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Abstract. We present a reduction semantics for the LYSA calculus ex-
tended with session information, for modelling cryptographic protocols,
and a static analysis for it. If a protocol passes the analysis then it is
free of replay attacks. The analysis has been implemented and applied
to a number of protocols, including both original and corrected version
of Needham-Schroeder protocol. The experiment results show that the
analysis is able to capture potential replay attacks.

1 Introduction

Since the 80’s, formal analyses of cryptographic protocols have been widely stud-
ied. Many formal methods such as BAN logic [6], model checking and theorem
proving have been put forward. The formal model for security protocols built
by Dolev and Yao is particularly significant. Indeed, most of the formal analysis
tools were built upon it, e.g. Meadows and Syverson NRL [17], Millen Interroga-
tor [18], Paulson inductive method [22], based on Isabelle [23] and Blanchet’s
Prolog protocol verifier[2], etc. Each tool is equipped to detect a certain amount
of attacks, including replay attacks.

Replay attacks are classified by Syverson in [24] at the highest level as run-
external and run-internal attacks, depending on the origin of messages.

In this paper, we restrict our attention to run-external attacks. This type of
attacks allows the attacker to achieve messages from one run of a protocol, often
referred to as a session, and to send them to a principal participating in another
run of the protocol. A fresh message means that it is not replayed from another
session (old session or parallel session). In BAN logic, reasoning about the fresh-
ness of an entire message amounts to reasoning about the freshness of each field,
i.e. “If one part of a formula is known to be fresh, then the entire formula must
also be fresh”. However, because of the presence of the network attacker, who
can manipulate any message in clear, we shall here focus on the encrypted mes-
sages, which is not directly under the control of an attacker. Namely, after each
successful decryption, we check whether the decrypted message is a replayed one
from another session, in which case, a violation of freshness property is recorded.



Here we extend the LySaA calculus [3,4] with annotations about sessions. A
control flow analysis is proposed for the extended LySa, which soundly over-
approximates the behavior of protocols. It tracks the set of messages that are
transferred over the network, and records the potential values of variables. Since
our analysis is sound, we capture malicious activities, if any, expressed in terms
of annotation violations. Our static analysis is fully automatic and termination is
always guaranteed. The proposed analysis has been implemented. The resulting
tool was applied to some cryptographic protocols, such as Otway-Rees [21] and
Needham-Schroeder [20].

As far as the security properties are concerned, replay attacks on security
protocols can cause authentication and/or confidentiality violations. In this pa-
per, we show that the control flow analysis is able to validate both properties, by
analyzing the Wide Mouthed Frog protocol, which does not preserve confiden-
tiality under replay attacks, and the Needham-Schroeder protocol, which does
not achieve authentication in the presence of a replay attacker.

The paper is organized as follows. In Section 2, we present the LySa calculus
annotated with session information. We introduce the control flow analysis in
Section 3. In Section 4 we describe a Dolev-Yao attacker extended to fit into
our particular setting. In section 5, we make some experiments in analyzing two
versions of the Needham-Schoreder symmetric key protocol. Section 6 concludes
the paper.

2 A Reduction Semantics for the LYSA Calculus

LvySa [3,4] is a process algebra, in the tradition of the - [19] and Spi- [1] calculi.
Among its peculiar features, there are: (1) the absence of channels: in LySa all
processes have only access to a single global communication channel, the ether
and (2) tests associated with input and decryption are expressed using pattern
matching.

2.1 Syntax

LvySA consists of terms and processes. The syntax of terms E and processes P
is given below. Here N' and X denote sets of names and variables, respectively.
For the sake of simplicity, we only consider here some basic terms and encryp-
tions. The name n is used to represent keys, challenges and names of principals.
Encryptions are tuples of terms Ff, ..., ) encrypted under a shared key repre-
sented by the term Ey. We assume perfect cryptography in this paper.

E:=n|xz|{E1,...,Ex}lE,

P = <E1,...,Ek>.P|(El,...,Ej;a:j+1,...,xk).P|
decrypt E as {E1, ..., Ejizj41, ..., 2}y in P |
(vn)P | PPy |!P |0

In addition to the classical constructs for composing processes, LySa also
contains an input construct with matching and a decryption operation with



matching. The idea behind the matching is as follows: we allow a prefix of the
received tuple to match a selection of values. If the test is passed, the remaining
values are bound to the relevant variables. The label [ in the decryption construct

uniquely identifies each decryption point, which is from a numerable set Lab
(I € Lab).

