
Filtering of Periodic Noise Using
the Complex Wavelet Transform

Claus Benjaminsen

Kongens Lyngby 2007

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

Engines, compressors and other machinery performing cyclic processes produce
a special kind of noise, which can be called periodic noise. This very common
phenomenon - often loud - can create great difficulties, when trying to com-
municate verbally with another person. With the signal processing possibilities
in cell phones and other telecommunication devices, this disturbance can be
removed.

In this report a periodic noise filtering scheme is presented based on nearly an-
alytic complex wavelet packets with good shift invariant properties. The shift
invariance comes from the Dual-Tree Complex Wavelet Transform, which the
nearly analytic complex wavelet packets are built on. But in order to fully
maintain the good shift invariant properties of the Dual-Tree Complex Wavelet
Transform, the extension to wavelet packets can not be done straight forwardly.
It turns out that a special ordering of the wavelet packet filters is needed, and
that specific ordering giving nearly analytic complex wavelet packets is devel-
oped and presented in this report.

The developed periodic noise filtering scheme gives promising results compared
to a spectral subtraction scheme in both a measure of the signal to noise ra-
tio and in a subjective listening test. The scheme calls for some further im-
provements and tests, but has a potential of making its way into tomorrows
telecommunication devices.

Resumé

Motorer, kompressorer og andre maskiner der udfører cykliske processer pro-
ducere en speciel type støj, som kan kaldes periodisk støj. Denne type støj er
et hyppigt fænomen, ofte højt, og kan skabe store problemer, n̊ar man prøver
at kommunikere verbalt med en anden person. Med de signalbehandlingsmu-
ligheder, som findes i mobiltelefoner og andre telekommunikationsudstyr, kan
denne forstyrrende støj blive fjernet.

I denne rapport bliver et periodisk støjfilteringssystem præsenteret baseret p̊a
næsten analytiske komplekse wavelet pakker med gode shift invariante egensk-
aber. Disse komplekse wavelet pakker bygger p̊a en Dual-Tree Complex Wavelet
Transformation, men for fuldt ud at beholde de gode shift invariante egensk-
aber af denne transformation, er udvidelsen til komplekse wavelet pakker ikke
lige frem. Det viser sig, at wavelet pakke filtrene skal være i en speciel orden,
og denne orden, som giver næsten analytiske komplekse wavelet pakker bliver
udviklet og præsenteret i denne rapport.

Det udviklede periodiske støjfiltreringssystem giver lovende resultater sammen-
lignet med en spectral subtraction metode b̊ade hvad ang̊ar signal til støj niveau
og i en subjektiv lyttetest. Det periodiske støjfiltreringssystem kræver nogle
yderligere forbedringer og test, men har et potentiale til at finde vej til mor-
gendagens telekommunikationsudstyr.

Preface

This master’s thesis was carried out in collaboration with Informatics and Math-
ematical Modelling at the Technical University of Denmark, and advised there
by associate professor Jan Larsen. The actual project work was done at the
Institut für Industrielle Informationstechnik, University of Karlsruhe, Germany,
in cooperation with MSc Thomas Weickert. The thesis is the fulfillment of the
final step in the electrical engineering master’s degree at the Technical Univer-
sity of Denmark. The project was started on January 8th 2007 and was handed
in approximately 7 months later on the 15th of August 2007.

The main topic of this thesis is speech signal processing. In this broad area
an especially interesting problem has been chosen, namely how to remove pe-
riodic noise corrupting a speech signal. Until now not a lot of research has
been put into dealing with periodic noise, because the capacity of electronics
has not allowed space for algorithms dealing with more specialized problems.
With advances in signal processing tools such as complex wavelets, and contin-
ued improvements in the processing power of electronics, new possibilities for
developing and implementing more powerful algorithms have arisen. The moti-
vation for this project lies in these new opportunities to deal with specialized,
but common and hence important problems like periodic noise.

Lyngby, August 2007

Claus Benjaminsen

Acknowledgements

Writing this thesis was a good and interesting process, and I would like to thank
my very encouraging and helpful German advisor Thomas Weickert, for being
ready to discuss my work and to come up with valuable comments and ideas at
any time. I would also like to thank my Danish advisor Jan Larsen for his time,
valuable observations and guidelines to help me complete this report. Further
I would like to give a special thanks to my sweet girlfriend Melanie, who was
always there to back me up, when things were not going as well as I wanted.
Also of course a special thanks to my family for always being supportive, and
a thanks to all other people who helped and contributed to my work on this
project.

Contents

Summary i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Overview of A Complete Periodic Noise Filtering System 2

1.2 Chapter Overview . 3

2 Basic Theory of Wavelet Filtering 5

2.1 The Wavelet Transform . 6

2.2 Wavelet Packets . 15

3 Periodic Noise and The Period Wavelet Packet Transform 25

3.1 Periodic Noise . 25

3.2 Period Wavelet Packet (PWP) Transform 26

4 Shift Invariance and Complex Wavelet Packets 39

4.1 Shift Invariant Real Wavelet Transforms 39

4.2 The Dual Tree Complex Wavelet Transform 41

4.3 Expanding the DTCWT to Complex Wavelet Packets 48

5 Implementation 57

5.1 Implementation of the Noise Period Analyzer and the Noise Filter 57

5.2 A Spectral Subtraction Scheme 60

5.3 Matlab Implementation . 60

6 Evaluation 63

6.1 Evaluating the Periodic Noise Filtering Scheme Using SNR’s . . 63

6.2 Evaluation Using Listening Test 73

7 Conclusion 79

7.1 The Achievements . 79

7.2 Outlook . 80

A Mathematical Derivation of Wavelet Transform Equations 83

A.1 The Forward Calculation . 84

A.2 The Inverse Calculation . 84

B Complex Wavelet Packet Transform Filter Coefficients 87

Chapter 1

Introduction

Telecommunication is everywhere in modern society, and the ability to talk
to another person through an electronic device is a natural thing. Everybody
has a cell phone and many people also use hand free headsets, so they can
talk to people anytime, anywhere, while doing any kind of activity. Having
only the voice transferred through such devices, the users rely heavily on good
sound quality with very little noise. This can normally be achieved using todays
technology, but that is not always good enough. There are many environments
in which background noise is unavoidable, and that can in many situations be
very annoying for the users and make their communication slow, difficult, faulty
or even impossible. Everybody knows the annoying situation where surrounding
noise corrupts the phone conversation, and you either have to yell into the phone
or find a quieter place to continue. This is currently an unsolved problem, but
with the right advances in electronics and signal processing, the situation could
be greatly improved.

This project is a step in the direction of developing tools to deal with such noise
problems. The focus has been put on a special, but common kind of background
noise called periodic noise. This kind of noise or sound is produced by machinery
performing cyclic processes such as engines, conveyor belts and compressors, but
is also produced in ordinary households by things such as vacuum cleaners, hand
mixers and blenders. This noise is nonstationary, because it changes with time,
but it changes in a special way, which can be exploited. The noise at time t can

not be used to say anything about the noise at any time t + x into the future,
but for the specific time t + T , where T is the period of the noise, it can give
useful information.

A tool which can use this information is the wavelet transform. The wavelet
transform can trade time information for frequency information in a good con-
trollable way, and hence it is well suited for working with periodic noise, where
the time information is important. This project therefore includes a lot of
wavelet theory, the extension to wavelet packets and the extension to complex
wavelets, plus the powerful development of the combination of the two. Further
it involves a period wavelet packet scheme, which basically tries to match the
wavelet packets to the given length of the noise periods. All of these things
are then put together to form a periodic noise filtering scheme with good noise
removal abilities. The overall goal is to preserve the speech signal, while sup-
pressing the noise, so that easier understanding of the spoken words is achieved.

1.1 Overview of A Complete Periodic Noise Fil-
tering System

A filtering system is often more than just a filter, typically other components
are also needed in order to effectively process the desired signal(s). A com-
plete system for filtering periodic noise is shown in figure 1.1. It consists of 4
components, which in corporation do the filtering task.

This project will not cover the whole filtering system, but focus on the two
blocks shown in gray, the Noise Period Analyzer and the Noise Filter. The
Noise Period Analyzer is processing the noise period for period. In order to do
that it needs information about when the speech isn’t present in the signal, and
how long the periods of the noise are. These informations are provided by the
Speech Pause Detector and the Period Length Estimator respectively, and the
development of these components are projects of themselves. In this project
the information from these two components are assumed available for the Noise
Period Analyzer.

The Noise Period Analyzer will construct a thresholding function, which is sup-
plied to the Noise Filter. In the Noise Filter the noisy speech signal is filtered
using the thresholding function, and the resulting signal is the output of the sys-
tem. Both the Noise Period Analyzer and the Noise Filter will be implemented
with complex wavelet packets, which will be developed in this project.

Speech Pause Detector

Period Length Estimator

Noise Period Analyzer

Noise Filter

Figure 1.1: A complete periodic noise filtering system.

1.2 Chapter Overview

This report is mainly dealing with wavelets and wavelet theory, but it doesn’t
require any prior knowledge in this area. Anybody with a basic knowledge of
signal processing can read this report, as it includes all the necessary theory to
understand the more advanced wavelet developments made in the later chap-
ters. The more advanced reader can therefore skip over most of the general the-
ory presented in chapter 2, which includes wavelet packets and denoising using
wavelets, and proceed to chapter 3. When specific theory from chapter 2 is used,
it is normally referenced, which makes it easy to jump back and read through
that specific section of chapter 2, when needed. In chapter 3 some insights into
periodic noise are given, and thereafter the period wavelet packet transform is
presented, and modifications to the transform are discussed. Chapter 4 starts
with a discussion of shift invariance and shift invariant wavelet transforms, and
proceeds with an introduction of the Dual-Tree Complex Wavelet Transform.
From this transform the extension to complex wavelet packets is made, and a

special ordering of the wavelet packet filters to achieve maximal shift invariance
is developed. The theory from all of these chapters is put together in chapter
5, where the Noise Period Analyzer and the Noise Filter are more thoroughly
described. Finally the periodic noise filtering scheme is tested in chapter 6, and
the report is ended with a conclusion and an outlook in chapter 7.

Chapter 2

Basic Theory of Wavelet

Filtering

Filtering is normally associated with the Fourier transform. Maybe the filtering
is not done in the frequency (Fourier) domain by transforming the signal, but
the filter used is normally designed to have specific frequency characteristics.
This standard filtering approach is effective in many situations, because time-
overlapping signals with different frequency contents can be separated in the
frequency domain. The biggest drawback of the Fourier Transform is that it
doesn’t give any time-information. It will show that certain frequencies are
contained in a signal, but not when they were present.

Time-information can be very important especially for time varying signals like
speech, and therefore other transforms have been developed, which try to give
both time- and frequency-information at the same time. Such transforms are for
instance the Short Time Fourier Transform (STFT) and the wavelet transform.
The STFT is calculated over a certain time-frame, the longer the frame the
higher the frequency resolution over the entire frequency range, this is therefore
a time-frequency resolution trade-off.

The Wavelet Transform is different in the aspect that the frequency resolution is
not uniform over the entire frequency range, but different for different frequency
bands. For the high frequencies the resolution is low, but the time resolution

is high, and for the lower frequencies that gradually changes toward higher
frequency resolution and lower time resolution. This predefined time-frequency
resolution structure is even relaxed with the extension to wavelet packets, which
makes it possible to choose the time-frequency resolution trade-off over the
entire frequency range. Such non-uniform time-frequency resolution can very
effectively be adapted to the processed signal, and this is in many cases an
advantage compared to the STFT.

In the following sections the wavelet transform will be introduced and the ex-
tension to wavelet packets will be presented in section 2.2.

2.1 The Wavelet Transform

2.1.1 Projection on Basis Functions

The wavelet transform is in principle the projection of a signal onto wavelet
basis functions. These are called scaling and wavelet functions and are normally
denoted by ϕj,k(t) and ψj,k(t) respectively.

2.1.1.1 The Scaling Function

The scaling functions are functions of two parameters j and k, which are called
the scaling coefficient and the shifting coefficient respectively [1]. This is a
result of how the scaling functions are defined, as scaled and shifted versions of
a “mother” scaling function:

ϕj,k(t) = 2j/2ϕ(2jt− k) (2.1)

Scaling functions with the same scale parameter j will all be shifted versions of
the same function, where the shift is controlled by the parameter k. The j + 1
scaling functions will be compressed versions of the scaling functions at level j
by a factor of 2, and the level j − 1 scaling functions will be expanded versions
also by a factor of 2.

An example of scaling functions at different levels is shown in figure 2.1. It is
clear how increasing j compress the scaling function, and hence increase the
time resolution. This comes as an expense in frequency resolution though, and
in that way j controls the time-frequency resolution trade-off.

10 20 30 40 50 60
−0.2

0
0.2
0.4
0.6

10 20 30 40 50 60
−0.2

0
0.2
0.4
0.6

10 20 30 40 50 60
−0.2

0
0.2
0.4
0.6

Daubechies 6 scaling functions at different levels j.

j − 1

j

j + 1

Figure 2.1: Daubechies 6 scaling functions at three different levels j.

At all levels the scaling functions with the same parameter j are orthogonal and
span a space Vj

Span
k

{ϕj,k(t)} = Vj (2.2)

which includes the spaces spanned by scaling functions at all lower levels (lower
values of j) [2]. This is illustrated in figure 2.2.

2.1.1.2 The Wavelet Function

The wavelet functions are in the same way as the scaling functions characterized
by the two parameters j and k:

ψj,k(t) = 2j/2ψ(2jt− k), Span
k

{ψj,k(t)} = Wj (2.3)

Also all the wavelet functions at a certain level are orthogonal and span a space
Wj , and these wavelet function spaces are orthogonal to each other. The space
Wj is also orthogonal to the space Vj and together they span the space Vj+1.
Mathematically this can be written as

Wj ⊥ Vj , Wj ⊕ Vj = Vj+1 (2.4)

and is illustrated in figure 2.2.

Since a scaling function at level j is included in the space spanned by the scaling
functions at level j + 1, it can be written as a linear combination of the level

... Vj+2 ⊃ Vj+1 ⊃ Vj Vj+1 = Wj ⊕ Vj

Wj+1 ⊥ (Wj ⊕ Vj)

Wj ⊥ Vj

Vj

Vj+1
Vj+2

Vj+3
Wj

Wj+1

Wj+2

Figure 2.2: Relation between the spaces spanned by scaling and wavelet func-
tions at different levels j.

j + 1 scaling functions

ϕj,0(t) =
∑

n

g0(n)ϕj+1,n(t) =
∑

n

g0(n)
√

2ϕj,n(2t) (2.5)

or

ϕ(t) =
∑

n

g0(n)
√

2ϕ(2t− n). (2.6)

For the wavelet functions we have Wj−1 ⊂ Vj and therefore, in the same way
as for the scaling functions, it is possible to write

ψj,0(t) =
∑

n

g1(n)
√

2ϕj,n(2t) (2.7)

and for Wj ⊥ Vj to be true one can show [2] that

g1(n) = (−1)kg0(1 − n) (2.8)

The g0 coefficients completely define the scaling function, and since they also
give the g1 coefficients, they are sufficient to describe a complete wavelet system
of scaling and wavelet functions. As will be apparent in section 2.1.2, the g0
and g1 coefficients are also what is used in practical calculations of the wavelet
transform.

2.1.2 Practical Calculation Using Filter Banks

2.1.2.1 Forward Wavelet Transform

Let us assume that the signal f(t) ∈ Vj1+1, then one possible basis in which
the signal can be fully represented is the collection of scaling functions at level
j1 +1. Another possible basis could be {Wj1 ,Vj1} and yet another one could be
{Wj1 ,Wj1−1,Vj1−1}. In that way it is possible to choose many different bases
in which the signal can be expanded, because the space spanned by the scaling
functions at level j, can always be spanned by wavelet functions and scaling
functions at a level below (j − 1). The signal f(t) can then be written as

f(t) =
∑

k

cj0(k)ϕj0,k(t) +

j1
∑

j=j0

∑

k

dj(k)ψj,k(t) (2.9)

where cj0(k) are the scaling function coefficients at level j0, and dj(k) are the
wavelet function coefficients at the levels from j0 to j1.

Instead of first choosing a basis for the wavelet transform, and then projecting
the input signal onto these basis functions by calculating the inner products,
it turns out that there is a more convenient way of calculating the wavelet
transform coefficients (c and d) namely by conjugate mirror filter banks [2]. As
shown in appendix A, there exists a simple relation between the scaling and
wavelet function coefficients at level j and the scaling function coefficients at
level j + 1

cj(k) =
∑

m

g0(m− 2k)cj+1(m) (2.10)

dj(k) =
∑

m

g1(m− 2k)cj+1(m) (2.11)

where g0 and g1 are the same as in equations (2.6) and (2.7).

These equations actually corresponds to a filtering operation of cj+1 by g(−n) =
h(n) followed by down-sampling by a factor 2 as shown in figure 2.3.

