Numerical Algorithms for Sequential
Quadratic Optimization

Esben Lundsager Hansen s022022
Carsten Volcker s961572

Kongens Lyngby 2007
IMM-M.Sc-2007-70

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-M.Sc: ISSN 0909-3192

Abstract

This thesis investigates numerical algorithms for sequential quadratic program-
ming (SQP). SQP algorithms are used for solving nonlinear programs, i.e. math-
matical optimization problems with nonlinear constraints.

SQP solves the nonlinear constrained program by solving a sequence of associat-
ing quadratic programs (QP’s). A QP is a constrained optimization problem in
which the objective function is quadratic and the constraints are linear. The QP
is solved by use of the primal active set method or the dual active set method.
The primal active set method solves a convex QP where the Hessian matrix is
positive semi definite. The dual active set method requires the QP to be strictly
convex, which means that the Hessian matrix must be positive definite. The
active set methods solve an inequality constrained QP by solving a sequence of
corresponding equality constrained QP’s.

The equality constrained QP is solved by solving an indefinite symmetric linear
system of equations, the so-called Karush-Kuhn-Tucker (KKT) system. When
solving the KKT system, the range space procedure or the null space procedure
is used. These procedures use Cholesky and QR factorizations. The range
space procedure requires the Hessian matrix to be positive definite, while the
null space procedure only requires it to be positive semi-definite.

By use of Givens rotations, complete factorization is avoided at each iteration
of the active set methods. The constraints are divided into bounded variables
and general constraints. If a bound becomes active the bounded variable is
fixed, otherwise it is free. This is exploited for further optimization of the
factorizations.

ii Abstract

The algorithms has been implemented in MATLAB and tested on strictly convex
QP’s of sizes up to 1800 variables and 7200 constraints. The testcase is the
quadruple tank process, described in appendix [Al

Main Findings of this Thesis

When the number of active constraints reaches a certain amount compared to
the number of variables, the null space procedure should be used. The range
space procedure is only prefereble, when the number of active constraints is very
small compared to the number of variables.

The update procedures of the factorizations give significant improvement in
computational speed.

Whenever the Hessian matrix of the QP is positive definite the dual active
set method is prefereble. The calculation of a starting point is implicit in the
method and furthermore convergence is guaranteed.

When the Hessian matrix is positive semi definite, the primal active set can be
used. For this matter an LP solver should be implemented, which computes a
starting point and an active set that makes the reduced Hessian matrix positive
definite. This LP solver has not been implemented, as it is out of the range of
this thesis.

Dansk Resumeé

Dette Projekt omhandler numeriske algoritmer til sekventiel kvadratisk pro-
grammering (SQP). SQP benyttes til at lgse ikke-linesere programmer, dvs.
matematiske optimeringsproblemer med ikke-linaere begraensninger.

SQP lgser det ikke-linezert begraensede program ved at lgse en sekvens af tilhgrende
kvadratiske programmer (QP’er). Et QP er et begraenset optimeringsproblem,
hvor objektfunktionen er kvadratisk og begraensningerne er linesere. Et QP lgses
ved at bruge primal aktiv set metoden eller dual aktiv set metoden. Primal aktiv
set metoden lgser et konvekst QP, hvor Hessian matricen er positiv semi definit.
Dual aktiv set metoden kreever et strengt konvekst QP, dvs. at Hessian matri-
cen skal veere positiv definit. Aktiv set metoderne lgser et ulighedsbegraenset
QP ved at lgse en sekvens af tilhgrende lighedsbegaensede QP er.

Losningen til det lighedsbegraensede QP findes ved at lgse et indefinit sym-
metrisk linezert ligningssystem, det sakaldte Karush-Kuhn-Tucker (KKT) sys-
tem. Til at lgse KKT systemet benyttes range space proceduren eller null space
proceduren, som bruger Cholesky og QR faktoriseringer. Range space proce-
duren kraever, at Hessian matricen er positiv definit. Null space proceduren
kraever kun, at den er positiv semi definit.

Ved brug af Givens rotationer ungas fuld faktorisering for hver iteration i aktiv
set metoderne. Begraensningerne deles op i begraensede variable og egentlige
begrzensninger beskrevet ved funktionsudtryk. Begraensede variable betyder,
at en andel af variablene er fikserede, mens resten er frie pr. iteration. Dette
udnyttes til yderligere optimering af faktoriseringerne mellem hver iteration.

Algoritmerne er implementeret i MATLAB og testet pa strengt konvekse QP’er

iv Dansk Resumé

bestaende af op til 1800 variable og 7200 begraensninger. Testeksemplerne er
genereret udfra det firdobbelte tank system, som er beskrevet i appendix [Al

Hovedresultater

Nar antallet af aktive begraensninger nar en vis maengde i forhold til antallet
af variable, bgr null space proceduren benyttes. Range space proceduren bgr
kun benyttes, nar antallet af aktive begreensninger er lille i forhold til antallet
af variable.

Nar fuld faktorisering undgas ved at benytte opdateringer, er der betydelige
beregningsmaessige besparelser.

Hvis Hessian matricen af et QP er positiv definit, bgr dual aktiv set meto-
den benyttes. Her foregar beregningerne af startpunkt implicit i metoden, og
desuden er konvergens garanteret.

Hvis Hessian matricen er positiv semi definit, kan primal aktiv set metoden
benyttes. Men her skal der benyttes en LP-Igser til at beregne et startpunkt og
et tilhgrende aktivt set, som medfgrer at den reducerede Hessian matrix bliver
positiv definit. Denne LP-lgser er ikke blevet implementeret, da den ligger
udenfor omradet af dette projekt.

Vi

Contents

Contents

[Abstraci i
[Dansk Resumd iii
[l__Introductiod 1
[L1 Research Objectivd 2
(L2 Thesis Strocturd 3

B Bonalite C Tnod Quadratic D d 5
2.1 Range Space Procedurd 7
2 Null Space Procedurd 11
2.3 Computational Cost of the Range and the Null Space Procedured 15
R.3.1 Computational Cost of the Range Space Procedurd . . 15

R.3.2 Computational Cost of the Null Space Procedurd 16

viii

CONTENTS

B Tobiine P b Tt

B.1__Givens rotations and Givens reflectiond

l4__Active Set Methodd

W1 Primal Active Set Method

K12 Improvine Direction and Step Leneth . . .

K13 Appendine and Removine a Constraintl

W34 Starting Guesd

W35 Tnsummard

83

5.1 Computational Cost of the Range and the Null Space Procedures

with Update

CONTENTS ixX
.3 Corresponding Constraintd 88
5.4 Distingnishing Between Bonnds and General Constraintd 93

6 Nonlinear Programming 95
[6.1_Sequential Quadratic Programming 95
6.2 SQP by exampld 99

[Z_Conclusiod 103
L1 _Future Worldl 104

[Bibliographyl 107

[A_Quadruple Tank Procesd 109

[B_QP Solver Interfacd 117

IC_Tmplementation 119
[C1 PFquality Constrained QPd 119
IC2 Tnequality Constrained QPd 120
[C3 Nonlinear Programming« vvvv e 120
IC.4 Updating the Matrix Factorizationd. 120
C5 Demad 122
IC6 Auxiliary Functiond 122

[D_Matlabh-codd 123
[D.1 FEquality Constrained QPd 123

CONTENTS

[D.2 Tnequality Constrained QP 125
[D.3 Nonlinear Programming o ooo 140
ID.4_Updating the Matrix Factorizationd 143
D5 Demod 155

CHAPTER 1

Introduction

In optimal control there is a high demand for real-time solutions. Dynamic
systems are more or less sensitive to outer influences, and therefore require fast
and reliable adjustment of the control parameters.

A dynamic system in equilibrium can experience disturbances explicitly, e.g.
sudden changes in the environment in which the system is embedded or online
changes to the demands of the desired outcome of the system. Implicit dis-
turbances have also to be taken care of in real-time, e.g. changes of the input
needed to run the system. In all cases, fast and reliable optimal control is es-
sential in lowering the running cost of a dynamic system.

Usually the solution of a dynamic process must be kept within certain lim-
its. In order to generate a feasible solution to the process, these limits have to
be taken into account. If a process like this can be modeled as a constrained
optimization problem, model predictive control can be used in finding a feasible
solution, if it exists.

Model predictive control with nonlinear models can be performed using sequen-
tial quadratic programming (SQP). Model predictive control with linear models
may be conducted using quadratic programming (QP). A variety of different
numerical methods exist for both SQP and QP. Some of these methods com-
prise the subject of this project.

2 Introduction

The main challenge in SQP is to solve the QP, and therefore methods for solv-
ing QP’s constitute a major part of this work. In itself, QP has a variety of
applications, e.g. Portfolio Optimization by Markowitz, found in Nocedal and
Wright [T4], solving constraint least squares problems and in Huber regression
Li and Swetits [I]. A QP consists of a quadratic objective function, which we
want to minimize subject to a set of linear constraints. A QP is stated as

. 1 T
min -z Gz x
T cR™ 2 +g
S.t. Il<zx<u

by < ATz < by,

and this program is solved by solving a set of equality constrained QP’s

min -z’ Gx+g'x
weRn
S.t AT:II =b.

The methods we describe are the primal active set method and the dual active
set method. Within these methods the Karush-Kuhn-Tucker (KKT) systenﬂ

(S0)(5)--(8)

is solved using the range space procedure or the null space procedure. These
methods in themselves fulfill the demand of reliability, while the demand of ef-
ficiency is obtained by refinement of these methods.

1.1 Research Objective

We will investigate the primal and dual active set methods for solving QP’s.
Thus we will discuss the range and the null space procedures together with
different refinements for gaining efficiency and reliability. The methods and

IThis is the KKT system of the primal program, the KKT system of the dual program is
found in (L) at page B3

1.2 Thesis Structure 3

procedures for solving QP’s will be implemented and tested in order to determine
the best suited combination in terms of efficiency for solving different types of
problems. The problems can be divided into two categories, those with a low
number of active constraints in relation to the number of variables, and problems
where the number of active constraints is high in relation to the number of
variables. Finally we will discuss and implement the SQP method to find out
how our QP solver performs in this setting.

1.2 Thesis Structure

The thesis is divided into five main areas: Equality constrained quadratic pro-
gramming, updating of matrix factorizations, active set methods, test and re-
finements and nonlinear programming.

Equality Constrained Quadratic Programming

In this chapter we present two methods for solving equality constrained QP’s,
namely the range space procedure and the null space procedure. The methods
are implemented and tested, and their relative benefits, and drawbacks are
investigated.

Updating of Matrix Factorizations

Both the null space and the range space procedure use matrix factorizations in
solving the equality constrained QP. Whenever the constraint matrix is changed
by either appending or removing a constraint, the matrix factorizations can be
updated using Givens rotations. By avoiding complete re-factorization, compu-
tational savings are achieved. This is the subject of this chapter and methods
for updating the QR and the Cholesky factorizations are presented.

Active Set Methods

Inequality constrained QP’s can be solved using active set methods. These
methods find a solution by solving a sequence of equality constrained QP’s,
where the difference between two consecutive iterations is a single appended or

a4 Introduction

removed constraint. In this chapter we present the primal active set method
and the dual active set method.

Test and Refinements

In this chapter we test how the presented methods perform in practice, when
combined in different ways. We also implement some refinements, and their
impact on computational speed and stability are likewise tested.

Nonlinear Programming

SQP is an efficient method of nonlinear constrained optimization. The basic
idea is Newton’s method, where each step is generated as an inequality con-
strained QP. Implementation, discussion and testing of SQP are the topics of
this chapter.

CHAPTER 2

Equality Constrained
Quadratic Programming

In this section we present various algorithms for solving conved] equality con-
strained QP’s. The problem to be solved is

- _ 17 T
nin flx) = 5% Gx+g'z (2.1a)
s.t. ATz =b, (2.1b)

where G € R™*" is the Hessian matrix of the objective function f. The Hes-
sian matrix must be symmetric and positive semi definitdd. A € R™*™ is the
constraint matrix (coefficient matrix of the constraints), where n is the number
of variables and m is the number of constraints. A has full column rank, that is
the constraints are linearly independent. The right hand side of the constraints
is b € R™ and g € R™ denotes the coefficients of the linear term of the objective
function.

IThe range space procedure presented in section Bl requires a strictly convex QP.
2The range space procedure presented in section Bl requires G to be positive definite.

6 Equality Constrained Quadratic Programming

From the Lagrangian function

L(xz,\) = %wTGw +gTx - AT (ATz - b), (2.2)

which is differentiated according to & and the Lagrange multipliers A

VzL(x,A\) =Gx+g— AX (2.3a)
VL@,) =-A"z +b, (2.3b)

the problem can be formulated as the Karush-Kuhn-Tucker (KKT) system

(e o) () =-(8) o

The KKT system is basically a set of linear equations, and therefore general
solvers for linear systems could be used, e.g. Gaussian elimination. In order to
solve a KKT system as fast and reliable as possible, we want to use Cholesky
and QR factorizations. But according to Gould in Nocedal and Wright [I4] the
KKT matrix is indefinite, and therefore it is not possible to solve it by use of
either of the two factorizations. In this chapter, we present two procedures for
solving the KKT system by dividing it into subproblems, on which it is possible
to use these factorizations. Namely the range space procedure and the null space
procedure. We also investigate their individual benefits and drawbacks.

2.1 Range Space Procedure 7

2.1 Range Space Procedure

The range space procedure based on Nocedal and Wright [T4] and Gill et al. [2]
solves the KKT system (EZ4]), corresponding to the convex equality constrained
QP (ZI). The Hessian matrix G € R™ ™ must be symmetric and positive
definite, because the procedure uses the inverted Hessian matrix G~1. The

KKT system
(&N e

can be interpreted as two equations

Gr—A\=—g (2.6a)
ATx =b. (2.6b)

Isolating « in ([ZBal) gives
x=G 'AN -G g, (2.7)

and substituting) into ([26H) gives us one equation with one unknown A

AT(GT'AN -G 'g) = b, (2.8)
which is equivalent to
ATG'AN=ATG g +b. (2.9)

From the Cholesky factorization of G we get G = LL” and G™! = (L")~ 'L~ =
(L"HTL™'. This is inserted in ()

AT YL AN =AT(L Y 'L 'g+b (2.10)

8 Equality Constrained Quadratic Programming

SO

(L'A)TL AN = (L'A)TL g +b. (2.11)

From simplifying I), by defining K = L™*A and w = L™ 'g, where K can
be found as the solution to LK = A, and w as the solution to Lw = g, we get

KTKX=K"w+b. (2.12)

By now K, w and b are known, and by computing z = K w+band H = KT K
we reformulate [ZIZ) into

H\ =z (2.13)

The matrix G is positive definite and the matrix A has full column rank, so H is
also positive definite. This makes it possible to Cholesky factorize H = M M T
and by backward and forward substitution X is found from

MMT) = z. (2.14)
Substituting MTX with q gives

Mgq = z, (2.15)

and by forward substitution g is found. Now X is found by backward substitution
in

MTX =gq. (2.16)

We now know A and from (ZGal) we find x as follows

Gx=A\—g (2.17)

2.1 Range Space Procedure 9

gives us
LL"z = A\—g, (2.18)
and
L'x =L 'AX- L 'g, (2.19)
which is equivalent to
LTe = K\ —w. (2.20)

As K, A and w are now known, r is computed as » = KA—w, and by backward
substitution « is found in

L'z =7 (2.21)

The range space procedure requires G to be positive definite as G~ is needed.
It is obvious, that the procedure is most efficient, when G ™! is easily computed.
In other words, when it is well-conditioned and even better, if G is a diagonal-
matrix or can be computed a priori. Another bottleneck of the procedure is the
factorization of the matrix ATG 1A € R™*™_ The smaller this matrix is, the
easier the factorization gets. This means, that the procedure is most effecient,
when the number of constraints is small compared to the number of variables.

Algorithm EZTJl summarizes how the calculations in the range space procedure
are carried out.

10 Equality Constrained Quadratic Programming

Algorithm 2.1.1: Range Space Procedure.
Note: The algorithm requires G to be positive definite and A to have full
column rank.

Cholesky factorize G = LL”
Compute K by solving LK = A
Compute w by solving Lw = g
Compute H = KTK

Compute z = KTw + b
Cholesky factorize H = MM™*
Compute g by solving Mq = z
Compute X by solving M7\ = q
Compute r = KA —w

Compute x by solving LT @ = r

2.2 Null Space Procedure 11

2.2 Null Space Procedure

The null space procedure based on Nocedal and Wright [T4] and Gill et al. [B]
solves the KKT system () using the null space of A € R"*"™. This procedure
does not need G € R"*™ to be positive definite but only positive semi definite.
This means, that it is not restricted to strictly convex quadratic programs. The
KKT system to be solved is

(&) e

where A has full column rank. We compute the null space using the QR fac-
torization of A

a=a(®) - (%))

where Z € R"*(™=™) ig the null space and Y € R"*™ is the range space.
(Y Z) € R™*" is orthogonal and R € R™*™ is upper triangular.

By defining * = Qp we write

o= Qo= (v 2= (¥ 2)(") =Y, + 2. (2.01)

z

Using this formulation, we can reformulate (z)7 in @22) as

G)-(%

and because (Y Z) is orthogonal we also have

(lg g ?)T(Q: ;;Z . (2.26)

© N
~ o

) o (2.25)

12 Equality Constrained Quadratic Programming

Now we will use (ZZH) and 28) to express the KKT system in a more de-
tailed form, in which it becomes clear what part corresponds to the null space.

Inserting Z2Z0) and 2Z0) in Z2ZZ) gives

Yy zo\'/ G -A Y Z 0 Py
0 0 I -AT o 0 0 I ’;\z -
T
Y Z 0 g
(5 e
which is equivalent to
vigy v'gz —-(ATY)T Dy Yig
z'qgy z'Gz —-(A"z)T p- | =-| 2% |. (2.28)
ATy ATz 0 A b

By definition AT Z = 0, which simplifies ZZ8) to

v'cgy vY'Gz —(A"Y)T Dy YTg
z'cgy ZzZ'Gz 0 p. | =—-| Z% |. (2.29)
—Aly 0 0 A b

This system can be solved using backward substitution, but to do this, we need
the following statement based on [ZZ3J)

A=YR (2.30a)
AT = (YR)T (2.30D)
ATY = (YR)'Y (2.30c)
ATY =R'Y'Y (2.30d)
ATy = R". (2.30e)

and therefore the last block row from [ZZ9)

~A"Yp, = -b (2.31)

2.2 Null Space Procedure 13

is equivalent to

R"p, =b. (2.32)

As R is upper triangular this equation has a unique solution. When we have
computed p, we can solve the middle block row in (ZZ9)

zZ'GYp,+2"GZp. = -Z"g, (2.33)

The only unknown is p,, which we find by solving

(Z"GZ)p. = -Z" (GYpy + g). (2.34)

The reduced Hessian matrix (Z7 GZ) € R(*=™)*("=m) i positive definite and
therefore the solution to ([Z34) is unique. We find it by use of the Cholesky
factorization (Z'GZ) = LL". Now, having computed both py and p,, we
find A from the first block row in ZZ9)

Y'GYp, + Y 'GZp, - (ATY)'A=-Y"g, (2.35)

which is equivalent to

(AT"Y)Y'AN=Y"G(Yp, + Zp.) +Y'g. (2.36)

Using ZZ4) = = Yp, + Zp. and @3) A”Y = R” this can be reformulated
into

RA=Y"(Gz +g) (2.37)

and because R is upper triangular, this equation also has a unique solution,
which is found by backward substitution.

This is the most efficient procedure, when the degree of freedom n — m is small,
i.e. when the number of constraints is large compared to the number of variables.
The reduced Hessian matrix ZTGZ € R(*=)*(=m) orows smaller, when m

14 Equality Constrained Quadratic Programming

approaches n, and is thereby inexpensive to factorize. The most expensive part
of the computations is the QR factorization of A. While the null space Z can
be found in a number of different ways, we have chosen to use QR factorization
because it makes Y and Z orthogonal. In this way, we preserve numerical
stability, because the conditioning of the reduced Hessian matrix Z7 GZ is at
least as good as the conditioning of G.

Algorithm EZZTl summarizes how the calculations in the null space procedure
are carried out.

Algorithm 2.2.1: Null Space Procedure.
Note: The algorithm requires G to be positive semi definite and A to have
full column rank.

0
Cholesky factorize ZTGZ = LL”
Compute p, by solving Rpr =b
Compute g, = —ZT(GYpy +9)
Compute r by solving Lr =g,
Compute p, by solving Lsz =r
Compute ¢ = Yp, + Zp,
Compute A by solving RA = Y7 (Gz + g)

QR factorize A = (Y Z) (R)

2.3 Computational Cost of the Range and the Null Space Procedures 15

2.3 Computational Cost of the Range and the
Null Space Procedures

In this section we want to find out, how the range space and the null space
procedures perform individually. We also consider whether it is worthwhile to
shift between the two procedures dynamically.

2.3.1 Computational Cost of the Range Space Procedure

In the range space procedure there are three dominating computations in rela-
tion to time consumption. The computation of K € R™*™, computation of and
Cholesky factorization of H € R™*™,

Since L € R™ ™ is lower triangular, solving LK = A with respect to K is
done by simple forward substitution. The amount of work involved in forward
substitution is n? per column, according to L. Eldén, L. Wittmeyer-Koch and
H.B. Nielsen [I§]. Since K contains m columns, the total cost for computing
K is n?m.

We define Kp = K7 € R™*", Making the inner product of two vectors of
length n requires 2n operations. Since K7 consists of m rows and as mentioned
above K contains m columns, then the computational workload involved in the
matrix multiplication H = K+ K is 2nm?.

The size of H is m x m, so the computational cost of the Cholesky factor-
ization is roughly %m3, according to L. Eldén, L. Wittmeyer-Koch and H.B.
Nielsen [I§].

Thus, we can estimate the total computational cost of the range space pro-

cedure as

im?® + 2nm? + n’m (2.38)

and since 0 < m < n, the total computational workload will roughly be in the
range

0 < 2m?® 4 2nm? + n’m < Wp?. (2.39)

16 Equality Constrained Quadratic Programming

Here we also see, that the range space procedure gets slower, as the number of
constraints compared to the number of variables increases.

Figure 20l shows the theoretical computational speed of the range space proce-
dure. As stated above, it is obvious that the method gets slower as the number
of constraints increases in comparison to the number of variables.

x10° RSP, theoretical computational cost, n = 1000
4 : : ; ; ; ; : ;
— LA
35 KK
chol(H)
3H total o

cost [flops]
= N
- » N [

o
o

o

= 1 L L
0 100 200 300 400 500 600 700 800 900 1000

Figure 2.1: Theoretical computational speed for the range procedure.

2.3.2 Computational Cost of the Null Space Procedure

The time consumption of the null space procedure is dominated by two compu-
tations. The QR factorization of the constraint matrix A and computation of
the reduced Hessian matrix Z7 GZ e R(n—m)x(n—m)

With A € R™™ ™ as our point of departure, the computational work of the QR

factorization is in the region 2m?(n — %m), see L. Eldén, L. Wittmeyer-Koch

and H.B. Nielsen [I¥]. The QR factorization of A is

A=0Q (1(;3) — (v 2) <1§) , (2.40)

where Y ¢ }Rnxm7 7 c Rnx(n—m), RcR™M and 0 € R(n—m)xm

We now want to find the amount of work involved in computing the reduced
Hessian matrix ZT GZ. We define Zp = ZT € R(~™)*" The computational
workload of making the inner product of two vectors in R™ is 2n. Since Zp

2.3 Computational Cost of the Range and the Null Space Procedures 17

contains n — m rows and G consists of n columns, the computational cost of
the matrix product Z7G is 2n(n — m)n. Because (Z7G) € R"="™)*" and Z
consists of n — m columns, the amount of work involved in the matrix product
(Z1G)Z is 2n(n —m)(n —m). Therefore the computational cost of making the
reduced Hessian matrix is

2n(n —m)n + 2n(n —m)(n —m) = 2n(n — m)(2n — m). (2.41)

So the total computational cost of the null space procedure is roughly

2m*(n — tm) 4 2n(n — m)(2n — m) (2.42)

and since 0 < m < n, the total computational workload is estimated to be in
the range of

Wl

n® <2m*(n — 2m) + 2n(n — m)(2n —m) < 4n’. (2.43)

Therefore the null space procedure accelerates, as the number of constraints
compared to the number of variables increases. Figure illustrates this.

X 10° NSP, theoretical computational cost, n = 1000

—qr(A)
zGz ||

w
o

o total

N
@ w

cost [flops]
N
/

/’

o
2 .
\¢
|
|

0 | L L
0 100 200 300 400 500 600 700 800 900 1000

m

Figure 2.2: Theoretical computational costs for the null space procedure.

18 Equality Constrained Quadratic Programming

2.3.3 Comparing Computational Costs

To take advantage of the individual differences in computational speeds, we
want to find out at what ratio between the number of constraints related to
the number of variables, the null space procedure gets faster than the range
space procedure. This is done by comparing the computational costs of both
procedures, hereby finding the point, at which they run equally fast. With
respect to m we solve the polynomial

im?® 4 2nm? + n’*m — 2m*(n — im) — 2n(n —m)(2n — m) =
m® —2nm? + Tn’m —4n® =0, (2.44)

where by we find the relation to be m ~ 0.65n.

In figure we have n = 1000 and 0 < m < n, so the ratio, i.e. the point
at which one should shift from using the range space to using the null space
procedure is of course to be found at m ~ 650.

x10° RSP vs NSP, theoretical computational costs, n = 1000

T T
total sp

35r 1) o total 4

3k

cost [flops]
= N
»n N o

-
T

o
o

ol—— L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

m

Figure 2.3: Total estimated theoretical computational costs for the range space
and the null space procedures.

We made some testruns of the the two procedures by setting up a KKT system
consisting of identity matrices. The theoretical computational costs are based
on full matrices, and we know, that MATLAB treats identity matrices like full
matrices. So by means of this simple KKT system we are able to compare the
theoretical behavior of the respective procedures with the real behavior of our
implementation. The test setup consists of n = 1000 variables and 0 < m < n

2.3 Computational Cost of the Range and the Null Space Procedures 19

constraints, as illustrated in figures EE4 and EZA. The black curves represent
all computations carried out by the two procedures. It is clear, that they run
parallel to the magenta representing the dominating computations. This verifies
our comparison between the theoretical computational workloads with our test
setup.

In figure EZ4] we test the range space procedure, and the behavior is just as
expected, when compared to the theory represented in figure 211

RSP, real computational cost, n = 1000

LA
KTK
chol(H)
tOtaIR .

——RSP /

cost [s]

o— : ‘ ‘

0 100 200 300 400 500 600 700 800 900 1000

Figure 2.4: Real computational cost for the range space procedure.

In figure EZA the null space procedure is tested. The computation of the re-
duced Hessian matrix ZpGZ behaves as expected. The behavior of the QR
factorization of A however is not as expected, compared to figure When
0 < m < 100, the computational time is too small to be properly measured. The
QR factorization still behaves some what unexpectedly, when 100 < m < 1000.
Hence the advantage of shifting from the range space to the null space proce-
dure decreases. In other words, the ratio between the number of constraints
related to the number of variables, where the null space procedure gets faster
than the range space procedure, is larger than expected. Therefore using the
null space procedure might actually prove to be a disadvantage. This is clearly
in figure X6l where the dominating computations for the range space and the
null space procedures are compared to each other. From this plot it is clear, that
the ratio indicating when to shift procedure is much bigger in practice than in
theory. The cause of this could be an inappropriate implementation of the QR
factorization in MATLAB, architecture of the processing unit, memory access
etc.. Perhaps implementation of the QR factorization in a low level language
could prove different.

It must be mentioned at this point, that the difference in unit on the abscissa

20 Equality Constrained Quadratic Programming

in all figures in this section does not influence the shape of the curves between
theory and testruns, because the only difference between them is the constant
ratio time/flop.

NSP, real computational cost, n = 1000

61 ——qr(A) 1
ZTGZ

o total
——NSP

[100 200 300 400 500 600 700 800 900 1000
m

Figure 2.5: Real computational cost for the null space procedure.

RSP vs NSP, real computational costs, n = 1000

T
6 totaIR sp

& o total

T

_#
e—1
0 100 200 300 400 500 600 700 800 900 1000

m

Figure 2.6: Real computational costs for the range space and the null space
procedures.

CHAPTER 3

Updating Procedures for
Matrix Factorization

Matrix factorization is used, when solving an equality constrained QP. The
factorization of a square matrix of size n x n has computational complexity

O(n?).

As we will describe in chapter B the solution of an inequality constrained QP
is found by solving a sequence of equality constrained QP’s. The difference
between two consecutive equality constrained QP’s in this sequence is one single
appended or removed constraint. This is the procedure of the active set methods.

Because of this property, the factorization of the matrices can be done more
efficiently than complete refactorization. This is done by an updating procedure
where the current factorization of the matrices in the sequence, is partly used to
factorize the matrices for the next iteration. The computational complexity of
this updating procedure is O(n?) and therefore a factor n faster than a complete
factorization. This is important in particular for large-scale problems. The
updating procedure discussed in the following is based on Givens rotations and
Givens reflections.

22 Updating Procedures for Matrix Factorization

3.1 Givens rotations and Givens reflections

Givens rotations and reflections are methods for introducing zeros in a vector.
This is achieved by rotating or reflecting the coordinate system according to an
angle or a line. This angle or line is defined so that one of the coordinates of
a given point p becomes zero. As both methods serve the same purpose, we
have chosen to use only Givens rotations which we will explain in the following.
This theory is based on the work of Golub and Van Loan H] and Wilkinson
E]. A Givens rotation is graphically illustrated in figure Bl As illustrated we
can rotate the coordinate system so the coordinates of p in the rotated system
actually become (z’,0)7.

Figure 3.1: A Givens rotation rotates the coordinate system according to an
angle 6.

The Givens rotation matrix Q € R2*2 is defined as

Q:(¢ i) c=——2 = cos(h), s:\/%TyQ:sm(e), (3.1)

and (x,9)7, 2 #0 A y # 0, is the vector p in which we want to introduce a
Zero

3.1 Givens rotations and Givens reflections

23

T Y
) N (z)
— Y z

\/z2+y2 \/z2+y2

z’+y°

)
S
I

ytyz
_(VPP +y?
= 0 .

(3.2)

If we want to introduce zeros in a vector v € R™, the corresponding rotation
matrix is constructed by the identity matrix I € R™*™ ¢ and s. The matrix
introduces one zero, modifies one element m and leaves the rest of the vector

untouched

1 0 0 0 0 T T
0 0 0 0 :

0O 0 1 0 O T = T
0 0 0 ¢ s x m
0 0 0 —s ¢ x 0

(3.3)

Any Givens operation introduces only one zero at a time, but if we want to
introduce more zeros, a sequence of Givens operations Q € R"*" can be con-

structed

which yields

O
e
Il
o))
Il

oy = Eloll

(3.5)

24 Updating Procedures for Matrix Factorization

For example when v € R?* the process is as follows

T xZ x m
x A x A m ~ 0
z Q3,4 m Q2,3 0 Q1,2 0) (3.6)
x 0 0 0

where m is the modified element.

3.2 Updating the QR Factorization 25

3.2 Updating the QR Factorization

When a constraint is appended to, or removed from, the active set, updating
the factorization is done using Givens rotations. This section is based on the
work of Dennis and Schnabel [6], Gill et al. [4] and Golub and Van Loan [] and
describes how the updating procedure is carried out.

Appending a Constraint

Before the new column is appended, we take a closer look at the constraint
matrix A € R™™ and its QR-factorization Q € R"*™ and R € R™*™. The
constraint matrix A has full column rank, and can be written as

A= (a1 .. .am) , (3.7)

where a; is the i*" column of the constraint matrix. The QR-factorization of A
is

A=Q (f}) . (3.8)

As Q is orthogonal we have Q! = Q7 so

QTA= (?) . (3.9)
Inserting (B) in B3) gives

Q"TA=Q" (a1...an). (3.10)

Expression ([Bd) can be written as

m(l,l) . x(l,m)

ara- (1) T o

L (m,m)

26 Updating Procedures for Matrix Factorization

Now we append the new column a € R" to the constraint matrix A € Rrxm,
which becomes A € R"*™*! To optimize the efficiency of the updating proce-
dure, the new column is appended at index m + 1. The new constraint matrix
A s

A= ((a1...an) a). (3.12)
Replacing A in @I0) with A gives
Q"A=Q" ((a1...an) a), (3.13)
which is equivalent to
Q"A=(Q"(ai...an) QTa). (3.14)

Thus from BI0), @I0) and BI) we have

QTA = (%’%) , (:;) =Q"a, (3.15)

where v € R™ and w € R™"~". This can be expressed as

33(171) x(l,m)

QTA: e “ e) (3.16)

L(m,m)
0 w

Unless only the first element is different from zero in vector w, the triangular
structure is violated by appending a. By using Givens rotations, zeros are intro-
duced in the vector (v, w)? with a view to making the matrix upper triangular
again. As a Givens operation only introduces one zero at a time, a sequence
Q € R™" of n — m + 1 Givens rotations is used

Q = Q(m+1,m+2)@(m+2,m+3) cee Q(nfl,n)v (317)

3.2 Updating the QR Factorization 27

where Q(i +42,i+3) defines the Givens rotation matrix that introduces one zero
at index ¢ + 3 and modifies the element at index ¢ + 2. It is clear from (BIH)
that the smallest amount of Givens rotations are needed, when a is appended
at index m + 1. This sequence is constructed so that

v
Q (%) = g . (3.18)
0

Now that the sequence Q has been constructed, when we multiply it with (BI6)
we get

Rlv
o
oo
T,y - Tm)
v
= L (m,m)
0 Y
0 0

~(B) a9

This indicates, that the triangular shape is regained and the Givens operations
only affects the elements in w.

The QR-factorization of the new constraint matrix is
A=Q (f})) (3.20)

Now that R has been found, we only need to find @ to complete the updating

28 Updating Procedures for Matrix Factorization

procedure. From [BI) we have
QQ A= (’j) , (3.21)

and because both Q and QT are orthogonal, this can be reformulated as

— ~T

A=QQ R (3.22)
From this expression it is seen that Q is
~ ~T
Q=QQ . (3.23)

The updating procedure, when appending one constraint to the constraint ma-
trix is summarized in algorithm B2l

Algorithm 3.2.1: Updating the QR-Factorization, when appending a col-
umn.

Note: Having A € R™™ and its QR factorization, where @ € R™*" and
R € R™*"™ . Appending a column a to matrix A at index m + 1 gives a new
matrix A. The new factorization is A = QR.

Compute A = (A, a)

Compute %) = Q"a, where v € R™ and w € R"™™.

Compute the Givens rotation matrix Q such that: Q (%)

I
of=|«

where v € R.
Compute R = QQTA
Compute Q = QQT

Removing a Constraint

To begin with we take a close look at the situation before the column is removed.
A € R™™ and its QR-factorization @ € R™ ™ and R € R"™*™ have the

3.2 Updating the QR Factorization 29

following relationship

A= ((a1 .. .ai,l) a; (ai+1 ‘e am)) 5 (324)

where (a; ...a;_1) are the first i—1 columns, a; is the i** column and (a;41 . . . @)
are the last m — i columns. The QR-factorization of A is

A=Q (f}) , (3.25)

and as @ is orthogonal we have

QTA= (?) . (3.26)
From ([BZ4) and [BZ0) we thus have

QTA = QT ((a1 . (1,7;_1) a; (a/i-i-l .. am)) s (327)

which is equivalent to

Q"A=(Q"(a1...ai-1) Q"a; Q"(aiy1...an)). (3.28)

Using expression ([B20) and B2]) gives

30 Updating Procedures for Matrix Factorization
Ry | Ri2 | B3
T4 0 | Ry | Ros
Q A= 0 0 | Ras (3.29)
0 0 0
T(1,1) T(1i-1) | Ti) | T(1i1) T(1,m)
T(i—1,i—1)
_ 0 Z(ii)
L(i41,i+1)
0 0
L (m,m)
0 0 0

Removing the column of index i changes the constraint matrix A € R"*™ to

A= ((al coeaic1) (@i .. -am)))

where A € R™*(m=1 Replacing A with A in 27 gives

QTA = QT ((a1 ceeaim1) (@ig .. -am)))

which is equivalent to

QA -

(QT(al s (17',_1) QT(ai+1 cee am,)) .

Together expression (B28)), BZ9) and B32) indicate that

x x x
Ry | Ry3 T T
T 0 | Roz | 0 T x
Q A= 0 R33 o €T x
0 0 0 o
x

0 0

(3.30)

(3.31)

(3.32)

(3.33)

3.2 Updating the QR Factorization 31

The triangular structure is obviously violated and in order to regain it, Givens
rotations are used. It is only the upper Hessenberg matrix (Rg3, R33)?, that
needs to be made triangular. This is done using a sequence of m — i Givens
rotation matrices Q € R™*"

X x
x xZ

R13 x €T L i

=~ R23 =~ x X m m
Q Ras =Q — | = m m (3.34)

0 e o

T m

0 0

0

This means, that the triangular matrix R is found from the product of Q and
QT A, so that we get

X X X X
x X X
= 0 m m
<R) —0Q A= m .. m . (3.35)
0
0
m
0 0

Now that we have found the upper triangular matrix R of the new factorization
A = QR, we only need to find the orthogonal matrix Q. As Q and Q” are
orthogonal ([B33) can be reformulated as

A-QO'R, (3.36)

which means that

Q=QQ . (3.37)

32 Updating Procedures for Matrix Factorization

The updating procedure, when removing a constraint from the constraint matrix
is summarized in algorithm

Algorithm 3.2.2: Updating the QR-Factorization, when removing a column.
Note: Having A € R™*™ and its QR factorization, where @ € R™*" and
R € R™*™. Removing a column ¢ from matrix A gives a new matrix A. The
new factorization is A = QR.

