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Abstract

This thesis describes the methods used to analyse and model the cutting of pig
carcasses into the products: back, belly, spine and ribs.

Automatic pre-processing methods to segment out the individual products from
raw DICOM images are developed. A bit resolution reduction method is pre-
sented for producing images that are readable for other software.

Image registration method are studied and used for finding the cuttings, namely
Thirion’s demons, nonrigid B-spline based free-form deformations and thin plate
splines. Image registration gave no success. Insted, a set of ad hoc method were
delveloped for finding the cuttings, which turned out to give reasonable results.

Statistical shape models are presented and used on the found cuttings. The
statistical shape model is based on a 13 eigenvector description spanning 95%
of the data space. The outline for a virtual cutting is given.

No ground truth is available for the data. Instead, the results are evaluated by
visual inspection, since no other possibility exist.





Resumé

Denne rapport beskriver metoderne benyttet til at analysere og modellere op-
skæring af svineslagekroppe til produkterne: kam, brystflæsk, ryggrad og ribben.

Automatiske præ-processerings metoder til at udskære produkterne fra de r̊a
DICOM billeder er udviklet. En bitreduktionsmetode er præsenteret for at gøre
billeddata læseligt for andet software.

Billedregistreringsmetoder er studeret og benyttet til at finde opskæringen,
specifikt Thirion’s dæmoner, ikke-rigid B-spline baseret free-form deformations
og thin plate splines. Billedregistering var ikke succesfuld. I stedet er der ud-
viklet et sæt ad hoc metoder for at finde opskæringerne, hvilket gav rimelige
resultater.

Statistiske shape modeller er præsenteret og benyttet p̊a de fundne opskæringer.
Den endelige statistiske model er baseret p̊a 13 egenvektorer som beskriver 95%
af datarummet. Udkastet til en virtuel opskæring er givet.

Ingen ground truth er til r̊adighed. I stedet evalueres resultaterne ved visual
inspektion, siden ingen mulighed findes.
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Chapter 1

Introduction

1.1 Motivation

Since the middle of the 19th century, when the Danish farmers started to join
in cooperative movements, the Danish agrocultural industry has been steadily
growing. Today the Danish farmers and slaughterhouses produce and process
about 25 million pigs per year [2].
At the slaughterhouse the pig is separated into three parts: Fore-end, middle
and the hind leg. The fore-end contains a lot of bone structures, but can be
processed into roast-type of cuts. The hind leg is what you buy, when you buy
ham. The middle is basically the part of the pig from the shoulder and down
to the hips and is the most valuable part of the pig. The middle is cut into four
parts (some times refered to as products or cuts): spine, ribs, loin and belly.
The spine is usually not used for human consumer products and the ribs can be
sold as spareribs. The loin can be used for the probably most famous product
of them all, back bacon, or for the danish speciality flæskesteg. The belly can
be processed into streaky bacon or the Italian speciality pancetta.
The slaughtering process of a carcass include heavy manual labour and can
give rise to health problems, e.g. back problems, for the persons working in
the slaughterhouses. Particularly, the first steps in the slaugthering process,
splitting the whole pig carcass into parts of more manageable size, is a wearing
job. For the same reason automatic slaughterhouse robots have been developed



Figure 1.1: The pig is separated into three parts: Fore-end, middle and hind leg
[1].

to reduce this amount of heavy manual labour. One type of slaughterhouse
robot is a middle cutting machine, see figure 1.2.

Figure 1.2: The middle cutting machine in action. The belly is on the table.
The back with the ribs is hanging from the hooks.

The middle cutting machine cuts the middle of the pig into spine, ribs, back and
belly, see figure 1.3. The position of the cuts can be adjusted so the machine
e.g. will cut the back with a specific size.



Figure 1.3: Models of the cut made by the middle cutting machine.

1.2 Description of Dataset

The data set available is 39 CT scans of pig middles. The middles are physically
quite similar except for the number of ribs. The number of ribs varies between
10 and 12. Some of the lowest ribs may also be more or less cartilagelike. All
39 middles have been scanned before processed by the middle cutting machine.
37 of the middles were scanned after they were processed into products. 2 pig
middles were not completely inside the field of view of the scanner so they left
out from the analysis, giving a dataset of 35 pigs.
Each scan has the size 512 pixels by 512 pixels in xy-direction with a vari-
able size in the z -direction, usually between 55 and 65 pixels. The pixel size
is 1mm by 1mm by 10mm in the xyz -direction, respectvely. In the low resolu-
tion z -direction the feed is 10mm and the slice thickness is 10mm meaning the



slices are averages of 10mm. Due to this fact, the spine is aligned with the z -
direction during scanning, since the anatomical structures of the pig changes the
least along this. The avereging in the z -direction destroys the correspondence
between the whole pig middle and the products. If same product is scanned
twice, but the second time with a slight displacement wrt. the scanners coordi-
nate systme, the averaging volume will change, meaning the measures data will
change, see figure 1.4.
The middle itself is placed on a shelf in the center of the scanner. For the scan-
ning of the four products, the ribs and the spine a laid in a semi-flexible tray in
the bottom of the scanner with the two other products placed on shelves above,
the loin in the center and the belly on the top.
Each pixel value is recorded in monochrome 12-bit resolution, i.e. 4096 gray tone
levels. Since no 12 bit IEEE type exist the values are stored as unsigned 16 bit on
the disk. The fileformat used is DICOM (Digital Imaging and Communications
in Medicine,[14]) which is often seen in medical applications and equipment.
Besides image data the DICOM fileformat also contains a image header which
describes all possible extra information, such as patient (pig middle) identifica-
tion number, weight, etc., which may be valuable in the further analysis. CT
data can have negative values (e.g. air, -1000 HU), why the DICOM header also
contains an offset and scaling to do a linear transformation of the values.

Figure 1.4: Red and blue are the same product scanned twice, but with a slight
displacement, meaning the averaging volume is not the same.



1.3 Computed Tomography

The data used in this analysis are 3D computed tomography(CT) images. The
creation of 3D CT images in the CT scanner is basically a two step procedure:
Data acquisition and data processing. The data acquisition is done by exposing
the object in the scanner to X-rays from one side of the object and detect
non-absorbed rays on the opposite side of the object. Fixing X-ray tube and
detector on a ring, and rotating this, a number of scans from different angles
are obtained. The data processing is done using a reconstruction algorithm on
a computer to get human readible images.
The 3D CT images are monochrome (though dual energy scanner are available)
and each voxel specify the absorbtion of the material in Hounsfield Units (HU).
The absorbtion for tissues interisting in this context are shown in table 1.1 A

Tissue Absorbtion

Air −1000
Water 0
Fat −60 → −100
Soft tissue, muscle 40 → 80
Bone 400 → 1000

Table 1.1: Absorbtion in Hounsfield Units [HU] for different tissues([5]).

thorough description of the principle behind CT is out of the scope of this report
and refer to specific books on this topic like [5].

1.4 Objectives

The main objective of this thesis is to analyse the cuttings of pig carcasses and
build a mathematical model of these. More specific, only the cuttings of the
middle of the pig is analysed. The use of image registration for analysing the
cuttings is investigated. If not succesful, a set of ad hoc methods should be
applied. Eventually, a statistical shape model of the cuttings should be found
and used for making virtual cuttings of pig middles.

1.5 Overview

Chapter 2 describes pre-processing of the dataset.



Chapter 3 covers image registration and applies it

Chapter 4 introduces a set of ad hoc methods and applies them

Chapter 5 study statistical shape models and virtual cuttings

Chapter 6 gives the concluding remarks

1.6 Mathematical Notation

For clarity, the following mathematical notation is used throughout the thesis.

f Functions values and scalars are in lowercase, normal font.
v Vectors are in lowercase, bold font. Vectors are column vectors.
x Point sets are in lowercase, bold font.
M Matrices are in uppercase, bold font.
I Images are in calligraphic font.
I(·) Intensities are in uppercase, normal font.



Chapter 2

Pre-processing of Dataset

The pre-processing of the dataset falls in two parts: One where the shelves
are cut away and the individual products are isolated, and another where the
intensity information is is reduced to a 8-bit resolution.

2.1 Shelf removal

In the scanner the products are placed on a shelf construction, see figure 2.1.
These shelves must be removed before any further analysis can be done. The
products are placed on three different shelves, two solid wooden ones in the top
and a flexible one of unknown material at the bottom. The whole pig middle is
placed on a single solid wooden shelf.



Figure 2.1: Shelf construction of both the whole middle and the processed.

2.1.1 Removal of wooden shelves

The shelves are in this case parallel with the horizontal axis, which makes things
a lot easier. The procedure for removal is:

1. take the derivative of the image in the vertical direction (filter with

[

1
−1

]

)

2. sum along the horizontal axis

3. the two most negative peaks are the top of the wooden shelves

4. set pixel intensity from the negative peaks and 40 pixels down to 0

Figure 2.2 shows the derivative of the image and the summation along the
horizontal axis.