The coefficients from the highpass filter are the wavelet coefficients correspond-
ing to a projection onto the wavelet functions at level j, and the coefficients
from the lowpass filter are the projections onto scaling functions at level j. As
a good approximation, samples of an input signal can be used as the highest
level scaling function coefficients [3]. If more filter bank stages are applied to
the scaling function coefficients, the result is a filter bank, which give an easy
way of calculating the wavelet transform of an input signal as shown in figure
2.4.

cj+1

h0(n)

h1(n) 2

2

dj(k)

cj(k)

Figure 2.3: A single wavelet decomposition stage.

x(n)

h0(n)

h0(n)

h0(n)

h1(n)

h1(n)

h1(n)

2

2

2

2

2

2

d2(k)

c2(k)

d1(k)

c1(k)

d0(k)

c0(k)

Figure 2.4: Filter bank used to calculate the wavelet transform of an input signal
x.

By convention, the coefficients at the lowest level is denoted by 0, and the
coefficients at higher levels are then numbered accordingly. It should be noted,
that when the transform is used the first coefficients one obtains (after the first
filtering stage) have the highest number, which depends on the depth of the
transform. It can therefore be rather confusing at times, how the coefficients
are numbered and ordered, so care must be taken in order to avoid mistakes.

Since each stage in the filter bank reduces the number of scaling function co-
efficients by a factor 2, it is only possible to continue to extend the filter bank
as long as the number of scaling function coefficients are dividable by two.
Therefore the length of the input signal actually determines the highest possi-
ble number of sections in the filter bank and can be found by evaluating the
following expression:

rem
{

N, 2D
}

= 0. (2.12)

Here N is the length of the input signal, D is the number of filter stages and
rem {} is the remainder of the division of N by 2D. Often the length of the
input signal is required to be dyadic, that means it can be written in the form
N = 2L, where L is an integer, even though that is not necessary as long as the
above equation (2.12) is satisfied.

2.1.2.2 Inverse Wavelet Transform

The inverse transform is described by the equation

cj0+1(m) =
∑

k

cj0(k)g0(m− 2k) +
∑

k

dj0(k)g1(m− 2k) (2.13)

which is derived in appendix A.

This is equivalent to first up-sampling and then filtering of the scaling function
and wavelet function coefficients. The corresponding inverse filter bank is shown
in figure 2.5. In the figure the filters are denoted by g0 and g1, and they are the
reverse of h0 and h1 respectively, which were used in the forward transform.

x(n)

g0(n)

g0(n)

g0(n)

g1(n)

g1(n)

g1(n)

2

2

2

2

2

2

d2(k)

c2(k)

d1(k)

c1(k)

d0(k)

c0(k)

Figure 2.5: The inverse filter bank structure.

At each stage the scaling function coefficients are recombined with the wavelet
coefficients at the same level to reconstruct the scaling function coefficients at
the level above.

This structure can also be used to find the basis functions of the wavelet trans-
form. As can be seen from equation (2.9), each of the c and d coefficients are
a weight of a scaling or a wavelet function. Therefore if all coefficients are set
to 0, and only the dj0 (k0) coefficient is set to 1, then f(t) = ψj0,k0

(t) and the
inverse transform will reconstruct that particular wavelet function.

As seen above the wavelet filters are all that is needed to calculated the wavelet
transform. This also means that the design of wavelet systems is normally done
by designing the wavelet filters. These filters have to fulfill certain requirements,
which can be found in both [1] and [2] and most other wavelet literature. Since
wavelet filter design is beyond the scope of this project, it will not be discussed
here. Instead it is useful to note that the forward and inverse transforms form a
perfect reconstruction (PR) filter bank, which means that whatever is feed to the
forward transform can be exactly recovered by feeding the wavelet coefficients
to the inverse transform. Also the wavelet filters can be finite length FIR filters,
and that very short filters have been designed with good properties. This makes

it possible to implement the wavelet transform with low computation costs, and
since it can run on a sample by sample basis, it is well suited for real-time
applications.

2.1.2.3 The Filtering Operation

As shown above the wavelet transform is conveniently calculated using filtering
operations, which are based on convolutions. This is straight forward when the
sequences are infinitely long, but with finite length sequences, the edges of the
input signal need to be considered and circular convolution is then used. The
circular convolution is normally calculated as a normal convolution with the
input signal circularly extended as shown in figure 2.6. The extension is done
with Nf − 1 samples, where Nf is the number of coefficients in the filter. After
the convolution, only the convolution coefficients obtained, when the filter and
signal fully overlap, are kept.

11 22 33 4 5 6 7 8 9 10 ...

Circular extension with Nf − 1 samples

Figure 2.6: Circular convolution is calculated as a normal convolution by extend-
ing the input signal with Nf −1 samples. Then only the convolution coefficients
achieved, when filter and signal fully overlap, are kept.

The convolution operation (also the circular) is distributive meaning that

f ∗ (s+ n) = f ∗ s+ f ∗ n. (2.14)

Therefore the wavelet transform is also distributive. An interesting result of
this is that the wavelet coefficients of a noisy signal are equal to the sum of the
wavelet coefficients of the signal and the wavelet coefficients of the noise.

As will be described in the following section, each wavelet coefficient represents
the transformed signal in a certain time period. When looking at the wavelet
coefficients it is therefore important that they are aligned well with the input sig-
nal, so that they can be interpreted correctly. When doing the convolution, Nf

signal samples are combined in every convolution coefficient (Nf is the number
of filter coefficients), so which signal sample should the convolution coefficient
be aligned with? It is not possible to give a simple answer to that question, and
there is in principle no correct answer. The convolution is a weighted sum, so
depending on the distribution of the weights, some samples will have a bigger
effect on the convolution coefficient than others. The alignment should there-
fore in general depend on the filter coefficients, but a simple and in general

good approach is to align the convolution coefficient with a sample in the mid-
dle of the filter impulse response. This alignment can be achieved by shifting
the convolution coefficients after the whole convolution is done, or when using
circular convolution by extending the input sequence both in front and in the
back, before doing the convolution, as shown in figure 2.7.

11 22 3 4 5 6 7 89 910 10... ...

Circular extension in front with A samples Circular extension in the back with B samplesA+B = Nf − 1

Figure 2.7: The circular extension can also be done in front or both in front and
in the back, the results are the same just shifted.

2.1.3 Time-Frequency Interpretation

2.1.3.1 Parseval’s Theorem

The scaling and wavelet functions, which from here on will be referred to as
wavelet basis functions, all have the same energy independent of the level j.
This can be verified by examining equation (2.1) and (2.3), where the factor of
2j/2 ensures that the energy remains the same at different levels. The wavelet
basis functions are normally designed to fulfill

∫ ∞

−∞

ϕj,k(t)dt =

∫ ∞

−∞

ψj,k(t)dt = 1 (2.15)

which, along with the fact that the wavelet basis functions are orthogonal, means
that they form an orthonormal basis, and further that the energy of the wavelet
coefficients is equal to the energy of the original signal. This relation is for the
Fourier transform known as Parseval’s theorem and can be written as [1]

∑

n

|f(n)|2 =
∑

k

|cj0(k)|2 +

j1
∑

j=j0

∑

k

|dj(k)|2. (2.16)

The energy conservation in the wavelet domain is very useful for signal analysis,
as it makes it easier to interpret the wavelet coefficients.

2.1.3.2 Time-Frequency Planes

The filters h0 and h1 in figure 2.4 are low- and highpass filters respectively.
That means by each stage in the wavelet transform, the cj(k) coefficients are

split in a highpass part (dj−1(k)) and a lowpass part (cj−1(k)). In this way the
spectrum of the input signal is repeatedly divided [2] as illustrated in figure 2.8.

|H(Ω)|

0 π
16

π
8

π
4

π
2

Ω

c0 d0 d1 d2 d3

Figure 2.8: The wavelet transform splits a signal into smaller frequency bands.
Ω = 2πf

fs
is the normalized angular frequency, f is the actual frequency in Hz

and fs is the sampling frequency in Hz.

The energy of the input signal, which falls into a specific frequency band, is
represented by the corresponding set of wavelet or scaling function coefficients.
These coefficients are time dependent, and therefore carry information about
the input signal in both the time and the frequency domain.

If we first look at a discrete time signal, each sample will represent the energy of
the signal over all frequencies within the bandwidth of the signal determined by
the sampling rate. This bandwidth is given by the Nyquist sampling theorem

B =
fs

2
(2.17)

where fs is the sampling frequency. Therefore each sample will represent the
signal in a time period of T = 1

fs
and a frequency band of B = fs

2 . In a
time-frequency plane this gives a rectangle with an area of

A = TB =
1

fs

fs

2
=

1

2
(2.18)

and this is the highest possible resolution according to the Heisenberg Uncer-
tainty Principle [1]. For a discrete time signal each sample will therefore corre-
spond to a square in the time-frequency plane in figure 2.9(a).

The same time-frequency plane can be drawn for a Fourier transformed signal.
In that case each Fourier coefficient corresponds to a certain frequency band
and represents the energy in that frequency band during the entire time length
of the signal. This is shown in figure 2.9(b).

frequency

timex(n)

(a) Time samples

frequency

time

X(ω)

(b) Fourier coefficients

frequency

time

d2(k)

d1(k)

d0(k)

c0(k)

(c) Wavelet coefficients

Figure 2.9: Time-frequency planes for a signal in different domains.

Finally comparing with a wavelet transformed signal, it is found to be in between
the discrete time signal and the Fourier transformed signal, because the wavelet
coefficients carry both time and frequency information. Each filtering stage in
the wavelet transform splits the signal up in two, one sequence carrying the
upper half of the frequencies in the signal (the d coefficients) and the other
carrying the lower half (the c coefficients). In that way the new coefficients
represents half as wide frequency bands, but since the sequences are at the
same time down-sampled, the time period is also doubled. The result is a time-
frequency plane like the one shown in figure 2.9(c).

It should be noted here that no practical filters have a vertical transition between
the passband and the stopband, therefore a small part of the energy from the
lower frequencies will always be present in the d coefficients representing the
high frequencies and vice versa. The horizontal lines between the squares in
figure 2.9(c) are therefore only approximate, and in reality no exact line can be
drawn, because energy is leaking between the squares.

2.2 Wavelet Packets

The filters h0 and h1 in figure 2.4 together with g0 and g1 in figure 2.5 are a
perfect reconstruction filter set, which means that when used as in the wavelet
transform, it will always be able to reconstruct the original signal. It is there-
fore straight forward to extend the wavelet transform, so that both the scaling
function coefficients and the wavelet function coefficients are repeatedly filtered
and down-sampled. This extension is called the wavelet packet transform and
is shown in the top of figure 2.12. Note that two filter pairs are shown dotted
to illustrate, that it is possible to choose many filter structures for the wavelet
packet transform.

The structure is often called a tree structure or a basis tree, and such a basis
tree for the above example is given in figure 2.10. Here the high and lowpass
filters are labeled with h and ℓ, and the numbers label what is called the nodes.
A node is a junction in the graph of the tree structure or can be considered as
the collection of the low- and highpass filters and the down-samplers following
the junction, see figure 2.12.

Basis

1

2 3

5 6

ℓ

ℓ

ℓ

ℓ

ℓ

h

h

h

h

h

Figure 2.10: The basis tree for the wavelet packet transform shown in figure
2.12.

It might seem strange how the low- and highpass filters are mixed in figure 2.10,
instead of all the lowpass filters in the left branches and the highpass filters in
the right branches. The special ordering is done to sort the outputs according to
frequency content of the input signal, so that the outputs containing coefficients
coming from the lowest frequencies in the input signal are on the far left, and
going to the right in the tree means increasing frequencies. Why this is not
achieved, when all the left branches contain lowpass filters, is a result of down-
sampling the outputs of the highpass filters. Note that it is in the nodes after
the highpass filters, in figure 2.10 node 3, 5 and 6, where the filters are switched
around compared to the previous node.

To illustrate what is going on, the magnitude spectrum of the output of a
highpass filter is shown in the top of figure 2.11.

As the output signal is discrete the spectrum is repeated at Ω = ±π. After
the highpass filter the signal is down-sampled resulting in a sampling frequency,
which is half the previous one. This results in the spectrum in the bottom of
figure 2.11. Note how the spectrum in the range from −π to π has been turned

Highpass filtered signal

The same signal after down-sampling

|H(Ω)|

|H(Ω)|

−4π −3π −2π

−2π − 3π
2

−π

−π −−π
2

0

0

4π3π2π

2π3π
2

π

ππ
2

Ω

Ω

Figure 2.11: The top graph shows the magnitude spectrum of a highpass filtered
signal. The bottom graph shows the magnitude spectrum of the same signal
after down-sampling.

around, so that what was the high frequencies before the down-sampling (shown
with a thicker line) is now the low frequencies. That means that when the next
filter is a lowpass filter, it will actually pick out what was originally the high
frequencies of the input signal, and hence it will be in the right branch and the
highpass filter in the left.

What can also be seen in figure 2.11 is that the down-sampling also causes some
aliasing. This is not a problem in the sense, that the original signal can still
be perfectly reconstructed, but when the output coefficients are interpreted as
coming from different frequency bands, the aliasing has to be kept in mind.

Along with the structure of the filter bank in figure 2.12, an input vector of
eight elements is given, and the values of these eight samples are shown going
through each stage of the transform. Notice how the samples are labeled as
cd,b at the different nodes in the filter bank. The d gives the depth in the filter
bank, and the b the specific node at that depth. At depth d there are 2d nodes
labeled from 0 to b = 2d − 1. The number of coefficients nd from a given node
is determined by the depth and the number of input samples N as

nd =
N

2d
(2.19)

The nodes are also often numbered with just a single number as shown in figure

Wavelet Packet Filter Bank

Time-Frequency Planes

Node 3

x(n)

x(n)

h0(n)

h0(n)

h0(n)

h0(n)

h0(n)

h0(n)

h0(n)

h1(n)

h1(n)

h1(n)

h1(n)

h1(n)

h1(n)

h1(n)

2

2

2

2

2

2

2

2

2

2

2

2

2

2

c1,0

c1,0

c1,1

c1,1

c2,0

c2,0

c2,0

c2,1

c2,1

c2,2

c2,2

c2,3

c2,3

c2,3

c3,0

c3,1

c3,2

c3,2

c3,3

c3,3

c3,4

c3,4

c3,5

c3,5

c3,6

c3,7

x(0) x(1) x(2) x(3) x(4) x(5) x(6) x(7)

c1,0(0) c1,0(1) c1,0(2) c1,0(3) c1,1(0) c1,1(1) c1,1(2) c1,1(3)

c2,0(0)

c2,0(0)

c2,0(1)

c2,0(1) c2,1(0) c2,1(1) c2,2(0) c2,2(1)

c2,3(0)

c2,3(0)

c2,3(1)

c2,3(1)

c3,2(0) c3,3(0) c3,4(0) c3,5(0)

Figure 2.12: The wavelet packet transform.

2.10. The relation between the node number and the d and b parameters can
be written as

node = 2d + b (2.20)

Different basis tree structures results in different time-frequency tilings as shown
in the bottom of figure 2.12. Therefore knowing the input signal, it is possible to
find a basis tree, which matches the time-frequency content of the input signal,
and hence give a very compact representation of the signal. This is important,
because a compact representation, where the signal is represented using only a
few coefficients, is desirable for both compression and denoising problems.

2.2.1 Finding the Best Wavelet Packet Basis Tree

The basis tree which matches a given input signal the best, in the sense that
most of the signal energy is represented by fewest possible coefficients, can be
defined as follows [1]:

If the wavelet packet coefficients are sorted in descending order so that c(m) >
c(m+ 1), then the best basis tree a will be the one for which

M
∑

m=0

|ca(m)|2 ≥
M
∑

m=0

|cb(m)|2, 0 ≤M ≤ N − 1 (2.21)

over all other structures b, where N is the total number of wavelet packet co-
efficients. To find the best basis tree using the above relation requires a lot of
calculations, and therefore another equation has been constructed, which can
be used instead. It uses what is called a concave function and is written as

N
∑

m=1

Φ

(|ca(m)|2
‖f‖2

)

≤
N

∑

m=1

Φ

(|cb(m)|2
‖f‖2

)

(2.22)

where Φ is the concave function, and ‖f‖2 is the total energy of the input signal.
An example of a concave function is the entropy function defined as

Φ(x) = −x ln(x), x > 0 (2.23)

which in this project is used to find the best basis tree.

Equation (2.22) still requires one summation of all the wavelet coefficients for all
possible different basis trees. A fast implementation first calculates all possible
wavelet packet coefficients using a full basis tree, where all nodes are included.
Then it calculates the summation in equation (2.22) for all nodes, and from the
bottom of the basis tree it starts comparing the summations for the different
nodes. If in figure 2.12 the summation of the coefficients c2,3 is smaller than
the total summation of the coefficients c3,6 and c3,7, then node = 22 + 3 = 7 is
pruned away as shown by the dotted lines in figure 2.12. In that way the best
basis tree structure can be found efficiently, and such an algorithm is used in
this project to find the best basis tree for a given input signal.

The above described method assumes that the input signal can be used for
finding the best basis tree, but that might not always be the case. In a real-
time implementation it is not possible to wait for the complete input signal,
before starting to process it, because that would make the delay too large. This
problem will not be discussed further here, it will just be noted, that for a real-
time implementation another method for finding the best basis tree, without
using the input signal, needs to be found.

2.2.2 Wavelet Denoising Using Thresholding

2.2.2.1 White Noise

White noise is characterized by having its energy spread equally over all frequen-
cies at all times. That means all the time samples, all the Fourier coefficients and
all the wavelet and wavelet packet coefficients of a white noise signal will have
the same expected amount of noise energy. White noise is therefore equally well
(or equally bad) represented in the different domains as shown in figure 2.13,
but since speech signals can be compactly represented in the wavelet domain,
the wavelet packet transform can be used to effectively remove white noise from
speech signals as described in the next section.