Compute A by removing ¢ from A

Compute P = QT A

Compute the Givens rotation matrix Q such that: QP is upper triangular
Compute R = QP

Compute Q = QQT

3.3 Updating the Cholesky factorization 33

3.3 Updating the Cholesky factorization

The matrix ATG™'A = H € R™ ™, derived through @3) on page @ and
&13) on page B is both symmetric and positive definite. Therefore it has the
Cholesky factorization H = LL”, where L € R™*™ is lower triangular. This
section is based on the work of Dennis and Schnabel [6], Gill et al. [d and
Golub and Van Loan [, and presents the updating procedure of the Cholesky
factorization to be employed, when appending or removing a constraint from
constraint matrix A.

Appending a Constraint

When a constraint is appended to constraint matrix A € R™*"™ at column m+1,
the matrix H € R™*™ becomes

E:(g ‘7{) (3.38)

where H € R(m+Dx(m+1) g ¢ R™ and r € R. The new Cholesky factorization
is

H-LL" i:(sf; ?) (3.39)

where L € Rm+Dx(m+1) [, ¢ Rm*m s ¢ R™ and t € R. Together [E38) and
E3T) give

t
~ ~T ~
=< LL = Ls) (3.40)

34 Updating Procedures for Matrix Factorization

From this expression L can be found via L, s and t. Furthermore from (BZ0)
and the fact, that H = LLT, we have

H=LL"=LL", (3.41)

which means that

~
Il
h

(3.42)

From BZ0) and [BZ2)) we know that s can be found from the expression

qg=Ls=Ls, (3.43)

and from (BA0) we also have

r=sls+1° (3.44)

On this basis ¢t can be found as

t=+r—sTs. (3.45)

Now L, s and ¢ have been isolated, and the new Cholesky factorization has
been shown to be easily found from [F3d). Algorithm B Jlsummarizes how the
updating procedure of the Cholesky factorization is carried out, when appending

3.3 Updating the Cholesky factorization 35

a column to constraint matrix.

Algorithm 3.3.1: Updating the Cholesky factorization when appending a
column.

Note: The constraint matrix is A € R™*" and the corresponding matrix
ATG™'A = H € R™ ™ has the Cholesky factorization LLT, where L &
R™*™_ Appending a column ¢ to matrix A at index m + 1 changes H into
H ¢ R0m+Dx(m+1) The new Cholesky factorization is H = LL".

Let p be the last column of H
Let q be p except the last element
Let r be the last element of p
Solve for s in g = Ls

Solve for t in r = sTs + 2

- L 0
Compute L = (T ¢)

Removing a Constraint

Before removing a constraint, i.e. the i*" column, from the constraint matrix
A € R"™ the matrix H € R™*™ can be formulated as

H{y a Hjp
H=| a" ¢ b |, (3.46)
HY, b Hy

where Hy; € R(i—l)x(i—l)7 Hos € R(m—i)x(m—i)7 His € }R(i—l)x(m—i)7 a €
RG=D b e R™ and ¢ € R. The matrix H is Cholesky factorized as follows

Ly
H=LL" L= d" e : (3.47)
Ly f Lo

where L € R™*™ [, € RUO-Dx0=1) and Loy € RM=DX(m=1) gre lower tri-
angular and non-singular matrices with positive diagonal-entries. Also having
Ly, € RO=9xG=1 " The vectors d and f have dimensions RO~ and R(™—%)
respectively and ¢ € R. The column (a”¢ b")7 and the row (a”c b”) in (BZ0)
are removed, when the constraint at column 4 is removed from A. This gives us

36 Updating Procedures for Matrix Factorization

H e Rm=Dx(m=1) "which is both symmetric and positive definite

_ H,, Hp
H= . 3.48
(H, Hy) (3.48)

This matrix has the following Cholesky factorization
H-LL", L- (Ln) | (3.49)

which is equivalent to

o (Be (L Ih
Ly Ly iQTQ

: =T z =T
_ [LuLy Ly, Ly, (3.50)
=\ = =217 = =T = =T |- .
L12L11 L12L12 + L22L22

where H € Rm=Dx(m=1) ., ¢ RO-DXE=1) gnd Loy € RM=Ix(m=1) gro
lower triangular, non-singular matrices with positive diagonal entries. Matrix
L5 is of dimension R(m=9x(=1),

From [BZ0) and BZ7) we then have
Hy;p a Hip
a? ¢ b’ =H
H], b Hy
=LL"
L11 L{l d L?2
= d¥ e e U], (3.51)
Ly f Lo LY

which gives

3.3 Updating the Cholesky factorization 37
Hi1 a Hip
a’ ¢ b | =
H{, b H
LyLi, Lnd Ly Li,
d'Li, d'd+e? d"L], + ef” (3.52)
L,LY, Lisd+ fe LiLY, + frr+ Ly L3,
From (BZR) and &X20) we know that
< H1T1 H, > _ i/nqul f/ning (3.53)
=\ 5 37 0+ =T 7 =T |- .
Hi, Hy Ly2Lyy LiaLyy + Lao Ly,
Expressions (B22) and BL3) give
Hy =LnLT, =LnLi,, (3.54)
and
Hy,=LnLT, =L L, (3.55)
which means that
Ell = L11 and Elg = L12. (356)
From ([B322) and BR3) we also get
Hoo = LisLYy + ff7 + Las LY, = LisLy, + Los Ly, (3.57)
and together with (BX2H) this gives
Hao = Lis LTy + £f7 + Loo LY, = LI, + Lo L, (3.58)

38 Updating Procedures for Matrix Factorization

which is equivalent to

Hy = {7 + Loy L}, = Loy Ly, (3.59)

From this expression we get

LosLay = (£ Lao)(f La2)”. (3.60)

From (EZ1) we know that (f Lgg) is not triangular. Therefore we now construct
a sequence of Givens rotations Q € R(m—it1)x(m=it+1) g5 that

Tr|x
(f L2)Q = x . Q
{; xr X . X
xZ
_ X
x z 0
= (L 0), (3.61)

where L is lower triangular. As the Givens rotation matrix Q is orthogonal, we
~ - T
have that QQ = I, and therefore we can reformulate (BG0) as

LysLy, = (f L22)QQT(f L))", (3.62)
which is equivalent to
LyLy, = ((f L2)Q)((f L2)Q), (3.63)

and according to ([BXI]) this renders

LI, = (L o) (L 0)T =LL". (3.64)

3.3 Updating the Cholesky factorization 39

Finally we now know that

Ly =1L, (3.65)

which means that Los may be constructed as
(L2 0) = (L 0) = (f L»)Q. (3.66)
Hence we now have everything for constructing the new Cholesky factorization:
- Ly,
H=LL, L= = - . 3.67
(Ly Ly) (3:67)

Algorithm summarizes the updating procedure of the Cholesky factoriza-
tion, when a column is removed from the constraint matrix.

Algorithm 3.3.2: Updating the Cholesky factorization when removing a col-
umn.

Note: Having the constraint matrix A € R™*" and the corresponding ma-
trix ATG™'A = H € R™ ™ with the Cholesky factorization LL”, where
L € R™*™_ Removing column ¢ from matrix A at index i changes H into
H ¢ R0»=Dx(m=1) The new Cholesky factorization is H = LL".

Ly,

Let L= d" e , where (d” e) is the row at index i and
Ly f L2

(e f1)7 is the column at index i.

Let En = L11.

Let 1:112 = L12.

Let L = (f LQQ)
Compute the Givens rotation matrix @ such that LQ=(Loy 0), where Lo is
triangular.

= -illl 0
C te L=| = =
ompute (Ly L)

40

Updating Procedures for Matrix Factorization

CHAPTER 4

Active Set Methods

In this chapter we investigate how to solve an inequality constrained convex QP
of type

. L r T
= — 4.1
nin f(x) 5% Gz +g x (4.1a)
s.t. ci(w) =a;x —b; > 0, i €. (41b)

The solution of this problem x* is also the same as to the equality constrained
convex QP

~ _ 17 T
Join flz) = 5% Gr+g'zx (4.2a)
s.t. ci(x) = a;x — b; =0, e Alx™). (4.2b)

In other words, this means that in order to find the optimal point we need to
find the active set A(z*) of ([@J). As we shall see in the following, this is done
by solving a sequence of equality constrained convex QP’s. We will investigate
two methods for solving (), namely the primal active set method (section ETI)
and the dual active set method (section E3J)).

42 Active Set Methods

4.1 Primal Active Set Method

The primal active set method discussed in this section is based on the work of
Gill and Murray [8] and Gill et al. [9]. The algorithm solves a convex QP with
inequality constraints ().

4.1.1 Survey

The inequality constrained QP is written on the form

: L 7 T
— 4.
nin S Gr+g = (4.3a)
st. alz>b i€l (4.3b)

where G € R™ " is symmetric and positive definite.

The objective function of the QP is given as

flz) = %scTGw +g'x (4.4)

and the feasible region is

Q={xcR":alx>b,icT} (4.5)

The idea of the primal active set method is to compute a feasible sequence
{zr € Q}, where &k = Ny, with decreasing value of the objective function,
f(@xp1) < f(xr). For each step in the sequence we solve an equality constraint

QP

3 T T
_ G —+ 4.6
I:llnn Ty, L g Tp (a)

s.t. alz, =1 ie Alxy) (4.6b)

4.1 Primal Active Set Method 43

where A(zy) = {i € T : alz; = b;} is the current active set. Because the
vectors a; are linearly independent for ¢ € A(xy), the strictly convex equality
constrained QP can be solved by solving the corresponding KKT system using
the range space or the null space procedure.

The sequence of equality constrained QP’s is generated, so that the sequence
{xi} converges to the optimal point x*, where the following KKT conditions

Gz* +g— Z a;p; =0 (4.7a)
i€l

alz* = b i € Wy (4.7b)

alx* > b i € T\Wj (4.7¢)

wi>0 i€ Wi (4.7d)

=0 i€ T\Wg (4.7¢)

are satisfied.

4.1.2 Improving Direction and Step Length

For every feasible point xj, € €2, we have a corresponding working set Wy, which
is a subset of the active set A(xi), Wi C A(xr). W is selected so that the
vectors a;, i € Wy, are linearly independent, which corresponds to full column
rank of Ay = [a;]iew, -

If no constraints are active, al &g > b; for i € Z, then the corresponding working
set is empty, Wy = 0. The objective function) is convex, and therefore if
minger f(x) ¢ €, then one or more constraints will be violated, when x seeks
the minimum of the objective function. This explains why the working set is
never empty, once a constraint has become active, i.e. al xy = b;, i € Wy # 0,
ke N.

Improving Direction

The feasible sequence {x; € Q} with decreasing value, f(xry+1) < f(zg), is
generated by following the improving direction p € R™ such that x;1 = xr+p.
This leads us to

44 Active Set Methods

f(®r1) = f(zr +p)

1
= 5(5% +p)'G(zr +p) + 9" (x), +)

1
= -2} G+p"G)(xr +p) +g i +g"p

2
= %(fﬂwak +x,Gp+p' Grr+p'Gp)+ g xi+g"p
= %w%ka +9' @+ (@ G+g')p+ %pTGp

= f(zr) + (G +9)'p + %pTGp

= f(zx) + o(p).

(4.8)

and in order to satisfy f(xry1) < f(xk), the improving direction p must be
computed so that ¢(p) < 0 and ¢ = (xr + p) € Q. Instead of computing
the new optimal point & directly, computational savings are achieved by only

computing p. When = x, + p, the constraint al = b; becomes

T =al(x,+p)=alz+a]p=b+alp,

SO

ajp=0

and the objective function becomes

f(®) = f(zp +p) = f(xr) + 6(p)-

(4.9)

(4.10)

(4.11)

So for the subspaces My = {x € R" : al'x = b;,i € Wy} and S, = {p € R :

alp=0,i € Wi}, we get

Join. f(®) = pun f(zr +p) = f(zx) + pin o(p)

and hereby we have the following relations

(4.12)

4.1 Primal Active Set Method 45

¥ =x, +p* (4.13)
f(@) = f(zx) + o(p*). (4.14)

For these relations &* and f(&*) respectively are the optimal solution and the
optimal value of

1
min f(z)=-2' Gz +g"'x (4.15a)
L eRrR” 2
st. alz=1 i€ Wh (4.15b)

and p* and ¢(p*) respectively are the optimal solution and the optimal value of

. 1

min - ¢(p) = 5p' Gp+ (Gzy +9)'p (4.16a)
PER™ 2

st. alp=0 i € Wh. (4.16b)

The right hand side of the constraints in ([ZIH) is zero,which is why it is easier
to find the improving direction p than to solve ([IH). This means that the
improving direction is found by solving (EIM).

Step Length

If we take the full step p, we cannot be sure, that ;41 = xr + p is feasible.
In this section we will therefore find the step length o € R, which ensures
feasibility.

If the optimal solution is p* = 0, then ¢(p*) = 0. And because ([Z) is strictly
convex, then ¢(p*) < ¢(0) = 0, if p* # 0, so

¢(p*)=0, p*=0 (4.17)
d(p*) <0, p c{pecR":alp=0,ic W,}\{0}. (4.18)

46 Active Set Methods

The relation between f(xy + ap*) and ¢(ap™®) is

[(@ry1) = f(zk + ap)

1
= 5@+ ap)" G(zk, + ap) + g” (x4 + ap)

1
= 5(1:5(? +ap” G)(zy +ap) + g xr + g ap

1
= E(a:zGa:k +x} Gap + ap’ Gxy, + ap’ Gap)
+g9"wi+g ap

1 1
= szka +glx, + (2} G+ g)ap + EapTGap

1
= f(zx) + (Gzy, + g) ap + §apTGocp

= f(zx) + ¢(ap). (4.19)
For p* # 0 we have
f(x +ap) = f(xk + azi, — azxy + ap)
= f((1 = a)zi + a(zr + p))
<1 —-a)f(zx) +af(zr +p)
< (1= a)f(zr) + af(zk)
= f(®r) + af (@) — af(zr)
= f(xx) (4.20)

and because of the convexity of the objective function f, this is a fact for all
a €]0;1].

We now know, that if an a €]0; 1] exists, then f(xr + ap*) < f(zr). On this
basis we want to find a point on the line segment p* = 11 — x), whereby
the largest possible reduction of the objective function is achieved, and at the
same time the constraints not in the current working set, i.e. i € Z\W, remain
satisfied. In other words, looking from point xj in the improving direction p*,
we would like to find an «, so that the point x; + ap™ remains feasible. In this
way the greatest reduction of the objective function is obtained by choosing the
largest possible o without leaving the feasible region.

4.1 Primal Active Set Method a7

As we want to retain feasibility, we only need to consider the potentially violated
constraints. This means the constraints not in the current working set satisfy

al(zy, +ap*) > b;, i€ IT\Wy. (4.21)

Since xy, € €2, we have

aalp* > b —alx, <0, i€I\Wi, (4.22)

and whenever aiTp* > 0, this relation is satisfied for all @ > 0. As bi—aiT:l:k <0,
the relation can still be satisfied for al p* < 0, if we consider an upper bound
0 < a < @&y, where

T
_bi—aiwk

o = >0

-)

T * .
a; < 0, € I\Wg. 4.23
asz* i P ¢ \ k ()

Whenever a!z, = b;, and a]p* < 0 for i € Z\Wj, we have a; = 0. So
T = x + ap” will remain feasible, z €), whenever 0 < a < min;cz\yw, ;-
In other words, the upper bound of a will be chosen in a way, that the nearest
constraint not in the current working set will become active.

From the Lagrangian function of ([EI6l), we know by definition, that p* satisfies

Gp*+ (Gzp+g)— Ap* =0 (4.24a)
ATp* =0, (4.24b)

and by transposing and multiplying with p* we get

(Goi + g)'p* = (Ap* — Gp*)'p*

*
*T" AT

=p Alp-pTGp’
——

= —pTGp*. (4.25)

48 Active Set Methods

From (1) and [{ZZ3) we define the line search function h(«) as

h(a) = f(xx + ap)

1
= f(zr) + (G + 9) P+ 5042PTGP

* * 1 * *
= f(zr) — ap™ Gp* + 504217 Tap

1
Ep*TGp”‘Oc2 —pTGp*a + f(xy). (4.26)

If p* # 0 is the solution of {@IH), we have p*TGp* > 0, as G is positive
definite. So the line search function is a parabola with upward legs. The first
order derivative is

dh
—(a) = pTGp*a — pTGp* (4.27a)

da
= (a - 1)p*TGp*, (4.27b)
which tells us, that the line search function has its minimum at 9%(1) = 0.

Therefore the largest possible reduction in the line search function (20 is
achieved by selecting « € [0; 1] as large as possible. So the optimal solution of

. 1 *7 * 2 *1 * 4

_ .
min h(a) = -—p" Gp*« P GpTa+)‘(a:k) (28&)
s.t. az (x +ap™) > b; 1€l (4.28b)

is

o =min (1, min Q;
i€\Wy:aTp*<0

bi —al
= min (1, min %) > 0. (4.29)
i€\Wy:aTp <0 a; p*

The largest possible reduction in the objective function along the improving
direction p* is obtained by the new point ;41 = o + o p*.

4.1 Primal Active Set Method 49

4.1.3 Appending and Removing a Constraint

The largest possible reduction of the objective function in the affine space My, =
{x € R" : alx = b;,i € Wy} is obtained at point xy41 = z) + p*, i.e. by
selecting a* = 1 and Wy41 = Wy. This point satisfies f(xr41) < f(xy), and
since W11 = W, this point will also be the optimal solution in the affine space
M1 = My, thus a new iterate will give p* = 0. So, in order to minimize the
objective function further, we must update the working set for each iteration.
This is done either by appending or removing a constraint from the current
working set Wk.

Appending a Constraint

If the point xx11 = xr +p* ¢ Q = {x € R" : alz > b;,i € T}, then the
point is not feasible with respect to one or more constraints not in the current
working set Wj. Therefore, by choosing the point ;41 = x; +a*p* € M NQ,
where a* € [0;1], feasibility is sustained and the largest possible reduction of
the objective function is achieved. In other words, we have a blocking constraint
with index j € Z\W, such that ajT(a:k + a*p*) = b;. So, by appending con-
straint j to the current working set, we get a new working set Wyy1 = Wi, U{j}
corresponding to xy41, which is then a feasible point by construction.

The set of blocking constraints is defined as

bi — af @k (4.30)

J = arg min T
i€T\Wp:aTp <0 a; p*

The blocking constraint to be appended, is the most violated constraint. In
other words, it is the violated constraint, found closest to the current point x.
As mentioned, the working set is updated as Wy11 = Wi U {j}, which means,
that we append the vector a;, where j € J, to the current working set. The
constraints in the current working set, i.e. the vectors a; for which i € W,
satisfies

alp* =0, i€W;. (4.31)

If vector a;, where j € J, is linearly dependent of the constraints in the current

50

Active Set Methods

working set, i.e. a; € span{a;};cw,, then we have

v €R:a; = Z via;,
1EW

hence a; must satisfy

=> n(@alp) =0, jeT\W.

1€EWg

(4.32)

(4.33)

But since we choose j € Z\Wj, such that a! p* < 0, we have a; ¢ span{a;}iew, -
So we are guaranteed, that the blocking constraint j is linearly independent of
the constraints in the current working set, i.e. (A a;) maintains full column

rank.

Removing a Constraint

We now have to decide whether xj is a global minimizer of the inequality con-

strained QP E3).

From the optimality conditions

Gw*+g—2ai/ﬁ:0

ieT
T .
a;, " > b; 1€l
w; >0 =N
”

(afx* —b;)=0 1el

7

(4.34a)

(4.34b)
(4.34c¢)

(4.34d)

4.1 Primal Active Set Method 51

it is seen that xj is the global minimizer «* if and only if the pair xy, i satisfies

Gr+g-Y api=Gr+g— > aypi— » a g =0 (4352)
i€T iEWL EI\WL g

=0
alx, > b i€l (4.35b)
i >0 iel. (4.35¢)

We must remark, that

wi(alzy —b;) =0, i€W; (4.36a)
N————
=0
wi (alzy —b;)=0, icT\Wy (4.36b)
~—~
=0
from which we have
pilalxy —b;)) =0, i€T. (4.37)

So we see, that xj is the unique global minimizer of [E3), if the computed
Lagrange multipliers p; for ¢ € Wy, are non-negative. The remaining Lagrangian
multipliers for ¢ € Z\W}, are then selected according to the optimality conditions

ED), so

" =xy (4.38)
X fi, @€ Wy
* — 4.39
i {o, i e T\Wh. (4.39)

But if there exists an index j € Wj, such that p1; < 0, then the point xj, cannot
be the global minimizer of {3). So we have to relax, in other words leave, the
constraint a]T:I:k = b; and move in a direction p such that ajT(:l:k + ap) > b;.
From sensitivity theory in Nocedal and Wright [T4] we know, that a decrease in
function value f is obtained by choosing any constraint for which the Lagrange

52 Active Set Methods

multiplier is negative. The largest rate of decrease is obtained by selecting
7 € W corresponding to the most negative Lagrange multiplier.

So if an index j € W, exists, where p1; < 0, we will find an improving direction
p*, which is a solution to

, 1
Join - ¢(p) = 5p"Gp + (Gar+9)"p (4.40a)
st. alp=0 i€ Wi\{j}. (4.40b)

As p* is the global minimizer of ([AM), there exists multipliers p* so that

Gp*+ Gz +g — Z a;u; =0, (4.41)
ieWi\{j}

and if we let @) and fi satisfy

Gzp+g— Y aifii =0 (4.42a)
1EW

al x = b; i € W, (4.42Db)
and we subtract (EZZal) from [EZI) we get

Gp — Y. ai(p; —ju)+afi; =0, (4.43)
€W\ {5}

which is equivalent to

aj= Y “ij”iai—qlé. (4.44)
iewntiy M Hi

Since a; is linearly independent for ¢ € Wy and thereby also for ¢ € Wi\{j},

4.1 Primal Active Set Method 53

then a; cannot be a linear combination of a;, which means

a;# Y Bl (4.45)

1€Wr\{j} Hi

implying that p* # 0. Now we will shortly summarize, what have been stated in
this section so far. If the optimal solution has not been found at iteration k some
negative Lagrange multipliers exist. The constraint j € Wy, which correspond
to the most negative Lagrange multiplier u; is removed from the working set.
The new improving direction is computed by solving (M) and it is guaranteed
to be non-zero p* # 0. This statement is important in the following derivations.

By taking a new step after removing constraint j, we must now guarantee, that
the relaxed constraint is not violated again, in other words that the remaining
constraints in the current working set are still satisfied and that we actually get
a decrease in function value f.

Taking the dot-product of a; and p*, by means of multiplying @) with p*7,
we get

P “TGp*
p*Taj: Z 'LLzA"Lsz*Tai—p Alp (4.46)
1€EWK\{s} Hi Hi

which by transposing becomes

* ~ *T * *T *
. pi — ki 1 . P Gp P Gp
dp= Y oty pUGr_ pC ()
iewngy g M K
Since p*TGp* > 0, p* # 0, and f1; < 0, it follows that
ajp* > 0. (4.48)

Bearing in mind that x, € My = {x € R" : al =), = b;,i € Wy} , we see that

ajT(:I:k +ap®) = aijk +a u,ij* >b;, Va€]0,1] (4.49)
—— ——
=b; >0

54 Active Set Methods

and

al (z + ap*) = al zp +aalp* =b;, Va€0,1], ieWi\{j}. (4.50)
—— ——

=b; =0

As expected, we see that the relaxed constraint j and the constraints in the new
active set are still satisfied.

As [0) is strictly convex, we know, that ¢(p*) < 0 for the improving direction

p*, and the feasible non-optimal solution p = 0 has the value ¢(0) = 0. If we
also keep in mind that

f(@r +ap”) = f(xk) + d(ap”) (4.51)

and when a = 1, then we get

flxr +p7) = f(@r) + 6(p%) < f(zk). (4.52)

From this relation, the convexity of f and because « €]0; 1], we know that

(I —a)zy +a(zr +p*))

a)f(xzk) + af(xr +p*)

a)f(zr) + af(zy)

(zr) + oof (1) — ouf (k)

(zg). (4.53)

So in fact we actually get a decrease in function value f, by taking the new step
having relaxed constraint j.

In this section we have found that if ;; < 0, then the current point x; cannot
be a global minimizer. So to proceed we have to remove constraint j from the
current working set, Wi11 = Wi \{j}, and update the current point by taking
a zero step, Tp41 = Tp.

4.1 Primal Active Set Method 55

A constraint removed from the working set cannot be appended to the working
set in the iteration immediately after taking the zero step. This is because a
blocking constraint is characterized by a]Tp* < 0, while from ([EZX) we know,
that u,ij* > 0. Still, the possibility of cycling can be a problem for the primal
active set method, for example in cases like

{0 Sy T gy S Gy S) —
(4.54)

This and similar cases are not considered, so if any cycling occurs, it is stopped
by setting a maximum number of iterations for the method.

The procedure of the primal active set method is stated in algorithm EETT1

56 Active Set Methods

Algorithm 4.1.1: Primal Active Set Algorithm for Convex Inequality Con-
strained QP’s.

Input: Feasible point g, W = Ay = {i : al ¢y = b;}.

while NOT STOP do /* find improving direction p* */
Find the improving direction p* by solving the equality constrained QP:

_ 1
min ¢(p) = =p' Gp+ (Gz +g)"p

PeRn T2
s.t. aiTp =0, 1eW
if ||p*|| = 0 then /* compute Lagrange multipliers p; */

Compute the Lagrange multipliers u;,7 € W by solving:
> aipi=Gr+g
iew

Wi — 0,71 € I\W
if p; > 0Vie W then
| STOP, the optimal solution «* has been found!

else /* remove constraint j */
T—x
W W\{j}j €W iy <0
else /* compute step length a */
. . b —alz
a=min | 1, min —
ieT\w:alTp <o a; p*
b; —alz
J = arg min .

ieT\w:aTp <o alp*

if a <1 then /* append constraint j */
xr — x+ ap*
We—Wuljjed
else
xr «— x+p*
W —W

4.2 Primal active set method by example 57

4.2 Primal active set method by example

We will now demonstrate how the primal active set method finds the optimum
in the following example:

. 17 T (10 (0

s.t. c1=—-x1+x2—1>0
1
622—51,‘1—1‘24—220

cg =—29+252>0
cy = —3x1+22+3>0.

At every iteration k the path (x'...z*) is plotted together with the constraints,
where active constraints are indicated in red. The 4 constraints and their column
index in A are labeled on the constraint in the plot. The feasible area is in the
top right corner where the plot is lightest. The start position is chosen to be
x = [4.0,4.0]7 which is feasible and the active set is empty W = (). For every
iteration we have plotted the situation when we enter the while-loop at x, see
algorithm EETT] .

Iteration 1

The situation is illustrated in figure EEJ1 On entering the while-loop the work-
ing set is empty and therefore the improving direction is found to be p =
[—4.0,—4.0]T. As figure BTl suggests, the first constraint to be violated taking
this step is c3 which is at step length a = 0.375. The step & = x + ap is taken
and the constraint cs is appended to the working set.

58 Active Set Methods

Figure 4.1: Tteration 1, W = (), = = [4.0,4.0]%.

Iteration 2

The situation is illustrated in figure 2 Now the working set is W = [3] which
means that the new improving direction p is found by minimizing f(x) subject
to cz3(x + p) = 0. The improving direction is found to be p = [~2.5,0.0]7 and
p = [2.5]. The first constraint to be violated in this direction is ¢4 which is at
step length o = 0.267. The step & = x + ap is taken and the constraint c4 is
appended to the working set.

x=(25,25),W, = [3]

Figure 4.2: Tteration 2, W = [3], = = [2.5,2.5]T.

4.2 Primal active set method by example 59

Iteration 3

The situation is illustrated in figure Here the working set is W = [3,4]
and the new improving direction is found to be p = [0,0]7 and p = [3.1,0.6]7.
Because p = 0 and no negative Lagrange Multipliers exist, position x is optimal.
Therefore the method terminates with z* = [1.8,2.5]7.

x=(1.8333,25), W, =[3 4]

Figure 4.3: Iteration 3, W = [3,4], * = [1.8,2.5]7.

An interactive demo application QP_demo.m is found in appendix [D-3

60 Active Set Methods

4.3 Dual active set method

In the foregoing, we have described the primal active set method which solves
an inequality constrained convex QP, by keeping track of a working set W. In
this section we will examine the dual active set method, which requires the QP
to be strictly convex. The dual active set method uses the dual set of YW, which
we will call Wp. The method benefits from always having an easily calculated
feasible starting point and the method does not have the possibility of cycling.
The theory is based on earlier works by Goldfarb and Idnani [T, Schmid and
Biegler [TT] and Schittkowski [I2].

4.3.1 Survey

The inequality constrained strictly convex QP that we want to solve is as follows

: _ 17 T
aI}Iél]élf(:B) =5 Gx+g'z (4.55a)
st. clx)=alz—0,>0, icT. (4.55b)

The corresponding Lagrangian function is

1
Lz, p) = 5gcTGalr: +g'z— Z pilalz —b;). (4.56)
i€

The dual program of (EERH) is

1
weRI?,%(eRmL(wv n = inGw +g'z— ; pi(afx —b;) (4.57a)
s.t. Gz +g-— Zaiﬂi =0 (4.57b)
ieT
pi =0 iel. (4.57¢)

The necessary and sufficient conditions for optimality of the dual program is

4.3 Dual active set method 61

Gz +g— Z a;pf =0 (4.58a)
1€T
ci(x*)=alxz" —b; =0 i€ Alx") (4.58b)
ci(x)=alz" —b; >0 icI\A(x") (4.58c¢)
i >0 i€ A(z") (4.58d)
=0 i€ T\A(z"). (4.58¢)

These conditions are exactly the same as the optimality conditions of the primal
program (EERA), and this corresponds to the fact that the optimal value L(z*, pu*)
of the dual program is equivalent to the optimal value f(x*) of the primal
program. This is why the solution of the primal program can be found by
solving the dual program ER1).

The method maintains dual feasibility at any iteration {z*, u*} by satisfying
@XRTH) and @RZd). This is done by keeping track of a working set W. The
constraints in the working set satisfy

Gz" +g - Z auf =0 (4.59a)
ieW

ci(x®)=alx" —b;=0 iecw (4.59b)

pk >0 i€ W. (4.59¢)

The constraints in the complementary set Wp = Z\W, i.e. the active set of the
dual program, satisfy

Gzt +g- 3 aut=0 (4.60a)
i€EWp

pk =0 i € Wp, (4.60b)

and from (DY), @RY) and EED) it is clear that an optimum has been found

zh = if

ci(x®) =alx" —b;>0 iecWp. (4.61)

62 Active Set Methods

If this is not the case some violated constraint r € Wp exists, i.e. ¢.(z*) < 0.
The following relationship explains why {x*, u¥} cannot be an optimum in this
case

oL
Opor

(¥, u*) = —c.(zF) > 0. (4.62)

This means that (ERZal) can be increased by increasing the Lagrangian multiplier
1. In fact, this explains the key idea of the dual active set method. The idea is
to choose a constraint ¢, from the dual active working set WWp which is violated
c-(£%) < 0 and make it satisfied c.(z*) > 0 by increasing the Lagrangian
multiplier u,.. This procedure continues iteratively until no constraints from
Wrp are violated. At this point the optimum has been found and the method
terminates.

4.3.2 Improving Direction and Step Length

If optimality has not been found at iteration k it indicates that a constraint c,
is violated, which means that c.(z*) < 0. In this section we will investigate how
to find both an improving direction and a step length which satisfy the violated
constraint c,..

Improving Direction

The Lagrangian multiplier p, of the violated constraint ¢, from Wp should be
changed from zero to some value that will optimize ([ERTZal) and satisfy ([EL5ZH)
and [ERZd). After this operation the new position is

T=x+s (4.63a)
i =pi+u; €W (4.63b)
for = pr + 1 (4.63c)
i =i =0 i€Wp\r (4.63d)

From (EEE7H) and {R9D) we know that & and i should satisfy

4.3 Dual active set method 63

GZE+g-> aifii="0 (4.64a)
1€T
ci(®)=alz—b;=0 icW. (4.64b)

As p; #0 fori € W, i, # 0 and r yet not in W, this can be written as

(o)G () (5)rme

where A = [a;];ey has full column rank, G is symmetric and positive definite,
n = [ﬂi]zTer a, is the constraint from Wp we are looking at and p, is the
corresponding Lagrangian multiplier. Using [G3)) this can be formulated as

() (8) (5)

T8I

From (X)) we have

SR RCHT

and therefore (G0 is simplified as follows

(S @) ()
which is equivalent to
(S @) -(5) (2)-(2)r

The new improving direction (p, v)? is found by solving @), using a solver
for equality constrained QP’s, e.g. the range space or the null space procedure.

64 Active Set Methods

Step Length

Having the improving direction we now would like to find the step length ¢
(EDY). This step length should be chosen in a way, that makes ([ZRZd) satisfied.
From (EG3), L) and L) we have the following statements about the new
step

T=x+s=x+1ip (4.70a)
=i +u; = +to;, i €W (4.70Db)
fir = pr +t (4.70¢)
i =p; =0 i€ Wp\r. (4.70d)

To make sure that i, > 0 EXId), we must require, that ¢ > 0. When v; > 0
we have fi,, > 0 and [RTd) is satisfied for any value of ¢ > 0. When v; < 0 we
must require ¢ to be some positive value less than =££, which makes ji; > 0 as
i > 0 and v; < 0. This means that ¢ should be chosen as

) > 0. (4.71)

. N V73
t € [0,tmax], tmax = min(co, min
v, <0 Uy

Now we know what values of ¢ we can choose, in order to retain dual feasibility
when taking the new step. To find out what exact value of ¢ in the interval
(I we should choose to make the step optimal we need to examine what
happens to the primal objective function (EhRhal), the dual objective function
(ERTaA), and the constraint ¢, as we take the step.

The relation between ¢, (x) and ¢, (Z)

Now we shall examine how ¢, (&) is related to ¢,.(x). For this reason, we need
to state the following properties. From ([GY) we have

a, =Gp— Av (4.72a)
ATp=o. (4.72D)

Multiplying 28] with p gives

alp=(Gp-Av)'p=p"Gp-v"A"p=p"Gp (4.73)

4.3 Dual active set method 65

and because G is positive definite, we have

al’p=p'Gp>0 (4.74a)
alp=p'Gp=0 < p=0 (4.74b)
alp=p'Gp>0 < p#0. (4.74¢)
As T = x + tp we get
=\ _ T _.T T
er(®) =c(x+tp) =a, (x+tp)—b. =a,x—b.+ta.p (4.75)

and because ¢, () = al'x — b, this is equivalent to

cr(®) = ¢, (z) + tal p. (4.76)
From (Z) and ([ZZZa) we know that talp > 0 and therefore

er(®) > e (). (4.77)

This means that the constraint ¢, is increasing (if ¢ > 0) as we move from x to
Z and this is exactly what we want as it is negative and violated at .

The relation between f(x) and f(Z)

In addition to the foregoing we will now investigate what happens to the primal
objective function (EERRal) as we move from x to . Inserting & = x + ¢p in

EDRa) gives

[(@) = f@+tp) = S@+ip) G tip)+g'(@+ip), (4T8)

which may be reformulated as

1 1
f(@) = ;2" Ge+ g'z+ J'p" Gp+ (G + 9)"p, (4.79)

66 Active Set Methods

and using (E55a]) this leads to

f(®) = f(z) + %tQpTGp +t(Gz +g)"p. (4.80)
From (EE67) we have the relation
Gz — Ap+g—appu =0, (4.81)
which is equivalent to
Gx+g=Ap+a, i, (4.82)
and when multiplied with p this gives
(Gz+g)"p=(Ap+a,u) p=p"A"p+ palp. (4.83)
Furthermore using the fact that A7 p = 0, this is equivalent to

(Gz+9)"p = pra;p. (4.84)

Inserting this in ([ER0) gives

£(®) = f(@) + 39" Gp + tiralp. (1.85)

Using p? Gp = al'p from @) we get

F(@) = [@) + 5alp + tualp = f(@) + t(n + 5halp. (456)

Ast>0,alp >0 and u, > 0 the primal objective function does not decrease
when we move from x to Z.

