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Chapter 1

Executive Summary

Research Motivation and State of the Art

Representing uncertainty in models for decision making under uncertainty poses a significant

challenge. The mortgagor’s selection problem is typical of the conflict most homebuyers experi-

ence when purchasing a house. In Denmark, a mortgagor can finance up to 80% of the property

value by issuing mortgage-backed securities from a mortgage bank. The variety of mortgage-

backed securities available in some countries (such as Denmark) leads to a great variety of fi-

nance options for a house buyer. Nielsen and Poulsen in [10] suggested a two-factor, arbitrage-

free interest-rate model, calibrated to observable security prices, and implement on top of it a

multi-stage, stochastic optimization program with the purpose of optimally composing and man-

aging a typical mortgage loan. Rasmussen and Clausen in [11] formulated multi-stage integer

programs of the problem, and used scenario reduction and LP relaxations to obtain near opti-

mal results. Their research suggests both market and wealth risks of the problem and suggests

a more efficient utility function. A Conditional Value-at-Risk (CVaR) model was suggested by

Rasmussen & Zenios in [12], [13] as well as a thorough examination of the value received by

most risk averse homeowners who consider a diversified portfolio of both fixed (FRM) and ad-

justable (ARM) rate mortgages.
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All the different calculations done by these mathematical models are based on future prices of

diverse bonds. These prices are heavily dependent on different future realizations of the interest

rates. A more elaborate model of the interest rate scenario generation can be used to increase the

quality of the solution.

This report explores and implements different scenario generation methods for representing the

interest rates. The research is mainly based on moment matching approaches as represented

in Højland and Wallace in [4] and followed by Højland, Kaut and Wallace in [5],[6] . These

approaches are later used as part of a vector autoregressive with leg 1 (VAR1) interest rate model

to create other interest rate models that are suitable for the financial industry. Thereby creating

arbitrage–free scenarios that are consistent with literature regarding financial properties such

as factor analysis of the term structure (as observed by Litterman & Scheinkman at [42], and

explored by Rasmussen and Poulsen at [39], Dahl [43] and Zenios at [14]).

The use of interest rates scenarios generations that are explored in this report can be extended

to be used with any financial framework. Moreover, the scenario generation approaches can be

used for general stochastic programming models outside the financial industry.

Research done as part of this report

The project was done in collaboration with Nykredit Denmark as part of the creation of a sce-

nario generator for the Danish mortgagor problem as described above. The actual writing of this

report took into consideration that concepts needed to be explained one step at a time. This re-

port is structured in the following manner: first, an introductory chapter in which the motivation

and main concepts for using scenario generation for stochastic programming problems is pre-

sented. Different scenario generation methods and quality criteria are put forward in the next

chapter so as to better understand the reasoning behind the choice of different scenario genera-

tion heuristics. This is important for setting the groundwork when searching for an appropriate

scenario generation approach. The moment matching approach for scenario generation is then

described in detail expounding on two heuristics for moment matching scenario generations in
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chapter 4. The challenge of modeling arises from the need to extend the existing scenario gener-

ation methodology to deal with financial challenges as part of interest rate scenario generation.

In chapter 5 the interest rate risk is introduced and financial concerns associated with interest

rate scenario generation, such as arbitrage detection, factor analysis of the term structure and

smoothing of the yield curve are examined and comprehensively explored. A proposed solu-

tion that creates an accurate and consistent model for scenario generation from the mathematical

standpoint, based on the latest stochastic programming trends that incorporates correctness of

interest rate modeling from the financial perspective is shown in chapter 6. The chapter presents

a general framework for interest rate scenario generation and introduces a concrete formulation

of a model for interest rate scenario generation. Chapter 7 explores the results of running the sug-

gested interest rate scenario generation model with a different variation based on different time

points, scenario generation strategies, yield curve smoothing methods, and the like, as well as a

comparison between a 1–factor Vasicek model to the 3–factor model presented in chapter 6. The

results are very promising and show numerous possible advantages by using a specific scenario

generation approach that is designed for interest rate scenario generation. The conclusion of the

research findings and contributions finalize this master thesis report and briefly describe future

aspirations of its author.

Personal Summary

Being involved in a financial engineering research project that is in use in the financial industry

and deals with day-to-day practical issues in addition to theoretical research provided an excel-

lent opportunity for this author to learn and apply knowledge acquired. The project included

looking into alternative technologies as part of the scenario generation creation as well as their

execution. Since the practical implementations are used by Nykredit, technical appendixes have

been left out. Some of the discussions offered in this report were done on a research level, put

into action on the practical level and then presented directly as results, excluding interesting im-

plementation analysis. Having said that, a significant amount of time was spent utilizing different
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methodologies that unfortunately cannot be incorporated as part of this thesis.

I believe that today risk management is more relevant than ever. Take into consideration the

most recent sub-prime mortgage crisis. The sharp rise in foreclosures in the sub-prime mortgage

market, which began in the United States in 2006, has been blown into the global financial crisis

of July 2007. Interest rates increased, newly popular adjustable rate mortgages and property

values suffered declines from the demise of the housing bubble, leaving homeowners unable to

meet financial commitments and lenders without a means to recoup their losses. Consequently,

it is essential to provide a more thorough look into the future assessments of (mortgage) loan

prices as well as interest rates when deliberating a long term obligation, such as a mortgage loan.

That is because an adverse change in the market (as seen by the interest rate increases in the USA

from approximately 1% at the beginning of 2003 to 5.25% in July 2007) can lead to customer

defaults and human tragedies.

I appreciated the opportunity to perform meaningful research with very promising results in

stochastic programming as well as demonstrating the practical use of stochastic programming

and risk management in the contemporary finance industry.



Chapter 2

Introduction

This chapter aims to create an intuitive understanding of the role of a scenario generator as well

as the structure of an optimization process that contains scenario generation. Later this chapter

will cover the mathematical background and terminology used around scenario generation.

The first section discusses the need for a scenario generator in mathematical modeling. The fol-

lowing section discusses the role of a scenario generator as part of an optimization process. The

next section introduces stochastic programming. This part is followed by a section introducing

essential scenario generation terminology - scenario trees. This section is then followed by a short

discussion on the complexity issues introduced by scenario tree generation. At its conclusion, the

chapter ends with a short summary.

2.1 Why Should Someone Be Interested in Scenario Genera-

tion?

Some people believe that the only certain thing in life is death. Nevertheless, many decisions

need to be taken by individuals or companies every day. Therefore, one can suppose that all our

decisions hold a certain amount of uncertainty.
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Operations Research is a field of applied mathematics that is used to help with decision making in

complex real-world problems by modeling and solving them. In many cases the modeling process

tries mathematically to capture the nature of the problem, i.e. the main processes, activities,

dependencies, etc.

The problem specification usually describes the process (problem constraints), and then cap-

tures the success criteria or utility function (objective function). The model is then solved using

a solver. However, the solution process is in many cases deterministic and if one agrees that

uncertainty is assimilated in life, one would expect a good model to capture it.

Stochastic programming is used as a framework for modeling optimization problems that involve

uncertainty. Stochastic programs need to be solved with discrete distributions. Usually, we are

faced with either continuous distributions or data. Hence, we need to pass from the continuous

distributions or the data to a discrete distribution suitable for calculations. The process of creating

this discrete distribution is called scenario generation, and the result is a scenario tree.

More formally, stochastic programming is a branch of operations research that tries to suggest

an approach to deal with uncertainty. Instead of suggesting an objective function such as f (x) (in

linear programming cx) in which the decision variable x is considered to have only one realisa-

tion as part of the objective function, the stochastic programming approach defines a stochastic

variable ξ ∈ Ω and a new objective function f (x, ξ). Therefore, the new objective function value

is dependent on a different realization of ξ and therefore includes the effect of a stochastic process

when evaluating the decision at the variable x. The purpose of a scenario generator is to discretize

the distribution capture of all the various possible values of ξ and introduce uncertainty into the

model. The output of the scenario generation is then used numerous times as the input for the

optimization model.

It should be noted that as a general rule in operations research the value of your solutions is only

as good as the data you put inside the model (a.k.a GIGO - Garbage In, Garbage Out). Having a

proper way to capture uncertainty and generate scenarios are important milestones in the creation
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of a thorough stochastic programming solution.

2.2 Scenario Generator as Part of the Optimization Process

A scenario tree captures the uncertainty for a multi-stage stochastic programming problem and

the process of building this input tree is called scenario generation.

A scenario generator receives as its input data what is believed to represent the distribution of

an uncertain process that needs to be captured. The scenario generator creates scenarios that are

possible future outcomes of the processes/distribution. These scenarios are later used by another

optimization problem (a multi-stage stochastic programming problem). A graphic presentation

of this process is found at Figure 2.1. There are, of course, several properties that need to be

found by the scenarios to determine the quality of the scenario generation. These issues will

be discussed further in later chapters of this report. It should also be noted that not only raw

historical data is used as input for the scenario generator but input can also be an expert opinion

or other parameters used to calibrate the scenario generation process.

Figure 2.1: The Role of a Scenario Generator in Stochastic Programming Optimization Model
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An example of a scenario generator can be a stochastic process that predicts the monthly electric-

ity consumption of an apartment. This process input is the monthly historical time series of the

electricity consumption in that apartment and its output is a guess for the electricity consump-

tion the following month. Not only can a scenario generation be based on historical data as its

input, but it can use a more complex function of its input. For example, consider a stock value

that is analyzed and the yearly return of that stock is explored. The past returns are then formed

into a function that has an expected value and standard deviation. The scenario generation can

then receive as input the expectation and standard deviation of that function, and return as output

different future scenarios. (For example the scenario generation can return three scenarios one is

the expected return and the other two are the expected return plus/minus one standard deviation).

Remark 1: It should be mentioned that not all stochastic optimization applications use scenario

generation to capture the underlying uncertainties in an optimization problem. The scenarios can

also be assimilated as part of a general optimization problem. However, one reason to separate

the scenario generation and the optimization is that it allows one to capture all the uncertainty

of the optimization problem in one place only (the scenario generator) and in that way to better

control the uncertainty by decoupling it from the optimization problem.

2.3 Stochastic Programming

As defined by the stochastic programming community - COSP at [25] - Stochastic programming

is a framework for modeling optimization problems that involves uncertainty. Whereas determin-

istic optimization problems are formulated with known parameters. Real world problems almost

invariably include some unknown parameters. When the parameters are known only within cer-

tain bounds, one approach to tackling such problems is called robust optimization. Here the goal

is to find a solution which is feasible for all such data and optimal in some sense. Stochastic pro-

gramming models are similar in style but take advantage of the fact that probability distributions
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governing the data are known or can be estimated. The goal here is to find some policy that is

feasible for all (or almost all) the possible data instances. It maximizes the expectation of some

function of the decisions and the random variables. More generally, such models are formulated,

solved analytically or numerically, and analyzed in order to provide useful information for a

decision maker.

The most widely applied and studied stochastic programming models are two-stage linear pro-

grams. Here the decision maker takes some action in the first stage, after which a random event

occurs affecting the outcome of the first-stage decision. A recourse decision can then be made

in the second stage that compensates for any bad effects that might have been experienced as

a result of the first-stage decision. The optimal policy from such a model is a single first-stage

policy and a collection of recourse decisions (a decision rule) defining which second-stage action

should be taken in response to each random outcome. These results can later be extended into

multi-stage stochastic programming.

More formally I have used the definitions as described by J.R. Birge and F. Louveaux in [2]. A

deterministic linear program is defined as:

Minimize

z = cT

Subject To:

Ax = b

x ≥ 0

where x is an (n×1) vector of decisions and c, A and b are known data of the sizes (n×1), (m×n)

and (m × 1). In this formulation all the first-stage decisions are captured by the variable x.

Let us look now at a two-stage problem with fixed recourse by G.B. Dantzig at [3] and Beale at
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[1]:

Minimize

z = cT x + Eξ[minq(ω)T y(ω)]

Subject To:

Ax = b

T (ω)x +Wy(ω) = h(ω)

x ≥ 0, y(ξ) ≥ 0 (2.1)

The first-stage decisions are represented by a familiar vector x which is an (n × 1) vector of

decisions and c,A and b are known data of the sizes (n × 1), (m × n) and (m × 1). However, this

model considers a representation of a number of random events ω ∈ Ω. For a given realization

ω the second-stage problem data q(ω), h(ω) and T (ω) become known, where q(ω) is n2 × 1,

h(ω) is m2 × 1 and T (ω) is m2 × n1. Each component of q, h and T is thus a possible random

variable. Piecing together all the stochastic components of the second-stage data and the vector

ξT (ω) = (q(ω)T , h(ω)T ,T1(ω), . . . ,Tm2(ω)) is obtained. The optimization model now considers

future scenarios that are dependent upon different values of ξ in order to make the first-stage

decision x.

According to Kaut and Wallace in [8] stochastic programming has gained increasing popularity

within the mathematical programming community. Present computing power allows users to add

stochasticity to models that had been as difficult to solve as deterministic models only a few

years ago. In this context, a stochastic programming model can be viewed as a mathematical

programming model with uncertainty about the values of some of the parameters. Instead of

single values, these parameters are then described by distributions (in a single-period case), or

by stochastic processes (in a multi-period case),
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where ξ is a random vector, whose distribution must be independent of the decision vector x.

Note that the formulation is far from complete we still need to specify the meanings of min and

the constraints.

It is interesting to note that the special structure of the stochastic programming problems as

different blocks of constraints are considered in different scenarios. These can be very useful for

solving problems. When such a problem is created different solving heuristics that exploit this

structure can perform better and faster than others. This is done by the several decomposition

algorithms including the L-Shaped method.

Except for some trivial cases, the problem (2.1) can not be solved with continuous distributions.

Most solution methods need discrete distributions. In addition, the cardinality of the support of

discrete distributions is limited by the available computing power, together with a complexity of

the decision.

In the following report the scenario generator is used in order to find different likely values for

ω ∈ Ω. These values can later be solved in an optimization model and be used as scenarios.

In that sense, the scenario generation process discretizes the stochasticity of the problem.

As described by Hochreiter at [26]. The field of multi-stage stochastic programming provides a

rich modeling framework for tackling a broad range of real-world decision problems. In order

to numerically solve such programs - once they get reasonably large - the infinite-dimensional

optimization problem has to be discretized. The stochastic optimization program generally con-

sists of an optimization model and a stochastic model. In the multi-stage case, the stochastic

model is most commonly represented as a multi-variate stochastic process. There are different

ways to represent scenarios and a few of them will be considered in the following section. The

most common technique to calculate a usable discretization is to generate a scenario tree from

the underlying stochastic process.
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2.4 Scenario Trees

By far most used way to represent scenarios is scenario trees. Each level in the tree represents a

different time point and all the nodes for a particular time point represent the possible scenarios

for that time point. An example can be seen in figure 2.2.