100 200 300 400 500

5

10

5

10

100 200 300 400 500

5

10
A white Gaussian noise signal. The Fourier coefficients. The wavelet coefficients.

n Ω m

−π −π
2

00
0

0
π
2 π

Figure 2.13: The absolute value of 512 samples of white Gaussian noise in time
domain (left), Fourier coefficients (middle) and Daubechies 6 wavelet coefficients
(right).

2.2.2.2 Denoising

Denoising can also be considered as a separation problem. Usually there will be
a desired signal, which is corrupted by other signals considered as the noise. In
order to retrieve the desired signal, the noise needs to be decreased or preferably
completely removed. To do that you need to separate the desired signal from the
noise, so that they can be processed differently. When the noise is white, it will
be present in all wavelet packet coefficients with the same amount of energy. It
is therefore impossible to completely separate the desired signal from the noise
using the wavelet packet transform. But if the wavelet packet coefficients are
divided into two groups, one containing all the coefficients with signal energy
(the signal coefficients group), and the other containing coefficients with only
noise energy (the noise coefficients group), the best possible separation of the

signal and the noise has been achieved. And clearly the fewer coefficients used
to represent the signal, the less noise energy is included.

The problem is then how to determine, which coefficients contain signal energy,
and which contain only noise. If the noise is white and the energy is known,
its average impact on every coefficient is also know. Therefore a thresholding
value (Tn) is normally calculated or estimated, and all coefficients with absolute
values lower than the thresholding value are considered to mostly consist of
noise, and all values above to mostly consist of signal. An example is shown
in figure 2.14. All coefficients with values above the threshold are in the signal
coefficients group, and all coefficients with values below the threshold are in the
noise coefficients group.

500 1000 1500 2000
0

0.5

1

1.5

2

2.5

|c(
m

)|

m

Tn

Daubechies 6 wavelet packet coefficients.

Figure 2.14: The absolute value of Daubechies 6 wavelet packet coefficients from
a noisy speech signal. The black dotted line shows the thresholding value.

After the separation different thresholding methods can be used to process the
two groups of coefficients, before the inverse wavelet packet transform is applied.
Three of those thresholding methods are described here.

2.2.2.3 Hard Thresholding

The hard thresholding method is the easiest and most intuitive way of processing
the wavelet packet coefficients. It simply sets all the noise coefficients to zero
and leaves all the signal coefficients unchanged. Mathematically this can be

written as

fH(x) =

{

0 |x| ≤ Tn

x |x| > Tn
(2.24)

2.2.2.4 Soft Thresholding

In the soft thresholding method the noise coefficients are also set to zero, but
the signal coefficients are not left unchanged. If the noise is white, there will be
some noise in the signal coefficients, and the thresholding value is therefore sub-
tracted from these in order to reduce this noise contribution. The mathematical
representation is

fS(x) =

{

0 |x| ≤ Tn

sign(x)(|x| − Tn) |x| > Tn
(2.25)

The advantage of this method is that the thresholding value can normally be
decreased a little compared to the hard thresholding. The reason is that if a
coefficient containing only noise is just above the threshold value, it will be
decrease a lot, and therefore it isn’t as important, if it was just above the
threshold or not. This method decreases the signal group coefficients, which
normally has the effect that it smooths the output a little. If the thresholding
value is set too high, the output will be smoothed too much, which of course is
a drawback of the method.

2.2.2.5 Garrote Thresholding

Another interesting thresholding method is called Garrote [4]. This method is
also different in the way it processes the signal coefficients and the mathematical
representation is

f(x) =

{

0 |x| ≤ Tn

x− T 2

n

x |x| > Tn

(2.26)

In a way it is a compromise between hard and soft thresholding. When the
coefficients are just above the thresholding value, it works like soft threshold-
ing, subtracting the thresholding value from the coefficients. For the larger
coefficients the amount subtracted is decreasing. Thereby it achieves the good
properties of the soft thresholding method, but without smoothening the filtered
signal too much. The garrote thresholding function is used for all filtering tasks
in this project.

2.2.2.6 Colored Noise

When the energy of the noise signal is not evenly distributed over all frequencies,
but stationary, that is the statistics of the noise are not changing with time, the
noise is said to be colored. This has an implication on the threshold value,
because a given value might be good around some frequencies with low noise
energy, but at other frequencies, where the noise energy is bigger, it might be
poor. Since the wavelet packet coefficients represent different frequency bands
of the input signal, all coefficients belonging to the same frequency band, that
is coming from the same output filter, can be assumed to include the same
amount of noise. Hence an individual threshold value can be used for each
wavelet filter output, each adapted to the average noise energy at that particular
frequency band [5]. This can be viewed as a 1D thresholding function, because
the thresholding value is a function of one parameter, namely the frequency.

Chapter 3

Periodic Noise and The

Period Wavelet Packet

Transform

In the previous sections the wavelet packet transform has been described, and
how to filter stationary noise has been shortly mentioned. Before the method for
filtering periodic noise is presented in section 3.2, the next section will introduce
periodic noise and its characteristics.

3.1 Periodic Noise

The noise considered in this project is noise created by machinery, engines and
other types of cyclic processes. The noise will, to some extend, sound like con-
tinued repetitions of the same short sound signal, and is therefore in this project
denoted periodic noise. Since sounds are best described by their frequency con-
tent over time, the periodic noise can be described in the same way. The power
density spectrum of periodic noise will therefore to some extend be repeated in
time, and hence the repetition can be seen in time-frequency planes.

Another important aspect is the stationarity of the periodic noise. Being peri-

odic the noise can not really be said to be stationary, and only knowing that the
power density spectrum of the noise is periodic with time, it doesn’t necessarily
make it fall under the category of cyclostationary signals. On the other hand
it might be valid to say, that the periods of the noise can be stationary. If the
underlying process generating the noise periods is not changing with time, the
noise will be called periodically stationary. For periodically stationary noise the
n’th noise period will be just as good at describing the (n+1)’th noise period as
it will be at describing the (n+100)’th noise period. If that is not the case, the
noise will be denoted periodically nonstationary.

In the top of figure 3.1 a part of a periodically stationary noise signal is shown
in the time domain. The noise is recorded from a running car engine with a
sampling frequency of fs = 44.1kHz. In the plot about 6 periods of noise are
shown, the period length NT has been estimated to NT = 2731 samples, and
the vertical lines split the periods of the noise signal according to NT . It can
be seen that the noise signal looks somewhat periodic on such a large scale, but
when zooming in the periodicity is weakened. In the bottom plot of figure 3.1
the same noise signal is shown in a time-frequency plane. The time-frequency
plot is constructed using Symmlet 4 wavelets, and here the periodicity of the
power spectrum is seen. The periodicity is not as clear as could be expected,
which can be explained by several factors.

First the signal is a noise signal and include a certain amount of randomness.
Second the wavelet coefficients might not match the period of the noise signal,
more about that in the next sections. Third the period length of the periodic
noise is not perfectly stable, which makes the periods appear, as if they where
slightly shifted versions of each other.

3.2 Period Wavelet Packet (PWP) Transform

The periodicity of the power spectrum of periodic noise is information, which
we would like to exploit, when trying to remove the noise. In cases where the
noise is stationary and known to have a certain color, this information can be
used to make individual threshold values for each frequency band, as described
in section 2.2.2.6. This is in principle a 1D thresholding function, which only
depends on the frequency. When the noise is periodic, the thresholding function
also needs to be periodic with time. The suggestion is therefore, as proposed in
[6], to have a specific thresholding value not only for each frequency band, but
for each wavelet packet coefficient within a period. The resulting thresholding
function is a 2D function, which is dependent on both time and frequency.

2000 4000 6000 8000 10000 12000 14000 16000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

Periodic noise with estimated period length NT = 2731.

Time-frequency plane of periodic noise.

Time

F
re

q
u
en

cy

Figure 3.1: The top plot shows a part of a periodic noise signal recorded from a
running car engine in the time domain. The bottom plot shows the same signal
in a time-frequency plane.

The idea can easily be illustrated with an example. In figure 3.2 a speech signal
(the top plot) is contaminated by a repeated chirp signal considered as a periodic
noise signal (in the bottom plot).

During the first period of the noise, there is no speech, and this is therefore
considered as a speech pause. In the last periods of the noise the speech is
present. One can now imagine, that if the wavelet packet coefficients, obtained
during the first period of the noise, are subtracted from the coefficients during
the following periods, the noise will be removed. This is shown in figure 3.3.

This seems very straight forward, but as stated in [6], doing the wavelet trans-
form of only one period of noise is not a straight forward task.

3.2.1 The Periodicity of the Wavelet Packet Coefficients

The wavelet packet transform has a limited resolution in time, and in fact as
more stages are added to the filter bank, this resolution is decreasing; refer
to the squares in the time-frequency plane in figure 2.12. If a whole number
of squares, placed horizontally next to each other, don’t match the period of
the noise signal, then the wavelet packet coefficients won’t be periodic. If the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

F
re

q
u
en

cy
F
re

q
u
en

cy

Time

Time

Time-Frequency Plot

Figure 3.2: Top plot is a clean speech signal. The bottom plot is the same
speech signal contaminated by a periodic chirp signal.

coefficients of the first period are then subtracted from the coefficients in the
next period, the result won’t be good.

The problem is illustrated in figure 3.4, where the squares in the bottom of
the plot correspond to wavelet packet coefficients after 8 filter stages, and the
squares in the top part to only 7 filter stages.

Here it can be seen how the top part is perfectly periodic with every chirp
(period T = 0.2422s), while the bottom part is only periodic over two chirps
(period 2T). This is even one of the better cases, since the wavelet packet
coefficients show the right periodicity through 7 filter stages. If the noise period
is equal to an odd number of signal samples, the periodicity of the wavelet packet
coefficients is increased to 2T already after the first stage.

It is important to note that the periodicity in time is not the same as the
periodicity of the wavelet packet coefficients. A time period of T will correspond
to N = TfS number of signal samples, where fs is the sampling frequency. That
also means that after one filter stage in the wavelet packet transform, the time
period T corresponds to N1 = Tfs

2 wavelet packet coefficients at the first level of
the transform. If N is an odd number, then N1 is not going to be an integer, and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

F
re

q
u
en

cy

Time

Time-Frequency Plot

Figure 3.3: The speech signal after the noise was removed.

↑0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

F
re

q
u
en

cy

Time

Time-Frequency Plot

T

Figure 3.4: Wavelet transform of chirp signal with non-dyadic period length.

hence the periodicity of these level one coefficients will be 2N1 corresponding to
a time period of 2T .

Even if the noise period corresponds to an odd number of signal samples, it is
still possible to use the principle of subtracting the wavelet packet coefficients
from each other to remove the noise. Enough periods without speech are then
needed, so that at all levels there are at least one period of wavelet packet
coefficients. If, as in the worst case, the period T of the noise corresponds to
an odd number of signal samples, then after 5 filter stages the wavelet packet
coefficients would be periodic with a period of 25T . One could therefore assume
that the speech pause is long enough to give sufficient periods of the noise, which
might be possible. Normally the periodic noise will not be perfectly periodic
though, but each period will be slightly different from each other, therefore it is
desirable to extract as much information out of each period as possible. What
could be done is to repeat every period enough times, so that all the wavelet
packet coefficients get periodic; this would increase the number of computations
drastically, but would be a solution to the problem.

3.2.2 Sorting Wavelet Packet Coefficients Instead of Down-
sampling

The approach taken in [6] is in a way similar to that. Instead of repeating the
noise periods, before applying the wavelet packet transform, it does the wavelet
packet transform without down-sampling, and does a special kind of sorting
instead. If the down-sampling is not done at each stage, it is possible to get
all the information out of just one period of noise exactly as if the period was
repeated.

To see how the sorting works let’s assume that the periodic noise has a period
of NT = 10. In figure 3.5 two periods of the noise are shown in the first row.
The noise is fed into a wavelet packet transform.

11 33 44 55 66 77 88 99 1010

1’1’ 2’2’ 3’3’ 4’4’ 5’5’ 6’6’ 7’7’ 8’8’ 9’9’ 10’10’

1’1’ 3’3’ 5’5’ 7’7’ 9’9’

1”1” 3”3” 5”5” 7”7” 9”9”

1”1” 5”5” 9”9” 3”3” 7”7”

2

2

22

h

h

Input sequence

1st Filtered

1st Down-sampled

2nd Filtered

2nd Down-sampled

Figure 3.5: The wavelet packet transform of a periodic sequence.

After the sequence has been filtered (circular convolution) at the first stage,
the sequence is still periodic with NT = 10. The down-sampling results in the
sequence in the third row of figure 3.5. The period of the sequence is now
NT = 10

2 = 5. Going through another filter stage and down-sampling, the
samples in row five are obtained and NT = 5. If this is continued, the period
will remain NT = 5 at all lower stages. Now during the analysis of one noise
period, the samples should be arranged in the same way as in figure 3.5. How
that is done is shown in figure 3.6.

In the first row one period of noise is shown (NT = 10). After the first filtering
stage, instead of down-sampling the samples are reordered, so that only the odd
numbered samples are taken, and then repeated twice to maintain the same
number of samples at each stage. The result is shown in the third row. The
period is now NT = 5, which is odd, but since there are two periods, the signal
can be considered as having an even period of NT = 10, and so after the next
filtering stages, the reordering can be repeated and the sequence in the fifth row
is obtained. One can see that the sequences after the reordering (row three and
five) are matching the ones in figure 3.5.

1 3 4 5 6 7 8 9 10

1’ 2’ 3’ 4’ 5’ 6’ 7’ 8’ 9’ 10’

1’1’ 3’3’ 5’5’ 7’7’ 9’9’

1”1” 3”3” 5”5” 7”7” 9”9”

1”1”1” 5”5”5” 9”9”9” 3”3”3”3” 7”7”7”7”

2

h

h

Input sequence

1st Filtered

1st Reordered

2nd Filtered

2nd Reordered

Figure 3.6: The PWP transform of one period of noise.

If there weren’t two periods in the fourth row (only the samples 1”, 3”, 5”, 7”
and 9”), it would still be possible to obtain the sequence in the fifth row by
first taking the odd samples and then the even samples of just one period in
row four. Therefore if the length of the input noise sequence is odd, first the
samples at the odd places are taken, and then the samples at the even places.
That way the sequence continues to have the same length and the period also
remains the same.

Now it can be summarized how the sorting is done. If the period of the noise is
even then odd samples are taken and repeated. If the period is odd, first the odd
samples are taken followed by the even samples. The wavelet packet transform,
when using this reordering instead of normal down-sampling is called the period
wavelet packet (PWP) transform, and as seen it can be applied to sequences of
any length.

It can here be noted, that the above described scheme, which is given in [6], can
be speeded up a little. If the noise period is even, there is no reason to repeat the
down-sampled sequence, since that is in principle just causing more computation
in the following filtering stages. Instead a normal down-sampling can be done,
and the period of the down-sampled sequence needs to be remembered. When
the period then becomes odd, the scheme should be switched, and the following
stages should continue as if the noise period was odd. That is by first taking the
odd samples and then even samples. By changing the scheme periodic noise with
an even period NT requires almost only half the number of computations, when
NT is dividable by four only a little more than one fourth of the computations,
and so on. In a time critical implementation, this will therefore be an important
improvement.

3.2.3 Obtaining the Thresholding Packet

When the samples from one period have been obtained, they are combined with
samples from the following periods until the speech signal starts. In [6] an
averaging formula with a forgetting factor λ is suggested

F1(d, b, n) = P1(d, b, n)

Fk(d, b, n) =

∑k
i=1 λ

k−iPi(d, b, n)
∑k

i=1 λ
i

(3.1)

where Fk(d, b, n) is the averaged noise energy distribution after k periods, Pi(d, b, n)
is the analyzed noise energy distribution of period i, that is the PWP coefficients
found as described above, and λ is a forgetting factor. λ is a chosen value be-
tween zero and one, where one means that no periods are forgotten, and smaller
values gives the PWP coefficients of old periods a smaller weight in the average
compared to new coefficients. This is relevant for periodically nonstationary
noise, where consecutive noise periods will be more alike than periods further
apart.

The equations can be combined to a recursive equation

Fk+1(d, b, n) =
Pk(d, b, n) + Fk(d, b, n)

∑k
i=1 λ

i

∑k
i=1 λ

i
. (3.2)

The thresholding coefficients can be obtained and continuously updated during
speech pauses using the above equation and the PWP transform. The variable
Pk(d, b, n) contains one of each of the PWP coefficients in the period k, and hence
Fk(d, b, n) contains the same number of coefficients just averaged over the last
periods. The function in equation (3.2) will be called the average thresholding
packet.

Averaging the PWP coefficients over several periods seems like a good approach
for estimating the noise level at a given coefficient. There will of course be
a lot of noise coefficients above the average, so to use the average values for
thresholding something needs to be added or multiplied to the average values.
But without knowing the distributions of the coefficients, the variance might
be very different for different coefficients, and therefore a good value to add or
multiply a given coefficient with might be too small for other coefficients.