2.1.2 Removal of flexible shelf

The problem with the bottom shelf is that it is flexible and therefore cannot
be removed as simple as the wooden shelves. Additionally, the intensity of the
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Figure 2.2: Left: Derivate of image. Right: Summation along the horizontal
axis.

shelf is very close to that of bones, so thresholding is not a possibility. But there
are some things we know from manually inspecting the image: The shelf is 7
pixels thick and it has 6 bumps placed with a regular distance. The solution is
to cut out a single bump and correlate this with the image. Points with a high
correlation almost on a straight line along the horizontal axis will be bumps, see
figure 2.3. Knowing the bumps, we can cut them away and likewise cut away 7
pixel thick line between the bumps. We approximately know the distance from
the outermost placed bumps and to the sides of the shelf, so we just remove
everything further away than this distance.

Figure 2.3: Top: Flexible shelf. Bottom: Image correlated with a bump tem-
plate.



Figure 2.4: Images after removal of shelves.



2.2 Reduction of bit resolution

Some of the image registration implementations that we will use (Thirion’s
demons and nonrigid B-spline based free-form deformations), can only handle
integers from 0-255 (8 bit). Since the original data has values below 0 and above
255, we need to do some kind of scaling. The original data are stored in 16 bit,
so the easiest thing to do, would be to divide by 28 and round off, but this has
the side effect that we lose precision, since our data does only fills up a part of
the range from 0 to 216. Looking at a histogram of intensities of a typical pig
middle might guide us to a solution, see figure 2.2.
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Figure 2.5: Histogram of the original pig middle.

The histrogram shows us a couple of things. First, there is a clear seperation of
background and the pig middle, and furthermore the intensity range of the pig
middle is only around 500 Hu. We can therefore do a truncation of the intensity
spectrum in the following way:

1. set all values above 300 Hu to 300 Hu.

2. set all values below -200 Hu to -200 Hu.

3. divide by 500 and multiply by 255.

4. round off and store as uint8.



We cut off at -200 Hu to ensure that there still is an intensity gap between
the background and the pig middle. Likewise, we cut off at 300 Hu because
above this intensity there is only bone. Figure 2.2 shows the histogram of the
scaled pig middle, there is still an intensity gap between background and the
pig middle. Figure 2.2 shows the the origninal, the scaled and difference image
between. The reverse procedure has been applied to the scaled to match the
orginal again. It is clear that there is very little visual difference between the
original and the scaled, the difference image shows us that the only place where
there is an difference is at the bones.
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Figure 2.6: Histogram of the scaled pig middle.

2.3 Summary and discussion

A method for removing the shelves in the raw image data was described. Like-
wise, a method for reducing bit resulution. It is always a problem to find the
best way or least worse way to reduce data resolution. Here we cut away some
of the intensities that holds very little information. How much you should cut
adn where can be discussed, some kind of truncation is needed to avoid too low
dynamic range.



Figure 2.7: Top: Original image. Middle: Scaled image, shifted back to match
the original. Bottom: Difference image.





Chapter 3

Finding Cuttings using Image

Registration

This chapter will study the use of image registration for finding cuttings. First
the concept of image registration is introduced, next the methods studied in
this project is described in detail and finally the results are shown.

3.1 Image Registration Theory

This section will describe the image registration in general terms and introduce
some mathematical notation for later use. First let us define what an image is:

Definition An image I is a finite set of points, x ⊂ R
d, on a

regular grid with a corresponding intensity, I(x) ⊂ R.

One could simply see an image as a mapping from R
d to R. With this at hand

we define image registration as:



Definition Image registration is the process of geometrically
transforming collected images so they become similar to one
another.

Or more mathematical: Given a reference image R and a template image T , we
seek a geometric transformation W (·) such that

R(xR) = T (W (xT , p)). (3.1)

The vector p contains parameters for the transformation. Equation (3.1) is of
course an ideal situation, where the transformed template image is completely
similar to the reference image. Often, the images we are dealing with come from
different sources and they are most certainly noisy, so it would be more realistic
to exchange the = with ≃. So how do we find the transformation W (·) that
performs the correct mapping and how do we know that the mapping is correct?
Well, to find an answer to this, there are some things to consider:

• What kind of transformation W (·) should be used?

• How is similarity between images measured?

The following will discuss these topics in detail.

3.1.1 Choice of Transformation

The are many aspects to consider when choosing the transformation. Transfor-
mations vary from very simple general ones to advanced specialised ones. When
choosing transformation, one must consider some important aspects. The most
important ones will be described below.

3.1.1.1 Domain

The domain can either be global or local. A global transformation is a trans-
formation where any point is controlled by the same transformation. A global
translation, W (x, p) = x + p, is a good example; all points in the image are
translated by the same amount.
A local transformation means that the transformation changes according to the
local neighbourhood. A local neighbourhood can be anything from a single pixel
to larger areas (volumes), making it capable of modelling local characteristics
or deformations. A local deformation is often preceded by a global to ensure
fast and correct convergence.



3.1.1.2 Rigidity

A transformation can be rigid or nonrigid. A rigid transformation resembles the
way a rigid body is moved, allowing only for rotation and translation. In the
2-dimensional case, one could think of a picture painted on a sheet of paper in
the middle of a table. The only way to ”transform” the image (wrt. the middle
of the table) is to rotate and translate the paper sheet.
A nonrigid transformation can contain bends, curvature and stretch. Exempli-
fying again, think of a picture painted on a sheet of rubber. Now the picture
can be translated, rotated, stretched and shrunk both locally and globally.

3.1.1.3 Parametrisation

Parametrisation tells whether the transformation is controlled by parameters
or not. A translation, W (x, p) = x + p, is perfect example of a parametrised
transformation: By adjusting the translation parameter p the transformation is
controlled.
Nonparametric transformations are not controlled by parameters, only the tem-
plate and reference images, and derivatives of these are controlling the trans-
formation. For the nonparametric transform it is convenient to introduce a dis-
placement field, u, and put the transformation on the form W (x) = x + u(x).
The whole idea is then to find the displacement field u that makes the two
images most similar. But by introducing a displacement vector for every pixel
there is no guarantee that the displacement field u will be smooth, hence the
problem is ill-posed. By adding a regulariser when solving the problem, the
smoothness of u can be controlled.[12, chap. 8]

3.1.1.4 Other Issues

Besides the things mentioned in the previous, there are some minor things one
can consider when choosing the transformation. One thing is diffeomorphism.
A diffeomorphic function is smooth and the inverse exists. In image registration
terms this means that folding cannot occur. It is possible to get a diffeomorphic
registration by constraining the determinant of the Jacobian of the transforma-
tion to be greater than zero, det(J(W )) > 0.
An even stronger constraint is volume preservation, where the determinant of
the Jacobian of the transformation must be exactly unity. Volume preserva-
tion can be used when working with e.g. physical incompressible tissue. It will
ensure that the solution is feasible from a physical point of view.



3.1.1.5 Forward versus inverse transformation

In our definition of an image, we state that image points x is exist on a regular
grid. A problem occurs when the template image points are transformed onto
the domain of the reference image, since there is no mechanism to ensure that
W (xT , p) exist on the same regular grid as xR. The two images must exist on
the same regular grid or else it is not possible to compare the two. An example
could be a translation by 1.5 where the regular grid spacing is 1, see figure 3.1.
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Figure 3.1: Left: Translated template image points. Middle: Reference image
points. Right: Both point sets plotted. The two point sets do not exist on the
same regular grid.

A way to overcome this problem is interpolation. The interpolation can either
be performed in the untransformed or transformed template. We first consider
the untransformed case and next the transformed.
If we do an inverse transformation of the regular grid in the reference image,
W−1(xR), these points now exist in the frame of the template image. Interpo-
lation in this frame is simple since the values to interpolate between are on a
regular grid. With a bit of book keeping it is easy to go back again to the refer-
ence frame. The biggest problem is the existence of the inverse transformation
W−1. For translations and rotations it is simple to find the inverse transfor-
mation, but if the transformation is nonrigid and local, things start to get a
bit more complicated. Fortunately, it is not necessary to know both forward
and inverse transformations, in fact, you just decide what kind of transform the
inverse should be and ignore the forward. This way, you get the advantage of
interpolation on a regular grid without caring about the forward/inverse exis-
tence of the transform. The interpolation method can be chosen from a large
variety. Among the most common are nearest neighbour, (bi-/tri-)linear, cubic
or spline.
If you for some reason must work with the forward transformation W it is still



possible. The problem occurs because the template image points transformed
onto the reference image, W (xT ), no longer are on a regular grid. In this case
the interpolation is performed on the regular grid of the reference image and
the values to interpolate between located in an irregular grid. In this case the
interpolation could be done by Delaunay triangulation, kriging or thin plate
spline. The drawback of interpolation on a irregular grid is that it requires a
lot more computations than interpolation on a regular grid [8]
When nothing else is stated, it is assumed that the inverse transformation is
used.