Figure 2.2: Example of a Scenario Tree

As can be seen in the figure, the number of child nodes at each level does not need to match the

number of child nodes in another level. For example, node 0 in the picture has two child nodes

while nodes 1 and 2 have three. The different levels do not necessary represent the same time

gaps. In the example, level 0 can represent year 0, level 1 can represent the year 2 and level 2 can

represents the year 10. In fact, in some complex scenario trees, as can be seen in figure 2.3, there

are not even the same number of child nodes on the same level.

More formally, scenario tree formulation is found in the next subsection.

2.4.1 Scenario Tree Formulation

There are a number of mathematical representations for a scenario tree. A more formal mathe-

matical formulation of a scenario tree based on Hochreiter at [26] is described in this subsection.

First assume that a discrete-time continuous space stochastic process (ξt)[t=0,1...T ] is given, where

ξ0 = x0 represents today’s value and is constant. The distribution of this process may be the result
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Figure 2.3: Example of a Complex Scenario Tree Structure

of a parametric or non-parametric estimation based on historical data. The state space may be

univariate (the R1) or multivariate (the Rk). We look for an approximate simple stochastic process

ξ̃t, which takes only finitely values and which is as close as possible to the original process (ξt)

and at the same time has a predetermined structure as a tree. Denote the finite state space of ξ̃t

by S t, i.e.

P{ξ̃t ∈ S t} = 1

Let c(t) = #(S t) be the cardinality of S t. We have that c(0) = 1. If x ∈ S t, we call the branching

factor of x the quantity

b(x, t) = #{y : P{ξ̃t+1 = y|ξ̃t = x} > 0}

Obviously, the process (ξ̃t)t=0,...,T may be represented as a tree, where the root is (x0, 0) and the

node (x, t) and (y, t + 1) are connected by an arc, if P{ξ̃t = x, ξ̃t+1 = y} > 0. The collection of

all branching factors b(x, t) determines the size of the tree. Typically, we choose the branching

factors beforehand and independent of x. In this case, the structure of the tree is determined by

the vector [b(1), b(2), b(3), . . . , b(T )]. For example, a [5,3,3,2] tree has height 4 and 1 + 5 + 5 ·
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3 + 5 · 3 · 3 + 5 · 3 · 3 · 2 = 156 nodes. The number of arcs is always equal the number of nodes

minus 1. The main approximation problem is an optimization problem of one of the following

types and is most often determined by the chosen scenario generation method:

The given-structure problem. Which discrete process (ξ̃t), t = 0, . . . ,T with given branching

structure [b(1), b(2), . . . , b(T )] is closest to a given process (ξt), t = 0, . . . ,T? The notion of

closeness has to be defined in an appropriate manner.

The free-structure problem. Here again the process (ξt), t = 0, . . . ,T has to be approximated

by (ξ̃t), t = 0, . . . ,T , but its branching structure is free except for the fact that the total number of

nodes is predetermined. This hybrid combinatorial optimization problem is more complex than

the given- structure problem.

A summary of these methods developed before 2000 can be found in [27]. Methods published

since include [4], [5] for moment matching strategies, [19], [28],[29] for probability metric min-

imization and [30], [31] for an integration quadratures approach.

2.4.2 Pro Et Contra - Arguments For and Against

• Arguments For

+ The use of scenario trees decouple the uncertainty from the optimization problem.

The uncertainty is kept in the scenario tree which makes it possible to examine differ-

ent approaches for scenario generation without changing the optimization problem.

It also makes it possible to extract a successful scenario generation approach to be

used on different optimization problems.

+ Scenario trees are very intuitive structures for stochastic programming problems.

+ Scenario trees keeps the path for the scenario. The tree structure allows you to connect

different scenarios at different time points.
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+ The use of the tree structure can allow an algorithm to examine only part of the tree

so it can be used by recursive algorithms.

• Arguments Against

- The biggest difficulty when using scenario trees is the exponential growth in the num-

ber of scenarios. If three scenarios are generated for every node at any level and there

are 21 levels the number of scenarios generated will be
∑20

i=0 3i about 5 Billion sce-

narios.

2.4.3 Other Scenario Tree Representations

Another common tree structure that can be used for scenario generation is a lattice tree. As can be

seen in figure 2.4, a binomial lattice tree keeps the properties that different tree levels represent at

different time periods and any specific node can be seen as a scenario. However, different paths

Figure 2.4: A Binomial Lattice Tree

can be used to receive the same scenario. When looking at the example in figure 2.4, u and d

represent up and down scenarios respectively. The path u and d will find the same node as the

path d and u afterwards. On the other hand, this approach does not lead to exponential growth in

the number of scenarios.
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2.5 Difficulties Related to Scenario Generations

There are at least two major issues in the scenario generation process:

• The number of scenarios must be small enough for the stochastic program to solve.

• The number of scenarios must be large enough to represent the underlying distribution or

data in a good way.

For most reasonable cases, pure sampling will not be good enough. Certainly, with enough sam-

ple points, the second item above will be well taken care of, but most likely the first will not. If

the sampling is stopped so that the corresponding stochastic program can be solved in reasonable

time, its statistical properties are most likely not very good, and the problem we solve may not

represent the real problem very well.

The main limitation for this problem is the vast number of scenarios. If we use k scenarios per

time period and generate a scenario tree we will receive an exponential number of scenarios in k.

The number of scenarios received for a t ≥ 0 period scenario tree is the sum of scenarios for

each time period between i = 0, . . . , t there are ki scenarios and in total
∑t

i=0 ki. When keeping in

mind that a thorough scenario representation is dealing with at least 3-4 scenarios for each time

frame it leads for very small periods of scenario representations. The exponential number means

that having scenarios for more than 3-20 periods will be computationally impossible, the exact

number is also dependent in the size of k. For example, the number of scenarios for k=6 and time

frame of 8 periods is more than 2,000,000 scenarios which is a huge input for any problem. This

is also the main limitation regarding the problem of scenario calculation.

When dealing with computing the problem of finding scenarios, we deal with a non-linear opti-

mization problem as well. That makes the problem hard to solve and a non linear optimization

problem with more than 2,000,000 variables is something that cannot really be solved by the

tools available to us nowadays.
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This limit will especially have an effect when dealing with the tests of models and their usage.

The number of periods available is very low and for practical purposes it means that the models

used here will only be able to make decisions in the near future.

For financial problems this is often not enough. An investment, such as buying a house or taking

a mortgage loan, deal with a period of 20-30 years. While the decision regarding a loan can

be done every month, in a model we will use periods of 4-5 years with decisions made every

year. Then later the model will be able to run again at the end of this period and make some

other decisions. However usually a person making a decision regarding real estate can only make

a proper decision for a period of 4-5 years. Since so many microeconomics, macroeconomics,

and other data can completely change the financial environment, for short term decisions these

models can still be appropriate.

2.6 Summary

This chapter introduces the concept of scenario generation as well as the appropriate termi-

nology and methods used in optimization problems that are based on stochastic programming.

Scenario trees are then introduced and the complexity problems that are presented when scenario

generation applications are discussed. This introduction chapter build the foundation for further

scenario generation applications that are built in the following chapters.
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Chapter 3

Review Of Scenario Generation Methods

This chapter begins by examining measures for scenario quality, followed by a wide overview of

the most used scenario generation methods. The approaches are heavily based on Zenios at [14]

and Kaut and Wallace at [8].

3.1 Introduction

This chapter gives an overall overview of different approaches of scenario generation. The com-

mon belief in the academic world is that there is no one general scenario generation approach

that can be applicable for all stochastic programming problems. A good scenario generator is

usually very problem specific. Moreover, the lack of a standard for scenario generation makes it

very difficult to compare different techniques.

This chapter approaches these issues by identifying good scenario generation properties and

give an overview of different scenario generation techniques. This chapter starts by suggesting

scenario qualities that should be examined. While this report will mainly deal with moment

matching scenario generation approaches, this chapter will go through the definitions of other

approaches with a few examples.
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3.2 Quality of Scenarios

Zenios at [14] defined three main criteria for identifying the quality of scenario generation -

Correctness, Accuracy and Consistency. These criteria are explained below:

Correctness -

• Scenarios should contain properties that are prevalent from the academic research point

of view. For example, the term structure should exhibit mean reversion and changes. The

term structure consists of changes in level, slope and curvature as examined in academic

research.

• Scenarios should also cover all relevant past history. Furthermore, scenarios should account

for events that were not observed, but are plausible under current market conditions.

Accuracy -

• As in many cases, scenarios represent a discretization of a continuous process. Accumu-

lating a number of errors in the discretization is unavoidable. Different approaches can be

used to ensure the sampled scenarios still represent the underlying continuous distribution

function.

• Accuracy is ensured when, for instance, the first and higher moments of the scenarios

match those of the underlying theoretical distribution. (Moments and property matching

are often used in order to ensure that the scenarios keep the theoretical moments of the

distribution they represent.)

• The accuracy demand can lead to a large number of scenarios generated. That is in order

to create a fine discretization of the continuous distribution and to achieve the accuracy

considered appropriate and acceptable for the application at hand.

Consistency -
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• When scenarios are generated for several instruments (e.g. bonds, term structure, etc.), it

is important to see that the scenarios are internally consistent.

• For example scenarios in which an increase in the interest rate together with an increase in

bond prices are inconsistent. Even though in a stand-alone scenario the same increase in

interest rates or an increase in bond prices are both consistent scenarios.

• Taking into consideration the correlation between different financial instruments can be

used to ensure scenarios’ consistency.

In order to examine these fundamentals, I tend to think about using a clock to keep track of

time. Accuracy is guaranteed when the clock’s battery is fully charged and the time is displayed

correctly. Consistency is achieved if the clock shows the correct time day after day. Correctness

is confirmed when a news broadcast on the hour is shown on the clock as that precise hour,

assuming that the radio/television station’s clock is calibrated for accuracy. (Note: Many radio

and television stations use an official government clock that is adjusted for accuracy according

to an atomic clock.)

3.3 Overview of Scenario Generations Methodologies

Alternative methodologies for scenario generations will be discussed in this chapter all fit into

one of the three categories as can be seen in figure 3.1. Bootstrapping is obviously the simplest

approach to be used and it is only performed by sampling of the already observed data. A second

approach models historical data using statistical analysis. A probability distribution is fitted to

the data and sample scenarios are then drawn from that distribution. A third approach develops

continuous time theoretical models with parameters estimated to fit the historical data. These

models are then discretized and simulated to generate scenarios. These approaches can be seen

in Figure 3.1
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Figure 3.1: Scenario Generation Methodologies: Bootstrapping, Statistical Analysis of Data and Discrete
Approximation of Continuous Time Models (taken from Zenios at [14])

The rest of this section looks into examples of these methodologies while examining the criteria

of the quality of the scenarios as shown in the previous section.
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3.3.1 Conditional Sampling

These are the most common methods for generating scenarios. At every node of a scenario tree,

we sample several values from the stochastic process {ξt}. This is done either by sampling directly

from the distribution of {ξt}, or by evolving the process according to an explicit formula:

ξt+1 = z(ξt, εt)

Traditional sampling methods can sample only from a univariate random variable. When we

want to sample a random vector, we need to sample every marginal (the univariate component)

separately, and combine them afterwards. Usually, the samples are combined all-against-all, re-

sulting in a vector of independent random variables. The obvious problem is that the size of the

tree grows exponentially with the dimension of the random vector: if we sample s scenarios for

k marginals, we end-up with sk scenarios.

Another problem is how to get correlated random vectors (a common approach can be seen at

[32] [33] [34]) to find the principal components (which are independent by definition) and sample

those, instead of the original random variables. This approach has the additional advantage of

reducing the dimension, and therefore reducing the number of scenarios.

There are several ways to improve a sampling algorithm. Instead of a pure sampling, we may,

for example, use integration quadratures or low discrepancy sequences (see [35]). For symmetric

distributions [36] uses an antithetic sampling. Another way to improve a sampling method is to

re-scale the obtained tree to guarantee the correct mean and variance (see [37]).

When considering the quality of a sampling method, the strongest candidate for the source of

the problem is a lack of scenarios, as we know that, with an increasing number of scenarios,

the discrete distribution converges to the true distribution. Hence, by increasing the number of

scenarios, the trees will be closer to the true distribution and consequently also closer to each

other. As a result, both the instability and the optimality gap should decrease. That will ensure
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the accuracy condition.

As an example of the use of this method consider to generate exchange rate scenarios, condi-

tioned on scenarios of interest rates. These joint scenarios of interest rate and exchange rates are

used in the management of international bond portfolios. Figure 3.2 illustrates the conditional

probabilities for several exchange rate scenarios. On the same figure the exchange rate that was

realized ex-post on the date for which the scenarios were estimated is plotted. Note that the same

exchange rate value may be obtained for various scenarios of interest rates and samples. The fig-

ure plots several points with the same exchange rate value but different conditional probabilities.

3.3.2 Bootstrapping Historical Data

The simplest approach for generating scenarios using only the available data without any mathe-

matical modeling is to bootstrap a set of historical data. In that context each scenario is a sample

of returns of the assets obtained by sampling returns observed in the past. In order to generate

scenarios of returns, for 10 years, a sample of 120 monthly returns from 10 years is used. This

process can be repeated to generate several scenarios for return over 10 years. This approach

preserves the observed correlation. However, this approach will not satisfy the correctness de-

mand of scenario generation since it will never suggest a monthly return in a scenario that was

never observed. When sampled correctly the scenarios satisfy accuracy and consistency as these

scenarios satisfy real life observations.

3.3.3 Moment Matching Methods

In many situations when the marginal distribution for the scenario generation process is not

known a moment matching approach is preferable. A moment matching scenario generation pro-

cess would usually explore the first three or four moments (mean, variance, skewness, kurtosis)

of the scenario generation process as well as the correlation matrix. These methods can be ex-
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Figure 3.2: Exchange Rate Scenarios and Their Conditional Probabilities for the DEM and CHF Against
the USD (taken from Zenios at [14])

tended to other statistical properties. (such as percentiles, higher co-moments, etc.) The moment

matching scenario generator will then construct a discrete distribution satisfying the selected

statistical properties.

These approaches have a wide impact on the industry, as they are very intuitive and easily imple-

mented (see Johan Lyhagen at [49]).
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A moment matching approach ensures accuracy by definition as it matches statistical moments.

Matching the covariance matrix ensures scenario consistency. However, correctness is not en-

sured since the approach is general and does not reflect the academic knowledge which is prob-

lem specific.

3.3.4 Statistical Analysis: Time Series Modeling for Econometric Models

Time series models relate the value of variables at given points in time to the value of these vari-

ables at previous time periods. Time series analysis is particularly suitable for solving aggregated

asset allocation problems when the correlation among asset classes is very important. When time

series analysis is extended to model the correlations with some macroeconomics variables, such

as short rates or yield curves, the resulting simulation model can be used to describe the evalua-

tion of the corresponding problem (for example an Asset Liability Management (ALM), pricing

or interest rates problem). Vector autoregressive (VAR as opposed to VaR - Value at Risk) models

are used extensively in econometric modeling. A VAR model for scenario generation will later

be described as part of this thesis.