To avoid that problem a new updating function is constructed, which instead
of averaging the PWP coefficients take the max of the coefficients. In that way
the likelihood that noise, when the speech is present, is going to be above the
threshold is very low, and it will therefore also be less needed to multiply or

add anything to the thresholding coefficients. The max thresholding packet is
obtain using the following equation

Fk+1(d, b, n) = max {Pk(d, b, n), Fk(d, b, n)λ} . (3.3)

There is a chance that very big PWP coefficients are going to drive the threshold-
ing values too high, and therefore it will be more important to use a forgetting
factor λ, which is smaller than one, when periodically nonstationary noise is
processed.

3.2.4 Problem With Finite Length Sequences

As stated in section 2.1.2.3, filtering finite length sequences is done by circular
convolution. This actually causes a problem when the wavelet coefficients of
the noisy speech signal are thresholded using the thresholding coefficients. The
length of the input sequence to the standard wavelet packet transform is nor-
mally required to be N = 2L, or at least a length as given by equation (2.12).
This means that, when the input signal is periodic, the length can be written
as done in [6]

N = kT + ∆T, 0 ≤ ∆T < T (3.4)

where k is an integer, T is the period of the signal and ∆T is the length of the
last unfinished period. The last period of the signal is therefore in general not
complete as shown in figure 3.7.

1111 2222 333 44 ...

Circular extension

Figure 3.7: Circular extension of periodic signal. The last period is incorrectly
extended.

When the circular convolution is done, it is necessary to extend the signal, but
that actually destroys the periodicity of the signal in the last period. The result
is that some of the wavelet packet coefficients at the edge of the signal will
not be periodic as all the other coefficients. This is in principle not a problem,
since it is still possible to do the inverse calculation and reconstruct them again.
When the thresholding is done, using the coefficients from the PWP transform,
the coefficients at the edge of the signal will not match any coefficients in the
thresholding packet. This might seem like a minor problem when the input
sequence is very long, but the number of edge coefficients of each filter output
can be shown to remain constant after a few filter stages. Therefore in very
deep filter banks the edge coefficients might end up being a substantial part of
the low level coefficients.

3.2.4.1 One Approach Using Periodic Extension

The problem was already realized in [6], and the suggested solution was to
change the circular convolution in the standard wavelet packet transform. In-
stead of doing the normal extension, one could do a periodic extension as shown
in figure 3.8.

1111 222 333 444 ...

Periodic extension

Figure 3.8: Periodic extension of periodic signal. The last period is correctly
extended.

This solves the problem with the special coefficients at the edge of the input
signal, but causes another problem. When the signal is down-sampled at each
stage in the wavelet packet transform, at some level there will not be enough
samples to represent a whole period. When that happens the periodic extension
can’t be done anymore, since the samples needed for the periodic extension are
not available. Therefore the standard wavelet packet transform is only done
down to a critical dept, after which the filter coefficients at the lower levels
are calculated as by the PWP transform, which maintains the same number of
samples at each level.

The principle of doing the periodic extension works, when the signal transformed
is perfectly periodic. The input signal we want to transform is a periodic noise
signal, which is normally not perfectly periodic, plus a speech or sound signal,
which means that the total input signal is actually not really periodic. When
that is the case, one will see that doing the periodic extension instead of the
normal circular extension, makes it impossible to perfectly reconstruct the edge
coefficients at each filter stage.

If the circular extension is kept, the solution would be to extend the signal
in both ends. This would leave enough information in the filtered and down-
sampled sequence to reconstruct all the original samples again, but instead of
decreasing the number of samples at each filter stage by a factor two, there will
be n =

N+Nf

2 number of samples after each stage. This also results in a change
of the inverse wavelet packet transform, since there is no longer any need for
doing any extensions for the circular convolution and a standard convolution
can be used instead.

In a real-time implementation of the filtering scheme, the input sequence can
be considered infinite in length, and the circular convolution is replaced by a

standard convolution. Therefore the above changes will be irrelevant for such
an implementation and will just complicate a direct conversion of the scheme
from the off line version to the real-time implementation.

3.2.5 Calculating Thresholding Coefficients for the Edge
Coefficients

It is possible to deal with the described problem in another way, where the
periodic extension is dropped and the normal circular extension is used instead.
This has the benefit, that a standard wavelet packet transform can be used,
and the only problem needed to be solved is the mismatch between the edge
coefficients and the thresholding coefficients obtained using the PWP transform.
Also when the scheme is converted to a real-time implementation, the problem
with the edge coefficients can just be left out, since the signals can be considered
as infinite in length, and the circular convolutions are exchanged with normal
convolutions.

All the samples in the thresholding packet are needed for thresholding the pe-
riodic (inner) sections of the wavelet packet coefficient sequences of the noisy
speech. But new thresholding coefficients can be calculated from each period
of pure noise to use at the edges. Since the edge coefficients appear, because
of the uncorrectly extended last period of the noisy speech signal, the same ex-
tension needs to be done to the periods of pure noise, which are analyzed with
the PWP transform during speech pauses. In figure 3.9 a periodic sequence is
filtered using a wavelet packet transform. Period NT = 10 and Nf = 4.

h

h

replacements

111 222

2

2

333 44 55 66 7 8 9 10

1’ 1’1’

1’ 1’ 2’2’

3’ 3’3’

3’3’ 4’

5’5’

5’ 6’

7’

7’ 8’

9’

9’ 10’ 4̃’

5̃’

5̃’ 6̃’

1”

1” 3”

5”

5” 7”

9̃”

9̃” 1̃”

3̃”

3̃” 5̃”

...

...

...

...

...

Circular extension

Circular extension

Input sequence

1st Filtered

1st Down-sampled

2nd Filtered

2nd Down-sampled

Figure 3.9: A periodic sequence filtered by a wavelet packet transform with
length Nf = 4 filter. The dark grey samples also marked with a ∼ are edge
samples.

The sequence is circularly extended causing the last period to be erroneous, and
the last three convolution coefficients to be non-periodic. These non-periodic

samples are what until now have been called the edge coefficients. As seen in
the figure these coefficients after down-sampling travel on into the next filter
stage, where they along with the circular extension cause even more samples to
be non-periodic. The number of edge coefficients at each stage depends on the
number of filter coefficients (Nf) in the wavelet packet transform filters, and the
number of edge coefficients from the previous stage. Luckily the number of edge
coefficients doesn’t continue to grow, but becomes constant after a few filter
stages and is maximally nEdge = Nf − 1. The edge coefficients are calculated
using the same wavelet packet transform as the noisy speech.

First step is building the first input sequence of 2(Nf − 1) pure noise samples
taken to match the samples in figure 3.9. That would for the above example be
noise sample number 4, 5, 6, 1, 2 and 3 (the same numbers as in the end of the
first row). Then the filtering and down-sampling is done, and at the following
filter stages new sequences are built of the edge coefficients calculated at the
previous stage and PWP transform coefficients from the corresponding stage
already calculated using the PWP transform.

3.2.6 Conclusion of the PWP Transform Filtering Method

To conclude, the filtering method consists of calculating thresholding coefficients
for each pure noise period using the PWP transform. After these coefficients
have been obtained the edge coefficients, which are also used as thresholding
coefficients, can be calculated as described above. As long as there is no speech
this is continued on each pure noise period, and the thresholding packet is
updated as described by equation (3.2) or (3.3). When the speech is present it is
filtered by a normal wavelet packet transform, then thresholded period by period
using the coefficients from the average or max thresholding packet. Finally an
inverse wavelet packet transform is used on the thresholded coefficients, which
results in the cleaned speech signal.

The scheme was already tested in [6] using a wavelet packet transform with peri-
odic extension instead of circular extension, as described in section 3.2.4.1, with
good results. Using circular extension and edge coefficients plus the max instead
of the average thresholding packet, the results should already be improved, but
there is another important area, which could also be improved. Referring to sec-
tion 3.1 it was mentioned how consecutive periods of periodic noise might look
like slightly shifted versions of each other. That is a big problem, when using
the wavelet packet transform, because it is very shift variant. Therefore shifted
versions of the same input signal might result in very different wavelet packet
coefficients. When that is the case, then the thresholding values obtained during
one period of pure noise will not match the noise in the next period, where the

speech is present. An important improvement would therefore be to make the
wavelet packet transform shift invariant, or maybe exchange it with a similar
but shift-invariant transform.

Chapter 4

Shift Invariance and Complex

Wavelet Packets

As stated in the previous section an improvement to the PWP transform method
would be to incorporate shift invariance in the wavelet packet transform. Shift
invariance is in many problems a very desirable property, and there have been
several attempts to construct shift invariant wavelet transforms.

4.1 Shift Invariant Real Wavelet Transforms

The most known and straight forward approach is the undecimated wavelet
transform also called the Algorithme à Trous [1]. This transform uses a filter
bank as the one shown in figure 2.4, but without all the down-samplers. This
algorithm largely increases the number of computations, and results in a large
redundancy, since the number of coefficients is doubled with each stage. Further
it should be noted that, when shifted inputs are transformed using the algorithm,
the outputs will also be shifted versions of each other. This is not a form of
shift invariance, which is easily used in the processing scheme described in the
last chapter. The shifts in the PWP coefficients would need to be tracked and
shifted all the time to be correctly combined to a usable thresholding packet.
Also when the speech signal is present, the shift in the noise should be estimated

in order to align the coefficients with the thresholding packet before performing
the thresholding.

Another interesting approach is called the shift invariant discrete wavelet trans-
form (SIDWT) [7]. This transform basically uses the choice of wavelet packet
basis to obtain shift invariance. For that purpose the set of wavelet packet
bases is expanded, so that shifted versions of all the bases are included in the
set. When finding the best basis all the shifted versions are searched and the one
matching the signal best is chosen, call that basis A. If the signal is shifted, the
best basis search will result in a shifted version of basis A, hence the wavelet
packet coefficients will exactly match the previous ones. The shift invariant
result of the method is very good, but the way it is achieved is problematic.
When doing the filtering, a new basis would need to be found for each period
of the noisy speech signal. The bases should of course not be selected from all
bases, but only from shifted versions of an initially chosen basis. The choice of
the basis would still be difficult, since it should preferably only be determined
according to the periodic noise in the noisy speech signal. This, along with the
fact that the inverse transform applied after thresholding should use the same
bases as the forward transform, would greatly complicate the method, and make
it hard to convert the implementation into a real-time scheme.

4.1.1 Getting Help From Complex Representation

Shift invariance is a very well known property of the Fourier transform, where
any shift of the input signal only results in a phase change of the Fourier coef-
ficients. This form of shift invariance is obtained through complex coefficients,
which the Fourier transform naturally produces by having complex basis func-
tions. These basis functions consist of a cosine and a sine, which are identical
functions offset by a 90 degree phase shift, and thereby forming a Hilbert trans-
form pair. The Hilbert transform (H) is easiest described in the frequency
domain, where the frequency response is [8]

H(ω) =

i ω < 0
0 ω = 0

−i ω > 0
(4.1)

where i =
√
−1 is the imaginary unit.

When a signal is added to its Hilbert transform times i as in the Fourier trans-
form

eiφ = cos(φ) + i sin(φ) (4.2)

the resulting signal is called an analytic signal.
Analytic signals are characterized by having only positive frequencies that is

F (ω) = 0, ω < 0 (4.3)

which is a direct result of the Hilbert transform and the multiplication by i.

An approach to copy the good shift invariant property of the Fourier transform
would be to make the wavelet basis functions analytic. Unfortunately a time
limited signal can not be limited in frequency, and in more general can not be
zero on a finite frequency interval. Therefore analytic signals must be infinite in
time, and as a result the time limited basis functions of the wavelet transform
can not be perfectly analytic. Knowing this, research has focused on develop-
ing time limited approximately analytic wavelet basis functions, and successful
achievements have resulted in the Dual Tree Complex Wavelet Transform [9]
described in the next section.

4.2 The Dual Tree Complex Wavelet Transform

The Dual Tree Complex Wavelet Transform (DTCWT) has been developed to
incorporate the good properties of the Fourier transform in the wavelet trans-
form. As the name implies two wavelet trees are used, one generating the real
part of the complex wavelet coefficients tree Re and the other generating the
imaginary part tree Im [9]. The structure is illustrated in figure 4.1.

It should be noted that there are no links between the two trees, which makes
it easy to implement them in parallel. Also the filters in the two trees are
different, and the filters in the first stage of each tree are different from the
filters in all the later stages. Why that is necessary will be described in section
4.2.2.2. Further there is no complex arithmetic involved in any of the trees. The
complex coefficients are simply obtained as

dC

j (k) = dRe

j (k) + idIm

j (k) (4.4)

and the complex wavelet basis functions are given by

ψC

j,k(n) = ψRe

j,k(n) + iψIm

j,k (n) (4.5)

The inverse DTCWT is calculated as two normal inverse wavelet transforms,
one corresponding to each tree, and the results of each of the two inverse trans-
forms are then averaged to give the reconstructed signal. Again, there is no
complex arithmetic needed, since the dC

j (k) coefficients are split up into dRe
j (k)

and dIm
j (k), before they are used in the corresponding inverse transforms.

x(n)

hRe

0f (n)

hRe

1f (n)

hIm

0f (n)

hIm

1f (n)

hRe
0 (n)

hRe
0 (n)

hRe
1 (n)

hRe
1 (n)

hIm
0 (n)

hIm
0 (n)

hIm
1 (n)

hIm
1 (n)

2

2

2

2

2

2

2

2

2

2

2

2

dRe
2 (k)

dRe
1 (k)

dRe
0 (k)

cRe
0 (k)

dIm
2 (k)

dIm
1 (k)

dIm
0 (k)

cIm
0 (k)

tree Re

tree Im

Figure 4.1: Filter bank for the dual tree complex wavelet transform.

4.2.1 Filter Requirements

As was discussed in section 4.1.1 complex coefficients can be obtained by pro-
jection onto a Hilbert transform pair together constituting an analytic signal.
Therefore the wavelet basis functions of tree Im have to be the Hilbert trans-
form of the basis functions of tree Re. Since the basis functions are determined
by the wavelet filters through equations (2.6) and (2.7), the design of wavelet
basis functions is normally turned into a filter design problem by translating
the design criteria into filter criteria. This has also been done for the DTCWT,
where the relation between the impulse responses of the scaling function filters
in the two trees can be written as [10]

hIm

0 (n) = hRe

0

(

n− 1
2

)

(4.6)

This makes the filters satisfy the requirement of the tree Im wavelet functions
being the Hilbert Transform of the tree Re wavelet functions. In the frequency
domain the equation can be translated into the following relations

|HIm

0 (ω)| = |HRe

0 (ω)| (4.7)

∠HIm

0 (ω) = ∠HRe

0 (ω) − 1
2ω (4.8)

Unfortunately these equations can not be perfectly satisfied simultaneously by
finite length FIR filters, which is equivalent to the fact stated in section 4.1.1,
that wavelet functions forming an analytic signal can not have a finite length.

As a result different filter design methods have been developed to design wavelet
filters of different lengths approximating (4.7) and (4.8). One of these methods
generates what is called q-shift filters and is described in [11]. The q-shift filters
perfectly fulfill (4.7), but only approximate (4.8). Since the basis functions are

important, and these are constructed using the inverse DTCWT, the frequency
responses of length 14 q-shift filters used in the inverse DTCWT are shown
in figure 4.2. Also the phase difference between the filters in the two trees is
plotted, and it is seen that in the lowpass filter passbands the phase difference
approximates 1

2ω. This is not a negative slope as stated by equation (4.8),
which comes from the fact that the plots show the filters (gRe

0 (n) and gIm
0 (n))

in the inverse DTCWT, which are reversed versions of the filters in the forward
transform. The filter coefficients for the q-shift filters for both the forward and
inverse transforms are given in table B.1 and B.2 respectively in appendix B.

2

4

−50

50

Magnitude response

|H
(ω

)|

Ω

Phase response

∠
H

(ω
)

∠
H

(ω
)

Phase difference ∠GIm
0 (ω) − ∠GRe

0 (ω)

−2π

−π

−π

−π

−π

−π
2

−π
2

−π
2

0

0

0

0

0
0

π
2

π
2

π
2

π

π

π

π

2π

(−π
4)

(π
4)

(a) Lowpass filter responses of length 14 q-shift filters.

2

4

−50

50

Magnitude response

|H
(ω

)|

ω

Phase response

∠
H

(ω
)

∠
H

(ω
)

Phase difference ∠GIm
1 (ω) − ∠GRe

1 (ω)

−2π

−π

−π

−π

−π

−π
2

−π
2

−π
2

0

0

0

0

0
0

π
2

π
2

π
2

π

π

π

π

2π

(− 5π
4)

(5π
4)

(b) Highpass filter responses of length 14 q-shift filters.

Figure 4.2: Transfer functions of length 14 q-shift filters used in the inverse
DTCWT. Tree Re is red, tree Im is blue and the phase difference (Im-Re) is
green.

4.2.2 Constructing Analytic Basis Functions Using the In-
verse DTCWT

From equation (4.1) the necessary relationship between the basis functions in
the two trees can be written as

|ΨIm(ω)| = |ΨRe(ω)| (4.9)

∠ΨIm(ω) − ∠ΨRe(ω) =

1
2π + (2π)m ω < 0
0 ω = 0
3
2π + (2π)m ω > 0

m = ..., −2, −1, 0, 1, 2, ...

(4.10)

These equations state that the magnitude spectrums of the basis functions in
the two trees have to be equal, and that the difference of the phases has to be a
kind of step function equal to for instance − 3

2π for the negative and 3
2π for the

positive frequencies.