Extended LySA We change the syntax of standard LySa so that each term
and process now carries an identifier of the session it belongs to. In what follows,
we assume that SID is a fixed enumerable set of session identifiers s, and we
denote &1, &, . .. the extended terms and P, Q, . .. the extended processes defined
below. Note that variables carry no annotation and therefore we shall consider
[z]s and z to be the same (see below). Furthermore, there is no need for the nil
process (0) to carry session information and hence [0]; and 0 are identical.

Eu=nls | x| {1, - Etels

P = <817,8k>7) ‘ (51,...,gj;$j+17...,l‘k).P |
decrypt £ as {51,...,Ej;ijrh...,xk}lgo in P |
(v [n]s)P [ P1|P2 | [Pl [ O

We define a function F and a function 7, in the style of [8], that map standard
terms and processes into the extended ones, by attaching the session identifiers
inductively. Note that F unwinds the syntactic structure of an extended term
until reaching a basic term (a name or a variable), while 7 unwinds the structure
of an extended process until reaching a nil (which is untagged) or a replication.

Definition 1. Distributing Session Identifiers
F:ExSID—¢&
—F(n,s) = [n]s —F(z,s)=x
~F({Er, .., Ex}gy, 8) = {F(E1,s8), .., F(Ek, 8) Y F(Eo.s)ls
T:PxSID—P
—T((En,...,Ey).Ps)=(F(E1,s),...,F(Ek,s)).T(P,s)

—T((El, .. .,Ej;.'lﬁj+1, ce 7$k).P7 8) ==
(F(Ev,s),... . F(Ej,8);2jsn,. .., o). T(P,s)

—T(decrypt FE as {El, ey Ej;Ij+1, ey xk}lEO in P, S) =
decrypt F(E,s) as {F(E1,s),...,F(Ej,s);Tjt1,. .- ,xk}lf(Eo s in T(P,s)

_T(P ‘ Q, S) = T(P7S) | T(Q,S) _T((V n)P7 S) = (V [n]s)T(Pﬂ 8)
~T(IP,s) = I, ~T(0,5) =0

2.2 Operational Semantics

Below we assume the standard structural congruence = on LySA processes, as
the least congruence satisfying the following clauses (as usual fn(P) is the set of



the free names of P):
Pl|0o=P (vz)0
PIQ=Q|P (vz)(v

PlQIR=P|(Q|R) (va)(P

P =Q if P and @ are a-equivalent

=0
y)P = (vy)(ve)P
|Q)=P | (vz)Qif z ¢ fn(P)

Technically, the addition of session identifiers to the syntax of LySa means
that it is necessary to carry on the session identifiers to the semantics of values,
i.e. terms without variables. The extended value domain will be referred to as
Val, ranged over by V built from the grammar V' == [n]s | {Vi,..., Vi}w]s
The equivalence relation V; = V5 is defined to be the least equivalence over
Val that (inductively) ignores the session identifers. For example, [n]s = [n]s
for amy s and 5" and [{fnala,,[2lus gl Js = [malg [nag Yo, Jo for amy
s, 8,81, 892,8] and sq. For the subsequent treatment, it is convenient introducing
an auxiliary operator, Z, which extracts the (outermost) session identifier of an
extended value V.

Definition 2. Faxtracting Session Identifers Z: Val — SID

— I([n]s) =s = Z({v1, - s vntopls) = s

In BAN logic [6], the freshness property is described as “if one part of a
formula is known to be fresh, then the entire formula must also be fresh”, formally

Pl= #(X)
P=4(X,Y)

However, because of the presence of the network attacker, who can manipulate
any message in clear, we shall here only focus on the encrypted messages, which
is not directly under the control of the attacker. Namely, after each successful
decryption, we check whether there is any field of the encrypted tuple such that
its session identifier is the same as expected. This point is made more clear in
the semantics shown below.

Following the tradition of the m-calculus, we shall give the extended LySa a
reduction semantics. The reduction relation —x is the least relation on closed
processes that satisfies the rules in Table below and uses the standard notion of
substitution, P[V/z] and structural congruence, as defined above.