3.1.2 Choice of Similarity Measure

Before mentioning similarity measures we need to introduce registration bases.
When data have been collected, one has to consider what features can be ex-
tracted. The extracted features are the registration bases. Three different types
of registration bases will be studied here: Landmarks, surfaces and intensities.
Similarity measures are dependent on the type of registration basis, so each one
will be studied separately.

3.1.2.1 Landmarks

Landmarks, sometimes called fiducial points, are a set of distinct points in an
image which have corresponding points the another image, see figure 3.2. By
matching corresponding points in the two images the transformation can be
found, or if the transformation is decided beforehand, landmarks can be used
to evaluate how good the transformation is. Landmarks can either be set by an
operator or extracted automatically using e.g scale-invariant feature transform
(SIFT)[9].
Regardless of the method of extraction, there will be displacement errors on the
landmarks, e.g. due to finite resolution of the image. These kind of errors are
known as fiducial localisation errors (FLE) and considered random with mean
µ|F LE| = 0 and variance σ2

|F LE| . Notice that FLE is a set of vectors, one
for each landmark. It is not possible to determine FLE without ground truth,
but assumptions can be made on basis of how well defined the structure in the
image is.
Having decided which kind of transform W to use, the Nl landmarks in the tem-
plate image, lT , are now mapped into the domain of the reference image. The
misalignment between corresponding landmarks is called fiducial registration



Figure 3.2: Example of image registration using landmarks as basis. Four dis-
tinct landmarks (marked by •) are extracted from both target and reference
image. Matching corresponding points in the two images makes it possible to
merge the two. From [10]

error (FRE). Mathematically this is expressed

FREi = W (lT ,i, p) − lR,i , i = 1..NL (3.2)

From equation (3.2) we can compute the overall misalignment between the land-
marks, FRE:

FRE2 =
1

Nl

Nl
∑

i

w2
i |FREi|2 =

1

Nl

Nl
∑

i

w2
i |W (lT ,i, p) − lR,i|2 (3.3)

where wi is a weighting factor. If there is knowledge about the precision (σ2
|F LE|)

of the individual landmarks, the weighting wi can be scaled according to the
this, else it is set to unity. The FRE can directly be used as similarity measure;
the smaller the FRE, the closer the transformed template landmarks are to the
reference landmarks. If working with parametrised transforms, the FRE can be
used to estimate the parameter vector p by using equation (3.3) as cost function
and p as unknown in an optimization scheme. [20, chap. 8.3]

3.1.2.2 Surfaces

Surface registration basis can be seen as an extension of the landmark registra-
tion basis. Surface registration operates with data points and model surface.
The Nd data points are measurements (in template image) from e.g. a 3D laser
scanner, and the model surface (in reference image) is what we register onto.
The surface model is not necessarily an analytic surface, but could e.g. be a



spline fitted to point measurements. The similarity measure used is the disparity
function δ

δ(d, s) =

√

√

√

√

ND
∑

i

w2
j ||W (di, p) − C(di, s)||2 (3.4)

where d denotes data points and s model surface. Unlike in the landmark
registration case, no correspondence is given here, so instead we have to use the
nearest neighbour operator C. C(di, s) returns the point on the model surface
s closest to a given data point di. Like in the case with landmarks and FRE,
the disparity function δ can be used together with an optimization scheme to
estimate parameters p of a parametrised transform, this method is known as the
iterative closest point algorithm (ICP). A good starting guess for the algorithm
may be estimated using a principal component analysis.[3][20, chap. 8.4].

3.1.2.3 Intensities

The last registration basis is based on intensities. Here the transformed template
and reference image’s intensities T (W (xT , p)) and R(xR) are used to quantify
similarity. Now that both our images exist on the same regular grid, we can
start to measure similarity. The similarity is measured point by point on the
regular grid. Considering two images I1 and I2 on the same regular grid we can
measure similarity in a set of N points x (e.g. a predefined mask) by comparing
the intensities, I1(x) and I2(x), in these points. Among the similarity measures
are sum of squared differences (SSD, eq. 3.5), correlation coefficient (CC, eq.
3.6) and normalized mutual information (NMI, eq. 3.8).

SSD =
1

N

N
∑

1

|I1(x) − I2(x)|2 (3.5)

Sum of squared differences is the most simple and most intuitive of the similarity
measure. It is fast to compute and it is easy to take differentiate. Furthermore,
if leaving out the summation you are left with a error image which can show
spatially where the largest errors may be.

CC =

∑

i(I1(x) − µ(I1(x)))(I2(x) − µ(I2(x)))
√

∑

i(I1(x) − µ(I1(x)))2
∑

i(I2(x) − µ(I2(x))2)
, µ = mean (3.6)

The correlation coefficient is a well known tool from statistics which apparently
also has it’s use as similarity measure. The summation makes it impossible to



see an error image.

NMI =
H(I1(x)) + H(I2(x))

H(I1(x), I2(x))
(3.7)

H(I) = −
∑

j,k

PDF [j, k] log PDF [j, k]

PDF = probability distribution function

Normalised mutual information has it’s roots in information theory. It is more
complicated than two previous two, but has the advantage that it can handle
images of different modality, i.e. compare a CT to a MR images. This is due
to the fact that it is based on probability distribution functions. On the other
hand, the probability distribution functions makes it impossible to see an error
image.[20, chap. 8.5][4]

3.1.3 Minimisation Problems in Image Registration

Until know we have only talked about how to choose a transformation and how
to measure similarity. The next step is to minimise the similarity measure given
some transformation. The minimisation problem is dependent on the type of
transformation.

3.1.3.1 Parametric

If the we are working with parametric transformation the minimisation is per-
formed by constructing a optimization problem. This optimization problem will
have similarity measure as cost function ∆(·) and the transformation parameter
p as optimization parameter. Mathematically this can be written:

argminp∆(p) (3.8)

If the transformation is also nonrigid it is possible to add a term Γ(·) that will
penalize non-smooth transformation

argminp∆(p) + αΓ(p) (3.9)

In this case one most also find a suitable value for α, usually this can be done by
the trial and error method. In the literature, we find a large variety of methods
for solving optimization problems like (3.8) and (3.9). Among the most popular
ones for unconstrained problems are gradient descent, Newton’s method, Quasi-
Newton methods, conjugate gradient method. Some of the method may also
gain performance by adding a line-search technique. Constrained problem can
be turned into unconstrained problems by using Lagrange multipliers [7, 15, 6].



3.1.3.2 Nonparametric

If the transformation is nonparametric the type of problem is a bit different.
Since there are no parameters, the minimisation is dependent on the displace-
ment field u.

argminu∆(u) + αΓ(u) (3.10)

This problem can be solved by applying gradient descent based methods. A
more sophisticated way of solving this problem is by using the Euler-Lagrange
equations to build an iterative update rule. It is out of the scope of this thesis
to go into details, so it is for the reader to consult [12, chap. 8] for thorough
explanation.

3.1.3.3 Multiresolution schemes

No matter what method is chosen for the optimization problem, it will be com-
putational heavy due to the large amount of data an image consist of. A way
to speed up things and also avoid local minima in the minimization process is
to use a multiresolution scheme. The idea is the following:

1. Set scaling factor between successive levels, α .

2. Set number of levels to use, N .

3. Reduce resolution to 1
αN for both template and reference image.

4. Find solution to minimization problem.

5. If N = 0 then stop, else N = N − 1 and go to 3.

Figure 3.3 shows an example using the Matlabs cameraman image. The scaling
factor is α = 4 and the number of levels are N = 2.

Since image registration has it’s roots from many places: physics, mathematics,
image analysis, optimization etc., it is easy to find specialized image registration
methods that has not been covered in the previous. The goal was to give a brief
overview of the most common methods.



Figure 3.3: The Matlab cameraman in three different resolutions. Left: Original
256 × 256. Middle: Scaled to 64 × 64. Right: Scaled to 16 × 16.

3.2 Four Methods for Image Registration

Where the previous was a more general introduction to image registration, the
following will describe four specific image registration methods in detail: Rigid,
Thirions demons, free-form deformation and thin plate spline.

3.2.1 Rigid Transformation

The word rigid here refers to the possible transformation of a physical rigid
body. A physical rigid body, such as a wooden cube, can only transformation
or move it’s mass by either a rotation or a translation. Some authors claim that
the rigid transformation also should include a scaling in each dimension, but
following [20], inclusion of such is considered a nonrigid transformation. Hence,
the transformation is of the following type:

W (x, p) = RxT + t. (3.11)

Two parameters are needed: A rotation matrix, R, and a translation vector, t.
The rotation matrix is a d × d-matrix with elements Ri,j ∈ [−1; 1]. To allow
only physically possible rotations and avoid reflections, det(R) = 1. The indi-
vidual elements can be traced back to d rotations around the d individual axes
of the coordinate system (Euler angles). If the usual 3-dimensional Cartesian



coordinate system is considered, we get:

R =





cos θz − sin θz 0
sin θz cos θz 0

0 0 1









cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy









1 0 0
0 cos θx − sin θx

0 sin θx cos θx





=

[

cos θy cos θz − cos θx sin θz+sin θx sin θy cos θz sin θx sin θz+cos θx sin θy cos θz

cos θy sin θz cos θx cos θz+sin θx sin θy sin θz − sin θx cos θz+cos θx sin θy sin θz

− sin θy sin θx cos θy cos θx cos θy

]

(3.12)

The translation vector t is a d × 1 vector. It is added after the rotation (the
rotation is always around origo). The number of parameters in the rigid trans-
formation sums to 2d.