As mentioned in section 2.1.2.2 a wavelet basis function can be calculated using
the inverse wavelet transform. Therefore to investigate how the basis functions
in tree Im is related to the basis functions in tree Re, the calculation of a basis
function is performed in the Im and Re inverse wavelet transforms simultane-
ously, and the results are shown in the frequency domain step by step.

Setting the coefficient dC
0 (1) = 1+i1 and setting all other coefficients to zero will

- using the inverse DTCWT - construct the basis function ψC
0,1(n). Now refer to

the inverse wavelet transform filter bank, which was illustrated in figure 2.5 to
keep track of the components encountered in the inverse DTCWT. Remember
that there are two parallel filter banks, and in both all coefficients are set to
zero except the d0(1) = 1.

4.2.2.1 Stepping Through The Inverse DTCWT

Now the first component encountered in the inverse DTCWT is an up-sampler.
This up-sampler is only going to add zeros between the existing coefficients,
which won’t have any important influence here.

The next component is a highpass filter. The single non-zero coefficient will
result in the impulse response of the highpass filters, which in the frequency
domain is the filter transfer function. This is shown in figure 4.3(a), which
is the same as given in figure 4.2(b). Note that the phase plot is the phase
difference between the two inverse filter banks and not the actual phase of the

filters, and that the black dotted line illustrates the Hilbert transform criteria
in equation (4.10).

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase difference ∠ΨIm(ω) − ∠ΨRe(ω)

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(−π)

(π)

(a) A highpass filter.

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase difference ∠ΨIm(ω) − ∠ΨRe(ω)

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(−π)
(π)

(b) A highpass filter and up-sampling.

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase difference ∠ΨIm(ω) − ∠ΨRe(ω)

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(− 5π
4)

(5π
4)

(c) A highpass filter, up-sampling and a lowpass filter.

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase difference ∠ΨIm(ω) − ∠ΨRe(ω)

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(− 5π
4)

(5π
4)

(d) A highpass filter, up-sampling, a lowpass filter and
up-sampling.

Figure 4.3: Frequency domain relation between tree Im and tree Re in the
inverse DTCWT after different operations.

The basis functions go unchanged through the adder, because apart from the
basis functions there is nothing but zeros in the inverse DTCWT.

At the next stage the basis functions are first up-sampled, which results in a
compression or a scaling of the basis function spectrum as illustrated in figure
4.3(b). This up-sampling doubles the slope of the phase difference from − 1

2ω to
−1ω. Further it moved the center points of the passband regions from Ω = ±π
to Ω = ± 1

2π, which are 1
2π away from the black line.

Following the up-sampler is a lowpass filter, and its transfer function is shown in
figure 4.2(a). This lowpass filter can be applied by multiplying the magnitude
response with the one in figure 4.3(b) and adding the phase difference plots,
the result is shown in figure 4.3(c). The positive phase difference slope of the
lowpass filters changes the slope from −1ω back to − 1

2ω. Also the passband
center points are moved 1

4π closer to the black dotted line, that is half of the
previous distance.

The lowpass filter did half the job of making the phase difference fulfill the
Hilbert transform criteria given by the black dotted line. If the lowpass filter
is applied again the phase difference criteria will be fulfilled. This is not the
case though, because in the next stage through the inverse DTCWT the first
component will be an up-sampler. This will as shown in figure 4.3(d) again
double the slope of the phase difference, and move the passband center points
to Ω = ± 1

4π, half the way inward toward Ω = 0. A following lowpass filter will
therefore again only do half the job of getting to the black dotted line. It will
decrease the slope steepness again and move the center points by 1

8π. In that
way no matter how many stages the inverse DTCWT has, the basis function
phase difference will still have a slope changing from −π to − 1

2π and back in
the up-sampler and the lowpass filter. Also the center points in the passband
regions will be moved further and further inward toward Ω = 0 resulting in less
changes in these points by the lowpass filters, because the phase difference of
the lowpass filters decreases toward Ω = 0.

4.2.2.2 The First Stage Filters

To get all the way to the black line also for only a few stages in the inverse filter
bank, the lowpass filters in the first stage are different from the other filters. By
having a phase difference slope of 1ω, the phase difference of the basis functions
will be made flat. Additionally the center points in the passband regions will
be moved double the distance compared with applying the lowpass filters in the
other stages, and hence all the way to the black dotted line. A usable filter set
for the first stages filters has been downloaded from [12], and their frequency
responses are given in figure 4.4. The filter coefficients for both the forward and
the inverse transforms are given in table B.3 and B.4 respectively in appendix
B.

When continuing the construction of the basis functions through the inverse
DTCWT and applying the first stage filters to the frequency response given
in figure 4.3(d), the result is the frequency response in figure 4.5(a). It can
be observed that the Hilbert transform criteria is approximately fulfilled in the
passband regions, and when using equation (4.5) the resulting complex basis

2

4

−50

50

Magnitude response

|H
(ω

)|

ω

Phase response

∠
H

(ω
)

∠
H

(ω
)

Phase difference ∠GIm

0f (ω) − ∠GRe

0f (ω)

−2π

−π

−π

−π

−π

−π
2

−π
2

−π
2

0

0

0

0

0
0

π
2

π
2

π
2

π

π

π

π

2π

(−π
2)

(π
2)

(a) Lowpass filter responses of length 10 first stage fil-
ters.

2

4

−50

50

Magnitude response

|H
(ω

)|

ω

Phase response

∠
H

(ω
)

∠
H

(ω
)

Phase difference ∠GIm

1f (ω) − ∠GRe

1f (ω)

−2π

−π

−π

−π

−π

−π
2

−π
2

−π
2

0

0

0

0

0
0

π
2

π
2

π
2

π

π

π

π

2π

(3π
2)

(− 3π
2)

(b) Highpass filter responses of length 10 first stage
filters.

Figure 4.4: Transfer functions of length 10 first stage filters used in the inverse
DTCWT. Tree Re is red, tree Im is blue and the phase difference (Im-Re) is
green.

function will be nearly analytic with a frequency response as shown in figure
4.5(b).

Note that not every basis function is constructed by going through first a high-
pass filter and then one or more lowpass filters in the inverse DTCWT. The
scaling function is constructed by going through only lowpass filters, and the
highest frequency wavelet function is constructed by going through only the
first stage highpass filter. These two basis functions will therefore not be nearly
analytic in the sense of having only positive frequencies, but the rest of the basis
functions will, as shown in figure 4.6. In this and the following illustrations, only
one basis tree will be shown, since only the structure of the tree is important.
In the implementation two trees with the given structure are used to calculate
the real and imaginary parts of the complex wavelet coefficients.

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase difference ∠ΨIm(ω) − ∠ΨRe(ω)

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(− 3π
2)

(3π
2)

(a) A highpass filter, up-sampling, a lowpass filter, up-
sampling and a first stage lowpass filter.

2

4

Magnitude response

|H
(ω

)|

ω

∠
H

(ω
)

Phase response

−2π

−π

−π

−π

−π
2

−π
2

0

0

0
0

π
2

π
2

π

π

π

2π

(b) Nearly analytic basis function.

Figure 4.5: Frequency domain relation between tree Im and tree Re in the
inverse DTCWT after a series of operations, and the spectrum of the resulting
nearly analytic basis function.

4.3 Expanding the DTCWT to Complex Wavelet
Packets

The normal (real) wavelet transform is easily extended to wavelet packets, and
the structure of the DTCWT doesn’t impose any apparent difficulties either.
Just apply filter stages to the outputs of the highpass filters in both trees, and
the DTCWT is extended to wavelet packets. This has also been done in [13]
with an earlier type of DTCWT filters described in [14]. Unfortunately (not
considered in [13]) the new complex wavelet packet basis functions are not all
analytic like the DTCWT basis functions are, and when that is desired the
extension is not as straight forward.

4.3.1 Problems With Straight Forward Expansion

In figure 4.7 the basis tree of a wavelet packet configuration is plotted to the left,
and to the right the magnitude spectrum of four of the resulting basis functions.
It is shown there how none of the basis functions are nearly analytic.

Notice how the low- and highpass filters in figure 4.7(a) are switched in the
branches after the highpass filter. This is done to keep the filter outputs or-
dered according to frequency content, that is the left most output (a) gives the

Complex wavelet basis tree

a b

c

d

e

1

2

4

8

ℓ

ℓ

ℓ

ℓ

h

h

h

h

(a) The standard wavelet basis tree, ℓ marks the low-
pass filters and h the highpass filters.

Magnitude spectrums

a

b

c

d

e

Ω

−π

−π

−π

−π

−π

−π
2

−π
2

−π
2

−π
2

−π
2

0

0

0

0

0

π
2

π
2

π
2

π
2

π
2

π

π

π

π

π

(b) Magnitude spectrums of the basis functions.

Figure 4.6: Standard basis tree and magnitude spectrums of the corresponding
basis functions.

lowest frequencies, and the right most output (d) gives the highest frequencies.
The reason for the switching comes from down-sampling of the outputs of the
highpass filters and is explained in section 2.2.

To figure out why the wavelet packet basis functions aren’t analytic, it is useful
to consider exactly how the DTCWT basis functions get analytic through the
inverse DTCWT. In section 4.2.2 it was shown that to get an analytic spectrum,
a complicated sequence of up-sampling and filtering is used. It could seem like
only a path through the inverse DTCWT going through first a highpass filter and
then a sequence of lowpass filters ending with the first stage lowpass filter will
ensure an analytic basis function. The condition for the final phase difference
to be flat can be formulated a little more general though.

The first phase difference introduced by a (Re, Im) filter set in the inverse
DTCWT has to have a slope with a given steepness α. Further all the following
(Re, Im) filter sets must have a phase difference with a slope of −α, and the
last (Re, Im) filter set (first stage filter) must have a phase difference slope of
−2α. This ensures that the phase difference will end up being flat. This is,
as given by equation (4.8), of course not enough for the basis functions to be
nearly analytic, but is an important start.

Non-analytic complex wavelet packet basis tree

a b

c

d

1

2 3

5 7

ℓ

ℓ

ℓ

ℓ

ℓ

h

h

h

h

h

(a) A wavelet packet basis tree, ℓ marks the lowpass
filters and h the highpass filters.

Magnitude spectrums

a

b

c

d

Ω

−π

−π

−π

−π

−π
2

−π
2

−π
2

−π
2

0

0

0

0

π
2

π
2

π
2

π
2

π

π

π

π

(b) Magnitude spectrums of the basis functions.

Figure 4.7: A wavelet packet basis tree and magnitude spectrums of the corre-
sponding basis functions.

That not a lot of the wavelet packet basis functions are nearly analytic comes
from the fact, that most of the paths through the inverse complex wavelet packet
transform don’t fulfill the above described phase difference requirement. The
problem with these non-analytic complex wavelet packet basis functions is not
trivial, and it might seem like new filters need to be designed in order for the
basis functions to be nearly analytic, but fortunately that is not necessary. The
key is to remember, that it is the phase difference of the filters in the two trees
that is important, not the actual phase of the filters. In a given node it is
possible to switch the filters between tree Im and Re, which will mirror the
phase difference around Ω = 0, so that the phase difference for the positive
frequencies is mirrored on to the negative frequencies and opposite. This will
thereby also change the slope of the phase difference from positive to negative or
opposite. Also the same filters can be used in both trees, which would make the
phase difference zero, and hence leave the phase difference unchanged. These
observations make it possible to change the way the basis functions are created
in the inverse complex wavelet packet transform, and this is enough to achieve
nearly analytic basis functions, as will be described in the next section.

4.3.2 Achieving Nearly Analytic Wavelet Packet Basis Func-
tions

It is helpful to divide the wavelet packet basis tree in two sections. One being
the left side of the tree ending with the lowpass filter in the first stage and the
other being the right side ending with the highpass filter in the first stage as
done in figure 4.8.

Basis

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

ℓ ℓ

ℓ

ℓ ℓ

ℓ

ℓ

ℓ

h h

h

h h

h

h

h h

h

h h

h

h

h

Figure 4.8: Full wavelet packet tree arranged to achieve analytic basis functions.
Blue nodes are the same as in the DTCWT. In the red nodes the filters are
switched between trees Im and Re. The green nodes have the same filters in
both trees.

The left side includes the DTCWT (the blue nodes), which can be exploited
when making the complex wavelet packet basis functions analytic. By using
the same filters in tree Im and Re for all the green nodes, the phase difference
between the two trees, before getting to one of the DTCWT highpass filters,
will be zero. The rest of the way through the inverse complex wavelet packet
transform runs as the inverse DTCWT creating the necessary phase difference
between tree Im and Re.

In the other half the last filter is a highpass filter, which has a negative phase
difference slope (opposite the lowpass filter). That means that the first phase
difference slope introduced by a (Re, Im) filter set on a path in the inverse
complex wavelet packet transform, which ends at the highpass filter, has to be

positive. All the (Re, Im) filters sets in between have to have negative phase
difference slopes.

As can be seen in figure 4.8 the right side is a mirror image of the left side
(except for the first highpass filter), therefore it seems to be a good approach to
try and mirror the operation in the left side. That means that the filters need
to be switched between tree Im and Re in all the red nodes, in order to make
the phase difference slope of the lowpass filters be negative like the first stage
highpass filter. Also in all the green nodes, the filters are the same in both trees.
That way the phase difference is kept at zero until the highpass filters in the
red nodes.

Now the operations on the right side are mirroring the operations on the left
side at least until the first stage filters in the end of the inverse complex wavelet
packet transform. The mirroring accomplishes that all the magnitude plots in
figure 4.3 (illustrating the operation of the blue nodes) will be the same for the
operation in the red nodes in figure 4.8, and all the phase difference plots will be
mirrored around Ω = 0. That means that the value at the positive frequencies
will be switched with the value at the negative frequencies. This could lead
one to think, that the right side of the basis tree in figure 4.8 will create basis
functions, which are inverse analytic (only consist of negative frequencies instead
of positive).

This is not the case, because the last filter on the right side is a highpass filter
and not a lowpass filter as on the left side. The result of the highpass filter is
that the frequencies around ω = ±π are preserved instead of the frequencies
around ω = 0, so it is the phase difference level in the center of these passband
regions which is important. As described in section 4.2.2 the points marked in
figure 4.3 will, with each lowpass filter stage, move closer and close to Ω = 0,
and their values will approach ± 3

2π. Similarly the center points in the frequency
regions preserved by the highpass filter will move closer and closer to Ω = ±π
and their values will approach 1

2π for the negative frequencies and − 1
2π for the

positive frequencies. These are the correct values according to equation (4.8),
and by examining the phase difference plot in figure 4.4(b), it can be seen that
the first stage highpass filter will move the phase difference plots by the last
small amount, just as the first stage lowpass filter does it as illustrated in figure
4.5(a).

With this new reordering of the filters between the Im and Re trees (see again
figure 4.8), a nearly analytic dual tree complex wavelet packet transform has
been constructed. In figure 4.9 the magnitude spectrums of the same four basis
functions as in figure 4.7 are shown, and it is seen how the reordering of the filters
correct the basis functions in such a way, that they become nearly analytic.

Nearly analytic complex wavelet packet basis tree

a b

c

d

1

2 3

5 7

ℓ

ℓ

ℓ

ℓ

ℓ

h

h

h

h

h

(a) A wavelet packet basis tree, ℓ marks the lowpass
filters and h the highpass filters.

Magnitude spectrums

a

b

c

d

Ω

−π

−π

−π

−π

−π
2

−π
2

−π
2

−π
2

0

0

0

0

π
2

π
2

π
2

π
2

π

π

π

π

(b) Magnitude spectrums of the basis functions.

Figure 4.9: The corrected wavelet packet basis tree and magnitude spectrums
of the corresponding nearly analytic basis functions.

It should be noted that there are still two non-analytic basis functions. The first
one is the one coming from the row of only lowpass filters on the left side, and the
second one is its mirror function on the right going through only lowpass filters
and the first stage highpass filter. These two basis functions are in principle the
same as the non-analytic basis functions in the DTCWT, and hence with the
DTCWT filters the best possible wavelet packet filter ordering has been created.

4.3.3 Shift Invariance of Complex Wavelet Packet Coeffi-
cients

The above described corrections to the complex wavelet packet transform was
done to make the basis functions nearly analytic. But the analyticity is of course
not a goal in itself, the goal is a more shift invariant transform. Therefore the
shift invariance will be investigated further by returning to the time domain,
and the time domain representation of the basis functions.

The shift invariance provided by the Fourier transform is complete in the sense,
that any shift in an input signal is just encoded as a phase shift in the complex
Fourier coefficients; the absolute value will be unchanged. This kind of shift

invariance can only be achieved with infinitely long basis functions, and since
the wavelet basis functions are time limited, the shift invariance will be limited
too.

A wavelet coefficient can, in the same way as a Fourier coefficient, be described
as the inner product between the input signal and a basis function. This can be
written as

cj,k = 〈x(n), ψC

j,k(n)〉 =
∑

n

x(n)
(

ψRe

j,k (n) + iψIm

j,k (n)
)

(4.11)

Remember, when investigating the shift invariance, the absolute value of the
coefficient is the interesting part. When the input signal x(n) is an impulse at
n = n1 the absolute value of cj,k is

|cj,k| =

√

(

ψRe

j,k(n1)
)2

+
(

ψIm

j,k (n1)
)2

(4.12)

If |cj,k| is shift invariant, the calculation should be independent of n1, that is

(

ψRe

j,k(n)
)2

+
(

ψIm

j,k (n)
)2

= k (4.13)

where k is a constant.

