Analysis of LySa-calculus with explicit confidentiality annotations

Han Gao, Hanne Riis Nielson
Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads bldg 322, DK2800 Kgs. Lyngby, Denmark
{hg,riis} @imm.dtu.dk

Abstract

Recently there has been an increased research interest
in applying process calculi in the verification of crypto-
graphic protocols due to their ability to formally model pro-
tocols. This work presents LySa with explicit confidentiality
annotations for indicating the expected behavior of target
protocols. A static analysis approach is developed for an-
alyzing protocols specified in the extended LySA. The pro-
posed approach will over-approximate the possible execu-
tions of protocols while keeping track of all messages com-
municated over the network, and furthermore it will capture
the potential malicious activities performed by attackers as
specified by the confidentiality annotations. The proposed
analysis approach is fully automatic without the need of
human intervention and has been applied successfully to a
number of protocols.

1. Introduction

Secure communication over the Internet has been of
rapidly growing interest. Assuring correctness of communi-
cation protocols by analysis and verification has been con-
sidered a way to improve communication security. The
challenges of protocol analysis and verification are twofold.
Firstly, protocols are often described informally using pro-
tocol narrations, which are imprecise about the finer details
concerning the deployment of the protocol, and do not com-
pletely specify the actions internal to the principals [1]. Sec-
ondly, protocol definitions provide syntax and semantics of
inter-operation, but does not specify the purpose of each
message element used in a protocol, thereby making it dif-
ficult to capture the intension of communication behaviors.

In [3], a control flow analysis is developed to validate se-
curity properties against various attacks. The control flow
analysis collects every single message that might be learnt
by the attacker. The secrecy property is checked by inspect-
ing this information. However, this does not always suffice,
in particular, the attacker may break a protocol’s execution

without knowing any ”secret”. Thanks to the confidentiality
annotations, our analysis is able to compute a much wider
range of information, which greatly facilities the precise
reasoning of a protocol’s behavior. This is illustrated by
the example of section 4.

This work reports our research that extends LySa calcu-
lus with explicitly annotations, specifying the confidential-
ity intentions of protocols. Based on the extended LySa, a
control flow analysis is proposed, which approximates all
the behaviors during the execution of protocols, including
tracking the set of messages that are transferred over the
network and recording the potential values of variables. Our
study shows that, due to the over-approximative nature of
the analysis, we are able to capture any malicious activities
expressed in terms of annotation violations registered in an
error component of the analysis. The proposed analysis can
be applied to a wide range of cryptographic protocols. In
contrast to model checking approaches, the analysis is fully
automatic and termination is always guaranteed.

The paper is organized as follows. In Section 2, we
present the LySa calculus with explicit confidentiality an-
notations. We introduce a control flow analysis in Section 3
and show how to deal with the hostile environment in Sec-
tion 4. In Section 5 we conclude with an assessment of our
approach and discuss some perspectives for future work.

2. The extended LySa-calculus

LySa is a process algebra, in the tradition of the 7- [6]
and Spi- [2] calculus. It inherits most of the features of
its predecessors, while still keeping its own characteristics.
One characteristic is the absence of channels: in LySa all
processes have only access to a single global communica-
tion channel, the ether. The second characteristic is that
tests associated with input and decryption are expressed us-
ing pattern matching.

Syntax LySa consists of terms and processes. The syntax
of terms E' and processes P is given in the Table 1.