3.3.5 Optimal Discretization

Pflug at [19] describes a method which tries to find an approximation of a stochastic process (i.e.

scenario tree) that minimizes an error in the objective function of the optimization model. Unlike

the methods from the previous sections, the whole multi-period scenario tree is constructed at

once. On the other hand, it works only for univariate processes. For multistage problems, a sce-

nario tree can be constructed as a nested facility location problem (as was shown by Hochreiter

and Pflug at [47]). Multivariate trees may be constructed by a tree coupling procedure.
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3.4 Summary

Successful applications of financial optimization models hinge upon the availability of scenarios

that are correct, accurate and consistent. Obtaining such scenarios is a challenging task. There

are none available. This chapter introduced a number of measures for scenario qualities as well

as an overview of used scenario generation approaches. Other approaches for scenario generation

include Markov Chain Monte Carlo (MCMC), Hidden Monte Carlo and Vector Error Correlation

Methods (VECM), for solving differential equations and using discrete lattice approximations in

continuous models. A short overview of the most common scenario generation approaches can

also be seen at [8].

The conclusion of this chapter is not that moment-matching is a good scenario generation method

for every stochastic program. There is no dominant strategy for scenario generation, however,

the moment matching approach does ensure accuracy and consistency. In the rest of this re-

port an interest rate scenario generator based on moment matching is suggested, described and

tested. Since a well defined scenario generation should satisfy the correction criteria, the moment

matching scenario generation process is extended to capture correctness criteria for interest rate

modeling.

As a first step, a better understanding of moment-matching scenario generation will be further

described and examined in the next chapter.

I would like to state the promising research on moment-matching scenario generation done by

Højland and Wallace at [4], Højland, Kaut and Wallace at [5], as well as the research on optimal

discretization by Pflug at [19] followed by Pflug and Hochreiter at [47] do provide appropriate

answers for both accuracy and consistency of scenarios. However, in order to deal well with

scenario correctness more research should be performed to identify academic properties on the

specific domain of different scenario generation classes (e.g. bond pricing, house pricing, interest

rates, etc.). This report will examine some of the academic properties described in the research
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about interest rates and fit it into the scenario generation process.



Chapter 4

Moment Matching

While the previous chapter examined different scenario generation approaches, this chapter em-

phasizes moment matching approaches. The first section examines different statistical properties.

The second section describes the algorithm by Højland and Wallace at ([4]) as an operations re-

search problem. The algorithm is discussed in detail. The third section looks into a heuristic

for moment-matching scenario generation based on a paper by Højland, Kaut and Wallace ([6]),

followed by a summary.

4.1 Statistical Properties

In this section we will be looking deeply into statistical analysis of scenario generation models.

These properties are later matched in order to find future scenarios.

The scenario generation methods that will be considered are based on different statistical prop-

erties that capture the behaviour of the stochastic process for which the scenarios are generated.

In this section the most common statistical properties are considered. It is important to note that

other statistical properties or general properties can also be considered with moment matching

scenario generation approaches. This flexibility is one of the main reasons why many real life
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scenario generation applications (see for example [52] and [48]) are based upon moment match-

ing.

4.1.1 Matching Statistical Moments

The most common statistical properties to be considered are the moments of the stochastic pro-

cesses. There are several approaches to calculate the moments either based on a sample or based

on a mathematical definition. For each of the models both approaches are considered. Since all

of our calculations are discrete times, only the discrete variable definitions are mentioned.

When a capitalized variable is used (as X) the corresponding variable refers for a vector or a

matrix. While non capitalized letters (as xi) refers for discrete single values.

The simple notation used in our definitions is shown below:

• X,Y are considered as random variables.

• The notation xi or yi is considered as the ith possible value of the random variables X and

Y (i = 1, 2, ...) accordingly.

• The portabilities for each of random variable values xi is pi i=1,2,..

• The portabilities for the intersection of the random variable values xi and y j is determined

as pi j i=1,2,.. j=1,2,..

4.1.2 Expectation

The expectation is the first central moment. It simply represents the weighted sum of the random

variable values, i.e. the arithmetical mean. When a sample is considered the random variable

values are the sampled values.

Mathematical definition:
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E(X) =
∑

i

piXi

The sample definition of expectation is as follows:

E(X) = x =
∑N

i=1 Xi

N

The definitions are simple and therefore examples are exempted. The notations x will be used

later on in the paper referring to this definition.

4.1.3 Standard Deviation

The standard deviation is the root mean square (RMS) deviation of the values from their expec-

tations.

For example, in the population {4, 8}, the mean is 6 and the deviations from mean are {-2, 2}.

Those deviations squared are {4, 4} the average of which (the variance) is 4. Therefore, the

standard deviation is 2. In this case 100% of the values in the population are at one standard

deviation of the mean.

The standard deviation is the most common measure of statistical dispersion, measuring how

widely spread the values in a data set are. If the data points are close to the mean, then the

standard deviation is small. Also, if many data points are far from the mean, then the standard

deviation is large. If all the data values are equal, then the standard deviation is zero.

The mathematical definition is therefore:

σ(X) =
√

E(X2) − E(X)2

When the expected statistical definition is:
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σ(X) =

√∑N
i=1(Xi − x)2

N

However, this definition is usually not the one used when a sample standard deviation is used

because it leads for a bias estimator of the standard deviation. In statistics the difference between

an estimator’s expected value and the true value of the parameter being estimated is called the

bias. An estimator or decision rule having a nonzero bias is said to be biased.

Lets consider the first definition suggested for the sample standard deviation and calculate its

expectation. When the previous definition is used it can be shown that:

E(S 2) =
n − 1

n
σ2 , σ2

That, in turn, leads to a biased definition of the variance.

In order to avoid this problem, the unbiased estimator of the sample standard deviation is defined

to be:

s =

√∑N
i=1(Xi − x)2

N − 1

In a similar manner, the definition of the estimators for the third and forth moments (i.e. skewness

and kurtosis) are also changed to be kept unbiased. Later, when these moments are discussed only

the unbiased definitions will be shown and this discussion will not be repeated.

In practice one often assumes that the data is measured from a normally distributed population.

Figure 4.1 shows the different dispersions for normal distribution. The standard deviation in this

case is widely used for the calculation of confident interval measures the probability of one spe-

cific sample of the population being in a specific range of values. That can also be seen in figure

4.1. It should be noted that if it is not known whether the distribution is normal, Chebyshev’s

inequality can always be used for the creation of a confident interval. For example, at least 50 %
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of all values are within 1.4 standard deviation from the mean.

Figure 4.1: Standard Deviation Spread Over a Normal Distribution

4.1.4 Skewness

Skewness is the measure of the asymmetry of the probability distribution. Roughly speaking,

a positive skewness represents a long or fatter right tail in Comparison to the left tail, while a

negative skewness represents the opposite situation. Therefore a symmetrical distribution (for

example the normal distribution in Figure 4.1) has a skewness of zero. An example of nonzero

skewness can be seen in figure 4.2.

Figure 4.2: Nonzero Skewness

The skewness is the standardized third moment over the mean. When µ3 is the third moment over
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the mean and σ is the standard deviation, the skewness (Sometimes referred as skew or skew(X))

is defined as:

skew =
µ3

σ3

The theoretical skewness is defined as:

skew(X) =
E[(X − E(X))3]

σ3

When the definition of s is the unbiased estimator for the standard deviation, the unbiased esti-

mator for the skewness is then:

skew =
N

(N − 1)(N − 2)
ΣN

i=1
( xi − x

s

)
3

4.1.5 Kurtosis

The kurtosis (symbolized as kurt or kurt(x)) is the forth standardized central moment.

kurt =
µ4

σ4

The kurtosis is a measure of the peakedness of the probability distribution. The kurtosis of the

normal distribution is 3. Therefore, in many cases the kurtosis is defined as Kurt(x) - 3, in order

to easily compare the peakedness to the one of the normal distribution. A high kurtosis occurs

when a high percentage of the variance is due to infrequent extreme deviations from the mean.

On the other hand, a low kurtosis occurs if the variance is mostly due to frequent modestly-sized

deviations for the mean.

In his "Errors of Routine Analysis" Biometrika, 19, (1927), p. 160, a student provided a mnemonic

device that is shown in figure 4.4. In the figure it can be seen that the platypus on the left hand
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size represents a frequent modestly-sized variation in the distribution and therefore a low kurto-

sis, while the two kangaroos on the right hand side represent extreme deviations with a long tail

and therefore a high kurtosis.

Figure 4.3: Student’s Kurtosis Explanation

The theoretical kurtosis is defined as:

kurt(X) =
E[(X − E(X)4]

σ4

With the definition of s as the unbiased estimator for the standard deviation, the unbiased esti-

mator for the kurtosis - 3 is then:

kurt(X) − 3 = (
N(N + 1)

(N − 1)(N − 2)(N − 3)
ΣN

i=1
( xi − x

s

4)
) − 3

(N − 1)2

(N − 2)(N − 3)

4.1.6 Correlation Matrix

In probability theory and statistics, correlation – also called correlation coefficient – indicates

the strength and direction of a linear relationship between two random variables. In general

statistical usage, correlation refers to the departure of two variables from independence, although
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correlation does not imply causation. In this broad sense there are several coefficients, measuring

the degree of correlation, adapted to the nature of data.

A number of different coefficients are used for different situations. The best known is the Pearson

product-moment correlation coefficient, which is obtained by dividing the covariance of the two

variables by the product of their standard deviations. Despite its name, it was first introduced by

Francis Galton.

The correlation coefficient ρX,Y between two random variables X and Y with expected values µX

and µY and standard deviations σX and σY is defined as:

ρX,Y =
cov(X,Y)
σXσY

=
E((X − µX)(Y − µY))

σXσY

where E is the expected value operator and cov means covariance. Since µX = E(X),V(X) =

σ2
X = E(X2) − E(X)2 and likewise for Y, we may also write

ρX,Y =
E(XY) − E(X)E(Y)√

E(X2) − E(X)2
√

E(Y2) − E(Y)2

The correlation is defined only if both standard deviations are finite and both of them are nonzero.

It is a corollary of the Cauchy-Schwarz inequality that the correlation cannot exceed 1 in absolute

value.

The correlation is 1 in the case of an increasing linear relationship, -1 in the case of a decreasing

linear relationship, and some value in between in all other cases, indicating the degree of linear

dependence between the variables. The closer the coefficient is to either -1 or 1, the stronger the

correlation between the variables.

If the variables are independent then the correlation is 0, but the converse is not true because

the correlation coefficient detects only linear dependencies between two variables. Here is an

example: suppose the random variable X is uniformly distributed on the interval from -1 to 1,

and Y = X2. Then Y is completely determined by X, so that X and Y are dependent, but their
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correlation is zero (From symmetry property ∀n E(Xn) = 0 in the chosen interval); they are

uncorrelated. However, in the special case when X and Y are jointly normal, being independent

is equivalent to being uncorrelated.

A correlation between two variables is diluted in the presence of the measurement error around

estimates of one or both variables, in which case disattenuation provides a more accurate coeffi-

cient .

4.2 Generating Scenario Trees for Multistage Problems

The paper [4] by Højland & Wallace in 2001 develops a scenario generation technique for mul-

tivariate scenario trees, based on optimization. The following subsections will present in more

detail the mathematical approach used in this model.

This section will describe the one period approach since this is the version used as part of the

construction later described in chapter 6.

4.2.1 Motivation

If random variables are represented by multidimensional continuous distributions, or by discrete

distributions with a large number of outcomes, computation is difficult since the models explicitly

or implicitly require integration over such variables. To avoid this problem, we normally resort to

internal sampling or procedures that replace the distribution with a small set of discrete outcomes

in real life applications.

Internal sampling is used in many models of stochastic decomposition (see for example, Higle

and Sen from 1991 at [53] and importance sampling by Infager 1994 at [54]).

The standard approach for approximating a continuous distribution is the following:

• Divide the outcome region into intervals
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Figure 4.4: Simple Example of Linear Correlation. 1000 Pairs of Normally Distributed Numbers are Plot-
ted Against One Another in Each Panel (bottom left), and the Corresponding Correlation Coefficient
Shown (top right). Along the Diagonal, Each Set of Numbers is Plotted Against Itself, Defining a Line
with Correlation +1. Five Sets of Numbers were Used, Resulting in 15 Pairwise Plots.

• Select a representing point for each interval

• Assign a probability to each point

An example of this kind of approach is the "bracket mean" method. In that method, intervals are

found by dividing the outcome region into N equally probable intervals. The representative point
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in each interval is the mean point of the corresponding interval with the assigned probability of

1/N. However, as pointed out by Miller and Rice (1983) at [55], "bracket mean" methods always

underestimate the even moments and usually underestimate the odd moments of the original

distribution. That of course raise questions in regards to the accuracy of this approach.

The moment-matching approach presented here illustrates a different approach to scenario gen-

eration. Rather than discretization of a continuous process or sampling approach, this approach

suggests exploring the statistical outcome of the process and "reverse engineering" it into a new

stochastic process that comply with these properties.

This approach is very flexible with regards to user specification. Users can specify the structure

of the outcomes to be constructed and which distribution properties are relevant for a specific

problem.

The rest of this section will present the mathematical model as well as evaluation of this method.

Description of model data

This method produces a scenario tree. The nodes in the scenario tree depict states of the world at a

particular point in time. The model presented will be looking at a one stage model. In stochastic

programming decisions are made at the child nodes. The arcs of the scenario tree represent

realizations of the uncertain variables. The scenario tree branches off for each possible value of

a random vector x = (x1, . . . , xl), in each time point.

The data is:

• Sets (indices)

– Scenarios: n ∈ 1, . . . ,N

– Statistical properties: S l ∈ S 1, . . . , S L

• Data:
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– S l,VAL The matched value of the statistical property S l

– pn probability of scenario n (of course
∑

n pn = 1)

– wl weight of the statistical property S l

• Free Variable:

– Assignment variable: x represents the vector of random variables of scenarios of the

stochastic process that is matched. xn is the value of the ransom variable for scenario

n ∈ 1, . . . ,N

• Functions:

– fl(x) the function representing the calculation of the statistical property S l as a func-

tion of x

4.2.2 Mathematical Description of the Model

A measure of distance between the different statistical properties is been minimized. (For the

purpose of this report the square norm is used as a measure of distance.)

Min:

sL∑
sl=s1

N∑
n=1

wl( fl(xn) − S l,VAL)2 (4.1)

subject to:

xn ∈ R n ∈ 1, . . . ,N (4.2)

The levels of freedom of the model can be extended by making the probabilities of each sce-

narios pl be a variable as well. However, even though it might look as an increase in the level
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of freedom, it leads to a further increase in complexity of the model by adding a constraint and

making the objective into a more complicated non-linear optimization. Therefore, it is usually

not recommended.