This is not the only requirement. If x(n) is exchanged with two impulses at n1

and n2, the calculation changes to

|cj,k| =

√

(

ψRe

j,k(n1)
)2

+
(

ψIm

j,k (n1)
)2

+
(

ψRe

j,k(n2)
)2

+
(

ψIm

j,k (n2)
)2

+2ψRe

j,k(n1)ψRe

j,k (n2) + 2ψIm

j,k (n1)ψIm

j,k (n2) (4.14)

From this equation it can be seen that there is another criteria for the shift
invariance of |cj,k|, which can be written as

ψRe

j,k (n1)ψ
Re

j,k(n2) + ψIm

j,k (n1)ψ
Im

j,k (n2) = f(n1 − n2) (4.15)

for some function f(n). The function f(n) is not important, the important thing
is that it is only a function of the difference between n1 and n2.

The Fourier basis functions fulfill both requirements, because

cos2(n) + sin2(n) = 1 (4.16)

and
cos(n1) cos(n2) + sin(n1) sin(n2) = cos(n1 − n2) (4.17)

but the complex wavelet packet basis functions only approximate these equa-
tions. In figure 4.10 four basis functions of the complex wavelet packet trans-
form, before and after the analyticity reordering of the wavelet packet filters,
are plotted. The magnitude spectrums of these basis functions have already
been plotted in figure 4.7 and 4.9, and here the time domain representations are
given. The green line shows the absolute value of the complex basis functions,
and according to equation (4.13) this should be a constant. It can be seen, that
this can not be fulfilled by time limited functions, but for longer basis functions
the approximation improves. That means that the deeper the complex wavelet
packet filter bank is, the more shift invariant the transform will be.

When comparing the nearly analytic basis functions with the non-analytic basis
functions, it is seen that the analyticity ensures a more smooth absolute value
curve compared to the non-analytic basis functions. This is the first sign of an
improved shift invariance. The second requirement in equation (4.15) is harder
to illustrate, and it doesn’t seem like the analytic basis functions fulfill it better
than the non-analytic ones.

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

Non-analytic complex wavelet packet basis functions

a

b

c

d

(a) Non-analytic complex wavelet packet.

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

10 20 30 40 50
−0.5

0.5

Nearly analytic complex wavelet packet basis functions

a

b

c

d

(b) Near analytic complex wavelet packet.

Figure 4.10: Complex wavelet packet and nearly analytic complex wavelet
packet basis functions. ψRe is red, ψIm is blue and |ψC| is green.

Finally the shift invariance is tested with an example, and the complex-, the
nearly analytic complex- and the real wavelet packet coefficients are compared.
The wavelet packet basis is still the same as illustrated in figure 4.7(a) and
4.9(a), and the input signal - a sawtooth - is shifted twice by one sample. The
results are shown in figure 4.11, where the top plots show the input signal, and
the following plots show the wavelet packet coefficients. Here the superior shift
invariance of the near analytic complex wavelet transform can be seen, and a
big improvement has been achieved especially compared with the real wavelet

transform.

20 40 60 80 100 120
−1

1

5 10 15
0

1

5 10 15
0

1

10 20 30
0

1

5 10 15
0

1

Non-analytic complex wavelet
packet coefficients

x(n)

a

b

c

d

(a) Non-analytic complex wavelet
packet.

20 40 60 80 100 120
−1

1

5 10 15
0

1

5 10 15
0

1

10 20 30
0

1

5 10 15
0

1

Nearly analytic complex wavelet

packet coefficients

x(n)

a

b

c

d

(b) Nearly analytic complex wavelet
packet.

20 40 60 80 100 120
−1

1

5 10 15
0

1

5 10 15
0

1

10 20 30
0

1

5 10 15
0

1

Real wavelet
packet coefficients

x(n)

a

b

c

d

(c) Real wavelet packet.

Figure 4.11: Absolute value of non-analytic complex, nearly analytic complex
and real wavelet packet coefficients of shifted version of sawtooth input signal
x(n).

The correction from the non-analytic complex- to the nearly analytic complex
wavelet packet transform is done only by reordering the wavelet packet filters
used in the transform. This reordering can be done before implementing the
transform, which means that the improved shift invariance is achieved with no
extra computation costs.

Chapter 5

Implementation

In the previous chapters theory and tools have been described and developed,
and it is now possible to put it all together to a periodic noise filtering scheme.
The complete system was already shortly introduced in section 1.1, and with
that as a platform the implementation of the Noise Period Analyzer and the
Noise Filter will be explained. In contrary to a real-time implementation with
sample by sample processing, the implementations done in this project work
on whole signals with finite length. This is normally easier and faster than a
real-time implementation, but it creates some differences, which are discussed.

5.1 Implementation of the Noise Period Ana-
lyzer and the Noise Filter

5.1.1 The Noise Period Analyzer

The goal of the Noise Period Analyzer is to gather information about the pe-
riodic noise in speech pauses, so it can be used to remove the periodic noise,
when speech is present. The information consists of wavelet packet coefficients
resulting from transforming each period of noise. These coefficients are then

combined to a thresholding packet, which can be used to remove the periodic
noise when the speech is present.

The Noise Period Analyzer only works on the periodic noise, when there isn’t
any speech in the input signal. This information can be given by a speech pause
detector, which is also a topic of a lot of research, see for instance [15]. Also
the length of the periods is needed, which is another research topic beyond the
scope of this project, but simple autocorrelation has been tested and can in
some cases be used to get a decent estimate.

In this project the Noise Period Analyzer will be given information about how
many noise periods are available, before the speech signal starts, and the length
of the periods. The Noise Period Analyzer then takes out the available noise
periods and divides them into chunks of one period each. These periods are then
wavelet packet transformed one by one, using the PWP transform described in
section 3.2. This PWP transform can be implemented with any kind of wavelet
system, Daubechies, Symmlets and complex wavelets. The implementation was
already available with Symmlet 4 wavelet packets (real implementation), but
has in this project been extended to also be able to use the complex wavelet
packets, using length 14 Q-shift filters and length 10 first stage filters. Both
an implementation using the straight forwardly extended non analytic complex
wavelet packets (complex implementation) and the correction to nearly analytic
complex wavelet packets (analytic implementation) have been made. The basis
tree structure for the wavelet packets is in the current implementation found
by the Noise Filter, and therefore unknown to the Noise Period Analyzer. As
a result all the coefficients, in a full basis tree down to a specified level, are
calculated. This gives a lot of calculations, of which a lot are not going to be
used, and this should be avoided in a real-time implementation. Hence the Noise
Period analyzer should be informed of which basis tree to use for the wavelet
packets.

The wavelet packet coefficients of each period of noise can be combined into
a thresholding packet using two approaches - average and max - presented in
section 3.2.3. All the above mentioned implementations of the PWP trans-
form can use both thresholding functions. Finally the solution to the problems
with the edge coefficients described in 3.2.4 can also be applied to the different
implementations.

5.1.2 The Noise Filter

The Noise Filter is where the periodic noise is removed from the speech sig-
nal. It gets the information (the thresholding packet) from the Noise Period

Analyzer and assumes that the noise periods, when the speech is present, are
well described by the thresholding packet coefficients. In the Noise Filter the
coefficients are used as individual thresholding values for the noisy speech signal
period by period, and the thresholded signal is the final output signal.

Only the part of the input signal, where speech is present, is processed by the
Noise Filter, so the Noise Period Analyzer passes that part of the input signal on
to the Noise Filter. This has been done, because only that part of the signal is
interesting, when evaluating the Noise Filter, but in a real-time implementation,
the Noise Filter would be continuously running removing also the noise in speech
pauses. The noisy speech signal is wavelet packet transformed in a full wavelet
packet basis tree, and the best basis is then found from these coefficients as
described in section 2.2.1. This gives a very good basis choice for the given
signal, but it is not feasible to do the same in a real-time implementation. Here
the basis tree has to be chosen, before the signal is available, and how to do that
is a problem,which would need to be addressed. The type of wavelet packets
used has to be the same as in the Noise Period Analyzer, and implementations
have been done using the same wavelet systems as described above.

After finding the best basis, the wavelet packet coefficients are thresholded using
the thresholding packet coefficients. This is done by periodically extending the
thresholding packet until there are as many thresholding packet coefficients as
wavelet packet coefficients of the noisy speech signal. In the implementation
where the edge effects are corrected, the edges of the extended thresholding
packet are exchanged with the specifically calculated edge coefficients. Then
all the noisy speech wavelet coefficients are thresholded using the individual
thresholding values in the extended thresholding packet, which is done with
the Garrote thresholding function described in section 2.2.2.5. In the case of
complex coefficients the thresholding is done in a little more advanced way. The
absolute value or length of both the complex signal coefficients and the complex
thresholding coefficients is used in the same way as the real coefficients. The
thresholded complex signal coefficients are then just shortened, while keeping
the same vectorial direction. This can be done as

ct =

(

|c| − |t|
|c|

)

[cos (∠c) + j sin (∠c)] (5.1)

where ct is the thresholded complex coefficient, c is the complex signal coeffi-

cient, t is the complex thresholding coefficient, and ∠c = tan−1
(

Im{c}
Re{c}

)

, where

Re and Im give the real and the imaginary part respectively.

The thresholded complex coefficients are then inverse wavelet packet trans-
formed, and the clean output signal is thereby obtained.

With the possibility of using different wavelet packet systems (real, complex

and nearly analytic complex), along with the two different thresholding packets
(average and max) and the extra calculation of the edge coefficients, many
different periodic noise filtering setups can be made. This will be used in chapter
6, where the performance of the filtering scheme is evaluated, to give an overview
of the influence of the different improvements.

5.2 A Spectral Subtraction Scheme

In order to have something to compare the results of the periodic noise filtering
scheme with, another method should be used to do the same filtering tasks. The
method chosen is a spectral subtraction scheme, because it is relatively simple
and works in a similar way as the periodic noise filtering scheme developed here.
That is it uses sequences, where only noise is present, to analyze the noise by
estimating the spectrum using STFT. A single sequence is split up into several
smaller overlapping segments, and each segment is windowed, and thereafter the
Fast Fourier Transform (FFT) is calculated. All the FFTs are then averaged to
give the estimate of the noise spectrum. When the speech is present, it is also
split into overlapping segments, windowed and FFTed. Then the noise spectrum
estimate is subtracted, and the inverse FFT is calculated of all the segments.
Finally the segments are combined to give the cleaned signal, by adding the
segments where they overlap. A well working implementation of this, using non
linear magnitude spectral subtraction including the mathematical theory behind
it, can be found in [16], and that implementation has been used in this project.

5.3 Matlab Implementation

All the implementations in this project have been done in Matlab, and a special
free wavelet toolbox developed at Stanford called WAVELAB850 has been used
[17]. The WAVELAB toolbox includes a lot of m-files of which the ones used
in this project were m-files to calculate real wavelet transforms, real wavelet
packet transforms and best basis algorithms. Further some smaller functions
were used, especially functions to plot basis trees and time-frequency planes.
The PWP transform in a real version was also already programmed, before the
start of this project [6].

All the functions needed to calculate the complex wavelet and complex wavelet
packet transforms have been programmed during this project. This has been
done in order to be able to control the shift of the circular convolution, and get
a full insight in the complex wavelet packets. Only the best basis algorithm of

the WAVELAB850 toolbox is used; other than that the developed m-files work
in Matlab without the need of other tools or functions.

With the Matlab implementation of the periodic noise filtering scheme and of
the spectral subtraction scheme, filtering tests can easily be constructed, which
is the topic of the next chapter.

Chapter 6

Evaluation

In the previous chapters the periodic noise filtering scheme has been described,
and the tools it uses have been developed. It is now interesting to test the
performance of the scheme, when used to remove/suppress periodic noise.

Here two different approaches will be taken to evaluate the performance of the
periodic noise filtering scheme. The first method is mathematical and will use
the signal to noise ratio (SNR) of the filtered test signals to evaluate and compare
different filtering results. The second method is subjective and will consist of a
test, where people listen to the filtered signals and evaluate their sound quality.

6.1 Evaluating the Periodic Noise Filtering Scheme

Using SNR’s

A commonly used measure of the quality of speech signals is the signal to noise
ratio (SNR). The SNR is usually given in dB and is calculated as

SNR = 10 log10

{

∑N
n=1(x̂(n))2

∑N
n=1(x̂(n) − x(n))2

}

(6.1)

where x(n) is the clean speech signal, x̂(n) is the filtered signal, and N is the
length of the speech signal.

In addition to testing the general performance, the influence of the following
improvements will be evaluated

a. The max thresholding packet and the edge effects

b. The complex wavelets

c. The nearly analytic complex wavelets

The filtering scheme furthermore includes some parameters, which can be varied,
and these can also influence the performance. The parameters are described
here:

NanalysisNanalysisNanalysis

In each test a noisy speech signal (test signal) is created by overlapping a clear
speech signal with periodic noise. The start of the test signal will consist of only
periodic noise, which can be used to obtain the thresholding packet. The number
of noise periods without speech can be varied, and the number is given by the
parameter Nanalysis. The influence of this parameter will also be evaluated.

thscale

Another important element is the scaling of the thresholding packet coefficients.
As stated in section 3.2.3, it might be beneficial to scale the thresholding packet
coefficients by some amount, given by the parameter thscale, in order to achieve
a better SNR. thscale is a multiplicative constant, which all the thresholding
packet coefficients are multiplied with, before they are used for thresholding.
A thscale value of one means no scaling of the coefficients. This parameters
influence will be investigated too.

λλλ

Finally the parameter λ, which is the forgetting factor in the average and the
max thresholding packet, can be varied. This only serves to test the perfor-
mance, when many noise periods are used for obtaining the thresholding packet,
and the noise is periodically nonstationary. This parameter will therefore be very
dependent on the specific periodic noise, and since only periodically stationary
noise signals will be considered here, λ will be set to 1 in all tests.

There are further parameters related to the wavelet packet transform. These
parameters will not be varied through the tests, only the different types of
wavelets (Real, Complex, Nearly analytic complex) will be tested. The other

parameters are the depth of the transforms, which will be set to 8 filtering stages
in all tests. The specific wavelets used in the different setups are for the real
Symmlet 4, and for the complex schemes the length 14-qshift wavelets, with the
length 10 first stage filters. The wavelet packet basis will be found individually
in each test using the best basis algorithm described in section 2.2.1, and the
specific noisy input signal used in the test. The thresholding function used is
the Garrote described in section 2.2.2.5.

Three different periodic noise signals are used in creating the test signals for the
filtering scheme. The three noise signals are

Chirp - Repeated chirps with some periodic variations
Asma - a sequence of engine noise
Alfa - a different sequence of engine noise

The Chirp signal consists of periods with the length of NT = 6202 samples,
and in each period half the samples are a chirp, and the remaining samples
are zeros. The chirps are placed in the middle of each period and then moved
by a random number taken from a Gaussian distribution with zero mean and
variance 0.05NT . In that way the Chirp noise signal is not perfectly periodic,
because all the periods are shifted versions of each other, but it is definitely
periodically stationary.

About five periods of the chirp noise are plotted in time-frequency planes in
figure 6.1. The same basis tree is used for both the real and the nearly analytic
complex wavelet packets, and the benefit of the complex wavelet packets is well
illustrated by the plots. First the energy of the chirps is much better represented
by the nearly analytic complex wavelet packets, and second the improve in shift
invariance makes the chirps look almost identical. The time shifts of the chirps
are still seen though. The time between the 2nd and the 3rd chirp is smaller than
the time between the 3rd and the 4th. This will cause problems when trying to
remove the chirps, since the chirps gathered in the thresholding packet might be
located at different times within a period than the chirps corrupting the speech
signal. The nearly analytic complex wavelet packets will therefore need several
noise periods for obtaining the thresholding packet in order to remove chirps
with different shifts.

The Asma signal has periods of NT = 2731 samples and is approximately
periodically stationary. The energy of the noise is widely spread out in both
time and frequency as can be seen in the top plot in figure 6.2.

Finally the Alfa signal, shown in the bottom plot in figure 6.2 is periodic with
period lengths of NT = 888 samples. It is concentrated at low frequencies, and
its total energy is lower than the energy of the Asma noise.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

F
re

q
u
en

cy
F
re

q
u
en

cy

Time

Time

Chirp noise

Chirp noise

Figure 6.1: Real (top plot) and nearly analytic complex (bottom plot) wavelet
packet representation of chirp noise in time-frequency planes.

Along with the periodic noise signals four different speech signals are used. The
speech signals are denoted by t1, t2, t3 and t4 and are a male voice, a female
voice and two other different male voices respectively. The speech sequences are
relatively short - between 1 and 3 seconds - and are also used in the listening
test, which will be presented in section 6.2.

The speech signals overlapped with the periodic noise signals make up 12 dif-
ferent test signals for the evaluation tests described in the following sections.
In each of the evaluation tests, the exact same test signals will be filtered using
different methods and/or with different parameters, hence the initial SNR will
be the same for the different methods. The evaluation test will calculate the
SNR after filtering, which can then be directly compared.

