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Abstract

This paper analyzes bene�ts and challenges (together with possible solutions)
of using natural language processing for data entry and computer program-
ming.

The paper looks at data entry in existing declarative languages and the un-
derlying relational model is analyzed, also covering the subject of semantic
networks. Context-free grammars are described in the context of natural
language parsing, and modi�ed Earley parsing algorithm is described and
implemented, dispensing with some unnecessary complexities of the original.

A number of challenges of natural language are described, from the di�cul-
ties of identifying and classifying lexemes, to the ambiguous constructions of
everyday English.

The paper concludes that while natural language is too complex for computers
to grok in the general case, natural language may be viable in highly domain-
speci�c areas.
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1 Introduction

Ordinarily, computers have been programmed using imperative programming lan-
guages (such as assembler code, C or Java), characterized in that algorithms are
explicitly spelled out.

Declarative programming (which include logic programming and functional pro-
gramming) takes a higher-level, more mathematically stringent approach, in which
only a goal is stated, and the computer is then tasked with �nding an appropriate
algorithm to reach this goal.

The fact that most programming remains imperative must be attributed to the fact
that programmers are much better at designing algorithms than computers. Indeed,
many declarative languages (such as Prolog, ML and Lisp) include imperative
constructs, sacri�cing purity for increased control over program execution.

Declarative programming is not without its advantages, however. Because it does
away with the imperative notion of state, declarative programming is suitable for
massive parallelization.

More interestingly, one may argue that declarative programming more closely
matches the way humans represent knowledge in writing.

While imperative programming requires understanding of state and �ow control,
declarative programming only requires understanding of knowledge representation
and syntax. This may give non-specialists insight into the operations of a program.

Another way to make the life easier for non-specialists is to use natural language
(i.e. English) for programming. This is considerably more di�cult to implement
properly, as can be seen by the relatively few attempts (successful or otherwise)
at doing this. However, its feasibility for domain-speci�c tasks is demonstrated by
such diverse experiments as SHRDLU and the Inform 7 programming language.

1.1 Problem description

This paper analyzes bene�ts and challenges (together with possible solutions) of us-
ing natural language processing for data entry and computer programming. How-
ever, many of the problems are beyond the scope of this paper, and are indeed
unlikely to be solved for many years.

The paper describes a number of existing declarative programming languages and
natural language based languages in section 2.

The nature of words in the English language is discussed in section 3, while section
4 discuss the mathematics of language and grammar. Section 5 describes a modi�ed
Earley parser, and section 6 an actual implementation.

Representing knowledge using semantic networks is discussed in section 7.
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2 Overview of existing solutions

Since the 1950s, much work has gone into designing languages for declarative pro-
gramming, resulting in logic programming languages like Prolog and Gödel, and
functional languages like Lisp, ML and Haskell.

The topic of natural programming languages has not received as much attention.
Practical English-like languages have been crude, as well as few and far between.
Notable attempts include AppleScript and Macromedia's Lingo (both inspired by
DanWinkler's 1987 HyperTalk language), SQL and COBOL, all of which are still in
use in some form or other, for application scripting, database queries, and �nancial
systems.

2.1 Mathematical notation

Although not strictly a programming language, mathematical notation is the most
widespread formalized declarative language in use, and a language that has evolved
over thousands of years.

Recall that a mathematical n-ary relation is an n argument boolean-valued function
(a predicate), de�ning how values relate to eachother. A simple example is the
binary equals relation, de�ned

equals(a, b) ⇔ a = b

As an example, the following relations are introduced:

parent(p, c) p is the parent of c.
father(p, c) p is the father of c.
mother(p, c) p is the mother of c.
childof(c,m, f) c's mother is m, and c's father is f .
sibling(c1, c2) c1 is the sibling of c2.

The relations are de�ned in terms of each other as follows:

parent(p, c) ⇐ father(p, c)

parent(p, c) ⇐ mother(p, c)

childof(c,m, f) ⇔ mother(m, c) ∧ father(f, c)

sibling(c1, c2) ⇐ c1 6= c2 ∧ ∃p : (parent(p, c1) ∧ parent(p, c2))

We can then make assertions about people to construct a family tree. An example
drawn from norse mythology is given in �gure 1.
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childof(odin, bestla, borr)
childof(vili, bestla, borr)
childof(ve, bestla, borr)

Figure 1: A family tree in terms of childof-relations, and as a pedigree chart

2.2 Prolog

Prolog is a logic programming language, with a pure declarative core and a number
of imperative extensions.

In predicate logic, a de�nite Horn clause is an expression on the form

A ⇐ B1 ∧B2 ∧ · · · ∧Bn

where A and Bi are all predicates of the form P (p1, . . . , pm).

A basic Prolog program consists of a number of Horn clauses, and the user can
then ask the program to prove predicates. Central to Prolog is negation as failure,
in which anything not provably true is assumed to be false.

Since Prolog is limited to Horn clauses, the rule

childof(c,m, f) ⇔ mother(m, c) ∧ father(f, c)

cannot be described. The best we can do is

childof(c,m, f) ⇐ mother(m, c) ∧ father(f, c)

This restriction greatly reduces the complexity of the Prolog theorem prover, but
complicates programming.

parent(P,C) :- father(P,C).
parent(P,C) :- mother(P,C).
childof(C,M,F) :- mother(M,C), father(F,C).
sibling(C1 ,C2) :- parent(P,C1), parent(P,C2), \dif(C1, C2).

Due to the modi�ed childof de�nition, the family tree cannot be speci�ed using

childof(odin , bestla , borr).
childof(ve , bestla , borr).
childof(vili , bestla , borr).

3



since childof no longer implies the mother and father relation. Instead, the family
tree must be speci�ed more verbosely,

mother(bestla , odin).
mother(bestla , ve).
mother(bestla , vili).
father(borr , odin).
father(borr , ve).
father(borr , vili).

Once this is done, queries can be made against the data set:

| ?- childof(odin ,bestla ,borr).
true ? a
no

| ?- childof(C,M,F).
C = odin
F = borr
M = bestla ? a

C = ve
F = borr
M = bestla

C = vili
F = borr
M = bestla

yes

2.3 Relational database management systems and SQL

Codd's classic paper on relational database management revolutionized database
construction by introducing the mathematical concept of relations to data manage-
ment. [Codd70] Where earlier databases had used a simple table�record structure,
and the merging of data from di�erent tables would have had to be done in the
application, this merger could now be performed in the database.

Codd's de�nition of named relations match what SQL refers to as tables: A named
set of n-tuples satisfying the n-ary relation.

The father-relation could be created as a table with this command:

CREATETABLE father (parent VARCHAR(50), father VARCHAR(50))

However, working with father and mother in this manner would be impractical; in
SQL, it's easiest to take an �object-centrist� approach, in which each table row (or
tuple) tells us as much as possible about a single object. The result is more akin
to the childof relation, the names being the only di�erence:

CREATETABLE Person (name VARCHAR(50), mother VARCHAR(50), father VARCHAR(50))

4



2.4 SHRDLU

Terry Winograd's SHRDLU from the late 1960s was a computer program that al-
lowed the user to interact with a virtual world of three-dimensional shapes through
natural language. At the time, its apparent intelligence was a tremendous break-
through in arti�cial intelligence and natural language research, but its successful
understanding of language was largely dependent on the narrow con�nes of its vir-
tual world, and later research failed to make the program less domain-speci�c while
retaining its (apparent) intelligence. Winograd himself declared it to be a dead-end
in AI research.

Nevertheless, SHRDLU demonstrates a number of desirable qualities in a natural
language processing program, as seen in these excerpts: [Winograd71]

Basic sentences
> Pick up a big red block.

OK.

Comparative adjectives (�taller�) and pronouns (�it�)
> Find a block which is taller than the one you are holding and put it into the box.

By "it", I assume you mean the block which is taller than the one I am holding. OK.

Negation and counting
> How many blocks are not in the box?

Four of them.

Disambiguation
> How many things are on top of green cubes?

I'm not sure what you mean by "On top of" in the phrase "on top of green cubes".

Do you mean:

1 � Directly on the surface

2 � Anywhere on top of?

Memory of past events
> Had you touched any pyramid before you put the green one on the little cube?

Yes, the green one.

Learning by de�nition
> A �steeple� is a stack which contains two green cubes and a pyramid.

I understand.

> Are there any steeples now?

No.

> Build one.

OK.

Greatly simplifying SHRDLU's task was the fact that it had perfect knowledge of
the state of its world, although not of the rules � it had to learn that triangles
wouldn't stack, for instance.
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2.5 Inform 7

Inform 7 is a language and authoring system designed largely for writers, not
programmers. A notable feature is that the programming language is based on
natural language.

Thus, we can de�ne the father, mother and childof relations as such:

Chapter 1 - De�nitions

Fatherhood relates one man (called the father) to various people.
Motherhood relates one woman (called the mother) to various people.

The verb to be the father of implies the fatherhood relation.
The verb to be the mother of implies the motherhood relation.

Childhood relates a person (called the child) to a person (called the parent) when the parent is
the father of the child or the parent is the mother of the child.

The verb to be the child of implies the childhood relation.

Section 1.1 - Family tree

Bestla is the mother of Odin.
Borr is the father of Odin.

Odin is the father of Balder.
Frig is the mother of Balder.
Odin is the father of Hod.
Odin is the father of Thor.

The example illustrates how Inform 7 allows clear and concise declarations in nat-
ural language, at the cost of some quite verbose de�nitions.

Of particular interest is the readability of the source code. Even to readers having
no previous experience with the language, the code remains quite clear, simply
because it mimics the English language. In comparison, the Prolog code may be a
lot more concise, but it's also completely opaque to people without the necessary
mathematical background.

In this respect, Inform 7 can be seen as a perfection of Donald Knuth's �literate
programming� philosophy. Unlike most realizations (TEX, javadoc, etc.), where
programming code and documentation are merely interleaved in the source �les,
Inform 7 con�ates the two: the documentation is the code.

[Nelson05] discuss this and other Inform 7 design issues.
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3 Lexical analysis

During execution, a natural language processing program receives a string of char-
acters as input. Since few non-logographic languages are best described as a string
of separate characters, the input characters must be grouped into words (tokens
or terminals), before being sent to the parser. This procedure is known as lexical
analysis, scanning or tokenization.

It is the �rst step that a program must undertake when dealing with textual input,
and for programming languages is often quite simple.1

3.1 Words of natural language

Of course, nothing in natural language is simple. [Trask04] gives four markedly
di�erent de�nitions of what a word is, two of which are useful for our purposes.

Orthographic words are strings of letters, numbers and hyphens, delimited by
spaces or other non-alphanumeric characters. Orthographic words are thus readily
identi�able in a text, and a suitable basis for tokenization.

This division does not always match the semantics, however. �Ice cream� is seman-
tically a single word, but consists of two orthographic words.

Lexemes are semantic units of the text. A lexeme like jump correspond to the
ortographic word �jump�, as well as all its in�ections (jumps, jumped, jumping).
The set of known lexemes is referred to as the lexicon.

A lexeme always belong to exactly one syntactic class. As such, billN (the noun
�a bill�), billV (the verb �to bill�) and billPN (the proper noun �Bill�) are three
di�erent lexemes.

A lexeme may also correspond to a sequence of orthographic words, as in �ice
cream� (ice-creamN).

Determining exactly which orthographic words match which lexemes is a compli-
cated procedure which requires understanding of the sentence structure, something
which we only have after the parsing step. Hence the parser is fed othographic
words and not lexemes.

3.2 Compound nouns

The above mentioned �ice cream� is an example of a compound noun. Compound
nouns are nouns that consist of two or more words, and the challenge is to properly
identify them as a single lexeme.

1A notable exception is C++, where the lexical analysis is intertwined not only with the
parsing, but also with the following semantic analysis.
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Although it may seem desireable for the semantic step to analyse the underlying
composition (ice + cream, ash + tray), this is very di�cult to do properly even for
humans, as the compound does not reveal how the parts relate to eachother: Ice
cream is cream made out of ice, but an ashtray is not a tray made out of ash.

One may distinguish between three ways of writing compound nouns:

The closed form is when the words are joined together, as in �ashtray�, and is thus
quite easy to handle from a parsing perspective, as we have a one-to-one mapping
between orthographic word and lexeme.