4.3 Dual active set method 67

The relation between L(x, pu) and L(Z, 1)

We will now investigate what happens to the Lagrangian function [ZhZal) as we
move from (i, p) to (Z,). After taking a new step we have

L(z,) = f(z) - Zuici@)a (4.87)

€T

and because p; = 0 for i € Wp and ¢;(Z) = 0 for i € W this is equivalent to

L(,) = (&) - fire, (&). (4.88)

By replacing f(Z) with R0, b, with g, + ¢ and ¢.(Z) with), we then
have

L(Z,) = f() + t(pr + %t)a?p = (r + t)(cr(z) + tal p), (4.89)

which we reformulate as

1
L(Z, i) = f(x)+prtal p+=t*al p—pc (x) — ptal p—te.(x) —t*alp (4.90
ll' T 2 T T I

and finally this gives

L(&, i) = [(w) — prer (@) — 570l p — te,(@). (4.91)

The Lagrangian L(x, u) before taking the new step is

L, u) = f(@) - 3 pici(e) (4.92)

i€l

and as in the case above we have the precondition p; = 0 for i € Wp and

68 Active Set Methods

¢i(x) =0 for i € W and therefore [E3J) is equivalent to

L(w$ IJ’) = f(x) - Mrcr(w); (493)

and inserting this in (XTI gives us

L(@, i) = L(w,) — 57alp — te,(2). (4.94)

Now we want to know what values of ¢t make L(&, 1) > L(x, p), i.e what values
of t that satisfy

1
L(z,p)— L(x,p) = —atQaTTp — tep(x) > 0. (4.95)

This inequality is satisfied when

—c ()
te [O’2aTT7p]' (4.96)

When t is in this interval, the Lagrangian function increases as we move from
(z, p) to (Z,). To find the value of ¢ that gives the greatest increment we must
differentiate ([Z34]) with respect to ¢

dL
i —talp — c.(x). (4.97)

The greatest increment is at t* where

—c.(T)
alp

~t*alp—c(x)=0 & t*'= (4.98)

At this point we would like to stop up and present a short summary of what
has been revealed throughout the latest sections. If optimality has not been

4.3 Dual active set method 69

found at iteration k, some violated constraint c,«(a:k) < 0 must exist. The new
improving direction is found by solving the equality constrained QP

(% DC)(5) o

where A = [a;]iew has full column rank, G is symmetric and positive definite
and a, is the violated constraint. The optimal step length ¢, which ensures
feasibility is found from statements 7)) and E3S)

t = min(min —H —cr(a:)).

4.100
ivi<0 v; alp ()

Both the dual objective function {EX1) and the violated constraint increase as
we take the step.

4.3.3 Linear Dependency

The KKT system [T) can only be solved if G is positive definite, and A
has full column rank. If the constraints in A = [a;];cy and a, are linearly
dependent, it is not possible to add constraint r to the working set W, as
A = [a;]iewur in this case would not have full column rank. This problem is
solved by removing constraint j from W, which makes the constraints in the
new working set W = W\{j} and a, linearly independent. This particular case
will be investigated in the following. The linear dependency of A = [a;];e)y and
a, can be written as

m
ar =Y via; = Ay. (4.101)
i=1
When multiplied with p we get

alp=+"A"p, (4.102)

70 Active Set Methods

and as A”p = 0 [ET2H) we then have

al’p=0 < a, € spand = [a]icw. (4.103)

Now we will investigate what to do when

() <0 A a, € spanA = [a;iew. (4.104)

When a, and the constraints in the working set are linearly dependent and

@TT) is solved
(& #)-(5)

we know from ([EZ40) and T3] that p = 0. If v contains any negative values,
t can be calculated using)

t= min —4 >0, j=arg min —H (4.106)
Jjwi<0 Vj J:v; <0 Vj

When we move from @ to & we then have

pj = p; +1tv; =0 (4.107)

and this is why we need to remove constraint ¢; from W and we call the new set
W = W\{j}. Now we will see that a, is linearly independent of the vectors a;
for i € W. This proof is done by contradiction. Lets assume that a,. is linearly
dependent of the vectors a; for i € W, i.e. a, € spanA = [a;);cyy.

As a, € spanA = [a;];cy and hence p = 0 we can therefore write

a,=Gp—Av=—-Av=A(—v) = Z a;(—v;). (4.108)

4.3 Dual active set method 71

At the same time because W = W U {j}, we have

ar =Y ai(-v;)+ aj(-v)) (4.109)

iEW

and isolation of a; gives
1
a; = _—vja,« + ——1)j E a;v;. (4110)

Since we assumed a, € spanA = [a;];cyy, using IO a, can be formulated
as

=Y an (4111)

iEW

and inserting this equation in [EZIT0) gives us

_ __Uj S ami+ — Z a;v;, (4.112)

iEW ZEW

which is equivalent to

;=Y 1, (4.113)
iew

As we have

i T Ui + v;
—v;

a; = Z ﬂza’m 51 -

i€EW

(4.114)

clearly a; is linearly dependent on the vectors a; for i € W and this is a
contradiction to the fact that A = [a;]ieyv has full column rank, i.e. the vectors
a; for i € WU j are linearly independent. This means that the assumption

72 Active Set Methods

a, € spanA = [a;];cyy cannot be true, and therefore we must conclude that
a, ¢ spanA = [a;];cyy-

Furthermore from (34 we know that

o 1
L&z, p) =Lz, pn) — §t2aer — ter(x) (4.115)

and because of linear dependency al'p = 0, this is equivalent to

L(z, p) = L(z, p) — ter () (4.116)

and as tc.(x) < 0 we know that L(Z, i) > L(x, p) when a, € spanA = [a;|cw.

Now we shall see what happens when no negative elements exist in v from
ETT). From T we know that ¢ can be chosen as any non negative value,
and therefore ([EZITH) becomes

lim L(Z, i) = oo. (4.117)

t—o0

In this case the dual program is unbounded which means that the primal pro-
gram (EERH) is infeasible. Proof of this is to be found in Jgrgensen [I3]. This
means that no solution exists.

In short, what has been stated in this section, is that when [EGJ) is solved and
al'p = 0 we know that A = [a;];cyy and a, are linearly dependent and p = 0.
If there are no negative elements in v the problem is infeasible and no solution
exist. If some negative Lagrangian multipliers exist we should find constraint
¢;j from W where

j=arg min 2, t= min >0 (4.118)
Jw; <0 Vj J:v; <0 Vj

and the following step is taken

i = i +tvy, €W (4.119&)
Ly = W + €. (4.119b)

4.3 Dual active set method 73

As p = 0, we know that & = « and therefore this step is not mentioned in
ETTY). Again, when fi; = 0 it means that constraint ¢; belongs to the dual
active set Wp and is therefore removed from ¥W. The constraints in the new
working set W = W\{j} and a, are linearly independent, and as a result a new
improving direction and step length may be calculated.

4.3.4 Starting Guess

One of the forces of the dual active set method is that a feasible starting point
is easily calculated. Starting out with all constraints in the dual active set Wp
and therefore W being empty

=0, ieWp=17I, W=90 (4.120)

and if we start in

r=-G'g (4.121)

E37D) and ([ERZ) are satisfied

Gw—i—g—Zaiui:Gw—i-g:O (4.122a)
i€l
i >0 ieT. (4.122b)

The Lagrangian function is

1
Lz, p) = §$TG93 +g"z - pilalx—b;)
i€z

1
= §:cTGa: +g"'x

= f(=), (4.123)

which means that the starting point is at the minimum of the objective function
of the primal program ([ER5al) without taking notice of the constrains (L550).

74 Active Set Methods

Because the inverse Hessian matrix is used we must require the QP to be strictly
convex.

4.3.5 In summary

Now we will summarize what has been discussed in this section and show how
the dual active set method works. At iteration k we have (x, u, 7, W, Wp) where
¢r(x) < 0. Using the null space or the range space procedure the new improving
direction is calculated by solving

(_iT _(;4) (5) = (%T)v A = laiew- (4.124)

If A = [ailiew and a, are linearly dependent and no elements from v are
negative the problem is infeasible and the method is terminated. Using (EI03])
and ([EIT7) this is the case when

alp=0 A v;>0, icW. (4.125)

If on the other hand A = [a;]icyw and a, are linearly dependent and some
elements from v are negative, c; is removed from W, step length ¢ is calculated
according to ([EZI00) and a new step is taken

t = min Hi >0, j=arg min K (4.126a)
Jw; <0 vj J;<0 j

[= i + tu; ieW (4.126D)

fir = pr +t (4.126¢)

W =W\{j}. (4.126d)

If A = [a;]iew and a, are linearly independent and some elements from v are
negative, we calculate two step lengths ¢, and to according to X)) and (EIS])

: O . . T Hy
t = , My = —H 4.127
1 = min(oo jgljngo o)y J argjgljlgo o (a)
—c ()
ty = , 4.127b
*T alp ()

where t; can be regarded as the step length in dual space because it assures
that (ERZJ) is satisfied whenever 0 < ¢ < ¢;. Constraint ([Z250) is satisfied for

4.3 Dual active set method 75

¢ when t > to and therefore t5 can be regarded as the step length in primal
space. Therefore we will call ¢1 tp and to tp.

If tp < tp then tp is used as the step length and ([RZd) remain satisfied when
we take the step. After taking the step, ¢; is removed from W because fi; = 0

T=x+tpp (4.128a)
i = pi +tpvy,, 1e€W (4.128Db)
fir = fir +tp (4.128¢)
W = W\{j}. (4.128d)

If tp < tp then tp is used as the step length and ([LBAD) get satisfied for ¢,..
After taking the step we have that ¢, (Z) = 0 and therefore r is appended to W

T=x+tpp (4.129a)
i = i +tpvy,, 1€W (4.129b)
fir = fr +tp (4.129c¢)
W=WwWu/{r}. (4.129d)
If A = [a;]iew and a, are linearly independent and no elements from v are

negative we have found the optimum and the program is terminated.

The procedure of the dual active set method is stated in algorithm EE3T1

76 Active Set Methods

Algorithm 4.3.1: Dual Active Set Algorithm for Strictly Convex Inequality
Constrained QP’s. Note: Wp = T\W.

Compute xg = —G ‘g, set p; = 0,i € Wp and W = 0.
while NOT STOP do
if ¢;(x) > 0Vi € Wp then
| STOP, the optimal solution «* has been found!
Select r € Wp : ¢,.(x) < 0.
while ¢,(z) < 0 do /* find improving direction p */
Find the improving direction p by solving the equality constrained

QP:
(S &) (2)- (5) amtene

if alp =0 then
if v; > 0Vi € W then
| STOP, the problem is infeasible!

else /* compute step length t, remove constraint j */
t= min _'ui,jz arg min —H
EW:; <0 U; iEWw; <0 U;
T—x
Wi — p; +tug, i €W
e
LW e=W\{jhied
else /* compute step length tp and tp */

tp = min (oo, min _M> ,J =arg min il

i€EW:w; <0 v; EW; <0 U;
—c.(T)
tp = —n
alp
if tp <tp then /* append constraint r */

T <—x+1ipp

Hi < Wi +tpvg,i €W

M — fyr +tp

W —Wu{r}

else /* remove constraint j */
T <—x+1ipp
Wi < i +tpvi, i € W
o <_/14r+tD

L W=W\{j}jeJ

4.3 Dual active set method 77

4.3.6 Termination

The dual active set method does not have the ability to cycle as it terminates
in a finite number of steps. This is one of the main forces of the method, and
therefore we will now investigate this property.

As the algorithm (EE3]) suggests, the method mainly consists of two while-loops
which we call outer-loop and inner-loop. In the outer-loop we test if optimality
has been found. If this is not the case we choose some violated constraint r,
¢r(x) < 0 and move to the inner-loop.

At every iteration of the inner-loop we calculate a new improving direction and a
corresponding step length: ¢ = min(tp,tp), where tp is the step length in dual
space and tp is the step length in primal space. The step length in primal space

is always positive, tp > 0 as tp = 7;’%3), where ¢.(z) < 0 and al'p > 0. From
(ECT) and @38) we know that L(Z, i) > L(z, i) whenever 0 < t < —25&)

alp
This means that the dual objective function L increases when a step in primal

space is taken. A step in primal space also means that we leave the inner-loop
as constraint ¢, is satisfied ¢,.(Z) = ¢,(x) + talp = 0.

A step in dual space is taken whenever tp < tp and in this case we have
cr(Z) = e(x) + tpal'p < c.(x) + tpalp = 0. This means that we will never
leave the inner-loop after a step in dual space as ¢, () < 0. A constraint c¢;
is removed from the working set W when we take a step in dual space, which
means that [W] is the maximum number of steps in dual space that can be
taken in succession. After a sequence of 0 < s < |[W)| steps in dual space, a step
in primal space will cause us to leave the inner-loop. This step in primal space
guarantees that L is strictly larger when we leave the inner-loop than when we
entered it.

As the constraints in the working set WV are linearly independent at any time,
the corresponding solution (z, p) is unique. Also as L(x¢t1, pd+1l) > L(z4, u?)
(where ¢ defines the ¢'th iteration of the outer loop) we know that the combina-
tion of constraints in WV is unique for any iteration ¢. And because the number
of different ways the working set can be chosen from Z is finite and bounded by
2171 we know that the method will terminate in a finite number of iterations.

78 Active Set Methods

4.4 Dual active set method by example

In the following example we will demonstrate how the dual active set method
finds the optimum

. 1 4 T (10 (0

s.t. c1=—-x1+x9—1>0
1
(32:—5331—1‘24-220

cg =—x9+25>0
cy = —3x1+22+3>0.

At every iteration k we plot the path (z!...z*) together with the constraints,
where active constraints are indicated with red. The 4 constraints and their
column-index in A are labeled on the constraint in the plots. The primal fea-
sible area is in the top right corner where the plot is lightest. We use the least
negative value of c¢(z") every time c, is chosen, even though any negative con-
straint could be used. For every iteration we have plotted the situation when
we enter the while loop.

Iteration 1

This situation is illustrated in figure A The starting point is at = G~ 'g =
(0,007, w = 0 and W = (. On entering the while loop we have c(x) =
[1.0, 2.0, —2.5, —3.0]7 and therefore r = 2 is chosen because the second element
is least negative. The working set is empty and therefore the new improving
direction is found to p = [0.5,1.0]7 and w = [|. As the step length in primal
space is tp = 1.6 and the step length in dual space is tp = oo, tp is used, and
therefore r is appended to the working set. The step is taken as seen in figure

E3

4.4 Dual active set method by example 79

X=(0,0,W, =

Figure 4.4: Tteration 1, W = (), = = [0,0]”, u = [0,0,0,0]T.

Iteration 2

This situation is illustrated in figure El On entering the while loop we have
W = [2], and because c¢,.(x) = 0 we should choose a new r. As c(x) =
[0.2,0,-0.9,—2.2]T, r = 3 is chosen. The new improving direction is found
to be p =[-0.4,0.2]7 and w = [~0.8]. As tp = 2.0 and tp = 4.5 a step in dual
space is taken and co is removed from W.

x=(0.8,16), W,

act

=12

Figure 4.5: Tteration 2, W = [2], = = [0.8,1.6]7, p = [0,1.6,0,0]7.

Iteration 3

This situation is illustrated in figure LGl Because ¢, () # 0 we keep r = 3.
The working set is empty W = (). The improving direction is found to be
p = [0.0,1.0]7 and w = []. A step in primal space is taken as tp = oo and

80 Active Set Methods

tp = 0.5 and r is appended to W.

X=(-1.1102¢-16,2), W_ =[]

Figure 4.6: Iteration 3, W =[], z = [0,2]7, u = [0,0,2,0]T.

Iteration 4

This situation is illustrated in figure 1 Now ¢, (x) = 0 and therefore a new r
should be chosen. As c¢(z) = [~1.5,0.5,0, —5.5]T, we choose 7 = 1. The working
set is W = [3], and the new improving direction is p = [1.0,0.0]” and w = [1].
We use tp as tp = oo and tp = 1.5 and r is appended to W after taking the
step.

X = (-1.11026-16, 2.5), W

act

Figure 4.7: Tteration 4, W = [3], = = [0, 2.5]7, pu = [0,0, 2.5,0]7.

Iteration 5
This situation is illustrated in figure As ¢r(x) = 0 we must choose a new
r and as c¢(z) = [0,1.25,0,—1.0]T, r = 4 is chosen. At this point W = [3,1].

4.4 Dual active set method by example 81

The new improving direction is p = [0.0,0.0]7 and u = [~2, —3] and therefore
alp = 0. This means that a, is linearly dependent of the constraints in W and
therefore 1 is removed from W.

act

x=(15,25), W

=[B1]

Figure 4.8: Tteration 5, W = [3,1], = = [1.5,2.5]7, u = [1.5,0,4,0]T.

Iteration 6

This situation is illustrated in figure 3 On entering the while loop we have
¢ in the working set W = [3]. And r remains 4 because ¢,.(x) # 0. The new
improving direction is p = [3.0,0.0]7 and w = [1]. The step lengths are tp = 0o
and tp = 0.11 and therefore a step in primal space is taken and r is appended
to W.

=18

act

x=(15,25), W,

Figure 4.9: Iteration 6, W = [3], = [1.5,2.5]7, u = [0,0,3,0.5]7.

82 Active Set Methods

Iteration 7

This situation is illustrated in figure EEI0 Now the working set is W = [3, 4]
and as ¢.(x) = 0, a new r must be chosen. But c(x) = [0.33,1.42,0,0]7 (no
negative elements) and therefore the global optimal solution has been found
and the algorithm is terminated. The optimal solution is * = [1.83,2.50]7 and
p* =1[0,0,3.11,0.61]T.

X =(1.8333,25),W__=[3 4]

act

Figure 4.10: Iteration 7, W = [3,4], =* = [1.8,2.5]T, p* = [0,0,3.11,0.61]7.

An interactive demo application QP_demo.m is found in appendix [

CHAPTER 5

Test and Refinements

When solving an inequality constrained convex QP, we use either the primal
active set method or the dual active set method. In both methods we solve a
sequence of KKT systems, where each KKT system correspond to an equality
constrained QP. To solve the KKT system we use one of four methods: The
range space procedure, the null space procedure, or one of the two with fac-
torization update instead of complete factorizations. We will test these four
methods for computational speed to find out how they perform compared to
each other.

Usually the constraints in an inequality constrained QP are divided into bounded
variables and general constraints. This division can be used to further optimiza-
tion of the factorization updates, as we will discuss later in this chapter. As a
test case we will use the quadruple tank problem which is described in appendix

Al

5.1 Computational Cost of the Range and the
Null Space Procedures with Update

The active set methods solve a sequence of KKT systems by use of the range
space procedure, the null space procedure or one of the two with factorization

84 Test and Refinements

update. Now we will compare the performance of these methods by solving the
quadruple tank problem. By discretizing with N = 300 we define an inequality
constrained strictly convex QP with n = 1800 variables and |Z| = 7200 con-
straints. We have chosen to use the dual active set method because it does
not need a precalculated starting point. Different parts of the process are il-
lustrated in figure Bl Figure shows the computational time for solving
the KKT system for each iteration and ﬁgureshows the number of active
constraints |W] for each iteration. The size of the active set grows rapidly in
the first third of the iterations after which this upward movement fades out a
little. This explains why the computational time for the null space procedure
decreases fast to begin with and then fades out, as it is proportional to the
size of the null space (n — m). Likewise, the computational time for the range
space procedure grows proportional to the dimension of the range space (m).
The null space procedure with factorization update is much faster than the null
space procedure with complete factorization even though some disturbance is
observed in the beginning. This disturbance is probably due to the fact that the
testruns are carried out on shared servers. The range space procedure improves
slightly whenever factorization update is used. When solving this particular
problem, it is clear from figures [f.1(a)] and [f.1(c)} that range space procedure
with factorization update should be used until approximately 800 constraints
are active, corresponding to %n =2~ 0.45n, after which the null space proce-
dure with factorization update should be used. In theory the total number of
iterations should be exactly the same for all four methods, however they differ
a little due to numerical instability as seen in figure where the curves
are not completely aligned. The number of active constraints at the optimal
solution is |W| = 1658.

5.1 Computational Cost of the Range and the Null Space Procedures with

Update

85

Test of Speed: N =300, n =1800

null space

null space update
range space

range space update

time [s]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
iteration

(a) Computational time for solving the
KKT system plotted for each iteration.

Number of elements in W at each iteration , max(/W|) =1658

1600 e
1400 - d nul space
o null space update
1200 Val range space
S range space update
__ 1000 /

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
iteration

(¢) Number of active constraints plotted at
each iteration.

Test of Speed: N =300, n =1800

— null space
null space update

60 ——— range space
range space update
50 MM

0 200 400 60

0 800 1000 1200 1400 1600 1800
IW| (appending)

(b) Computational time for solving the
KKT system each time a constraint is ap-

pend;

ed to the active set W.

Test of Speed: N =300, n =1800

null space
null space update
range space

range space update

eo/“

" /J MMW

10
0 200 400 600

800 1000 1200 1400 1600 1800
[W| (removing)

(d) Computational time for solving the

KKT system each time a constraint is re-
moved from the active set W.

Figure 5.1: The process of solving the quadruple tank problem with N=300,
(1800 variables and 7200 constraints). Around 8800 iterations are needed (de-
pending on the method) and the number of active constraints at the solution is

|W| = 1658.

86 Test and Refinements

5.2 Fixed and Free Variables

So far, we have only considered constraints defined like alx > b;. Since some
of the constraints are likely to be bounds on variables x; > b;, we divide all

constraints into bounds and general constraints. The structure of our QP solver
is then defined as follows

S s T
- 1
in s Gr+g = (5.1a)
s.t. l; <x; <y 1 €Ty = 1,2,...,n (51b)

()i <alx < (by)i 1€Tge=1,2,....;mye (5.1c)

where 7, is the set of bounds and Z,. is the set of general constraints. This
means that we have upper and lower limits on every bound and on every general
constraint, so that the total number of constraints is |Z| = 2n + 2mg.. We call
the active constraint matrix C € R™*™ and it contains both active bounds
and active general constraints. Whenever a bound is active we say that the
corresponding variable x; is fixed. By use of a permutation matrix P € R"*"
we organize and C' in the following manner

)ore (C)-re 52

where & € R? | & € R?, C € R"™*™ and C € R"™™_ # is the number of free
variables and 7 is the number of fixed variables (7 = n —n). Now we reorganize
the active constraint matrix PC

N

PC—P(BA)—<2 3:) (5.3)

where B € R"*" contains the bounds and A € R™*(m=7) contains the general
constraints. So we have A € R (™= and A € R**(m=") and I € R™*™ as
the identity matrix.

The QT factorization (which is used in the null space procedure) of (B3) is

5.2 Fixed and Free Variables 87

defined as

o-(§8) -(21) e

where Q € R™*" Q € R"*% [¢ RAxA T ¢ Rnxm and T € RW<(m=7) Gill et
al. [@]. This is a modified QT factorization, as only T' in T is lower triangular.

>

The part of the QT factorization which corresponds to the free variables consists
of Q and T. From (BF) it is clear that this is the only part that needs to be
updated whenever a constraint is appended to or removed from the active set.
The details of how these updates are carried out can be found in Gill et al.
[9] but the basic idea is similar to the one described in chapter The QT
structure is obtained using givens rotations on specific parts of the modified QT
factorization after appending or removing a constraint.

We have implemented these updates. To find out how performance may be
improved we have plotted the computational speed when solving the quadruple
tank problem with N = 200, defining 1200 variables and 4800 constraints. We
tested both the null space procedure with the factorization update as described
in chapter B and the null space procedure with factorization update based on
fixed and free variables. From figure it is clear that the recent update has
made a great improvement in computational time. But of course the improve-
ment is dependent on the number of active bounds in the specific problem.

88

Test and Refinements

Test of Speed: N =200 n =1200 m =4800

null space update 1
null space update 2

500 1000 1500 2000 2500 3000 3500

iteration

(a) Computational time for solving the
KKT system plotted for each iteration. Null
space update 2 is the new update based on
fixed and free variables.

1000

=
g
8

number of constraints
I 2
8 2
8 8

total number of active constraints
number of active bounds
number of active general constraints

N
8
8

0 500 1000 150_0 2000 2500 3000 3500
iteration
(b) The number of active bounds and active
general constraints and the sum of the two
plotted at each iteration.

Figure 5.2: Computational time and the corresponding number of active bounds
and active general constraints plotted for each iteration when solving the
quadruple tank problem with N=200, (1200 variables and 4800 constraints).
The problem is solved using both the null space update and the null space

update based on fixed and free variables.

5.3 Corresponding Constraints

In our implementation we only consider inequality constraints, and they are
organized as shown in (BI), where bounds and general constraints are connected
in pairs. So all constraints, by means all bounds and all general constraints
together, indexed 7, are organized in Z as follows

ieZ={1,2,..,n, (5.5)
———
x>l
n+1,n+2,..,2n, (5.6)
—r>—u
n+1,2n+42,...,2n + mye, (5.7)
arT>b
n+mge+1,2n 4+ mge + 2, ..., 2n + 2my.} (5.8)

—arxr>-b,

and the corresponding pairs, indexed p, are then organized in P in the following

manner

5.3 Corresponding Constraints 89

peEP={n+1,n+2..2n, (5.9)
—z>—u

1,2,...m, (5.10)

N

x>l
2n 4+ mge + 1,2n + mge + 2, ..., 2n + 2my,, (5.11)
—aTT>—b,
2n+1,2n+2,...,2n + mgy.}. (5.12)
arr>y

(5.13)

Unbounded variables and unbounded general constraints, where the upper and/or
lower limits are 00 respectively, are never violated. So they are not considered,
when 7 and P are initialized. E.g. if [= —o0, then 7 = 2 will not exist in Z,
and po = n + 2 will not exist in P.

In practice, the primal and the dual active set methods are implemented using
two sets, the active set given as the working set W, and the inactive set Z\W.
When a constraint j € Z\W;, becomes active, it is appended to the active set

Wit = We U{j} (5.14)

and because two corresponding inequality constraints cannot be active at the
same time, it is removed together with its corresponding pair p; € P from the
inactive set as follows

T\Wi1 = {Z\Wi\{J, pj}- (5.15)

When it becomes inactive it is removed from the active set

Wi = Wi\{Jj} (5.16)

and appended to the inactive set together with its corresponding pair

T\Wis1 = {T\Wi} U {j,p; }- (5.17)

90 Test and Refinements

So by using corresponding pairs, we have two constraints less to examine feasi-
bility for, every time a constraint is found to be active.

Besides the gain of computational speed, the stability of the dual active set
method is also increased. Equality constraints are given as two inequalities
with the same value as upper and lower limits. So because of numerical in-
stabilities, the method tends to append corresponding constraints to the active
set, when it is close to the solution. If this is the case, the constraint matrix A
becomes linearly depended, and the dual active set method terminates because
of infeasibility. But by removing the corresponding pairs from the inactive set,
this problem will never occur. The primal active set method will always find the
solution before the possibility of two corresponding constraints becomes active
simultaneously, so for this method we gain computational speed only.

The quadruple tank problem is now solved, see figure B3] without removing the
corresponding pairs from the inactive set - so only the active constraints are
removed.

In figure [5.3(a)] and [5.3(b)] we see the indices of the constraints of the active
set Wy and the inactive set Z\Wj, respectively. Not surprisingly it is seen,
that the constraints currently in the active set are missing in the inactive set.
Also in figure [5.3(c)] and [5.3(d)] we see, that the relation between the number of
constraints in the active set and the number of constraints in the inactive set
as expected satisfy

Wil + |T\Wk| = |Z|. (5.18)

5.3 Corresponding Constraints 91

Wi i‘ =[1;60], iu =[61;120], ib =[121;180], [[181;240] w: = [1;60], = [61;120], ih =[121;180], ih =[181;240]
u d u

50 100 150 200 250
iteration

100

iteration

(a) Indices of active bounds (blue) and ac-

(b) Indices of inactive bounds (blue) and
tive general constraints (red) per iteration.

inactive general constraints (red) per iter-
ation.

I\ W: max no bounds = 9, max no gen constr = 58, max total = 67 I\W: min no bounds = 111, min no gen constr = 62, min total = 173

220 no bounds 220 no bounds
——no gen constr| no gen constr
200 total 200 total
180 180
160 160
140 140
2 120 2 120
100 100
80 80
60 60
40 40
20 20
r—
50 150 200 250 50 100 150 200 250
iteration iteration

(¢) Number of active bounds and general

(d) Number of inactive bounds and general
constraints per iteration.

constraints per iteration.

Figure 5.3: The process of solving the quadruple tank problem using the primal
active set method with NV = 10, so n = 60 and |Z| = 240, without removing the
corresponding pairs from the inactive set Z\Wk.

92 Test and Refinements

The quadruple tank problem is now solved again, see figure 24l but this time
we remove the corresponding pairs from the inactive set as well.

W i= [1;60], = [61;120], iy = [121;180], i = [181;240]
\ u

IW: i, = [1;60], i, = [61;120], i, = [121;180], i, = [181;240]
] u

100 150

iteration iteration

(a) Indices of active bounds (blue) and ac- (b) Indices of inactive bounds (blue) and
tive general constraints (red) per iteration. inactive general constraints (red) per iter-
ation.

I\ W: max no bounds = 9, max no gen constr = 58, max total = 67 I\W: min no bounds = 102, min no gen constr = 4, min total = 106

no bounds
no gen constr
total 200

220

200

180

160

140

e
2 120 2 120
100 100
80 80
60 60
40 40
20 20
i S
50 100 150 200 250 50 100 150 200 250
iteration iteration
(¢) Number of active bounds and general (d) Number of inactive bounds and general
constraints per iteration. constraints per iteration.

Figure 5.4: The process of solving the quadruple tank problem using the primal
active set method with N = 10, so n = 60 and |Z| = 240, showing the effect of
removing the corresponding pairs from the inactive set Z\Wj.

In figure the indices of the constraints in the active set Wy are the same
as before the removal of the corresponding pairs. And in figure p.4(b)| we now
see, that all active constraints and their corresponding pairs are removed from
the inactive set Z\Wj, and the set is seen to be much more sparse. The new
relation between the number of constraints in the active set and the number of
constraints in the inactive set is seen in figurefs.4(c)land p.4(d)} And the indices
of the constraints in the inactive set, when we also remove the corresponding
pairs, are found to be {Z\Wy}\{pi},i € Wi. So now we have the new relation

5.4 Distinguishing Between Bounds and General Constraints 93

described as follows

2Wi| + HZ\Wr t\{pi}| = IZ], i€ W. (5.19)

The size of {Z\Wi}\{p:i},i € Wy is found by combining [I8) and EId) as
follows

2We| + HD\Wi P\ {pi}| = IWi| + [T\Wk|, i€ Wi (5.20)

which leads to

HI\Wi\{pi}| = [T\Wi| = [Wil, i€ W (5.21)

So we see, that the inactive set overall is reduced twice the size of the active set
by also removing all corresponding constraints p;, 7 € Wy, from the inactive set.
This is also seen by comparing figure [f.4(c)| and [5.3(c)]

5.4 Distinguishing Between Bounds and Gen-
eral Constraints

In both the primal and the dual active set methods some computations involving
the constraints are made, e.g. checking the feasibility of the constraints. All
constraints in Z are divided into bounds and general constraints, and via the
indices 7 € 7 it is easy to distinguish, if a constraint is a bound or a general
constraint. This can be exploited to gain some computational speed, since
computations regarding a bound only involve the fixed variable, and therefore
it is very cheap to carry out.

94

Test and Refinements

CHAPTER 6

Nonlinear Programming

In this chapter we will investigate how nonlinear convex programs with nonlinear
constraints can be solved by solving a sequence of QP’s. The nonlinear program
is solved using Newton’s method and the calculation of a Newton step can
be formulated as a QP and found using a QP solver. As Newton’s method
solves a nonlinear program by a sequence of Newton steps, this method is called
sequential quadratic programming (SQP).

6.1 Sequential Quadratic Programming

Each step of Newton’s method is found by solving a QP. The theory is based
on the work of Nocedal and Wright [T4] and Jgrgensen [I5]. To begin with, we
will focus on solving the equality constrained nonlinear program

min (@) (6.19)
s.t. h(z) =0 (6.1b)

where & € R and h(x) € R™. This is done using the corresponding Lagrangian

96 Nonlinear Programming

function

L(z,y) = f(x) — y" h(z). (6.2)

The optimum is found by solving the corresponding KKT system

_ (V () - Vh(w)y) —o0. (6.4)

Newton’s method is used to solve this system. Newton’s method approximates
the root of a given function g(x) by taking successive steps in the direction of
Vg(xz). A Newton step is calculated like this

g(x®) + J(x")Ax =0, J(xF) = Vg(x")T. (6.5)

As we want to solve (@] using Newton’s method, we need the gradient of
F(x,y) which is given by

8y2 8_3/2

6.1 Sequential Quadratic Programming 97

where V2, L(x,y) is the Hessian of L(z,y)

V2 La.y) = V(@) = Y5V hi(e). (6.7

Because VF(z,y) is symmetric we know that J(z,y) = VF(z,y)! = VF(z,y),
and therefore Newton’s method (EH) gives

(TP) ()

This system is the KKT system of the following QP

. 1 T 2 T
Join - SAxt (Vi L(@,y))Az + (VoL(z,y))” Az (6.9a)
s.t. Vh(x)" Az = —h(z). (6.9b)

This is clearly a QP and the optimum (AzT, Ay”) from [EX) is found by using
a QP-solver, e.g. the one implemented in this thesis, see appendix

The system () can be expressed in a simpler form, by replacing Ay with p—y

(Biep 5) (=)= oo

which is equivalent to

N

(V2, L(x

e ()
+

y) (6.11)

98 Nonlinear Programming

This means that ([EF) can be reformulated as

(Ve T)3 (T

and the corresponding QP is

1
min §AwTVizL(az, y)Az + Vf(z) Az (6.13a)
st. Vh(x) Az = —h(z). (6.13b)

As Newton’s method approximates numerically, a sequence of Newton iterations
is thus necessary to find an acceptable solution. At every iteration the improving
direction is found as the solution of the QP (EI3)), and therefore the process
is called sequential quadratic programming. Whenever V2 L(x,y) is positive
definite and Vh(x) has full column rank, the solution to ([EI3)) can be found
using either the range space procedure or the null space procedure. Also, if the
program () is extended to include inequalities

aI}Iél]él f(x) (6.14a)
s.t. h(x) >0 (6.14b)

then the program, that defines the Newton step is an inequality constrained QP
of the form

121:11:1 %AwTmeL(w, y) Az + Vf(x) Az (6.15a)
st. Vh(z)'Az > —h(z). (6.15b)

When V2 L(zx,y) is positive definite and Vh(z)? has full column rank the
solution to this program can be found using either the primal active set method
or the dual active set method.

6.2 SQP by example 99

6.2 SQP by example

In this section our SQP implementation will be tested and each Newton step
will be illustrated graphically. The nonlinear program that we want to solve is

- _ o4 4
S f(®) =27 + a5

s.t. xQZCIJ%_QEl"—l
@23:%—43:14—6
xgg—x%—i—?)xl—i—l

The procedure is to minimize the corresponding Lagrangian function

L(z,y) = f(x) — y" h(x) (6.17)

where y are the Lagrangian multipliers and h(x) are the function values of the
constraints. This is done by using Newton’s method to find the solution of

f(@) = Vh(z)y) = 0. (6.18)

A Newton step is defined by the following QP

(T 5) ()

In this example we have calculated the analytical Hessian matrix V2, L(z,y) of
ETD) to make the relation [EIY) exact, even though a BFGS update by Powell
[I6] has been implemented. This is done for illustrational purpose alone, as we
want to plot each Newton step in Fy, (@, y) and F,(x,y) from ([EIF) in relation

100 Nonlinear Programming

to the improving direction. The analytical Hessian matrix can be very expensive
to evaluate, and therefore the BFGS approximation is usually preferred. When
the improving direction [Azx, Ay]T has been found by solving (EId), the step
size « is calculated in a line search function implemented according to the one
suggested by Powell [I6].

Iteration 1

We start at position (zg,y,) = ([—4,—4],[0,0,0]7) with the corresponding
Lagrangian function value L(xo,y,) = 512. The first Newton step leads us
to (z1,y;) = ([-0.6253, —2.4966]7, [0, 32.6621,0]7) with L(x1,y,) = 410.9783,
and the path is illustrated in figure In figures [6.1(b)] and [6.1(c)| F1,
and Fy, are plotted in relation to the step size a, where the red line illustrates
the step taken. We have plotted Fy, and Fi, for a € [—1,3] even though the
line search function returns o € [0, 1]. In figures [6.1(b)| and [6.1(c)l « = 0 is the
position before the step is taken and « € [0, 1] where the red line ends illustrates
the position after taking the step. It is clear from the figures, that a full step
(o = 1) is taken and that Fy, and Fj, increase from —256 to —172.4725, and
—256 to —94.9038, respectively.

F(X,)q = =256 F(x,),,q = ~256

x o= (4-4)
= (- g v Id
Xy, = (0625292 4956) F(X,), 0 = ~172.4725 F) ey = ~94-9038
Sy : 2000 0
1500
-200
1000
<0 L™ 500 u™ -400
ok L
-600
-500
5 R S
-1000 -800
5 0 5 -1 0 1 2 3 -1 0 1 2 3
* a o
(a) The path. (b) Newton step in Fy, . (c) Newton step in F1,.

Figure 6.1: The Newton step at iteration 1. L(zo,y,) = 512 and L(x1,y,) =
410.9783.

Iteration 2

Having taken the second step the position is (22, y,) = ([1.3197, —1.3201]7, [0, 25.7498, 0]7)
as seen in ﬁgure The Lagrangian function value is L(x2,y,) = 103.4791.

The step size is @ = 1, Fy, increases from —172.4725 to —25.8427 and Fi,

increases from —94.9038 to —34.9515 as seen in figures [6.2(b)] and [6.2(c)}

6.2 SQP by example 101

x_ = (-0.62529,-2.4966)" __ F =-94.

X =((1.3197 -1.3201))T F()gq = ~172:4725 FoQdoq - 019038
new ; F(,) 0y = ~25.8427 () pew = ~34

= 1000 0

5 pes
%

500

-500

% 0 5 1000 0 1 2 3 e 0 1 2 3
% a a
(a) The path. (b) Newton step in F1i, . (c) Newton step in Fi,.