6.1.1 Comparing the Different Improvements

In the first test the different improvements given by a, b and c above will be
compared. Further a spectral subtraction scheme is included to compare the
periodic filtering method with another type of filtering approach. That gives

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

F
re

q
u
en

cy
F
re

q
u
en

cy

Time

Time

Asma noise

Alfa noise

Figure 6.2: The top plot shows a nearly analytic complex wavelet packet repre-
sentation of the Asma noise. The bottom plot shows the Alfa noise signal.

the following different setups

SpecSub The spectral subtractions scheme.

Real The filtering scheme using real wavelets
(Symmlet 4) and the average thresholding
packet

Complex The filtering scheme using complex wavelets
and the average thresholding packet

Analytic The filtering scheme using the nearly analytic
complex wavelets and the average threshold-
ing packet

Analytic Max Edge The filtering scheme using the nearly ana-
lytic complex wavelets, the max thresholding
packet, and correcting the edge effects.

The max thresholding packet and the edge effects tested together using the

Analytic Max Edge setup. This was done, because it turned out during the
following experiments, that the correction of the edge effects didn’t have a very
big influence. This can come from the fact, that the wavelet packet filter bank
depth is set to be only 8, which means that the percentage of edge coefficients
is not very high. This was - because of lack of time - not investigated further
though.

6.1.1.1 Testing With a thscale Value of One

The test is done with Nanalysis = 10 noise periods used to obtain the thresh-
olding packet; for the spectral subtraction scheme, these periods are used to
estimate the spectrum of the noise. Also the thresholding coefficients will not
be scaled (thscale=1), and finally λ = 1. The test evaluates the SNR ratio after
filtering, and 12 test signals are created using the three different noise signals
and the four different speech signals.

−10

−5

0

5

−10

−5

0

5

10

−10

0

10

20

Chirp Asma

Alfa

S
N

R
[d

B
]

S
N

R
[d

B
]

S
N

R
[d

B
]

t1

t1t1

t2

t2t2

t3

t3t3

t4

t4t4

Initial

SpecSub

Real

Complex

Analytic

Analytic Max Edge

Figure 6.3: SNR results of filtering the four different speech signals (on the x-
axes) corrupted by the three kinds of periodic noise, thscale=1. Chirp top left,
Asma top right and Alfa bottom left.

In figure 6.3 the SNRs for the different setups are plotted. Each plot shows
the results for one type of noise, and the four different speech signals are given
along the x-axes. The plots show that the Analytic Max Edge generally
has the best performance, which comes from the use of the max thresholding

packet. The SpecSub does well on the chirp signal, because there the periods
are shifted versions of each other, and it is the only setup, which is fully time
shift invariant. For the Asma noise signal, it depends on the specific speech
signal, which of the setups - Analytic, Complex or SpecSub - have the best
performance. But clearly for the Alfa noise the Analytic and the Complex

are the superior methods. The improvements using the nearly analytic complex
wavelet packets in comparison to the non analytic complex wavelet packets are
shown for the chirp and the Asma noises.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

F
re

q
u
en

cy
F
re

q
u
en

cy
F
re

q
u
en

cy

Time

Clean speech signal t1

Chirp-t1, SNR=-2.24dB

Chirp-t1 filtered using Analytic Max Edge, SNR=5.28dB

Figure 6.4: Time-frequency planes illustrating the filtering of the chirp-t1 test
signal using the Analytic Max Edge setup.

The filtering of the chirp-t1 test signal using the Analytic Max Edge setup is
illustrated in figure 6.4 using time-frequency planes. The plot in the top of the
figure shows the clean t1 speech signal, while the plot in the middle of the figure
shows the speech signal corrupted by the chirp noise, and the bottom plot shows
the signal after the filtering was performed. It can be seen, that only elements
from three out of 10 noise chirps are still left in the signal, while most of the
speech is preserved. This visualizes the filtering achievements, which can be
obtained using the Analytic Max Edge setup, and how the SNR is improved

from an initial value of -2.24dB to an SNR after filtering of 5.28dB.

6.1.1.2 Testing With Individual thscale Values

The performance of the different setups can be improved by letting the thscale
value be different than one. Especially the setups using the average thresholding
packet require a thscale value bigger than one to give good performance. In the
following tests the thscale value, which gives the highest SNR is found for each
setup, using a simple search algorithm. Finding the thscale value is easy, when
the filtering is not done in a real time setup. Then the filtering can simply
be done using different thscale values, and the aforementioned simple search
algorithm can be used to speed up the search for the value giving the best SNR.
When the filtering is done in real time, finding a good thscale value can be
a really challenging task. This is not considered further here, but should be
investigated for a real-time implementation.

In this test the thscale value has been limited to the interval between 0 and
8, which has been done in order to avoid that it increases to very high values
removing both the noise and the signal. This can happen since the noise energies
are high compared to the speech signal energies (initial SNRs less than 0), and
hence removing both the signal and the noise will result in SNRs of 0, which is
an improvement compared with the initial SNR. Because of the search algorithm
used the maximum thscale value was 7.94.

As above the SNR for the three different noise signals and the four different
speech signals are plotted in figure 6.5. It can there be seen how the performance
of all the periodic filtering setups improve, and all of them are now equal to or
better than the SpecSub, which is not changed and has the same SNR values
as in figure 6.3. It is interesting that the Analytic Max Edge now doesn’t
have a better performance than the Analytic and Complex setups. But since
it generally uses smaller thscale values, it makes it easier to estimate a good
thscale value especially important in a real time application.

The tests show that the nearly analytic complex wavelet packets have success-
fully improved the periodic noise filtering scheme in comparison with the real
wavelet packets. Also when the average thresholding packet is used, the setups
depend heavily on the thscale value, but with the max thresholding packet the
thscale value given the highest SNR will in most cases be close to 1. It is there-
fore not very important to find a good thscale value, because good results are
already achieved, when it is kept at one.

−10

−5

0

5

10

−10

−5

0

5

10

−10

0

10

20

Chirp Asma

Alfa

S
N

R
[d

B
]

S
N

R
[d

B
]

S
N

R
[d

B
]

t1

t1t1

t2

t2t2

t3

t3t3

t4

t4t4

Initial

SpecSub

Real

Complex

Analytic

Analytic Max Edge

Figure 6.5: SNR results of filtering the four different speech signals (on the x-
axes) corrupted by the three kinds of periodic noise, thscale is set individually
for each setup to achieve maximal SNR. Chirp top left, Asma top right and Alfa
bottom left.

6.1.2 Investigating the Results of Changing the N analysis
Parameter

The above tests were all made with N analysis=10 noise periods used to obtain
the thresholding packet. But when the periodic noise filtering scheme is im-
plemented in a complete system to remove periodic noise, the number of noise
periods available for obtaining the thresholding packet might vary a lot. For
instance before speech starts there might be a lot of available noise periods, but
if the noise is changing, it might be desirable to update the thresholding packet
or even completely renew it in speech pauses. It is therefore very relevant to
investigate, what influence a change in N analysis will have.

In the following tests the SpecSub, the Real, the Analytic and the Ana-

lytic Max Edge setups are compared. The tests are both done for thscale=1,
and thscale values set individually for the different setups.

With the 12 different test signals and different number of N analysis for each,
there are a lot of test combinations. All of them have been tested, but the
results, when using a specific noise signal, and different speech signals, look
alike, and therefore only the results using the t2 signal corrupted by periodic

noise will be presented here. The t2 signal has been chosen, because it gives an
initial SNR, which lies between the other test signals, see figure 6.3 and 6.5.

For the chirp noise the SNR results, when filtering the chirp-t2 signal with both
thscale=1 and individual thscale values, are shown in figure 6.6. First consider-
ing the test where thscale=1, shown in the left plot, it is interesting that only the
Analytic Max Edge setup really improves with increasing N analysis. This
further illustrates that with the max thresholding packet, it is much less impor-
tant to be able to find a good thscale value. Also the Analytic setup with the
nearly analytic complex wavelet packets gives an almost constant improvement
in comparison with the Real setup, which was also seen in the previous tests.
When the thscale is set individually as done in the right plot, the Analytic

and Real setups start to improve with increasing Nanalysis values, with the
Analytic setup still being better by an almost constant amount. The Spec-

Sub achieves good SNRs compared with the other schemes for low Nanalysis

values, but when the Nanalysis is increased, the SpecSub doesn’t improve and
the Analytic Max Edge then achieves the best SNR.

1 2 3 5 10 50

−5

0

5

10

1 2 3 5 10 50

−5

0

5

10

thscale=1 thscale set individually

S
N

R
[d

B
]

S
N

R
[d

B
]

SpecSub

Real

Analytic

Analytic Max Edge

NanalysisNanalysis

Figure 6.6: SNR results of filtering the t2 speech signal corrupted by the chirp
noise with different values of Nanalysis. In the left figure thscale=1, and in the
right figure thscale is set individually for each setup to achieve maximal SNR.

The SNR results, when filtering the asma-t2 signal, are shown in figure 6.7. The
results are very similar to the results obtained when filtering the chirp-t2 signal,
though the periodic filtering schemes generally achieve better SNR values, when
compared to the SpecSub setup.

The last periodic noise signal is the alfa noise. This noise has the lowest energy,
which can be seen on the SNR levels in figure 6.8. The interesting about the
results here is that the average and the max thresholding packets seem to per-
form equally good, (the Analytic Max Edge and the Analytic setups). Also
these schemes don’t improve with increasing Nanalysis, which indicates that the
alfa noise periods are very alike in the nearly analytic complex wavelet repre-
sentation. Another reason is of course that the SNR values are high, and that
makes further improvements difficult.

1 2 3 5 10

−5

0

5

1 2 3 5 10

−5

0

5

replacements
thscale=1 thscale set individually

S
N

R
[d

B
]

S
N

R
[d

B
]

SpecSub

Real

Analytic

Analytic Max Edge

NanalysisNanalysis

Figure 6.7: SNR results of filtering the t2 speech signal corrupted by the asma
noise with different values of Nanalysis. In the left figure thscale=1, and in the
right figure thscale is set individually for each setup to achieve maximal SNR.

1 2 3 5 10 50

−5

0

5

10

1 2 3 5 10 50

−5

0

5

10

thscale=1 thscale set individually

S
N

R
[d

B
]

S
N

R
[d

B
]

SpecSub

Real

Analytic

Analytic Max Edge

NanalysisNanalysis

Figure 6.8: SNR results of filtering the t2 speech signal corrupted by the alfa
noise with different values of Nanalysis. In the left figure thscale=1, and in the
right figure thscale is set individually for each setup to achieve maximal SNR.

The SNR tests have shown that the Analytic Max Edge scheme achieves the
best results. It gives the highest SNRs in nearly all the tests, and is clearly
outperforming the SpecSub scheme.

6.2 Evaluation Using Listening Test

The SNR is a standard mathematical way of evaluating the quality of a speech
signal, but it doesn’t always reflect how the sound is perceived by the human
ear. Therefore when evaluating speech signals it is very relevant to also do a
subjective listening test. For that purpose a website was created, where test
persons could listen to test signals and give subjective feedback. On the website
the following information was given about the test:

The test consists of 10 different blocks. The first 7 blocks are pref-
erence tests, where two signals are compared, and the test person is
asked to choose the one he/she prefers or no preference. The last

3 blocks are point or score tests, where 7 signals are compared; one
is a clean speech signal and the others are noisy and filtered signals.
The test person gives points from 1 to 10 to all the signals, where
10 is the highest score and should be given to the clean signal. The
preference tests have been arranged in random order, as have the
point tests. Also the sound signals in all the tests have been placed
randomly.

Further the following instructions were given on the website, regarding how to
complete the test.

The test consists of seven preference tests and three point or score
tests. The preference tests consist of two sound signals A and B,
and the options of preference for A, B or no preference. The point
or score tests consists of seven signals, and each signal should be
given points between 1 and 10, where 10 is the best score. In the
point test one of the seven signals will be clean and should be given
10 points, and this then serves as a reference when grading the other
six signals.

When listening and comparing the sounds they should be evaluated
according to first how easy it is to understand the spoken words, and
secondly how your personal impression of the sound is. Please take
the test from the top down, and feel free to listen to the sounds as
many times as needed.

Unfortunately the website came up really late, and when it finally came up,
there were some problems with the server, it was installed on. Therefore the
number of test persons who took the test is very limited.

6.2.1 The Preference Tests

The test signals used in the 7 preference tests are listed in table 6.1, where also
the accumulated results of the different tests are given. Only the scores of 19
test persons were recorded, after a few were removed, because they didn’t give
answers to all the questions. Even though the data set is small, a statistical
treatment of the data can still be carried out. For the preference tests it is
desired to show that one sound for instance A1 is preferred over sound B1.
That can be done by showing that the chance that a test person prefers sound
A1, is greater than 50%. To show this a hypothesis test is set up, in which
the null hypothesis is the opposite of what needs to be shown, namely that

Test Test signal Nanalysis thscale Max Edge Score α

1
chirp-t1
Noisy 8
Analytic 50 1 + 10
No preference 1

2
alfa-t3
Clean 17
Analytic 10 1 + 1
No preference 1

3
alfa-t1
SpecSub 10 3
Real 10 Opt. 14 0.0268
No preference 2

4
alfa-t3
SpecSub 10 3
Analytic 10 1 + 12 0.1332
No preference 4

5
alfa-t4
Real 10 1 2
Analytic 10 1 3 −t
No preference 14

6
asma-t4
Analytic 10 Opt. + 6 −t
Real 10 Opt. 2
No preference 11

7
chirp-t2
SpecSub 10 0
Analytic 10 Opt. 15 0.0106
No preference 4

Table 6.1: An overview of the test signals, and the results of the 7 preference
tests.

the chance a test person will prefer sound B1 or have no preference is greater
or equal to 50%. If it can be shown that the null hypothesis is wrong with a
significance level of 95%, the alternative hypothesis that sound A1 is prefered
with a chance of more than 50% is assumed [18].

The hypotheses (one for each preference tests) are evaluated using a one sample
t-test. The test statistic is

t =
p0 − p

√

p(1−p0)
n

(6.2)

where p is the proportion of the test persons choosing B1 or no preference,

p0 is 0.50 and n = 19 is the total number of test persons. A t-distribution
with n − 1 = 18 degrees of freedom is then used to give the probability α of
the calculated t value. If the resulting probability is smaller than 0.05 the null
hypothesis is rejected, and it is shown that sound A1 is preferred with a chance
of more than 50% at a significance level of 95%.

The first two preference tests were only intended to introduce the listener to the
listening test, and give the listener an idea of what types of sound he/she would
encounter. These are therefore not so interesting to make hypothesis tests on,
but the α value calculated for all the other tests are given in the last column in
table 6.1. The α value is placed in the row of the sound signal in the alternative
hypothesis of each test.

It can be seen that the null hypothesis can be rejected in test 3 and 7, meaning
that the Real and Analytic setup are preferred over the SpecSub. In test 4
the percentage α isn’t high enough to reject the null hypothesis, even though a
large percentage of the test persons preferred the Analytic setup. In test 5 and
6 the value of −t indicates a negative test statistics, which also means that the
null hypothesis can not be rejected. The negative values comes from the fact
that many of the test persons didn’t prefer one of the sounds over the other,
giving a lot of no preference answers.

6.2.2 The Point Tests

The results from the 3 point tests were also collected, and the accumulated
points along with the test signals are given in table 6.2. All three tests included
a clean signal, a noisy signal and five filtered signals using different setups or
different Nanalysis values. From the accumulated scores it can be seen, that
the test persons were able to pick out the clean signal, but had a really hard
time distinguishing the other signals. In test 8 the improvement in filtering
performance, when Nanalysis is increased, was tested. The results point in
the direction of increased performance with increasing Nanalysis, but are not
significant enough to make solid conclusions. In test 9 and 10 the different
filtering setups were compared, and the Analytic Max Edge gets the most
points in both tests (after the clean signals). The accumulated points for the
different setups are not very far from each other though, and it appears as if
the tests were too difficult for the test persons. It is therefore hard to draw any
significant conclusions about the relative performance differences between the
different setups without further tests.

Test Test signal Nanalysis thscale Max Edge Score

8

alfa-t2
Analytic 50 1 + 120
Noisy 79
Analytic 3 1 + 93
Analytic 10 1 + 100
Clean 174
Analytic 1 1 + 95
Analytic 5 1 + 99

9

chirp-t1
Noisy 76
Clean 170
Real 10 Opt. 58
Complex 10 Opt. 72
SpecSub 10 Opt. 60
Analytic 10 Opt. + 83
Analytic 10 Opt. 83

10

asma-t2
Complex 10 1 40
Analytic 10 1 44
Real 10 1 41
SpecSub 10 1 36
Analytic 10 1 + 55
Clean 181
Noisy 52

Table 6.2: An overview of the test signals, and the results of the 3 point tests.

Chapter 7

Conclusion

7.1 The Achievements

In this thesis a periodic noise filtering scheme was presented. The introduced
filtering scheme consists of four components of which the two central ones, the
Noise Period Analyzer and the Noise Filter were described and implemented.
A non-complex wavelet packet version of the scheme, using what is called the
Period Wavelet Packet transform, was already presented in [6]. In section 3.2
of this thesis a few problems with this transform were discovered, and improve-
ments were made. This gave rise to a better performance, and especially the
development of the max thresholding packet improved the results in the tests.
Another noteworthy correction made in section 3.2 was the change of the filter
convolution from periodic extension to circular extension, and the calculation
of the edge coefficients, to which that lead.