E = terms

n name (n € N)

x variable (r € X))

{E1,..., E;.C}IE0 [within L] symmetric encryption (k > 0)
P:= processes

0 nil

PPy parallel composition

(v n!{within L])P restriction

P replication

decrypt E as {En, ..., Ej; xé’_:ll [from Lj41],. .. ,xéj [from L]} g, in P symmetric decryption (with matching)
(En,...,Ej; m?ﬁ [from Lji1],. .., xi[from Ly]).P input (with matching)
(Eq,...,E).P output

Table 1. Syntax of extended LySa

Here N and X denote sets of names and variables, re-
spectively. The name n is used to represent keys, challenges
as well as names of principals. Encryptions are tuples of
terms E, ..., Ej encrypted under a shared key represented
by the term E. We add to each encryption a label, [€ Lab,
serving as an unique identity. Each encryption is decorated
by an annotation [within L], where £ C Lab indicates a
set of labels of the variables to which the encryption may
be bound. As we shall see shortly, this information will be
used to specify the confidentiality intention of the protocol.

In addition to the classical constructs for composing pro-
cesses, LySA also contains an input construct with matching
and a decryption operation with matching. The idea behind
the matching is that of a tuple we allow the match on a pre-
fix of the tuple to values and then bind the remaining values
to variables. At each of these binding occurrence we specify
a set of labels, [from L], pointing to the values that may be
bound to the variable. These annotations play a central role
when specifying the confidentiality intension of the proto-
col.

Semantics Due to lack of space we omit a formal spec-
ification of the semantics of LySA with the confidentiality
annotation.

Example We shall use the Wide Mouthed Frog protocol
[4] (WMF) to illustrate how to encode protocols in our cal-
culus.

WMF is a symmetric key management protocol aiming
at establishing a secret session key K,;, between the two
principals A and B sharing secret master keys K 4 and K g,
respectively, with a trusted server S. The protocol is speci-

fied by the following narration:

1. AHS {BaKab}KA
2. S — B {AaKab}KB
3. A—-B: {Msg}k,,

In the first message A sends to S its name, and then a fresh
key K, and the name of the intended receiver B, encrypted
under the key K 4. In the second one, S forwards the key
and the sender name A to B, encrypted under the key K.
Finally, A sends B the message M sg encrypted under the
session key K p.

The LySa specification of the WMF protocol is:

L (v Kot lwithin {1, [y }])
(A,S,{B, Koy} [within Lab]).
3. (v M sg'™sa[within {1, }])
(A, B,{Msg}% |within Lab]).0
2. | (S, B;ytv[from Lab)).

2. decrypt y as {A; k' [from {lxa}]} iy in
3. (A, B; 2= [from Lab)).
3". decrypt z as {; 2z [from {Inrsg}) i in O

1. | (A, S;p*[from Lab)).
1”. decrypt p as {B; k' [from {lxap}] Y, in
2. (S, B,{A, K} [within Lab]).0

During the execution of the protocol, leaking some cru-
cial values may cause the protocol to be broken. Therefore
we have to carefully check the flow of those values, which,
in this protocol, include K ;, M sg. Ky is first received by
S and bound to the variable &’ (in step 1”') and then received
by B and bound to variable k (in step 2”/). It is natural to
require that k and &’ are the only variables allowed to bind
to K,p, whereas Ky, on the other hand, is only allowed to
be bound to k and k’. This intension is clarified by: (i) Kqp

has the annotation [within {l, ;- }] and (2) the annotations
of k' and k are [from {lxap}]-

Similarly for Msg, the annotations of Msg and z,,
clearly specify that only binding M sg to z,, is allowed in
the protocol execution.

Unlike K, and M sg, some values are not necessary to
keep secret, e.g. encryptions {4, k’}%}B and {B, Kab}l;(A,
which are then allowed to be bound to any variable. If we
use Lab as a shortcut to the set containing all the labels
occurred in the protocol specification, their annotations are
[within Lab].

3. Control Flow Analysis

The aim of the analysis is to give a safe over-
approximation of all possible behaviors of target protocols;
this will include the possible messages communicated over
the network and the possible value bindings of the variables.
At each variable binding occurrence, the analysis will check
whether the binding is allowed according to the annota-
tions. Each illegal binding will be regarded as a violation
and recorded in an error component of the analysis.