3.2.1.1 Summary of Rigid Tranformation

The rigid transformation is characterised by the following properties:

• global transformation

• preserves distance

• preserves straight lines

• preserves angles between straight lines

Even though the choice has fell upon a nonrigid transformation, the first step is
often to do a rigid transformation. This way each transformation take care of
each their task: The rigid will globally align the two images, and the nonrigid
will align the images on a local scale [20]. A cousine of the rigid transformation
is the affine transformation. It also allows for scaling and skewing.

3.2.2 Thirion’s demons

Thirions demons is a nonparametric transformation based on Maxwell’s demons.
Here the term demon refers to an instance that controls movement. In Maxwell’s
theory the demon would control the movement from one chamber to another,
and only allow molecules with an above-average speed to pass. In the world of
image registration, the demons controls the force of movement of points in the
template image based on gradient information and a difference image. Consider
a 1-dimensional example, see figure 3.4. Given a demon in position d, compute



the gradient of the reference image ∇R(d) and the difference image R(d)−T (d).
When the difference image R(d) − T (d) < 0, the template is moved in the
direction of ∇R(d), otherwise it is moved in the direction of −∇R(d).

f = ∇R(d)(R(d) − T (d)) (3.13)

is called the force and summarizes the previous statements about the movement.

Figure 3.4: 1-dimensional example of Thirions demons. From [12]

The 1-dimensional example was a forward transformation type. If we instead
want to use the inverse, the two images must be interchanged. In practice, the
method works in the following iterative fashion:

1. Set scaling coefficient β

2. Set displacement field u = 0.

3. Compute forces of movement, f = ∇T (xT + u)T (T (xT + u) − R(xR)).

4. Smooth forces with a Gaussian kernel and update the displacement field,
u = u − β(Gσ ⋆ f).

5. If converged then stop, else go to 2.

The gradient of an image is very sensitive to noise in the image, so to ensure
a regular displacement field, the forces must be smoothed. Furthermore, stable



convergence is preferred so the update term is multiplied with a coefficient
0 < β < 1. For faster convergence, a multiresolution scheme can be used. The
approach described in the list is based on the Euler-Lagrange equations, however
it is also possible to see the problem from a gradient descent perspective, see
e.g. [23].

3.2.2.1 Summary of Thirion’s demons

Some of the notable characteristics of Thirion’s demons are:

• possibility for local transformation

• intiutively and easy to understand from a 1-dimensional example

• a basic implementation of method only includes filtering and derivatives

• multiresolution implementation is a possibility

3.2.3 Nonrigid B-spline Based Free-form Deformation

A nonrigid B-spline based free-form deformation is a parametrised, local, intensity-
based image registration method. The idea is to put a mesh of control points
on top of the image, see figure 3.5, and by manipulating the individual con-
trol points in the mesh, it is possible achieve a transformation that is local.
Assuming three dimensions, let the domain of the image be

Ω = {(x, y, z)|0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax} (3.14)

where (xmax, ymax, zmax) are the dimensions of the image. Furthermore we
introduce the mesh of control points Φ of size nx × ny × nz. Each mesh control
point φi,j,k is a position in image domain. The transformation of a given point
in the image x = (x, y, z) is a tensor product of 1-dimensional basis functions.

W (x, φ) =
3

∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (3.15)

The indices i, j, k determine which neighbourhood of control points the given
point belongs to

i = ⌊ x

nx

⌋ − 1, j = ⌊ y

ny

⌋ − 1, k = ⌊ z

nz

⌋ − 1. (3.16)



Figure 3.5: Left: Projection of a 4× 4× 4 control point mesh onto the z -plane.
Right: 3D view of a 4 × 4 × 4 control point mesh.

The scalars u, v, w are spatial distances along the coordinate axes from the point
x to the closest control point.

u =
x

nx

− ⌊ x

nx

⌋, v =
y

ny

− ⌊ y

ny

⌋, w =
z

nz

− ⌊ z

nz

⌋. (3.17)

The functions B are cubic B-spline basis functions. They are describe the mutual
weighting between the control points given a set of distances u, v, w.

B0 = (1 − u)3/6

B1 = (3u3 − 6u2 + 4)/6 (3.18)

B2 = (−3u3 + 3u2 + 3u + 1)3/6

B3 = u3/6

The B-splines are symmetric around the center of the mesh cell that the point
belongs to, and are constructed in a way such that a transition from e.g. index
i to i + 1 is smooth. Furthermore, the transformation W is constructed in a
way such that a change in a single control point only affects the neighbourhood
around it. For the same reason this method is not efficient for globally aligning
and should be preceded by an rigid (or affine) transformation.
The parameters enter into the transformation as the spatial position of the
control points Φ, that is, d parameters for each control point in d dimensions. If
there are Np control points, then there will be d ·Np parameters that control the
transformation. Even with the simplest similarity measure of them all, sum of
squared differences, as cost function C(Φ), it not possible to make a closed form
solution for the control points that solves the minimization problem. Therefore,
it necessary to utilize an iterative gradient descent technique to minimize C(Φ).
This can be summarized to:
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Figure 3.6: The cubic B-spline basis functions.

1. perform a rigid or affine registration.

2. initialize control points Φ

3. calculate the gradient of the cost function wrt. Φ, ∇C(Φ) = ∂C(Φ)
∂Φ

4. update control points Φ = Φ + µ ∇C(Φ)
||∇C(Φ)||

5. if converged then stop, else go to 3

It is also possible to incorporate a multiresolution scheme, and it is also possible
to use multilevel scheme for the control point mesh. The idea is to first catch
large variations in the deformation using a large control point spacing, and then
gradually subdivide the mesh, until the desired control point spacing is reached.
This will speed up convergence of the algorithm. A smoothness term can also
be added to the cost function to ensure a deformation field, but it is not always
necessary since the smoothness of the B-spline basis functions help a lot[18, 19].



3.2.3.1 Summary of Nonrigid B-spline Based Free-form Deformation

Some of the notable characteristics of nonrigid B-spline based free-form defor-
mations are:

• possibility for local transformation

• the possibility of multilevel control point mesh and multiresolution makes
it very flexible

• computational heavy, even with the added speed improvements

3.2.4 Thin Plate Spline

Thin plate splines registration is a parametric, nonrigid, landmark-based regis-
tration method. Thin plate spline were originally long flexible strips of metal
used in drawing offices for drawing curved lines. They were placed on top of the
sheet of paper and adjusted using a set of fixpoints along the spline. Producing
the splines in types of metal or alloys with different stiffness (bending energy)
it was possible to control the flexibility. In the same way we want to adjust the
transformation using a set landmarks.
Considering a 2-dimensional case with two sets of landmarks, template τ =
(τx, τy) landmarks and reference landmarks ρ = (ρx, ρy) of length N , we seek
the transformation W (τ ) that solves

min
W

1

N

N
∑

i=1

{ρ − W (τ )}2 + λJ(W ) (3.19)

where J(W ) is a function that expresses the curvature (bending energy) of W

J(W ) =

∫ ∫

R2

(∂2W

∂τ2
x

)

+ 2
( ∂2W

∂τxτy

)

+
(∂2W

∂τ2
y

)

dτxdτy (3.20)

and λ is a parameter for controlling the curvature penality. The higher value
of λ, the smoother the solution. In the limit λ = inf, the solution will be a
straight line with no curvature. Setting λ = 0 gives a solution that passes ex-
actly through each reference landmark. Notice that equation (3.21) in some
sense is a expansion of equation (3.2) for FRE2 to include a smoothness term.