The hyphenated form is when the words are connected by a hyphen, and is
equally easy to parse.

The open form is when the words are separated by spaces, as in �ice cream�, and
presents a di�cult parsing problem, easily resulting in ambiguities.

Compound nouns are further complicated by the fact that while many are limited
to one of the above forms (e.g. �ice age�, not �iceage� or �ice-age�), others can be
written in two or all three of the above forms (both �ice cream� and �ice-cream� are
correct). Additionally, some forms are in widespread use, even if not sanctioned by
dictionaries (�ash tray�).

One might conclude that program should accept compound nouns in all three
forms, but this causes problems on its own: A �green house� is quite di�erent from
a �greenhouse�.

For general-purpose natural language processing, it is not practical to build a com-
prehensive catalog of compound nouns either, since their number is too high, new
compounds are invented every day, and old compounds change form quickly �
�data base� became �database� in less than two decades.

3.3 Classifying words

Determining which word classes (nouns, verbs, etc.) to divide words into is in itself
a di�cult task.

A single class for proper nouns and another for common nouns may for instance
seem appropriate, but English have two di�erent types of common nouns: count
nouns and mass nouns. Count nouns are ordinary nouns (e.g. �cat�) which are
countable and have a singular and plural form. Mass nouns are nouns like �water�,
which are uncountable, and are neither singular nor plural.

To further complicate matters, mass nouns may in some circumstances be used as
count nouns, e.g. �Which of these oils is better for cooking?� One may even have
a beef with someone.

It seems reasonable then to distinguish between the count noun beefCN and the
mass noun beefMN at the lexeme level.
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3.4 In�ection and stemming

A lexeme has an associated citation form or lemma; the base form of the word.
For count nouns, it is the singular, for verbs it's the in�nitive, for mass nouns and
proper nouns, it's the only form of the word (not counting the possessive case).

The lemma is in�ected to produce the di�erent forms of the lexeme. Regular words
are in�ected according to a simple set of rules, but English also contains a large
number of irregular words, where the di�erent forms cannot simply be computed
from the citation form, and instead must be stored explicitly. (The worst o�ender
is the verb to be.)

The regular in�ection rules for plural count nouns can be described thus: If the
word ends on �s�, �sh�, �x�, �z�, add �es�. Otherwise, if the word ends on �y�, replace
that �y� with �ies�. Otherwise, add �s�.

In shorthand notation, the in�ection rules become:

Plural
s/sh/x/z→ -es
y→ ies
ε → s

Posessive
s/x/z→ -'
ε → 's

Comparative

&d→ -der
&g→ -ger
&t→ -ter
e→ -r
y→ -ier
ε → -er

Superlative

&d→ -dest
&g→ -gest
&t→ -test
e→ -st
y→ -iest
ε → -est

(Here, & indicates any vowel.)

Once we can in�ect lexemes, we can also stem orthographic words and obtain the
corresponding lexeme along with its grammatical features. This is done by adding
all lemmas and irregular in�ections to a multi map, mapping to the corresponding
lexeme. A multi map is required since an orthographic word may map to multiple
lexemes (possibly in di�erent forms).

To �nd the lexemes corresponding to a word, and the above rules are applied in
reverse, and the result is looked up in the map. An implementation of this can be
found in the jp.lexer.Feature and jp.lexer.Lexicon (appendix B.3 and B.3),
and a sample program can be found in jp.StemTest (appendix B.4).
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4 Formal languages

A formal language is a mathematical representation of language, in which a lan-
guage L is de�ned as a set of symbol strings.2

The symbols can be anything, and are often characters; in describing natural lan-
guages, it's useful to de�ne symbols as words and punctuation marks. These sym-
bols are denoted terminal symbols or tokens, and the set Σ of allowed symbols must
be �nite.

The language set contains all strings that are valid in that language. An example
of a �nite language could thus be the language of twin Arabic digits,

L = {00, 11, 22, 33, 44, 55, 66, 77, 88, 99}

over the symbols

Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Most languages, however, are in�nite, thus requiring us to describe them in other
ways than simply enumerating every legal string. Formal devices for this purpose
are called formal grammars.

The Chomsky hierachy (�gure 2) orders languages (and the grammars describ-
ing them) after the complexity of recognizing valid strings (and rejecting invalid
strings), such that every category is a proper subset of the categories above it in
the hierachy.

Language Automaton
Recursively enumerable Turing machine
Recursive Decider
Context-sensitive Linear-bounded
Indexed Nested stack
Context-free Nondeterministic pushdown
Deterministic context-free Deterministic pushdown
Regular Finite

Figure 2: The augmented Chomsky hierarchy of formal languages [Elder05]

The most well-known of these are regular languages (typically described by regular
expressions, and recognizable by a �nite automaton) and context-free languages
(described by context-free grammars, such as BNF grammars, and recognized by
a non-deterministic pushdown automaton.)

2These strings are sometimes referred to as words, but to avoid confusion (as we're discussing
natural language), we'll use word in the senses discussed in section 3.1.
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4.1 Context-free grammars

Context-free grammars (CFGs) can themselves be divided into several complexity
categories:

LL(k) ⊂ LR(1) ⊆ deterministic CFG ⊂ unambiguous CFG ⊂ all CFG

A context-free grammar is said to be deterministic, if it can be implemented using
a deterministic pushdown automaton (as opposed to a non-deterministic PDA).

It's preferable to deal with deterministic context-free languages, since they may be
parsed using e�cient LL(k) and LR(1) parsers. For this reason, most programming
languages strive to be deterministic context-free.

A grammar is said to be ambiguous, if there's more than one way to derive the
same string from the grammar. An example of an ambiguous CFG would be

S → A A

A → 1 | ε

which generates the language {ε, 1, 11} but has two ways of deriving the string 1
in that the 1 may be the expansion of either the �rst or the second A.

A context-free grammar can easily become ambiguous, as seen in this highly sim-
plifed expression grammar:

expr → number | expr + expr | expr ∗ expr

Here, ambiguity causes problems because the individual productions are assigned
semantics.

A smaller problem with the above grammar is that the expression 1 + 2 + 3 can
be parsed as either (1 + 2) + 3 or 1 + (2 + 3). Either way, we get the correct
mathematical result, and we can ignore the super�uous parse by e.g. requiring the
parser to proceed from left to right.3

Figure 3: The ambiguous grammar allows for multiple derivations.

3This parser-level �hack� is usually employed to handle the dangling else problem of many
programming languages.
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Much worse is that the expression 1 + 2 * 3 can be parsed as either (1 + 2) · 3 or
1 + (2 · 3). In mathematics, we use operator precedence to remove this ambiguity,
and we can encode this in the grammar:

multiplicative → number | number ∗multiplicative

additive → multiplicative | multiplicative + additive

In general, however, it might not be that easy. Any su�ciently complex grammar
of natural language will almost certainly be ambiguous and thus non-deterministic,
requiring the use of more complex parsers than e.g. those used in parsing program-
ming languages.
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5 Parsing

While many simple and highly e�cient algorithms exist for parsing LL and LR
grammars, parsing algorithms for arbitrary context free grammars are somewhat
more complex.

Several algorithms require that the grammar be rewritten to Chomsky normal form
(for the Cocke-Younger-Kasami algorithm) or Greibach normal form (after which
the input can be recognized by a simple non-deterministic push-down automaton).

These algorithms are general since the required normalization can be performed
on any CFG, without changing the recognized language. However, since we attach
semantic meaning to the productions of our grammar, rewriting the grammar eases
parsing at the cost of complicating the semantic analysis.

Instead, the Earley parser may be applied, which accepts any context-free grammar
in Backus-Naur form.

5.1 A modi�ed Earley parser

[Earley70] skims over the issue of constructing a parse tree, and the described algo-
rithm contains unnecessary complexities (such as look-ahead4), as noted by later
authors. The following formulation of a modi�ed Earley parser is thus based not
only on Earley's paper, but also later resources ([Aycock02] and [Dollin02]).

Input and preparations

The parser takes as input:

• A set of terminals a, b, . . .

• A set of nonterminals A,B, . . ., of which one (denoted R) is the root

• A set of BNF productions A → α, where α is a string consisting of symbols
from the two sets just mentioned

• An n symbol string X0 · · ·Xn−1 to be parsed

As a preparation, we choose a new (unused) terminal symbol a (the terminator
and a new nonterminal φ, which is promoted to root, and given the following
production:

φ → R a

a is appended to the input string as well, becoming Xn.

4[Earley70] suggests a look-ahead of 1; [Aycock02] and [Dollin02] dispenses with look-ahead
altogether.
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Parse trees

The goal of the parser is to construct one or more valid parse trees, describing ways
to parse the input according to the given productions.

A parse tree is an ordered tree consisting of nodes, which may be either simple
terminal nodes (without child nodes), or production nodes (which may have child
nodes). Each node is assigned a value, which for terminal nodes is a terminal
symbol a, and for production nodes is a production A → α.

A production node can thus also be seen as a tuple

〈A → α, 〈c1, c2, . . . , cn〉〉

consisting of the production A → α and the child nodes c1, c2, . . . , cn.

In the following, we use the short-hand notation A(c1c2 · · · cn) to denote such a
production node.5 This enables the following notation for whole parse trees:

φ(E(a + E(a)))

Parse states

Being a chart parser, the Earley parser constructs a number of parse states during
execution.

These states are maintained in n + 2 ordered sets S0 . . . Sn+1: one set for every
position between input symbols (as well as at the beginning and end of the input).

A parse state is a tuple 〈P → α, p, i, T 〉, where P → α is a production we're
currently parsing, p is our current position in the string α (the expansion of that
production), i denotes the input position at which we began parsing P , and T is a
partial parse tree, which may end up in the resulting parse tree(s).

As a shorthand, we write
P → α . β i T (1)

to denote the state 〈P → αβ, p, i, T 〉 where the position p is between α and β, as
denoted by the dot.

In a state set Sj , the state (1) represents the following facts:

• We're currently testing whether input characters starting with Xi can be
derived from P → αβ.

• α
∗⇒ Xi · · ·Xj−1, that is, the input symbols Xi through Xj−1 have been

veri�ed to match the part of the production before the dot, α.

5For the sake of simplicity, this notation dispenses with the right-hand side of the production,
α. An actual implementation would usually need to track the whole production A→ α.
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• T is a partial parse tree for a parse starting at Xi with root P .

If the dot is at the end of the production, we further have that

• P
∗⇒ Xi · · ·Xj−1 (the input symbols Xi through Xj−1 can be derived from

P .)

• T is a complete parse tree for a parse of Xi through Xj−1 with root P .

At the end of the parse, the following statements are equivalent:

• The state is in Sn+1.

• The state is φ → R a . 0 φ(T a).

• φ(T a) is a complete parse tree from a parse of the entire input (including a)
with root φ, from which the relevant parse tree T with root R can trivially
be extracted.

Algorithm

The algorithm starts out by adding a single state to S0,

φ → . R a 0 φ()

indicating that we're currently testing whether our whole input can be derived from
our root φ and that no input symbols have been veri�ed to match so far.

The algorithm then iterates over the state sets S0 through Sn in ascending order,
and for each set Sj , the algorithm processes the states of Sj in order.

Processing a state in Sj may cause new states to be added to Sj ; these must be
processed as well, thus the requirement that the sets be ordered.

Depending on the state to be processed, one of three actions may be taken.

The scanner applies when the symbol following the dot is a terminal, a:

P → α . a β i T

We compare a to the next input symbol Xj , and, if it's a match, adds the state

P → α a . β i T

to Sj+1, indicating that we successfully parsed the a.

The predictor applies when the symbol following the dot is a nonterminal, A:

P → α . A β i T
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The predictor adds a state to Sj for every production A → γ of that nonterminal,

A → . γ j A()

Thus, we begin a check of whether A matches the input at position j.

The completer applies when the dot is at the end of the production:

A → γ . i T

This means that we successfully parsed an A at position i, so we go back to Si,
and for every state which predicted A,

P → α . A β i′ P (s)

we add a new state to Sj

P → α A . β i′ P (s T )

indicating that we successfully parsed A, with the resulting parse tree T .