4.2.3 Pro Et Contra - Arguments For and Against

This subsection supplies a short overview of the qualities of this approach:

• Arguments For

+ The presented methodology is applicable for many decision problems under uncer-

tainty. The paper [4] by Højland & Wallace in 2001 describes the generation of a

scenario tree. However, it can be adjusted to other structures as defined by different

decision problems.

+ This approach can easily be extended to other properties that are problem specific.

That is a vital property, since it is believed that there is no general scenario generation

approach.

By adding the statistical properties as moments or covariance to the objective prob-

lem of a scenario generator these properties can be matched while keeping other

constraints that are problem specific.

+ The approach is easily implemented in comparison to more mathematically correct

approaches as optimal discretization as suggested by R. Hochreiter and G. Ch. Pflug

and scenario tree generation as a multidimensional facility location problem at [17],

for example.

• Arguments Against

- Non linear optimization.

The optimization problem is generally not convex, therefore, the solution might be
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(and probably is) local.

However, for our purposes it is in many cases satisfactory to have a solution with

distribution properties equal to or specified by the statistical properties at all.

- As shown by Pflug and Hochreiterr at [47] (2003) there could exist different theoret-

ical distributions with the same moments (This is examined in the next subsection.)

As raised by Pflug and Hochreiterr at [47] (2003), in the moment matching approach by Højland

and Wallace that is described in this chapter (and at [4]) the first and the second moments are

modified before the new approximation is calculated for each node of the tree. It is noteworthy

that the approximation is done in a multivariate fashion, i.e. in one step no matter how many vari-

ables (e.g. asset, classes, etc.) are estimated for each node. Although this method performs better

than random sampling and adjusted random sampling for stochastic asset liability management

problems (see Kouwenberg at [48]), it is obviously awkward to use moment-matching in terms

of reliability and credibility of the approximations. The accuracy criteria of moment-matching

approximation is problematic as seen in the following example.

4.2.4 Different Distribution with the Same Moments

Matching statistical moments, especially matching the first four moments of a probability distri-

bution introduced by Høyland and Wallace is a widespread method, however, moment-matching

may lead to strange results as is illustrated below:

The following four distributions coincide in all of their first four moments.

1. A uniform distribution in the interval [-2.44949, 2.44949]

2. The mixture of two normal distributions N(1:244666; 0:450806) and N(-1:244666; 0:450806)

with equal weights 0.5

3. The discrete distribution
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Value -2.0395 -0.91557 0 0.91557 2.0395

Probability 0.2 0.2 0.2 0.2 0.2

4. The discrete distribution

Value -3.5 -1.4 0 1.4 3.5

Probability 0.013 0.429 0.1162 0.429 0.013

These distributions are shown in Figure 4.5. In the left graph distribution 1,2,4 are shown

as 1,2,3 in the right graph respectively. Visual inspection shows that these distributions do

not have much in common.

Figure 4.5: Four Distributions with Identical First Four Moments (taken from [47])

Even though the results shown in this subsection raise doubt in the moment-matching

approach it is essential to see that scenario generation is used to provide input for the

optimization problem. This result does not necessarily means that the scenario generation

method is invalid. This mainly means that stability analysis in addition to the scenario

generation method should be done in order to examine whether it satisfies the accuracy

criteria or not.
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4.3 A Heuristic for Moment Matching Scenario Genera-

tion

This section will present the heuristic presented by Høyland, Kaut and Wallace at [5] and

will be based on their paper. A basic prototype of the algorithm was received and further

implemented and tested as part of this thesis.

4.3.1 Motivation

The heuristic developed tries to address some of the following issues.

– In the general form of the algorithm presented by Høyland and Wallace at 4.2, out-

comes of all the random variables (assets) are generated simultaneously. Such an ap-

proach becomes slow when the number of random variables increases. In this section

we have generated one marginal distribution at a time and created the joint distribu-

tion by putting the marginal distributions together in the following way: All marginal

distributions are generated with the same number of realizations, and the probability

of the ith realization is the same for each marginal distribution. The ith scenario, that

is, the ith realization of the joint distribution, is then created by using the ith realiza-

tion from each marginal distribution, and given the corresponding probability. We

then applied various transformations in an iterative loop to reach the target moments

and correlations.

– As presented at 4.2.4 when using the approach suggested at 4.2 there might be several

distributions that can match the moments and be achieved as solutions for a given

number of scenarios. The heuristic presented here will start looking for a solution

from a normal distribution. That in return will most likely lead to a scenario which

represents a real life distribution.
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The presented algorithm is inspired by ([58],[57],[56]). Fleishman at ([58]) presents a cu-

bic transformation that transforms a sample from a univariate normal distribution to a dis-

tribution satisfying some specified values for the first four moments. Vale and Maurelli at

([56]) address the multivariate case and analyse how the correlations are changed when the

cubic transformation is applied. The algorithm assumes that we start out with multivari-

ate normal distribution. The initial correlations are adjusted so that the correlations after

the cubic transformation are the desired ones. The heuristic is only approximate with no

guarantee regarding the level of the error.

There are, however, two major differences between the two algorithms. One is in the way

they handle the (inevitable) change of distribution during the transition to the multivariate

distribution while they modify the correlation matrix. In order to end up with the right

distribution, the presented heuristic modifies the starting moments. The other major differ-

ence is that the previous algorithm starts with parametric marginal distributions whereas

the presented heuristic starts with the marginal moments.

4.3.2 The Heuristic

The general idea of the algorithm is as follows:

– Generate n discrete univariate random variables – each satisfying a specification for

the first four moments.

– Transform them so that the resulting random vector is consistent with a given corre-

lation matrix.

– The transformation will distort the marginal moments of higher than second order.

Hence, we need to start out with a different set of higher moments, so that we end up

with the right ones.



62 CHAPTER 4. MOMENT MATCHING

Notation

– n - Number of random variables

– s - Number of scenarios

– X̃ - General n-dimensional random variable

∗ X̃ = (X̃1, X̃2, . . . , X̃n).

∗ Every moment of X̃ is a vector of size n.

∗ The correlation matrix of X̃ is a matrix of size n × n.

– X - Matrix of s scenario outcomes X has dimension n × s.

– Xi - Row vector of outcomes of the ith random variable Xi has size s.

– P - Row vector of scenario probabilities given by the user

– χ̃ - Discrete n-dimensional random variable given by X and P

– TARMOM - Matrix of target moments (4 × n)

– R - Target correlation matrix (n × n)

The Core Algorithm

The core algorithm runs as follow: Find the target marginal moments from stochastic pro-

cesses, from statistics or by specifying them directly. Generate n discrete random variables

with these moments. Create the multivariate random variable by combining the univariate

variables, as explained in [5]. Transform this variable so that it has the desired correlations

and marginal moments. If the random variables χ̃i and i were independent, we would end

up with Ỹ having exactly the desired properties.

The algorithm is divided into two stages - the input phase and the output phase. In the input

phase we read the target properties specified by the user and transform them into a form
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needed by the algorithm. In the output phase we generate the distributions and transform

them into the original properties.

The Input Phase

In this phase we work only with the target moments and correlations. We do not yet have

any outcomes. This means that all operations are fast and independent of the number of

scenarios. Our goal is to generate a discrete approximation Z̃ of an n-dimensional random

variable Z̃ with moments TARMOM and correlation matrix R. Since the matrix transfor-

mation needs zero means and variances equal to 1, we have to change the targets to match

this requirement. Thus, instead of Z̃ we will generate random variables Ỹ with moments

MOM (and correlation matrix R), such that MOM1 = 0, and MOM2 = 1. Z̃ is then com-

puted at the very end of the algorithm as:

Z̃ = αỸ + β

It can be shown that the values leading to the correct are:

α = T ARMOM
1
2
2

β = T ARMOM1

MOM3 =
T ARMOM3

α3

MOM4 =
T ARMOM4

α4

The final step in the input phase is to derive moments of independent univariate random

variables X̃i such that Ỹ = LX̃ will have the target moments and correlations. To do this we

need to find the Cholesky-decomposition matrix L, i.e. a lower-triangular matrix L so that

R = LLT
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The input phase then contains the following steps (figure 4.6):

Figure 4.6: Input Phase

1. Specify the target moments TARMOM and target correlation matrix R of Z̃

2. Find the normalized moments MOM for Ỹ .

3. Compute L and find the transformed moments TRSFMOM for χ̃.

The Output Phase

In this phase we start by generating the outcomes for the independent random variables.

Next, we transform them to get the intermediate-target moments and target correlations,

and finally obtain the moments specified by the user. Since the last transformation is a

linear one, it will not change the correlations. All the transformations in this phase are

with the outcomes, so the computing time needed for this phase is longer and increases

with the number of scenarios.

The output phase then contains the following steps (figure 4.7):

Figure 4.7: Output Phase

4. Generate outcomes Xi of 1-dimensional variables χ̃i (independently for i = 1, . . . , n).



4.3 A Heuristic for Moment Matching Scenario Generation 65

5. Transform χ̃ to the target correlations: Y = LX

6. Transform Z̃ to the original moments: Z = αY + β

Assumptions

There are two assumptions on the specified correlation matrix R.

1. R is a possible correlation matrix, i.e. that it is a symmetric positive semidefinite

matrix with 1’s on the main diagonal. While implementing the algorithm there is no

need to check positive semi-definiteness directly, as we do a Cholesky decomposition

of the matrix R at the very start. If R is not a positive semi-definite, the Cholesky

decomposition will fail.

2. The random variables are not collinear, so that R is a nonsingular, hence a positive

definite matrix. For checking this property we can again use the Cholesky decompo-

sition because the resulting lower-triangular matrix L will have zero(s) on its main

diagonal in a case of collinearity.

Possible Extensions

Regarding the algorithm, the procedure will lead to the exact desired values for the corre-

lations and the marginal moments if the generated univariate random variables are inde-

pendent. This is, however, true only when the number of outcomes goes to infinity and all

the scenarios are equally probable. However, with a limited number of outcomes, and pos-

sibly distinct probabilities, the marginal moments and the correlations will therefore not

fully match the specifications. To be able to secure that the error is within a pre-specified

range, an iterative algorithm was developed, which is an extension of the core algorithm.

The extension can be seen in more detail at [5].
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4.3.3 Pro Et Contra - Arguments For and Against

– Arguments For

+ Start by a normal distribution and the results look more like a distribution.

+ This paper presents an algorithm that reduces the computing time for the scenario

generation substantially. Testing shows that the algorithm finds trees with 1000

scenarios representing 20 random variables in less than one minute.

+ A potential divergence or convergence to the wrong solution is easy to detect.

Hence, we never end up using an incorrect tree in the optimization procedure.

– Arguments Against

- Cannot guarantee convergence. However, experience shows that it does converge

if the specifications are possible and there are enough scenarios. The algorithm

was run 25 times and the convergence of the algorithm can be seen at figure 4.8.

Lines represent average errors after every iteration. Bars represent the best and

the worst cases. The dashed lines represent errors in moments after the matrix

transformation of the solid line errors in correlations after the cubic transforma-

tion.

- One Stage algorithm. multi-stage the algorithm is not trivial.

- Complicated to implement.

4.4 Summary

Moment matching scenario generation approach can be very useful as part of a general

scenario generation approach. However, as such moment matching in itself does not nec-

essarily fit the consistency criterion of a scenario generator as described at section 3.2.

That is because moment matching as described in this chapter is a mathematical method
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Figure 4.8: Convergence of the Iterative Algorithm (from [5])

and as such does not suggests any financial insight directly. The next chapter will suggest

different measures or properties that are essential when building a valid interest rate sce-
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nario generation and later at chapter 6 a VAR1 model will be described as a propose for a

yield curve scenario discretization model.

During this thesis work, a scenario generator was attempted to be built which would be

solely be based upon moment matching. However, it did not led to promising results. Since

we do not believe that a sole moment matching approach suggests useful solutions, (ex-

amples of such approaches were not given). Nevertheless, such examples can be seen at

([4], [5]). I implemented an example of a moment matching multi-stage stochastic pro-

gramming approach that was used in this research by Svitlana Sukhodolska as part of her

master’s thesis project ([40]). These sources give examples for pure moment matching ap-

proaches while later on in this report a yield curve scenario generation based on moment

matching will be presented. The next chapter will describe the appropriate property of a

good interest rate scenario generator. This chapter is the direct consequence of the poor

results achieved when creating a scenario generator without building a model based on a

thorough understanding of the domain of the solutions.



Chapter 5

Interest Rate Scenario Generation

While the previous three chapters dealt mainly with creating the mathematical background

associated with scenario generation. In addition, it described some of the most used sce-

nario generation approaches in general and dealt in more detail with different moment-

matching approaches.

As mentioned, a general scenario generation approach that can deal with all sets of prob-

lems is believed to not have been found yet. Since this report deals with interest rate sce-

nario generation, this chapter will elaborate on the components that are essential for look-

ing into interest rate scenario generation. As such, it is heavily dependent on the research

of Zenios at [14] in financial engineering. The report by Rasmussen and Poulsen at [39]

presenting factor analysis of the term structure in Denmark and identifying consistency

criteria for an event tree of the yield curve. The subject of arbitrage detection over sce-

nario trees is based on the comments provided by Klassen for moment-matching scenario

generation at [38] and an alternative method for arbitrage removal that is further suggested.
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5.1 Interest Rate Risk

A scenario generation model for the interest rate is a risk management tool. In order to

obtain good qualitative measures of interest rates more thorough interest rate risk funda-

mentals should be observed as can be seen at [14] and [40], for example.

Interest Rate risk is the potential loss if the price of a security changes over time due to

adverse movements of the general levels of interest rates. This risk affects fixed-income as

well as all other securities with price dependencies, including interest rates, among other

possible factors.

The general level of interest rates is determined by the interaction between supply and

demand for credit. If the supply of credit from lenders rises relative to the demand from

borrowers, the interest rate falls as lenders compete to find borrowers for their funds. On

the one hand, if the demand rises relative to supply, the interest rate will rise as borrowers

are willing to pay more for increasingly scarce funds. The principal force of the demand

for credit comes from the desire for current spending and investment opportunities. Supply

of credit on the other hand, comes from willingness to defer spending. Moreover, central

banks are able to determine the levels of interest rates - either by setting them directly or by

influencing the money supply - in order to achieve their economic objectives. For example,

in the UK, the Bank of England sets the base rate charged to other financial institutions.

When it is raised, these institutions follow suit and raise rates to their customers, making

it more expensive to borrow and thereby slowing down economic activity. The base rate

(also known as the official interest rate) will influence interest rates charged for overdrafts,

mortgages, as well as savings accounts. Furthermore, a change in the base rate will tend

to affect the price of property and financial assets such as bonds, shares and the exchange

rate. The central bank influences the availability of money and credit by adjusting the level

of bank reserves and by buying and selling government securities. These tools influence
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the supply of credit, but do not directly impact the demand for it. Therefore, central banks

in general are not able to exert complete control over interest rates.