As far as the semantics is concerned, we consider two variants of reduction
relation —, identified by a different instantiation of the relation R, which deco-
rates the transition relation. One variant (—gm) takes advantage of annotations,
the other one (—) discards them: essentially, the first semantics checks freshness
of messages, while the other one does not (see below):

— the reference monitor semantics P —rm Q takes RM(s,s’) = (s = ¢)
— the standard semantics P — Q takes, by construction, R to be universally
true.



More specifically, after each successful decryption the reference monitor checks
whether at least one field of the encrypted message is coming from the expected
session, i.e. it is fresh. Any fresh term inside the encryption means the entire
encryption is fresh.

/\gzlvi =V
(Com) ; ; -
<‘/17...,Vk>.7) | (‘G,...,‘/};ijrl,...,a?k).'P
=R P P'Vi1/Tj1,. .., Vi/xi]
(Dec /\z:OVi - Vi/ A \/3:1 R(I(Vl)’I(Vz/))
decrypt {V1,..., Vitv, as {V/,...,V]izj41,. .. ,xk}lvo, in P
—r PVi/zjs1,. -, Vi/ak]
P —r P ! ! X
(Res) TP —r (0 P (Repl) ['P]s —=r T(P,s) | [\P]s (s is fresh)
P1—r Py P=P AN T(P,s)—r T(P",s)
P
Par) 1, = P 1P, (Congr) T(P.s) —r T(P",s)

The rule (Com) expresses that an output (Vi,...,V;, Vji1,..., V). P matches
an input (V{,...,V/i2j41,...,2%) in case the first j values are pairwise equal
(under the equivalence =) when all the annotations are recursively removed.
When the matching is successful each V; is bound to the corresponding z;. Note
that the equivalence relation = is defined over the extended value domain Val.

Similarly, the rule (Dec) expresses the result of matching an encryption
{Vi,. oo, Vitvls with decrypt Voas {V/,... . V]izjp1,.. .,z by in P. As it was
the case for communication, the first j values V; and V; must be equal, and ad-
ditionally the keys must be equal, i.e. Vi = Vj. When the matching is successful,
each V; is bound to the corresponding z;. In the reference monitor semantics we
ensure that the decrypted message comes from the current session by checking
whether the first j values V; and V/ have the same session identifiers. In the
standard semantics the disjunction VI_; R(Z(V;),Z(V/)) is universally true
and thus can be ignored.

In case of (Repl), the process is unfolded once. Note that the new session
identifier, s’, in this case, has to be unique, i.e. not occurring anywhere else
along the evolution of the process P. This makes sure that each copy of a protocol
process has a unique session identifer such that different copies will not be mixed
up.

The rule (Congr) makes use of the function 7', which bridges the gap between
the semantics defined on the extended processes P and the structural congruence
defined on the standard processes P.

The rules (Res) and (Par) are standard.

Following the line of BAN logic, the freshness of a LySA process can be
defined as follows:



Definition 3 (Freshness). A process P ensures freshness property if for all
the possible executions P —* P’ —g P" there exists at least one i (1 < i < j)
such that Z(V;) = Z(V/) when P —z P" is derived using (Dec) on

decrypt [{Vl, ey Vk}Vo]s as {Vll7 ey V}/;x]qrh .. ,{L‘k}lvo in P

It says that an extended process P ensures freshness property if there is no
violation of the annotations in any of its executions.

2.3 Example

We shall use the simplified version (without timestamps) of the Wide Mouthed
Frog protocol [6] (WMF) for illustrating how to encode protocols in our calculus.
WMF is a symmetric key management protocol aiming at establishing a secret
session key K, between the two principals A and B sharing secret master keys
K4 and Kp, respectively, with a trusted server S. The protocol is specified by
the following informal narration:

1.A—-S: {BaKab}KA
2.8 = B:{A K} iy
3. B— A:{Msg}k,,

The extended LySa specification of the WMF protocol is [!P]y where P =
(v Ka)(v Kp)(A|B|S) contains three processes, e.g. A, B and S, running in
parallel, each of them models one principal’s activity, and is as follows:

1. A (U Kab)

A (A, S B, Kup}ic)-
3. —A (B, 4; 2).
3. A decrypt z as {; zm }%., in 0
2. =B | (S By).
2", B decrypt y as {A;k}2  in
3. B (v Msg)

B — (B, A,{Msg}).0
1. — 8 | (A,S;p).
1”. S decrypt p as {B; £’} in
2. § = (S, B,{A, K'}ic,).0

3 Static Analysis

The LySa calculus is especially designed to model security protocols involving
a number of principals, where each of them execute a sequence of actions, syn-
chronised by communications. Because of the inter-action, in most of the cases,
it is impossible to predict the exact behaviour of each principal. In this section,
we present a control flow analysis aiming at collecting the central aspect of the
information of a protocol of interest. This is done by over-approximating the
protocol behaviour along all the execution paths.



3.1 Domain of the Analysis

The control flow analysis describes a protocol behaviour by collecting all the
communications that a process may participate in. This information, i.e. the
tuples of values that maybe communicated over the network, is recorded in an
analysis component &, i.e. kK C p(Val*) is the abstract network environment that
includes all the tuples forming a message that may flow on the network.

As said before, successful communications involve pattern matching and vari-
able binding, i.e. binding values to variables. It is handy and convenient for the
analysis to collect this information. For this purpose, another analysis compo-
nent p is introduced record the values that each variable may be bound to, i.e.
p: X — p(Val) maps the variables to the sets of values that they may be bound
to.

Name Space Both the analysis components x and p have to do with recording
values V' € Val in some format. However, a LYSA process may generate infinitely
many values during an execution because of the restriction and replication con-
structs, e.g. (v n)(n), which means that the analysis components have to be
able to record infinitely many names.

For keeping the analysis component finite, we partition all the names used
by a process into finitely many equivalence classes and we use the names of the
equivalence classes instead of the actual names. This partition works in a way
that names from the same equivalence class are assigned a common canonical
name and consequently there are only finitely many canonical names in any
execution of a given process. This is enforced by assigning the same canonical
name to every name generated by the same restriction. The canonical name |n|
is for a name n, while |z| is a variable . For example, a process, that may
generate infinitely many names, is (v n)P, as shown in the following chain of
equivalences: (v n)P = (vn')P' | (vn)P=(wn)P' | wn")P" | (vn)P=...
Furthermore, the names n, n’ and n’ are generated by the same restriction and
hence have the same canonical name, i.e. [n] = |n'| = |n”|. Hereafter, when
unambiguous, we shall simply write n (resp. x) for |n| (resp. |z]).

3.2 Analysis of Terms and Processes

For each term &, the analysis will determine a superset of the possible values
it may evaluate to. The judgement for terms takes the form p = £ : ¢ where
¥ C Val is an acceptable estimate (i.e. a sound over-approximation) of the set
of values that £ may evaluate to in the environment p. The judgement is defined
by the axioms and rules in the upper part of Table below. Basically, the rules
demand that ¥ contains all the values associated with the components of a term.
In the sequel we shall use two kinds of membership tests: the usual V' € ¢ that
simply tests whether V' is in the set ¥ and the faithful test V' oc ¥ that holds
if there is a value V'’ in 9 that equals V', when the annotations are inductively
ignored.



The judgement for processes has the form: p,x |=rm P : ¥ expressing that
p, k and v are valid analysis estimates of process P. The additional component
¥ C p(Lab) is the possibly empty set of error-component which collects an over-
approximation of the freshness violations: a label [ € 1 means that the value
binding after a successful decryption, marked with label [, violates the freshness
annotations and therefore is not allowed. We prove in Theorem 2 (in Section 3.1)
that when ¢ = () we may do without the reference monitor. The judgement is
defined by the axioms and rules in the lower part of Table below (where A = B
means that B is analyzed only when A is true) and are explained below.