Figure 6.2: The Newton step at iteration 2. L(xy,y;) = 410.9783 and
L(z2,y,) = 103.4791.

Iteration 3

After the third step, the position is (x3, y3) = ([1.6667,1.9907]7, [15.7893,44.2432, 0]T),
see figure The Lagrangian function value is L(xs, y4) = 30.6487. Again

the step size is o = 1, Fy, increases from —25.8427 to 25.8647 and Fj, increases

from —34.9515 to —28.4761 as seen in figure [6.3(b)| and [6.3(c)}

X, = (1.3197,-1.3201)" Fx)) = -25.8427 F(X,)q = ~34.9515
F(X) e = 25-8647 F(X,), 0, = ~28.4761

X =(1.6667,1.9907)"
new
5 pon .

7 2500

2000
1500

u®™ 1000
500

0

-500
-1 0 1 2 3

(a) The path. (b) Newton step in Fi, . (c) Newton step in Fi,.

Figure 6.3: The Newton step at iteration 3. L(x2,y,) = 103.4791 and
L(xs,y;) = 30.6487.

Iteration 4

The fourth step takes us to (z4,9,) = ([1.6667,2.1111]T,[2.1120, 35.1698, 0]),
see figure [6.4(a)l The Lagrangian function value is L(xy4,y,) = 27.5790. The
step sizeis a = 1, I}, decreases from 25.8647 to —3.55271e—15 and F1, increases
from —28.4761 to 0.3533 as seen in figures [6.4(b)| and [6.4(c)} Even though
refinements can be made by taking more steps we stop the algorithm at the
optimal position (x*,y*) = (z4,y,) = ([1.6667,2.1111]7,[2.1120, 35.1698,0]T)
where the optimal value is f(x*) = 27.5790.

102 Nonlinear Programming

.
X, = (1.6667,1.9907) FX,)y = 25.8647 Flx))

= -28.4761
=(1.6667,2.1111)"

oia =

X
new

F(X)) o = ~3:5527€-15 F(X,) e = 0-35325
100

w w
% 0 5 100 0 1 2 3
X1 a
(a) The path. (b) Newton step in F1p, . (c) Newton step in F1p,.

Figure 6.4: The Newton step at iteration 4. L(x3,y;) = 30.6487 and
L(x4,y,) = 27.5790.

An interactive demo application SQP_demo .m is found in appendix [D.3

CHAPTER 7

Conclusion

In this thesis we have investigated the active set methods, together with the
range and null space procedures which are used in solving QP’s. We have also
focused on refining the methods and procedures in order to gain efficiency and
reliability. Now we will summarize the most important observations found in
the thesis.

The primal active set method is the most intuitive method. However, it has
two major disadvantages. Firstly, it requires a feasible starting point, which is
not trivial to find. Secondly and most crucially, is the possibility of cycling.
The dual active set method does not suffer from these drawbacks. The method
easily computes the starting point itself, and furthermore convergence is guar-
anteed. On the other hand, the primal active set method has the advantage of
only requiring the Hessian matrix to be positive semi definite.

The range space and the null space procedures are equally good. But, where
the range space procedure is fast, the null space procedure is slow and vice
versa. Thus, in practice the choice of method is problem specific. For problems
consisting of a small number of active constraints in relation to the number of
variables, the range space procedure is preferable. And for problems with a large
number active constraints compared to the number of variables, the null space
procedure is to be preferred. If the nature of the problem potentially allows a
large number of constraints in comparison to the number of variables, then, to

104 Conclusion

gain advantage of both procedures, it is necessary to shift dynamically between
them. This can easily be done by comparing the number of active constraints
against the number of variables e.g. for each iteration However, this requires
a theoretically predefined relation pointing at when to shift between the range
space and the null space procedures. This relation can as mentioned be found in
theory, but in practice it also relies on the way standard MATLAB functions are
implemented, the architecture of the processing unit, memory access etc., and
therefore finding this relation in practice is more complicated than first assumed.

By using Givens rotations, the factorizations used to solve the KKT system can
be updated instead of completely recomputed. And as the active set methods
solve a sequence of KKT systems, the total computational savings are signifi-
cant. The null space procedure in particular has become more efficient. These
updates have been further refined by distinguishing bounds, i.e. fixed variables,
from general constraints. The greater fraction of active bounds compared to
active general constraints, the smaller the KKT system gets and vice versa.
Therefore, this particular update is of the utmost importance, when the QP
contains potentially many active bounds.

The SQP method is useful in solving nonlinear constrained programs. It is
founded in Newton steps. The SQP solver is based on a sequence of Newton
steps, where each single step is solved as a QP. So a fast and reliable QP solver
is essential in the SQP method. The QP solver which has been developed in the
thesis, see appendix [Bl has proved successful in fulfilling this task.

7.1 Future Work

Dynamic Shift Implementation of dynamic shift between the range space and
null space procedures would be interesting, because computational speed
could be gained this way.

Low Level Language Our QP solver has been implemented in MATLAB, and
standard MATLAB functions such as chol and qr have been used. In
future works, implementation in Fortran or C++ would be preferable.
This would make the performance tests of the different methods more
reliable. Implementation in any low level programming language may
be expected to improve general performance significantly. Furthermore,
any theoretically computed performances may also be expected to hold in
practice.

Precomputed Active Set The dual active set method requires the Hessian
matrix G of the objective function to be positive definite, as it computes

7.1 Future Work 105

the starting point @ by use of the inverse Hessian matrix: o = -G 'g.
The primal active set method using the null space procedure only requires
the reduced Hessian matrix Z7 GZ to be positive definite. In many prob-
lems it is possible to find an active set which makes the reduced Hessian
matrix positive definite even if the Hessian matrix is positive semi definite.
In future works the LP solver which finds the starting point to the primal
active set method should be designed so that it also finds the active set
which makes the reduced Hessian matrix positive definite. This extension
would give the primal active set method an advantage compared to the
dual active set method.

106 Conclusion

Bibliography

[1]

(4]

[5]

(6]

Li, W. and Swetits, J. J.
The Linear I1 Estimator and the Huber M-Estimator, SIAM Journal on
Optimization, (1998).

Gill, P E., Gould, N. I. M., Murray, W., Saunders, M. A., Wright, M. H.
A Weighted Gram-Schmidt Method for Conver Quadratic Pro- gramming.
Mathematical Programming, 30, (1984).

Gill, P. E. and Murray, W.
Numerically Stable Methods for Quadratic Programming. Mathematical Pro-
gramming, 14, (1978).

Golub, G. H. and Van Loan, C. F.
Matriz Computations, (1996).

Wilkinson, J. H.
The Algebraic Eigenvalue Problem, (1965).

Dennis, J. E. and Schnabel, R. B.
Numerical Methods for Unconstrained Optimization and Nonlinear Equa-
tions., (1996).

Gill, P. E., Golub, G. H., Murray, W. and Saunders, M. A.
Methods for Modifying Matrix Factorizations. Mathematics of Computation,
28., (1974).

Gill, P. E. and Murray, W. Numerically Stable Methods for Quadratic Pro-
gramming. Mathematical Programming, 14.,(1978).

108 BIBLIOGRAPHY

[9] Gill, P. E., Murray, W., Saunders, M. E. and Wright, M. H. Procedures
for Optimization Problems with a Mizture of Bounds and General Linear
Constraints. ACM Transactions on Mathematical Software, 10.,(1984).

[10] Goldfarb, D. and Idnani, A.
A numerically stable dual method for solving strictly convex quadratic pro-
grams, (1983).

[11] Schmid, C. and Biegler, L.
Quadratic programming methods for reduced hessian SQP, (1994).

[12] Schittkowski, K.
QL: A Fortran Code for Convexr Quadratic Programming - Users Guide.

Technical report, Department of Mathematics, University of Bayreuth,
(2003).

[13] John Bagterp Jorgensen.
Quadratic Programming, (2005).

[14] Nocedal, J. and Wright, S. J.
Numerical Optimization, Springer Series in Operations Research, Second
Edition, (2006).

[15] John Bagterp Jgrgensen.
Lecture notes from course 02611 Optimization Algorithms and Data-Fitting,
IMM, DTU, DK-2800 Lyngby, (november 2005).

[16] Powell, M. J. D.
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations. In
G. A. Watson, editor, Numerical Analysis, (1977).

[17] John Bagterp Jorgensen.
Lecture notes from course: Model Predictive Control, IMM, DTU, DK-2800
Lyngby, (february 2007).

[18] L. Eldén, L. Wittmeyer-Koch and H.B. Nielsen:
Introduction to Numerical Computation, published by Studentlitter-
atur(2002).

APPENDIX A

Quadruple Tank Process

The quadruple tank process Jorgensen [I7] is a system of four tanks, which are
connected through pipes as illustrated in figure A1l Water from a main-tank
is transported around the system and the flow is controlled by the pumps F
and F5. The optimization problem is to stabilize the water level in tank 1 and
2 at some level, called set points illustrated as a red line. Values 1 and s of
the two valves control how much water is pumped directly into tank 1 and 2
respectively. The valves are constant, and essential for the ease with which the

process is controlled.

The dynamics of the quadruple tank process are described in the following

differential equations

dhy

dh

—2:—F2+—\/2 h ——\/Qghg
dt Ay

dhy 1—

s _ -2 /agh.
dt As A, V9

dhy 1-m aq
tha -2 fagh
dt A, 1T Ve

(A.la)
(A.1b)
(A.1c)

(A.1d)

110 Quadruple Tank Process

Quadruple Tank Process

t=6480

h, =22.64 h, =20.05

¥, =040
h, =17.57
tanky| r, =20.00
F, =38167 F,=450.00
A
AF, =-50.00 AF,=-4551

Figure A.1: Quadruple Tank Process.

where A; is the cross sectional area, a; is the area of outlet pipe, h; is the water
level of tank no. i, ;1 and o are flow distribution constants of the two valves,
g is acceleration of gravity and F; and F5 are the two rate of flows. As the QP
solver requires the constraints to be linear we need to linearize the equations in
@&). Of course this linearization causes the model to be a much more coarse
approximation, but as the purpose is to build a convex QP for testing, this is
of no importance. The linearizations are

111

% = LB+ S 2ghs - Ghagh, (A-2a)
% = 2Pyt Shoghs — 2ghs (A.2b)
% == ;372 P %29}13 (A-2¢)
SN T - g (A.2d)
This system of equations is defined as the function
Lalt) = f@t)u(e), w=[mhohsh”, w=[A BT (A3)

which is discretized using Euler

i (f, - ar:(tk+1) — w(tk) Tpt1 — Tk

= = A.4
at” tort — te At f(@y,) (A.-da)
Tpy1 = Tk + Atf(a:k, uk) (A.4b)
F(a:k, Uk, T11) = Tk + Atf(a:k, uk) — x4 = 0. (A.4c)
The function F(xy,uk,xrr1) = 0 defines four equality constraints, one for

each height in x. As the time period is discretized into N time steps, this
gives 4N equality constraints. Because each equality constraint is defined as
two inequality constraints of identical value, as lower and upper bound, (A
defines 8V inequality constraints, called general constraints.

To make the simulation realistic we define bounds on each variable

Umin < Uk < Umax (A5a)
Lmin < T < Lmax (A5b)

which gives 2N (|u|+ |z|) = 12N inequality constraints, called bounds. We have
also defined restrictions on how much the rate of flows can change between two
time steps

112 Quadruple Tank Process

Aumin S U — Uk—1 S Aumaz (AG)

in addition this gives 2N|u| = 4N inequality constraints, also general con-
straints.

The objective function which we want to minimize is

min % /((hl(t) —71)? + (ha(t) — r2)?)dt (A7)

where 71 and 7y are the set points. The exact details of how the system is set
up as a QP can be found in either Jgrgensen [[7] or our MATLAB implemen-
tation quad_tank demo.m. The quadruple tank process defines an inequality
constrained convex QP of (|u|+|z|)N = 6N variables and (8 +12+4)N = 24N
inequality constraints consisting of 12N bounds and 12N general constraints.

Quadruple Tank Process by example
Now we will set up a test example of the quadruple tank problem. For this we
use the following settings

t = [0, 360]
N =100
Umin Oa O]T

ug =0, 0]"
Y1 =0.45
Y2 =0.40
1 =30

T =30

113

This defines an inequality constrained convex QP with 6 * 100 = 600 variables
and 24 x 100 = 2400 constraints. The solution to the problem is found by
using our QP solver, see appendix The solution is illustrated in figure [A22],
where everything is seen to be as expected. We have also written a program
quad_tank_plot.m for visualizing the solution of the quadruple tank problem as
an animation. In figure to [A8 we have illustrated the solution x} and uj
for k € {1, 3,6, 10,15, 20, 25, 30, 40, 60, 80, 100} using quad_tank plot.m.

E T
S 20 & 20
= <

10 10

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
t[min] timin]

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
t[min] t[min]

400 400
200
o 4
-50 0 50 100 150 200 250 300 350 400 =50 0 50 100 150 200 250 300 350 400
t[min] t[min]
50 -—X 50 —-X
-50 -50
50 0 50 100 150 200 250 300 350 400 =50 0 50 100 150 200 250 300 350 400
t[min] t[min]

3
F, [om¥s]
8
8

3
F, lem¥s]

AF, [em?s’]
o

BF, fom?s’]
o

Figure A.2: The solution of the quadruple tank problem found by using our QP
solver. It is seen that the water levels in tank 1 and 2 are stabilized around the
setpoints. The water levels in tank 3 and 4, the two flows F; and Fy and the
difference in flow between time steps AF; and AF;, are also plotted.

An interactive demo application quad_tank_demo.m is found in appendix [D.]]

114

Quadruple Tank Process

Quadnuple Tank Process

h,=0.00
-045 | v,=040
h, =0.00 h, =00
r-3000 =3000
F,=000 F,=000
@ AF,=5000 AF,=5000

(a) k=1

Quadnuple Tank Process

t=720
|
h,=085
-045 | v,=040

- h,=05

=30 =3000
F,=100.00 F,=100.00
@ AF, =5000 AF,=5000

Figure A.3: discretization k =1 and k = 3.

Quadnuple Tank Process

t=18.00 lj
h =413 ‘ h,=378
5= =
[

1,=045 | 1,=040
[T h, =287
r,=30.00 r,=30.00
F,=250.00 F,=250.00
A, =5000 AF,=5000
[|
(a) k=6

Quadnuple Tank Process

|
h,=12.02 h,=1102
[

Figure A.4: discretization k = 6 and k = 10.

Quadruple Tank Process

h,=24.25 h,=2212
Ly,-04s | v,-040
L yn=20es | 0 —1ast
L:r“:sooo L:rlrfsooo
F = 478,60 F, = 50000
S aF, =-50.00 ® AF, =000
(a) k=15

1,045 | %,=040
L ih =75 h, =860
", =30.00 r,=30.00
F,=450.00 F, = 45000
A, =5000 AF,=5000
[|
Quadruple Tank Process
I_—rlh]:um h,=27.78
Ly,-0s | 1,=040
| in =216 |40 -2708
I;'nzsooo tjlrfsooo
F =286 F, = 344.80
S aF, =-50.00 *AF,=-5000

(b) k=20

Figure A.5: discretization k = 15 and k = 20.

115

Quadruple Tank Process
1=8640

| nosaes | h,=26.70
=045

7,=040
h, = 3051 , =30,
I__r|r 30.00 i__r| =3000
F,=-000 F,=9489
FF—ooo " AF,=-5000

(a) k=25

Quadnuple Tank Process

Figure A.6: discretization k = 25 and k = 30.

Quadruple Tank Process

t=140.40 ’7

h,=27.10 h,=18.77
L7, =045 17.=040
‘ h, = 30.42 ‘ h,=2097
I__r|r‘=3000 r2=3000
F‘:OOO F2:5958
FF =000 AR, =219

(a) k=40

L_r| N L_‘rlh -2374
1,=045 7,=040
T h, = 3084 =3022
r-3000 l_rl = 0
F,=-000 F,=-0.00
©AF, =000 AF,=000
| 0
(b) k =30
Quadnuple Tank Process
Lr‘h =251 %Ih - 1387
1 =045 7,=040
= e
h, =3000 h, =20.00
Lr‘rfaﬂ.uo l_rlr =30.00
F,=2663 F,=100.94
SaF =008 AF, =108
| 0
(b) k = 60

Figure A.7: discretization k = 40 and k = 60.

Quadruple Tank Process
t=284.40

| v, =045

h,=2593 h,=1047

h, =30.00 h, =30.00
I_?'r':eooo I_?'rzzsooo
F =2263
AF, =041

| 7,=040

F,=119.05
AF,=079

(a) k=80

Quadruple Tank Process
t=356.40

L1,=045

=
h, =30.00 h,=30.00
L_r|r‘:5000 L—rlr?::sooo

F =1201
CaF =085

L_r|h3=2791 \?Ihf“n

F,=134.35
CAF,=-167

(b) k = 100

Figure A.8: discretization k = 60 and k& = 100.

116 Quadruple Tank Process

APPENDIX B

QP Solver Interface

Our QP solver is implemented in MATLAB as QP_solver.m, and it is founded
on the following structure

: _ 1 7 T
min flx) = 5% Grx+g =z (B.1a)
s.t. I <a; <y 1=1,2,...,n (B.1b)
()i <alz < (b)), i=1,2,...m (B.1c)

where f is the objective function. The number of bounds is 2n and the number
of general constraints is 2m. This means, that we have upper and lower limits
on every bound and on every general constraint. The MATLAB interface of the
QP solver is constructed as follows

x = QP_solver(G, g, 1, u, A, bl, bu, x).

The input parameters of the QP solver are described in table [B11

118 QP Solver Interface

G The Hessian matrix G € R™*" of the objective function.
g The linear term g € R™ of the objective function.

1 The lower limits I € R™ of bounds.

u The upper limits u € R™ of bounds.

A The constraint matrix A = [al ;=12 m, so A € R™*",
bl The lower limits b; € R™ of general constraints.

bu The upper limits b,, € R™ of general constraints.

x A feasible starting point & € R™ used in the primal active set method. If x is
not given or empty, then the dual active set method is called within the
QP solver.

Table B.1: The input parameters of the QP and the LP solver.

It is possible to define equalities, by means the lower and upper limits are equal,
as l; = u; and (by); = (by); respectively. If any of the limits are unbounded,
they must be defined as —oc for lower limits and oo for upper limits. If the QP
solver is called with a starting point x, then the primal active set method is
called within the QP solver. The feasibility of the starting point is checked by
the QP solver before the primal active set method is called.

It is possible to find a feasible starting point with our LP solver, which we
implemented in MATLAB as LP_solver.m. The LP solver is based on (Bl
and the MATLAB function linprog. The MATLAB interface of the LP solver is
constructed as follows

x = LP_solver(1l, u, A, bl, bu).
The input parameters of the LP solver are described in table [Bl

It must be mentioned, that both the QP and LP solver has some additional
input and output parameters. These parameters are e.g. used for tuning and
performance analysis of the solvers. For a further description of these parameters
we refer to the respective MATLAB help files.

APPENDIX C

Implementation

The algorithms discussed in the thesis have been implemented in MATLAB ver-
sion 7.3.0.298 (R2006b), August 03, 2006. In the following, we have listed
the implemented functions in sections.

C.1 Equality Constrained QP’s

The null space procedure solves an equality constrained QP by using the null
space of the constraint matrix, and is implemented in

null_space.m .

The range space procedure solves the same problem by using the range space of
the constraint matrix, and is implemented in

range_space.m .

120 Implementation

C.2 Inequality Constrained QP’s

An inequality constrained convex QP can be solved by use of the primal active
set method which is implemented in

primal_active_set_method.m

or the dual active set method
dual_active_set_method.m .

The active set methods have been integrated in a QP solver that sets up the
QP with a set of bounds and a set of general constraints. An interface has been
provided that offers different options to the user.

QP_solver.m .

If the user want to use the primal active set method in the QP solver, a feasible
starting point must be calculated. This can be done by using the LP solver

LP_solver.m .

C.3 Nonlinear Programming

SQP solves a nonlinear program by solving a sequence of inequality constrained
QP’s. The SQP solver is implemented in

SQP_solver.m .

C.4 Updating the Matrix Factorizations

By updating the matrix factorizations, the efficiency of the null space procedure
and the range space procedure can be increased significantly. The following

C.4 Updating the Matrix Factorizations 121

implementations are used for updating the matrix factorizations used in the
null space procedure and the range space procedure. All the updates are based
on Givens rotations which are computed in

givens_rotationmatrix.m .

Update of matrix factorizations used in range space procedure are implemented
in the following files

range_space_update.m

qr_fact_update_app_col.m

qr_fact_update_rem col.m .

And for the null space procedure the matrix updates are implemented in

null_space_update.m

null_space_update_fact_app_col.m

null_space_update_fact_rem_col.m .

Further optimization of the matrix factorization is done by using updates based
on fixed and free variables. These updates have only been implemented for the
null space procedure and are found in

null_space_updateFRFX.m

null_space_update_fact_app_general FRFX.m

null_space_update fact_rem_general FRFX.m
null_space_update_fact_app-bound FRFX.m

null_space_update fact_rem_bound FRFX.m

122 Implementation

C.5 Demos

For demonstrating the methods and procedures, we have implemented different
demonstration functions. The QP solver is demonstrated in

QP_demo.m
which uses the plot function
active_set_plot.m .

Among other options the user can choose between the primal active set method
and the dual active set method.

The QP solver is also demonstrated on the quadruple tank process in
quad_tank_demo.m
which uses the plot functions

quad_tank_animate.m

quad_tank_plot.m .

Besides having the possibility of adjusting the valves, pumps and the set points
individually, the user can vary the size of the QP by the input N.

The SQP solver is demonstrated on a small two dimensional nonlinear program
and the path is visualized at each iteration. The implementation is found in

SQP_demo.m .

C.6 Auxiliary Functions

add2mat.m .

line_search_algorithm.m .

APPENDIX D

Matlab-code

D.1 Equality Constrained QP’s

null_space.m

AW

o

27
28
29
30

function [x,u] = null_space(G,A,g,b)

% NULL_SPACE solves the equality constrained convex QP:

min 1/2x’Gx+g’x (G is required to be postive semi
definite)

% s .t A’x = b (A is required to have full column
rank)

% where the number of variables n and the number of constraints is m.

% The null space of the OP is us to find the solution .

Call

[x,u] null_space (G,A,g,b)

Input parameters

C is the Hessian matrix (nxn) of the QP

A is the constraint matrix (nxm): every column contains
a from the

equality: a’'x = b.

g is the gradient (nx1) of the QP.

b is the right hand side of the constraints

Output parameters

% x the solution

mu the lagrangian multipliers

% By : Carsten V olcker , s96157 & Esben Lundsager Hansen, s022022

Subject . Numerical Methods for Sequential Quadratic Optimization ,

% Master Thesis, IMM, DTU, DK—-2800 Lyngby

Supervisor : John Bagterp Jgrgensen, As ant Professor & Per Grove
Thomsen, Professor

Date : 08 february 2007

[n,m] = size(A);

if(m™=0) % for situations where A is empty

124

Matlab-code

31 [Q.R] = ar(A);

32 Ql = Q(:,1:m);

33 Q2 = Q(:,m+1:n);

34 R =R(1l:m,:);

35 py = R’\b;

36 Q2t = Q27;

37 gz = Q2tx*(G*(Ql*py) + g);
38 Gz = Q2txGxQ2;

39 L = chol(Gz) ’;

40 pz = L\—gz;

41 pz = L’\ pz;

42 x = Ql#py + Q2+%pz;

43 u = R\(QL *(Gix + g));
44 else

45 x = —G\g;

46 u = [];

47 end

range_space.m

1 function [x mu] = range-space(L,A,g,b)

2 % RANGESPACE solves the equality constrained convex QP

3 | % min 1/2x’'Gx+g’x (G is required to be postive
definite)

4 Y% s.t A’ x b (A is required to have full column
rank)

5 % where the number of variables is n and the number of constraints is m

6 % The range space of the OP is used to find the solution

7 Y%

8 Y Call

9 Y% [x,u] = range_space(L,A,g,b)

10 |% Input parameters

11 Y L : is the cholesky factorization of the Hessian matrix (
nxn) of the QP

12 % A is the constraint matrix (nxm): every column contains
a from the

13 Y% equality: a’x b

14 | % g : is the gradient (nxl) of the QP

15 Y b : is the right hand side of the constraints.

16 |7 Output parameters

17 Y x the solution

18 | % mu the lagrangian multipliers

19

20 Y By Carsten V\ "olcker s961572 & Esben Lundsager Hansen, s022022.

21 Y% Subject Numerical Methods for Sequential Quadratic Optimization

22 Y% Master F'hes MM DTT DK—2800 Lyngby

23 | % Supervisor John Bagterp Jgrgensen Assistant Professor & Per Grove
F'homsen Prof > 1

24 Y% Date 08 february 2007

25 Y Reference

26

27 L’

28 Lt\A;

29 K’ %K;

30 Lt\g:

31 b4+K’ *w;

32 chol (H);

33 = M\ z;

34 M\mu;

35 Ksxmu—w ;

36 L\y;

D.2 Inequality Constrained QP’s 125

D.2 Inequality Constrained QP’s

primal_active_set_method.m

1 function [x,mu,info ,perf] = primal_active_set_method (G,g,A,b,x,w_non,pbc,opts,
trace)

2

3 % PRIMAL_ACTIVESET_-METHOD Solving an inequality constrained QP of the

4 % form :

5 | % min f(x) = 0.5xx *Gxx + gkx

6 |7 t. Asxx >= b,

7 |% by solving a sequence of equality constrained QP’s using the primal

8 |% active set method. The method uses the range space procedure or the null

9 |% space procedure to solve the KKT system. Both the range space and the

10 [% null space procedures has been provided with factorization updates.

11 %

12 % Call

13 | % x primal_active.set_method (G, g, A, b, w.non, pbc)

14 |% x primal_active.set_method (G, g, A, b, w.non, pbc, opts)

15 | % [mu, info, perf] = primal_active_set_method (

16 %

17 [% Input parameters

18 % G : The Hessian matrix of the objective function, size nxn.

19 |% g . The linear term of the objective function, size nxl.

20 % A : The constraint matrix holding the constraints , size nxm.

21 % b : The right—hand side of the constraints , size mxl.

22 % x : Starting point, size nxl.

23 | % w-non : List of inactive constraints, pointing on constraints in A

24 | % pbec . List of corresponding constraints, pointing on constraints in

25 | % A. Can be empty.

26 % opts : Vector with 3 elements:

27 % opts (1) = Tolerance used to stabilize the methods numerically .

28 | % If |value| <= opts (1), then value is regarded as zero.

29 | % opts (2) = maximum no. of iteration steps.

30 | % opts(3) = 1 : Using null space procedure .

31 | % 2 : Using null space procedure with factorization

32 | % update .

33 | % 3 : Using null space procedure with factorization

34 | % update based on fixed and free variables. Can only

35 | % be called , if the inequality constrained QP is

36 | % setup on the form seen in QP_solver

37 % If opts is not given or empty, the default opts = [le—8 1000 3].

38 %

39 | % Output parameters

40 % x : The optimal solution .

41 |% mu . The Lagrange multipliers at the optimal solution .

42 % info : Performace information , vector with 3 elements:

a3 | % info (1) final values of the objective function .

a1 | % info (2) no. of iteration steps.

45 % info (3) 1 : Feasible solution found.

46 % 2 : No. of iteration steps exceeded.

a7 | % perf : Performace, struct holding:

48 % perf.x : Values of x , size is nx(it+41).

49 % perf . f : Values of the objective function, size is 1x(it-+41).

50 % perf.mu : Values of mu, size is nx(it+41).

51 | % perf.c : Values of c(x), size is mx(it-+1).

52 % perf . Wa : Active set, size is mx(it-+41).

53 % perf . Wi : Inactive set, size is mx(it+1).

54 %

55 % By : Carsten V\ "olcker, s961572.

56 % Esben Lundsager Hansen, s022022.

57 | % Subject : Numerical Methods for Sequential Quadratic Optimization .

58 | % M.Sc., IMM, DTU, DK—2800 Lyngby.

59 | % Supervisor : John Bagterp Jgorgensen, Assistant Professor.

60 % Per Grove Thomsen, Professor

61 % Date : 07. June 2007.

62

63 % the size of the constraint matrix, where the constraints are given columnwise

64 [n,m] = size(A);

65

66 | nb = 2xn; % number of bounds

67 ngc = m — nb; % number of general constraints

68

69 % initialize ...

70 |z = zeros(m,1);

71 | x0 = x;

72 | f0 = objective (G,g,x0);

73 mu0 Z

74 | c0 = constraints (A,b,x0);

75 w_act0 = z;

76 w-_non0 = (1:1:m) ’;

126

Matlab-code

77
78
79
80
81
82
83

85
86

88
89

91
92
93

95
96
97

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133

134

135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152

% initialize options
tol = opts (1);
it_max = opts (2);
method = opts (3);
% initialize containers
Y%trace = (mnargout > 3);
perf = [];
if trace
X = repmat(zeros(n,1) ,1,it-max);
F = repmat (0,1 ,it-max) ;
Mu repmat (z,1,it-max) ;
C = repmat(z,1,it-max);
W_act = repmat(z,1,it_.max);
W_non = repmat(z,1,it_max);
end
% initialize counters
it = 0;
Q= []; T= []; L=1[]; rem = []; % both for
null_space_update_FXFR
if method == 3 % mnull space with FXFR—update
nbl = n=*2; % number of bounds
else
nbl = 0;
end
nab = 0; % number of active bouns
P = eye(n);
w-act = [];
Q-old = []; T-old = []; L-old = []; rem = [];
% iterate
stop = 0;
while “stop
it = it + 1;
if it >= it-max
stop = 2; % maximum no iterations exceeded
end
% call range/null space procedure
mu = z;
if method == 1
[p,mu_] =

end

if method == 2
[p,mu.,Q,T,L] =
,L,rem);

null_space-update (G,A(:, w-

null_space_update and for

null_space (G,A(:,w-act) ,Gix+g,zeros (length (w-act) ,1));

act) ,Gxxtg,zeros (length (w-act

),1).Q, T
end
if method == 3
Cr = Gsx+g;
= A(:,w-act(nab+1l:end));
% ajust C(:,r) to make it correspond to the factorizations of
the
% Fixed variables (whenever —1 appears at variable i C(:,r)i
should change gn)
if nab % some bounds are in the active set
u-idx = find(w-act > nbl/2 & w_act< nbl+41);
var = n—nab+4u-idx;
Cr(var) = —Cr(var);
A_(var ,:) = —A_(var ,:);

end
[p,mu.,Q,T,L]
,1) ,nab,rem—nab) ;

end

mu(w-act) mu-;

if norm(p) < tol

if mu > —tol
stop = 1; % solution found
else
% compute index j of bound/constraint

[dummy, rem] min (mu.) ;
[w_act w_non A P x nab G g]

,P,nbl ,nab,n,G,g,pbc,b);

end
else
% compute
[alpha,j]
if alpha < 1

step length and index j of bound

null_space_updateFRFX (Q,T,L,G,A_,Cr,zeros (length (w_act)

to be removed

remove_constraint (rem ,A,w_act , w_non ,x

constraint to be appended

step-length (A,b,x,p,w-non,nb,n, tol);

D.2 Inequality Constrained QP’s 127

158 % make constrained step ..

159 x = x + alphaxp;

160 [w_act w_non A P x nab G g Q] = append_constraint (j,A, w_act,w_non, x
,P,nbl ,nab,n,G,g,Q,pbc,b); % r is index of A

161 else

162 % make full step

163 x = x + p;

164 end

165 end

166 % collecting output in containers .

167 if trace

168 if nbl % method 3 is used

169 ,it) = Plxx;

170 else

171 X(:,it) = x;

172 end

173 F(it) = objective (G,g,x);

174 Mu(:,it) = mu;

175 C(:,it) = constraints(A,b,x);

176 We_act (w-act ,it) = w-act;

177 W_non(w-non,it) = w_non;

178 end

179 end

180

181 if nbl method 3 is used

182 x = P'xx;

183 end

184

185 % building info

186 info = [objective(G,g,x) it stop];

187

188 |% building perf ..
189 | if trace
190 X = X(:,1:it); X = [x0 X];

191 fit); F o= [fo F];

192 :,1:it); Mu = [mu0 Mu];

193 i,1:it); C = [c0 C];

194 W_act (:,1:it); W_act = [w_act0 We_act];

195 W_non (:,1:it); W_non = [w_non0 W_non];

196 perf = struct (’x ', {X}, f’ ,{F}, mu’ ,{Mu},’c’,{C}, Wa’ ,{W_act}, Wi’ ,{W._non});

197 end

198

199 function [alpha,j] = step-length(A,b,x,p,w-non,nb,n,tol)

200 alpha = i=10

201 | for app = w-non

202 if app > nb

203 fv = 1:1:n; % general constraint

204 else

205 fv = mod(app—1,n)+1; % index of fixed variabel

206 end

207 ap = A(fv ,app) *p(fv);

208 if ap < —tol

209 temp = (b(app) — A(fv ,app) ' *x(fv))/ap;

210 if —tol < temp & temp < alpha

211 alpha = temp; % smallest step length

212 j = app; % index j of bound to be appended

213 end

214 end

215 end

216

217 % function [w_.act,w_non] append_constraint (b, w_act ,w_non,j, pbc)

218 % w-act = [w_.act j]; % append constraint j to active set

219 % w-non = w-non(find (w-non "= j)); % remove constraint j from nonactive set

220 |% if Tisinf(b(pbc(j)))

221 | % w-non = w_non (find (w-non “= pbc(j))); % remove constraint pbc(j) from
nonactive set , if not unbounded

222 % end

223

224 % function [w_.act,w_non] remove_constraint (b, w_act ,w_non,j,pbc)

225 | % w_act w_act (find (w_act - i)); % remove constraint j from active set

226 % w-non [w-non j] % append constraint j to nonactive set

227 % if “isinf(b(pbc(j)))

228 % w-non = [w-_non pbc(j)]; % append constraint pbc(j) to nonactive set, if

not unbounded

229 |% end

230

231 | function [w-act w-non C P x nab G g] = remove-constraint (wi,C, w-act ,w-non,x,P,
nb,nab,n,G,g,pbc,b) % wi is index of w_act

232 | j = weact(wi);

233

234 | if j < nb+1 % j is a bound and we have to
reorganize the variables

235 varl n-nab+1;

236 var2 = n-—nabtwi;

237

238 temp = C(varl ,:) ;

239 C(varl ,:) = C(var2 ,:);

128 Matlab-code

240 C(var2 ,:) = temp;

241

242 temp = x(varl);

243 x(varl) = x(var2);

244 x(var2) = temp;

245

246 temp = P(varl ,:) ;

247 P(varl ,:) = P(var2,:);

248 P(var2 ,:) = temp;

249

250 temp = G(varl ,varl);

251 G(varl ,varl) = G(var2,var2);

252 G(var2 ,var2) = temp;

253

254 temp = g(varl);

255 g(varl) = g(var2);

256 g(var2) = temp;

257 nab = nab — 1;

258

259 temp = we-act (wi);

260 w_act (wi) = w_act (1) ;

261 w-act (1) = temp;

262 i = w_act(1);

263 end

264 w_act = w_act(find (w_.act "= j)); % bound general constraint j is
removed from active et

265 w-non = [w_non j]; % bound general constraint j
appended to nonactive set

266

267 | if “isinf (b(pbc(j)))

268 w-_non = [w-non pbc(j)]; % append bound/constraint pbc(j)

to nonactive set, if not unbounded

269 end

270

271 function [w_act w-non C P x nab G g Q] = append_constraint(j,C, w_act,w_non,x,P,
nb,nab,n,G,g,Q,pbc,b) % j is index of C

272

273 if j < nb+1 % a bound and we have to

reorganize the variables

274 varl = find (abs(C(:,j))=

275 var2 = n—nab;

276

277 temp = C(varl ,:);

278 C(varl ,:) = C(var2 ,:);

279 C(var2 ,:) = temp;

280

281 temp = Q(varl ,:) ;

282 Q(varl ,:) = Q(var2 ,:);

283 Q(var2 ,:) = temp;

284

285 temp = x(varl);

286 x(varl) = x(var2);

287 x(var2) = temp;

288

289 temp = P(varl ,:);

290 P(varl ,:) = P(var2,:);

291 P(var2 ,:) = temp;

292

293 temp = G(varl,varl);

294 G(varl ,varl) = G(var2,var2);

295 G(var2 ,var2) = temp;

296

297 temp = g(varl);

298 g(varl) = g(var2);

299 g(var2) = temp;

300 nab = nab + 1;

301 w_act = [j w-act]; % j (is a bound) is appended to
active set

302 else

303 w_act = [w_act j]; % j (is a general constraint)
is appended to active set

304 end

305 | w-non = w-non (find (w-non "= j)); % bound/ general constraint j
removed fom nonactive set

306 | if “is;;nf(b(PbC(j)))

307 w-_non = w-non (find (w-non “= pbec(j))); % remove bound/constraint pbe(j
) from nonactive set, if not unbounded

308 end

309

310 function f = objective (G,g,x)

311 | f = 0.5%x'*Gxx + g *x;

312

313 | function ¢ = constraints (A,b,x)

314 c = A’xx — b;

315

316 | function 1 = lagrangian (G,g,A,b,x,mu)

317 |L = objective (G,g,A,b,x,mu) — mu(:) '*constraints (G,g,A,b,x,mu);

D.2 Inequality Constrained QP’s

129

dual_active_set_method.m

1 function [x,mu,info ,perf] = dual_active_set_method (G,g,C,b,w_non,pbc,opts,trace
2

3 % DUAL_ACTIVESET_METHOD Solving an inequality constrained QP of the

4 % form :

5 [% min f(x) = 0.5xx xGxx + gx

6 % s.t. Axx >= b,

7 |% by solving a sequence of equality constrained QP’s using the dual

8 |% active set method. The method uses the range space procedure or the null
9 |% space procedure to solve the KKT system. Both the range space and the
10 [% null space procedures has been provided with factorization updates.
11 %

12 % Call

13 | % x = dual_active_set_-method (G, g, A, b, w_non, pbc)

14 | % x = dual_active_set_-method (G, g, A, b, w_non, pbc, opts)

15 | % [x, mu, info, perf] = dual_active-set-method (

16 |7

17 |% Input parameters

18 % G : The Hessian matrix of the objective function, size nxn.