Example

As an example, take the input a + a and the following simple grammar:

φ → E a
E → a | E + E

After parsing completes, we will have produced the following state sets:

φ → . E a 0 φ()
S0 E → . a 0 E()

E → . E + E 0 E()
E → a . 0 E(a)

S1 ∗ φ → E . a 0 φ(E(a))
E → E . + E 0 E(E(a))
E → E + . E 0 E(E(a)+)

S2 E → . a 2 E()
∗ E → . E + E 2 E()

E → a . 2 E(a)
E → E + E . 0 E(E(a) + E(a))

S3 ∗ E → E . + E 2 E(E(a))
φ → E . a 0 φ(E(E(a) + E(a)))

∗ E → E . + E 0 E(E(E(a) + E(a)))
S4 φ → E a . 0 φ(E(E(a) + E(a)) a)

Blind alleys in the parsing process are marked with an ∗.
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5.2 The epsilon problem

Earley brie�y touches upon a problematic feature of many context-free grammars.
Productions of the form P → ε, so-called epsilon productions, and more generally,
any nullable nonterminal E

∗⇒ ε.

Such a nullable nonterminal E may be both predicted and completed in the same
state set Sj , as no input symbols are scanned:

A → . E j A()
A → E . j A()

Since we're still in the middle of processing Sj , we can't �go back� and iterate over
all states of Sj , as a later predictor may yet add more states to Sj .

As a contrived example, take the input + and the grammar

φ → S a
S → E | P

P → Q +
Q → E

E → ε

Clearly, φ(S(P (Q(E())+))) is a valid parse. However, the algorithm rejects the
input if we're not careful. During execution, we end up with the following states
in S0,

φ → . S a 0 φ()
∗ (1) S → . E 0 S()

S → . P 0 S()
(2) E → . 0 E()
(3) P → . Q + 0 P ()

just as we're about to process state (2). As the dot is at the end of the production,
we run the completer, and �nding that (1) is the only state with E to the right of
the dot, the following state is added to S0:

∗ S → E . 0 S(E())

However, then running the predictor on (3) results in a new state being added to
S0:

Q → . E 0 Q()

This state too has E to the right of the dot, but we missed it when we ran the
completer earlier.

17



Solutions

[Aycock02] suggests that the parser keep track of the nullable productions, and pre-
emptively complete them in the predictor step. This is certainly an excellent solu-
tion when implementing a recognizer, but there's no easy way to generate a valid
parse tree, if nullable productions are simply skipped in this fashion.

A clean and simple solution, and the solution used by this author, is to alternate
between running the predictor and completer, until neither has any more states to
add to Sj . After this, the scanner may be run on all appropriate states in Sj to
construct Sj+1.

To speed this up, the predictor and completer are only run again if the predictor
predicted a nullable production. (Which productions are nullable can trivially be
determined before the parsing starts.)

6 Parser implementation

jp.grammar

1

*

Earley

static parse()
static debugParse()

<< Symbol >>

static symbolsToString()

<< Terminal >>

static final terminator
match()

Terminal.NamedTerminal

NonTerminal

print()

Production

final nonTerminal
final expansion
expansionToString()

<< ParseNode >>

print()
toStringFull()

ParseNode.TerminalNode

final object

ParseNode.ProductionNode

final prod
final nodes
append()

Figure 4: The classes of the jp.grammar package.

The modi�ed Earley parser described above is implemented in the non-instantiable
class jp.grammar.Earley, which provide two static methods:

static public Set <ParseNode.ProductionNode >
parse(NonTerminal root , Object ... input)

static public Set <ParseNode.ProductionNode >
debugParse(NonTerminal root , Object ... input)
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debugParse is identical to parse, except that it also prints the generated parse
states to standard output, for debugging.

The grammar used for parsing must be given in terms of jp.grammar.Terminal,
jp.grammar.NonTerminal and jp.grammar.Production objects, which represent
the corresponding mathematical objects.

A simple example of how to use the parser is given in jp.ExprTest, from which
the following snippet is taken:

11 Terminal a = new Terminal.NamedTerminal("a");
12 Terminal plus = new Terminal.NamedTerminal("+");
13 NonTerminal E = new NonTerminal("E");
14

15 new Production(E, a);
16 new Production(E, E, plus , E);
17

18 Set <ParseNode.ProductionNode > result = Earley.debugParse(E, a, plus , a);
19

20 System.out.println("\nParse trees:");
21 for (ParseNode.ProductionNode l: result) l.print (0);

This implements the grammar described in the example of section 5.1 (page 16).

In the code above, debugParse is used to display the internal parse states, and the
returned parse trees are simply printed. (A typical application would instead have
to interpret the parse trees.)

6.1 Grammar compiler

A complex context-free grammar converted to Java code isn't a pretty sight, and
rather tiresome to write. Instead, the jp.GC grammar compiler may be used to
convert a grammar source �le written in a BNF-like syntax.

The grammar compiler accepts the �le names of one or more grammar speci�ca-
tions, and outputs the corresponding Java code to standard output.

The syntax is quite simple. Each line describes one or more alternatives for a given
nonterminal, using the following syntax:

line → nonterminal �=� symbolString alternatives

alternatives → ε

| �|� symbolString alternatives

symbolString → ε

| symbol symbolString

Here, nonterminal and symbol are arbitrary Java identi�ers. The generated code
will de�ne local variables for the nonterminals. Presumably, symbols refer to either
nonterminals de�ned by the grammar, or terminals de�ned by the host application;
the grammar compiler does not verify their validity.
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On all lines containing the comment symbol #, # and everything following it is
ignored. Blank lines are ignored as well.

A line may be continued by indenting the following lines by one or more whitespace
characters.

The grammar syntax can describe itself as follows:6

line = symbol EQUAL symbolString alternatives

alternatives = # epsilon
| PIPE symbolString alternatives

symbolString = # epsilon
| symbol symbolString

(Here, EQUAL and PIPE must be de�ned by the host application to represent the
equal sign and pipe symbol respectively.) The result is shown in �gure 6.1.

A larger example can be found in appendix B.5, and the generated code in appendix
B.4.

NonTerminal symbolString = new NonTerminal("symbolString");
NonTerminal line = new NonTerminal("line");
NonTerminal alternatives = new NonTerminal("alternatives");
new Production(symbolString);
new Production(symbolString , symbol , symbolString);
new Production(line , symbol , EQUAL , symbolString , alternatives);
new Production(alternatives);
new Production(alternatives , PIPE , symbolString , alternatives);

Figure 5: The Java code generated by the grammar compiler

Since Java does not support include �les, and since the generated code references
symbols de�ned by the host application, the generated code must be pasted into
the appropriate place in the host application source code, either manually or using
some external tool to merge the compiler output into the host application code.
The gram target of this project's make�le uses sed for this purpose.

6The parser of the grammar compiler is not actually implemented using the jp.grammar pack-
age, but instead employs a handwritten non-recursive parser.
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7 Semantics

Semantics is the study of meaning and understanding, a �eld in which philos-
ophy and science intersects. In natural language processing, semantic analysis
translates (ambiguous) natural language into simpler, more well-de�ned (usually
non-ambiguous) elements.

A central notion in semantics is the basic unit of knowledge, which I'll refer to as
idea, a word used by John Locke to denote �whatever is the object of understanding
when a man thinks� in his Essay Concerning Human Understanding. [Locke90]
Ideas thus include all things, whether concrete physical objects (e.g. the Ei�el
tower), physical properties (the color purple), abstract classes (mammals), as well
as abstract concepts (good and evil).

[Locke90] also puts emphasis on the duality of knowledge and language, suggesting
the conclusion that humans cannot think what they cannot put into words (nor,
obviously, put into words what they cannot think).7

This serves as a caution against straying too far from the original natural language
when doing the semantic processing.

7.1 Meanings of �to be�

In implementing semantics, it's important to recognize the di�erent meanings of
�to be� (�is the same as�, �is a subset of� and �is characterized by�), as demonstrated
in the following sentences:

Cats are felines. �cats� and �felines� are the same; both refer to animals of the
Felidae family. (Although �cat� can also refer speci�cally to the domestic cat, a
person, and a number of other things.) We say that cat = mammal.

Cats are mammals. Cats are a proper subset of mammals. We say that cat is-a mammal.

Cats are cute. Cats are characterized by being cute. This paper will use the
notation cat is cute.

7.2 Semantic networks using is-a

A semantic network is a directed graph, in which each node represents an idea, and
the edges are binary relations, typically is-a-relations.

Each idea is further assigned a number of properties. Although some semantic
network implementations make a distinction between properties and nodes, in the

7As Wittgenstein put it in his 1922 Tractatus Logico-Philosophicus: �The limits of my language
mean the limits of my world.� Also, compare Orwell's Nineteen Eighty-Four, in which the goal
of the Newspeak language is that only loyal thoughts be expressible, and thus, thinkable.
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Figure 6: A semantic network

general case, properties (like �warm-blooded� in �gure 6) are just ideas, linked
with a di�erent type of relation (here denoted is). This way, the semantic network
can also make assertions about properties, and properties may be assigned other
properties.

The interesting feature of is-a is that it enables properties to be inherited. Once
we know that mammal is warm-blooded and Molly is-a house-cat is-a mammal, we
can assume that Molly is warm-blooded.

7.3 Cancellation

Property inheritance, however, is only an assumption. The classic example is
bird is capable-of-�ight, which is usually true, but not always, e.g. in the case
of penguins.

To encode this in a semantic network, one explicitly asserts the opposite (penguin
is-not capable-of-�ight), thus cancelling inheritance of the capable-of-�ight property.

7.4 The duck test

The is-a inheritance can also be used in reverse, to determine the class of an idea.
For instance, assuming that all we know about Tom is that Tom is warm-blooded,
we might then assume that Tom is-a mammal.

Each is-a relation is thus accompanied by an implicit reverse relation, which this
paper will refer to as �implies�.

[Brachman83] correctly argues that just because an entity has certain properties, all
of which are typical for a certain class, that entity is not necessarily a member of
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that class.

However, inductive reasoning prescribes the opposite: If an entity has all or some
of the known properties of a class, and these properties are unique to that class,
we must assume that entity to belong to that class, at least until new information
comes to light and suggests otherwise.

This boils down to an old philosophic discussion about the identity of indiscernibles,
aptly formulated by James W. Riley in an oft-quoted poem:

When I see a bird that walks like a duck and swims like a duck and
quacks like a duck, I call that bird a duck.

On a mathematical level, the identity of indiscernibles is still debated, but in a
physical reality, it's an indispensable rule, and humans certainly apply this so-
called duck test all the time to determine identities.

7.5 Uncertainty

[Brachman83] has a point though: our assumption about Tom are based on a fragile
premise: that no other animal (or generally, no other idea) could be warm-blooded.
Indeed, Tom might turn out to be another warm-blooded animal, such as a white
shark. To deal with this, relations in the semantic network can be assigned a
numerical level of con�dence.

To gauge the con�dence of �warm-blooded implies mammal�, however, we must as-
sess the probability of new, contradictory information (such that the fact that
non-mammals may be warm-blooded) appearing, which is of course di�cult. 50%
may be as good as any other value.

The remaining 50% must then be divided between mammal and white shark, recog-
nizing that

• We know of one mammal, but of no white sharks, which arguably makes mam-
mal more likely than shark.

• We don't know if the class of mammals and the class of white sharks overlap.
Tom could be both.

Again, the best we can do is a wild guess.

Another problem is that �warm-blooded� isn't a scienti�cally well-de�ned term,
and some may thus disagree with the claim that white sharks are warm-blooded.
We may indicate this by assigning a con�dence of (say) 50% to the white-shark is
warm-blooded relation. Mammals, on the other hand, are most certainly warm-
blooded.
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The result is a semantic network looking like �gure 7. At this point, all we need to
do is to apply a feed-back mechanism that adjusts the con�dence levels in response
to user input, and we'll essentially have a neural network.

Figure 7: The updated semantic network

7.6 Individuals versus generics

[Brachman83] argues that one should treat generics (sets, e.g. humans) and individ-
uals (set members, e.g. John) di�erently. This leads to a distinction between two
kinds of is-a relationships, namely ⊆ and ∈.