[n]s €9

om0

/\f:Op ’: E 1 A
Woy ooy Ve : AL Vi €0 = [{Va, .o, Vidwls €90

14 }: [{81,...,5k}50]s . 19

/\lep):gil’ﬂi A
VVl,...,Vk/\le‘/iGﬁi@
V,..., Vi) ER Ap,kERM P : ¢
P, K ':RM <51,7gk>P1/)
/\g:1p|:5i:19¢ A
V<V1,...,Vk> €EK: Ag:1‘/i o< =
/\f:j+1vi € p(z;) Ap,kFErm P 1)
p,kErv (&1, &5 T, xk) P
PEED AN N_ypEE 9N
Y{Vi, .., Vidwls €0 AL Vi o 9 =
(NZjaVi € p(i) ApikErm P tp A
(Pi:1<i<k:(Z(Vi)=Z(&))=1€c))
p, K =rm decrypt £ as {€1,..., &} @41, T }e, I Py

psk Erm T([Pls) 1 ¥ A pok Erm T([Plsr) 19

(Enc)

(Out)

(Inp)

(Dec)

(Her) p,k =rm [P 9
P ERMP Y N pkErm Q9
(Par) pkERM P | Qi1
(Nil) p,r Frm 029 (Res) psk Erm P 1)

psk Erm (V[n]s)P 1 9

The rule for output does two things: first, all the expressions are abstractly
evaluated and then it is required that all the combination of the values found
by this evaluation is recorded in x. Finally, the continuation process must be
analysed, which is also the case for input and decryption rules.



The rule for input incorporates pattern matching, which is dealt with by first
abstractly evaluating all the of first j expressions in the input to be the sets 1J;
for i =1,...,7. Next, if any of the sequences of length k in k are such that the
first j values component-wise are included in ¥; then the match is considered to
be successful. In this case, the remaining values of the k-tuple must be recorded
in p as possible bindings of the variables.

The rule for decryption handles the matching similarly to the rule for input.
The only difference is that here the matching is performed also on the key. We
use the faithful test for matching because the semantics ignores the annotations.
After the successful matching, values are bound to the corresponding variables
and, more importantly, the session identifiers of the key and of the first j compo-
nents have to be checked equivalent. In case for some i, Z(v;) # Z(&;), meaning
that not all the values are from the current session, the label of the decryption
[ is recorded in the error component ).

The rule for replication attaches two different session identifiers to two copies
of the process before analysing both of them. Again the newly generated session
identifier has to be unique in order not to mix processes up. We prove in Theorem
2 that it is enough to only analyse two copies of the process.

The rules for the inactive process, parallel composition and restriction are
straightforward.

3.3 Semantic Properties

In this section, we shall show a list of lemmas and theorems concerning the
semantics correctness. The detail proofs are omitted due to space limitations.

Our analysis respects the operational semantics of extended LySa. More
precisely, we prove a subject reduction result for both the standard and the
reference monitor semantics: if p, k = P : 1, then the same triple (p, k, 1) is a
valid estimate for all the states passed through in a computation of P, i.e. for
all the derivatives of P. Additionally, we show that when the ¢ component is
empty, then the reference monitor is useless.

It is convenient to prove the following lemmata. The first states that estimates
are resistant to substitution of closed terms for variables, and it holds for both
extended terms and processes. The second lemma says that an estimate for an
extended processes P is valid for every process congruent to P, as well.

Lemma 1. (Substitution result)

1. pEE:9 and & € p(x) imply p = E[E' [x] : ¥
2. p, =Py and € € p(x) imply p,k = PlE/x] : ¢

Proof. The proofs proceed by structural induction over terms.

Lemma 2. (Congruence)

IfP=Q and p.r b= T([PL.) : v then p, b= T(QLa) : ¢

Proof. By a straightforward inspection of each of the clauses defining P = Q.



Subject reduction result holds for both the standard and the reference moni-
tor semantics: if p, k =rm P @ ¥, then the same triple (p, k, ) is a valid estimate
for all the derivatives of P, i.e. all the states passed through in a computation

of P.
Theorem 1. (Subject reduction)

1. If P - Q and p,k =P : 1 then also p,k |E Q : 9;
2. Furthermore, if 1 = () then P —rm Q

Proof. The proof is done by induction of the inference of P —x Q.

The next result shows that our analysis correctly predicts when we can safely
dispense with the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q, Q' such that P —% Q —rm Q'
and P —gy Q -rm. As usual, * stands for the transitive and reflexive closure
of the relation in question, and @ —+gry stands for AQ' : Q —rm Q.