The mathematical nature of W (τ ) is twofold. It has both a linear term and
a radial basis function term

W (τ ) = a1 + a2τx + a3τy +

N
∑

i=0

wiU(|τ − ρi|) (3.21)



where wi are weights and

U(r) =

{

r2 log r2 r > 0

0 r = 0
(3.22)

This is an underdetermined system since there are 3 + N unknown and N
equations, but since the bending energy J(W ) must be zero for a straight line
as input, we must add three constraints

N
∑

i=0

wi = 0,
N

∑

i=0

wiρx =
N

∑

i=0

wiρy = 0. (3.23)

Instead of setting up a two seperate systems, one for the x-coordinates and
one for the y-coordinates, we set up one system for both coordinates based on
equation (3.19) and the constraints (3.23):

[

A + λI P

P T Z

] [

wx wy

ax ay

]

=

[

ρx ρx

z z

]

(3.24)

where Ai,j = U(|τ i − ρj |), P i,: = (1, ρi) and Z and z are 3 × 3 and 3 × 1 zero
matrices respectively. I is the N ×N identity matrix, λ is a scalar, wx and wy

are N × 1 and ax and ay are 3× 1. Solving this system linear for the unknown
weights and affine paramters, we get:

[

wx wy

ax ay

]

=

[

A + λI P

P T Z

]−1 [

ρx ρx

z z

]

= K−1

[

ρx ρx

z z

]

(3.25)

Knowing wx, wy, ax, ay for a given set of template and reference landmarks, we
can easily compute the transformation for any point, since we are dealing with
a linear system. A point in the coordinate system of the template (tx, ty) can
be transformed to the coordinate system of the reference image by

[

rx ry

]

=
[

B 1 tx ty
]

[

wx wy

ax ay

]

(3.26)

where Bj = U(||(tx, ty) − ρj ||). The fact, that it is a linear system makes fast
and easy to handle in Matlab [24].

3.2.4.1 Landmark extraction

In order to apply the thin plate spline transformation you need to have some
landmarks in both the template and the reference image. The template image
will be a slice of the belly product and the reference image will be the corre-
sponding slice of the unprocessed middle. The landmarks will be extracted from



the interface between air and skin, and the interface between the subcutaneous
fat layer and the first meat layer, see figure 3.7.
In some sense, this is just a surface extraction. An automatic method for finding
the interfaces could probably easily be developed since both interfaces have a
very high intensity gradient. Edge filtering and dynamic programming would
maybe solve it. But for testing, we annotate the interfaces manually. Assuming
these two interfaces to be flexible but unstretchable, we can place landmarks
with a predefined distance along the two interfaces in both images, see figure
3.7. The procedure is:

1. annotate the interfaces manually

2. interpolate the annotated interfaces with a cubic spline

3. start in the far right side of the interfaces and place landmarks with a
regular distance d

4. do it for both template and reference

Figure 3.7: Top: Annotated interfaces of the belly and the whole middle. Bot-
tom: Extracted landmarks of the belly and the whole middle for a landmark
distance d = 5px.

The landmark extraction depends, in the manual case, of course on how well the
interfaces been annotated. The more precise and the more close the annotations
are the better.



3.3 Results

The three of the four image registration studied in the previous section are
applied to the available data. 2-dimensional examples are studied, to keep it
as simple as possible. The methods are applied to the belly product only, since
this piece from manual inspection seems to be the simplest to do registration
on. In case of succes, it can always be applied to the harder back product.
For Thirion’s demons and the free-form deformation, the rigid transform is used
as a first step.

3.3.1 Thirion’s Demons

An implementation of Thirion’s demons was made on basis of a collection of
image registration Matlab methods implemented by Jan Moderzitski, University
of Lubeck [11]. Among these were good methods for interpolation and taking
derivatives of images. The implementation includes a multiresolution scheme.
This is needed to ”bend” the product enough to match the whole middle. The
first step is always a rigid registrastion. Below are shown registration of two
different slices (middle 2557, slice 55 and 35).

3.3.1.1 Slice 55

To see how the multiresolution scheme works with Thirion’s demons, a serie of
images have been produced to show the registration result just before a step up
in resolution is taken, see figures 3.8 and 3.9. The used parameters are:

Resolution 1
8

1
4

1
2 1

σ of the Gaussian 50 30 15 15
update coefficient β 0.0020 0.0010 0.0005 0.0003

No. iterations 50 200 200 400

The parameters were found by the trial-and-error method. It is difficult to
say anything about the parameters apriori, since they vary with problem type
and image. No automatic stopping criteria was used, instead the number of
iterations was set high.
As the images show, the template to downscaled 1

8 resolution, does not change
much, probably because the resolution redction has blurred out even the biggest
structures in the image. It is not until 1

4 resolution that registration really begins



to take place. Especially at 1
4 and 1

2 resolution a change can be seen. Figure 3.10
shows a color image with both reference and template image. Here it is clear
that the registration has found matches between the subcutaneuos fat layers,
but alse stretched the image to much in the top. The same thing is seen from
the difference image, see figure 3.11. This could be due to the large intensity
difference between the air background and the product. The standard devitaion
of the difference image inside the ROI is 101.10 Hu.

Figure 3.8: Top: Reference image. Middle: Template, rigid registered. Bottom:
Template downscaled 1

8 resolution.



Figure 3.9: Top: Template downscaled 1
4 resolution. Middle: Template down-

scaled 1
2 resolution. Bottom: Template in full resolution, fully registered.



Figure 3.10: Red color is refence, green is template. The template has been
stretched to much by the registration method, it is not volume preserving.

Figure 3.11: Difference image inside the ROI of the template. Large areas of
high errors occur in the top of the image where it has been stretched to much.



3.3.1.2 Slice 35

Another slice is testet with the same set of parameters as before. The SSD was
monitored to study how it evolves, see figure 3.12. The first thing one notices,
is the jumps in the SSD. These jumps occur when a step up in resolution is
taken. The reduction in resolution acts as a mean filter so, this is what causes
the jumps. Also we can see that the convergence is fastest in the begining, just
like we aimed for with the multiresolution scheme.
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Figure 3.12: SSD versus iteration for Thirion’s demons.

Template, reference and result is seen in figure, 3.13. Figure 3.14 shows a color
image with both reference and template image. The registration has not found
as good a match as before. It has some problem with the bumps in the skin and
again it has stretched to much so that the template covers some of the bones.
The difference image also shows the problems with bumps in the skin, see figure
3.15. The standard devitaion of the difference image inside the ROI is 104.69
Hu.

3.3.1.3 Summary

The results of the image registration using Thirion’s demons shows us that we
do not get a satisfactory result. The is no control of the volume, so it grows



Figure 3.13: Top: Reference image. Middle: Template, rigid registered. Bot-
tom: Template downscaled 1

8 resolution.

beyond what is reasonable. The multiresolution scheme speeds things up and
ensures the transformation catches the ”bend” in the reference image, but it is
probably also cause of the uncontrolable volume.



Figure 3.14: Red color is refence, green is template. Again, the template has
been stretched to much by the registration method.

Figure 3.15: Difference image inside the ROI of the template. Again, large areas
of high errors occur in the top of the image where it has been stretched to much.



3.3.2 Nonrigid B-Spline Based Free-Form Deformation

For the free-form deformation method, an image registration toolkit called ITK
(Image Registration Toolkit, The Image Registration Toolkit was used under
Licence from Ixico Ltd. Additionally) written in C++ was used. Again, we
will use slice 35 and 55 from middle 2557. A multilevel scheme is used for the
control point mesh. The coarsest level will be 40 × 40, followed by a 20 × 20
and eventually a 10× 10. An image was produced for each converged multilevel
registration, so it was possible to see intermediate results. The step size was set
to µ = 5.

3.3.2.1 Slice 55

Figure 3.16 shows results of the registration. It is clear, that even after the
40× 40 registration, the image has been stretched too much. It gets even worse
with the 20× 20 and 10 × 10. From these, it is impossible to see that it should
be a piece of meat. Figure 3.17 shows a plot of the SSD versus the mesh size.
We can see that the SSD decrease like it should, but apparently the decrease is
created by enlarging the volume (that is, incresing N in eq. 3.5). This shows
that the SSD alone might not be the best way to measure similarity in this case.
The final value of SSD is 88.41 Hu.



Figure 3.16: From the top: Rigid registered. 40×40 mesh. 20×20 mesh. 10×10
mesh.
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Figure 3.17: SSD versus mesh size for the registration.



3.3.2.2 Slice 35

As with slice 55, we see an slightly stretched 40× 40 image followed by two bad
images, 20 × 20 and 10 × 10 in figure 3.18. Again the SSD plot in figure 3.19
shows that the SSD is decreased. The final value of SSD is 90.86 Hu.

Figure 3.18: From the top: Rigid registered. 40×40 mesh. 20×20 mesh. 10×10
mesh.

3.3.2.3 Summary

These results show that the nonrigid B-Spline based free-form deformation is
not good for registration of products to a whole middle. The missing of control
with the volume makes it possible for the registration method to deform the
image so much that it is physical impossible. This is partly due to the way the
SSD similarity measure is computed.
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Figure 3.19: SSD versus mesh size for the registration.



3.3.3 Thin Plate Spline

A thin plate spline method as described in the theory section was implemented
in Matlab. The interface annotation was done by hand to avoid misannotation.
Again slice 35 and 55 from middle 2557 was used.

3.3.3.1 Slice 55

The image were annotated and the interfaces found, see figure 3.20. The dis-
tance between landmarks were set to d = 5, see figure 3.21. The regularization
parameter was set to λ = 0, i.e. completely flexible. The result of the transfor-
mation in figure 3.22 shows promising, it is not stretched in any way at least.
The difference image in figure 3.23, does not show much, but at least it tells us
that there are no large areas with high error, i.e. bone or air. The SSD is 51.01
Hu. Altogether, a realistic transformation for this particular slice.