But for many purposes, treating individuals as single-member sets is a usuable
abstraction, such that only ⊆ remains:

John = {john} ⊆ humans

In this representation, the value john is never directly referred to. As such we
cannot enumerate the known elements of the set humans, but we can enumerate
the known subsets (which include John).

7.7 Meta-semantics

Take the following sentence, �A person is either male or female.� The sentence
carries an implicit �but not both�, which can be expressed using predicate logic as
such (∀p):

person(p) ⇒ (male(p) ∨ female(p)) ∧male(p) ∧ female(p)

� or equivalently using set logic:

persons ⊆ (males ∪ females) ∩males ∩ females
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The similar sentence, if interpreted literally, �A person can be either male or fe-
male.� is more vague. The use of �either� still carries an implicit �but not both�,
but the exchange of �is� for �can be� means that a person also could be something
else entirely. The sentence thus boils down to �A person cannot both be male and
female�.

person(p) ⇒ male(p) ∧ female(p)

Finally, �A person can be male or female.� dismisses with both �either� and �is�,
reducing the sentence to the tautology

person(p) ⇒ male(p) ∨ female(p) ∨ true

The sentence is thus devoid of semantics, but not meta-semantics: It tells us
something very important, namely that some persons may possess the properties
male and female.

Such semantics may be described using a �can-be� relation in the semantic network.
For a general solution, a second-order predicate can(P, x, y) may instead be intro-
duced, where P is any �rst-order relation (�is�, �is-a�, �implies�, etc.), x the class of
ideas that the relation could apply to, and y the associated idea. For instance:

can(is, person, female)

Note that in order to represent second-order predicates in a semantic network,
the di�erent types of relations must be represented as ideas as well. To represent
tertiary relations like the above, it may be necessary to have relation instances
(like person is female) represented as ideas as well. At this point, it becomes clear
that the semantic network is reasoning about its own reasoning.
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8 Challenges in the English grammar

The grammar of natural language is immensely complex, and hard to pin down as
well. As [Winograd71] says, �the task of codifying an entire language in any formalism
is so large that it would be folly to try in the course of a single research project.�

Di�erent grammars may accept the same sentences, but result in di�erent parse
trees, allowing di�erent levels of insight into the semantics of the sentence.

Take the simple sentence �John ate the apple.� Classic English grammar renders
this as as sentence consisting of a noun phrase (�John�) and verb phrase or predicate
(�ate the apple�).

A systemic grammar, as for instance employed by SHRDLU, would render the
sentence as a clause consisting of a noun group (�John�), a verb group (�ate�) and
another noun group (�the apple�). This is illustrated in �gure 8.

Figure 8: Same sentence, di�erent grammars

8.1 Participial ambiguity

One di�cult challenge is sentences that can only be interpreted in context of other
sentences. [Allen95] gives the following example of this, in the form of a participial
ambiguity:

Visiting relatives can be trying.

�Visiting� is the present participle of visitV; however, �Visiting relatives� is a noun
phrase that can be interpreted in two ways:

Participal use Interpretation Head Number
Gerund the act of visiting relatives �visiting� singular
Verbal adjective relatives that are visiting �relatives� plural

26



As can be seen, the two interpretations have di�erent heads and grammatical num-
ber, which would have allowed disambiguation had the sentence been Visiting

relatives are trying. or Visiting relatives is trying..

The �rst sentence remains ambiguous because �can be� does not indicate number.

8.2 Phrasal verbs

Phrasal verbs are compounds consisting of a verb together with one or more parti-
cles. Phrasal verbs are grammatical exceptions, in that they do not simply denote
that the verb is modi�ed by the particles, but have an entirely new meaning.

An example is the intransitive phrasal verb �give up�, which has nothing to do
with either giving nor the upwards direction. Additionally, the particle is �xed
for this particular meaning of the verb; the syntactically equivalent �give down� is
meaningless, for instance.

As such, �give�, �give up�, �give in�, �give over�, etc. are all di�erent verbs, and all
but the �rst are phrasal verbs.

One way to deal with phrasal verbs is to incorporate them into the grammar, but
since a goal is often to design a simple, unchanging grammar (with only the lexicon
growing over time), this is less than ideal.

9 Conclusion

The Earley parser is a simple and e�cient parser for dealing with arbitrary context-
free grammars, although Earley's original formulation has since been improved
upon, as detailed in this paper. However, parsing is only the �rst step a program
must take to gain understanding of natural language, and models of semantics and
knowledge representation (such as semantic networks) have yet to reach a level of
maturity, where they may be used for general purpose natural language processing.

Computers will not understand natural language any day soon. Not only is the
rules of natural language incredibly complex, possibly more complex than today's
computers can handle, but they're indeed too complex for even humans to fully
comprehend them, cf. the continuing research into which kind of grammar is more
suitable.

Still, even if they are few and far between, a number of projects have demonstrated
that natural language may be viable for highly domain-speci�c programming and
data entry, cf. SHRDLU and Inform 7, just like arti�cial intelligence can compete
with humans in speci�c domains, such as chess.
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B Source

B.1 jp.util package

The jp.util package contains two utility classes, one (MultiMap) serving as the
bass for jp.lexer.Lexicon, the other (TablePrint) provides pretty debug output
for jp.grammar.Earley.

jp.util.MultiMap

1 package jp.util;
2

3 import java.util .*;
4

5 public class MultiMap <K, V>
6 {
7 private Map <K, Set <V>> map = new HashMap <K, Set <V>>();
8

9 private class MultiMapEntry <K, V> implements Map.Entry <K, V>
10 {
11 private final K key;
12 private final V value;
13

14 public MultiMapEntry(K key , V value)
15 {
16 this.key = key;
17 this.value = value;
18 }
19

20 /** Compares the specified object with this entry for equality. */
21 public boolean equals(Object o)
22 {
23 i f (!(o instanceof Map.Entry)) return false ;
24

25 Map.Entry entry = (Map.Entry) o;
26 return (entry.getKey () == key && entry.getValue () == value);
27 }
28

29 /** Returns the key corresponding to this entry. */
30 public K getKey () { return key; }
31

32 /** Returns the value corresponding to this entry. */
33 public V getValue () { return value; }
34

35 /** Returns the hash code value for this map entry. */
36 public int hashCode () { return key.hashCode () ^ value.hashCode (); }
37

38 /**
39 * Replaces the value corresponding to this entry with the specified
40 * value (optional operation).
41 */
42 public V setValue(V value)
43 {
44 throw new UnsupportedOperationException ();
45 }
46 }
47

48 /** Removes all mappings from this map. */
49 public void clear () { map.clear(); }
50

51 /** Returns true if this map contains a mapping for the specified key. */
52 public boolean containsKey(Object key) { return map.containsKey(key); }
53
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54 /** Returns true if this map maps one or more keys to the specified value.*/
55 public boolean containsValue(Object value)
56 {
57 for (Set <V> values: map.values ())
58 i f (values.contains(value)) return true;
59

60 return false ;
61 }
62

63 /** Returns a set view of the mappings contained in this map. */
64 public Set <Map.Entry <K,V>> entrySet ()
65 {
66 Set <Map.Entry <K,V>> result = new HashSet <Map.Entry <K,V>>();
67 for (Map.Entry <K,Set <V>> entry: map.entrySet ())
68 {
69 for (V v: entry.getValue ())
70 result.add(new MultiMapEntry <K, V>( entry.getKey (), v));
71 }
72 return result;
73 }
74

75 /** Compares the specified object with this map for equality. */
76 public boolean equals(Object o)
77 {
78 i f (!(o instanceof MultiMap)) return false ;
79 return map.equals ((( MultiMap) o).map);
80 }
81

82 /** Returns the values to which this map maps the specified key. */
83 @SuppressWarnings("unchecked")
84 public Set <V> get(Object key)
85 {
86 Set <V> c = map.get(key);
87 i f (c == null) return Collections.EMPTY_SET; // unchecked
88 return Collections.unmodifiableSet(c);
89 }
90

91 /** Returns the hash code value for this map. */
92 public int hashCode () { return map.hashCode (); }
93

94 /** Returns true if this map contains no key -value mappings. */
95 public boolean isEmpty () { return map.isEmpty (); }
96

97 /** Returns a set view of the keys contained in this map. */
98 public Set <K> keySet () { return map.keySet (); }
99

100 /** Associates the specified value with the specified key in this map. */
101 public void put(K key , V value)
102 {
103 Set <V> set = map.get(key);
104 i f (set == null) map.put(key , set = new HashSet <V>());
105 set.add(value);
106 }
107

108 /** Associates the specified values with the specified key in this map. */
109 public void put(K key , Collection <V> values)
110 {
111 Set <V> set = map.get(key);
112 i f (set == null) map.put(key , set = new HashSet <V>());
113 set.addAll(values);
114 }
115

116 /** Copies all of the mappings from the specified map to this map. */
117 public void putAll(Map <? extends K,? extends V> t)
118 {
119 for (Map.Entry <? extends K,? extends V> entry: t.entrySet ())
120 put(entry.getKey (), entry.getValue ());
121 }
122

123 /** Removes the mapping for this key from this map if it is present. */
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124 public void remove(Object key) { map.remove(key); }
125

126 /** Returns the number of key mappings in this map. */
127 public int size() { return map.size(); }
128

129 /** Returns a set view of the values contained in this map. */
130 public Set <V> values ()
131 {
132 Set <V> result = new HashSet <V>();
133

134 for (Map.Entry <K,Set <V>> entry: map.entrySet ())
135 result.addAll(entry.getValue ());
136

137 return result;
138 }
139 }

jp.util.TablePrint

1 package jp.util;
2

3 import java.util .*;
4

5 public class TablePrint
6 {
7 private List <String[]> rows = new ArrayList <String []>();
8 private int[] columnWidths;
9 private int cSpace;
10

11 public TablePrint( int columnCount , int cSpace)
12 {
13 columnWidths = new int[columnCount ];
14 this.cSpace = cSpace;
15 }
16

17 public void addRow(String ... row)
18 {
19 assert(row.length <= columnWidths.length);
20 rows.add(row);
21 for ( int i = 0; i < row.length; i++)
22 {
23 i f (columnWidths[i] < row[i]. length ())
24 columnWidths[i] = row[i]. length ();
25 }
26 }
27

28 public void addRow(Object ... row)
29 {
30 assert(row.length <= columnWidths.length);
31 String [] strs = new String[row.length ];
32

33 for ( int i = 0; i < row.length; i++) strs[i] = row[i]. toString ();
34 addRow(strs);
35 }
36

37 public void print ()
38 {
39 for (String [] row: rows)
40 {
41 for ( int i = 0; i < row.length; i++)
42 {
43 System.out.print(row[i]);
44 for ( int j = row[i]. length (); j < columnWidths[i] + cSpace; j++)
45 System.out.print(" ");
46 }
47 System.out.println ();
48 }
49 }
50 }
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B.2 jp.grammar package

The jp.grammar package contains classes for managing a context-free grammar
and an implementation of a modi�ed Earley parser, as described in section 6. See
also the class diagram on page 18.

jp.grammar.Earley

1 package jp.grammar;
2

3 import java.util .*;
4 import jp.util.TablePrint;
5

6 public class Earley
7 {
8 private Earley () { }
9

10 private static class ParseState
11 {
12 Production prod; // production
13 int prodPos; // position in the expansion of the production
14 int inputPos; // position in input of the beginning of the production
15 ParseNode.ProductionNode parse;
16

17 public boolean equals(Object o)
18 {
19 ParseState s = (ParseState) o;
20 return s.prod == prod && s.prodPos == prodPos
21 && s.inputPos == inputPos && s.parse.equals(parse);
22 }
23

24 ParseState(Production prod , int prodPos , int inputPos ,
25 ParseNode.ProductionNode parse)
26 {
27 this.prod = prod;
28 this.prodPos = prodPos;
29 this.inputPos = inputPos;
30 this.parse = parse;
31 }
32

33 public String toString ()
34 {
35 return prod.nonTerminal + " -> " +
36 prod.expansionToString(prodPos) +
37 " " + inputPos;
38 }
39

