network to
emergency mode, send the emergency data, and wake
up the network again in less than .06 seconds from the
moment of the emergency.

Figure 4: High traffic simulation

The reason the emergency protocol is so successful,

is while the regular node flooding encounters a
collision and restarts from the beginning, the
emergency protocol has already silenced a portion of
the network, and so can start over from that same point
on the second re-transmission. This is in addition to
sending another emergency packet immediately after
the first packet collides with some other network
activity.

The emergency protocol obviously shows quite an
advantage in this area, but it should be noted that the
.06 seconds is also probably the fastest time possible
(at least simulated on ns-2). The only way that it could
be further optimized, is by having a direct path to the
base station for data transfer. Since ns-2 could not
simulate the difference in packet size this was not able
to be tested. It is also assumed in the testing that the
data is only contained in one packet, and this was also
not otherwise tested.

NS-2 was observed to have some strange behaviors
when changing the packet size of the data. The original
idea for testing was to make the wave packets as small
as possible, while making the data packets as large as
possible. It was thought that this would provide a good
example, since in theory the emergency packets will
finish transmitting faster since they are relatively much
smaller. However once the size of the data packet got
any larger than 3 times the size of the wave packet, the
next node would not flood the packet. The packet
would just be dropped past the first or second hop.
This could be some kind of inside protocol of ns-2, but
we were forced to lower the data packet size to be the
same size as the wave packets, which in a physical
setting would be erroneous.

We did not test the emergency protocol on another
network topology other than this one, because it was
thought that this demonstrated a bit of a worst case
scenario. It was thought that if it worked on this
topology, it could work on any other. The reason this is
a worst case scenario, is that there are several crucial
bottle necks at the corners of the groups of four nodes.
This can be seen clearly in Figure 3.

Figure 5: Network activity chart

4. Future Work

This protocol proved to be very useful in
simulation, but there are many aspects of it that have
yet to be tested. It is necessary to find a method to test
the protocol using a program that allows for greater
detail when simulating packet sizes. Due to a possible
shortcoming of ns-2, or to the shortcoming of this

author’s knowledge of ns-2 TCL scripting, it was not
possible to simulate a large data packet size.

There was also, of course, no physical testing done.
This is the real test of any system, and after some more
detailed simulations it would be necessary to test it on
a physical system.

Because this was a computer simulation, there were
also limits on the number of nodes present in the
system. A larger scale test would be highly beneficial.
Closely related is also the necessity of test on many
different topologies. Although only one topology was
used, the authors do not hope to assume that they have
thought of everything. In the future it would be
necessary to test this protocol over a wide range of
topologies to make sure that this works correctly in all
situations.

This protocol should also be tested as a secondary
protocol for many other ‘normal’ operating modes.
Hidden problems or benefits could arise from being a
secondary protocol to different types of ‘normal’
protocols.

Finally, while the handling of multiple emergencies
was mentioned, it was never tested. The authors
acknowledge the possibility that hidden problems
could arise, in addition to the possibility of a severe
negative impact on performance of the system.

5. Conclusion

Although one of the assumptions of this protocol is
that energy consumption is not a factor, it is very
possible that there are many optimizations that could
be made to lessen this protocol’s impact on the system.
This protocol puts quite a strain on the network
bandwidth, as well as completely shutting down most
network activity for a period of time. Also, often
times, especially in wireless sensor networks, power
consumption is a major factor in terms of the life and
cost of the system. For this reason, this emergency
protocol may not be a viable solution.

It is also important to be careful in defining an
emergency per system. While the emergency protocol
appears to handle emergencies well, it does this one
thing only, sacrificing performance of the rest of the
system. If emergencies are triggered easily, the
network would never complete any tasks because the
nodes would be sleeping in emergency state.

This emergency protocol is definitely in its early
stages of development, but the first results are very
promising. It remains to be seen if this protocol can
withstand the physical testing stage through which any
viable protocol must pass.

6. References

[1] M. Greis. Marc Greis' Tutorial for the UCB/LBNL/VINT

Network Simulator "ns" [Online] Available:
http://www.isi.edu/nsnam/ns/tutorial/

[2] A collaboration between researchers at UC Berkeley,
LBL, USC/ISI, and Xerox PARC. The ns manual.
[Online]. Available:
http://www.isi.edu/nsnam/ns/doc/index.html

[3] Subramanian, D. Druschel, P. Chen, J. Ants and
Reinforcement Learning: A Case Study in Routing in
Dynamic Data Networks. In Proceedings of IJCAI-
97,1997.

[4] D. Braginsky, D. Estrin, “Rumor Routing Algorithm for
Wireless Sensor Networks”

[5] Erik Nordström,. Christian Rohner. Interaction between
TCP and UDP flows in Wireless Multi-hop Ad hoc
Networks Availible:
http://user.it.uu.se/~erikn/papers/adhoc05.pdf 5th
Scandinavian Workshop on Wireless Ad-hoc Networks
(Adhoc'05)

[6] J. Malek, Trace graph - Network Simulator NS-2 trace
files analyzer. [Online] Available:
http://www.tracegraph.com/