Figure 3.20: Annotated interfaces of the belly and the whole middle. • are
manually chosen points. — are the interfaces.



Figure 3.21: Extracted landmarks of the belly and the whole middle.

Figure 3.22: Color image showing whole middle with the registered slice 55 on
top.



Figure 3.23: Difference image of thin plate spline transfomation of slice 55.



3.3.3.2 Slice 35

Again annotated were made, see figure 3.24. The distance between landmarks
were set to d = 5, see figure 3.25. The regularization parameter was again also
set to λ = 0. The result in figure 3.26 is not as good as that of slice 55. There
are some error at the right end and at the left end of the belly. The left end of
the belly is simple skewed to much towards the left, the knife in the machine
would never cut this way. The difference image in figure 3.27, also shows that
the errors are higher in the left end, indicating a bad match. The SSD is 65.40
Hu.
The reason for the skewed left end should probably be found in the distance
between the two interfaces. The further away the two interfaces are from each
other, the less impact noise will have. In fact, what is done here is comparable
to extrapolation. So the farther away a point is from the data and the more
noise on the data, the worse an extrapolation.

Figure 3.24: Annotated interfaces of the belly and the whole middle. • are
manually chosen points. — are the interfaces.

3.3.3.3 Summary

The two results shown here with the thin plate spline have shown to have the
lowest SSD of the three methods. Slice 55 gave a really good result and slice 35



Figure 3.25: Extracted landmarks of the belly and the whole middle.

Figure 3.26: Color image showing whole middle with the registered slice 35 on
top.

a less good result. Studies of the slices showed that the two interfaces must be
far away from one another, to get a resonable result, but unfortunately only few
of the slices in the whole pig middle has this property, so using the thin plate
spline is not a possibility.



Figure 3.27: Difference image of thin plate spline transfomation of slice 35.



Chapter 4

Finding Cuttings using Ad hoc

Methods

The previous section showed that neither of the three studied image registration
methods could find the cuttings in the pig middle. To analyse the data further
some ad hoc methods must be developed to find the cuttings.

4.1 Description of the Ad Hoc Methods

This section describes the ad hoc methods used to find the cuttings.

4.1.1 Spine

The cut off spine is a long triangular shaped object, see figure 4.2 top and 4.1.
Figure 4.1 shows a projection of the spine onto the yz-plane, the resolution in
the z-direction is clearly lower. The figure also shows the slight curvedness that
the spine possesses. The curvedness and the low resolution in the z-direction
rules out the possibility of using image registration. Instead, we can represent
the spine by model and transfer this to the pig middle.



Figure 4.1: Projection of the spine.

4.1.1.1 Triangular Spine Model

As figure 4.2 shows, the spine is almost triangular but also that there is a large
variation in the size of the spine segments along the spine. Since the shape
of the spine is almost a triangle, we can represent the spine with a model of
a triangle. The model has six parameters, two for each corner of the model
triangle. The fit is found using a Nelder-Mead Simplex Search [13] in shape of
Matlabs fminsearch. Given a set of model triangle corners, the cost to minimize
is constructed in the following way:

1. find the mean value of the spine in the image IData by averaging all pixel
intensities above -500

2. initialize the model image IModel to have the same size as the spine image
and fill with -1000 (air background)

3. in IModel, set pixels inside the model triangle to the mean value of the
spine

4. compute the cost as the SSD of IModel and IData

We have no ground truth to use for evaluation of the fit, but visual inspection
shows that the results in general are reasonable and can be used for further
analysis.

4.1.1.2 Spine Matching

Now that the cut off spine has been found, it should be transfered to the whole
pig middle. The slice correspondance is wasy to find since both the cut off spine



Figure 4.2: Left: Slice 8. Right: Slice 30. Top: Spine. Middle: Fittet model of
spine. Bottom: Model on top of the spine.

and the whole pig middle are straight. To transfer the spine, the top point of
the pig middle must be found, see figure 4.3 left. First we notice the splitting
line (blue curve in figure 4.3 right), where the carcass was cut in two, is very
close to being a straight line. The top point is on this line, so if we can find the
line, can also find the top point. The procedure is:

1. threshold the image at 200

2. take the vertical derivative of the thresholded image, see figure 4.3 middle



3. do a Hough transform to get a slope/intersection-description of the line
candidates in the image

4. remove line candidates with very negative slope

5. select line candidate with the most votes from the Hough transform

6. search in direction of the line

7. the top point is the first pixel with background intensity, see figure 4.3
right

Figure 4.3: Left: • marks the to point. Middle: Edge map of thresholded image.
Right: Splitting line found by Hough tranform. The point to the right is the
top point.

Now the top point has been found, the spine model can be transfered to the
image of the whole pig middle. Assuming the correspondence between slices
is correct, we can for each slice in the pig middle find the corresponding three
points in the spine model. Following notation of figure 4.4, matching of the cut
and the uncut spine to each other is done in the following manner:

1. P1, Q1, Q2, Q3 and the splitting line of the pig middle is known

2. place the top points P1 and Q1 of the two spines on top of each other

3. rotate the spine model so Q2 is on the splitting line, this is P2

4. project the Q3 along the line Q2-Q3 onto the perimeter of the pig middle,
this is P3



Figure 4.4: Left: Pig middle with point notation. Right: Spine model with
point notation.

The projection along the line Q2-Q3 to find P3 is done to assure that the cutting
point exist on the perimeter of the middle. Especially the points P2 and P3 are
interesting, since they define the cutting line for the spine, one of the things we
are looking for.

4.1.2 Ribs

The cut off ribs is flat and smoothly bended structure, see figure 4.5. The
resolution in the z-direction is low, as with the spine, making it difficult to tell
one rib from the other. To find out where the ribs were cut off, a couple of ideas
was tried out before the one eventually used. The first idea was that since the
ribs are a rigid structure, it would be possible to rigid register the rib surface
of the cut off ribs on the rib surface of the whole pig middle using iterative
closest point (ICP). Apparently, the ribs are not a rigid structure as assumed.
It turns out that cutting off the ribs and placing them in the scanner causes
some deformation. This is because there is meat between each of the rigid ribs,
which of course is soft and therefore flexible.
Next idea was to do a connected component analysis of the ribs to match ribs
one by one. Unfortunately, the resolution in the z-direction is so low that is it
makes it very difficult to make an algorithm that can seperate out the individual
ribs. Since we have no method for finding correspondence between the cut off
ribs and the ribs on the pig middle, we instead try to measure the rib length
slice by slice.



Figure 4.5: Left: Ribs seen from top. Right: Ribs seen from side

4.1.2.1 Measuring Rib Length

This will describe a method for measuring rib length. The procedure is:

1. threshold the image at -500

2. find points in the thresholded image

3. fit circle to points in iterative way using Nelder-Mead Simplex Search:

(a) given center (cx, cy), radius r and image points (x, y)

(b) compute cost as
∑

(|(x, y) − (cx, cy)| − r)2

(c) take step according to Nelder-Mead

(d) if converged then stop, else go to 2

4. image points to polar coordinates with (cx, cy) as center

5. fit polynomial to image points in polar coordinates

6. sample along the polynomial and find end points of rib

7. go from polar to cartesian coordinates

8. measure distance between sample points and sum to get the rib length

Figure 4.6 shows the circle estimated for the rib shown in figure 4.5 right. Since
most of the ribs naturally has a shape close to the on of a circle arc, circle fitting
is an easy way to straighten it out. The straightent out rib (figure 4.7) will of
course still have some curvature in the polar domain, but much less. The use
of a polynomial to find the medial axis of the rib ensures a smooth medial axis,
and turns out to be a very robust way of doing it compared to e.g. thinning
or skeletonization, which are prone to error if there are spatial irregularities.
Figure 4.8 shows the found medial axis for the rib including end points. Figure
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Figure 4.6: Image points fittet with a circle.
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Figure 4.7: Polar transformed image points fittet with a polynomial.
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Figure 4.8: Image points with measuring path and end points plottet on top.

4.9 is a plot of the ribs in figure 4.5. One should be carefull when deducing
anything about the rib length directly from figure 4.5 since this is a projection
onto a plane and therefore removes some of the curvature information.
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Figure 4.9: Measured length of the cut off ribs from middle 2557.



4.1.2.2 Rib Cutting

Having measured the length of the cut off ribs, these can now transfered onto
the whole pig middle to find where the ribs are cut off. Given a rib length Lrib

at a specific slice on the whole pig middle we find the rib cutting point in the
following way:

1. find the spine cutting point P3, which defines where the spine and the ribs
are seperated

2. from a point above the pig middle, shot out radial lines with a distance
0.05 radians, see figure 4.10

3. mark where every line hits the surface of the pig middle

4. measure distance between marks and sum up until equal to the given rib
length Lrib

Figure 4.10: Illustration of rib cutting process.