Analysis of terms For each term F, the analysis will de-
termine a superset of the possible abstract values it may
evaluate to. The judgement for expressions takes the form
p,0 =y E : ¥ where ¥ C P((Lab x P(Lab))*) is an
acceptable estimate of the set of abstract values.

The abstract values of variables and encryptions are of
the different form and therefore collected in two different
global environments:

e p: Lab — P((Lab) x P(Lab)) maps the label of
each variable to its potential abstract values, expressed
as sets of pairs. Each pair consists of a label of value
it may be bound to and the associated within/from
label sets.

e 0 : Lab — P((Lab x P(Lab))*) maps the label of
each encryption to its abstract values. An encryp-
tion can be viewed as composed by sub-terms, conse-
quently its abstract values preserves the original struc-
ture but with each sub-term replaced by its abstract
values.

Besides p and o, another environment ~y is employed in the
analysis for recording the label and annotation of each sim-
ple term (i.e. name and variable).

e v : (NUV) — P((Lab) x P(Lab)) maps the la-
bel of each simple term to a pair of its label and
within/ from label set.

Analysis of processes The judgement for processes has
the form: (p, k,0) =, P : ¢ expressing that p, k, o and ¢
are valid analysis estimates of process P.

1 is the error-component which collects an over-

approximation of the within/from violations.

e i) C P(Lab x Lab): if (I;,1;) € v and assume that
these two labels are pointing to n and x then either n
is not allowed to be bound to = or x is not allowed to
bind to n when value binding takes place.

In the analysis of a process P we also collect which ab-
stract values may flow on the network. To achieve this we
make use of the abstract environment «:

e k C P((Lab x P(Lab))*): includes all the message
tuples that may flow on the network, where each el-
ement of the messages is represented by its abstract
value.

The judgement is defined by the rules listed in the Table
2 and is explained below.

The first three rules in Table 2 describe that the analysis
of terms returns sets of abstract values, ¥, that they may
evaluate to. This is used in the rule for output: first, all the
expressions are evaluated and then it is required that all the
combination of the abstract values found by this evaluation
is recorded in . Finally, the continuation process must be
analyzed.

The rule for input incorporates pattern matching and vi-
olation capturing. The pattern matching is dealt with by
first evaluating all the of first j expressions in the input to
be the sets ¥; for « = 1,...,j. Next, if any of the se-
quences of length k in x are such that the first j abstract
values component-wise are included in ¥J; then the match
is concluded to possibly be successful. In this case, the
remaining values of the k-tuple must be recorded in p as
possible binding of the variables. At this point, the analy-
sis checks the within/from assertions of the abstract values
and variables to determine whether the binding is allowed
by the annotations. Any violation will be recorded in 1 be-
fore the continuation process can be analyzed. Notice that
the continuation process is analyzed base on the updated +,
which includes the label and from annotation of each vari-
able occurred in the input.

The rule for analysis of decryption is quite similar to
the analysis of input. Only, here the abstract values to be
matched are found by evaluating the expression E' into the
set ¥ and then matching is performed against any k-ary en-
cryption expression associated with 1J. Notice that the key
is matched due to the indices starting from O rather than
from 1 as in communication. The analysis is identical to
the analysis of input once the successfully matching values
have been determined, meaning that whether the bindings
are allowed is examined and violations are recorded.

V(I,£)eq(n): (ILL) €Y
p,o0 =y
/\5:0 12%%):'y E; :9; A V(lo,ﬁo), R (lk;[/k) : /\f:0 (lz’ﬁl) €Y =
L)€ A {1, L1)y -y Uy L) Y o.20) € (1)
p, 0y {EL, . Bty [within L] -9

VI, L) € y(x):p() €V
p,o =y x

INETX Ey Ei 29 AV, L), (g, L) A (1, Li) €9 =
(i, L1),y oo (e, Li)) €6 N (pyR,0) =y P i)
(p,k,0) =y (En,...,Ex).P:9
N_ pyo ey B9 NG LL), o (U, L£3)) € ks Ny (15, L)) € 95 =