40 boolean hasNextSymbol ()
41 {
42 return (prodPos < prod.expansion.length);
43 }
44

45 Symbol nextSymbol ()
46 {
47 return hasNextSymbol () ? prod.expansion[prodPos] : null;
48 }
49

50 // "Move the dot", that is, increase the prodPos.
51 ParseState moveOver(ParseNode.ProductionNode parse)
52 {
53 return new ParseState(prod , prodPos + 1, inputPos , parse);
54 }
55 }
56

57 // An ordered set , and thus not an ordinary Java Set.
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58 private static class StateSet extends AbstractCollection <ParseState >
59 {
60 private List <ParseState > set = new ArrayList <ParseState >();
61

62 // For debugging
63 public void print ()
64 {
65 TablePrint tbl = new TablePrint (4, 2);
66

67 for (ParseState ps: set)
68 {
69 tbl.addRow(ps.prod.nonTerminal ,
70 " -> " + ps.prod.expansionToString(ps.prodPos),
71 ps.inputPos ,
72 ps.parse.toStringFull ());
73 }
74 tbl.print();
75 }
76

77 public Iterator <ParseState > iterator () { return set.iterator (); }
78

79 public boolean add(ParseState elm)
80 {
81 i f (set.contains(elm)) return false ;
82 set.add(elm);
83 return true;
84 }
85

86 public ParseState get( int i) { return set.get(i); }
87

88 public int size() { return set.size(); }
89 }
90

91 static private Set <ParseNode.ProductionNode > parseInternal(
92 NonTerminal root , Object [] input_ ,
93 Production phiProduction , StateSet [] stateSets)
94 {
95 int inputLength = input_.length; // 'n' in Earley70
96

97 // Append a terminator to the input.
98 Object [] input = new Object[input_.length + 1];
99 System.arraycopy(input_ , 0, input , 0, input_.length);
100 input[input_.length] = Terminal.terminator;
101

102 stateSets [0]. add(new ParseState(phiProduction , 0, 0,
103 new ParseNode.ProductionNode(phiProduction)));
104

105 for ( int inputPos = 0; inputPos <= inputLength; inputPos ++)
106 {
107 StateSet set = stateSets[inputPos ];
108

109 int oldSetSize = set.size();
110 boolean runAgain = false ;
111

112 // Complete the set S[inputPos ].
113 for ( int i = 0; i < set.size(); i++)
114 {
115 ParseState state = set.get(i);
116

117 // If no next symbol in prod: Do the COMPLETER operation.
118 i f (!state.hasNextSymbol ())
119 {
120 // Look at the input pos where we entered this parsestate.
121 // (Might be the current set.)
122 StateSet beginSet = stateSets[state.inputPos ];
123 for ( int j = 0; j < beginSet.size(); j++)
124 {
125 ParseState ps = beginSet.get(j);
126 i f (state.prod.nonTerminal != ps.nextSymbol ()) continue;
127
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128 set.add(ps.moveOver(ps.parse.append(state.parse)));
129 }
130 }
131

132 // If next symbol is a NonTerminal: Do the PREDICTOR operation.
133 else i f (state.nextSymbol () instanceof NonTerminal)
134 {
135 NonTerminal nt = (NonTerminal) state.nextSymbol ();
136 i f (nt.isNullable)
137 {
138 // This non -terminal may expand to the empty string.
139 // We thus may need to run the completer on previous
140 // entries in the set.
141 runAgain = true;
142 }
143

144 for (Production prod: nt.alternatives)
145 {
146 ParseState s = new ParseState(prod , 0, inputPos ,
147 new ParseNode.ProductionNode(prod));
148 set.add(s);
149 }
150 }
151 else assert(state.nextSymbol () instanceof Terminal);
152 }
153

154 i f (runAgain && set.size() > oldSetSize)
155 {
156 // Run completer/predictor again on all entries in the set.
157 inputPos --;
158 continue;
159 }
160

161 // Construct the set S[inputPos + 1].
162 // We can use foreach here , because the current set doesn't change.
163 for (ParseState state: set)
164 {
165 // If the next symbol is a Terminal: Do the SCANNER operation.
166 i f (state.nextSymbol () instanceof Terminal)
167 {
168 Terminal t = (Terminal) state.nextSymbol ();
169 ParseNode.TerminalNode node = t.match(input[inputPos ]);
170 i f (node != null)
171 {
172 ParseState ps = state.moveOver(
173 state.parse.append(node));
174

175 stateSets[inputPos + 1].add(ps);
176 }
177 }
178 }
179 }
180

181 Set <ParseNode.ProductionNode > result
182 = new HashSet <ParseNode.ProductionNode >();
183

184 StateSet finalSet = stateSets[inputLength + 1];
185 for (ParseState ps: finalSet)
186 {
187 assert(ps.prod == phiProduction && ps.prodPos == 2 &&
188 ps.inputPos == 0);
189 result.add(( ParseNode.ProductionNode) ps.parse.nodes [0]);
190 }
191

192 return result;
193 }
194

195 static public Set <ParseNode.ProductionNode >
196 parse(NonTerminal root , Object ... input)
197 {
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198 StateSet [] stateSets = new StateSet[input.length + 2];
199 for ( int i = 0; i < stateSets.length; i++)
200 stateSets[i] = new StateSet ();
201

202 NonTerminal phi = new NonTerminal("#");
203 Production phiProduction = new Production(
204 phi , root , Terminal.terminator);
205

206 phi.initialize(new HashSet <Symbol >());
207

208 return parseInternal(
209 root , input , phiProduction , stateSets);
210 }
211

212 static public Set <ParseNode.ProductionNode >
213 debugParse(NonTerminal root , Object ... input)
214 {
215 StateSet [] stateSets = new StateSet[input.length + 2];
216 for ( int i = 0; i < stateSets.length; i++)
217 stateSets[i] = new StateSet ();
218

219 NonTerminal phi = new NonTerminal("#");
220 Production phiProduction = new Production(
221 phi , root , Terminal.terminator);
222

223 phi.initialize(new HashSet <Symbol >());
224

225 Set <ParseNode.ProductionNode > result = parseInternal(
226 root , input , phiProduction , stateSets);
227

228 for ( int i = 0; i < stateSets.length; i++)
229 {
230 System.out.println("============= S[" + i + "] =============");
231 stateSets[i].print ();
232 }
233

234 return result;
235 }
236 }

jp.grammar.NonTerminal

1 package jp.grammar;
2

3 import java.util .*;
4

5 /**
6 * A NonTerminal is a symbol in the grammar that may match a varying number of
7 * symbols in an input string , depending on its associated alternatives (a list
8 * of productions .)
9 */
10 public class NonTerminal extends Symbol
11 {
12 private final String name;
13

14 /* package private */ List <Production > alternatives
15 = new ArrayList <Production >();
16

17 public NonTerminal(String name) { this.name = name; }
18

19 public String toString () { return name; }
20

21 public void print ()
22 {
23 for (Production p: alternatives)
24 {
25 System.out.println(p);
26 }
27 }
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28

29 /* package private */ void initialize(Set <Symbol > done)
30 {
31 i f (done.contains(this)) return;
32 done.add(this);
33

34 assert(alternatives.size() > 0) : name + " has no alternatives";
35 isNullable = false ;
36

37 for (Production p: alternatives)
38 {
39 boolean thisAlternativeIsNullable = true;
40

41 for (Symbol s: p.expansion)
42 {
43 s.initialize(done);
44 i f (!s.isNullable) thisAlternativeIsNullable = false ;
45 }
46 i f (thisAlternativeIsNullable) isNullable = true;
47 }
48 }
49 }

jp.grammar.ParseNode

1 package jp.grammar;
2

3 import java.util .*;
4

5 abstract public class ParseNode
6 {
7 public void print( int indent)
8 {
9 while (indent -- > 0) System.out.print(" ");
10 System.out.println(this);
11 }
12

13 public String toStringFull () { return toString (); }
14

15 static public class TerminalNode extends ParseNode
16 {
17 public final Object symbol;
18

19 public TerminalNode(Object t) { symbol = t; }
20

21 public String toString () { return symbol.toString (); }
22 }
23

24 static public class ProductionNode extends ParseNode
25 {
26 public final ParseNode [] nodes;
27

28 public final Production prod;
29

30 public ProductionNode(Production prod)
31 {
32 this.prod = prod;
33 this.nodes = new ParseNode [0];
34 }
35

36 private ProductionNode(Production p, ParseNode [] nodes , ParseNode extra)
37 {
38 this.prod = p;
39 this.nodes = new ParseNode[nodes.length + 1];
40 System.arraycopy(nodes , 0, this.nodes , 0, nodes.length);
41 this.nodes[nodes.length] = extra;
42 }
43

44 public boolean equals(Object o)
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45 {
46 ParseNode.ProductionNode pnl = (ParseNode.ProductionNode) o;
47 return pnl.prod == prod && Arrays.equals(pnl.nodes , nodes);
48 }
49

50 public ParseNode.ProductionNode append(ParseNode node)
51 {
52 return new ProductionNode(prod , nodes , node);
53 }
54

55 public void print( int indent)
56 {
57 super.print(indent);
58

59 indent += 2;
60 for (ParseNode n: nodes) n.print(indent);
61 }
62

63 public String toString () { return prod.toString (); }
64

65 public String toStringFull ()
66 {
67 StringBuilder sb = new StringBuilder ();
68 sb.append(prod.nonTerminal.toString ());
69 sb.append("(");
70 for (ParseNode node: nodes)
71 {
72 sb.append(" ");
73 sb.append(node.toStringFull ());
74 sb.append(" ");
75 }
76 sb.append(")");
77 return sb.toString ();
78 }
79 }
80 }

jp.grammar.Production

1 package jp.grammar;
2

3 import java.util.Set;
4

5 /**
6 * A Production is a single expansion of an associated nonterminal.
7 */
8 public class Production
9 {
10 public final NonTerminal nonTerminal;
11 public final Symbol [] expansion;
12

13 public Production(NonTerminal nonTerminal , Symbol ... expansion)
14 {
15 assert(nonTerminal != null);
16 this.nonTerminal = nonTerminal;
17 this.expansion = expansion;
18

19 nonTerminal.alternatives.add(this);
20 }
21

22 public String toString ()
23 {
24 return nonTerminal + " -> " + Symbol.symbolsToString(expansion);
25 }
26

27 public String expansionToString( int dotPos)
28 {
29 String result = "";
30
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31 i f (dotPos == 0) result += ".";
32 else result += " ";
33

34 int i = 0;
35 for (Symbol sym: expansion)
36 {
37 result += sym;
38 i f (++i == dotPos) result += ".";
39 else result += " ";
40 }
41

42 return result;
43 }
44 }

jp.grammar.Symbol

1 package jp.grammar;
2

3 import java.util.Set;
4

5 abstract public class Symbol
6 {
7 public boolean isNullable = false ;
8

9 /** Recursively initializes symbols (determine isNullable) before parse. */
10 /* package private */ void initialize(Set <Symbol > done) { }
11

12 /** Converts an array of symbols to a string , for debug purposes. */
13 public static String symbolsToString(Symbol [] symbols)
14 {
15 String result = "";
16 for (Symbol sym: symbols)
17 {
18 i f (result.length () > 0) result += " ";
19 result += sym;
20 }
21 return result;
22 }
23 }

jp.grammar.Terminal

1 package jp.grammar;
2

3 import java.util.Set;
4

5 /**
6 * A Terminal is a symbol in the grammar that may match exactly one symbol in
7 * an input string. Typically , a Terminal will match a specific input symbol ,
8 * but it may also match a group of input symbols (e.g. any letter .)
9 */
10 abstract public class Terminal extends Symbol
11 {
12 /** A pre -defined NamedTerminal with name "|-" */
13 static final public Terminal terminator = new NamedTerminal("|-");
14

15 /** A NamedTerminal has a name and matches itself */
16 static public class NamedTerminal extends Terminal
17 {
18 private final String name;
19

20 public NamedTerminal(String name) { this.name = name; }
21

22 public String toString () { return name; }
23 }
24
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25 /**
26 * The match method of a Terminal determines if the terminal matches
27 * the argument. If so, it returns a ParseNode.TerminalNode , otherwise
28 * it returns null.
29 * By default , we match ourselves.
30 */
31 public ParseNode.TerminalNode match(Object t)
32 {
33 i f (t == this) return new ParseNode.TerminalNode(t);
34 return null;
35 }
36 }
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B.3 jp.lexer package