In chapter 4 the lack of shift invariance in the real wavelet transform was identi-
fied as another place for improvements. The choice to exchange the real wavelet
packets with complex wavelet packets was made, and the starting point was the
Dual-Tree Complex Wavelet Packet Transform. The extension of this transform
to complex wavelet packets was found to give non-analytic complex wavelet
basis functions, when done straight forwardly just like the extension from real
wavelets to real wavelet packets. This non-analyticity is undesirable, since it

makes the complex wavelet packet transform less shift invariant compared to a
transform with analytic basis functions. The problem with the straight forward
extension was discovered and solved by a reordering of the complex wavelet
packet filters. This reordering described in section 4.3.2 is one of the most in-
teresting results of this thesis. The reordering gives nearly analytic complex
wavelet basis functions, which result in a more shift invariant transform.

The periodic noise filtering scheme was tested in chapter 6. Here the scheme
was tested with both real, complex and the nearly analytic complex wavelet
packets, and also an average thresholding packet and a max thresholding packet
were tested. The SNR results, using the different types of wavelet packets and
thresholding packets, and using a spectral subtraction scheme, were evaluated
and compared. The conclusion was that the nearly analytic complex wavelet
packets using the max thresholding packet gave the best SNRs in the periodic
noise filtering scheme, and was also evidently better than the spectral subtrac-
tion scheme.

A listening test was created, that had test persons subjectively judge the sound
quality of the filtered signals. Some test signals were picked out, and the listeners
were asked to choose the sound they preferred according to how understandable
the spoken words were, and secondly from the personal impression of the sound.
The results of the listening test were not as clear as the ones obtained by calcu-
lating and comparing the SNRs. This can partially be explained by the relatively
few test persons taking the test (because of time and server problems), but also
because the specific sound signals in the test weren’t well enough selected. The
listening test tried to compare too many different improvements, which lead to
unclear results and only a few distinct conclusions.

7.2 Outlook

The not fully successful listening test is a good place to start, when considering
the future work which could be done in the domain of this periodic noise filtering
scheme. A similar test should be constructed, but different test signals should
be chosen, a bigger group of test persons should be used, and only the nearly
analytic complex wavelet packet setup with the max thresholding packet and
the spectral subtraction scheme should be compared. That is the important
comparison, which can fully prove, that the periodic noise filtering scheme is
also superior to the ears of listeners.

There are of course also other elements of the periodic noise filtering scheme,
which should be tested. Especially the effect of a poorly estimated noise period,

non periodically stationary noise, and the implications of setting the forgetting
factor λ to values less than one, when obtaining the thresholding packet, need
to be examined. Further the depth of the wavelet packet filter bank could be
increased, and the importance or lack hereof correcting the edge coefficients in
the thresholding packet could be investigated. And of course more thorough
tests using other noise and other speech signals should be performed.

Another area, which should be probed, is the choice of basis tree for the wavelet
packet transform. The basis tree, which is currently used, is found using the
best basis algorithm working on the noisy speech signal. This algorithm tries to
find a basis tree giving large wavelet packet coefficients when transforming the
input signal, which means both large speech signal coefficients and large noise
coefficients. This might not be the optimal basis for the filtering scheme pre-
sented here, and it would be interesting to investigate other possibilities. Also
in a real time implementation one would not have the input signal before select-
ing the basis tree, and therefore one would probably need to find a generalized
way of classifying the speech signals expected by the filtering scheme, and from
that derive how to choose the basis tree. A learning algorithm could also be
developed, in which the filtering scheme tries to learn from its basis tree choices,
and that way determines what is a good basis tree.

Finally, the main goal of the periodic noise filtering scheme is, that it should be
implemented in a real time application. This requires a speech pause detector
and a period length estimator, which are also needed in the scheme. A lot of
work is already being done on developing good speech pause detectors, but this
problem should of course be addressed in further research papers, as well as the
development of a period length estimator. The Periodic Noise Analyzer and
the Noise Filter are both based on the nearly analytic complex wavelet packet
transform, which is relatively straight forward to implement in real time. The
Periodic Noise Analyzer requires a rather large amount of computations, be-
cause the input sequence is not down-sampled at each level in the filter bank;
but the computations can easily be parallelized, so one can trade size for speed.
Additionally both components can work on a sample by sample basis, which
keeps the processing delay at a very low level. All these factors make the im-
plementation in a real time application, like a cell phone or a headset, realistic,
and a possibility for the future.

Appendix A

Mathematical Derivation of

Wavelet Transform Equations

A scaling function at level j is included in the space spanned by the scaling
functions at level j + 1, and therefore it can be written as a linear combination
of the level j + 1 scaling functions [2]. Starting with the scaling function for
which k = 0

ϕj,0(t) =
∑

n

g0(n)ϕj+1,n(t) =
∑

n

g0(n)
√

2ϕj,n(2t) (A.1)

or
ϕ(t) =

∑

n

g0(n)
√

2ϕ(2t− n) (A.2)

For a shifted scaling function (k 6= 0)

ϕj,k(t) = 2j/2ϕ(2jt− k) = 2j/2
∑

n

g0(n)
√

2ϕ(2(2jt− k) − n)

=
∑

n

g0(n)2(j+1)/2ϕ(2(j+1)t− 2k − n)
(A.3)

and making a change of variable m = 2k + n

ϕj,k(t) =
∑

m

g0(m− 2k)ϕj+1,m(t) (A.4)

A.1 The Forward Calculation

The coefficients c and d are found by projecting the function f(t) on the scaling
and wavelet functions; this corresponds to taking the inner product

cj(k) = 〈f(t), ϕj,k(t)〉 , dj(k) = 〈f(t), ψj,k(t)〉 (A.5)

For continuous time functions the inner product is an integral, and if we further
use the recursive relation obtained in equation (A.4), it is possible to obtain a
recursive relation between scaling function coefficients at different levels.

cj(k) =

∫ ∞

t=−∞

f(t)ϕj,k(t)dt =

∫ ∞

t=−∞

f(t)
∑

m

g0(m− 2k)ϕj+1,m(t)dt

=
∑

m

g0(m− 2k)

∫ ∞

t=−∞

f(t)ϕj+1,m(t)dt

=
∑

m

g0(m− 2k)cj+1(m)

(A.6)

In the same way a relation between the wavelet function coefficients and the
scaling function coefficients at a higher level can be found.

dj(k) =
∑

m

g1(m− 2k)cj+1(m) (A.7)

A.2 The Inverse Calculation

If f(t) ∈ Vj0+1, f(t) can be written as a sum of scaling functions at level j0 + 1.

f(t) =
∑

k

cj0+1(k)2
(j0+1)/2ϕ(2(j0+1)t− k) (A.8)

Or as a sum of scaling functions and wavelet functions at level j0

f(t) =
∑

k

cj0(k)ϕj0,k(t) +
∑

k

dj0(k)ψj0,k(t)

=
∑

k

cj0(k)
∑

n

g0(n)2(j+1)/2ϕ(2(j+1)t− 2k − n)

+
∑

k

dj0(k)
∑

n

g1(n)2(j+1)/2ϕ(2(j+1)t− 2k − n)

(A.9)

where equation (A.3) was used.
Now setting the two above equations equal to each other, multiplying by ϕ(2(j0+1)t−

m) and taking the integral gives

2(j0+1)/2
∑

k

cj0+1(k)

∫

ϕ(2(j0+1)t−m)ϕ(2(j0+1)t− k)dt

= 2(j0+1)/2
∑

k

cj0(k)
∑

n

g0(n)

∫

ϕ(2(j0+1)t−m)ϕ(2(j0+1)t− 2k − n)dt

+ 2(j0+1)/2
∑

k

dj0(k)
∑

n

g1(n)

∫

ϕ(2(j0+1)t−m)ϕ(2(j0+1)t− 2k − n)dt

(A.10)

Remembering that the scaling functions are orthogonal, the integral on the left
side is non-zero only for m = k, and the integrals on the right side are only
non-zero for m = 2k+n. We then finally get the following equation to calculate
the inverse wavelet transform.

cj0+1(m) =
∑

k

cj0(k)g0(m− 2k) +
∑

k

dj0(k)g1(m− 2k) (A.11)

Appendix B

Complex Wavelet Packet

Transform Filter Coefficients

hRe
0 hRe

1 hIm
0 hIm

1

h(1) 0,00325314 -0,00455690 -0,00455690 -0,00325314
h(2) -0,00388321 0,00543948 -0,00543948 -0,00388321
h(3) 0,03466035 0,01702522 0,01702522 -0,03466035
h(4) -0,03887280 -0,02382538 0,02382538 -0,03887280
h(5) -0,11720389 -0,10671180 -0,10671180 0,11720389
h(6) 0,27529538 -0,01186609 0,01186609 0,27529538
h(7) 0,75614564 0,56881042 0,56881042 -0,75614564
h(8) 0,56881042 -0,75614564 0,75614564 0,56881042
h(9) 0,01186609 0,27529538 0,27529538 -0,01186609
h(10) -0,10671180 0,11720389 -0,11720389 -0,10671180
h(11) 0,02382538 -0,03887280 -0,03887280 -0,02382538
h(12) 0,01702522 -0,03466035 0,03466035 0,01702522
h(13) -0,00543948 -0,00388321 -0,00388321 0,00543948
h(14) -0,00455690 -0,00325314 0,00325314 -0,00455690

Table B.1: Coefficients of the length 14 q-shift filters for the forward complex
wavelet packet transform

gRe
0 gRe

1 gIm
0 gIm

1

h(1) -0,00455690 -0,00325314 0,00325314 -0,00455690
h(2) -0,00543948 -0,00388321 -0,00388321 0,00543948
h(3) 0,01702522 -0,03466035 0,03466035 0,01702522
h(4) 0,02382538 -0,03887280 -0,03887280 -0,02382538
h(5) -0,10671180 0,11720389 -0,11720389 -0,10671180
h(6) 0,01186609 0,27529538 0,27529538 -0,01186609
h(7) 0,56881042 -0,75614564 0,75614564 0,56881042
h(8) 0,75614564 0,56881042 0,56881042 -0,75614564
h(9) 0,27529538 -0,01186609 0,01186609 0,27529538
h(10) -0,11720389 -0,10671180 -0,10671180 0,11720389
h(11) -0,03887280 -0,02382538 0,02382538 -0,03887280
h(12) 0,03466035 0,01702522 0,01702522 -0,03466035
h(13) -0,00388321 0,00543948 -0,00543948 -0,00388321
h(14) 0,00325314 -0,00455690 -0,00455690 -0,00325314

Table B.2: Coefficients of the length 14 q-shift filters for the inverse complex
wavelet packet transform

hRe

0f hRe

1f hIm

0f hIm

1f

h(1) 0,00000000 0,00000000 0,00793854 0,00000000
h(2) -0,06250000 -0,00793854 0,00793854 0,00000000
h(3) 0,06250000 0,00793854 -0,06250000 -0,06250000
h(4) 0,49206146 0,06250000 0,06250000 -0,06250000
h(5) 0,49206146 0,06250000 0,49206146 0,49206146
h(6) 0,06250000 -0,49206146 0,49206146 -0,49206146
h(7) -0,06250000 0,49206146 0,06250000 0,06250000
h(8) 0,00793854 -0,06250000 -0,06250000 0,06250000
h(9) 0,00793854 -0,06250000 0,00000000 0,00793854
h(10) 0,00000000 0,00000000 0,00000000 -0,00793854

Table B.3: Coefficients of the length 10 first stage filters for the forward complex
wavelet packet transform

gRe

0f gRe

1f gIm

0f hIm

1f

h(1) 0,00000000 0,00000000 0,00000000 -0,00793854
h(2) 0,00793854 -0,06250000 0,00000000 0,00793854
h(3) 0,00793854 -0,06250000 -0,06250000 0,06250000
h(4) -0,06250000 0,49206146 0,06250000 0,06250000
h(5) 0,06250000 -0,49206146 0,49206146 -0,49206146
h(6) 0,49206146 0,06250000 0,49206146 0,49206146
h(7) 0,49206146 0,06250000 0,06250000 -0,06250000
h(8) 0,06250000 0,00793854 -0,06250000 -0,06250000
h(9) -0,06250000 -0,00793854 0,00793854 0,00000000
h(10) 0,00000000 0,00000000 0,00793854 0,00000000

Table B.4: Coefficients of the length 10 first stage filters for the inverse complex
wavelet packet transform

Bibliography

[1] S. Mallat. A wavelet tour of signal processing. Academic Press, 2. edition,
1999.

[2] C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to Wavelets and
Wavelet Transforms. Prentice Hall, 1998.

[3] J. E. Odegard, R. A. Gopinath, and C. S. Burrus. Optimal wavelets for
signal decomposition and the existence of scale limited signals. In IEEE
Proc. Int. Conf. Acoust., Speech, Signal Processing, volume 4, pages IV
597–600, San Francisco, CA, 1992.

[4] S. Ayat, M. T. Manzuri, and R. Dianat. Wavelet based speech enhancement
using a new thresholding algorithm. In Proceedings of 2004 International
Symposium on Intelligent Multimedia, Video and Speech Processing, Octo-
ber 2004.

[5] I. M. Johnstone and B. W. Silverman. Wavelet threshold estimators for data
with correlated noise. Journal of the Royal Statistical Society B, 59(2):319–
351, 1997.

[6] T. Weickert and U. Kiencke. Adaptive estimation of periodic noise energy
distributions for speech enhancement. In Proceedings of 9th IFAC Workshop
ALCOSP’07, 2007.

[7] I. Cohen, S. Raz, and D. Malah. Shift invariant wavelet packet bases. In
IEEE Proc. Int. Conf. Acoust., Speech, Signal Processing, volume 4, pages
1080–1084, Detroit, MI, 1995.

[8] J. O. Smith. Mathematics of the discrete fourier trans-
form (dft). Website. Stanford University, California.
http://ccrma.stanford.edu/~jos/mdft/.

[9] I. W. Selesnick, R. G. Baraniuk, and N. G. Kingsbury. The dual-tree
complex wavelet transform. IEEE Signal Processing Magazine, 22(6):123–
151, November 2005.

[10] Ivan W. Selesnick. The design of approximate hilbert transform pairs
of wavelet bases. IEEE TRANSACTIONS ON SIGNAL PROCESSING,
50(5):1144–1152, May 2002.

[11] N. G. Kingsbury. Design of q-shift complex wavelets for image processing
using frequency domain energy minimisation. In IEEE Proc. Conf. on
Image Processing, Barcelona, 2003.

[12] I. W. Selesnick, S. Cai, and K. Li. DTCWT first stage filter. Website. Poly-
technic Institute, New York. http://taco.poly.edu/WaveletSoftware/.

[13] A. Jalobeanu, L. Blanc-Féraud, and J. Zerubia. Satellite image deblurring
using complex wavelet packets. IJCV, 51(3):205–217, 2003.

[14] N. G. Kingsbury. A dual-tree complex wavelet transform with improved
orthogonality and symmetry properties. In Proc. International Conference
on Image Processing, 2000, volume 2, pages 375–378, 2000.

[15] B. McKinley and G. Whipple. Model based speech pause detection. In
ICASSP ’97: Proceedings of the 1997 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP ’97)-Volume 2, page
1179, Washington, DC, USA, 1997. IEEE Computer Society.

[16] E. Zavarehei and S. Vaseghi. Spectral subtraction. Website. Brunel Uni-
versity, London. http://dea.brunel.ac.uk/cmsp/Home_Esfandiar/.

[17] D. Donoho, A. Maleki, and M. Shahram. WAVELAB850 comprehen-
sive wavelet toolbox for Matlab. Website. Stanford University, California.
http://www-stat.stanford.edu/~wavelab/.

[18] R. A. Johnson. Miller and Freund’s Probability and Statistics for Engineers.
Prentice Hall, 2000.

http://ccrma.stanford.edu/~jos/mdft/
http:// taco.poly. edu/ WaveletSoftware/
http:// dea.brunel.ac.uk/ cmsp/ Home_Esfandiar/
http://www- stat.stanford .edu/ ~wavelab/

	Summary
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Overview of A Complete Periodic Noise Filtering System
	1.2 Chapter Overview

	2 Basic Theory of Wavelet Filtering
	2.1 The Wavelet Transform
	2.2 Wavelet Packets

	3 Periodic Noise and The Period Wavelet Packet Transform
	3.1 Periodic Noise
	3.2 Period Wavelet Packet (PWP) Transform

	4 Shift Invariance and Complex Wavelet Packets
	4.1 Shift Invariant Real Wavelet Transforms
	4.2 The Dual Tree Complex Wavelet Transform
	4.3 Expanding the DTCWT to Complex Wavelet Packets

	5 Implementation
	5.1 Implementation of the Noise Period Analyzer and the Noise Filter
	5.2 A Spectral Subtraction Scheme
	5.3 Matlab Implementation

	6 Evaluation
	6.1 Evaluating the Periodic Noise Filtering Scheme Using SNR's
	6.2 Evaluation Using Listening Test

	7 Conclusion
	7.1 The Achievements
	7.2 Outlook

	A Mathematical Derivation of Wavelet Transform Equations
	A.1 The Forward Calculation
	A.2 The Inverse Calculation

	B Complex Wavelet Packet Transform Filter Coefficients