19 | % g The linear term of the objective function, size nxl.

20 % A The constraint matrix holding the constraints , size nxm.

21 % b The right —hand side of the constraints, size mxl.

22 |% o« Starting point, size nxl.

23 |7 w_non List of inactive constraints, pointing on constraints in A.
24 | % pbe List of corresponding constraints, pointing on constraints in
25 | % A. Can be empty.

26 % opts Vector with 3 elements:

27 % opts (1) = Tolerance used to stabilize the methods numerically.
28 | % If |value| <= opts (1), then value is regarded as zero.
20 |7 opts (2) = maximum no. of iteration steps.

30 |% opts (3) = 1 Using null space procedure .

31 |7 2 Using null space procedure with factorization
32 |% update .

33 |% 3 Using null space procedure with factorization
34 |7 update based on fixed and free variables. Can only
35 | % be called , if the inequality constrained QP is
36 | % setup on the form seen in QP_solver

37 | % 4 Using range space procedure .

38 | % 5 Using range space procedure with factorization
39 % update .

a0 |7 If opts is not given or empty, the default opts = [le—8 1000 3].
41 %

42 % Output parameters

43 |% x : The optimal solution .

44 % mu The Lagrange multipliers at the optimal solution .

45 % info Performace information vector with 3 elements:

46 % info (1) = final wvalues of the objective function .

a7 | % info (2) = no. of iteration steps.

48 % info (3) =1 Feasible solution found.

49 % 2 No. of iteration steps exceeded.

50 % 3 Problem is infeasible .

51 |7 perf Performace , struct holding:

52 | % perf.x Values of x size is nx(it+4+1).

53 % perf . f Values of the objective function, size is 1x(it-+41).
54 | % perf.mu Values of mu, size is nx(it+1).

55 |% perf.c Values of c(x), size is mx(it+1).

56 | % perf.Wa : Active set, size is mx(it+1).

57 % perf. Wi Inactive set, size is mx(it-+41).

58 %

59 | % By Carsten V\ "olcker, s961572

60 | % Esben Lundsager Hansen, s0220

61 |% Subject Numerical Methods for Sequential Quadratic Optimization .
62 % M. Sc., IMM, DTU, DK—2800 Lyngby.

63 |7 Supervisor John Bagterp Jorgensen, Assistant Professor.

64 % Per Grove Thomsen, Professor.

65 % Date 07. June 2007.

66

67 % initialize options ...

68 | tol = opts(1);

69 | it-max = opts(2);

70 | method = opts (3);

71 [n,m] = size (C);

72 |z = zeros (m,1);

73

74 % initialize containers ...

75 | %trace = (nargout > 3);

130

Matlab-code

76
77
78
79
80
81
82

84
85

87
88

90
91
92

94
95

97
98

100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148

149

150
151
152
153
154
155
156

c
= repmat (zeros(n,1) ,1,it_.max);
= repmat (0,1 ,it_-max);
u = repmat(z,1,it_max);
Con = repmat (z,1,it-max);
W_act = repmat(z,1,it_.max);
W_non = repmat(z,1,it-max);
end

if method == 3
nb = n=*x2;
else
nb = 0;

% null space with FXFR—update
% number of bounds

end

nab = 0; % number of active bouns

P = eye(n);

x = —G\g;

mu = zeros (m,1);

w-act = [];

x0 = x;

f0O = objective (G,C,g,b,x,mu) ;

mu0 = mu;

con0 = constraints (G,C(:,w-non) ,g,b(w.non) ,x,mu) ;

w-.act0 = z;

w-non0 = (1:1:m) ’;

Q= []; T=1[]; L=1_[]; R= []; rem = []; both for range— and
null_space.update and for null_space_update.FXFR

if method == 4 || method == 5 % ra: space or range space update
chol-G = chol (G);

end

it_tot =0;

it = 0;

max_itr = it_max;

stop = 0;

while “stop

¢ = constraints (G,C(:,w-non) ,g,b(w-non) ,x,mu) ;
if ¢ > —tol;%—1e—12%—sqrt (eps) % all elements must be >=
% disp ([’ / itr: 7,int2str (it 1), /
Y% disp (’STOP all inactive constraints >= 0’
stop = 1;
else
% we find the most negative value of c
[cer ,r] = min(c);
r = wonon(r);
end
it = it + 1;
if it >= max-itr % no convergence

disp([’//////—itr:—’>int2str(it+1)q’—///////)///)//// 1)

disp (’STOP: it >=_max-itr.(outer—-while_loop)’

stop = 23
end
it2 = 0;
stop2 = max(0,stop);
while “stop2 %c.r < —sqrt(eps)
it2 = it2 + 1;
if method == 1
[p,v] = null_space (G,C(:,w-act),—C(:,r),—zeros(len
end
if method == 2
[p,v,Q, T,L] = null_space_update (G,C(:,w_act),—C(:,
w_act) ,1) ,Q,T,L,rem) ;
end
if method 3
Cr = ,r)
A = :,w-act (nab+41l:end));
% ajust C(:,r) to make it correspond to the
of the
Fixed variables (whenever —1 appears at v
should change 1)
if nab % some bounds are in the active set
u-idx = find (w-act > nb/2 & w-act< nb+41);
var = n—nab+u_idx;
Cr(var) = —Cr(var);
A_(var ,:) = —A_(var ,:
end
[p,v,Q,T,L] = null_.space-updateFRFX (Q,T,L,G,A_,—Cr,
w_act) ,1) ,nab,rem—nab) ;
end

gth (woact) ,1));

r),zeros (length (

factorizations

zeros (length (

D.2 Inequality Constrained QP’s 131

158 if method == 4
159 [p,v] = range.space (chol-G ,C(:,w-act),—C(:,r),—zeros(length (w-act)
;1))
160 end
161 if method == 5
162 [p,v,Q,R] = range_space_update (chol_.G ,C(:,w_act),—C(:,r) ,zeros (
length (w_act) ,1) ,Q,R,rem) ;
163 end
164
165 if isempty (v)
166 v = [];
167 end
168
169 arp = C(:,r) *p;
170 if abs(arp) <= tol % linear dependency
171 if v >= 0 % solution does not exist
172 disp ([*//////=itrso int2str (it+1),°=////////////// 1)
173 disp (’STOP: _v_>=_0, PROBLEM_IS _INFEASIBLE !!'!)
174 stop = 3;
175 stop2 = stop;
176 else
177 t = inf;
178 for k = 1:length (v)
179 if v(k) < 0
180 temp = —mu(w-act(k))/v(k);
181 if temp < t
182 t = temp;
183 rem = k;
184 end
185 end
186 end
187 mu(w_act) = mu(w-act) + txv;
188 mu(r) = mu(r) + t;
189 remove linear dependent constraint from A
190 [w_act w_non C P x nab G g] = remove_constraint (rem,C, w_act ,
w-non,x,P,nb,nab,n,G,g,pbc,b); % rem is index of w_act
191 end
192 else
193 % stepsize in dual space
194 tl = inf;
195 for k = 1:length (v)
196 if v(k) < 0
197 temp = —mu(w-act(k))/v(k);
198 if temp < t1
199 tl = temp;
200 rem = k;
201 end
202 end
203 end
204 % stepsize in primal space
205 t2 = —constraints (G,C(:,r),g,b(r),x,mu)/arp;
206 if t2 <= t1
207 x = x + t2xp;
208 mu(w-act) = mu(w-act) + t2xv;
209 mu(r) = mu(r) + t2;
210 % append constraint to active set
211 [w_act w_non C P x nab G g Q] = append_constraint(r,C, w_act ,
w_non,x,P,nb,nab,n,G,g,Q,pbc,b); % r is index of C
212 else
213 x = x + tl*p;
214 mu(w_act) = mu(w-act) + tlxv;
215 mu(r) = mu(r) + t1;
216 % remove constraint from active set
217 [w-act w-non C P x nab G g] = remove-constraint(rem,C, w-act ,
w-non ,x,P,nb,nab,n,G,g,pbc,b); % rem is index of w_act
218 end
219 end
220 c_r = constraints (G,C(:,r),g,b(r),x,mu);
221 if cor > —tol
222 stop2 = 1; % leave the inner while—loop but doesnt stop the
algorithm
223 end
224
225 if it2 >= max-itr % no convergence (terminate the algorithm)
226 disp ([*//////=itr i’ int2str (it +1),"~/////////////]])
227 disp (’STOP: _it_>=_max_itr-(inner_while_loop))
228 stop = 2;
229 stop2 = stop;
230 end
231
232 % collecting output in containers
233 if trace
234 if nb % method 3 is used
235 X(:,it) = Poxx;
236 else
237 X(:,it) = x;
238 end

132 Matlab-code

239 F(it) = objective (G,C,g,b,x,mu);
240 Mu(:,it) = mu;
241 Con(w_non,it) = constraints (G,C(:,w_non) ,g,b(w_non) ,x,mu) ;
242 W_act (w_act ,it) = we_act;
243 W_non(w_non,it) = w_non;
244 end
245 end % while
246 it-tot = it_tot 4 it2;
247 end % while
248 it-tot = it_-tot -+ it;
249 if nb % method 3 is used
250 x = Pxx;
251 figure; spy(C(:,w-act)) ,pause
252 end
253
254 |% building info
255 info = [objective (G,C,g,b,x,mu) it_-tot stop];
256 % building perf
257 if trace
258 X = X(:,1:it); X = [x0 X];
259 F = (1:it); F = [f0 FJ;
260 Mu = Mu(:,1:it); Mu = [mu0 Mu];
261 Con = Con(:,1:it); Con = [con0O Con];
262 W_act = W_act (:, t); W_act = [w_actO0 We_act];
263 W_non = W_non (:, t); Wonon = [w_non0 W_non];
264 perf = struct ('x’' ,{X}, f’ , {F}, mu’,{Mu}, ¢’ ,{Con}, Wa’ ,{W_act}, Wi’ ,{W_non
1)
265 end
266
267 | function ¢ = constraints(G,C,g,b,x,mu)
268 c =Cxx — b;
269
270 | function [w-act w-non C P x nab G g] = remove-constraint (wi,C, w-act ,w-non,x,P,
nb,nab,n,G,g,pbc,b) % wi is index of w-act
271 | j = w_act (wi);
272 if j < nb+1 % j s a bound and we have to
reorganize the variables
273 varl n—nab-+41;
274 var2 = n—nab+4wi;
275
276 temp = C(varl ,:);
277 C(varl ,:) = C(var2 ,:);
278 C(var2 ,:) = temp;
279
280 temp = x(varl);
281 x(varl) = x(var2);
282 x(var2) = temp;
283
284 temp = P(varl ,:) ;
285 P(varl ,:) = P(var2,:);
286 P(var2 ,:) = temp;
287
288 temp = G(varl ,varl);
289 G(varl,varl) = G(var2,var2);
290 G(var2 ,var2) = temp;
291
292 temp = g(varl);
293 g(varl) = g(var2);
294 g(var2) = temp;
295 nab = nab — 1;
296
297 temp = w_act (wi);
298 w_act (wi) = w_act (1) ;
299 w-act (1) = temp;
300 i = wi_act (1) ;
301 end
302 w_act = w_act(find (w_.act "= j)); % bound general constraint j is
removed from active set
303 | wonon = [w_non j]; % bound,/ general constraint j
appended to nonactive set
304
305 if Tisempty (pbc)
306 if “isinf(b(pbc(j)))
307 w-_non = [w.non pbc(j)]; % append bound/constraint pbc
(j) to nonactive set, if not unbounded
308 end
309 end
310
311 function [w_act w-non C P x nab G g Q] = append_constraint(j,C, w_act,w_non,x,P,
nb,nab,n,G,g,Q,pbc,b) % j is index of C
312 | if j < nb+1 % j is a bound and we have to
reorganize the variables
313 varl find (abs (C(:,j))==1);
314 var2 = n—nab;
315
316 temp = C(varl ,:);
317 C(varl ,:) = C(var2,:);

D.2 Inequality Constrained QP’s 133

318 C(var2 ,:) = temp;
319

320 temp = Q(varl ,:) ;

321 Q(varl ,:) = Q(var2 ,:);

322 Q(var2 ,:) = temp;

323

324 temp = x(varl);

325 x(varl) = x(var2);

326 x(var2) = temp;

327

328 temp = P(varl ,:) ;

329 P(varl ,:) = P(var2 ,:);

330 P(var2 ,:) = temp;

331

332 temp = G(varl ,varl);

333 G(varl ,varl) = G(var2,var2);
334 G(var2 ,var2) = temp;

335

336 temp = g(varl);

337 g(varl) = g(var2);

338 g(var2) = temp;

339 nab = nab + 1;

340 w-act = [j w-act]; % j (is a bound) is appended to

active set
341 else
342 w_act = [w_act j]; % j (is a general constraint)

i appended to active set

343 end
344 | wonon = w_non (find (w_non "= j)); % bound/ general constraint j
is removed fom nonactive set
345
346 | if “isempty (pbc)
347 if “isinf(b(pbc(j)))
348 w_non = w_non (find (w-non ~= pbc(j))); % remove bound/constraint
pbc(j) from nonactive set if not unbounded
349 end
350 end
351
352 function f = objective(G,C,g,b,x,mu)
353 | f = 0.5%x #Gsx + g #x;
QP_solver.m
1 | function [x,info,perf] = QP.solver(H,g,1,u,A,bl, bu,x,opts)
2
3 % QP_SOLVER Solving an inequality constrained QP of the form:
4 | % min f(x) 0.5%x «Hkx + gx
5 Yo s.t 1 < x < u
6 Yo bl < Axx < bu,
7 |% using the primal active set method or the dual active set method. The
8 |% active set methods uses the range space procedure or the null space
9 |% procedure to solve the KKT stem . Both the range space and the null
10 |% space procedures has been provided with factorization updates. Equality
11 |% constraints are defined as 1 = u and bl = bu respectively
12 %
13 % Call
14 | % x QP_solver(H, g, 1, u, A, bl bu)
15 | % x QP_solver(H, g, 1, u, A, bl, bu, x, opts)
16 |7 [x, info, perf] QP_solver ()
17 Yo
18 |% Input parameters
19 % H : The Hessian matrix of the objective function.
20 | % g . The linear term of the objective function .
21 % 1 : Lower limits of bounds. Set a Inf, if unbounded.
22 % u : Upper limits of bounds. Set as Inf, if unbounded
23 | % A : The constraint matrix holding the general constraints as rows
24 % bl : Lower limits of general constraints Set as Inf if unbounded
25 | % bu : Upper limits of general constraints. Set as —Inf, if unbounded
26 |7 x : Starting point If x is not given or empty, then the dual active
27 Y% set method is used otherwise the primal active set method is
28 Yo used
20 | % opts : Vector with 3 elements
30 | % opts (1) = Tolerance used to stabilize the methods numerically .
31 | % If |value| <= opts (1), then value is regarded as zero.
32 | % opts (2) = maximum no. of iteration steps.
33 | % Primal active set method:
34 | % opts (3) 1 : Using null space procedure
35 | % 2 : Using null space procedure with factorization
36 Yo update
37 | % 3 : Using null space procedure with factorization

134

Matlab-code

38
39
40
41
42
43
44

46
47
48
49
50

52
53
54

56
57

59
60

62
63
64
65
66
67

69
70

72
73
74
75
76
77

79
80

82
83
84
85
86
87

89
90

92
93

95
96
97

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115
116

117
118
119
120
121

122

% update based on fixed and free variables.
% If opts(3) > 3, then opts(3) is set to 3 automatically.
% Dual active set method:
% opts (3) = 1 Using null space procedure .
% 2 Using null space procedure with factorization
% update .
% 3 : Using null space procedure with factorization
% update based on fixed and free variables.
% 4 Using range space procedure .
% 5 Using range space procedure with factorization
% update .
% If opts is not given or empty, the default opts = [le—8 1000 3].
%
% Output parameters
% x : The optimal solution .
% info Performace information vector with 3 elements:
% info (1) = final values of the objective function.
% info (2) = no. of iteration steps.
% Primal active set method:
% info (3) =1 Feasible solution found.
% 2 No. of iteration steps exceeded.
% Dual active set method:
% info (3) =1 Feasible solution found.
% 2 No. of iteration steps exceeded.
% 3 Problem is infeasible .
% perf Performace , struct holding:
% perf.x Values of x size is nx(it+1).
% perf.f Values of the objective function, size is 1x(it-+1).
% perf.mu Values of mu, size is nx(it+1).
% perf.c Values of c(x), size is (ndndmfm)x(it+1).
% perf .V Active set, size is (ndntmfm)x(it+1).
% perf.Wi : Inactive set, size is (n+ntmtm)x(it-+1).
% Size (n4ntmtm)x(it-41) is refering to indices i-1 = l:n, i_u = (n41):2
% n, i-bl = (2n+1):(2n+m) and i-bu = (2n+m+1):(2n+2m) .
9,
o
% By Carsten V\ "olcker, s961572.
% Esben Lundsager Hansen, s022022.
% Subject . Numerical Methods for Sequential Quadratic Optimization .
% M.Sc., IMM, DTU, DK—2800 Lyngby.
% Supervisor John Bagterp Jorgensen, Assistant Profess
% Per Grove Thomsen, Professor.
% Date 07. June 2007.
% Tune input and gather information %
% Tune. ..
L= 1()s u=mu(:);
bl = bl(:); bu = bu(:);
g = g(:);
% Gather ...
[m,n] = size (A);
% Set options %
if nargin < 9 | isempty (opts)
tol = le—8;
it_.max = 1000;
method = 3;
opts = [tol it-max method];
else
opts = opts (:) 7;
end
% Check nargin/nargout %
error (nargchk (7,9 ,nargin))
error (nargoutchk (1,3 ,nargout))
% Check input/output Y%

% Check H...
sizeH = size (H);
if sizeH (1) "= n | sizeH (2) "= n
error (["Size—ofoAcis—’,int2str (m), x
int2str(n), 'x’,int2str(n),’ .])
end
Hdiff = H — H’;
if norm(HJdiff (:) ,inf) > eps*norm(H(:) ,inf)
value in Hdiff
error ("Homust_be_symmetric. ')
end
[dummy,p] = chol (H);
if p

error ("Homust_obe_positive_definite.)

end

int2str(n),’,—so-Homust_be_of_size_’,

% relative check of biggest absolute

D.2 Inequality Constrained QP’s 135

123 % Check g...
124 | sizeg = size(g);
125 if sizeg(1l) "= n | sizeg(2) =1
126 error (['Size_of_A_is_’,int2str (m), ’x’,int2str(n),’,_so_g_must_be_a_vector.
of_.’,int2str(n), —elements.’])
127 end
128 % Check 1 and u
129 %1 (40,1) = inf; % 777
130 | sizel = size(1);
131 | if sizel (1) "= n | sizel(2) "= 1
132 error (['Size—of_A_is_’,int2str (m), ’x’,int2str(n), ,—so—l_must_be_a_vector_
of_’,int2str(n),’ —elements.’])
133 end
134 sizeu = size (u);
135 if sizeu(1l) "= n | sizeu(2) "= 1
136 error (['Size_of_A_is_’,int2str (m), ’x’,int2str(n),’,_so_u_must_be_a_vector.
of_.’,int2str(n), —elements .’
137 end
138 for i = 1:n
139 if 1(i,1) > u(i,1)
140 error (["1(’,int2str (i), ’)-must_be_smaller—than_or—equal_to_u(’,int2str (
i)y,
141 end
142 end
143 % Check bl and bu
144 | sizebl = size(bl);
145 | if sizebl (1) "= n | sizebl(2) "= 1
146 error ([’Size_of_A_is_’,int2str (m), ’x’,int2str(n),’,_so_bl_must_be_a_vector._
of_.’,int2str (m), _elements. ’])
147 end
148 | sizebu = size (bu);
149 | if sizebu (1) "= n | sizebu(2) "= 1
150 error (['Size—of_A_is_’,int2str(m), ’x’,int2str(n),’ ,—so_bu_must_be_a_vector_
of_’,int2str(m),’ —elements .’])
151 end
152 for i = 1:m
153 if bl(i) > bu(i)
154 error ([’bl(’,int2str (i), ’)-must_be_smaller_than_or_equal_to_bu(’,
int2str (i),).])
155 end
156 end
157 % Check x...
158 | if nargin > 7 & “isempty (x)
159 Y%opts (1) = 1le—20; % 777
160 feasible = 1;
161 sizex = size (x);
162 if sizex (1) "= n | sizex(2) "= 1
163 error (['Size_of_A_is_’,int2str (m), ’x’,int2str(n),’ ,_so_x_must_be_a_
vector_of._’,int2str(n), —elements .’
164 end
165 il = find(x — 1 < —opts(1)); i-u = find(x — u > opts (1)) ;
166 i_bl = find (A¥x — bl < —opts(1)); i-bu = find (Axx — bu > opts (1));
167 if “isempty (i-1)
168 disp ([’Following —bound (s)—violated , -because —x———1_<—’,num2str(—opts (1))
169 fprintf (['\b’,int2str (i-1 "), .\n"])
170 feasible = 0;
171 end
172 if Tisempty (i-u)
173 disp (["Following _bound (s)_violated ,_because _x_.—_u_>_" ,num2str (opts (1)),
174 fprintf (['\b’,int2str (i-u '), .\n"])
175 feasible = 0;
176 end
177 if “isempty (i-bl)
178 disp ([’Following—_general_constraint (s)—violated ,_because_Asxe——blo<_’,
num2str(—opts (1)), :-"])
179 fprintf ([’\b’,int2str (i-bl), .\n’])
180 feasible = 0;
181 end
182 if “isempty (i-bu)
183 disp ([’ Following_general _constraint (s)_violated ,_because_A*x_—_bu_>_",
num2str (opts (1)), :—"])
184 fprintf (["\b’,int2str (i-bu '), .\n’])
185 feasible = 0;
186 end
187 if “feasible
188 error (’Starting_point_for_primal_active_set._method_is_not_feasible.’)
189 end
190 end
191 | % Check opts
192 if length (opts) "= 3
193 error (’Options—must_be_a_vector—of_3_elements.’)
194 end
195 | i = 1;
196 | if “isreal(opts(i)) | isinf(opts(i)) | isnan(opts(i)) | opts(i) < O
197 error (’opts (1) —mustebe_positive .’

136 Matlab-code

198 end

199 | i = 2;

200 if “isreal(opts(i)) | isinf(opts(i)) | isnan(opts(i)) | opts(i) < 0 | mod(opts (
i),1)

201 error ('opts (2) _must_be_a_positive_integer.’)

202 end

203 |i = 3;

204 | if “isreal(opts(i)) | isinf(opts(i)) | isnan(opts(i)) | opts(i) < 1 | 5 < opts(
i) | mod(opts (i) ,1)

205 error (’opts (3)_must_be_an_integer_in_range.l <=_value_<=_5.")

206 end

207

208 L L L L

209 % Initialize %

210 §67070/0/076,

211 | I = eye(n);

212 | At = A,

213

214 SIS VSTV Ve Ve Ve Ve Ve Ve Ve Ve Ve VeV VSIS IS S VS Ve Vs VS Ve Ve Ve Ve Ve Ve Ve Ve Ve Voo VoV VSTV VTSI TSI TSIV Vo

215 |% Organize bounds %

216 S TS VSTV Ve Ve Ve Ve Ve Ve Ve Ve VooV SISV S Vs Ve F VSV Ve Ve Ve Vs Ve Ve Ve Ve Voo VoV VSTV VTSI TSI TSV T eIV

217 % Convert input structure 1 <= I=xx u and bl <= Axx <= bu to Cxx >= b, where
C=[1 -1 A-A] = [BA] (A= [A—-A]) and b [1 —u bl —bu]...

218 [T —I]; % 1 <= I#x <= u ——> I >= 1 & —I*x >= —u

219 [At —At]; % bl <= Axx <= bu ——> Axx >= bl & —Axx >= —bu

220 [B Al

221 [1; —u; bl; —bul;

222

223 567070707076,

224 |% Build inactive and corresponding constraints %

225 VS VSITTT SIS SISV VI T I T I VTSI SV VSTV VT T TSI TSV T TSIV

226 % Initialize inactive set ...

227 | wonon = 1:1:2x (n+m) ;

228 % Remove unbounded constraints from inactive set ...

229 w_non = w_non (find (Tisinf(b)));

230 |% Indices of corresponding constraints ...

231 | cc = [(n+1):1:(2%n) 1:1:n (2%n+m+1):1:2% (ntm) 2xn+1:1:2%n+m]; % w_non [i-1
i_u i_bl i_bu] [i—u ill i_bu i_bl]

232

233 567670707076,

234 %

235 o7 TSV VTV VSIS IS fS VS FS VS Ve VeV A Ve Ve Ve Ve Ve Vo VoV V oo VSTV VTSI TSV TeVo

236 |% Disregarded const

237 |%1(40,1) = —inf; % °

238 il = find (isinf(1l)); i-u = find(isinf(u));

239 | i_bl = find (isinf(bl)); i_bu = find (isinf (bu));

240 if Tisempty (i-1)

241 disp (’Following _constraint (s)_disregarded ,_because_l_is_unbounded:)

242 disp ([7i-=—=[",int2str (i-1"),"]"])

243 end

244 | if “isempty (i-u)

245 disp ('Following_constraint (s)_disregarded , because_u—is_unbounded : ’)

246 disp ([7ie=—[",int2str (i-u’),’]"])

247 end

248 | if “isempty (i-bl)

249 disp ('Following_constraint (s)_disregarded , because_bl_is_unbounded :)

250 disp ([7i-=—=[",int2str (i-bl),]"])

251 end

252 if Tisempty (i-bu)

253 disp (’Following_constraint (s)_disregarded ,_because_bu_is_unbounded:)

254 disp ([7i-=—-[",int2str (icbu’),’]"])

255 end

256

257 S TS VSV TSV Ve Ve Ve Ve Ve Ve Ve Ve Ve VooV SISV f f Ve Ve VS VS Ve Ve Vs Ve Ve Ve Ve Ve Voo VoV VSTV VTSI TSI TSV Vo

258) all primal active set or dual active set method %

259 S TS SV Ve Ve Ve Ve Ve Ve Ve Ve Ve VooV SIS IS VS VSV VS VS VS Ve Ve Ve Vs Ve Ve Ve Ve VooV oV oo VSTV VTSI TSV SIS SISV

260 | trace = (nargout > 2); % building perf

261 if nargin < 8 | isempty (x)

262 disp (’Calling_dual_active_set _method. ")

263 [x,mu, info ,perf] = dual_active_set_-method (H,g,C,b,w_non,cc,opts,trace);

264 else

265 disp(’Starting_point_is_feasible.’)

266 disp (’Calling.primal_active_set_method.)

267 if opts(3) > 3

268 opts (3) = 3;

269 end

270 [x,mu, info , perf] = primal_active-set-method (H,g,C,b,x,w.non,cc,opts,trace);

271 end

272 |% Display info ...

273 | if info (1) == 2

274 disp (’No_solution _found , _maximum_number_of_iteration_steps_exceeded.’)

275 end

276 | if info (1) == 3

277 disp ('Nowsolution ~found ,-problem_is_unfeasible.)

278 end

279 disp (' QPsolver—_terminated . ’)

D.2 Inequality Constrained QP’s

137

LP_solver.m

1 | function [x,f,A,b,Aeq,beq,l,u] = LP_solver(l,u,A,bl,bu)

2

3 % LP_-SOLVER Finding a feasible point with respect to the constraints of an
4 [% inequality constrained QP of the form :

5 %

6 % min f(x) 0.5%x *Hix + g#x

7 % s.t. 1 < x < u

8 % bl <= Axx < bu,

9 %

10 |% using the Matlab function linprog. Equality constraints are defined as
11 |% 1 = u and bl = bu respectively .

12 %

13 % Call

14 |% x = LP_solver(l, u, A, bl, bu)

15 |% x = LP_solver(l, u, A, bl, bu, opts)

16 |% [x, f, A, b, Aeq, beq, 1, u] LP_solver(...)

17 %

18 |% Input parameters

19 % Lower limits of bounds. Set as Inf, if unbounded.

20 % u Upper limits of bounds. Set as —Inf, if unbounded.

21 % A The constraint matrix holding the general constraints as rows.
22 % bl Lower limits of general constraints. Set as Inf, if unbounded.
23 % bu Upper limits of general constraints. Set as Inf, if unbounded.
24 % opts Vector with 2 elements:

25 |% opts (1) = Tolerance deciding if constraints are equalities.
26 |% If |bu — bl| <= opts (1), then constraint is regarded
27 | % as an equality .

28 | % opts (2) pseudo—infinity can be used to replace (+—)Inf with a
20 |% real value regarding unbounded variables and general
30 | % constraints .

31 |7 If opts is not given or empty, the default opts [0 inf].

32 %

33 |% Output parameters

34 |% x Feasible point.

35 |7 f,A,b,Aeq,beq,1,u Output structured for further use in linprog.

36 %

37 % By Carsten V\ "olcker 5961572 .

38 % Esben Lundsager Hansen, s022022.

39 |7 Subject Numerical Methods for Sequential Quadratic Optimization .
40 % M. Sc., IMM, DTU, DK—2800 Lyngby.

a1 | % Supervisor John Bagterp Jorgensen, Assistant Professor.

42 % Per Grove Thomsen, Professor.

43 % Date 07. June 2007.

44

45 | find_equality_constraints = 1; % see initialization of constraints below
46 equality-tol = 1le—8; % see initialization of constraints below

47 V0TSV TS VTSI SISV TT SV ST S VST SV /TS Vo Ve Ve Jo VS s VoV Ve Jo Vs s VoV S Vo VoV s Vo Je s Vo Yo TSV s Vo T s Vo Vo TSV s /o7

48 |% Tune input and gather information %
49 ST

50 % Tune . ..

51 1 = 1(:); u=nmu(:);

52 | bl = bl(:); bu = bu(:);

53 % Gather .

54 | [m,n] = size (A);

55

56 V0T VTS VTSI SIS TTS VS ST S VTSV /TS Vo VeV Vo Jo VSV VoV s Ve Jo Vs s VoV S Vo VoV S Vo Je T Vo Yo TS Vs VoI Vo Vo TSV s /o7

57 % Set options %
58 V0TV TS VTSI SISV T TSV ST S VS TSV /TS Vo VeV Vo Jo VSV VooV s Ve Jo Vs s oV S Vo VoV s Vo Je T Vo Yo TS S VeI Vo Vo TSV s /o7

59 if nargin < 6 | isempty (opts)

60 equality_-tol = le—38;

61 pseudoinf = 1e8;

62 else

63 opts = opts (:) ’;

64 % Check opts ...

65 if length (opts) "= 2

66 error (’Options_must_be_a_vector_.of_2_elements . ’)

67 end

68 =1

69 if “isreal(opts(i)) | isinf(opts(i)) | isnan(opts(i)) | opts(i) < O
70 error (’opts (1)_must_be_positive.)

71 end

72 i = 2;

73 if “isreal(opts(i)) | isinf(opts(i)) | isnan(opts(i)) | opts(i) < O
74 error (’opts (2)_must_be_positive.)

75 end

76 equality_tol = opts(1);

77 pseudoinf = opts (2);

78 end

79 V0T VTS VTSV ST SIS VTSI SV ST S VS TSV /TS Vo Ve Vo Jo VSV Vo Vs Ve Jo Vs s /o V S Vo VoV s Vo Je s Vo Vo TSV Vo T Vo /o TSV s /o7

80 |% Check nargin/nargout %
81 ST

82 error (nargchk (5,6 ,nargin))

83 error (nargoutchk (1,8 ,nargout))

138

Matlab-code

84
85
86
87
88
89
90
91

92
93
94
95

96
97
98
99

100
101
102
103
104
105

106
107
108
109

110
111
112
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164

T T T T I S ST S TS T A ST SIS VTS AT ST P T VTS P TS A VT PP ST VTSP STV P Ve
% Check input %

SIS TITE AT

% Check 1 and u

%1 (40,1) inf; r7?

sizel = size(1);

if sizel(l) "= n | sizel(2) "= 1

error (['Size—ofoA_is—’,int2str(m), ’x’,int2str(n),’ ,—so—l_must_be_a_vector_
of-’,int2str(n), —elements.’])

end
sizeu = size (u);
if sizeu(l) "= n | sizeu(2) "= 1
error (["Size—of_A_is—’,int2str(m), ’x’,int2str(n), ,—so_u_must_be_a_vector_
of .’ ,int2str(n), _elements.'])
end
for i = 1:n
if 1(i,1) > u(i,1)
error (['1(’,int2str (i), ’)_must_be_smaller_than_or_equal_to_u(’,int2str (
i,
end
end
% Check bl and bu...
sizebl = size (bl);
if sizebl (1) "= n | sizebl(2) "= 1
error (["Size_of_A_is_’,int2str(m), ’x’,int2str(n),’,_-so_bl_must_be_a_vector.
of .’ ,int2str (m), —elements.’])
end
sizebu = size (bu);
if sizebu(l) "= n | sizebu(2) "= 1
error (["Size—of_-A_is—’,int2str(m), ’x’,int2str(n), ,—so_bu—must_be_a_vector.
of-’,int2str (m), —elements .])
end
for i = 1:m
if bl(i) > bu(i)
error (['bl(’,int2str (i), ’)_must_be_smaller_than_or_equal_to_bu(’,
int2str(i),’)."])
end
end
TIATTITE AT
% Initialize input for linprog %
L
% Replace +/—inf with pseudo inf (linprog requirement) ...
if pseudoinf
1(find (1 = —pseudoinf;
u(find (u = pseudoinf;
bl (find (bl —inf)) = —pseudoinf;
bu(find (bu == inf)) = pseudoinf;
end
% Objective function f defined as a vector —> linprog is using inf—norm

f = ones(n,1);
% Initialize constraints ...

if 1
% Find indices of equality and inequality constraints ...
in = 1:1:m; % indices of all constraints
eq = find (abs(bu — bl) <= equality-tol) ’; % indices of equality constraints
for i = eq
in = in(find (in "= i)); % remove indices of equality constraints
end

% Split constraints into equality and inequality constraints
A_eq = A(:,eq); A_in = A(:,in);

bl_eq = bl(eq); bloin = bl(in);

bu_-eq = bu(eq); bu-in = bu(in);

A = [—A.in’; A.in’]; % constraint matrix of inequality constraints
b [-bl_in; bu-in]; % inequality constraints

Aeq = A_eq’; % constraint matrix of equality constraints
beq = (bl_eq + bu_eq)/2; % ecquality constraints
else
% all constraints initialized as inequalities
A =[-A’; A’]; % onstraint matrix of inequality constraints
b = [—bl; bu]; % inequality constraints
Aeq = []; % no equality constraints
beq = []; % no equality constraints
end
TISTSIST SIS STSTTTI TSI SIS T TSI TSIV TSI IT IS TT TS ATT TSI

% Find feasible point and display user info

SIS IS AGIITIITS

% Find feasible point using linprog with default settings
disp(’Calling_linprog. ')

[x,dummy, exitflag] = linprog(f,A,b,Aeq,beq,1,u,[],optimset (’Display ', off’));
% Replace pseudo limit with +/—inf ...

if pseudoinf "= inf
b(find (b —pseudoinf)) = —inf;
b(find (b pseudoinf)) = inf;
1(find (1 —pseudoinf)) = —inf;

u(find (u == pseudoinf)) = inf;

D.2 Inequality Constrained QP’s 139

165
166
167
168

169
170
171
172

173
174
175

176
177
178

end

if

end
for

Display info ..
exitflag "= 1
disp (['No_feasible_point_found , _exitflag_=_’,int2str (exitflag),’,_see_” help
~linprog”.’])
i = 1:length (x)
if x(i) > pseudoinf
disp ([’Feasible—point_regarded —as—infinite ,—x(’,int2str (i),’)->=",
num2str (pseudoinf),’ .])
end
if x(i) < —pseudoinf
disp ([’Feasible—point_regarded —as—infinite ,—x(’,int2str (i),’)o<—’,
num2str(—pseudoinf) ,’.])
end

end

disp(’LPsolver_terminated .)

140 Matlab-code

D.3 Nonlinear Programming

SQP_solver.m

1 function [x, info, perf] = SQP_solver(modfun, modsens, costfun , costsens, x0,
pi0, opts, varargin)

2 |% SQP_SOLVER Solves a nonlinear program of the form

3 |7

4 |% min f(x)

5 | % s.t. h(x) >= 0

6 |7

7 % Where f: R°n —> R, and h: R"n —>R"m, meaning that n is the number of
variables and m

8 |% is the number of constraints. SQP solves the program by use of the Lagrangian
function

9 |% L(x,y) = f(x)—y’ ’h(x) which means that it is the following system that is

10 % solved

11 %

12 |% nabla_x (L(x,y)) = nabla(f(x))—nabla(h(x))y = 0

13 |% nabla_y (L(x,y)) = —h(x) = 0.