The jp.lexer package contains classes related to lexical analysis, including a tok-
enizer and classes for dealing with lexicons, lexemes, word classes and grammatical
features.

jp.lexer.ClassResolver

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /**
8 * Interface used by ClassTerminal to test if a word belongs to a certain word
9 * class.
10 * The StaticCR implementation naively looks the word up in the lexicon.
11 * LenientCR simply matches if the word is all -lowercase , and if so, adds the
12 * word to the lexicon.
13 */
14 public interface ClassResolver
15 {
16 public Object resolve(String word);
17

18 public static class StaticCR implements ClassResolver
19 {
20 public final WordClass wordClass;
21 public final Lexicon lexicon;
22

23 public StaticCR(Lexicon lexicon , WordClass wordClass)
24 {
25 this.lexicon = lexicon;
26 this.wordClass = wordClass;
27 }
28

29 public Object resolve(String word)
30 {
31 Set <Lexeme > lexemes = lexicon.getLexemes(word , wordClass);
32 i f (lexemes.size() > 0) return lexemes;
33 return null;
34 }
35

36 public String toString ()
37 {
38 return "<" + wordClass.toString () + ">";
39 }
40 }
41

42 public static class LenientCR extends StaticCR
43 {
44 public LenientCR(Lexicon lexicon , WordClass wordClass)
45 {
46 super(lexicon , wordClass);
47 }
48

49 public Object resolve(String word)
50 {
51 for ( int i = 0; i < word.length (); i++)
52 i f (Character.isUpperCase(word.charAt(i))) return null;
53

54 return lexicon.addLexeme(word , wordClass);
55 }
56 }
57 }

40



jp.lexer.ClassTerminal

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /**
8 * A CFG terminal matching a whole class of words (e.g. all verbs).
9 * The actual test is performed by a ClassResolver.
10 */
11 public class ClassTerminal extends Terminal
12 {
13 public ClassResolver resolver;
14

15 public ClassTerminal () { }
16

17 public ParseNode.TerminalNode match(Object t)
18 {
19 i f (t instanceof String)
20 {
21 Object o = resolver.resolve (( String) t);
22 i f (o != null) return new ParseNode.TerminalNode(o);
23 }
24 return null;
25 }
26

27 public String toString () { return resolver.toString (); }
28 }

jp.lexer.ExtendedLexicon

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /**
8 * A Lexicon that contains all words of a baseLexicon , plus possible additions.
9 * This enables a lexicon segmented into a core vocabulary , and an extended
10 * vocabulary.
11 */
12 public class ExtendedLexicon extends Lexicon
13 {
14 public final Lexicon baseLexicon;
15

16 public ExtendedLexicon(Lexicon baseLexicon)
17 {
18 this.baseLexicon = baseLexicon;
19 }
20

21 public Set <Lexeme > getLexemes(String word)
22 {
23 Set <Lexeme > set = new HashSet <Lexeme >( baseLexicon.getLexemes(word));
24 set.addAll(super.getLexemes(word));
25 return set;
26 }
27 }

jp.lexer.Feature

1 package jp.lexer;
2

3 import java.util .*;
4
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5 /**
6 * Grammatical features , along with inflection and stemming rules.
7 * Each class is assigned a unique bit -index , to allow packing a set of
8 * features into a bit field.
9 */
10

11 public enum Feature
12 {
13 // Person:
14 firstPerson ,
15 secondPerson ,
16 thirdPerson ,
17

18 // Number
19 singular ,
20 plural (new Inflx("s/sh/x/z", "-es"),
21 new Inflx("y", "ies"),
22 new Inflx("", "s")),
23

24 // Tense:
25 nonpast ,
26 past ,
27

28 // big , bigger , biggest
29 positive ,
30 comparative(new Inflx("&d", "-der"), new Inflx("&g", "-ger"),
31 new Inflx("&t", "-ter"), new Inflx("e", "-r"),
32 new Inflx("y", "-ier"), new Inflx("", "-er")),
33 superlative(new Inflx("&d", "-dest"), new Inflx("&g", "-gest"),
34 new Inflx("&t", "-test"), new Inflx("e", "-st"),
35 new Inflx("y", "-iest"), new Inflx("", "est")),
36

37 // Etc:
38 possessive(new Inflx("s/x/z", "-'"), new Inflx("", "'s"))
39 ;
40

41 private static class Inflx
42 {
43 public final String [] oldEndings;
44 public final String newEnding;
45 public final boolean append;
46

47 /**
48 * oldEndings: a slash ('/') separated list of old endings to match.
49 * An & matches any vowel (a, e, i, o, u).
50 */
51 public Inflx(String oldEndings , String newEnding)
52 {
53 this.oldEndings = oldEndings.split("/");
54

55 append = newEnding.startsWith("-");
56

57 this.newEnding = append ? newEnding.substring (1) : newEnding;
58 }
59

60 public static boolean endingMatches(String word , String ending)
61 {
62 int wordIdx = word.length () - ending.length ();
63 i f (wordIdx < 0) return false ;
64 for ( int i = 0; i < ending.length (); i++, wordIdx ++)
65 {
66 char w = word.charAt(wordIdx);
67 char e = ending.charAt(i);
68 i f (e == '&')
69 {
70 i f (!(w == 'a' || w == 'e' || w == 'i' || w == 'o'
71 || w == 'u')) return false ;
72 }
73 else i f (e != w) return false ;
74 }
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75 return true;
76 }
77

78 public String apply(String word)
79 {
80 for (String ending: oldEndings)
81 {
82 i f (! endingMatches(word , ending)) continue;
83 i f (append) return word + newEnding;
84 return word.substring(0, word.length () - ending.length ())
85 + newEnding;
86 }
87 return null;
88 }
89

90 public boolean reverse(String word , List <String > results)
91 {
92 i f (!word.endsWith(newEnding)) return false ;
93

94 i f (append)
95 {
96 String oldWord =
97 word.substring(0, word.length () - newEnding.length ());
98

99 for (String oldEnding: oldEndings)
100 {
101 i f (! endingMatches(oldWord , oldEnding)) continue;
102

103 results.add(oldWord);
104 return true;
105 }
106 return false ;
107 }
108

109 boolean anyWordsFound = false ;
110 for (String oldEnding: oldEndings)
111 {
112 String oldWord =
113 word.substring(0, word.length () - newEnding.length ())
114 + oldEnding;
115

116 i f (! endingMatches(oldWord , oldEnding)) continue;
117

118 results.add(oldWord);
119 anyWordsFound = true;
120 }
121 return anyWordsFound;
122 }
123 }
124

125 public final int bit;
126 private final Inflx [] regularInflections;
127

128 private Feature ()
129 {
130 bit = 1 << ordinal ();
131 regularInflections = new Inflx [0];
132 }
133

134 private Feature(Inflx ... regularInflections)
135 {
136 bit = 1 << ordinal ();
137 this.regularInflections = regularInflections;
138 }
139

140 public static String toString( int features)
141 {
142 StringBuilder sb = new StringBuilder ();
143

144 for (Feature f: Feature.values ())
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145 {
146 i f ((f.bit & features) == 0) continue;
147

148 i f (sb.length () != 0) sb.append("/");
149 sb.append(f);
150 }
151

152 return sb.toString ();
153 }
154

155 public String inflect(String word)
156 {
157 for (Inflx inflx: regularInflections)
158 {
159 String result = inflx.apply(word);
160 i f (result != null) return result;
161 }
162 return word;
163 }
164

165 public List <String > stem(String word)
166 {
167 List <String > results = new ArrayList <String >();
168

169 for (Inflx inflx: regularInflections)
170 {
171 inflx.reverse(word , results);
172 }
173

174 // Remove bogus results by checking with inflect ().
175 Iterator <String > it = results.iterator ();
176 while (it.hasNext ())
177 {
178 i f (! inflect(it.next()).equals(word)) it.remove ();
179 }
180 return results;
181 }
182 }

jp.lexer.Lexeme

1 package jp.lexer;
2

3 import java.util .*;
4

5 public class Lexeme
6 {
7 /** A helper class coupling a lexeme with a set of grammatical features */
8 public static class Inflected
9 {
10 public Lexeme lexeme;
11 public int features;
12

13 public Inflected(Lexeme lexeme , int features)
14 {
15 this.lexeme = lexeme;
16 this.features = features;
17 }
18

19 public String toString ()
20 {
21 return lexeme.toString () + "(" + Feature.toString(features) + ")";
22 }
23 }
24

25 public final WordClass wordClass;
26

27 public final String lemma; // citation form
28
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29 public final Map <Integer , String > inflections
30 = new HashMap <Integer , String >();
31

32 public Lexeme(String lemma , WordClass wordClass)
33 {
34 this.wordClass = wordClass;
35 this.lemma = lemma;
36 }
37

38 public String toString ()
39 {
40 return lemma + "[" + wordClass.abbreviation + "]";
41 }
42

43 public String inflect( int features)
44 {
45 // Check for hardcoded inflection for this specific feature set.
46 String str = inflections.get(features);
47 i f (str != null) return str;
48

49 str = lemma;
50

51 // Check for closest hardcoded inflection.
52 // Closeness is measured as number of bits in common.
53 // The match must not include features not specified in our argument.
54 int closestCount = 0;
55 int closestFeatures = 0;
56 for (Map.Entry <Integer , String > entry: inflections.entrySet ())
57 {
58 int refFeatures = entry.getKey ();
59 i f (( refFeatures & ~features) != 0) continue;
60 int count = Integer.bitCount(refFeatures & features);
61

62 i f (count <= closestCount) continue;
63

64 // A better match!
65 closestCount = count;
66 str = entry.getValue ();
67 closestFeatures = refFeatures;
68 }
69 // Remove features already encoded
70 features &= ~closestFeatures;
71

72 for (Feature f: Feature.values ())
73 {
74 i f ((f.bit & features) == 0) continue;
75

76 str = f.inflect(str);
77 }
78 return str;
79 }
80

81 public Lexeme conjugate( int features , String value)
82 {
83 i f (! inflections.containsKey(features) &&
84 inflect(features).equals(value)) return this;
85

86 inflections.put(features , value);
87 return this;
88 }
89

90 public Lexeme conjugate(Feature person , Feature number , Feature tense ,
91 String value)
92 {
93 return conjugate(person.bit | number.bit | tense.bit , value);
94 }
95

96 public Lexeme conjugate(Feature person , Feature tense ,
97 String singular , String plural)
98 {
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99 conjugate(person , Feature.singular , tense , singular);
100 return conjugate(person , Feature.plural , tense , plural);
101 }
102 }

jp.lexer.LexemeMatch

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /**
8 * A tuple of orthographic word , lexeme , and features.
9 */
10 public class LexemeMatch
11 {
12 public final String word;
13 public final Lexeme lexeme;
14 public final int features;
15

16 public LexemeMatch(String word , Lexeme lexeme , int features)
17 {
18 this.word = word;
19 this.lexeme = lexeme;
20 this.features = features;
21 }
22

23 public String toString ()
24 {
25 return lexeme.toString () + "[" + Feature.toString(features) + "]";
26 }
27 }

jp.lexer.LexerException

1 package jp.lexer;
2

3 public class LexerException extends Exception
4 {
5 public LexerException(String msg)
6 {
7 super(msg);
8 }
9 }

jp.lexer.Lexer

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /**
8 * A basic tokenizer , which splits a string into orthographic words ,
9 * punctuation and quoted strings.
10 */
11

12 public class Lexer
13 {
14 f inal private static int mNone = 0;
15 f inal private static int mWord = 1;
16 f inal private static int mString = 2;
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17

18 static public class WordToken extends Terminal
19 {
20 public final String word;
21

22 public WordToken(String word) { this.word = word; }
23

24 public String toString () { return word; }
25 }
26

27 static public class StringToken extends Terminal
28 {
29 public final String string;
30

31 public StringToken(String string) { this.string = string; }
32

33 public String toString () { return '"' + string + '"'; }
34 }
35

36 static public class PunctToken extends Terminal
37 {
38 public final char punct;
39