Theorem 2. (Static check for reference monitor)
— If p,k =P : 0 then RM cannot abort P.

Proof Suppose per absurdum that such @ and Q' exist. A straightforward in-
duction extends the subject reduction result to P —* Q giving p, k F=rm Q : 0.
Theorem 1 part 2 of applied to Q@ — Q' gives Q —grm Q' which is a contradiction.

3.4 Example

The least solution of the analysis of the WMF protocol and has a non-empty
1p-component, i.e.
P, K 'ZRM WMEF : '(/J

where p, k and 1 have the following entries

p:y— {{[Alo, [Kab)o}xp)o, (AN, [Kabli Hrpy, }
2= {[Msglo}x,lo LM gl }ir,,, b
p = {{[Blo: [Kablo}xcator {[Bl1s [Kav]1}rcan, }
k= {[Kablo, [Kab]1}
k' {[Kablo, [Kab)1}
= {[Msglo, [Msg]1}

K {<[A]0,[S}O,[{[B} v[ ab}O} KA]0]0>7<[A}1’[S}1’[{[B} v[Kab] }[KA] ]1>}U
{{[Blo, [Alo, {[Msglo}x.ulolo)s ([Blrs [Alr, {[M sl }ixoy),]10 FU
{([Slo, [Blo: [{[A]o, [Kablo}xp1olo)s ([ST1, [Blr, {[Alrs [Kapli }rpi]1) )

¥ {11,12,13)



According the rule for [!P], in Table shown before, the analysis makes two
copies of P with different session identifiers (0 and 1 in our case), which models
two sessions running together.

The messages from both sessions are sent over the network, which the attacker
has the total control of. Therefore, the attacher can fool a principal to accept
a message actually coming from another session. This is suggested by the non-
empty 1: the three variables in 1) indicate that messages in step 1”7, 2" and 3”
may not be fresh. This is highly dangerous because the principal may be forced
to use an old session to encrypt the security data and in case of old session is
revealed, confidentiality is not preserved any longer. A possible attack derivable
from the solution above is shown below, where M represents the attacker:

L [Alr = [S]y = {[B1; [Kaph }xea,

2. (S — M {[A] ’[Kabh}xgh
M — [Bly : {[Alo, [Kablo} x5,

3.[Blr — [Alx : {[Msgli }xuo

4 Modelling the Attackers

In a protocol execution, several principals exchange messages over an open net-
work, which is accessible to the attackers and therefore vulnerable to malicious
behaviour. We assume an active Dolev-Yao attacker [10]. It is active in the sense
that it is not only able to eavesdrop, but also to replay, encrypt, decrypt or gen-
erate messages providing that the necessary information is within his knowledge.

This scenario can be modelled in extended LYSA as an attacker process run-
ning in parallel with the protocol process. Formally, we shall have Py, | Q, where
Psys represents the protocol process and Q is some arbitrary attacker. The at-
tacker acquires its knowledge by interacting with Py, starting from the public
knowledge. Note that the secret messages and keys, e.g. K, are restricted to
their scope in Psys and thus they are not immediately accessible to the attacker.

4.1 Constructing Attacker Process

Our aim consists in finding a general way of constructing the attacker process,
which is able to characterise all the attackers. The idea here is to define a formula,
inspired by the work [3,4], and then to prove its correctness.

In order for the attacker process to inter-act with the protocol process, some
basic information of the protocol process has to be known in advance. We shall
say that a process Psy has the type (Nf, Ay, Agnc) whenever: (1) it is close,
(2) all the free names of Pyys are in Mg, (3) all the arities used for sending or
receiving are in A, and (4) all the arities used for encryption or decryption
are in Agnc. Obviously, MV, A, and Ag,c are all finite and can be computed by
inspecting the process Pgys.

One concern regarding the attacker process is about the names and variables
it uses, which have to be apart from the ones used by Psys. Let all the names



used by Psys to be in a finite set N, all the variables in a finite set X; and all the
session identifiers in a finite set Sc; we can then postulate a new extended name
[Ne]s,, Where ne is not in M, a new variable z, not in X, and a new session
identifier s, not in Sc.