14 %

15 % Newtons method is used to approximate the solution. Each Newton step is
calculated by

16 % solving a QP defined as

17 %

18 |% min 0.5% delta.x ’[nabla"2_xx (L(x,y))]delta_x 4+ [nabla(f(x))]’delta_x

19 |% s.t. nabla(h(x)) delta_x >= —h(x)

20 %

21 |% This means that the solution can only be found if nabla"2_xx(L(x,y)) is

22 |% positive definite. An BFGS—update has been provided which approximates nabla
“2_xx (L(x,y)) .

23 % The solution is found by solving a sequence of these QPs. The

24 % dual active set method is used for solving the QP’s.

25 | %

26 % Call

27 % [x, info, perf] = SQP_solver(@modfun, @modsens, @Qcostfun, @costsens, x0,
pi0, opts)

28 %

20 % Input parameters

30 % @modfun . functions that defines: h(x) : R°n —>R’m

31 |% @modsens . functions that defines: nabla(h(x)) : R°n —>R" (nxm)

32 % @costfun : functions that defin f(x : “n —>

33 | % @costsens . functions that defines: nabla(f(x)) : R°n —> R’°n

34 |7 =0 . starting_quess

35 % pio : lagrange multipliers for the constraints.

36 | % (could be a zero—vector of length m).

37 |7 opts :

38 % opts : Vector with 3 element:

39 |7 opts (1) = Tolerance used to stabilize the methods numerically .

40 | % If |value| < opts (1), then value is regarded as zero.

41 | % opts (2) = maximum no. of iteration steps.

42 | % opts(3) = 1 : Using null space procedure .

43 % = 2 : Using null space procedure with factorization

44 | % update .

45 | % If opts(3) > 2, then opts(3) is set to 2 automatically.

16 | % If opts is not given or empty, the default opts = [le—8 1000 2].

47 | %

48 |% Output parameters

49 | % x . The optimal solution .

50 % info : Performace information , vector with 3 elements:

51 % info (1) = final values of f.

52 | % info (2) = no. of iteration steps.

53 | % info (3) = 1 : Feasible solution found.

54 % 2 : No. of iteration steps exceeded.

55 % perf : Performace, struct holding:

56 % perf.x : Values of x from each iteration of SQP. Size is nxit.

57 % perf . f : Valu of f(x) from each iteration of SQP. Size is 1
xit

58 |7 perf.itQP : Number of iterations from the dual active set method

59 % each time a QP is solved. Size is 1xit.

60 | % perf.stopQP : reason why the dual active set method has

61 % terminated each time a QP is solved. Size

62 % is 1xit.

63 % perf.stopQP (i) = 1: solution of QP has been found successfully.

64 % perf.stopQP (i) = 2: solution of QP has not been found successfully as

65 | % iteration number has exceeded max-iteration
number .

66 % perf.stopQP (i) = 3: solution of QP has not been found as the QP is
infeasible .

67 %

68 % By : Carsten V\ "olcker, s961572.

69 % Esben Lundsager Hansen, s022022.

D.3 Nonlinear Programming

141

J[] opts);

70 Subject Numerical Methods for Sequential Quadratic Optimization .

71 M. Sc IMM, DTU, DK-2800 Lyr

72 | ¢ Supervisor John Bagterp Jgrgensen Assistant Professor

73 Per Grove Thomsen Professor

74 Date 07. June 2007

75

76

77 | if nargin < 7 | isempty (opts)

78 tol = le—8;

79 it-max = 1000;

80 method = 2;

81 opts = [tol it-max method];

82 else

83 if opts(3) > 2

84 opts (3) = 2;

85 end

86 opts = opts (:) ’;

87 end

88

89 | f0 = feval (costfun , x0, varargin{:});

90 | g0 = feval (modfun, x0, varargin{:});

91 |c = feval(costsens, x0, varargin{:});

92 |A = feval (modsens, x0, varargin{:});

93 |W = eye(length(x0));

94 w-_non = (1l:1:length (g0));

95

96 | stop = 0;

97 | tol = opts(1);

98 | it-max = opts (2);

99 itr = 03

100 [n = length (x0);

101 xinit = x0;

102 finit = fO;

103

104 ¢ initialize containers

105 | trace = (nargout > 2);

106 if trace

107 X_. = repmat (zeros (n,1) ,1,itemax); % x of SQP

108 F repmat (0,1 ,it-max) ; function value of SQP

109 It = repmat (0,1 ,it_max); no. iterations of QP

110 Stop = repmat (0,1 ,it_max); stop of QP

111 end

112 | max-itr = it-max;

113

114 while “stop

115 X(:,itr+1) = x0;

116 itr = itr+41;

117 if (itr > max.itr)

118 stop = 2;

119 end

120

121 [delta_x , mu,info] = dual-active-set-method (W, c,A,—g0,w-non

122

123 if (abs(c’sxdelta-x) + abs(mu'xg0)) < tol

124 disp(’solution_has_been_found)

125 stop = 1;

126 else

127

128 if itr = 1

129 sigma = abs(mu) ;

130 else

131 for i=1:length (mu)

132 sigma(i) = max(abs(mu(i)), 0.5%(sigma(i)4abs(mu(i))));

133 end

134 end

135

136 [alpha ,x,f,g] = line_search_algorithm (modfun, costfun ,f0,g0,c,x0,delta_x
,sigma,le—4);

137

138 pii = pi0 + alphax*(mu—pi0);

139

140 nabla.L0 = c—Axpii;

141 ¢ = feval(costsens, x, varargin{:});

142 A = feval (modsens, x, varargin{:});

143 nabla.L = c—Axpii;

144 s = x — x0;

145 y = nabla.L — nabla_LO;

146 sy = s’xy;

147 sWs = s *«Wsks;

148 if (sy >= 0.2+sWs)

149 theta = 1;

150 else

151 theta = (0.8%sWs) /(sWs—sy);

152 end

153 Ws Wis

154 sW s’ *W;

155 r = thetasy+(l—theta)«Ws;

142 Matlab-code

156 W = W—(Ws*sW) /sWs+(r*r’) /(s *1);
157 x0 X3

158 pio pii;

159 fo f;

160 g0 = g;

161 end

162

163 % collecting output in container

164 if trace

165 X_(:,itr) = x0;

166 F(itr) = f0;

167 It (itr) = info(2);

168 Stop (itr) = info (3);

169 end

170 end

171

172 info = [fO itr stop]; % SQP info

173 | x = x0;

174 % building

175 if trace

176 X. = X. Ditr); Xo = [xinit X_];
177 F =F(l:itr); = [finit F];

178 It = It (l:itr); It = [0 It];

179 Stop = Stop(l:itr); Stop = [0 Stop];
180 perf = struct (’'x’,{X}, £ ,{F}, itQP ' ,{It}, stopQP’,{Stop});
181 end

D.4 Updating the Matrix Factorizations

143

D.4 Updating the Matrix Factorizations

givens rotationmatrix.m

1 function [c,s] = givens_rotation_matrix (a,b)
2
3 % GIVENS_ROTATION_MATRIX calculates the elements c¢ and which are used to
4 % introduce one zero in a vector of two elements
5 | %
6 % Call
7 % [c = givens_rotation_matrix (a,b)
8 Yo
9 Yo Input parameters
10 Y% a and b are the two elements of the vector where we want to
11 Y% introduce one zero
12 Yo
13 % Output parameters
14 | % c and s is used to construct the givens_rotation.matrix Qgivens: [c —s
c
15 | % Now one zero is introduced: Qgivensx[a b]’ = [gamma 0],
16 | % where gamma is the length of [a b] is abs(gamma)
17 Y%
18 % By Carsten V\ "olcker s961572 & Esben Lundsager Hansen s022022
19 % Subject Numerical Methods for Sequential Quadratic Optimization
20 Y% Master Thesis MM OTU DK—2800 Lyngby
21 |7 Supervisor John Bagterp Jorgensen A tant Professor & Per Grove
Thomsen , Professor
22 % Date : 31. october 2006.
23 % Reference
24
25
26
27 |% if(b==0)
28 Y% c 1;
29 Y% E 0;
30 % else
31 | % if (abs (1
32 % tau
33 % s = taustau) ;
34 % c =
35 % else
36 % tau = —b/a;
37 | % ¢ = 1/sqrt(l+taustau);
38 Y% E taux*c;
39 Y% end
40 % end
41 G = givens (a,b);
42 c = G(1,1);
43 s = G(2,1);
range_space_update.m
1 function [x,u,Q,R] = range_space_update(L,A,g,b,Q,R,col_rem)
2 | % RANGE_SPACE_UPDATE us the range—space procedure for solving a QP problem:
min f(x)=0.5%x'Gx+g’'x st: A’x=b
3 % where A contains m constraints and the system has n variables
RANGE_SPACE_.UPDATE contains methods for
4 |% updating the factorizations using Givens rotations .
5
6 | % «%% when solving an inequality constrained QP, a seqence of equality
7 % constrained QPs are solved The difference between two of these
8 |7 following equality constrained QP is one appended constraint at the
9 Yo last index of A or a constraint removed at index col_rem of A
10 Y%
11 % Call
12 | % [x,u,Q,R] range_space_update (L,A,g,b,Q,R, col_rem)
13 | %
14
15 % Input parameters
16 % L is the Cholesky factorization of the Hessian matrix G
of f(x) L is nxn
17 % A : is the constraint matrix The constraints are columns
in A A is nxm
18 Yo g contains n elements
19 Yo b contains m elements

144

Matlab-code

20
21
22

23
24
25

27
28
29
30
31
32
33
34
35

Q and R : is the QR-factorization of the QP which has just been
(if not the first iteration) in the sequence descibed in skx*.
col_rem : is the index at which a constraint has been re

from A.

Q, R and col.rem can be empty [] which means that The QP
is the first one in the sequence (see *x*x).

Output parameters

x :is the optimized point

u :is the corresponding Lagrangian Multipliers
Q and R :is the QR—factorization of A

solved

moved

22022.

By : Carsten V\"olcker, s961572 & Esben Lundsager Hansen, s0

Subject : Numerical Methods for Sequential Quadratic Optimization,
Master Thesis, IMM, DTU, DK—2800 Lyngby.

Supervisor : John Bagterp Jorgensen, Assistant Professor & Per Grove

Thomsen, Professor .

Date : 11. february 2007.

Reference

= size (A);
= size (R);

b+ (w’*K) *;

isempty (Q) && isempty (R)

disp (’complete factorization ’);

[QR] = ar(K);

eif mR < mA % new column has been appended to A

disp (’append update ') ;
[Q, R] = gr-fact-update_app-col(Q, R, K(:,end));

eif mR > mA % column has been removed from A at index col_-rem

disp (’remove update ') ;
[Q, R] = gqr_fact_update_rem_col(Q, R, col_rem);

R(1l:length(z) ,:) '\ z;
R(1l:length (z) ,:)\u;
Kru—w;
L'\vy:

gr_fact_update_app_col.m

W=

e i
WU A WN OO0 A

19
20
21
22
23

24
25

27
28
29
30
31
32
33

34

function [Q,R] = qr-fact-update-app-col(Q,R,col-new)
% QR-FACT_UPDATE.APP.COL updates the qr—factorization when a single column is

%

%
%

appended at index m+1. And the factorization from before adding the
is known
:(Q-o0ld and R_old)

Call
[a r] = qr-fact-update_app-col(Q-old, R-old, col_-new)

Input parameters
Q_old is the Q part of the QR-factorization from the former

column

matrix A (the matrix we want to append one column at index m+1).

R.old is the R part from the QR—factorization from the former
matrix A (the matrix we want to append one column at index
col_new is the column we want to append

Output parameters
Q is the updated Q-matrix
R is the updated R—matrix (everything but the upper mxm matrix i

)

By : Carsten V\ "olcker, s961572 & Esben Lundsager Hansen, s

m+1).

s zeros

2

22022

Subject : Numerical Methods for Sequential Quadratic Optimization,

Master Thesis, IMM, DTU, DK—2800 Lyngby.

Supervisor : John Bagterp Jorgensen, Assistant Professor & Per Grove
Thomsen, Professor .

Date : 31. october 2006.

Reference

[n m] = size (R);

sW
for

(col-new "*Q) ’;
j = n:—1:mt2

= j—1;

[c s] = givens_rotation_matrix (sw(i),sw(j)):
el = sw(i)*xc — sw(j)*s;

sw(j) = sw(i)*s + sw(j)=c;

sw(i) = el;

D.4 Updating the Matrix Factorizations

145

35 vl = Q(:,i)*xc — Q(:,j)*s;

36 Q(:i) Q(:yi)*s + Q(:,j)x*c;
37 Q(:,i) = vi;

38 end

qr_fact_update rem_col.m

1 function [Q,R] = qr_fact_update_rem_col (Q,R,col_index)
2 % QR-FACT.UPDATEREM_COL updates the gqr—factorization when a single column is
3 [% removed.
4 |
5 % Call
6 | % [q r] = qr-fact-update-rem_col (Q-old, R-old, col-new)
7 Yo
8 | % Input parameters
9 |7 Q.old is the Q part from the QR—factorization from the former
10 | % matrix A (the matrix we want to remove one column)
11 % R_old is the R part from the QR—factorization from the former
12 | % matrix A (the matrix we want to remove one column)
13 % col_-index is the index of the column we want to remove
14 %
15 | % Output parameters
16 | % Q is the updated Q-matrix
17 | % R is the updated R—matrix (everything but the upper mxm matrix is zeros
18 Y% :
19 % By : Carsten V\ "olcker s961572 & Esben Lundsager Hansen s022022
20 % Subject : Numerical Methods for Sequential Quadratic Optimization
21 % Master Thesis IMM DTU DF 800 Lyngby
22 | % Supervisor : John Bagterp Jorgensen, Assistant Professor & Per Grove
Thomsen, Professor.
23 % Date : 31 october 2006.
24 % Reference
25
26 | [n m] = size(R);
27 t = m — col_-index;
28 for i = it
29 i =
30 [c s] = givens_rotation_matrix (R(col_index+i—1,col_index+i), R(col_index+j
—1,col_index+i));
31 vl = R(col-index+i—1,col-index+1l:end)*c — R(col-index+j —1,col-.index+1:end)x*
s
32 R(col-index+j—1,col-index +1:end) = R(col-index+i—1,col-index+1:end)x*s + R(
col.index+j —1,col-index+1:end)xc;
33 R(col_index+i—1,col_index+1:end) = v1;
34 ql = Q(:,col_index+i—1)xc — Q(:,col_index—+j—1)%s;
35 Q(:,col_index+j—1) = Q(:,col_index+i—1)xs + Q(:,col_index+j—1)*c;
36 Q(:,col_index+i—1) = ql;
37 end
38 |R = [R(:,1:col_index —1) R(:,col_index+1:end)];
null_space_update.m
1 function [x,u,Q-new,T-new,L_new] = null_.space-update(G,A,g,b,Q-0ld,T-old, L_old,
col_rem)
2
3 | % NULL.SPACE_.UPDATE uses the null—space procedure for solving a QP problem: min
f(x)=0.5%xx"Gx+g ' x st A’ x=b
4 % where A contains m constraints and the system has n variables
NULL_SPACE_.UPDATE contains methods for
5 |% updating the factorizations using Givens rotations
6
7 | % xx% when solving an inequality constrained QP, a seqence of equality
8 % constrained QPs are solved. The difference between two of these
9 % following equality constrained QP is one appended constraint at the
10 % last index of A, or a constraint removed at index col_-rem of A.
11 %
12 % Call
13 |7 [x,u,Q.new, T_new, L_new | null_space_update (G,A,g,b,Q_old , T_old, L_old
col_rem)
14 T
15

146 Matlab-code

16 | % Input parameters

17 Y G : is the Hessian matrix of f(x). G is nxn

18 Y% A : is the constraint matrix The constraints are columns
in A A nxm

19 Y% g : contains n elements

20 Y% b : contains m elements

21 Y% Q-old and T_old : is the QT—factorization of the QP which has just been
solved

22 Y (if mnot the first iteration) in the sequence descibed in *x*x*. The

23 | % T part of the QT—factorization is lower triangular

24 Y L_old : s the Cholesky factorization of the reduced Hessian

25 | % matrix of the QP just solved (see sxx).

26 Y col_rem : is the index at which a constraint has been removed
from A

27 Y%

28 Y% Q-old, T_old L_old and col_rem can be empty [] which means that The QP

29 Y% is the first one in the sequence (see *xx*)

30

31 Y% Output parameters

32 | % x :is the optimized point

33 % u the corresponding Lagrangian Multipliers

34 |7 Q-new and T_new s the QT-factorization of A

35 Y% L_new :is the Cholesky factorization of the reduced Hessian
matrix

36

37 Y% By : Carsten V\ "olcker, s961 sben Lundsager Hansen s022022

38 | % Subject : Numerical Methods for Sequential Quadratic Optimization ,

39 Y% Master Thesis MM, DTLU DK—2800 Lyngby

40 | % Supervisor : John Bagterp Jgrgensen Assistant Professor & Per Grove
F'homsen, Prof sor .

41 Y Date 08. february 2007.

42

43 [nA ., mA] = size (A);

44 | [nT,mT] = size (T-old);

45

46 dimNulSpace = nA—mA;

47

48 Q-new = Q-_old;

49 T_new T-old;

50 L_new = L_old;
51 if isempty (Q-old) && isempty (T-old) && isempty (L-old)

52 %disp (’complete factorization ’) ;

53 [Q.R] = ar(A);

54 Itilde = flipud (eye (nA));

55 T-_new = Itilde xR;

56 Q-new = QxItilde;

57 Ql = Qonew (:,1:dimNulSpace) ;

58 Gz = QL' +G*Ql;

59 L.new = chol(Gz) ’;

60 elseif mT < mA % new column has been appended to A
61 % disp (’append update) ;

62 [Q-new, T-new, L_new] = null_space_-update_fact-app-col(Q-old, T_old, L_old,

A(:,end));
63 elseif mT > mA% column has been removed from A at index col_rem

64 % disp (’'remove update ') ;

65 [Q-new, Tonew, L.onew] = null_space-update-fact-rem-col(Q-old, T.old, L.old,
G, col_rem);

66 end

67

68 Q-new (: ,1:dimNulSpace) ;

69 Q2 = Qonew (: ,dimNulSpace+1:nA);
70 | T_newMark = T_new (dimNulSpace+1:end ,:) ;
71 py = T_-newMark’\b;

72 | gz = —((Gx(Q2xpy) + g) '*Ql)’;
73 |z = L-new\gz;

74 | pz = Lonew’\z;

75 | x Q2%py + Qlxpz;

76 |u = ((Gxx + g)’'*Q2) "

77 u = T_newMark\u;

null_space_update_fact_app_col.m

1 | function [Q, T, L] = null_space-update-fact-app-col(Q, T, L, col_new)

2 | % NULL_SPACE_-UPDATE_FACT-APP_COL updat the QT—factorization of A when a

3 |% single column col-new is appended to A as the last column. The resulting

4 |% constraint matrix is Abar = [A col-new]. The corresponding QP problem has a

reduced Hessian

% matrix redH and the cholesky factorization of redH is L_old

N o v

Y% Call

D.4 Updating the Matrix Factorizations

147

8 | % [Q, T, L] = null.space-update-fact-app-col(Q, T, L, col_new)
9
10 |7 Input parameters
11 Y% Q and T is the QT—factorization of A
12 Y% L is the cholesky factorization of the reduced Hessian
matrix of the corresponding QP problem
13 | % col_new is the column that is appended to A: Abar [A
col_new |
14
15 | % Output parameters
16 | % Q and T tis the QT—factorization of Abar
17 % L :is the Cholesky factorization of the reduced Hessian
matrix of the new QP problem.
18
19 Y By Carsten V\ "olcker 8961572 & Esben Lundsager Hansen, 5022022
20 Y% Subject Numerical Methods for Sequential Quadratic Optimization
21 Y Master Thesis IMM, DTU, DK—-2800 Lyngb
22 Y% Supervisor John Bagterp Jorgensen, Assistant Professor & Per Grove
Thomsen, Professor.
23 % Date 08. february 2007.
24 % Reference
25
26 | [n,m] = size(T);
27 dimNullSpace = n — m;
28 |wv = (col_new ’'xQ) ’;
29 for i = 1:dimNullSpace—1
30 io= i+1;
31 [s,c] = givens_rotation_matrix (wv(i),wv(j));
32 temp = wv(i)*c 4+ wv(j)*s;
33 wv(j) = wv(j)*c — wv(i)*s;
34 wv (i) temp ;
35 temp (1 i)%c + Q(:,j)*s;
36 Q(:,j Q(:Ljywe — Q(:,i)xs;
37 Q(:,i temp ;
38 temp (i,:)%c 4+ L(j,:)*s;
39 L(j, L(j,:)*c — L(i,:)=*s;
40 L(i, temp ;
41 end
42 for 1:dimNullSpace—1
43 i+1;
44 = givens_rotation-matrix (L(i,i),L(i,j));
15 L(:,i)sc — L(:,j)xs;
46 = L(:,j)*c + L(:,i)xs;
a7 = temp;
48 end
49 | T = [T wv];
50 L = L(1:dimNullSpace —1,1:dimNullSpace—1);
null_space_update_fact_rem_col.m
1 | function [Q, T, L] = null_space_update-fact-rem_col(Q, T, L, G, col-rem)
2 % NULL_SPAC UPDATE_-FACT_-REM_.COL updates the QT-factorization of A when a
3 % column is removed from A at column—index col_-rem . The new Constraint matrix
is called Abar.
4 |% The corresponding QP problem has a reduced Hessian matrix redH and the
cholesky factorization
5 % of redH is L
6
7 Y Call
8 | % [Q, T, L] null_space_update_fact_-rem_col (Q, T, L, G, col_rem)
9
10 | % Input parameters
11 % Q and T : is the QT—factorization of A
12 % L is the cholesky factorization of the reduced Hessian
matrix of the corresponding QP problem.
13 Y% e is the Hessian matrix of the QP problem
14 Y% col_rem is the column—index at which a column has been
removed from A
15
16 | % Output parameters
17 Y% Q and T :is the QI-factorization of Abar
18 % L :is the Cholesky factorization of the reduced Hessian
matrix of the new QP problem.
19
20 % By Carsten V\ "olcker s961572 & Esben Lundsager Hansen, s022022.
21 | % Subject Numerical Methods for Sequential Quadratic Optimization ,
22 Y Master Thesis IMM, DTU, DK—-2800 Lyngby
23 Yo Supervisor John Bagterp Jorgensen, Assistant Profe or & Per Grove
Thomsen , Professor
24 Yo Date 08 february 2007

148

Matlab-code

25
26
27
28
29
30
31

33
34
35
36
37

38
39

40
41
42
43
44
45
46
47
48
49
50

Y% Reference

[n,m] = size (T);
dimNulSpace = n—m;
j = col_rem;

mm = m—j ;

nn = mm-+1;

for i=1:1:mm

idxl = nn—i;

idx2 idx1+41;

[s,c] = givens_rotation_-matrix (T(dimNulSpace+idx1,j+i),T(dimNulSpace+idx2 , j
+i))s

temp = T(dimNulSpace+idx1,j+1l:end)*c + T(dimNulSpace+idx2,j+1l:end)x*s;

T(dimNulSpace+idx2,j+1l:end) = —T(dimNulSpace+idx1l,j+1l:end)=*s + T(

dimNulSpace+idx2 ,j+1:end)xc;
T(dimNulSpace+idx1l,j+1l:end) = temp;
temp = Q(:,dimNulSpacetidx1l)*c + Q(:,dimNulSpacetidx2)xs;
Q(:,dimNulSpace+idx2) = —Q(:,dimNulSpace+idx1)*s + Q(:,dimNulSpace+idx2)*c;
Q(:,dimNulSpace+tidxl) = temp ;

[T(:,1:§—1) T(:,j+liend)];
Q(:,dimNulSpace+1);

= L\ ((Gxz) '*Q(:,1:dimNulSpace)) ’;
delta = sqrt (z xGkz—1'%1);
L = [L zeros(dimNulSpace,1);1’ delta];

null_space_updateFRFX.m

w N

18
19
20
21

22
23
24
25
26
27

28
29

30
31
32

34

35
36
37
38
39
40

function [x,u,Q-fr,T-fr,L_fr] = null-space-updateFRFX (Q-fr , T-fr, L_fr ,G,A,g,b,
dim_fx , col-rem)

% NULL_SPACE_UPDATE_FRFX uses the same procedure as NULLSPACE_.UPDATE for
solving f(x)=0.5%x"Gx+g’'x st: A’x=b,

%(so please take a look at it) The difference is that NULL.SPACE.UPDATE_FRFX
takes advantage of the fact that some of the active constraints

% are bounds (usually) An active bound correspond to one fixed wvariable. This

means that x can be devided into [x_fr x_fixed

% where x_fixed are those variables which are fixed. The part of the

% factorizations which correspond to the fixed variables can not be changes
% (as they are fixed) and this means that we are only required to

% refactorize the part which correspond to the free variables.

% #%% when solving an inequality constrained QP, a seqence of equality

Y% constrained QPs are solved The difference between two of these

% following equality constrained QP is one appended constraint or one

Y removed constaint

%

Y% Call

% [x,u,Q-fr , T-fr ,L_fr] = null_space_updateFRFX (Q_fr , T_fr , G,A,g,b
dim_fx ,col_rem)

%

Y Input parameters

% G : is the Hessian matrix of f(x). G is nxn

Y% A : is the constraint matrix which only contains active
general constraints (the bound—constraints has been removed).

Y% The dimension of A is nxm_fr (n is number

Y of variables and m_fr is the number of

Y% active general constraints)

Y% g : is the gradient of f(x) and the dimension is nxl

Y b : contains the max values of the constraints (both

Y% general and an bound constraints) and therefore
the dimension is

% (m_fr+mfx)x1

% Q_fr and T_fr are the free part of the QT—factorization of the part of
the QP which has just been solved

% (if not the first iteration) in the sequence descibed in #x%. The

% T part of the QT—factorization is lower triangular

Y L_old : is the Cholesky factorization of the reduced Hessian

% matrix of the QP just solved (see x%%).

Y col_rem : is the index at which a constraint has been removed
from A (if a constraint has been appended this

Y% variable is unused .

%

% Q-old, T-old, L.old and col_-rem can be empty [] which means that The QP

% is the first one in the sequence (see x%x).

Y dim_fx : number of fixed variables

Y

D.4 Updating the Matrix Factorizations

149

41 | % Output parameters

42 | % x is the solution

43 | % u is the corresponding Lagrangian Multipliers

44 |7 Q-fr and T_fr is the QT—factorization of A corresponding to the

a5 | % free variables

46 |7 L_fr is the Cholesky factorization of the reduced

a7 | % Hessian matrix

48 | % By : Carsten V\ “olcker, s961 & Esben Lundsager Hansen, s022022

49 | % Subject . Numerical Methods for Sequential Quadratic Optimization

50 Master Thesis, IMM, DTU, DK—2800 Lyngby

51 | % Supervisor John Bagterp Jgrgensen, Assistant Professor & Per Grove
Thomsen, Professor .

52 | % Date : 08. february 2007

53 | % Reference

54

55 [nT mT] size (T_fr);
56 [nA mA] size (A);
57 dim_fx_old = nA-nT;

58

59 | if isempty (A) % nothing to factorize

60 | % disp (’A is empty’)

61 C = eye(dim-_fx);

62 C = [zeros (length (g)—dim-fx ,dim-fx); C];

63 [x u] = null_space (G,C,g,b);

64 Q-fr = []; T-fr = [];L_fr = []; A_fx = [];

65

66 elseif isempty (T-fr) || ((mA == mT) && (dim_fx == dim_fx_old)) % complete

factorization

67 % disp(’complete factorization

68 A_fr = A(l:end—dim_fx ,:) ;

69 [nm] = size(A-fr);

70 G_frfr = G(l:n,1:n);

71 dns = n-m;

72 [Q.R] = qr (A-fr);

73 Itilde = flipud (eye(n));

74 T_fr = Itilde=*R;

75 Q_fr = QxItilde ;

76 Qz = Q_fr (:,1:dns);

77 Gz = Qz'+ G_frir=Qz;

78 L_fr = chol (Gz) ’;

79 A_fx A(end—dim_fx+1:end ,:) ;

80 [x u] = help-fun (Q-fr, T_fr, L_fr ,A_fx ,G,g,b);

81

82 | elseif mA > mT % one general constraint has been appended

83 | ¥ disp (’append general constraint ’)

84 [Q_fr, T_fr, L_fr] = null_space_update_fact_app_general FRFX (Q_fr, T_fr,
L_fr, A(:,end));

85 dim_fr = size (T_fr,1);

86 A_fx = A(dim_fr+1l:end ,:) ;

87 [x u] = help_fun (Q-fr . T-fr, Lofr,Afx ,G,g,b);

88 elseif mA < mT % one general constraint hu;— been removed at indx col-rem

89 % disp ('remove general constraint ’)

90 dim_fr = size (T-fr,1);

91 G_frfr = G(1:dim_fr ,1:dim_fr);

92 [Q-fr, T-fr, L_fr] = null_space_update-fact-rem-general . FRFX (Q_fr, T-fr,
L_fr ,G_frfr ,col_rem) ;

93 A_fx = A(d]m fr+1l:end ,:) ;

94 [x u] = help_fun (Q.fr T_fr, L_fr ,A_fx ,G,g,b);

95

96 elseif dim_fx > dim_fx_old % one bound has been appended
97 |7 disp (’append bound’)

98 [Q-fr, T-fr, L_fr] = null_space-update_fact_app-bound_-FRFX (Q-fr ,
)

99 dim_fr = size (T-fr,1);

100 A_fx = A(dim_fr+1: end

101 [x u] = help-fun (Q-fr, T-fr, L.fr ,A-fx ,G,g,b);

102

103 elseif dim_fx < dim_-fx_.old % one bound has been removed
104 | % disp (’remove bound’)

105 [nT mT] = size (T_fr);

106 dns = nT-mT;

107 T_fr = T_fr (dns+1:end

108 T_fr = [T-fr; A(nT+1,:)];

109 [Q-fr, T-fr, L_fr] = null_space-update-fact-rem_bound-FRFX (Q-fr ,
. G)s

110 A_fx = A(nT+2:end,:) ;

111 [x u] = help-fun (Q-fr, T-fr, L_fr ,A-fx ,G,g,b);

112 end

113

114 function [x_-new u_new] = help_fun(Q_fr, T_fr ,L_fr ,A_fx ,G,g,b)

115 | % disp (’help_fun ')

116 [nT,mT] = size(T_fr);

117 | dns = nT—mT;
118 | dim-fr = nT;

119 | dim-fx = length (g)—dim_fr;
120 [Ql = Q-fr (:,1:dns);

121 | Q2 = Q-fr (:,dns+1:nT);

150

Matlab-code

122 | T_fr = T_fr(dns+1:end,:) ;

123 | b_fr = b(dim_fx+1:end);

124 | x_fx = b(1l:dim_fx);

125 if dim_fx

126 temp = (x_fx '*xA_fx) ’;

127 b_fr = b_fr —temp;

128 end

120 | py = T_fr’\ b_fr;

130 | G_frfr = G(1:dim_fr ,1:dim_fr);
131 | g_fr = g(1:dim-fr);

132 | gz = —((G_frfr«(Q2+py) + g-fr) ' =Ql) ’;
133 |z = L_fr\gz;

134 | pz = L_fr '\ z;

135 | x_fr = Q2%py + Qlxpz;

136 | %compute Lagrangian multipliers
137 | ¢ = Gx[x_fr; x_fx] + g;

138 c_fr c(l:dim_fr);

139 c_fx c(dim_fr+1l:end);

140 | Y_fr = Q-_fr (1:dim-fr ,dns+1:dim_fr);
141 | u-T = T_fr\(c_fr '* Y_fr) ’;

142 | u.B = c_fx—A_fxxu_I;

143 | xonew = [x_fr; x-fx];

144 | u-new = [u-B; u-I1];

null_space_update fact_app_general FRFX.m

1 function [Q_fr, T_fr, L_fr] = null_space_update_fact_app_-general FRFX (Q_fr,
T_fr, L_fr, col_new)

2

3 % NULL_.SPACE_.UPDATE_FACT_APP_.GENERAL_FRFX updates the QT—-factorization of A
when a

4 |% general constraint: colonew is appended to A as the last column. The
resulting

5 |% constraint matrix is Abar [A col_new] The corresponding QP problem has a
reduced Hessian

6 % matrix redH and the cholesky factorization of redH is L_fr It is only

7 |% the part corresponding to the free variables which are updated (the fixed

8 % part are not changing)

9 Y Call

10 | % [Q-fr, T_fr, L_fr] = null_space-update_fact_app-general _FRFX (Q_fr I _fr

L _fr col_new)

11 Y

12 | % Input parameters :

13 | % Q-fr and T_fr . is the QT-factorization of A (the part

14 | % corresponding to the free variables)

15 Y% L_fr is the cholesky factorization of the reduced Hessian
matrix of the corresponding QP problem

16 Y% col_new is the general constraint that is appended to A: Abar

[A col_new]

17

18 |% Output parameters

19 | % Q_fr and T_fr iis the QT-factorization of Abar(the part

20 |% corresponding to the free variables)

21 Y L_fr :is the Cholesky factorization of the reduced Hessian
matrix of the new QP problem.

22

23 Y% By Carsten V\ "olcker 8961572 & Esben Lundsager Hansen s022022

24 Y% Subject Numerical Methods for Sequential Quadratic Optimization,

25 Y% Master F'hes MM DTT DK—2800 Lyngby

26 | % Supervisor John Bagterp Jorgensen Assistant Professor & Per Grove
F'homsen, Prof sor .

27 Y Date 08. february 2007

28 Y% Reference

29

30 | [n,m] = size (T-fr);

31 dns n—m;

32 Z_fr = Q_fr(:,1:dns);

33 Y _fr Q-_fr (: ,dns+1:end) ;

34 T_fr T_fr (dns+1:end ,:) ;

35 a_fr = col_new (1:n);

36 |wv = (a_fr ' «Q_fr) ’;

37 |w = wv(1l:dns);

38 |v = wv(dns+1:end);

39 | for i =1l:length (w)—1

40 jo= i41;

41 [s,c] = givens_rotation-matrix (w(i),w(j));

42

43 temp = w(i)*c + w(j)*s;

1 w(i) = —w(i)*s + w(j)*c;

45 w(i) = temp;

D.4 Updating the Matrix Factorizations

151

46

a7 temp = Z_fr (:,i)%c + Z-fr (:,j)xs;

48 Z_fr(:,j) = —Z_fr(:,i)*xs + Z_fr(:,j)*c;
49 Z_fr (:,i) = temp;

50

51 temp = L_fr(i,:)%c + L_fr(j,:)xs;

52 L_fr(j,:) = —L_fr(i,:)*s + L_fr(j,:)=*c;
53 L_fr(i,:) = temp;

54 end

55 | gamma = w(end) ;

56 | T_fr = [zeros(1,size (T-fr,2)) gamma; T-fr v];
57 | L_fr = L_fr(l:end—1,:);

58 | [nn mm] size (Lfr);

60 =i+

61 [c givens_rotation_matrix (L_fr (i,i),L_fr (i
62

63 temp _fr(:,i)*xc — L_fr(:,j)=*s;

64 Lofr(:,j) = Lofr(:,i)*s + Lofr(:,j)*c;

65 L_fr(:,i) = temp:

66 end

67 | Q_fr = Y_fr];

68 | T_fr = s(dns—1,size (T_fr,2)); T_fr];

69 L_fr = :,1:dns—1);

300

null_space_update_fact_rem_general FRFX.m

1 function [Q-new, T_new, L_new] = null_space_update_fact_rem_general FRFX (Q_fr,
T_fr, L_fr, G_frfr, j)

2

3 % NULL_SPACE.UPDATE_FACT_REM_GENERAL_FRFX upd the QT—factorization
corresponding to the free variables of A n a

4 |% general constraint is removed from A at column—index j. The new Constraint
matrix is called Abar

5 |% The corresponding QP problem has a reduced Hessian matrix redH and the
chole y factorization

6 % of redH is L_fr

7

8 % Call

9 | % [Q-new, T-new, L_new] = null_space_update_fact_rem_col (Q_fr, T_fr, L_fr

G_frfr, col.rem)

10

11| % Input parameters

12 | % Q-fr and T_fr is the QT—factorization of A (the part

13 |7 corresponding to the free variables)

14 % L _fr : is the cholesky factorization of the reduced Hes
matrix of the corresponding QP problem (the part

15 | % corresponding to the free variables)

16 |7 G _frfr : is the Hessian matrix of the QP problem (the part

17 | % corresponding to the free variables).

18 % col_rem is the column—index at which a general constraint has
been removed from A

19

20 |% Output parameters

21 | % Q-new and T_new :is the QT—factorization of Abar(the part

22 |7 corresponding to the free variables)

23 % L_new is the Cholesky factorization of the reduced Hes
matrix of the new QP problem (the part

24 |7 corresponding to the free variables)

25

26 % By : Carsten V\ "olcker, 5961572 & Esben Lundsager Hansen, s022022

27 | % Subject . Numerical Methods for Sequential Quadratic Optimization,

28 | % Master Thesis, IMM, DTU, DK—2800 Lyngby .