40 public PunctToken(char punct) { this.punct = punct; }
41

42 public String toString () { return Character.toString(punct); }
43 }
44

45 protected Object wordToken(String token) { return new WordToken(token); }
46 protected Object punctToken(char token) { return new PunctToken(token); }
47

48 public List <Object > tokenize(String string) throws LexerException
49 {
50 List <Object > result = new ArrayList <Object >();
51

52 int tokenIndex = 0;
53

54 int mode = mNone;
55

56 for ( int i = 0; i < string.length (); i++)
57 {
58 char c = string.charAt(i);
59

60 switch (mode)
61 {
62 case mWord:
63 i f (Character.isLetter(c)) continue;
64

65 result.add(wordToken(string.substring(tokenIndex , i)));
66 mode = mNone;
67

68 // fall through //
69

70 case mNone:
71 switch (c)
72 {
73 case ' ': continue;
74 case '"':
75 mode = mString;
76 tokenIndex = i;
77 break;
78 case '.':
79 case ',':
80 case ':':
81 case '(':
82 case ')':
83 case ';':
84 result.add(punctToken(c));
85 break;
86
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87 default:
88 i f (Character.isLetter(c))
89 {
90 tokenIndex = i;
91 mode = mWord;
92 }
93 else throw new LexerException("Invalid character at #" + i);
94 }
95 break;
96

97 case mString:
98 i f (c == '"')
99 {
100 mode = mNone;
101 result.add(new StringToken(
102 string.substring(tokenIndex + 1, i)));
103 }
104 break;
105 }
106 }
107

108 switch (mode)
109 {
110 case mWord:
111 result.add(wordToken(string.substring(tokenIndex)));
112 break;
113 case mNone: /* Do nothing */ break;
114 case mString: throw new LexerException("Unterminated string");
115 }
116 return result;
117 }
118 }

jp.lexer.Lexicon

1 package jp.lexer;
2

3 import java.util .*;
4

5 import jp.util .*;
6

7 public class Lexicon implements Iterable <Lexeme >
8 {
9 private MultiMap <String , Lexeme > lexemes = new MultiMap <String , Lexeme >();
10 private MultiMap <String , Lexeme > irregular = new MultiMap <String , Lexeme >();
11

12 public Set <Lexeme > getLexemes(String word)
13 {
14 Set <Lexeme > set = new HashSet <Lexeme >( lexemes.get(word));
15 return set;
16 }
17

18 public Set <Lexeme > getLexemes(String word , WordClass wc)
19 {
20 Set <Lexeme > set = getLexemes(word);
21

22 Iterator <Lexeme > it = set.iterator ();
23 while (it.hasNext ())
24 {
25 i f (it.next().wordClass != wc) it.remove ();
26 }
27 return set;
28 }
29

30 public Set <Lexeme > addLexeme(String lemma , WordClass wordClass)
31 {
32 Set <Lexeme > lexes = getLexemes(lemma , wordClass);
33 i f (lexes.size() == 0)
34 {
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35 Lexeme lexeme = new Lexeme(lemma , wordClass);
36 lexes.add(lexeme);
37 lexemes.put(lemma , lexeme);
38 }
39 return lexes;
40 }
41

42 public Lexeme addLexeme(Lexeme lexeme)
43 {
44 lexemes.put(lexeme.lemma , lexeme);
45 for (String s: lexeme.inflections.values ())
46 irregular.put(s, lexeme);
47

48 return lexeme;
49 }
50

51 public WordTerminal wordTerm(String word)
52 {
53 addLexeme(word , WordClass.particle);
54 return new WordTerminal(word);
55 }
56

57 public WordTerminal wordTerm(String word , WordClass ... classes)
58 {
59 for (WordClass wc: classes) addLexeme(word , wc);
60 return new WordTerminal(word);
61 }
62

63 public Iterator <Lexeme > iterator () { return lexemes.values ().iterator (); }
64

65 private void internalStem(String goal , String word , int features ,
66 List <Lexeme.Inflected > results)
67 {
68 for (Feature f: Feature.values ())
69 {
70 for (String stem: f.stem(word))
71 {
72 assert(stem.length () < word.length ());
73

74 // For every result , recurse with the new feature set.
75 internalStem(goal , stem , features | f.bit , results);
76 }
77 }
78

79 for (Lexeme lexeme: lexemes.get(word))
80 {
81 i f (lexeme.inflect(features).equals(goal))
82 results.add(new Lexeme.Inflected(lexeme , features));
83 }
84 }
85

86 public List <Lexeme.Inflected > stemAndLookUp(String word)
87 {
88 List <Lexeme.Inflected > results = new ArrayList <Lexeme.Inflected >();
89

90 for (Lexeme lexeme: irregular.get(word))
91 {
92 for (Map.Entry <Integer , String > e: lexeme.inflections.entrySet ())
93 i f (e.getValue ().equals(word))
94 results.add(new Lexeme.Inflected(lexeme , e.getKey ()));
95 }
96

97 internalStem(word , word , 0, results);
98 return results;
99 }
100 }

jp.lexer.WordClass
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1 package jp.lexer;
2

3 /**
4 * The syntactic classes of words.
5 * Each class is assigned a unique bit -index , to allow packing a set of
6 * word -classes into a bit field.
7 */
8

9 public enum WordClass
10 {
11 particle (" · "),
12 countNoun ("CN"),
13 massNoun ("MN"),
14 properNoun ("PN"),
15 adjective ("Adj"),
16 verb ("V");
17

18 public final int bit;
19 public final String abbreviation;
20

21 WordClass(String abbreviation)
22 {
23 bit = 1 << ordinal ();
24 this.abbreviation = abbreviation;
25 }
26

27 public static String toString( int classes)
28 {
29 StringBuilder sb = new StringBuilder ();
30

31 for (WordClass wc: WordClass.values ())
32 {
33 i f ((wc.bit & classes) == 0) continue;
34

35 i f (sb.length () != 0) sb.append("/");
36 sb.append(wc);
37 }
38

39 return sb.toString ();
40 }
41 }

jp.lexer.WordTerminal

1 package jp.lexer;
2

3 import jp.grammar .*;
4

5 /** A CFG terminal matching a specific word (String). */
6 public class WordTerminal extends Terminal
7 {
8 public final String word;
9

10 public WordTerminal(String word) { this.word = word; }
11

12 public String toString () { return word; }
13

14 public ParseNode.TerminalNode match(Object t)
15 {
16 i f (t instanceof String && t.equals(word))
17 return new ParseNode.TerminalNode(word);
18 return null;
19 }
20 }
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B.4 jp package

The jp package contains the grammar compiler (GC) described in section 6.1, and
various test-classes, some of which implement examples found in this paper.

jp.GC

1 /*
2 * GC: Grammar Compiler
3 *
4 * Usage: java GC [files]
5 *
6 * Compiles input files containing BNF productions , then prints Java code
7 * suitable for use with the jp.grammar package to standard output.
8 */
9

10 package jp;
11

12 import java.util .*;
13 import java.io.*;
14

15 public class GC
16 {
17 public static class CompilerException extends Exception
18 {
19 public CompilerException(File filename , int lineNo , String message)
20 {
21 super(filename + ":" + lineNo + ": " + message);
22 }
23 }
24

25 public static class Grammar
26 {
27 private static class Production
28 {
29 private List <String > tokens = new ArrayList <String >();
30

31 public void addToken(String token) { tokens.add(token); }
32

33 public void print ()
34 {
35 for ( int i = 0; i < tokens.size(); i++)
36 {
37 System.out.print(", ");
38 System.out.print(tokens.get(i));
39 }
40 }
41 }
42

43 // Maps nonTerminals to productions
44 private Map <String , List <Production >> productions
45 = new HashMap <String , List <Production >>();
46

47 private String currentNonTerminal;
48 private Production currentExpansion;
49

50 public void addExpansionToken(String token)
51 {
52 currentExpansion.addToken(token);
53 }
54

55 public void beginProduction(String nonTerminal)
56 {
57 finishProduction ();
58 currentNonTerminal = nonTerminal;
59 currentExpansion = new Production ();
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60

61 i f (! productions.containsKey(nonTerminal))
62 productions.put(nonTerminal , new ArrayList <Production >());
63 }
64

65 public void finishExpansion ()
66 {
67 i f (currentExpansion != null)
68 productions.get(currentNonTerminal).add(currentExpansion);
69 currentExpansion = new Production ();
70 }
71

72 public void finishProduction ()
73 {
74 i f (currentNonTerminal == null) return;
75

76 finishExpansion ();
77 currentNonTerminal = null;
78 }
79

80 public void print ()
81 {
82 for (Map.Entry <String , List <Production >> entry:
83 productions.entrySet ())
84 {
85 System.out.print(" NonTerminal " + entry.getKey ()
86 + " = new NonTerminal (\"" + entry.getKey () + "\");\n");
87 }
88

89 for (Map.Entry <String , List <Production >> entry:
90 productions.entrySet ())
91 {
92 for (Production p: entry.getValue ())
93 {
94 System.out.print(
95 " new Production(" + entry.getKey ());
96 p.print();
97 System.out.print(");\n");
98 }
99 }
100 }
101 }
102

103 public static boolean isValidIdentifier(String s)
104 {
105 i f (s.length () == 0 || !Character.isJavaIdentifierStart(s.charAt (0)))
106 return false ;
107

108 for ( int i = 1; i < s.length (); i++)
109 {
110 i f (! Character.isJavaIdentifierPart(s.charAt(i))) return false ;
111 }
112 return true;
113 }
114

115 public static void compile(File filename)
116 throws IOException , CompilerException
117 {
118 BufferedReader reader = new BufferedReader(new FileReader(filename));
119

120 Grammar grammar = new Grammar ();
121

122 int lineNo = 0;
123 String line;
124 while ((line = reader.readLine ()) != null)
125 {
126 lineNo ++;
127

128 {
129 int i = line.indexOf('#');
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130 i f (i != -1) line = line.substring(0, i);
131 }
132

133 String [] tokens = line.split("\\s+");
134 int tokenIndex = 0;
135

136 // Second check due to Sun JRE bug: split should return an empty
137 // list for an empty input , but doesn't.
138 i f (tokens.length == 0 ||
139 (tokens.length == 1 && tokens [0]. length () == 0)) continue;
140

141 i f (tokens [0]. length () > 0)
142 {
143 String nonTerminal = tokens [0];
144 i f (! isValidIdentifier(nonTerminal))
145 throw new CompilerException(filename , lineNo ,
146 "Expected start of production , but \""
147 + nonTerminal + "\" is not a valid identifier");
148

149 grammar.beginProduction(nonTerminal);
150

151 i f (tokens.length < 2 || !tokens [1]. equals("="))
152 {
153 throw new CompilerException(filename , lineNo ,
154 '"' + nonTerminal + "\" not followed by =");
155 }
156 tokenIndex = 2;
157 }
158 else i f (grammar.currentNonTerminal == null)
159 {
160 throw new CompilerException(filename , lineNo ,
161 "First line must not start with a space");
162 }
163

164 for ( int i = tokenIndex; i < tokens.length; i++)
165 {
166 i f (tokens[i]. length () == 0) continue;
167

168 i f (tokens[i]. equals("|")) grammar.finishExpansion ();
169 else grammar.addExpansionToken(tokens[i]);
170 }
171 }
172

173 grammar.finishProduction ();
174

175 grammar.print();
176 }
177

178 public static void main(String [] args)
179 throws IOException
180 {
181 try

182 {
183 for ( int i = 0; i < args.length; i++)
184 {
185 compile(new File(args[i]));
186 }
187 }
188 catch (CompilerException e)
189 {
190 System.err.println(e.getMessage ());
191 System.exit (1);
192 }
193 }
194 }

jp.EpsTest

1 package jp;
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2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /** An implementation of the epsilon problem */
8 public class EpsTest
9 {
10 public static void main(String [] args) throws Exception
11 {
12 Terminal plus = new Terminal.NamedTerminal("+");
13 NonTerminal S = new NonTerminal("S");
14 NonTerminal P = new NonTerminal("P");
15 NonTerminal Q = new NonTerminal("Q");
16 NonTerminal E = new NonTerminal("E");
17