In order to control the number of names and variables used by the at-
tacker, we construct a semantically equivalent process Q’, for a process Q of
type (N, Ak, Agnc), as follows: 1) all restrictions (v[n]s)P are a-converted into
restrictions (v[n|s,)P where n’ has the canonical representative n, 2) all the
occurrences of variables x; in (&1,...,&;2j41,...,2,). P and of variables z; in
decrypt € as {&1,...,&; 241, ..., 2k} in P are a-converted to use variables x
with canonical representative z,. Therefore @’ only has finitely many canonical
names and variables.

(1) Akea, ¥V (v1,...,06) €K AP v € p(za)
the attacker may learn by eavesdropping
(2) Akeaee YHU1, -0 Uk Iu]s € p(z6) :
vo X p(ze) = AE_jv; € p(z4)
the attacker may learn by decrypting messages with keys already known
(3) Akedee Y 00,50kt AR v € p(2e) = [{V1, -+, Uk bug)se € P(2e)
the attacker may construct new encryptions using the keys known
(4) Akea, Yvi,...,vp: AE_ v € p(2e) = (v1,...,01) €K
the attacker may actively forge new communications

(5) {[nels } UNF C p(ze)

the attacker initially has some knowledge

‘We now have sufficient control over the capabilities of the attacker. Now, we
extend the standard Dolev-Yao threat model with session identifiers. We express
the extended Dolev-Yao condition for our LySa calculus and define a formula
.7:3,\}( of type (Ns, Ay, Agnc) as the conjunction of the five components in Table
shown above, where each line describes an ability of the attacker. Furthermore,
we claim that the formula FRy is capable of characterising the potential effect
of all attackers Q of type (Nf, A, Agnc)-

The soundness of our Dolev-Yao condition is established by the following
Theorem.

Theorem 3. (Correctness of the extended Dolev-Yao condition)

— if (p, K, ) satisfies Fry of type (N, Ay, Agnc) then p,k Erm Q : ¢ for all
attackers Q of type (Nt, Ay, Agnc)-

Proof. The proof is done by structural induction on Q.

5 Main Results

The session identifiers in the extended LySA are designed to make the capture
of replay attacks easier, thus ensure the receiving messages are fresh. For the



dynamic property, we say that Py, guarantees dynamic freshness with respect
to the annotations in Pg,, if the reference monitor RM cannot abort Py | Q
regardless of the choice of the attacker Q.

Similarly, for static property we say that P,y guarantees static freshness with
respect to the annotations in Py, if there exists p and « such that p, k f=rm P : 0
and (p, k, 0) satisfies FRy.

Theorem 4. If P guarantees static freshness then P guarantees dynamic fresh-
ness.

Proof. If p,k Erm Psys : 0 and (p, s, 0) satisfies FRy then, by Theorems 2 and
3, RM does not abort Py, | Q regardless of the choice of attacker Q.

5.1 Implementation and Complexity

To obtain an implementation we transform the analysis into a logically equivalent
formation written in Alternation-free Least Fixed Point logic (ALFP) [11], and
use the Succinct Solver [11], which computes the least interpretation of the
predicate symbols in a given ALFP formula. The time complexity of solving a
formula in the Succinct Solver is polynomial in the size of the universe, over
which the formula is interpreted. For our implementation the universe is linear
in the size of the process and a simple worst-case estimate of the degree of
the complexity polynomial is given as one plus the maximal nesting depth of
quantifiers in the formula. For our current implementation the nesting depth is
governed by the maximal length of the sequences used in the communication
and encryption. In practice, the implementation runs in sub-cubic time and we
obtain running times well in few seconds for all of our experiments.

5.2 Validation of Needham-Schroeder Symmetric Key Protocol

Needham-Schroeder Symmetric Key Protocol is a classical protocol and has been
used widely as an example for protocol verification. The protocol has 6 steps: in
the first steps, a fresh session key K is generated by the trusted server S and sent
to both parties, A and B; in the following two steps, B sends out a challenge to
make sure A is in procession of the new session key. After a protocol run, A and
B share a secret session key for secure communication. The protocol narration
is listed below in the left,

1.A—S: A B,N, 1.A—-S: A B, N,
25’—>A {Na,B,K,{K,A}Kb}KQ QS—>A {Na,B,K,{K,A}Kb}Ka
3.A— B:{A K}k, 3. M(A) — B:{A,K'}k,
4B~>A{Nb}}( 4B—>M(A){Nb}K/
5.A—>B:{Nb—1}K 5M(A)—>B{Nb—].}K/
6. A— B:{Msg}x 6. M(A) — B : {Msg}x

the protocol narration a replay attack scenario

The analysis result of Needhan-Schroeder Symmetric Key Protocol shows a
violation, meaning that it is subject to a replay attack. This result corresponds



to the replay attack reported by Denning & Sacco in [9]: the message in step 3
can be replayed with an old compromised session key by an active attacker and
consequently B is forced to use the old key K’ for communication. A example
trace is shown above in the right.