20 | % Supervisor : John Bagterp Jorgensen, Assistant Professor & Per Grove
Thomsen, Professor.

30 % Date : 08 february 2007

31 % Reference

32

33 [n,m] = size(T_fr);

34 dns = n—m;

35 T_fr T_fr (dns+1:end ,:) ;

36 | T11 = T_fr (m—j+2m,1:j—1);

37 |N = T_fr(1:m-j+1,j+1:end);

38 |M = T_fr (m—j+2:end,j+1:end);

39 | Ql = Q_fr(:,1:dns);

40 | Q21 = Q_fr(:,dns+1:n—j+1);

41 | Q22 = Q_fr(:,n—j+2:end);

42 [nn mm] = size (N);

43

44 for i=1:1:mm

152

Matlab-code

45 idx1l = nn—i;

46 idx2 = idx1-41;

a7 [s,c] = givens_rotation.matrix (N(idx1,i),N(idx2,i));
48

49 temp = N(idx1,:)%c + N(idx2 ,:) *s;

50 N(idx2 ,:) = —N(idx1,:)xs +N(idx2 ,:)*c;

51 N(idx1 ,:) = temp;

52

53 temp = Q21 (:,idx1)xc + Q21 (:,idx2)xs;

54 Q21 (:,idx2) —Q21(:,idx1)xs + Q21(:,idx2)%c;
55 Q21(:,idx1) = temp;

56 end

57 |N = N(2:end,:) ;

58 | Tonew = [zeros(nn—1,j—1) N; T11 M];

59 T_-new = [zeros(dns+1,m—1); T_new];

60 | Quew = [Q1 Q21 Q22];

61 z = Q-new (:,dns+1);

62 |1 = L_fr\((G_frfr+z) '«Ql) ’;

63 | delta = sqrt (z’ % G_frirsz—1'%1);

64 | Lonew = [L_fr zeros(dns,1);1’ delta];

null_space_update_fact_app_bound FRFX.m

1 | function [Q_fr, T_fr, L_fr] = null_space_update_fact_app_bound_FRFX (Q._fr, T_fr,
L_fr)
2
3 % NULL_SPACE_.UPDATE_FACT_APP_.BOUND_FRFX updates the QT—factorization of A when
a
4 |% bound is appended to the constraint matrix. The corresponding QP problem has
a reduced Hessian
matrix redH and the cholesky factorization of redH is L_fr. The
QT-factorization correspond to the the general constraint matrix and only
the part corresponding to the free variables.
Call
[Q-fr T _f1 L _fr null_space_update_fact_app_bound_FRFX (Q_fr T _f1
L_fr)
11
12 G Input parameters
13 |« Q_fr and T_fr : is the QT-factorization of A, (A is the general
14 |7 constraint matrix and only the part
15 |7 corresponding to the free variables)
16 Y L_fr : is the cholesky factorization of the reduced Hessian
matrix of the corresponding QP problem.
17
18 Output parameters
19 Q-_fr and T_fr :is the QI-factorization of the general constraint
20 matrix for the part corresponding to the free
variables
21 Y L_fr :is the Cholesky factorization of the reduced Hessian
matrix of the new QP problem.
22
23 70 By Carsten V\ "olcker s961572 & Esben Lundsager Hansen, 022022 .
24 | % Subject Numerical Methods for Sequential Quadratic Optimization ,
25 Y Master Thesis, IMM, DTU, DK—-2800 Lyngby
26 |7 Supervisor John Bagterp Jorgensen tant Professor & Per Grove
F'homsen Professor
27 7 Date 08 february 2007
28 9 Reference
29 [n,m] = size (T_fr);
30 dns = n-m;
31 | q = Q_fr(end,:) ’;
32 TL = zeros(n);
33 |TL(1:dns,1:dns) = L_fr;
34 |TL(:,dns+1:end) = T_fr;
35 for i =1l:length(q)—1
36 jo= i+1;
37 [s,c] = givens_rotation_matrix(q(i),q(j)):
38
39 temp = q(i)*c + q(j)=*s;
40 a(j) = —a(i)*s + a(j)=c;
41 q(i) = temp;
42
43 temp = Q_fr (:,i)%c 4+ Q_fr(:,j)*s;
44 Qofr(:,j) = Q-fr(:,i)%s + Qo-fr(:,j)*c;
45 Q_fr(:,i) = temp;
46
a7 temp = TL(i,:)*c + TL(j ,:)*s;
48 TL(j,:) = —TL(i,:)*s + TL(j,:)%c;
49 TL(i ,:) = temp;

D.4 Updating the Matrix Factorizations

153

50 end

51

52 | Q_fr = Q_fr(1l:end—1,1:end—1);

53 | T_fr = TL(1:end—1,dns+1:end);

54 L_new = TL(1:dns —1,1:dns);

55 [nn mm] = size (L_new);

56 1

57

58 givens-rotation_-matrix (Lonew (i,i),Lonew (i,j));
59

60 temp = L.new (:,i)#*c — Lonew (:,j)*s;

61 j) = Lonew (:,i)xs + Lonew (:,j)xc;
62 = temp;

63 end

64 | Lofr = L_new (:,1:end—1);

null_space_update_fact_rem_bound FRFX.m

1 function [Q-fr,T_fr,L_fr] = null_-space-update-fact-rem_-bound_-FRFX (Q-fr, T._fr,
L_fr, G)

2

3 % NUL ACE_.UPDATE_FACTREM_-BOUND_FRFX updates the QT-factorization of the
general constraint matrix (and only the part

% corresponding to the free variables) when a bound is removed

5 |% The corresponding QP problem has a reduced Hessian matrix redH and the
chole y factorization

6 % of redH L_old

7

8 70 Call

9 | % [Q-fr , T-fr , L_fr] = null_space.update-fact_-rem_-bound -FRFX (Q-fr, T_fr
L_fr G)

10

11 | % Input parameters

12 % Q-_fr and T _fr i the QIT—factorization of the constraint matrix (and
only the part corresponding to the free variables)

13 % L _fr is the cholesky factorization of the reduced He
matrix of the corresponding QP problem

14 % G is the Hessian matrix of the QP problem

15

16 | % Output parameters

17 | % Q-fr and T_fr is the QT—factorization of the new general

18 % constraint matrix (and only the part
corresponding to the free variables)

19 % L _fr is the Cholesky factorization of the reduced Hessian
matrix of the new QP problem

20

21 % By : Carsten V\ "olcker s961572 & Esben Lundsager Hansen s02

22 % Subject : Numerical Methods for Sequential Quadratic Optimization

23 % Master Thesis IMM DTU DK—2800 Lyngby

24 | % Supervisor : John Bagterp Jorgensen, Assistant Professor & Per Grove
Thomsen, Professor.

25 % Date : 08 february 2007.

26 | % Reference

27

28 | n = size (Q-fr,1);

29 |m = size (T_fr,1)—1;

30 dns = n—m;

31 | G_frfr = G(1:n,1:n);

32 Z_fr = Q_fr (:,1:dns);

33 Y_fr = Q_fr (:,dns+1:end) ;

34 | [nn mm] = size (T-fr);

35 Y_fr = [Y_fr zeros(size(Y_fr,1) ,1); zeros(1l,size(Y_fr,2)) 1];

36 for i=1:1:mm

37 idxl = nn—i;

38 idx2 = idx1+1;

39 [s,c] = givens_rotation-matrix (T-fr (idx1,i),T-fr (idx2,i));

40

41 temp = T_fr(idx1,:)*c + T_fr(idx2 ,:) *s;

42 T_fr (idx2 ,:) = —T_fr (idx1 ,:)*s +T_fr (idx2 ,:) xc;

43 T_fr (idx1 ,:) = temp;

44

45 temp = Y_fr (:,idx1)%c + Y_fr (:,idx2)xs;

46 Y _fr idx2) =— Y_fr(:,idx1)%s + Y_fr (:,idx2)%c;

47 Y _fr dx1l) = temp;

48 end

49 | T_fr = T_fr(2:end,:) ;

50 Z_fr = [Z_-fr; zeros (1,size(Z_fr ,2))];

51 Q-fr = [Z_fr Y_fr];

52 | T-fr = [zeros(size (Z-fr ,2)+1,size (T-fr,2)); T-fr];

53 Z_fr_bar = Q_fr (:,1:n-m+1);

154 Matlab-code

54 | Z_fr = Z_fr_bar (l:end—1,l:end—1);
55 |z = Z_-fr_bar (l:end—1,end) ;
56 | rho = Z_fr_bar (end,end);

57 |h = G(l:n,n+1);

58 | omega = G(n+1,n+1);

59 |1 = L_fr\((G._frfrxz+rhoxh) ' Z_fr) ’;

60 | delta = sqrt(z’=(G_frfrxz4+2+rhoxh)fomegasrhoxrho—1’x1);
61 | L-fr = [L_fr zeros(size (L_fr,1),1); 1’ delta];

D.5 Demos

155

D.5 Demos

QP_demo.m

1 function QP_demo(method , funtoplot)

2

3 % QP.DEMO Interactive demonstration of the primal active set and

4 % the dual active set methods.

5 %

6 % Call

7 |% QP.demo(method , funtoplot)

8 %

9 % Input parameter

10 | % method . ’primal ’ Demonstrating the primal active set method.
11 % ’dual’ Demonstrating the dual active t method.
12 | % funtoplot ‘objective ’ Plotting the objective function .

13 | % ‘lagrangian ’ Plotting the Lagrangian function .

14 %

15 % By Carsten V\ "olcker, s961572

16 % Esben Lundsage Hansen, 5022022

17 | % Subject Numerical Methods for Sequential Quadratic Optimization .
18 % M. Sc., IMM, DTU, DK—-2800 Lyngby.

19 | % Supervisor John Bagterp Jgrgensen , istant Professor.

20 % Per Grove Thomsen, Profe

21 % Date 07. June 2007.

22

23

24 |% Check nargin/nargout %
25

26 error (nargchk (2,2, nargin))

27 | error (nargoutchk (0,0, nargout))

28 V0TV TS VTSI S TTS VS ST S VSTV /TS Vo Ve Ve Jo VSV VoV Ve Jo Vs s /o TV S Vo VoV s Vo Je s Vo Vo TSV S VoI Vo Vo TSV s Vo7

29 |% Check input %
30 V0T VTS VTSV ST SISV TTS VS ST S VSTV /TS Vo VeV Ve Jo VS s VoV Vo Jo Vs s Vo VS Vo VoV s Vo Je s Vo Yo TSV s VoI Vo Vo TSV s /o7

31 % check method ...

32 if “stremp (method, 'primal’) & “strcmp (method, dual’)

33 error ("Method omust_be_’ primal’’_or_’"dual’’.")

34 end

35 |% check funtoplot ...

36 ftp = 0; % plot objective function

37 if “stremp (funtoplot, ’ objective’) & “strcmp(funtoplot , 'lagrangian)
38 error (’Funtoplot.must_be_.’’objective’ '_or.’’lagrangian’'’."’

39 | elseif strcmp(funtoplot , lagrangian ')

40 ftp = 1; % plot lagrangian

41 end

42 V0TSV TS VTSI SISV TT SV ST S VST SV /TS Vo Ve Ve Jo VS s VoV Ve Jo Vs s VoV S Vo VoV s Vo Je s Vo Yo TSV s Vo T s Vo Vo TSV s /o7

43 |% Setup and run demo %
44

45 |% Setup demo. ..

16 |G [1 050 1];

47 | g = [0 0] ;

48 |A = [0.5 1;

49 0 1;

50 2 1.75;

51 3 —1;

52 1 0];

53 b= [3 1 8.5 3 2.2]7;

54 % Run demo .

55 if stremp (method, primal’)

56 primal_active_set_demo (G,g,A’ ,b, ftp)

57 else

58 dual_active_set_demo (G,g,A’ ,b, ftp)

59 end

60 V0TV TS VTSI SISV TT SV ST S VST SV /TS Vo VeV Ve Jo VS s VoV Ve Jo Vs s /o TV S Vo VoV s Vo T Vo Yo TS s Ve T Vo Vo TSV s /o7

61 |% Auxilery function (%
62 V0TSV TS VTSV ST SIS VTSI SV ST VSTV /TS Vo Ve Vo Jo VSV Vo s Ve Jo Vs s /o TV S Ve VoV S Vo Jo s Vo Vo TSV VoI Vo Vo TSV s /o7

63 function primal_-active-set-demo (G,g,A,b,ftp)

64 % initialize ...

65 [n,m] = size(A);

66 | At = A,

67 w_non = 1:1:m;

68 | woact = [];

69 mu = zeros (m,1) ;

70 |% initialize options ...

71 | tol = sqrt(eps);

72 it-max = 100;

73 % initialize counters and containers ...

74 it =

75 X = repmat (zeros(n,1) ,1,it.max);

76 | % plot ...

77 |x = active_set_plot (G,At,g,b,[] ,mu, w_act,[—4 8;—4 8],[20 20 50 100 tol ftp]);
78 | X(:,1) = x;

156

Matlab-code

79
80
81
82
83
84

85
86
87

89
90

92
93
94

96
97

99

100
101
102
103
104
105
106

107
108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

% check feasibility of x.

i-b = find (Atxx — b < —tol);
if Tisempty (i-b)
disp (["Following_constraint (s)_violated ,_because _Asxx_<_b:_.’])
fprintf ([’\b’,int2str (i-b), .\n’])
error (’Starting_point_for_primal_active_set_method_is_not_feasible ,_run.
demo._again .

end
% iterate .
stop = 0;
while “stop
it = it 4+ 1;

if it >= it_max
disp(’No._or_iterations._steps_exeeded .’)

stop = 2; % maximum no iterations exceeded
end
% call range/null space procedure
mu = zeros (m,1);
[p,mu-act] = null-space-demo (G,A(:,w-act) ,Gxx+g,zeros (length(w-act) ,1));
mu(w-act) = mu-act;

% plot

active-set-plot (G,At,g,b,X(:,1:it) ,mu, w_act,[—4 8;—4 8],[20 20 50 100 tol

ftp]);
disp (’Press_any._key_to_continue ...
pause
% check if solution found
if norm(p) <= tol
if mu >= —tol
stop = 1; % solution found

disp(’Solution_found_by_primal_active—_set_method , demo—_terminated .

)

else
% compute index j of bound/constraint to be removed...
[dummy, j] = min (mu);
w_act = we_act(find (w_act "= j)); % remove constraint j from active
set
w_non = [w_non j]; % append constraint j to nonactive setfunction
end
else
% compute step length and index j of bound/constraint to be appended
alpha = 1;
for app = w-non
ap = At(app,:)*p; % At(app.:) = A(: . app)’
if ap < —tol
temp = (b(app) — At(app,:)*x)/ap;
if —tol < temp & temp < alpha
alpha = temp; 7 smallest step length
j = app; % index j of bound to be appended
end
end
end
if alpha < 1
% make constrained step
x = x + alphaxp;
w-act = [w-act j]; % append constraint j to active set
w-non = w-non(find (w-non "= j)); % remove constraint j from
nonactive set
else
% make full step
x = x + p;
end
end
X(:,it41) = x;
Y% % plot
Y% if “stop
% %disp (’Press any key to continue...')
Y% Y%pause
active_set_plot (G,At,g,b,X(:,1:it+1),mu, w_act,[—4 8;—4 8],[20 20 50
100 tol ftpl);
disp (’Press any key to continue)
Y% pause
Y% end
end

function dual-active.set_-demo (G,g,A,b,ftp)

% initialize

[n,m] = size (A);

w-_non = 1:1:m;j;

w_act = [];

x = —G\g: x = x(:);

mu = zeros (m,1);

% initialize options ...

tol = sqrt(eps);

max-itr = 100;

% initialize counters and containers ...

it = 0;

D.5 Demos 157

160 it-draw = 1;

161 |X = repmat (zeros(n,1) ,1,max_itr);

162 % plot

163 active_set_plot (G,C’,g,b,x ,mu,w_act,[—4 8;—4 8],[20 20 50 100 tol ftp]);
164 | disp (’'Press_any_key_to_continue ...’

165 pause

166 | X(:,1) =
167 % iterate
168 stop = 0;
169 while “stop

170 ¢ = constraints (G,C(:,w-non) ,g,b(w_non) ,x,mu) ;

171 if ¢ >= —tol;

172 stop = 1;

173 %disp (’STOP all inactive constraints > 07)

174 disp (’Solution_found_by_dual_active_set._method , .demo_terminated .’)
175 else

176 o
177 c
178 r
179 r
180 end
181 it = it + 1;

182 if it >= max-_itr

183 disp(’'No._or_iterations_steps_exeeded_(outer_loop)."’)
184 stop = 3; % maximum no iterations exceeded

185 end

186 % iterate

187 it2 =
188 stop?2 max (0 ,stop) ;

189 while “stop2

190 it2 = it2 + 1;

191 if it2 >= max-itr

192 disp ('No.—or—iterations—_steps—exeeded—(inner—loop).")

193 stop = 3;

194 stop2 = stop;

195 end

196 % call range/null space procedure

197 [p,v] = null_space_demo (G,C(:,w_act),—C(:,r),zeros (length(w_act) ,1));
198 if isempty (v)

199 v = [];

200 end

201 arp = C(:,r) *p;

202 if abs(arp) <= tol % linear dependency

203 if v > 0 % solution does not exist

204 disp (’Problem._is_.infeasible ,_.demo_terminated . ’)

205 stop = 2;

206 stop2 = stop;

207 else

208 t = inf;

209 for k = 1:length (v)

210 if v(k) < 0

211 temp = —mu(w-act(k))/v(k);

212 if temp < t

213 t = temp;

214 rem = k;

215 end

216 end

217 end

218 mu(w_act) = mu(w_act) + tx*v;

219 mu(r) mu(r) + t;

220 w_act w_act (find (w_act "= w_act(rem)));

221 end

222 else

223 % stepsize in dual space

224 tl = inf;

225 for k = l:length (v)

226 if v(k) < 0

227 temp = —mu(w.act(k))/v(k);

228 if temp < t1

229 tl = temp;

230 rem = k;

231 end

232 end

233 end

234 % stepsize in primal space .

235 t2 = —constraints (G,C(:,r),g,b(r),x,mu)/arp;

236 if t2 <= t1

237 x = x + t2+%p;

238 mu(w_act) = mu(w_act) + t2x*v;

239 mu(r) mu(r) + t2;

240 w_act [w_act r];

241 else

242 x = x + tlsp;

243 mu(w-act) = mu(w-act) + tlxv;

244 mu(r) = mu(r) + t1;

245 w-act = w-act (find (w-act "= we-_act(rem)));

246 end

We find the lee negative value of c¢
= max(c(find (¢ < —sqrt(eps))));

find (¢ == c-r);

N .

158 Matlab-code

247 end

248 c-r = constraints (G,C(:,r),g,b(r),x,mu);

249 if cor > —tol

250 stop2 = 1; % leaves the inner while—loop but does not stop the
algorithm

251 end

252 it_.draw = it_.draw 4+ 1;

253 X(:,it-draw) = x;

254 Y%plot

255 if 7 stop

256 active-set-plot (G,C’,g,b,X(:,1l:it_draw) ,mu,w-act,[—4 8;—4 8],[20 20
50 100 tol ftp]);

257 disp (’Press.any._key_to_continue ... ’)

258 pause

259 end

260 end % while

261 end % while

262

263 function [x,mu] = null-space-demo (G,A,g,b)

264 % initialize ...

265 [n m] = size (A);

266 |% QR factorization of A so that A = [Y Z]*[R 0]

267 [Q,R] = qr(A); % matlab implementation

268 |Y = Q(:,1:m);

269 Z = Q(:,m+1:n);

270 |R = R(1:m,:) ;

271 7zt = Z°;

272 |% Solve for the range space component py

273 | py = R’\b;

274 Compute the reduced gradient
275 = Zt+(Gx(Y*py) + g);
276 Compute the reduced Hessian and compute its Cholesky factorization ..

278 = chol (Gz) ’;

279 Solve for the null space component pz
280 | pz = L\—gz;

281 | pz = L’\ pz;

282 |% Compute the solution

283 | x = Yspy + Zxpz;

%
gz
%

277 | Gz = ZtxGxZ;
L

284 |% Compute the Lagrange multipliers
285 |[mu = R\ (Y’ *(Gxx + g));
286

287 function f = objective (G,A,g,b,x,mu)
288 | f = x'#Gix + g'ax;

289

290 function ¢ = constraints (G,A,g,b,x,mu)

291 c = A’xx — b;

292

293 function 1 = lagrangian (G,A,g,b,x,mu)

294 |L = objective (G,A,g,b,x,mu) — mu’'#constraints (G,A,g,b,x,mu) ;

active_set_plot.m

function [x,w-act] = active_set-plot (G,A,g,b,x,mu,w-act,D,opts)

% ACTIVE.SET_.PLOT Plotting the objective or the Lagrangian function and the
% constrain
Axx >= b

with feasible regions. The constraints must on the form

an only plot for three dimensions

% Call

% active-set-plot (G, A, g, b, x, mu, wa, D)

©00NO U s WN -

% active_set_plot (G, A, g, b, x, mu, wa, D, opts)
10 | % [x,wa] = active_set-plot (.)
11 Y
12 |% Input parameters
13 Y% G : The Hessian of the obejctive function
14 Y% A : The constraint matrix of size mx2 where m is the number of
15 Y% constraints
16 Y% g : Coefficients of linear term in objective function
17 Y% b : Righthandside of constraints
18 | % x : Starting point If x is a matrix of size 2xn, n 1,2,3
19 |% then the iteration path is plottet. If x is empty, the user will
20 | % be asked to enter a starting point.
21 | % mu The Lagrangian multipliers. If mu is empty, all multipliers will
22 Y be set to zero.
23 | % wa Working set listing the active constraints. If wa empty , then
24 Y% a constraint will be found as active if x is within a range of
25 % opts(5) to that constraint
26 | % D : Domain to be plottet given as [x1(1) x1(2); x2(1) x2(2)]

27 | % opts : Vector with six elements

D.5 Demos

159

28 | % opts (1:2) Number of grid points in the first and second

29 (% direction .

30 |7 opts (3) Number of contour levels

31 | % opts (4) Number of linearly spaced points used for plotting

32 o the constraints

33 | % opts (5) A constraint will be found as active, if x is

34 |7 within a range of opts(5) to that constraint

35 | % opts (6) 0: Plotting the contours of the objective function .

36 | % 1: Plotting the contours of the Lagrangian function .

37 | % If opts not, then the default opts = [20 20 50 100 sqrt(eps) O]

38 %

39 | % Output parameters

40 % x Same as input x. If input x is empty, then the starting point

41 |7 entered by the user

42 Y% w Same as input w_act. If input w_act is empty then the list of

43 Y% active constraint found upon the input/entered starting point

44 Y

45 % By Carsten V\ "olcker 8961572 & Esben Lundsager Hansen, 5022022

46 |% In course Numerical Methods for Sequential Quadratic Optimization ,

a7 | % Master Thesis, IMM, DTU, DK—2800 Lyngby .

48 |% Supervisor John Bagterp Jgrgensen, Assistant Professor & Per Grove Thomsen ,

49 % Professor .

50 % Date 28th January 2007.

51

52 |% checking input ...

53 error (nargchk (8,9 ,nargin))

54 |A = A

55 [n,m] = size(A);

56 if isempty (mu)

57 mu = zeros (m,1);

58 end

59 | [u,v] size (D) ;

60 |if u =2 | v = 2

61 error (’The—domain_must—be_a_matrix —of_size_2x2. ")

62 end

63 if nargin > 8

64 [u,v] = size(opts (:));

65 if u =6 | v =1

66 error ('Opts_must_be_a_vector_of_length_6.")

67 end

68 end

69

70 |% default opts...

71 | if nargin < 9 | isempty (opts)

72 opts = [20 20 20 20 sqrt(eps) 0];%[20 20 50 100 sqrt(eps) 0];

73 end

74

75 | % function to plot

76 | fun = @objective;

77 if opts (6)

78 fun = @lagrangian ;

79 end

80

81 |% internal parameters ...

82 | fsize = 12; font size

83

84 % plot the contours of the objective or the Lagrangian function ...

85 figure (1), clf

86 contplot (fun ,G,A,g,b,mu,D,opts)

87 xlabel ('x_-1", FontSize ,fsize)

88 ylabel (’'x_-2', FontSize ,fsize)

89 hold on

90

91 |% plot the constraints ...

92 | if nargout & isempty (x)

93 constplot (@constraints ,G,A,g,b,mu,D, w_act ,m, opts , fsize)

94 Ftitle (x (), f(x) W_a 1, \mu], FontSize *, fsize)

95 % ask user to enter starting point

96 while isempty (x)

97 disp(' Left_click_on_plot_to_select_starting_point_or_press_any_key_to._
enter_starting_point_in_console.)

98 [u,v,but] = ginput (1);

99 if but

100 x = [u v];

101 else

102 while isempty (x) | length(x) "= 2 | sum(isnan(x)) | sum(isinf(x)) |

sum(~isreal (x)) | ischar (x)

103 x = input(’Enter_starting_point.[xl1_.x2]:_");

104 end

105 end

106 end

107 x = x(:);

108 figure (1)

109 % find active constraints ...

110 if nargout > 1

111 w_act = find (abs(A(2,:) *x(2) 4+ feval(@constraints ,G,A(1,:),g,b,x(1) ,mu
)) <= opts(B)) 'y Y A(2)xx2 (A(1)=*x1 b) <= eps

160

Matlab-code

112
113
114
115

116
117
118
119

120
121
122

123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148

149
150

151
152
153
154
155
156

157
158

159
160
161
162

163
164

165
166
167
168

169
170
171

172
173

174
175
176
177
178

179

if w_act
constplot (@constraints ,G,A,g,b,mu,D, w-act ,m, opts , fsize)

end
title (["x—=—(,num2str(x(1,end) ,2), —,.’ ,num2str(x(2,end) ,2),"),f(x)_=
~’,num2str(objective (G,A,g,b,x(:,end) ,mu) ,2),’ ,_W_a_=_[",int2str (
w_act),’],-\mu_=_[’ ,num2str(mu’,2),’'] '], FontSize ,fsize)
end
else
%if isempty (w-act)
% w-act = find (abs(A(2,:)) + feval (@constraints ,G,A(1,:) ,g,b,x(1),
mu)) <= opts(5))’; % A (A(1) *x1 b) <= eps
Y%end
constplot (@constraints ,G,A,g,b,mu,D, w-act ,m,opts, fsize)
title (["x—=—(’,num2str(x(1,end) , 2),’_,_’,nunﬂhtr(x(2 end) ,2),") ,-f(x)- ’
num2str (objective (G,A,g,b, x(,end) ,mu) ,2) , ,_Wfd___[’,lntZStr(w act),'
], -\mu_=_[,num2str (mu’,2) , "]],’FoutSize’,fsize)

end

% plot the path

pathplot (x)

hold off
function contplot (fun,G,A,g,b,mu,D,opts)
[X1,X2] = meshgrid(linspace(D(l,1),D(1,2),opts(l)),linspace(D(Z,l),D(2,2),opts
(2))
F = zeros(opts(l 2));
for i = l:opts (1)
for j = l:opts(2)

F(i,j) = norm(feval (fun,G,A,g,b,[X1(i,j);X2(i,j)],mu),2);
end

end

contour (X1,X2,F,opts (3))

function constplot(fun,G,A,g,b,mu,D,w-act,m,opts, fsize)

fcolor = [.4 .4 .4]; falpha = .4; % color uul alpha values of faces marking
unfeasable region
bcolor = [.8 .8 .8 % background color of constraint numbering

x1 = linspace (D(1, 1) ,D(1,2) ,0opts (4));
x2 = linspace (D(2,1) ,D(2,2) ,opts(4));
C = zeros(m,opts(4));

for j = l:opts (4)
for i = 1:m
if A(2,i) % if A(2) "= 0
C(i,j) = —feval(fun,G,A(1,i),g,b(i),x1(j).,mu)/A(2,i); % =2 = —(A(1)
*x 1 b)/A(2)
else
C(i,j) =b(x)/A(1,1) 0 => x1 b/A(1) must be plottet
reversely as i)
end
end
end
for i = 1:m
if any (i == w-act)
lwidth = 1; color = [1 0 0]; % linewidth and color of active
constraints
else
lwidth = 1; color = linewidth and color of inactive
constraints
end
if A(2,i) % if A(0
if A(2,i) > 0 % if A(2) > 0
fill ([D(1,1) D(1,2) D(1,2) D(1,1)],[C(i,1) C(i,end) min(D(2,1) ,C(i,
end)) min(D(2,1),C(i,1))], fcolor , FaceAlpha ', falpha)
else
fill ([D(1,1) D(1,2) D(1,2) D(1,1)],[C(i,1) C(i,end) max(D(2,2) ,C(i,
end)) max(D(2,2) ,C(i,1))],fcolor , FaceAlpha ', falpha)
end
plot (x1,C(i,:), — ', LineWidth’,lwidth, Color’,color)
if C(i,1) < D(1, 1)‘/ | C(i,1) < D(2,1)
text(ffeval(fun G,A(2,i),g,b(i),D(2,1) ,mu)/A(1,i),D(2,1),int2str (i)
,’Color','k','EdgeCulor’,color,’BackgroundColor’,bcolor,’
FontSize’ , fsize) % x1 —(A(2)*x2 — b)/A(1)
else
if C(i,1) > D(2,2)
text(—feval (fun ,G,A(2,i),g,b(i),D(2,1) ,mu)/A(1,i) ,D(2,1),
int2str (i), Color’, 'k’, EdgeColor’,color , 'BackgroundColor’
,bcolor , "FontSize ', fsize) % x1 = —(A(2)+x2 b)/A(1)
else
text (D(1,1) ,C(i,1),int2str (i), Color’ , "EdgeColor’,color ,’
BackgroundColor’,bcolor , 'FontSize ', fsize)
end
end
else
if A(1,i) > 0 % if A(1) > 0
£ill ([D(1,1) C(i,1) C(i,end) D(1,1)],[D(2,1) D(2,1) D(2,2) D(2,2)],
fcolor , 'FaceAlpha ', falpha)
else

D.5 Demos 161

180 £il1 ([C(i,1) D(1,2) D(1,2) C(i,end)],[D(2,1) D(2,1) D(2,2) D(2,2)],
fcolor , ’FaceAlpha’,falpha)

181 end

182 plot (C(i,:) ,x2, =, LineWidth’ ,lwidth, *Color’,color)

183 text (C(i,1),D(2,1),int2str (i), Color’, k', EdgeColor’,color ,’
BackgroundColor ' ,bcolor , "FontSize ', fsize)

184 end

185 end

186

187 function pathplot(x)

188 lwidth = 2; msize = 6;

189 | plot (x(1,1),x(2,1), 0b’, LineWidth ' ,lwidth, Markersize ' ,msize) % starting
position

190 | plot (x(1,:),x(2,:), LineWidth ' ,lwidth) % path

191 plot (x(1,end) ,x(2,end), ’og’, LineWidth’ ,lwidth, Markersize ', msize) % current

position

192

193 function f = objective (G,A,g,b,x,mu)

194 | f = 0.5xx'*Gxx + g kx;

195

196 | function ¢ = constraints (G,A,g,b,x,mu)

197 c = A’xx — b;

198

199 function 1 = lagrangian(G,A,g,b,x,mu)

200 |1 = objective (G,A,g,b,x,mu) — mu’'*constraints (G,A,g,b,x,mu);

quad_tank_demo.m

function quad-tank-demo (t,N,r ,F,dF,gam,w,pd)

The water
points. The

% QUAD.TANKDEMO Demonstration of the quadruple tank process.
% levels in tank 1 and 2 are controlled according to the s
heights of all four tanks are 50 cm. The workspace is saved as

% ’quadruple_tank_process.mat’ in current directory , so it is possible to
% run the animation again by calling quad_tank_animate without recomputing
% the setup .

% NOTE: A new call of quad_tank.demo will overwrite the saved workspace
10 | % "quadruple_tank_process.mat’. The file must be deleted manually.

W0 U W~
N

12 | % Call
13 |% quad-tank_demo (t,N,r,F,dF,gam,pd)

14 %

15 |% Input parameters

16 | % t : [min] Simulation time of tank process. 1 t <= 30. Default is
17 % 5. The time is plottet as seconds. The last discrete point is not
18 % animated/plottet .

19 % N : Discretization of t. 5 < N < 100, must be an integer. Default
20 % is 10. Number of variables is 6%«N and number of constraints is

21 % 24%N.

22 | % r : [cm] Set points of tank 1 and 2. 0 r(i) <= 50. Default is

23 | % [30 30].

24 | % F : [1/min] Max flow rates of pump 1 and 2. 0 F(i) <= 1000.

25 | % Default is [500 500].

26 | 7% dF : [1/min"2] Min/max change in flow rates of pump 1 and 2. 100 point
27 | % dF (i) <= 100. Default is [pumpl pump2] = [—50 50 —50 50].

28 | % gam : Fraction of flow from pump 1 and 2 going directly to tank 1 and
29 % 2 0 < gam (i) < 1. Default is [0.45 0.40].

30 | % w : etting priority of controlling water level in tank 1 and 2

31 % relative to one another. 1 < w(i) < 1000. Default is [1 1].

32 | % pd : 1: Using primal active set method, 2: Using dual active set

33 % method. Default is 2.

34 | % If input parameters are empty, then default values are used.

35

36 T S S S I I I S e S e e e e e Ve Ve P A A A Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Voo VS e Ve f e Ve fe A VeV Vs Ve Ve Ve Ve Ve Ve Ve VTSV VSV VSV VsV
37 [% Check nargin/nargout %

38 S6/6707076.

39 error (nargchk (7,8 ,nargin))

40 error (nargoutchk (0,0, nargout))

41 676707076

42 | % Check input %
43 676707076,

44 % Check t ...

45 | if isempty (t)

46 t = 5%60; % t = minssec

47 else

48 t = check-input (t,1,30,1)*60; % t = minssec
49 end

50 % Check N...
51 if isempty (N)
52 N = 10;

Matlab-code

105
106
107
108
109
110
111
112
113
114
115
116
117

118

119

120
121
122
123
124
125
126
127
128
129
130
131
132

133
134

else
if mod(N,1)
error ('N_omust_be_an_integer.)

end

N = check-input (N,5,100,1);
end
% Check r

if isempty (r)
r = [30 30];
else
r = check_input(r,0,50,2);
end
% Check F ...
if isempty (F)
F = [500 500];
else
F = check_input (F,0,1000,2);
end
% Check dF ...
if isempty (dF)
dF = [—50 50 —50 50];
else
dF = check-input (dF,—100,100,4);
end
% Check gam
if isempty (gam)
gam = [0.45 0.4];
else
gam = check_input (gam,0,1,2);
end
% Check w...
if isempty (w)

w o= [1 1];
else
w = check_input (w,1,1000,2);
end
% Check pd
if nargin < 8 | isempty (pd)
pd = 2;
else
if mod(pd,1)
error (’pdemust_be_an_integer.’)
end
pd = check-input (pd,1,2,1);
end
R IS TTSS TSI SIS SIS TSTTIS
% Startup info Y%
R TS T TSI SIS TSTTIS VI
if N >= 30
cont = ’'do’;
while “strcmp (lower (cont),’y’) & “strcmp (lower (cont),’'n’)
cont = input (’'N>=_.30,_.so_computational .time_will_be_several_minutes, -
do_you_want_to_continue?_y/no[y]:o’,’ s’);
if isempty (cont)
cont = 'y’
fprintf (’'\b"’)
disp (’y ")
end
%disp (7)
end
if cont == ’'n’
disp(’Simulation —terminated -by_user.’)
return
end
end

disp (['Ne=—’,int2str (N),’ ,_so_number—of_variables_is—’,int2str (6xN), —and_
number_of_constraints_is.’,int2str (24xN), . "])
disp (["t—=—",num2str (t,2),’ ,_gam_=_[’ ,num2str(gam,2) ,’],_we=_[" ,num2str (w,2) ,’
s

disp (['r—=-[’ ,num2str(r),’], _Fo=_[’ ,num2str (F,2),’],dF_.=_[" ,num2str (dF,2) ,"']. "

s

disp ('Computing tion ,_please_wait ...

PSS ST TS TSI STSS TSI STTIS ATST
% Setup demo %
SIS TSI) TSI TSS TSI TSI AT TS S SIS

7 VTSI
VTSI STTISS 0

X

TSV STTo

PSS TTTIS
Ul

g % gravity is small due to linearized system

% time span and number of sampling points

tspan = [0 t];%360]:

% weights matrices ...

Q= [w(1l) 0; 0 w(2)]; % weight matrix, used in Q-norm, setting priority of hl
and h2 relative to each other

Hw = le6; % weighing hl and h2 (= Hw) in relation to h3, h4, ul and u2 (= 1)

% pump 1...