Inflation is also a factor. When there is an overall increase in the level of prices, investors

require compensation for the loss of purchasing power, which means - higher nominal

interest rates. As agents are supposed to base their decisions on real variables, it is the

equilibrium between real savings and real investments that will determine the real interest

rate. Hence, if this equilibrium remains the same, movements in the nominal interest rate

should reflect movements in the prices or in expected future prices.

Another important factor is credit risk, which is a possibility of a loss resulting from the

inability to repay the debt obligation. The larger the likelihood of not being repaid, the

higher the interest rate levels are.

Time is also a factor of risk and it consequently has an influence on the level of interest

rates.

It is common to distinguish between short-term rates - for lending periods shorter than

one year - and long-term rates for longer periods. Long-term rates are typically decom-

posed into two factors: the expected future level of short-term rates and a risk premium to

compensate investors for holding assets over a longer time frame. As a result, yields on

long-dated securities are in general (but not always) higher than short-term rates.

Figure 5.1 captures all the detrimental risk factors influencing the interest rate levels, sum-

marizing the above study in accordance.
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Figure 5.1: Detrimental Factors of Interest Rate Risk (from [40] )

5.2 Arbitrage and Arbitrage Tests

5.2.1 Overview of Arbitrage

In this section arbitrage will be considered in detail as well as the way to integrate arbitrage

tests as part of an optimization model.

In finance, arbitrage is the practice of taking advantage of a price differential between

two or more markets: a combination if matching deals are struck that capitalize upon that

imbalance, the profit being the difference between the market prices.

However, when used by academics, an arbitrage is a transaction that involves no negative
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cash flow at any probabilistic or temporal state and a positive cash flow in at least one

state; in simpler terms, a risk-free profit. A person who engages in arbitrage is called an

arbitrageur. The term is mainly applied to trading in financial instruments, such as bonds,

stocks, derivatives and currencies. If the market prices do not allow for profitable arbi-

trage, the prices are said to constitute an arbitrage equilibrium or arbitrage free market. An

arbitrage equilibrium is a precondition for general economic equilibrium.

When looking into arbitrage usually two different arbitrage types are considered.

– Arbitrage type 1 which represents buying a portfolio of instruments at price 0 that

will create non-negative future cash flows and a positive cash flow at no less than one

future point.

– Arbitrage type 2 which represents buying a portfolio at a negative price (profit at time

of buying) that will create non-negative future cash flow.

In some situations, it is straightforward to turn the identified arbitrage opportunity of the

first type into an arbitrage opportunity of the second type. In general, however, the ex-

istence of an arbitrage opportunity of the first type does not imply the existence of an

arbitrage opportunity of the second type, or vice versa. Therefore, the two types are treated

separately.

The following subsections will show the motivation for performing arbitrage detection in

an ALM problem as well as describe arbitrage in a more academic manner as an operations

research problem in order to develop a model to remove arbitrage.
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5.2.2 Motivation - The Importance of Arbitrage Test in ALM Prob-

lems

Klaassen at [24] emphasized the importance of precluding arbitrage opportunities when the

scenario-generation method of Høyland and Wallace from [4] is applied to asset allocation

problems under uncertainty. The presence of arbitrage opportunities will unrealistically

bias optimal asset allocations. He has shown that arbitrage opportunities can either be de-

tected ex-post by checking for solutions to sets of linear equations, or precluding ex-ante

by adding constraints to the optimization program that is formulated to generate the sce-

nario tree. This process is described in more detail in the continuation of the section. In

addition to the research, a simple heuristic is presented to remove arbitrage from the sce-

nario tree. This heuristic is now used as part of the VAR1 interest rate scenario generation

process that will be described in the next chapter.

The importance of precluding arbitrage opportunities in scenario trees of asset returns for

portfolio optimization problems under uncertainty has been illustrated in Klaassen [46]. If

arbitrage opportunities are present, the optimal solution will exploit these to the maximum

extent possible. It is unlikely, however, that the arbitrage opportunities will arise in reality,

and hence the optimal solution will reflect spurious profit opportunities.

The rest of this section will introduce the two types of arbitrage and their corresponding

dual problems that can be used as part of the arbitrage removal process. Finally, the arbi-

trage removal processes will be further discussed and the heuristic to preclude arbitrage

will be shown.
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5.2.3 Arbitrage of Type 1

Description of Model Data

The arbitrage detection problem: primal problem The data is:

– Sets (indices)

∗ Time: t ∈ 1, . . . ,T

∗ Bonds 1:k ∈ 1, . . . ,K

∗ Nodes of the event tree or state of the world2: n ∈ 1, . . . ,N

– Data:

∗ Rn
k,t+1 ≥ 0 Represents the return of Bond k between time periods t and t + 1 for

node n.

– Free Variable:

∗ Assignment Variable: xk,t represents the holding of the bond k at time t.

Mathematical description of the model

Ingersoll at [45] (1987) describes an arbitrage opportunity of the first type as one that exists

between the time periods t and t + 1 if there is an asset allocation xt = (x1,t, . . . , xK,t) such

that:

1Can be generalized to other financial instruments but is thought of as bonds for the purpose of this report
2In stochastic programming problems and event trees, there are many possible states of the world between two

time periods
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K∑
k=1

xk,t = 0, (5.1)

K∑
k=1

xk,tRn
k,t+1 ≥ 0, ∀n ∈ 1, . . . ,N, (5.2)

K∑
k=1

xk,tRn
k,t+1 > 0, ∃n ∈ 1, . . . ,N, (5.3)

The Model - Arbitrage of type 1 as an operations research model

The following is a representation of the model as a maximization problem over scenario

tree:

Max:

T∑
t=1

N∑
n=1

xk,tRn
k,t+1 (5.4)

subject to:

(5.1), (5.2), xk,t, ∈ R (5.5)

Correctness of the optimization problem

Intuitively the objective is to find holding of bonds that will maximize the total return (obj

function 5.4) under several conditions. The first condition at equation 5.1 ensures that no

money is invested in the portfolio represented by x at any time point but the portfolio is

balanced for selling and buying for the total cash flow of zero. The second condition at

equation 5.2 is looking at the return at each time point and ensures that the total return of

the portfolio is non-negative at every time point.
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Theorem: The optimization problem is unbounded if, and only if, arbitrage opportunity of

type 1 exists.

Proof: ⇒ Assuming the optimization problem is unbounded then the portfolio selection

that is presented by the solution is an arbitrage opportunity of type 1. Since it costs nothing

and has a positive return at no less than one future point.

⇐ Assuming an arbitrage opportunity of type 1 exists then there exists a combination

of buying and selling of a portfolio x for price 0 that will yield a return larger or equal

than zero for each of the future time points. That x is a valid solution for the optimization

problem that will yield an objective value > 0 lets call that value c. The buying of x can

then be scaled by any factor λ ≥ 0 and yield another feasible solution. and will yield an

objective value of
N∑

n=1

K∑
k=1

λxk,tRn
k,t+1 = λ

N∑
n=1

K∑
k=1

xk,tRn
k,t+1 = λc

For λ→ ∞ it concludes that

lim
λ→∞

λc = ∞

Since λx is a valid solution since it satisfies 5.1 (just multiply the equation by λ) and since

it satisfies 5.2 since it is a multiplication by a positive constant λ > 0 the equations also

holds for λx

Therefore, there exists a series of solutions that converge to ∞ and the problem is un-

bounded.

�

The dual problem

It can easily be shown, after multiplying equation 5.2 at minus one that the equivalent dual

problem is:
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Min:

0 (5.6)

subject to:

π0 −

N∑
n=1

πnRn
k,t+1 =

N∑
n=1

Rn
k,t+1, ∀k ∈ 1, . . . ,K, (5.7)

π0 ∈ R, πn ≥ 0 ∀n ∈ 1, . . . ,N (5.8)

Conversely, if this dual program does have a feasible solution, strong duality implies that

for any feasible asset allocation xt:

N∑
n=1

K∑
k=1

xk,tRn
k,t ≤ 0

Thus, no arbitrage opportunity of the first type exists.

5.2.4 Arbitrage of type 2

Mathematical description of the model

Using the same notations as for arbitrage of the first type Ingersoll at [45] (1987) describes

an arbitrage opportunity of the second type that exists between the time periods t and t + 1

if there is an asset allocation xt = (x1,t, . . . , xK,t) such that:

K∑
k=1

xk,t < 0 (5.9)
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K∑
k=1

xk,t(1 + Rn
k,t+1) ≥ 0, ∀n ∈ {1, . . . ,N}, (5.10)

The Model - Arbitrage of type 2 as an operations research model

The model is:

Min:

K∑
k=1

xk,t (5.11)

subject to:

(5.10), xk,t ∈ R (5.12)

Correctness of the optimization problem

Intuitively the objective for the problem at 5.11 aims to receive a positive return at time

zero by the pick of a bonds portfolio. A negative objective presents a positive return for the

investor at time 0. (Finding a portfolio for a negative price is receiving money at time 0.)

The condition at equation 5.10 shows that the cash flow received by the investor at future

time points is non-negative in the same matter as equation 5.2 in the first arbitrage model.

Therefore, if this linear program has a solution with a negative objective value, subse-

quently there is an arbitrage opportunity of the second type. The linear program will in

fact be unbounded as we can multiply the asset allocation xt by an arbitrary positive con-

stant without violating the constraints (The correctness of this proof can be shown in a

similar way as showing the arbitrage of type 1 and therefore will be ignored.). This model

is unbounded if, and only if, arbitrage of type 2 exists.
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Hence, according to the duality theory, in this case, the dual of this linear program will not

have a feasible solution.

The dual problem

The following dual problem is defined:

Max:

0 (5.13)

subject to:

N∑
n=1

νn(1 + Rn
k,t+1) = 1 ∀k ∈ 1, . . . ,K (5.14)

νn ≥ 0 ∀n ∈ 1, . . . ,N (5.15)

Conversely, if this dual program does have a feasible solution, strong duality implies that

for any feasible asset allocation xt must have:

K∑
k=1

xk,t ≥ 0

Thus, no arbitrage opportunity of the second type exists.

5.2.5 Conclusion

As described in this section the existence of arbitrage should be addressed during the sce-

nario generation process according to the three methods suggested in this report.
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1. Rerun the model with different starting point

As implied from the dual problems. One can check for the existence of solutions to

these equations after a scenario tree is generated (for example by using moment-

matching as described in previous chapters based in Høyland and Wallace). In a

multi-period problem, one has to check for solutions to the sets of linear equations

in each node n at every date t of the scenario tree before the model horizon. A useful

result is that if the set of equations (5.14) has a strictly positive solution , then no arbi-

trage opportunities of either the first or second type are present (see Ingersoll 1987, p.

57). If an arbitrage opportunity is encountered, one can apply the scenario-generation

method again (using a different starting point) in the hope that an arbitrage-free sce-

nario tree is found. One may also have to increase the number of scenarios in the

tree.

2. Add arbitrage removal constraints

Alternatively, One could add equations (5.7),(5.8) and (5.14),(5.19) as constraints to

the nonlinear optimization program of Høyland and Wallace. One will then preclude

arbitrage opportunities of both types in the scenario tree that is generated. As asset re-

turns Rn
k,t+1 are variables in the optimization program of Høyland and Wallace (2001),

as presented in chapter 3, equations (5.7) and (5.14) represent nonlinear constraints

if added to this optimization program. This will therefore complicate the numerical

optimization of the nonlinear programming model.

3. Run arbitrage removal on the results

An alternative can also be an arbitrage removal process that can be run after the

optimization in order to remove arbitrage. This heuristic does not impose optimality

of the results, since the arbitrage removal effects the interest rate scenarios.
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When examining the three approaches presented above the third approach was chosen for

this project since the second approach adds non-linear constraints to a problem that was

not linear to begin with; it was rejected. In view of the fact that the first approach suggests

arbitrage detection and rerun of the process if arbitrage is found with a different starting

point and this process needs to be repeated for each subtree of the multi-stage interest

rate tree, it was decided to be too time consuming and hard to implement. (It is not trivial

to detect another good starting point in order to impose a non-arbitrage solution for each

case.)

The arbitrage removal process is discussed in more detail in the following section.

5.3 Arbitrage Removal

This section will introduce conditions for arbitrage detection and arbitrage removal as an

optimization problem. This section will try to define this problem as an operations research

problem and would use financial theory only for creating intuition for results presented

here. Nevertheless, this section is based on solid financial theory on arbitrage and asset

pricing. (These issues can be further seen at Lando and Poulsen at [9] for example).

5.3.1 Arbitrage Free Asset Pricing on an Event Tree

This section does not intend to provide a solid financial background for examining arbi-

trage detection and arbitrage pricing. However, a few of the theories would be mentioned

on a very wide perspective in order to give some kind of intuition for the process.

Without looking deeply into arbitrage free theory it should be mentioned that the results

that are used in this chapter are based on the following theory and prepositions taken from

Lando and Poulsen at ([9])
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Theorem 2: The security market is arbitrage free if and only if there exists a strictly posi-

tive vector d ∈ RT
++ such that π = C · d, where d is a vector of discount factors.

The key to this theorem is:

Lemma 1 (Stiemke’s lemma): Let A be an n × m matrix. Then precisely one of the two

following statements is true:

1. There exists x ∈ Rm
++ such that Ax = 0.

2. There exists y ∈ Rn such that yT A > 0.

Theorem 3: Assume that (π,C) is arbitrage free. Then the market is complete if and only

if there is a unique vector of discount factors.

A market is complete if any desired payment stream can be generated by an appropriate

choice of portfolio.

Proposition 18: The security market model is arbitrage free if and only if the one period

model is arbitrage free.

The usefulness of this local result is that we often build multi period models by repeating

the same one period structure. We may then check absence of arbitrage and completeness

by looking at a one period submodel instead of the whole tree. Then the detection process

can be repeated recursively throughout the event tree.

5.3.2 An Example of Arbitrage Removal in a Tree

In order to detect and remove arbitrage in the tree. The interest rates are transfered to bond

prices. Below an axle of arbitrage detection and removal is presented:

Consider the subtree in Figure (5.2). Loans 1 to 3 are fixed rate mortgages (FRMs) whereas

loan 4 is an adjustable rate mortgage (ARM) with annual re–financing. The prices in the
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Figure 5.2: A Subtree with Information on Rates and Prices.

children nodes are already decided. We would like to check whether the tree is arbitrage

free.

Figure 5.3: A Subtree with Information on Rates and Prices.

For the purpose of this example we choose the loans 1 and 4 as arbitrage–free pricing

references to represent the short and the long end of the interest rate scale. We will show in

the following how to change the prices of loans 2 and 3 in order for the subtree to become

arbitrage–free.

Let the vector π denote the price vector for loans 1 and 4:

πi =

 0.8042

1.0000

 i ∈ {1, 4},
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and let the matrix D denote the cashflow matrix for loans 1 and 4:

Dip =

 0.8250 0.9372

1.1041 1.1041

 i ∈ {1, 4}, p ∈ {1, 2},

where every element of the matrix is defined as: Dip = ri + Priceip.