Nijn (G L) € p(li) AN ~RM (L, L3, 1, £7) = (I, 1) €4 A (pyk0) =y P i)

YU, LY, (16, L), (U, L) = (U, L) €9 A {(l

(pv "570)):’Y (Ela ceey Ejvmij_r-rll [fT'OTTL ‘Cj—l-l]a s axﬁf [from ‘CkDP : 1/)
where 7' = Y[z 11 = (l41, L), 2k = (b, Li)]
p,oEy E9 A /\gzop,alzn,Ei:ﬁi/\ 4
Do U L)Y ey € ol') N Ny (1, L£7) € 9i =
N (U £7) € p(li) AN 1~ RM (L, L4, 1, £7) = (1, 1) €9 A (pyk,0) oy Py

27 7

(p,H,O') ':70:¢

(p,k,0) =y decrypt E as {E1, ..., Ej; xé’_f_rll

where v = y[zj1 — (L1, L), on = (I, Ly)]
(p,/c,a) ':"/ Py A (,O,H,O') ':’Y Py

[from Lji1],. .. ,xéj [from L]} g, - P : %

(p, 5, 0) Byn.)) P19

(P,/%O') ’:’Y P1|P2:1/}
(0.5,0) [y P 0

(p, K, 0) =y (v nt{within L])P : ¢

(0, 0) 1P 0

RMQ LU LYY 1er Al er

Table 2. Analysis of terms and processes

The rules for restriction first updates v to contain the la-
bel and annotation information of n and then requires that
p, k and o are valid analysis estimates of process P given
the updated ~.

The rules for the inactive process, parallel composition
and replication are straightforward.

Example Initially, v has entries:

v: A~ (la,Lab)
KA = (lKa7(Z))

B (I, Lab)
Kp — (Iks,0)

S — (lg, Lab)

In order to assure the secrecy, the long term keys, K 4 and
K p are not allowed to be bound to any variable. So both
~v(K4) and v(K) have () in their second component. On
the other hand, the names A, B and S of the principals will
be known to every body so we do not impose any restriction
on the bindings.

The analysis of the WMF protocol gives:

(p,k,0) Ey WMF : ()

where p, x and ¢ have these non-empty entries

y {(lg,Lab)} lk = {(lKab7{lk7lk’})}
— {(l2, Lab)} Lem = {(Inmsgs {lzm})}
= {(l Lab)y e = {(Ikab (e b 1)}

k: {{(la, Lab),(ls, Lad), (11, Lab))}U
{<(ZA,LCLb), (ZB,L(Zb), (ZQ, Lab)>}U
{{(ls, Lab), (I, Lad), (I3, Lab))}

ag . ll = {(lB,Lab), (lKab7 {lk, lk’})}(lxa,m)
ly = {(Imsgs {lzm})}(lxab,{lmlk/})
I3 = {(la, Lab), (Ikab, {lk, Ui }) } 10, 0)
As mentioned before, p maps the label of each variable to
its abstract value. The analysis indicates that e.g. vari-
able y is bound to the encryption with label /3. By in-
specting the entries of k, it can be concluded that total
three message tuples may flow on the network. For ex-
ample, (14, Lab), (Is, Lab), (11, Lab)) corresponds to the
message that A sends to S an encryption labelled /;. Fur-
thermore we can deduce the abstract value of 1; by looking
up the o: [points to an encryption encrypted using the

o~

p:

~
W

~
S|

value K, and the encrypted values are identified by [and
lkab-

4. Modelling the Attacker

Protocols are always executed in an environment where
malicious attackers may exist. For describing the capability
of the attacker, we adopt the Dolev-Yao condition. The at-
tacker can perform the following actions: (1) Eavesdrop all
messages sent on the network; (2) Decrypt messages if he
knows the key; (3) Construct new encryption using the keys
known; (4) Construct and send to the network new mes-
sages and (5) Generate his own names.