D.5 Demos

163

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

213

215
216

Fminl = 0; Fmaxl = F(1); % minmax flows

dFminl dF (1) ; dFmaxl = dF(2); % minmax rate of change in flow
F10 = % initial value

% pump

Fmin2 i Fmax2 = F(2); % minmax flows

dFmin2 dF (3); dFmax2 = dF (4); % minmax rate of change in flow
F20 = 0; % initial wvalue

% valve 1

gaml = gam (1) ;

% valve 2

gam2 = gam(2);

% tank 1...

rl = r(1); % set point

hminl = 0; hmaxl = 50; % minmax heights

h10 = 0; % initial value

% tank 2

r2 = r(2); % set point

hmin2 = 0; hmax2 = 50; % minmax heights

h20 = 0; % initial value

% tank 3 .

hmin3 = 0; hmax3 = 50; % minmax heights

h30 = 0; % initial value

% tank 4...

hmind = ; hmax4 = 50; % minmax heights

h40 = initial wvalue

SITTTTE IS STTIe VTSI VSIS VSISV VSTV TS TS IS Vs Vs Vs Vs Ve V6TV
% Initiate variables %

77077 o
VTSI STSIT TSN

TITTSIVS
% pumps

umin = [Fminl Fmin2] ’;
umax = [Fmaxl Fmax2] ’;
dumin = [dFminl dFmin2] ’;
dumax [dFmax1 dFmax2] ’;
% valves

gam = [gaml gam2];

% tanks

bmin [hminl hmin2 hmin3 hmin4] ’;
bmax = [hmaxl hmax2 hmax3 hmax4] ’;
% set points
r = [rl r2]";
initial values ...
x0 = [h10 h20 h30 h40] ’;
%u0 = [F10 F20] ;
uOminusl = [F10 F20] °;
Q = Hw*Q; % weight matrix, used in Q-norm, settin

relative to each other

dt = (tspan(2) — tspan(1))/N;
nx = length (x0);
nu = length (uOminusl) ;
al = 1.2272;
a2 = 1.2272;
a3 = 1.2272;
ad = 1.2272;
Al = 380.1327;
A2 = 380.1327;
A3 = 380.1327;
A4 = 380.1327;
Ac = 2xgx[—al/Al 0 a3/Al 0;
0 —a2/A2 0 ad/A2;
0 0 —a3/A3 0;
00 0 —ad/Ad];
Bc = [gaml/Al 0;

0 gam2/A2;
0 (1 — gam2)/A3;
(1 — gaml)/A4 0];

Cec = [1 00 0;

AT

20

7SV

1070707070707 C
VTSI T VSV

g priority of

010 0];

% %

% % build the object function Hessian and gradient:

% %

Qx = dt*Cc’*QxCc; % should this
elements in the diogonal??

Qx = add2mat(Qx,eye (2) ,3,3, rep’); % => ASSURES THAT
DEFINITE

Qu = eye(nu); % only purpose is to
and to remain positive definite

%Qu zeros (nu) ;

gx = —dt*xCc’ *Qxr; % qk in text

have

HESSIAN

make

hl and h2

non—zero

IS POSITIVE

dimensions

fit

164 Matlab-code

217 | qu = zeros (2,1); % only purpose is to make
dimensions fit

218

219 |H = zeros (N*(nx+nu)); Hessian

220 |g = zeros (N#(nx+nu) ,1) ; % gradient

221 for i = 1:N

222 Yo if i > floor (N/2)

223 % r(2) = 20

224 % qx = —dt*Cc’ *Qxr

225 % end

226 j = 14(i—1)*(nutnx);

227 H = add2mat (H,Qu,j.j, rep’);

228 g add2mat (g, qu,j,1, rep’);

229 H = add2mat (H,Qx, j+nu, j4nu, 'rep’) ;

230 g = add2mat(g,qx, j+nu,l, 'rep’);

231 end

232

233 A HHHHHHHHHH A et HHH A

234 Build A_c al constraint matrix), upper and lower bounds for

235 general constraints (bl and bu) and upper and lower bounds for

236 % % variables (u and 1)

237 % %

238

239 | Ix = eye(nx);

240 Iu = eye(nu);

241 A Ix + dt=Ac;

242 = dt=*Bc;

243 Ax0 = Ax*x0;

244 zerox = zeros(nx,1);

245 | zerou = zeros (nu,l) ;

246

247 |n = N (nx+4nu); number of variables

248 |m = Nx(nx+nu); number of general constraints

249 | Acc = zeros (m,n); new A matrix (carsten) eneral constraitns are rows
we will transpose it later)

250 1 = zeros(n,1); % lower bounds for variables

251 u = zeros(n,1); % upper bounds for variables

252 bl = zeros(m,1); % lower bounds for general constraints

253 | bu = zeros(m,1); % upper bounds for general constraints

254

255 |row = 1;

256 col = 1;

257 | A.c = add2mat(A_c,B,row,col, 'rep’);

258 | A.c = add2mat(A_c,—Ix,row,col+4nu, 'rep’);

259 | b1 add2mat (bl,—Ax0,row,1, 'rep’);

260 bu = add2mat (bu, AxO0,row,1, 'rep’);
261 for i =1:N—-1

262 row = 1+4ixnx; % start row for new k
263 col = 34(i—1)*(nx+nu); % start column for new k
264 A_c = add2mat(A_c,A,row,col, 'rep’);

265 A_c = add2mat(A_c,B,row, coldnx, 'rep’);

266 A_c = add2mat(A_c,—Ix ,row, col4nx+nu, 'rep’);
267 bl = add2mat(bl, zerox ,row,l, rep’):

268 bu = add2mat(bu, zerox ,row,1l, rep’);

269 end

270

271 | row = Nsnx+41;

272 A_c = add2mat (A_c,Iu,row,1, rep’);

273 bl = add2mat (bl ,dumin+uOminusl,row,1, "rep’);

274 bu = add2mat (bu,dumax—uOminusl,row,1, 'rep’);

275 for i =1:N—-1

276 row row+nu ;

277 col = 1+4(i)*(nutnx);

278

279 A_c = add2mat(A_c, Iu,row,col, ’rep’);

280 A_c = add2mat(A_c,—Iu,row,col —(nx+nu), ’rep’);
281 bl = add2mat (bl ,dumin,row,1, rep’);

282 bu = add2mat (bu,dumax,row,1, "rep’);

283 end

284

285 for i =0:N—1

286 row = 1+i(nx+nu)

287 1 = add2mat (1 ,umin,row,1, rep’);

288 u = add2mat (u,umax,row,1, rep’):

289 1 add2mat (1, bmin, row4nu,1, 'rep) ;

290 u = add2mat (u,bmax, row+nu,1, 'rep’);

291 end

292

203 | if pd 1

294 x LP_solver(l,u,A_c,bl bu);

295 else

296 x = [];

297 end

208 | [x,info] = QP_solver(H,g,1,u,A_c,bl, bu,x);

299 disp (’Performance ~information_of_active_set_method: ’)
300 info

301

D.5 Demos 165

302 | %

303 | %])10!:— of quad—tank process
304 | Ui dE

305 output X

306 % making t

307 t = tspan(1l):dt:tspan(2);

308 % making h F df

309 | u0 = output (1:2);

310 | x1 = output (3:6);

311 | nul0 = BxuO—Ix+x1+4+Ax0;
312 | nul0 = nul0’+nul0;
313 | x-k = x1;

314 | h = x_k(1:2);

315 heights (:,1)=x0;

316 heights (:,2)=x_k;

317 flow (:,1) = uOminusl;
318 | flow (:,2) = u0;

319 for k = 1:N—1

320 ks = 34 (k—1)=*(nx+nu) ;

321 u-k = output (ks+4:ks+5);

322 x-k-plus = output (ks+6:ks+9);
323

324 nul_k = Asxx_k4+Bsu_k—Ix*x_k_plus;
325 nul_k = nul_k ’*nul_k;

326

327 x_-k = x_k_plus;

328 h x_k (1:2)

329 heights (: ,k+2)=x_k;

330 flow (:,k+2) = u_k;

331 end

332 [dF = [diff (flow (1,:)); diff(flow(2,:))];
333 | % plot

334 fsize = 10;

335 | figure (1), clf

336 | subplot (4,2,1)

337 plot (t,heights (1,:), ' —0")

338 hold on

339 | plot (t,r(1)*ones(1,N+1), r")

340 | plot (t,hmaxlxones (1,N+1), k')

341 | xlabel(’'t_[s]’, FontSize’, fsize), ylabel(’'h.1_[cm]’,’ FontSize ', fsize)%, legend
("h-1’,’r_.17)

342 axis ([tspan (1) tspan(2) 0 50])

343 | subplot(4,2,2)

344 | plot (t,heights (2,:), —0")

345 hold on

346 | plot (t,r (2)*ones (1 ,N+1), r")

347 | plot (t, hmaxZ*ones(l,N+1),’k’)

348 | xlabel (° [s]' ‘FontSize ', fsize), ylabel (*h-2-[em]’, FontSize’, fsize)%, legend
(h_,' 27)

349 axls([tspan(l) tspan(2) 0 50])

350 | subplot(4,2,3)

351 | plot (t,heights (3,:), —o’

352 | xlabel(’t—-[s]’, FontSize ,fsize), ylabel(’h_3_[cm]’, FontSize ,fsize)
353 hold on

354 | plot (t,hmax3%ones (1,N+1), k")

355 | axis ([tspan (1) tspan(2) 0 50])

356 | subplot (4,2 ,4)

357 plot (t, helghts(4 1), ’—o0")

358 xlabel ("t_[s] ', 'FontS]ze’,fsize), ylabel ('h_4_[cm]’, FontSize ,fsize)
359 hold on

360 | plot (t,hmax4%ones (1,N+1),

361 | axis ([tspan (1) tspan(2) 0 50])

362 | subplot(4,2,5)

363 | plot (t(1:end)—dt, flow (1,:), —o’)

364 | xlabel(’'t—[s]’, FontSize ,fsize), ylabel('F_.l1_[cm"3/s]’, FontSize ', fsize)
365 | axis ([t(1)—dt tspan(2) 0 Fmaxl])

366 | subplot(4,2,6)

367 plot (t(1l:end)—dt, flow (2,:), —o)
368 xlabel ('t_[s] ', FontSize 6 fsize), ylabel (’F_.2_[cm 3/s]’, FontSize ', fsize)
369 Z%stairs (flow (2,:))

370 axis ([t(1)—dt tspan(2) 0 Fmax2])
371 | subplot (4,2,7)

372 | plot (t (1:end—1)—dt ,dF(1,:), —o")
373 | xlabel ("t—[s]’, FontSize' ', fsize), ylabel(’\DeltacF_l_[cm 3/s"°2]’, FontSize
fsize)

374 | axis ([t(1)=dt tspan(2) dFminl dFmax1])
375 | subplot (4,2,

376 plot (t(l:end—1)—dt,dF(2,:),’—0")
377 xlabel (’'t_[s]’, FontSize ', fsize), ylabel(’\Delta_.F_2_[cm"3/s 2], FontSize’,
fsize)

378 axis ([t(1)—dt tspan(2) dFmin2 dFmax2])
379 hold off

380 TSV
381 % An
382 SISV
383 save quadruple-tank_-process
384 quad-tank_animate

TSI IS IIIISI SIS

0/07/0,/07 07070/ 0070/ 00/ 0 0/ AT TSI ATITIS
TSI T TSI TSI TS T TSIV AT T T TSI TTTTTTTTTS

166 Matlab-code

385

386 Auxilery function

387 | ¢ SIS

388 function v = check_input(v,1,u,n)

389 v = v(:)

390 |m = length (v);

391 if m "= n

392 error ([num2str (inputname (1)), —must_be_a_vector_of_length_’,int2str (n)

393 end

394 for i = 1:n

395 if ischar(v(i)) | “isreal(v(i)) | isinf(v(i)) | isnan(v(i)) | v(i) < 1 | u
< v(i)

396 error ([num2str (inputname (1)), (' ,int2str (i), ’)_must_be_in_range.’,

num?2str (1) ,’ <=_value <=_’ ,num2str (u),’ .])
397 end
398 end

quad_tank_animate.m

1 # HHHHHH A HHHHAHHHHH 4 -
2 animation of quad—tank process

3 Yo HHHHHHHHHHHHHHHHHHHHHHHHHHH A 4 -
4 |load(’quadruple_tank_process’)

5 output = x;

6 % making t .

7 |t = tspan(1):dt:tspan(2);

8 |% making h, F, df...

9 | u0 = output (1:2);

10 x1 = output (3:6) ;

11 nul0 = B*u0—Ix*x1+Ax0;

12 nul0 = nul0’+*nul0;

13 | x-k = x1;

14 |h = x_k(1:2);

15 heights (:,1)=x0;

16 | heights (:,2)=x_k;

17 = uOminusl;

18 = ul;

19 :N—1

20 34 (k—1) % (nx4nu) ;

21 output (ks+4:ks+5);

22 lus = output (ks+6:ks+9);

23

24 — Axx_k4Bsu_k—Ix*x_k_plus;

25 = nul.k’sxnul_k;

26

27 x-k = x_-k_-plus;

28 h = x_k(1:2)

29 heights (:,k+2)=x_k;

30 flow (: ,k+2) = u_k;

31 end

32 |dF = [diff (flow (1,:)); diff(flow(2,:))];

33 | for i = 1:length (t)—1

34 figure (2)

35 quad_tank_plot (t(i),heights (:,i) ,bmax,r,flow (:,i) ,dF(:,i),gam)
36 M(i) = getframe;

37 end

38

39 | % make movie for presentation .

40 | reply = input (’Do_you_want_to_make_4_tank_-demo_movie.aviefile?_y/no[y]:e’, ’s’)
41 | if isempty (reply) | reply == 'y~

42 fps = input (’Specify _fps_in_avi_file?_[15]:_");
43 if isempty (fps)

44 fps = 15;

45 end

46 disp (’Making_avi_file ,_please_wait ... ')

a7 movie2avi(M, '4_tank_demo_movie.avi’, fps’,fps)
48 disp(’Finished_omaking_avi_.file ... ")

49 end

SQP_demo.m

D.5 Demos

167

N R N

30
31
32
33
34

35

37
38
39
40
41
42

44
45
46
47
48
49
50
51
52

54
55
56
57

60
61
62
63
64
65

67
68

70
71
72
73
74

T
78

80
81
82
83

function SQP_demo
SQP.DEMO Interactive demonstration of the SQP method. The example problem
is the following nonlinear program :
min f(x) = x174 4 x27°4
9 s.t. x2 >= xl1 x1 + 1
x2 >= x1 4x1 + 6
% x2 —x1 + 3x1 + 2
%
% Call
% SQP_demo ()
%
% By : Carsten V lIcker s961
% Esben Lundsager Hansen, 22022.
Subject Numerical Methods for Sequential Quadratic Optimization .
% M. Sc IMM, DTU, DK—-2800 Lyngby
Supervisor John Bagterp Jgrgensen , tant Professor
% Per Grove Thomsen Professor
Y% Date : 07. June 2007
close all
it_max = 1000;
method = 1;
tol = le—8;0pts = [tol it-max method];
pi0 = [0 0 0]’; % because we have three nonlinear constraints

plot-scene (@costfun) ;

disp(’Left_click_on_plot_to_select_starting_point_or_press_any_key_enter—

starting.point_in_console.’)
[u,v,but] = ginput (1);
if but 1

x0 =
else

[u v];

isempty (x) | length(x) "= 2 |
isreal (x)) | ischar (x)
x0 = input (’Enter—starting_point_[xlox2]:.’);

sum (isnan (x))

end
x0 = x0°;
pathplot (x0
fsize = 12;
fsize_.small =
fo =
g0
c =
A =

10;
costfun (x0) ;
modfun (x0) ;
costsens (x0);
modsens (x0) ;
W = eye(length(x0));
w-non = (1l:1:length(g0));
plotNewtonStep = 1;
stop = O0;
tol = opts (1);
max_itr = opts (2);
itr = 0;
while “stop
disp (’Press _any._key_to_continue...)
pause
X(:,itr+1) = x0;
if plotNewtonStep
W = hessian (x0,pi0);
else
hold on
pathplot (X)
end
itr = itr+1;
if (itr > max_itr)
stop = 1;
end

[delta-x , mu,dummy] =

if (abs(c’xdelta.x) 4+ abs(mu'*g0)) < tol
disp(’solution_has_been_found ')

stop = 1;
else
if itr == 1
sigma = abs(mu) ;
else
for i=1:length (mu)

sigma (i) = max(abs(mu(i)),
end

end

[alpha ,x,f,g] =
delta_x ,sigma,le—4);

| sum(isinf(x)) | sum(~

dual_active-set-method (W,c,A,—g0,w-non,[] ,opts,0);

0.5 (sigma(i)+abs(mu(i))));

line_search_algorithm (@modfun, @Qcostfun , f0 ,g0,c,x0,

168

Matlab-code

84
85
86
87
88
89
90

92
93

95
96

98

99
100
101
102
103
104
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

124
125
126
127
128
129
130
131

132
133
134
135
136
137
138
139

141
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

pii = pi0 + alphas(mu—pi0);
% here the newton step is plotted
if plotNewtonStep
t_-span = linspace(—1,3,100) ;
for i =1l:length(t_span)
x-hat = x0+t-span(i)xdelta_x;
pi-hat = piO+t-span (i) *(mu-pi0);
nabla_-fx = costsens(x-hat);
nabla-hx = modsens(x-hat);
y-val(:,i) = nabla_-fx — nabla_hx=pi-hat ;
end

subplot (1,3,1)

hold off

plot_scene (@costfun);
X_temp = X;

X_temp %0+delt:

x-fin = delta_-x ;

pathplot (X_temp)

title ({[x-{old}e=—(’,num2str (x0(1)), , ,num2str(x0(2)),’) T];[x-
{new}o=c(’,num2str (x-fin (1)), ,’ ,num2str (x-fin (2)),) T]},
FontSize ', fsize_small);

xlabel ('x_-1’ , 'FontSize 6 fsize), ylabel(’x_2’, FontSize , fsize)

subplot (1,3,2)

hold off

plot (t_span ,y_val(1,:));

nabla_fx = costsens (x0);

nabla_hx = modsens(x0) ;

startPos = nabla_-fx — nabla_hx#*piO;

startPos.y = startPos(1);

startPos_.x = 0;

endPos_x = 1;

endPos_y = 0;

hold on

plot ([startPos_x endPos_x],[startPos_y endPos_y], ' LineWidth ' ,2)
path

plot ([startPos-x alpha],[startPos.y (1—alpha)sstartPos.y],’
LineWidth ' ,2, color’,’r’) % path

plot ([t-span (1) t-span(end)],[0 0], —’) % y=0

pi-fin = piO4alphax(mu—pi0);

nabla_fx_fin = costsens(x_fin);

nabla_hx_fin = modsens(x_fin);

endvalue = nabla_fx_fin — nabla_hx_fin*pi_fin;

title ({['F(x-1)-{old}e=—’,num2str (startPos-y)];[F(x-1)-{new}_=’
num?2str (endvalue (1))]}, 'FontSize ', fsize_small);

xlabel (’\alpha’ , FontSize ,fsize), ylabel('F_.1’, FontSize’,fsize)

subplot (1,3 ,3)

hold off

plot (t_span ,y_val(2,:));

startPos_.y = startPos(2);

hold on

plot ([startPos_x endPos_x] ,[startPos_y endPos_y], LineWidth’ ,2) %
path

plot ([startPos-x alpha],[startPos.y (1—alpha)sstartPos.y],’

LineWidth '’ ,2, color’,’r’) % path
plot ([t-span (1) t-span(end)],[0 0], —’) % y=0
title ({['F(x-2)-{old}o=—’,num2str (startPos-y)];['F(x-2)_{new}
num2str (endvalue(2))]}, FontSize ', fsize_small);
xlabel (’\alpha’ ,’FontSize’ 6 fsize), ylabel(’F_.2’, FontSize’ ,h fsize)
end
nabla_-L0 = c—Axpii;
¢ = costsens (x);
A = modsens(x);
nabla_L = c—Axpii;
s = x — x0;
y = nabla_L — nabla.LO;
sy = s’xy;

Ws = s’ «Wiks;
if (sy >= 0.2%sWs)

theta = 1;
else
theta = (0.8%sWs) /(sWs—sy) ;
end
Ws = Wks
sW = s’xW;
r = thetaxy+(l—theta)*Ws;
W = W—(Ws*sW) /sWs+(rx*r’) /(s *1);
x0 = x;

D.5 Demos 169

163 pi0 = pii;

164 f0 = f;

165 g0 = g;

166 end

167 end

168

169 function pathplot(x)

170 lwidth = 2; msize = 6; fsize = 1

2;
171 plot (x(1,1) ,x(2,1),’0b’, LineWidth ' ,lwidth , ’Markersize ' ,msize) % starting
position
172 | plot (x(1,:) ,x(2,:), LineWidth’ ,lwidth) % path
173 | plot (x(1,:) ,x(2,:), ’0ob’, LineWidth’ ,lwidth, 'Markersize ' ,msize) % path
174 | plot (x(1,end) ,x(2,end), og’, LineWidth ' ,lwidth, Markersize ', msize) % current
position

175 | title (['x—==(' ,num2str(x(l,end) '), —,-’ ,num2str(x(2,end)),’) '], FontSize , fsize

176

177

178

179 | function fx = costfun (x)

180 % The function to be minimized

181 | fx = x (1) #x(1)#x (1) #x(1)4x(2)*x(2)*x(2)*x(2); % : cost = (X1.°4 4 X2.°4);
182

183 function dx = costsens(x)

184 |% The gradient of the cost function

185 dx =[4xx(1)*x(1)*x(1); 4xx(2)=*x(2)*x(2)]; % gradient of (XI1 1 + X2.°4);
186

187

188 function fx = modfun(x)

189 % The constraints

190 | c1 —x (1) 24x (1)+x(2) —1; x1 + 1

191 | c2 = —x (1) 2+44xx(1)+x(2) —6; 4x1 + 6

192 |3 = —x(1).7243%x(1)—x(2)+2; b o3xl 4 2
193 | fx = [cl c2 c3];

194

195 function dfx = modsens(x)

196 % gradient of the constraints

197

198 | del = [—2+x(1)+1 1]°; % x2 x 2 — x1 + 1

199 | dc2 = [—2+x(1)4+4 1]°; % x2 >= x1° 1x1 + 6

200 |de3 = [—2%x(1)43 —1]7; % x2 <= 1 3x1 4+ 2

201 | dfx = [dcl dc2 de3];

202

203 | function H = hessian (x,mu)

204

205 | HessCtrl = [—2 0; 0 0]; % x2 x1."2 — x1 + 1
206 | HessCtr2 = [—2 0; 0 0]; % x2 >= x1°2 — 4x1 + 6
207 | HessCtr3 = [—2 0; 0 0]; % x2 <= —x1°2 + 3x1 + 2
208

209 | HessCost = [12xx(1)*x(1) 0;

210 0 12%x(2)*x(2)]; % : cost = (X1.°4 + X2.°4);

211

212 |H = HessCost—(mu(1)+HessCtrl)—(mu(2)*HessCtr2)—(mu(3)+HessCtr3) ;
213

214 | function plot-scene (costfun , varargin)

215 | fcolor = [.4 .4 .4]; falpha = .4; % color and alpha values of faces marking
unfeasable region

216 plot_left = —5;

217 plot_right = 5;

218 plot_buttom = —5;

219 plot_top = 5;

220 plotdetails = 30;

221 linspace-details = 100;

222 contours = 10;

223 ctrl =
224 ctr2
225 ctr3d
226 ctrd
227 ctrb
228 ST
229 % comns
230 | YITTT T

E-E=-R

A AAAAAA T TG
VSISTST TSIV 0 67

ints defined for

07070707 070707 07 0707 0707007070
STV JSTSISISISe

231 | x-ctr linspace (plot-left ,plot_right ,linspace-details);

232 | y_ctrl = x_ctr."2—x_ctr-1; ctrl_geq = 1; % x2 x1 x1 + 1

233 y_ctr2 = x_ctr. 2 — 4xx_ctr + 6; ctr2_geq = 1; x1 4x1 + 6

234 | y_ctr3 = sin(x-ctr) + 3; ctr3_geq = O0; sin (x1) + 3

235 | y_ctrd = cos(x-ctr) + 2; ctrd_geq = 1; cos (x1) + 2

236

237 | y_ctr5 —x_ctr. 243%x_ctr4+2; ctr5_geq = O0; % x2 <= —x1°2 + 3x1 + 2

238 | WA IS IT I AT IS SIIT SIS

239 |% plot the cost function

240 | WA IS IS TSI IT I TSI SIITIITSe

241 | delta dist (plot-left ,plot_right)/plotdetails;

242 | [X1,X2] = meshgrid (plot_left:delta:plot-right); %create a matrix of (X,Y) from
vector

243 | for i = 1:length (X1)

244 for j = l:length (X2)

170 Matlab-code

245 cost (i,j) = feval(costfun , [X1(i,j) X2(i,j)]);:;%. varargin{:}):
246 end
247
248 ure 1)
249 h(X1,X2, cost)
250 7 gure
251 contour (X1,X2,cost ,contours)
252 hold on
253
254 o O 00 0070
255
256 T T T T T T T T T T T T T T T T TSI T T TTT
257 buttom-_final IB
258 | top-final =][];
259 [top-final , buttom_final] = plot_ctr (x_-ctr, y_ctrl, ctrl_geq, ctrl , plot_left ,
plot_right , plot_buttom , plot_top, top-final, buttom_final, fcolor , falpha
)
260 [top-final , buttom_final] = plot_ctr (x_-ctr, y_ctr2, ctr2_geq, ctr2 ,plot_left ,
plot_right , plot_-buttom , plot_-top, top-final, buttom_final, fcolor , falpha
261 [top-final , buttom-final] = plot-ctr(x-ctr, y-ctr3, ctr3_-geq, ctr3 ,plot-left ,
plot_right , plot_-buttom , plot-top, top-final, buttom_final, fcolor , falpha
262 [top-final , buttom_final] = plot_ctr (x_-ctr, y_ctr4d, ctrd_geq, ctrd ,plot_left ,
plot_right , plot_buttom , plot_top, top-final, buttom_final, fcolor , falpha
)
263
264 [top-final , buttom_final] = plot_ctr (x_-ctr, y_ctr5, ctr5_.geq, ctr5 ,plot_left ,
plot_right , plot_-buttom , plot_-top, top-final, buttom-_final, fcolor , falpha
)3
265
266 | if “isempty (top-final) && isempty (buttom-final)
267 fill ([plot-left x-ctr plot-right],[plot-buttom top-final plot_-buttom],
fcolor , FaceAlpha ', falpha)
268 end
269 if Tisempty (buttom_final) && isempty (top-final)
270 fill ([plot_left x_ctr plot_right] ,[plot_top buttom_final plot_top], fcolor ,’
FaceAlpha ’ ,falpha)
271 end
272 if Tisempty (buttom_final) && Tisempty (top-final)
273 temp = top-final;
274 top-final max(top-final , buttom-final);
275 fill ([x-ctr],[top-final], fcolor , FaceAlpha ', falpha)
276 fill ([plot-left x_ctr plot_right],[plot-buttom temp plot_buttom], fcolor ,’
FaceAlpha ' ,falpha)
277 end
278
279 function [top_fin , buttom_fin] = plot_ctr (x_span, y_span, geq, plott, left ,
right , buttom, top, top-fin, buttom_fin, color, alpha)
280 | if plott
281 plot (x-span ,y-span, 'bla’)
282 if geq
283 if isempty (top-fin) % first call
284 top-fin = y.span;
285 else
286 top-fin = max(top-fin ,y-span);
287 end
288 else
289 if isempty (buttom_fin)
290 buttom_fin = y_span;
291 else
292 buttom_fin = min(buttom_fin ,y.span);
293 end
294 end
295 end

D.6 Auxiliary Functions 171

D.6 Auxiliary Functions

add2mat.m

1 % ADD2MAT Add/subtract/replace elements of two matrices of different sizes
2 |7
3 % Syntax :
4 Yo NEWMATRIX ADD2MAT (MATRIX1, MATRIX2, INITATROW, INITATCOLUMN, ADDSTYLE)
5 | %
6 % Description :
7 % Addition or subtraction between or replacement of elements in MATRIX1
8 % by MATRIX2. MATRIX1 and MATRIX2 can be of different size as long as
9 % MATRIX2 fits inside MATRIX1 with respect to the initial point. MATRIX2
10 % ope es on MATRIX1 starting from the initial point

11 Y% (INITATROW, INITATCOLUMN) in MATRIX1.

12 Y%

13 Y% ADDSTYLE ’add ’: Building NEWMATRIX by adding MATRIX2 to elements in

14 Y% MATRIX1

15 Y% ADDSTYLE ’sub ’: Building NEWMATRIX by subtracting MATRIX2 from elements
16 % in MATRIX1.

17 % ADDSTYLE = ’'mul’: Building NEWMATRIX by elementwise multiplication of

MATRIX2

18 % and elements in MATRIXI1.

19 % ADDSTYLE = ’div ’: Building NEWMATRIX by elementwise division of MATRIX2

20 Y% and elements in MATRIX1.

21 Y% ADDSTYLE ’rep ’: Building NEWMATRIX by replacing elements in MATRIX1 with

22 Y% MATRIX2

23 Y

24 |% Example:

25 % >> A [T 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]

26 | %

27 % A =

28 | %

29 % 1 2 3 4

30 % 5 6 7 8

31 Y% 9 10 11 12

32 Y% 13 14 15 16

33 Y%

34 o >> b [1 1 1]

35 Y

36 Y% b

37 %

38 % 1 1 1

39 %

40 | % >> B = diag(b)

41 %

42 Y% B

43 Y%

44 Y% 1 0 0

45 Y% 0 1 0

46 Y% 0 0 1

47 %

48 | % >> C = add2mat (A,B,: rep ')

49 | %

50 % C =

51 %

52 % 1 2 3 4

53 Y 5 1 0 0

54 Y 9 0 1 0

55 Y 13 0 0 1

56 Y

57 % See also DIAG2MAT, DIAG, CAT

58

59 %

60 % ADD2MAT Version 3.0

61 % Made by Carsten V(oe)lcker , <s961572@student .dtu.dk>

62 % in MATLAB Version 6.5 Release 13

63 Yo

64

65 function matrix3 = add2mat(matrixl ,matrix2 ,initm ,initn ,addstyle)

66

67 if nargin < 5

68 error ('Not_enough_input_arguments.’)

69 end

70 | if “isnumeric(matrix1)

71 error ('MATRIXl_must_be—a_matrix .)

72 end

73 | if “isnumeric(matrix2)

74 error ('MATRIX2_must_be_a_matrix . ')

75 end

76 if Tisnumeric(initm) || length (initm) "= 1

77 error ('INITATROW_must_be_an_integer . ’)

172

Matlab-code

78
79
80
81
82
83
84
85
86
87
88

89

91
92

93
94
95
96

97

98
99
100
101

102
103
104

105
106
107

108
109
110

111
112
113
114
115

end

if “isnumeric(initn) || length (initn) "= 1
error ("INITATCOLUMN.must._be_an_integer . ')

end

if T“isstr (addstyle)
error (’ADDSTYLE_not._defined .)

end
[ml,n1] = size (matrix1);
[m2,n2] = size (matrix2);
if m2 > ml || n2 > nl
error (['MATRIX2_with_dimension(s)—’,int2str (m2), x’,int2str (n2), —does—not_
fit_inside _MATRIXl_with_dimension(s).’ ...
Jint2str (ml), x’,int2str (nl),’ .])
end
if initm > ml || initn > nl
error (["Initial_point_(’,int2str (initm),’,’,int2str (initn),’)_exceeds._
dimension(s)_’,int2str (ml), ’x’,int2str (nl) ,...
" _of _OMATRIX1. '])
end
if initm+4+m2—1 > ml || initn4n2—1 > nl
error (["With—initial_point—(’,int2str (initm),’,’,int2str (initn),’),—
dimension(s)—’,int2str (m2), x’,int2str (n2) ,...
’_of _MATRIX2_exceeds_dimension(s)—’,int2str (ml), x’,int2str (nl), —
of _(MATRIX1. '])
end

switch addstyle
case ’add’

matrixl (initm:initm+4m2—1,initn:initn4n2—1) = matrix1l (initm:initm+m2—1,
initn:initn4n2—1)4matrix2 ;
matrix3 = matrix1 ;
case ’'sub’
matrixl (initm :initm+4m2—1,initn:initn4n2—1) = matrix1l (initm :initm+4m2—1,
initn:initn+n2—1)—matrix2 ;
matrix3 = matrix1 ;
case ’‘mul’
matrixl (initm:initm+m2—1,initn:initn4n2—1) = matrix1l (initm:initm+m2—1,
initn:initn4n2—1).*matrix2 ;
matrix3 = matrix1l ;
case ’div’
matrixl (initm:initm+4m2—1,initn:initn4n2—1) = matrix1l (initm:initm+m2—1,
initn:initn+n2—1)./matrix2 ;
matrix3 = matrix1 ;
case ’'rep’
matrixl (initm:initm+m2—1,initn:initn+n2—1) = matrix2 ;
matrix3 = matrix1 ;

end

line_search algorithm.m

-

© 0O U AW

function [alpha,x,f,g] = line-search-algorithm (modfun,costfun ,f0,g0,c,x0,
delta_x ,sigma,cl,varargin)

LINE_.SEARCH_ALGORITHM implemented according to Powells 11—Penalty

function
By Carsten V olcker 8961572 & Esben Lundsager Hansen s022022
9 Subject Numerical Methods for Sequential Quadratic Optimization
% Master I'hesis IMM DTT DK—2800 Lyngby
% Supervisor John Bagterp Jorgensen Assistant Professor & Per Grove
F'homsen Professor
Date 08. february 2007.
n0 = sigma’*abs(g0);
TO = f0+4no0;
dTO0 = c’*delta-x—n0;
alphal = 1;%alpha_val:%1;
x = xO+talphalsdelta_x ;
f = feval (costfun , x, varargin{:});
g = feval(modfun, x, varargin{:});
T1 = f4sigma’'*abs(g);
if Tl <= TO0+cl*dTO
alpha = alphal;
return
end
alpha_min = dTO0/ (2% (T0+dT0-T1));
alpha2 = max(0.1xalphal, alpha_min); % skal 0.1 vere cl i stedet for?7?

D.6 Auxiliary Functions

173

alphal/(alpha2xalpha2)][T1-dTOxalphal—T0;

—1/(alpha2+alpha2);—alpha?2/(
T2-dT0x*

30 x = x0+alpha2xdelta_x;
31 f = feval(costfun , x, varargin{:});
32 g = feval (modfun, x, varargin{:});
33 | T2 = f+4sigma’*abs(g);
34
35 if T2 <= TO0+cl*xalpha2*dTO0
36 alpha = alpha2;
37 return
38 end
39
40 stop = 0;
41 max-itr 100;
42 | itr 0;
43 while “stop
44 itr = itr+1;
45 if itr > max-_itr
46 disp(’line-search_(itr_>_mat_itr)’);
a7 stop = 1;
48 end
49
50 ab = 1/(alphal—alpha2)x[1/(alphalxalphal)
alphalsxalphal)
alpha2—TO0];
51 a = ab(1);
52 b = ab(2);
53 if (abs(a)<eps)
54 alpha_.min = —dTO0/b;
55 else
56 alpha.min = (—b+(sqrt (bxb—3%axdT0)))/3%a;
57 end
58
59 if(alpha.min <= 0.lxalpha2)
60 alpha = 0.l*xalpha2;
61 else
62 if (alpha.min >= 0.5%alpha2)
63 alpha = 0.5xalpha2;
64 else
65 alpha = alpha_min;
66 end
67 end
68
69 x = x0+4alphaxdelta-x;
70 f = feval(costfun , x, varargin{:});
71 g = feval (modfun, x, varargin{:});
72 T.alpha = f4sigma’'*abs(g);
73
74 if T_alpha <= TO+clxalphaxdT0
75 return
76 end
T alphal = alpha2;
78 alpha2 = alpha;
79 T1 = T2;
80 T2 = T-alpha;
81 end

174 Matlab-code

	Abstract
	Dansk Resumé
	1 Introduction
	1.1 Research Objective
	1.2 Thesis Structure

	2 Equality Constrained Quadratic Programming
	2.1 Range Space Procedure
	2.2 Null Space Procedure
	2.3 Computational Cost of the Range and the Null Space Procedures
	2.3.1 Computational Cost of the Range Space Procedure
	2.3.2 Computational Cost of the Null Space Procedure
	2.3.3 Comparing Computational Costs

	3 Updating Procedures for Matrix Factorization
	3.1 Givens rotations and Givens reflections
	3.2 Updating the QR Factorization
	3.3 Updating the Cholesky factorization

	4 Active Set Methods
	4.1 Primal Active Set Method
	4.1.1 Survey
	4.1.2 Improving Direction and Step Length
	4.1.3 Appending and Removing a Constraint

	4.2 Primal active set method by example
	4.3 Dual active set method
	4.3.1 Survey
	4.3.2 Improving Direction and Step Length
	4.3.3 Linear Dependency
	4.3.4 Starting Guess
	4.3.5 In summary
	4.3.6 Termination

	4.4 Dual active set method by example

	5 Test and Refinements
	5.1 Computational Cost of the Range and the Null Space Procedures with Update
	5.2 Fixed and Free Variables
	5.3 Corresponding Constraints
	5.4 Distinguishing Between Bounds and General Constraints

	6 Nonlinear Programming
	6.1 Sequential Quadratic Programming
	6.2 SQP by example

	7 Conclusion
	7.1 Future Work

	Bibliography
	A Quadruple Tank Process
	B QP Solver Interface
	C Implementation
	C.1 Equality Constrained QP's
	C.2 Inequality Constrained QP's
	C.3 Nonlinear Programming
	C.4 Updating the Matrix Factorizations
	C.5 Demos
	C.6 Auxiliary Functions

	D Matlab-code
	D.1 Equality Constrained QP's
	D.2 Inequality Constrained QP's
	D.3 Nonlinear Programming
	D.4 Updating the Matrix Factorizations
	D.5 Demos
	D.6 Auxiliary Functions