As mentioned earlier, it is not possible to find corresondence between the cut off
ribs and the ribs on the whole pig middle. The results in section 4.2 show that
the individual ribs of the cut off ribs almost have equal length. For this reason,
the only thing we need to find an approximate cut of the ribs on the pig middle,
is the point P3 and the mean rib length of the corresponding cut off ribs. Note
that the cut of the ribs is only defined where the ribs are present, i.e. in the
lower part of the pig middle it does not make sense to have a rib cutting point.



4.1.3 Back

The back is the biggest product of them all. It is very flexible, but during the
scanning it has been placed in such a way that it is easy to find slice correspon-
dence between the cut off back and the back on the pig middle. Knowing slice
correspondence makes it possible to develop a simple way of finding the place on
the skin where the back and the belly are seperated. Note that we only find the
place on the skin, not the whole cut. Assuming that the skin is unstretchable,
like we did for the thin plate spline transformation, we can find the width of the
cut off back and transfer it onto the whole pig middle.

4.1.4 Back Cutting

The first step is to measure the cut off back width. We are only interested
in the width of the skin, since this is assumed to be unstretchable. When the
back was scanned, it was scanned with the skin side down towards the shelf.
The flexibility of the back would make the skin lie almost flat against the shelf.
Given a slice of the back, see figure 4.11 left, the procedure for finding the skin
is:

1. make a mask that covers the lowest 5 pixels on the back, see figure 4.11.
This forms a preliminary region of interest.

2. Threshold the back image at 0. Skin has a intensity above 0. See figure
4.11.

3. perform an AND-operation on the mask and the thresholded image.

4. find for each image column in the AND-image the pixel closest the bottom
of the image.

5. measure distance between pointson the found skin and sum to get the
width

It is a simple way of finding the skin but it works because the skin side is
towards the shelf and the skin has an intensity that is different from that of the
subcutaneous fat. Repeating the above for each slice in the cut off back, the
width along the back can be found. Figure 4.13 shows the width for each slice
in the cut off back from middle 2557.

To actually find where on the pig middle the cutting point should be we also
need to find the skin on the whole pig middle. Fortunately the same procedure



Figure 4.11: Left: Slice 30 from the back from pig middle 2557. Right: White
is the actual mask, gray is outline of the back.

Figure 4.12: Left: Back thresholded at 0. Right: The found skin edge.
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Figure 4.13: Back width for each slice in the cut off back from middle 2557.

can be used as used for the cut off back, see figure 4.14. The only difference is
just the size of the object.

Finding the cutting point on whole pig middle is done by measuring cumu-
lated sum of the distances between the found skin points. The point where the
cumulated sum is equal to the width of the cut off back, is the point we are
looking for.



Figure 4.14: The found skin edge on the whole pig middle.

4.2 Results

This section will sum up the results of using the ad hoc methods for finding the
cuttings.

4.2.1 Rib Length Statistics

To gain more knowledge about the cutting process of the ribs a study how the
rib length varies. It is interesting to know if all the individual ribs are cut at the
same length or not. For this reason we make small statistical study. For each of
the cut off ribs we fit a straight line to the measured rib length, see figure 4.15.
We only include points ”inside” the rib, i.e. we leave out the measured lengths
near the two ends of the rib. The slope α of these lines can then be studied.
The mean of the 35 α’s for all the cut off ribs is 0.37mm

cm
with a 95% confidence

interval of [0.2068; 0.5332]mm
cm

, see figure 4.16 for histogram. From this we can
conclude that the individual ribs are not cut off at the same length since the
confidence interval does not contain 0. It is a bit hard to argue that this would
have any consequence at all in practise. A 30 cm long rib would be cut off with
a difference of 0.37mm

cm
· 30cm = 11mm. The ribs are approximately 150 mm

long, meaning that the maximum error is in the order of 5-10%.
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Figure 4.15: Line fittet to the measured length of the cut off ribs from middle
2557.
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Figure 4.16: Histogram of α for the cut off ribs.
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Figure 4.17: Histogram of α for the cut off backs.

4.2.2 Back Width Statistics

Like with the ribs, it is interesting to study how the width varies from back to
back. Again, we fit a straight line to the measured width and record the slope α,
see figure 4.15 and 4.13. The mean of the α’s is 0.2053mm

cm
with a 95% confidence

interval of [0.1118; 0.2987]mm
cm

. Again, we can reject with 95% certainty that the
cuts are straight, since the confidence interval does not contain 0. A back is
around 50 cm long, meaning that there is an absolut error on the cut in the
order 0.2053mm

cm
· 50cm = 10mm.



4.2.3 Transfered Cuttings

Transfering all the cuttings using the methods described in the previous sections,
we get a pig middle with four cuttings points in each slice. There might be one
or two of the end slices in the pig middle which do not have all cutting points,
but since it is only one or two and they are in the ends of the pig middle, it is
not so important. Two examples of transfered cuttings are shown in the next.

4.2.3.1 Pig Middle 2557

Figure 4.18: Cutting points on pig middle 2557 slice 15.

Figure 4.19: Cutting points on pig middle 2557 slice 30.



Figure 4.20: Cutting points on pig middle 2557 slice 45.

Figure 4.21: Cutting points on pig middle 2557 projected onto xz-plane. The
rib cutting point is plottet even in slices where it does not make sense. Two
upper red are the spine cuts, blue line is the back cut and the lower red is the
rib cut.



4.2.3.2 Pig Middle 8803

Figure 4.22: Cutting points on pig middle 8803 slice 15.

Figure 4.23: Cutting points on pig middle 8803 slice 30.

4.2.4 Discussion

There is no doubt that the ad hoc methods described here are limited in their
precision. It is also difficult to find a way to test the methods, since they are
ad hoc methods and therefore does not generalise to other kinds of data. Still,
visual inspection of the results, show that the results are good enough at least
as toy data to test other methods.



Figure 4.24: Cutting points on pig middle 8803 slice 45.

Figure 4.25: Cutting points on pig middle 8803 projected onto xz-plane. The
rib cutting point is plottet even in slices where it does not make sense. Two
upper red are the spine cuts, blue line is the back cut and the lower red is the
rib cut.



Chapter 5

Statistical Shape Model of

Cuttings

Now that we have the cuttings on every of the pig middles, it is interesting to
study the variation of these cuttings from pig middle to pig middle. A such will
give us a clue about where the middle cutting machine is the least precise. To
model the shape variation of the cuttings, a common reference for is needed.
When we have common reference we can start to analyse the variations.

5.1 Preliminaries

This section contains theory for a method used several in the next section.

5.1.1 Robust Smoothing Spline

Some times it is necessary to model a set of points by a certain function f , often
times this function f is a polynomial, due to their nice and well-understood
properties. Though polynomials often are excellent choices, they often fail when
they are used for extrapolation. This is because there is no constraints on the



curvedness of the polynomial, so when they leave the domain of data support
they ”explode”, see figure 5.1. Instead, 1-dimensional thin plate splines, called
smoothing splines, can be used. In the 1-dimensional case, where N points x

are mapped onto N points y, we have

[

A + λI P

P T Z

] [

w

a

]

=

[

y

z

]

(5.1)

where Ai,j = |xi − yj |, P i,: = (1, xi) and Z and z are 2 × 2 and 2 × 1 zero
matrices respectively. I is the N ×N identity matrix, λ is a scalar, w is N × 1
and ay is 2 × 1. This is basically the same as equation (3.24), except for the
cahnge in dimension and the U -function. The solution scheme is also similar to
the one described earlier.

Although non-parametric of nature, it is still poossible to adjust the spline
using λ. The problem is to determine how large a λ should be. With polynomi-
als a closed form is available for the solution that minimizes the residual error
variance. In a sense, the same exist for the smoothing spline, but in that case
it will be λ = 0. Instead, if the variance of the errors on the data points where
known, it would be possible to find the λ that make the data point variance σ2

y

equal to the residual error variance σ2
res.

Assume the underlying function for the data points y is the smooth function
S(x) and the noise on the data points are normal distributed with ǫ ∼ N(0, σ2

y)

yi = S(xi) + ǫ (5.2)

Now consider the difference of two successive points yi and yi+1

yi+1 − yi = [S(xi+1) + ǫi+1] − [S(xi) + ǫi] ≈ ǫi+1 − ǫi (5.3)

where it is assumed that S(xi+1) − S(xi) ≈ 0 because S is smooth. Hence the
variance of the difference var(yi+1 − yi) is

var(yi+1 − yi) ≈ var(ǫi+1 − ǫi) = var(ǫi+1) + var(ǫi) = 2σ2
y (5.4)

So to find an estimate of σ2
y we can average the N − 1 point differences

σ̂2
y =

1

2(N − 1)

N−1
∑

i=1

(yi+1 − yi)
2. (5.5)

If no extreme outliers are present, the presented method for variance estimation
should give a reliable result[22].