In order for the price vector π to be arbitrage free the discount vector ψwhich is the solution

to the equation

2∑
p=1

Dip · ψp = πi ∀i ∈ {1, 4}

must be positive. Solving this linear system of equations we get:

ψp =
( 0.397827

0.507888

)
p ∈ {1, 2},

which is obviously positive meaning that loans 1 and 4 are priced arbitrage free in the

subtree.

the risk neutral probabilities (martingale measures) are found using the following relation:

qp =
ψp

Ψ
∀p ∈ {1, 2},

where Ψ is defined as:

Ψ =

2∑
p=1

ψp.

The risk neutral probabilities thus become:
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qp =

 0.439241

0.560759

 p ∈ {1, 2}.

A 1–period tree with p states need only two instruments to find the martingale measures.

Using these martingale measures we can find the arbitrage–free price of all the other in-

struments available in the tree.

Let Drest denote the cash flow matrix for the loans 2 and 3:

Drest
ip =

 0.7423 0.8492

0.6800 0.7893

 i ∈ {2, 3}, p ∈ {1, 2}.

The arbitrage–free prices of loans 2 and 3 are thus found as follows:

πrest
i =

∑2
p=1 Drest

ip · qp

1 + r f ∀i ∈ 2, 3,

where r f denotes the risk free rate of return in the 1–period tree in question. Since loan 1

provides the same cash flow in both states we can use this rate as the risk free rate, so we

get the arbitrage–free prices for loans 2 and 3:

πrest
i =

 0.726606

0.671398

 i ∈ {2, 3}.

5.3.3 Removing Arbitrage as an Operations Research Problem

As described no arbitrage is a necessary condition for markets to be efficient.

Based on these theories the arbitrage detection can be described as operations research

problem. The operations research algorithm will try to find the positive vector ϕk for all
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bonds 1, . . . ,K That satisfies the fact that the prices of the child nodes (PCk,n) 3 and the

price of the parent node (PPricek) following this formula:

PricePk =
∑

k

ϕkPCk,n∀n

An operations research problem can be created to detect and remove arbitrage at once.

One can define a new variables PC+k,n and PC−k,n detecting the deviation in measure of the

square norm between the calculated PCk,n and the arbitrage–free PC
′

k,n.

Min:

K∑
k=1

N∑
n=1

(PC+k,n + PC−k,n)2 (5.16)

subject to:

PricePk =
∑

k

ϕkPC
′

k,n∀n ∈ {1, . . . ,N} (5.17)

PC
′

k,n = PCk,n + PC+k,n − PC−k,n∀k ∈ {1, . . . ,K},∀n ∈ {1, . . . ,N} (5.18)

ϕk, PC+k,n, PC−k,n ≥ 0∀k ∈ {1, . . . ,K},∀n ∈ {1, . . . ,N} (5.19)

A few comments in regards for the described model

– The use of a quadric objective function.

The problem could also be solved using a linear objective function. However, since

the rates are computed using a method as moment matching. A solver is very likely

to change one of the rates as much as possible and the next one and so on until it

finds an optimal solution. This approach might lead for non optimal solution from

3n represents child scenarios in accordance with the terminology used in this report.
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the practical view. That is because the rates where chosen using a scenario generation

method as moment matching. The scenario generation method keeps track of inter

scenario information, such as covariance. A major change in one scenario is very

likely to lead for a problem in the correctness of the scenario generation. Therefore, a

quadric objective function would ensure that it is optimal from the solver perspective

to try and change the scenario so they would be as close as possible to the value cal-

culated by the scenario generator. (the square norm is used as a measure of distance.).

However, it would be possible to keep a piecewise linear function or a non quadric

objective function. The solution that would be achieved would be arbitrage free but

not necessarily lead for good scenarios.

– The arbitrage removal process should be run recursively starting at the the root node

of the scenario tree and going forward. (In order to keep the structure of the tree after

the arbitrage removal correctly.)

5.4 Factor Analysis of the Term Structure

5.4.1 Motivation

As shown by Zenios at [14] the yields of short and long maturity bonds are not perfectly

correlated as can be seen at figure 5.4 . Small and parallel shifts are insufficient for de-

scribing changes of the term structure in modern fixed income markets. Therefore, one

that considers an interest rate model should make sure of finding a solution to take care of

the shape risk created, such as a factor analysis model for the term structure.

Luckily financial observation obtains three eigenvalues that accounts for most of the changes

in the term structure of the interest rate. These are - parallel shifts in level, changes in steep-

ness and convexity. These changes might be different from market to market and from pe-
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Figure 5.4: The Yields of Short and Long Maturity Bonds are not Perfectly Correlated Giving Rise to
Shape Risk (from Zenios at [14])

riod to period. For example, the factor loading of the Italian BTP market is shown at figure

5.5

5.4.2 Principal Component Analysis (PCA)

Factor analysis, also known as principal component analysis (PCA), is a statistical tech-

nique to detect the most important sources of variability among observed random vari-

ables. Factor analysis may be used on a historic time series of a multidimensional random

variable to decide how much variability is explained by different factors or principal com-

ponents and to order them accordingly. In linear algebraic terms it is an orthogonal linear

transformation that transforms data to a new coordinate system in such a way that the

greatest variance lies on the first coordinate, called the first principal component, the sec-
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Figure 5.5: Factor Loading Corresponding to the Three Most Significant Factors of the Italian BTP Market
(from Zenios at [14])

ond greatest variance on the second principal component and so on. It is used for reducing

the dimensionality of a data set while keeping its characteristics. This is done by keeping

only some numbers of the first principal component while ignoring the remaining ones that

only explain an insignificant proportion of the variance.

Definition: Principal Components of the term structure. Let r̃ = (r̃t)T
t=1 be the random

variable presenting the spot rates, and Q be the T ×T covariance matrix. An eigenvector of

Q is a vector β j = (β jt)T
t=1 such that Qβ j = λ jβ j for some constant λ j called an eigenvalue of

Q. The random variable f j =
∑T

t=1 β jtrt is a principal component of the term structure. The

first principal component is the one that corresponds to the largest eigenvalue, the second

to the second largest, etc.

As can be seen from the definition, in order to observe the most significant factors, a



5.4 Factor Analysis of the Term Structure 91

statistical analysis of the market should be performed. The report is mainly concerned with

an implication of the term structure and the factor analysis model as shown at Rasmussen

& Poulsen [39].

Litterman & Scheinkman (1991) at [42] and P. J. Knez & Scheinkman (1994) at [41] use

factor analysis to show that three factors explain - at a minimum - 96% of the variability

of excess returns on several American zero coupon yield curves in the period from 1985

to 1988. Dahl (1994) at [43] show similar results for the Danish data in the 1980’s and

Bertocchi & Zenios (2005) at [44] repeat the experiments for American and Italian data

during 1990’s with similar results.

These findings are used by some practitioners to improve duration hedging (immunization)

by factor based duration hedging (factor immunization). The main shortcoming of these

hedging techniques is that they are myopic and do not consider the re-balancing effects in

long term fixed income portfolio investments. Rather than using factor analysis to shape

risk hedging, we use factor analysis as a means of finding a sufficient number of factors to

be used as the underlying factors of uncertainty for the proposed interest rate model of this

paper. Factor analysis on the Danish yield curves for the period 1995–2006 was performed

by Rasmussen & Poulsen at [39]. Similar to earlier works, it has been identified that three

factors are enough to capture almost all variability (99.99%) for the Danish yield curves.

Figure 5.6 shows the factor loadings as a function of maturities in years based on the rates

from figure 5.7.

The first factor explains almost 95% of all variability. It can be interpreted as a slight

change of slope for interest rates with maturities under 5 years together with a parallel shift

for the rest of the curve. The second factor, explaining 4.7% of the variability, corresponds

to a change of slope for the whole curve. However, the slope change for the first 10 years

is much more pronounced. Finally, the third factor corresponds to a change of curvature in
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Figure 5.6: Factor Loadings of the Danish Yield Curves for the Period 1995 to 2006. (taken from Ras-
mussen & Poulsen at [39])

the yield curves. This factor explains only about 0.3% of the total variability.

From a statistical viewpoint we could suffice with level and slope as the main sources of

variability. Nevertheless we do not reject the third factor, curvature, due to its economical

appeal; changes of curvature are observed now and then, and a model not being able to
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Figure 5.7: 3-Dimensional View of the Danish Yield Curve for the Period 1995-2006 (taken from Ras-
mussen & Poulsen at [39])

represent those changes properly has a potential of not capturing important movements in

the interest rate market.

The interest rate model that was created with Nykredit was inspired by the results found in

this section that was based on the definition of the following three factors:

1. Level: An arbitrary rate such as the one year rate,Y1, may be used as a proxy for level.

2. Slope: A good proxy for the slope would be Y30 − Y1 where Y30 stands for the 30 year

rate. This expression is an approximation of the average slope of the yield curve.

3. Curvature: The expression Y5 − (ωY1 + (1 − ω)Y30), with Y5 as the 5 year rate, may

be used as a proxy for the curvature. ω is the weight corresponding to the proportion

of the distance in between the middle to the long rates. It was chosen so that the

curvature would be zero if the curve is a straight line, negative if the curve was convex

and positive if the curve was concave.
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In the rest of this report the terms level, slope and curvature are defined as above as the

factors of the interest rate model in question that will be presented by the VAR (Vector

Autoregressive Model) of the interest rate will be produced in the next chapter.

5.5 Smoothing the Term Structure

Of course models for term structure that perform prediction over the three factors described

at previous section need to be able to extend their results for the all term structure. It is easy

to see that the transformation between the 1-year, 5-year and 30-year rates to level, slope

and curvature is easily invertible. However, after reverting back from the three factors to

the 1-year, 5-year and 30-year rates a method should be used to further extended the rates

to the complete term structure. This type of method is called a smoothing method.

This section suggests briefly two alternatives for performing smoothing the Nelson-Siegel

(from Hurn, Lindsay and Pavlov at [67]) and an Affine Smoothing from (Bester 2004 at

[59]).

These approaches are discussed briefly below:

Nelson-Siegel Smoothing:

The classical term-structure problem requires the estimation of the smooth yield curve

l = y(τ) from observed bond prices. In recent years the method of choice has been to

compute the implicit forward rates required to price successively longer maturity bonds at

the observed maturities. These are called unsmoothed forward rates. The smoothed forward

rate curve is then obtained by fitting a parametric functional form to these unsmoothed

rates. One common choice proposed by Nelson and Siegel (1987 at [66]) is

f (u) = β1 + β2e−λu + β3λue−λu (5.20)
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When β1, β2 and β3 denoting the level, slope and curvature of the yield curve respectively.

Affine Smoothing:

Modern term structure modeling began with Vasicek (1977 at [60]) and Cox, Ingersoll,

and Ross (CIR model at [61], 1985). Their work was later extended to the broader affine

class of models (Duffie and Kan (1996) at [62]), which were classified in a convenient

hierarchy by Dai and Singleton (2000 at [63]). Affine models are distinguished by the as-

sumption that the spot rate and the instantaneous covariances of yields are linear in a finite

set of diffusive state variables. These models have enjoyed a long and productive life in

the finance literature, due in large part to their eminent tractability. They offer convenient

forms for bond prices, yields, and forward rates, and are easily adapted to price interest

rate derivatives (see Duffie, Pan, and Singleton (2000) at [64]). Unfortunately, affine mod-

els suffer from potentially serious empirical shortcomings. Chan, Karloy, Longstaff and

Sandard et al. (1992 [65]) observe that the Vasicek and CIR models fail to capture the

stochastic volatility in short-term interest rates.

The model presented in the next chapter uses Nelson-Siegel or affine smoothing in order

to receive a complete yield curve.

5.6 Summary

Scenario generation methods are problem specific, while the previous chapters presented

general methods for scenario generation. This chapter focused on the properties that will

assure consistency of interest rate scenario tree generation. As experienced by our work

and would be evaluated later on at this report. The importance of these properties can not

be overestimated. As operations research solvers are design in order to exploit issues as

incompleteness of the market (e.g. arbitrage opportunity). That in return would lead to
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unrealistic results when running an optimization model on top of non consistent scenario

generation methods.

Up to this point the reader has followed an overview of the most used scenario generation

techniques as well as some scenario generations quality measures. This chapter concludes

with several measures that are essential for appropriate scenario generation.

– Arbitrage–free pricing

– Principal component analysis and factor analysis of the term structure.

– Smoothing of the term structure

These measures are found during the process of research as purposed in this thesis. They

are also described in the paper by Rasmussen and Poulsen [39] that explores yield curve

event tree construction for multi-stage stochastic programming problems.

The next chapter would describe a model for yield curve scenario generation.



Chapter 6

Develop a Three Factor VAR1 Interest

Rate Scenario Generation Model

This chapter proposes an overall framework for building a yield curve event tree and testing

whether or not the consistency criteria are respected.

There is a vast amount of literature on interest rate modelling (see James & Webber at [50]

and Brigo and Mercurio at [51] for a review). These models can in general be categorized

as being discrete or continuous, normal or log-normal, 1–factor or multifactor, and gen-

erally either more theoretically or more empirically inclined. What all such models have

in common is the fact that they have been originally developed either for estimating cur-

rent prices of interest rate sensitive assets, or for prediction purposes. None of the standard

models therefore have been designed in order to construct yield curve event trees but rather

fulfilling a lattice. That in turn leaves out some issues such as arbitrage free pricing by the

natural construction of the lattice.

In section 3.2 the criteria for good scenario generation are described. It is also identified

that a moment matching scenario generation, as well as most other mathematical scenario
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generation, does not imply correctness in the tree construction. However, in this chapter

the constructed vector autoregressive with leg 1 (VAR1) model will deal with the issues

identified in the previous chapter about building correct yield curve event tree and will

attain a satisfactory scenario generation method for this problem.

The rest of this chapter will describe the model. It starts by describing a simple three

factor VAR1 model that is representing the underlying stochastic process. A nonlinear

discretization model of the stochastic process is then suggested. The discretization model

is general but it is currently based on the moment matching scenario generation method as

defined in chapter 4. The next chapter will perform test and analysis of this model and will

discuss the results of the different model configuration. (As well as argue why a simple

1–factor interest rate model such as the Vasicek model is not appropriate for stochastic

programming applications and why the proposed 3–factor model provides more reliable

solutions.)

6.1 A Vector Autoregressive Model of Interest Rates

A vector autoregressive mode with lag 1 (VAR1) may be defined as:

xt+1 = µ + A(xt − µ) + εt+1

where xt is an n×n matrix, µ is an n×1 vector and εt+1 ∼ Nn(0,Ω) andΩ is an n×n matrix.

In this formulation of the VAR1 model, µ is interpreted as the long term drift. A and µ are

deterministic parameters which need to be calibrated based on historical data.
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The conditional mean and covariance for the error term εt+1 are given as:

E[εt+1|xt] = 0

E[εt+1εt′+1|xt] = Ω

Given the state of an uncertain variable at time xt, the purpose of the model is to predict

the state of the variable at time t + 1, xt+1. Based on the findings of the previous section

we define the vector xt as the proxies for level, slope and curvature (lt, st, ct)T of the yield

curves.

