
Analysis of LYSA -calculus with explicit confidentiality
annotations

Han Gao, Hanne Riis Nielson
Informatics and Mathematical Modelling, Technical University of Denmark

Richard Petersens Plads bldg 322, DK2800 Kgs. Lyngby, Denmark

-{hg,riis}@imm.dtu.dk

September 29, 2005

Abstract

In modern society, communication protocols are frequently used for significant tasks
such as banking, shopping, and for personal communications. With the massive increase
in use of communication protocol, it is demanding that the security of protocols must
be ensured, meaning that protocol should be able to guard against malicious behavior
and meanwhile guarantee the necessary amount of confidentiality, authenticity, message
integrity and availability.
Protocol analysis is a hard problem for several reasons. One is that protocols are often
described somewhat informally using protocol narrations that are imprecise about some
of the finer details concerning the deployment of the protocol. Aiming this problem,
several process calculi were developed for precisely describing protocols, i.e. π, Spi and
Applied-π calculus, which greatly facilitate analyzing protocols.
In [1], a new process calculus, called LYSA , was proposed and annotations were used to
assist validating authentication property. Moving further along this way, we add explicit
annotations to LYSA for handling confidentiality property of communication protocols.
LYSA is a relatively new process algebra, which is developed based on π- and Spi-calculus.
It inherits most of the features of its predecessors, while still keeps its own characteristic
mainly in two aspects. One is the absence of channels: in LYSA all processes have only
access to one single global communication channel. The second characteristic is that
tests associated with input and decryption are expressed in pattern matching.
LYSA consists of terms and processes. The syntax of terms E and processes P are as
follows:

E ::= terms
nl[within L] name (n ∈ N )
xl variable (x ∈ X )
{E1, . . . , Ek}l

E0
[within L] symmetric encryption (k ≥ 0)

1



For each name and encryption, we add to it a label, l ∈ Lab which serves as an unique
identity, hence avoid using canonical name.

P ::= processes
0 nil
P1|P2 parallel composition
(ν nl[within L])P restriction
!P replication
decrypt E as{E1, . . . , Ej ;x

lj+1

j+1 [from Lj+1], . . . , x
lk
k [from Lk]}E0 in P

symmetric decryption (with matching)
(E1, . . . , Ej ;x

lj+1

j+1 [from Lj+1], . . . , x
lk
k [from Lk]).P input (with matching)

〈E1, . . . , Ek〉.P output

In addition to the classical constructs for composing processes, LYSA contains an input
construct with matching and one decryption operation with matching. The idea behind
the pattern matching in LYSA is that whenever matching a k-tuple of values we allow the
match on a prefix of j (0 ≤ j ≤ k) values and then to bind the remaining k − j values
to variables. To describe the intentions of protocols in LYSA , whenever a name or an
encryption is used we add to it the annotation [within L], where L ⊆ Lab is a set of labels
pointing to the variables which they may be bound to and at each binding occurrence
we add the set of labels pointing to the values that may be bound to the variable.
Having explicitly specified the intention of the protocol, we then develop a control flow
analysis aiming at giving a safe over-approximation of all possible behaviors of target
protocols, which include the sets of values which may be bound to each variables and the
set of messages that are successfully being received at each relevant point. Meanwhile,
the analysis will record all the possible within/from violations, which indicate the in-
volvement of a potential attacker. Due to the over-approximative nature of our control
flow analysis, it is clear that the analysis might catch a too large set of messages but no
successfully received messages are left out.

References

[1] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, H. Riis Nielson, Automatic Vali-
dation of Protocol Narration, the 16th Computer Security Foundations Workshop
(CSFW 03)., pp. 126-140, IEEE Computer Society Press, 2003.

2