Example We analyze the WMF protocol and the least so-
lution has an empty 1)-component, i.c. ¢ = (.

The session key, however, is not secret any long if a long
term key, say K p, is leaked. In this case, the analysis result
has a non-empty 1-component, which contains the follow-
ing pairs: (Ix,ls) and (I.,,le)". Since Kp is leaked, now
the attacker is able to decrypt y and learns the value of k,
which is indicated by (Ix,ls). As a result, he can continue
to decrypt z and hence knows the value of z,,. This is cap-
tured by (I, le).

These experiments show that the explicit confidentiality
annotations greatly help the analysis to capture unwanted
variable bindings and hence detect malicious behaviors.

5. Conclusion

We have extended LySa with within/from assertions and
show that protocol narrations may be formalized as ex-
tended LySA processes such that the static analysis pre-
sented before can pinpoint a wide variety of confidentiality
errors in communication protocols.

The advantages of the proposed approach is twofold.
Firstly, we identify the need for clarifying the protocol in-
tensions, i.e. ~’Is message Msg sent from A intended for B?”,
with the use of confidentiality annotations. The annotations
provide LySA calculus extra syntax and semantics that can
be reasoned about protocol behaviors and capture malicious
behaviors.

Secondly, we show how to take advantages of the annota-
tions when specifying the control flow analysis. Facilitated
by the annotations, the control flow analysis is able to pin-
point the secrecy and integrity of each term, thus provides
more detail information about protocol executions. Those
information could be combined with other security mecha-
nism, say trust management, to form a more complex sys-
tem.

Future work will focus on the following aspects:

Uhere I, is the label of the variables in the attacker’s knowledge

The calculus LySa calculus was developed after the Spi-
calculus but it has been designed to facilitate obtaining use-
ful information from a relatively unsophisticated static anal-
ysis, especially control flow analysis. Extensions of the
LySa calculus enables the analysis to deal directly with
some of the security properties.

As far as analysis is concerned, a perfect view of cryp-
tography is taken and only attacks can be expressed in ex-
tended LySa are considered. In the context of conference
key protocols, power and mod functions are usually em-
ployed to compute the group keys. Since these functions
are not present in the extended LySA we cannot model the
protocols using them. Therefore we would like add addi-
tional constructs to the extended LySa in order to handel
mathematics operations.

The security properties LySa has its own build-in mech-
anism to handle authentication properties based on ori-
gin/destination annotations. In this paper, we have focused
on the analysis of confidentiality properties which is facil-
itated by adding within/from annotations to the syntax of
LySA. Moving further in the direction of annotations we
may add beliefs in the style of BAN logic [4]. For exam-
ple, we would like to add annotations to the creation of new
nonces and keys about their intended use, e.g. (v n[4 —
B]) and (key[A — B]) might denote that the creation of
a nonce 7 is intended to establish an authentic connection
from A to B and the key key is used to encrypt messages
sending from A to B.

References

[1] M. Abadi. Security protocols and specifications. In Proc. of
FoSSaCS’99, pages 1-13, 1999.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols the spi calculus. SRC - Research Report, 149, 1998.

[3] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R.
Nielson. Automatic validation of protocol narration. Pro-
ceedings of the 16th Computer Security Foundations Work-
shop, pages 126-140, 2003.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authen-
tication. ACM Transactions on Computer Systems, pages 18—
36, 1990.

[5] FNielson, H.Seidl, and H.R.Nielson. A succinct solver for
alfp. Nordic Journal of Computing, 9:335-372, 2002.

[6] R. Milner. Communicating and mobile systems: the -
calculus. Cambridge University Press, 1999.

[71 H. R. Nielson and FNielson. Flow logic: A multi-
paradigmatic approach to static analysis. Lecture Notes in
Computer Science, 2566:223-244, 2002.