An example of the VAR1 model with three factors looks like:

lt+1 = µl + all(lt − µl) + als(st − µs) + alc(ct − µc) + εl,t+1

st+1 = µs + asl(lt − µl) + ass(st − µs) + asc(ct − µc) + εs,t+1

ct+1 = µc + acl(lt − µl) + acs(st − µs) + acc(ct − µc) + εc,t+1

To estimate the parameters of the VAR1 model (µ, A,Ω) we can use the parameter estima-

tion for a general linear regression model of the form:

yi = α + βxi + εi, for all i = 1, · · · , n

Or in a matrix form:


y1

...

yn

 =


1 x1

...
...

1 xn


 αβ
 +

ε1

...

εn


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This can be rewritten as:

Y = Xδ + ε

The VAR1 model can be rewritten in this form. Now we may use standard least square

estimators as follows:

δ̂ = (X
T

X)−1X
T
Y

which minimizes the sum of least squares in the expression ||Y − Xδ||2.

The estimator for the residuals (ε) is given as:

res = Y − Xδ̂

Ω̂ = resT res/(n − 1)

The estimator δ̂ is then decomposed into µ and A from the VAR1 model and the estimator

Ω̂ can be directly used as the estimator for Ω in the VAR1 model.

The VAR1 model so far may only be used for one–period predictions (same interval length

as in the historical time series). But it may easily be extended to predict k periods ahead:

xt+k = µ + Ak(xt − µ) + εt+k

where εt+k ∼ Nn(0,
∑k

i=1 Ai−1Ω(Ai−1)T )

The reasons for choosing a VAR1 model as the underlying model of interest rate uncer-

tainty are the following:
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1. One can chose any factors or any number of factors to describe the variability. This

gives us maximum flexibility with respect to our observations from a factor analysis

of interest rates.

2. Time step flexibility. Varying time steps can be easily implemented.

3. Mean reversion is built into the VAR1 model.

The VAR1 model is discrete in time but continuous in states, so in order to use the model

as a scenario generator for stochastic programs we need to discretize it in states as well.

This can be done using a moment matching model (as described in chapter 4). The yield

curve scenario discretization model is described in the next section.

6.2 Scenario Generation and Event Tree Construction

In Dynamic Stochastic Programming (DSP) literature for fixed income securities, simple

models of interest rates often are used to represent the underlying interest rate uncertainty.

In several applications lattice structures are either blown up into unique paths or sampled

from, so as to account for the path dependency of DSP problems. See for example, Zenios

at [14], and Rasmussen and Clausen at [11]. One immediate problem with such approaches

is that the uncertainty space is not covered as efficiently as possible. This is mainly due to

the recombining structure of the original trees.

Others (such as Nielsen and Poulsen at [10]) have used continuous interest rate models.

Such models are either continuous both in time and state, or discrete in time and contin-

uous in states. Discretizing in time is normally straight forward; it is a question of refor-

mulating a differential equation into a difference equation. Discretizing in state, however,

is often a more challenging issue. A number of nodes (in our case including yield curve

information) have to be generated for each time point to give a discrete representation of
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the continuous distribution. There is no general consensus as to the best way of doing this

discretization. According to one trend of research, the main focus is on generating discrete

distributions which mimic the underlying continuous distribution as closely as possible.

This is either done by sampling (as described in more detail in chapter 3), or moment

matching approaches (as described in detail in chapter 4). Another trend of research states

that the aim is not necessarily to get the closest discrete representation of the continuous

distribution, but rather to find a discrete representation which results in a closer approxi-

mation to the “true” optimal solution of the stochastic program in question. Here the “true”

optimal solution refers to the solution we will get if we were able to solve the stochastic

program using the underlying continuous process directly. Indeed if we were able to do

that, there would be no need to discretize the process in the first place. Nevertheless, it can

be shown (see Pflug at [19]) that in general if the discrete process has the smallest distance

(using the transport metric) to the underlying continuous process, then the SP solutions

found will be guaranteed to be within certain bounds of the “true” SP solutions. (see also

Pflug and Hochreiter at [47]). Although theoretically appealing, the guaranteed bounds are

in many cases too large to have any practical interest (see Wallace and Kaut at [8]). Com-

parison and further development of specialized models and solution algorithms for these

two streams of scenario discretization approaches are the subject of future research.

The following section will propose a yield curve scenario generation model which abides

by accuracy, consistency and correctness. That is done by matching the moments and co-

variance using moment matching (for complying with accuracy and consistency). The solid

financial background behind the model leads for correctness of the generated scenarios.
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6.3 The Complete Model

6.3.1 Description of Model Data

We define the following sets, parameters and variables:

– f : Set of factors (level, slope and curvature), f ′ is alias for f .

– i: Set of zero coupon bonds (zcb’s).

– i′: A subset of the set i corresponding to the zcb–rates which define the three factors.

We have chosen i′ to be the set of 1, 5 and 30 year.

– t: Set of time points.

– s: Set of scenarios.

– Mean f : Mean value for factor f . This value comes from the VAR1 model.

– Covar f , f ′: The covariance matrix of the error term taken from the VAR1 model.

– S kewness f : Skewness of factor f . Assumed to be zero based on the normality as-

sumption of the VAR1 model.

– τt
i: Time to maturity for zcb i at time t.

– Y (VAR1)
s,i : The variable calculating the yields for scenario s and zero coupon bond i for

the VAR1 model.

– NS Yi′,s: The value of the Nelson-Siegel yields for scenario s and zero coupon bond

i’.

– Rs,i: The interest rate of scenario s and zero coupon bond i.

– CPchild
i,s is the child price at scenario s corresponding to zero coupon bond i.

– PPparent
i is the parent price corresponding to zero coupon bond i.
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– φConst
i is the positive vector with index i ensuring arbitrage–free pricing of all zero

coupon bonds.

6.3.2 The Model

Note that the scenario generation model here is designed for single period. The model can

be extended to a multi–period model with some minor changes.

Minimize
∑

f

(E(x) f − Mean f )2 +
∑

f

∑
f ′

(σ(x) f , f ′ −Covar f , f ′)2+

∑
f

(E3(x) f − S kewness f )2 +
∑

s

∑
i′

(Y (VAR1)
i′,s − NS Yi′,s)2 (6.1)

E(x) f =
∑

s

psxs, f for all f (6.2)

σ(x) f , f ′ =
∑

s

ps(xs, f − E(x) f )(xs, f ′ − E(x) f ′) for all f , f ′ (6.3)

E3(x) f =

∑
s(xs, f − E(x) f )3

(
∑

s(xs, f − E(x) f )2)3/2 for all f (6.4)

NS Yi′,s = ϕs,0 + ϕs,1e−ϕs,3τ
parent
i′ + ϕs,2τ

parent
i′ e−ϕs,3τi′ for all s, i′ (6.5)

Rs,i = ϕs,0 + ϕs,1e−ϕs,3τi + ϕs,2τ
parent
i e−ϕs,3τ

parent
i for all s, i (6.6)
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Y (VAR1)
s,1 = xs,1 for all s (6.7)

Y (VAR1)
s,30 = xs,2 + Y (VAR1)

s,1 for all s (6.8)

Y (VAR1)
s,5 =

4
29

Y (VAR1)
s,30 +

25
29

Y (VAR1)
s,1 + xs,3 for all s (6.9)

Rs,i ≥ 0.005 for all s, i (6.10)

PPparent
i = e−riτ

parent
i for all i (6.11)

CPchild
i,s = e−Ri,sτ

child
i for all s, i (6.12)

PPparent
i =

∑
s

φConst
i CPchild

i,s for all i (6.13)

φConst
i ≥ 0 for all i (6.14)

The complete model includes the following points:

– Matching the moment of the vector autoregressive model that is described at section

6.1 for a possible future time point (which depends on the value of k).

– The VAR1 model is matching the realizations of the vector of factors - slope, level

and curvature.

– The objective function at equation 6.1 matches the first three moments of the VAR1

model, as well as matches the Nelson-Siegel smoothing of the yield curve.
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– Equations 6.2, 6.3, 6.4 matches the mean, variance and skewness of the VAR1 model.

(From computational behaviour it might be considered a good idea to keep all these

three equations as part of the objective function rather than as constraints, however,

from the modularity of the model it is described in this way.).

– Equations 6.11, 6.12 and 6.13, deal with the arbitrage removal process.

– The rest of the equations transforms the factors back into the yield curve, defines the

values for the Nelson-Siegel smoothing and calculates the rates of the yield curve.

6.4 Difficulties in Solving the One Period Model

Even though, intuitively solving the model described in previous section as a one stage

model can lead for a better control over the solution since the optimal solution would

balance an arbitrage free solution, with smoothing and keeping the correct moments of

the outcome scenarios, the high complexity of the non-linear model (quadric objective

function with non-linear constrains) leads for an undesired outcome of the optimization

model.

Therefore, the model was broken down to an iterative procedure as described below:

1. Calculate the error term suggested by the VAR1 model at 6.1 using moment matching

(match the first three or four moments plus covariance).

2. Calculate the complete VAR1 model with the error term.

3. Create the yield curve by a smoothing method (Nelson-Siegel or an affine smoothing

method).

4. Remove Arbitrage
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Of course the iterative model can no longer ensure that the smoothing and the arbitrage

removal process does not effect the optimality of the moment matching used as part of

the VAR1 model calculation. On the other hand, a one stage complex optimization model

might lead to worse results when a local optimal solution is found. A comparative study of

the two models suggests a very interesting mathematical and practical study.

6.5 Variations of The Model

The basic model and the iterative approach that are described in previous sections are based

on concrete implementation that can be changed or extended. This section provides a short

summary about the possible variations using this implementation in order to extend or to

test the model:

– Moment matching was implemented using the algorithm suggested by Højland and

Wallace [4]. Moment matching could also be done differently using the algorithm

suggested by Højland, Kaut and Wallace at [6], as was carried out and tested in the

next chapter. Other approaches for scenario generation can also be used as an alter-

native for moment matching. (Subject for further research.)

– The smoothing method can be changed. The affine smoothing and Nelson Siegel were

tested in this work. Other smoothing approaches can also be implemented and tested.

– Instead of using an arbitrage removal process a non–arbitrage condition can be added

to the scenario generation method as shown in section 5.2.5.

– The definitions of the factors as a linear combination of the rates in order to calcu-

late the level, slope and curvature can be done differently. Testing different linear

combination for finding these factors is a subject for future work.
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6.6 Summary

A VAR1 model was suggested to perform scenario generation of the term structure. The

scenario generation problem suggested was hard to solve, and that led for an iterative

approach towards scenario generation. A different variations of the scenario generation

were tested and the results will be shown in the next chapter.



Chapter 7

Fundamental Analysis of Results

The VAR1 model from the previous chapter was tested in order to uncover its capabilities

and assess its qualities. The basic configuration was tested over a period of two years.

The first results were computed based on the period up to August 2005 and the second

test was done for the period up to May 2007. Moreover, the problem was tested with and

without arbitrage removal as well as using an affine smoothing in comparison to smoothing

introduced by Nelson-Siegel. The problem was also tested by comparing different moment

matching approaches from chapter 4.

The basic configuration used in this chapter is the VAR1 model from the previous chapter

with affine smoothing, arbitrage removal and moment matching approach by Højland &

Wallace [4] observing the first three moments as well as the covariance matrix.

For the multi–period case, the 3–factor scenario generation approach was tested on dif-

ferent types of trees and was also compared to the 1–factor Vasicek model for scenario

generation.
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7.1 Looking at Different Amount of Scenarios

The following graphs present the results obtained when running a one period yield curve

scenario generation. The moment matching is based on Højland and Wallace as described

in section 4.2, affine smoothing before and after the arbitrage removal process. Figures

7.1, 7.2, 7.3 and 7.4 presented the 4, 8, 16 and 32 scenarios trees that were generated

respectively.

In all the figures presented in this chapter:

– The black square represents the drift, which is the mean reversion factor of the model.

– The green circle represents the median point of all the scenarios generated.

The following observations where made when exploring these results:

– The growth in the number of scenarios definitely leads to a more complex tree that

might allow a more thorough risk assessment of the optimization problem.

– Observe, for example, that the one year returns using 32 scenarios the range is from

0.008 to 0.044, while for 4 scenarios it ranges between 0.012 and 0.036. As expected,

this indicates that the larger the number of scenarios being used, the better the risk

management capabilities of the mode. What is more, the interest range for this period

was within the results achieved by both the 32 and the 4 scenario forecast.

– It is also interesting to observe that the scenarios achieved by the 4 scenario model

for both 1 and 6 year rates are almost symmetric to the median.

– It has also been observed when comparing the results before and after arbitrage re-

moval that the arbitrage removal process does not effect the structure of the trees

very much. That in return, gives us a good indication that the scenarios after the arbi-

trage removal process are in a reasonable distance from the original scenarios which

represent the correct moments and correlation.
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Figure 7.1: 4 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
August 2005.)
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7.2 Future Forecasting

The same forecasting was done for results until May 2007. The results are shown at figures

7.5, 7.6, 7.7 and 7.8 presented the 4, 8, 16 and 32 scenarios trees that were generated

respectively.

As can be seen, the observation of the previous period still holds for this period. This

indicates that the purposed approach reflects consistent results. It should be stressed again

that allegedly 16 scenarios are needed in order to receive high quality.

7.3 Comparing Scenario Generation Approaches

A similar configuration to the basic configuration of this chapter can be created using the

heuristic suggested by Højland, Kaut and Wallace at [5] (also explained in section 4.3) in

which the first four moments where matched together with the correlation matrix. Figure

7.9 presents the results obtained when running a one period yield curve scenario generation

with an affine smoothing, one period model having 16 scenarios.

The following observations where made when exploring these results:

– The results resemble a normal distribution more than the results achieved by the

scenario generation used so far.

– The volatility of the long term interest rate is high in comparison with the short term

interest rate. This creates a problem with the correctness of the scenario generation

method as one would expect the volatility of the long term interest rate to be lower as

observed in real life.

– The heuristic has been run several times in order to examine the difference in the

results achieved. Figure 7.10, represents a run of the algorithm where the volatility
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of the long term interest rate is lower by comparison to the short term interest rate.

However, there is one extreme scenario for the 20-year rate. If we ignore that ex-

treme scenario, the results still resemble a more normal distribution than the results

achieved using the moment matching approach suggested by Højland and Wallace.

– When the data of August 2005 was used in figure 7.11, the results led to the under-

standing that an in depth stability analysis of this method should be done (together

with the mortgagor problem, for example) in order to examine the stability of the

solutions generated by these moment matching approaches. When the data of August

2005 was used in figure 7.11, the results led to the understanding that an in depth sta-

bility analysis of this method should be done (together with the mortgagor problem,

for example) in order to examine the stability of the solutions generated by these mo-

ment matching approaches. Figure 7.11 presents a very unrealistic situation. In the

observed figure, the 1-year rate volatility is lower than the one examined in the 6-year

rate which is lower than the one in the 20-year rate. This outcome is not acceptable

as far as the correctness criterion is concerned. The results of this figure seem to be

very unambiguous. As opposed to what is actually happening in financial research,

the results displayed in this figure maintain that for a longer maturity interest rate

there is higher volatility.