To fix this problem, Denning & Sacco and Needham & Schroeder proposed
different solutions but both make use of new nonces. Needham & Schroeder’s
solution is: having A ask B for another random value N/, to be sent to the Server
for return in {4, N/, K} g, . After the correction, the first three steps become the
followings and others keep unchanged.

1.A—S: A,B,N,, N/
2.5 — A: {NavaKa{A’Nz/sz}Kb}Ka
3. M(A) — B:{A,N,, K},

After applying the analysis to the above version, the result becomes: no
violations possible, meaning that the attacker now can not replay the message
from step 3 and therefore no replay attack is possible to this corrected version.

6 Conclusion

In this paper we have introduced a sound way to detect replay attacks at static
time. To do that, we extended the standard LySa calculus with session identifiers
and gave it a reduction semantics. The semantics ensures session identifiers are
properly treated along the evolution of a process. On the static side, we developed
a control flow analysis to verify the freshness property of the extended processes.
The static property ensures that, if the secret information received by a principal
is in the right context, then a process is not subject to a run-external attack at
execution time. As far as the attacker is concerned, we adopted the notion from
Dolev-Yao threat model and extended it with session identifiers in order to fit it
into our setting. The extended Dolev-Yao attacker is able to monitor the traffic
over the network and actively generate messages within his knowledge.

We implemented the analysis and used our tool to check some significant pro-
tocols, including classical protocols, e.g. Wide Mouthed Frog, Yahalom, Andrew
Secure RPC, Otway-Rees, Needham-Schroeder, Amended Needham-Schroeder.
Besides the classical protocols, at present, we successfully applied our analysis
to other kinds of protocols, like the ones in the family of IEEE 802.16 [16]. The
tool confirmed that we can successfully detect potential replay attacks on the
protocols.

Several papers deal with replay attacks and freshness. Because of lack of
space, we only mention the closest to ours, i.e. [13-15] and [5], where the ap-
proach is based on type (and effects) systems that statically guarantee entity
authentication of protocols. Gordon and Jeffrey [13-15] defined type (and ef-
fects) systems that statically guarantee authentication of protocols specified in
a Spi-calculus enriched with assertions ¢ la Woo-Lam. In [5], Bugliesi, Focardi,
Maffei still use a type and effect system, but use a different technique and a
different calculus (the p-spi calculus).



Instead of dealing with one security property at a time, our control flow
analysis is able to validate both authentication and confidentiality violations
caused by a replay attack. Additionally the control flow analysis records in an
error component the exactly places where a replay attack may possibly happen,
so one can easily trace back all the replay attacks (if any). Other contributions
of the paper include 1) a reduction semantics with session identifiers carried
on such that each copy of a protocol process has a unique session identifer and
meanwhile processes modelling principals from one session have the same session
identifiers, and 2) a formal definition of the freshness property of a process. In
this paper, we also claim (and prove) that analysing two copies of a process
in our framework is sufficient for capturing run-external replay attacks. For an
informal argument: a replay attack is about replaying messages from a sessions to
a principal not participating in the session and the control flow analysis treats
sequential sessions and parallel session in the same way, analysing more than
two sessions are not giving more information about attacks. The experiments
conducted also confirmed this, i.e. with analyzing two sessions, we are able to
detect all the replay attacks. There are works in the literature that also show
this kind of results, e.g. Comon & Cortier [7] and Millen [18].

The analysis presented in this paper is part of a project, analysing various
security properties of communication protocols using annotations. It can be eas-
ily combined with other kinds of annotations from the same framework, e.g. the
one from [12], and hence gives a more comprehensive analysis result.
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