Having an estimate of the variance we can setup a minimization problem. Let
f(λ, x, y) be the smoothing spline

min
λ

var(f(λ, x, y) − y) − σ̂2
y (5.6)

The minimization itself can be done in a simple fashion by iteratively applying
a Newton steps and checking for negative vaules of λ, or mapping the λ to a
function that is spans the whole R. Strictly speaking it is a constrained problem
that should be solved using Lagrange multipliers, but since it is so simple as it
is, Lagrange multipliers is a bit overkill [15].
Figure 5.1 shows 200 points from the function S(x) = tanh(x−100

10 ) + x
100 added

som noise with σ2 = 0.01, a fittet polynomial of degree 8 and a smoothed
spline. The spline is a better fit than the polynomial and it is also possible
to extrapolate the spline in points close to the domain of support. Table 5.1.1
shows the residual variance of fittet polynomials degree 2 to 15. The residual
variance of the spline is σ2

res = 0.0079, so the spline seems to overfit just a little
bit. The polynomial degree must at least be 15 to match the spline fit.
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Figure 5.1: Data •, polynomial degree 8 — and smoothing spline —.



Poly. deg. 2 3 4 5 6 7 8
σ2

res 0.1631 0.0635 0.0634 0.0296 0.0295 0.0148 0.0147

Poly. deg. 9 10 11 12 13 14 15
σ2

res 0.0076 0.0076 0.0040 0.0040 0.0021 0.0021 0.0011

5.2 Inter-middle registration

In order to capture the difference between the cuttings on the different middles,
it is necessary to do an inter-middle registration. This means that all the middles
has to be registered to the so called mean pig middle. The mean pig middle µ
is the pig middle which is the mean of all the pig middles in the hyperspace in
which they exist. The problem is that we do not know the mean pig middle,
but we can estimate it on basis of data. The acutal image registration is done
using the nonrigid B-spline based free-from deformation described previously. It
did not do well registering products to whole pig middles, but for this purpose
where there is one-to-one correspondnce it works well. To find the mean pig
middle, the following steps were done:

1. choose a temporary mean pig middle µtmp in the set. We choose the one
with the median volume to avoid being out in the extremes of the pig
middle distribution

2. register all the pig middles to µtmp

3. store transformation for each of these registrations

4. find the mean of all the transformations

5. transform µtmp according to this mean transformation to get µ

6. re-register all pig middles to µ

Doing this and we will have a common reference for all the pig middles. This
means that we in theory can go from any point in a pig middle to the same point
in any other pig middle [21]. After the cutting points have been transfered onto
the mean pig middle, they are interpolated in every slice using a smoothing
spline. This is done to make sure all slices in the mean pig middle have all
cutting points.

Figure 5.2 shows an projection of the mean pig middle. The shape of the
whole middle looks fine, but if one looks at the bone structure, one can see
some bending of the ribs. This is because the registration method does not
know that the bones really are rigid structures that cannot be bended. Figure
5.3 show some slices of the mean pig middle. They are reasonable, the edges
between meat and fat are sharp, and not blurry as one could fear.



Figure 5.2: Left: Mean pig middle projected onto the xz-plane. Right: Bones
in the mean pig middle projected onto the xz-plane.

5.3 Statistical Shape Model

Having a common reference, we can now build a statistical shape model of the
cuttings.

5.3.1 Theory

Given is a point set x in an d-dimensional space describing N shapes. First the
mean shape is found

xµ =
1

N

N
∑

i

xi (5.7)

and then the covariance of the shapes is found

S =
1

N − 1

N
∑

i

(xi − xµ)(xi − xµ)T (5.8)

The eigenvectors φi and eigenvalues λi of the covariance is found (this is a so
called principal component analysis(PCA)). Each eigenvector describe a direc-
tion of variation in the dataset, the corresponding eigenvalue quantifies how
much it describes. Sorting the eigenvectors by their corresponding eigenvalues,
therefore gives you a method for simplifying your dataset. If d is large, the pre-
cision of the PCA will be low, so instead it may be useful to find the eigenvalues
and the eigenvector using a singular value decomposition (SVD) [16]. The data
can now be modelled by

x = xµ +

p
∑

1

φibi (5.9)



Figure 5.3: Mean pig middle. Top: Slice 15. Middle: Slice 30. Bottom: Slice
45.

where

b = φT (x − xµ) (5.10)

If the parameter bi is constrained to ±3
√

λi, the model will only describe shapes
that are within the range of the original data. The parameter p determines how
much of the variation in the dataset we want to model. Often p is chosen such
that the model describes 95% of the variation. The value of p is found as the p
for which the sum of the p largest eigenvectors is equal to 95% of the sum of all
eigenvectors:

p
∑

1

λi = 0.95

d
∑

1

λi. (5.11)



5.3.2 Results

We build the shape model from the location of the cuttings points in each slice.
There are 56 slices in the mean pig middle giving a total of 2 × 4 × 56 = 448
parameters. Figure 5.4 shows the eigenvalue plot of the shape model. By using
the 13 eigenvectors with the largest eigenvalues, you get a model that covers
95% of the data set. The first and second mode of the shape model are shown
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Figure 5.4: Eigenvalue plot for the shape model.

in figure 5.5 and 5.6. Blue is mean, red is +3
√

λ and green is −3
√

λ. The first
mode seems to describes the variation in the rib cutting points and some of the
spine cutting points. The second mode describes a mostly variation on the spine
cutting points.

5.4 Virtual Cutting

Since we in theory are able to go back and forth between the different cooor-
dinate systems of the pig middles, we can do a so called virtual cutting. The
virtual cutting is the mean cuts on the mean pig middle that are transformed
back onto any pig middle that has been registered to the mean pig middle. In
theory it works, but the software used to do the registration is not able to do



0

50

100

150

200

250

0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

mean +/− 3 st. dev.

Figure 5.5: First mode of the shape model.
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Figure 5.6: Second mode of the shape model.



the correct transformation back. This is an example of the forward/inverse exis-
tence problem discussed earlier. The result of registering a pig middle back and
forth is the result shown in figure 5.7. The problem is that the inverse cannot
be estimated good enough by the software so the is a lot of spatial errors. How
it estimated and why it fails, is not known, since the software is a black box.

Figure 5.7: Pig middle transformed back and forth.

5.5 Discussion

The quality of the cutting points that were inputted into the shape model was
not as good as one could have wished for. We now that the there is a systematic
error on the rib cut point (we used the mean length of the rib), and this is can
suddenly be seen in the shape model in form of the first mode. Theory behind
the shape model is strong enough and we also care about precision by using
SVD, but if the data is of less good quality, the result will the same.
The problem with the virtual cutting has nothing to do with data, but is con-
nected to the way the inverse is estimated.





Chapter 6

Conclusion

6.1 Conclusion

This thesis has described the topic of modelling cuttings of pig carcasses. First
the data was pre-processed to remove the shelves in the scanner. Also a method
for reducing bit resolution with truncation and scaling was studied and applied
to data.

The theory behind image analysis was investigated and a few image registration
methods were implemented and applied to data. The use of image analsysis for
finding cuttings was unsuccesfull.

A number of ad hoc methods for finding the cuttings were developed with suc-
ces, though their precicion is not as good as one could wish for. The methods
were applied to the whole data set to get a full set of cutting points to use in
further analysis.

Statistical shape models were studied and one was build on basis on the cutting
points. 13 eigenvectors showed to be enough to describe 95% of the data varia-
tion. It demonstrated the principle of statistical shape models, but due to the
low precision on the data, it was not useful in practice.



A virtual cutting method was briefly touched, but due to software problems,
it did not give good results.

6.2 Future work

For a fully succesfull project one or more of these things may be considered:

1. the data has too low resolution in the z-direction, isotropic voxels best,
but anything smaller than 10 mm is an improvement.

2. development of volume constraining image registration method, e.g. [17].

3. development of a registration method that has both forward and inverse,
or at least the possibility to estimate it well.



Appendix A

Pig middle scanning numbers

Table of pig middle scanning numbers.



Carcass Uncut Cut Excluded
8803 27 26
8829 29 28
260 4 3

8864 31 30
2720 34 33
3256 36 35
3338 38 37
5962 40 39
6875 42 41
6926 44 43
2533 46 47
3290 48 49
2601 6 5
4193 50 51
4597 52 53
5526 54 55
6137 56 57
6976 58 59
6979 60 61 X
1403 63 64
1534 65 66
1805 67 68
2557 69 70
4152 7 - X
3218 71 72 X
5371 73 74
5991 75 76
9502 77 78
4288 9 8

2 80 81
1654 82 83
2223 84 85
7227 86 87
8362 88 89
9064 90 91
2522 93 94
2615 95 96
4332 97 98
6551 99 - X



Appendix B

Software

The implemented software (Matlab files) can be downloaded as an burnable ISO-
image from www.student.dtu.dk/∼s011572/thesis or contact the author by
email allan@lyckegaard.dk.

www.student.dtu.dk/~s011572/thesis
allan@lyckegaard.dk
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