As can be surmised in this section, using a different moment matching methodology as part

of the VAR1 model seems to have the greatest influence on the observed results. Therefore,

an in depth sensitivity analysis of the different moment matching methodology is suggested

in order to better qualify the effectiveness of this approach.
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7.4 Comparing Affine Smoothing with Nelson-Siegel

The following figures present the results obtained when running a one period yield curve

scenario generation. The moment matching is based on Højland and Wallace as described

in section 4.2 and Nelson-Siegel smoothing before and after the arbitrage removal process.

Figures 7.12, 7.13, 7.14 and 7.15 present the 4, 8, 16 and 32 scenarios trees generated

respectively.

The following observations where made when exploring these results:

– For 4 scenarios the difference between the affine smoothing at 7.1 and the Nelson-

Siegel smoothing as presented at 7.12 is mainly on the 1-year rate in which the results

of the affine model appear a bit more diversified.

– For 8 scenarios, the results are very similar.

– For 16 scenarios the 1-period results using the affine model create a more diversified

scenario generation.

– For 32 scenarios the results are quite similar.

– Except for the 1-year rate for the 4 and 16 scenarios (in which the affine scenarios

look a little bit more diversified) the results are quite similar. Therefore, it is con-

cluded that the effect of using different smoothing strategy is not vital for the results

received. It gives the impression that the results achieved by the affine model are

slightly better in the sense that it is somewhat more diversified and can be better for

risk management.

Therefore, the choice of different smoothing algorithm is of low priority since the results

show that it does not have a lot of effect on the outcome. The results for the period of May

2007 are similar and can be found at Appendix 1.
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7.5 Comparing Different Multi-Stage Scenario Genera-

tion Approaches – the Vasicek and the VAR1 Models

Three different tree structures were compared to generate scenarios for the period May

2007 until May 2012. The Vasicek model keeps the tree structure of 3–3–3–3–3, which

is branched yearly at five time points. Whereas the VAR1 model contains 4 periods. This

model has only four future time points which are 2008, 2009, 2010 and 2012. This is

because it was decided to keep a similar number of total scenarios in order to have more

comparative results. The VAR1 model was implemented with two different tree structures.

One is symmetric a 4–4–4–4 tree and the other one is a left weighted tree of the 16–4–2–2

structure.

As observed by Dempster at [68], the recommended tree structure is likely to be a heavy

left tree, i.e. trees that contains many more branching point at the early time point rather

than at later stages. (For example, a tree structure of 32–4–2–2, where more branching

is done on the first stage (32) in comparison to the last stage of 2 child nodes from each

parent node). That is an intuitive result when one is taking into account the fact that a

scenario generation might have stronger capturing capabilities for the first stages where

the stochasticity is still within considerable range, since all the future scenarios in stochas-

tic programming are made in order to find the right decision today. This also presents a

telescopic view reflecting higher importance of decisions made earlier in the decision tree

when used later in the optimization problem.

The results of the comparisons for 1-year rate, 6-year rate and 20-year rate can be seen in

figures 7.16, 7.17, 7.18 respectively.

The following observations where made when exploring these results:

– Observing the one year rate from figure 7.16, both configurations of the VAR1 model
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suggest higher volatility in the rates than the one presented by the Vasicek model and

are believed to more correctly predict the observed changes in interest rates. More-

over, it can also be seen that the left weighted tree does not predict very low interest

rates (lower than 2.5% ). That is in accordance to the observed behaviour in the Dan-

ish market. That in comparison to the 4–4–4–4 tree which suggests a few scenarios

where the level of the interest rate is almost zero. For this period it is concluded that

the VAR1 left weighted tree produces the best presentation followed by the 4–4–4–4

VAR1 tree.

– Observing the six and the twenty year rate from figures 7.17 and 7.18 the volatility

of the Vasicek model is by no means acceptable and is much too low to be used for

appropriate risk management. Both VAR1 approaches produce more valid scenarios.

The 4–4–4–4 VAR1 model produces too high volatilities for the middle and long term

interest rates while keeping a few scenarios with a predicted interest rate of almost

0%. That result is not optimal from the perspective of the correctness criteria, but it is

still much more useful than the one presented by the Vasicek model. The left weighted

tree suggests a more reasonable volatility and still does not expect the interest rate

to go below 2.5%. That in return applies much better correctness. However, it seems

to suffer from some gaps, i.e. a few intervals in which no interest rate scenarios are

observed which is very surprising. This result might indicate that a different scenario

generation approach might lead to better scenarios. Still the left weighted scenario

tree presented the most useful results.

It should also be mentioned that as shown by Rasmussen & Poulsen [39] when comparing

the 1–factor interest rate model such as the Vasicek model to the proposed 3–factor VAR1

model with the observed yield curve, a clear dominant indication exists leaning towards

the VAR1 model.
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7.6 Summary

This chapter examines several configurations of the VAR1 model. A study was done to test

the different components that assimilate these processes – changing the scenario generation

method, the smoothing method, testing over different time points and with and without the

arbitrage removal process. This study conducted a comprehensive comparison between

two configurations of the VAR1 model and the Vasicek model.

There are still, of course, numerous places in this method that can be improved. However,

the overall picture generated by this VAR1 model is promising.
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Figure 7.2: 8 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
August 2005.)
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Figure 7.3: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
August 2005.)
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Figure 7.4: 32 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
August 2005.)



7.6 Summary 121

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

zcby1 Before arbitrage removal

2007 2008

R
at

e

Years

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

zcby1 After arbitrage removal

2007 2008
R

at
e

Years

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

zcby6 Before arbitrage removal

2007 2008

R
at

e

Years

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5
zcby6 After arbitrage removal

2007 2008

R
at

e

Years

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

zcby20 Before arbitrage removal

2007 2008

R
at

e

Years

0.
03

5
0.

04
0

0.
04

5
0.

05
0

0.
05

5

zcby20 After arbitrage removal

2007 2008

R
at

e

Years

Figure 7.5: 4 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
May 2007.)
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Figure 7.6: 8 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
May 2007.)
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Figure 7.7: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
May 2007.)
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Figure 7.8: 32 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Affine Smoothing is Used on Data Up To
May 2007.)
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Figure 7.9: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before Arbitrage
Removal. (Moment Matching is Based on 4.3 and Affine Smoothing is Used on Data Up To May 2007.)
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Figure 7.10: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before Arbitrage
Removal. (Moment Matching is Based on 4.3 and Affine Smoothing is Used on Data up To May 2007.)
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Figure 7.11: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before Arbitrage
Removal. (Moment Matching is Based on 4.3 and Affine Smoothing is Used on Data Up To August 2005.)
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Figure 7.12: 4 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To August 2005.)
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Figure 7.13: 8 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To August 2005.)
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Figure 7.14: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To August 2005.)
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Figure 7.15: 32 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To August 2005.)
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Figure 7.16: Comparing Scenarios for the 1–Year Rate as Achieved by the Vasicek and VAR1 Models for
Different Tree Structures)
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Figure 7.17: Comparing Scenarios for the 6–Year Rate as Achieved by the Vasicek and VAR1 Models for
Different Tree Structures)



134 CHAPTER 7. FUNDAMENTAL ANALYSIS OF RESULTS

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate Vasicek 3−3−3−3−3

2007 2008 2009 2010 2011 2012

R
at

e

Years

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate VAR1 4−4−4−4

2007 2008 2009 2010 2012

R
at

e

Years

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

20 years rate VAR1 16−4−2−2

2007 2008 2009 2010 2012

R
at

e

Years

Figure 7.18: Comparing Scenarios for the 20–Year Rate as Achieved by the Vasicek and VAR1 Models
for Different Tree Structures)



Chapter 8

Conclusions

8.1 Summary and Research Contribution

As in general stochastic programming, the principle of garbage in garbage out (GIGO)

holds. Therefore, there is a steadily growing interest in the evaluation of good scenario

generation methods. That is a result of the increasing computing power that allows stochas-

tic programming to solve immense multi–stage optimization problems following the swell

of industrial projects that are based on stochastic programming (such as the work done

by Nykredit on the mortgagor problem, the work done by Pioneer Investment for pension

funds, etc.)

It is not believed, however, that a general scenario generation for all multi–stage stochastic

programming can be found. One of the vital contributions presented in this thesis is ex-

ploring specific scenario generation methods that are valid for the term structure of interest

rate. This report therefore suggests an iterative mathematical program in order to receive

high-quality scenario trees for interest rates by following these steps:

1. Choose appropriate and trusted (econometric) model.
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2. Estimate model parameters.

3. Identify an appropriate theoretical scenario generation method for the problem do-

main.

4. Assemble the scenario generation process with the econometric factors.

5. Add domain specific constraints for the scenario generation process.

6. Generate scenario tree (for stochastic optimization).

The first two steps are accomplished by researching the term structure of interest rate,

and identifying the interest rate factors and later simulating the corresponding parameters.

These steps can help the scenario generation achieve consistent results according to the

known literature about the term structure of interest rates. This will ensure that a scenario

generation criterion for correctness is achieved.

The third step is to follow an understanding of the appropriate scenario generation method-

ology for the specific problem that is solved1. This will ensure that the scenario created

satisfies the accuracy and consistency criteria for scenario generation.

Steps 4 and 5 ensure that the accomplished scenario generation methodology is domain

specific and ensure that the scenarios received are correct for all of the mentioned quality

criteria for scenario generation.

The process suggested above is useful for most scenario generation methods that are indus-

try specific. Correctness parameters might be different when developing a scenario genera-

tion approach for Supply Chain Management (SCM). However, the same procedure can be

used for a SCM scenario generation as well, with different model parameters and trusted

modeling of the state of the art and the industry fundamentals in that specific field.

1For example, use the heuristic for scenario generation suggested in section 4.3, if the matched distribution
resembles normal distribution because this approach is started by identifying the desired distribution based on a
normal distribution.
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The research carried out in this thesis has a number of other values – such as identifying

different scenario generation approaches and studying the possibility to extend it for in-

terest rate scenario generation. The moment matching scenario generation approach was

extended to a model that identified the econometric parameters needed for interest rate

scenario generation and an implementation of a VAR1 model that accomplishes these stan-

dards was presented. This study was further tested by looking into different variations of

the VAR1 model, testing various time periods, diverse smoothing methods, an assortment

of scenario generation approaches and the number of scenarios created. The results appear

very promising and this approach might be further used in connection with the mortgagor

optimization problem at Nykredit.

As mentioned, this project identifies the lack of standards for scenario generation quali-

ties and presents an iterative conceptual method for domain specific scenario generation

approaches.

8.2 Future Work

At present there is no standardization of scenario generation approaches. My desire is de-

velop a standardization that could benefit the stochastic programming society. In addition,

I encourage others to do further research on top of the suggested models as presented in

this thesis.

– Creating industry standards for scenario generation

This research has identified many instruments that are essential for different scenario

generation approaches. It is also known that there is no dominant scenario generation

strategy. Furthermore, it is almost impossible to develop one, since it is very difficult

to compare different scenario generation approaches.
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Today with the augmentation of computation power along with a growth in the use of

stochastic programming techniques in the industry, scenario generation is identified

to be an important pillar in the creation of products. Much research has been done

in regards to scenario generation (Professor Wallace and Dr. Kaut at Norway, Profes-

sor Pflug and Professor Hochreiter in Austria, Professor Dempster and Dr Medova

at Cambridge University, Professor Gautam Mitra of Brunnel University, etc). How-

ever, a useful in depth comparison of their results is hard to establish since there

are no clear standards for scenario generation. I would suggest to establish a list of

classical stochastic programming problems as standard problems that can be solved

using scenario generation. These problems should include data to be used in order

to estimate the scenario generator parameters and predict future scenarios. The result

of this process could then be compared to other results achieved by the different sce-

nario generators. This could lead to a more coherent discussion around the quality

achieved by different scenario generation approaches and assure that future research

will comply with the identified and accepted quality standards.

Many thorough multi–stage optimization problems can be found in the literature. The

GIGO principle states that the usefulness of these well thought of projects in the sense

of solving practical problems can not be achieved without a solid scenario generation

technique presented. The author argues that there is a necessity to establishing a set

of problems for stability testing of different methods and performing thorough re-

search by comparing these approaches across different industries which is vital for

the growth of the stochastic programming community.

– Further extension of scenario generation approaches suggested in this thesis

∗ Extending the VAR1 model

The complete VAR1 model presented in chapter 6 has not yet been implemented

as a stand alone stochastic program. This sort of implementation will allow the
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model to achieve better control over the sensitivity of its different parts. A com-

parative study of the two models, both the iterative model used in this report

as well as the complete one stage model, could develop into a very interesting

mathematical and practical study. Finding appropriate decomposition methods

in order to try and solve the one stage problem could be extremely challenging.

∗ Sensitivity test of scenario generation approaches

As demonstrated, the scenario generation method used as part of the VAR1

model can lead to different scenario trees based on the values of different starting

points. A sensitivity analysis study should be performed on the values received

by the optimization model (in the case presented here, the mortgagor problem)

to examine the stability of the results using different starting points.

∗ Try different scenario generators

It would be necessary to compare the efficiency of different scenario generators

as part of the iterative procedure to generate interest rate scenarios.

∗ Trying different arbitrage removal processes

Currently the arbitrage removal process can effect the quality of the solutions

found using moment matching. An alternative solution can be reached by adding

non arbitrage constraints directly into the scenario generation process, as shown

by Klaassen at [38].

∗ Try different variations of the factor analysis

Examine different interpretations of the yield curve, especially regarding the

level, slope and curvature that can lead to better econometric parameters and

suggest better correctness for the term structure scenario generation process.
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Appendix A

Appendix 1 - More Test Results

A.1 May 2007 - Nelson Siegel Smoothing

A.2 Results Including All The Term Structure May 2007

32 scenarios

Here I show a figure of the complete term structure of interest rates for 32 scenarios per-

dicted based on information until May 2007. I hold similiar resuslts for other periods and

different number of scenarios as well as for Nelson-Siegel smoothing with and without

arbitrage. Please contact me if you are interested in the results or in receiving the R code

for drawing the trees.
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Figure A.1: 4 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To May 2007.)
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Figure A.2: 8 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To May 2007.)
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Figure A.3: 16 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To May 2007.)
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Figure A.4: 32 Scenarios to Represent the Yields Curve of the 1, 6 and 20 Year Rates Before and After
Arbitrage Removal. (Moment Matching is Based on 4.2 and Nelson-Siegel Smoothing is Used on Data
Up To May 2007.)
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Figure A.5: Term Structure Generated for 32 Scenarios, Affine Smoothing and No Arbitrage Removal
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