18 new Production(S, E);
19 new Production(S, P);
20 new Production(P, Q, plus);
21 new Production(Q, E);
22 new Production(E);
23

24 Set <ParseNode.ProductionNode > result = Earley.debugParse(S, plus);
25

26 System.out.println("\nParse trees:");
27 for (ParseNode.ProductionNode l: result) l.print (0);
28 }
29 }

jp.ExprTest

1 package jp;
2

3 import jp.grammar .*;
4

5 import java.util .*;
6

7 /** An implementation of the Parsing example */
8 public class ExprTest
9 {
10 public static void main(String [] args) throws Exception
11 {
12 Terminal a = new Terminal.NamedTerminal("a");
13 Terminal plus = new Terminal.NamedTerminal("+");
14 NonTerminal E = new NonTerminal("E");
15

16 new Production(E, a);
17 new Production(E, E, plus , E);
18

19 Set <ParseNode.ProductionNode > result = Earley.debugParse(E, a, plus , a);
20

21 System.out.println("\nParse trees:");
22 for (ParseNode.ProductionNode l: result) l.print (0);
23 }
24 }

jp.StemTest

1 package jp;
2

3 import jp.grammar .*;
4 import jp.lexer .*;
5

6 import static jp.lexer.Lexicon .*;
7 import static jp.lexer.WordClass .*;
8 import static jp.lexer.Feature .*;
9
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10 import java.util .*;
11

12 /** Runs a number of inflection and stemmer tests */
13 public class StemTest
14 {
15 public static Lexicon lexicon = new Lexicon ();
16

17 public static void inflectAndStem(Lexeme lex , int features)
18 {
19 String word = lex.inflect(features);
20 System.out.println(word + " = " + lexicon.stemAndLookUp(word));
21 }
22

23 public static void main(String [] args) throws Exception
24 {
25 Lexeme weatherCN = new Lexeme("weather", countNoun);
26 Lexeme cloudCN = new Lexeme("cloud", countNoun);
27 Lexeme rainV = new Lexeme("rain", verb);
28 Lexeme bigAdj = new Lexeme("big", adjective);
29

30 Lexeme beV = new Lexeme("be", verb)
31 .conjugate(firstPerson , nonpast , "am", "are")
32 .conjugate(secondPerson , nonpast , "are", "are")
33 .conjugate(thirdPerson , nonpast , "is", "are")
34 .conjugate(firstPerson , past , "was", "were")
35 .conjugate(secondPerson , past , "were", "were")
36 .conjugate(thirdPerson , past , "was", "were");
37

38 lexicon.addLexeme(beV);
39 lexicon.addLexeme(weatherCN);
40 lexicon.addLexeme(rainV);
41 lexicon.addLexeme(bigAdj);
42

43 inflectAndStem(weatherCN , singular.bit);
44 inflectAndStem(weatherCN , plural.bit);
45 inflectAndStem(beV , firstPerson.bit | nonpast.bit | singular.bit);
46 inflectAndStem(rainV , nonpast.bit | firstPerson.bit | singular.bit);
47 inflectAndStem(bigAdj , superlative.bit);
48

49 for (String s: new String [] { "big", "large", "fair", "hot", "long" })
50 {
51 System.out.println(
52 positive.inflect(s) + ", " +
53 comparative.inflect(s) + ", " +
54 superlative.inflect(s));
55 }
56

57 System.out.println("class -> " + plural.stem("class"));
58 System.out.println("ties -> " + plural.stem("ties"));
59 System.out.println("hottest -> " + superlative.stem("hottest"));
60 }
61 }

jp.Test

1 package jp;
2

3 import jp.grammar .*;
4 import jp.lexer .*;
5

6 import static jp.lexer.Lexicon .*;
7 import static jp.lexer.WordClass .*;
8 import static jp.lexer.Feature .*;
9

10 import java.util .*;
11

12 public class Test
13 {
14 /** A Lexer that return the same punctuation token for a given character. */
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15 private static class MyLexer extends Lexer
16 {
17 private Map <Character , PunctToken > punctTokens
18 = new HashMap <Character , PunctToken >();
19

20 protected String wordToken(String token)
21 {
22 return token;
23 }
24

25 protected PunctToken punctToken(char token)
26 {
27 PunctToken t = punctTokens.get(token);
28 i f (t != null) return t;
29

30 t = new PunctToken(token);
31 punctTokens.put(token , t);
32 return t;
33 }
34 }
35

36 /** A ClassResolver for proper nouns. Accepts new PNs if capitalized. */
37 private static class ProperNounCR implements ClassResolver
38 {
39 public final Lexicon lexicon;
40

41 public ProperNounCR(Lexicon lexicon)
42 {
43 this.lexicon = lexicon;
44 }
45

46 public Object resolve(String word)
47 {
48 Set <Lexeme > lexemes = lexicon.getLexemes(word , properNoun);
49 i f (lexemes.size() > 0) return lexemes;
50 return Character.isUpperCase(word.charAt (0)) ?
51 lexicon.addLexeme(word , properNoun) : null;
52 }
53

54 public String toString ()
55 {
56 return "<properNoun*>";
57 }
58 }
59

60 public static void main(String [] args) throws Exception
61 {
62 MyLexer lexer = new MyLexer ();
63

64 Terminal period = lexer.punctToken('.');
65

66 Lexicon baseLex = new Lexicon ();
67

68 baseLex.addLexeme(new Lexeme("be", verb)
69 .conjugate(firstPerson , nonpast , "am", "are")
70 .conjugate(secondPerson , nonpast , "are", "are")
71 .conjugate(thirdPerson , nonpast , "is", "are")
72 .conjugate(firstPerson , past , "was", "were")
73 .conjugate(secondPerson , past , "were", "were")
74 .conjugate(thirdPerson , past , "was", "were"));
75

76 baseLex.addLexeme(new Lexeme("star", countNoun));
77

78 WordTerminal shines = baseLex.wordTerm("shines", verb);
79 WordTerminal is = new WordTerminal("is");
80 WordTerminal are = new WordTerminal("are");
81

82 WordTerminal the = baseLex.wordTerm("the");
83 WordTerminal it = baseLex.wordTerm("it");
84 WordTerminal in = baseLex.wordTerm("in");
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85 WordTerminal at = baseLex.wordTerm("at");
86 WordTerminal on = baseLex.wordTerm("on");
87 WordTerminal under = baseLex.wordTerm("under");
88 WordTerminal above = baseLex.wordTerm("above");
89 WordTerminal beside = baseLex.wordTerm("beside");
90 WordTerminal behind = baseLex.wordTerm("behind");
91

92 ClassTerminal _countNoun_ = new ClassTerminal ();
93 ClassTerminal _massNoun_ = new ClassTerminal ();
94 ClassTerminal _adjective_ = new ClassTerminal ();
95 ClassTerminal _properNoun_ = new ClassTerminal ();
96

97 ClassResolver [] baseResolvers = new ClassResolver [] {
98 new ClassResolver.StaticCR(baseLex , countNoun),
99 new ClassResolver.StaticCR(baseLex , massNoun),
100 new ClassResolver.StaticCR(baseLex , adjective),
101 new ClassResolver.StaticCR(baseLex , properNoun)
102 };
103

104 ClassTerminal [] classTerminals = new ClassTerminal []
105 { _countNoun_ , _massNoun_ , _adjective_ , _properNoun_ };
106

107 // GRAMMAR BEGIN //
108 NonTerminal transitiveVerb = new NonTerminal("transitiveVerb");
109 NonTerminal sentence = new NonTerminal("sentence");
110 NonTerminal staticSpatialAdposition = new NonTerminal("

staticSpatialAdposition");
111 NonTerminal input = new NonTerminal("input");
112 NonTerminal simpleSentence = new NonTerminal("simpleSentence");
113 NonTerminal adjectives = new NonTerminal("adjectives");
114 NonTerminal nounPhrase = new NonTerminal("nounPhrase");
115 NonTerminal adpositionalPhrase = new NonTerminal("adpositionalPhrase");
116 NonTerminal intransitiveVerb = new NonTerminal("intransitiveVerb");
117 NonTerminal predicate = new NonTerminal("predicate");
118 NonTerminal determiner = new NonTerminal("determiner");
119 NonTerminal sentences = new NonTerminal("sentences");
120 new Production(transitiveVerb , is);
121 new Production(transitiveVerb , are);
122 new Production(sentence , simpleSentence);
123 new Production(staticSpatialAdposition , in);
124 new Production(staticSpatialAdposition , on);
125 new Production(staticSpatialAdposition , at);
126 new Production(staticSpatialAdposition , under);
127 new Production(staticSpatialAdposition , above);
128 new Production(staticSpatialAdposition , behind);
129 new Production(staticSpatialAdposition , beside);
130 new Production(input , sentence);
131 new Production(input , sentences);
132 new Production(simpleSentence , nounPhrase , predicate);
133 new Production(adjectives , _adjective_ , adjectives);
134 new Production(adjectives);
135 new Production(nounPhrase , determiner , _countNoun_);
136 new Production(nounPhrase , _properNoun_);
137 new Production(adpositionalPhrase , staticSpatialAdposition , nounPhrase);
138 new Production(intransitiveVerb , shines);
139 new Production(intransitiveVerb , is);
140 new Production(intransitiveVerb , are);
141 new Production(predicate , intransitiveVerb);
142 new Production(predicate , intransitiveVerb , adpositionalPhrase);
143 new Production(predicate , transitiveVerb , nounPhrase);
144 new Production(predicate , transitiveVerb , _adjective_);
145 new Production(determiner , the , adjectives);
146 new Production(sentences , sentence , period , sentences);
147 new Production(sentences , sentence , period);
148 // GRAMMAR END //
149

150 // Parse every argument as a separate sentence.
151 for (String s: args)
152 {
153 List <Object > tokens = lexer.tokenize(s);
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154 System.out.println(tokens);
155

156 for ( int i = 0; i < classTerminals.length; i++)
157 classTerminals[i]. resolver = baseResolvers[i];
158

159 System.out.println("Old lexemes:");
160 for (Lexeme lex: baseLex)
161 {
162 System.out.print(lex + "; ");
163 }
164 System.out.println ();
165

166 System.out.println("Parse:");
167 Set <ParseNode.ProductionNode > result = Earley.parse(input ,
168 tokens.toArray(new Object [0]));
169

170 i f (result.size() == 0)
171 {
172 System.out.println("No results; trying new words.");
173

174 Lexicon newLex = new ExtendedLexicon(baseLex);
175

176 ClassResolver [] lenientResolvers = new ClassResolver [] {
177 new ClassResolver.LenientCR(newLex , countNoun),
178 new ClassResolver.LenientCR(newLex , massNoun),
179 new ClassResolver.LenientCR(newLex , adjective),
180 new ProperNounCR(newLex)
181 };
182

183 for ( int i = 0; i < classTerminals.length; i++)
184 classTerminals[i]. resolver = lenientResolvers[i];
185

186 result = Earley.parse(input , tokens.toArray(new Object [0]));
187

188 i f (result.size() != 0)
189 {
190 System.out.println("New lexemes:");
191 for (Lexeme lex: newLex)
192 {
193 System.out.print(lex + "; ");
194 }
195 System.out.println ();
196 }
197 }
198

199 for (ParseNode.ProductionNode l: result)
200 {
201 l.print (0);
202 }
203 }
204 }
205 }
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B.5 Other �les

Make�le

1 Test: Test.java
2 javac -cp .. Test.java util /*. java grammar /*. java lexer /*. java semantics

/*. java
3 # java -cp .. jp.Test "the sky is blue"
4 # java -ea -cp .. jp.Test "the stars are shiny"
5 java -ea -cp .. jp.Test "the cat is wet"
6

7 StemTest: StemTest.java
8 javac -cp .. StemTest.java util /*. java grammar /*. java lexer /*. java
9 java -ea -cp .. jp.StemTest
10

11 ExprTest: ExprTest.java
12 javac -cp .. ExprTest.java util /*. java grammar /*. java
13 java -ea -cp .. jp.ExprTest
14

15 EpsTest: EpsTest.java
16 javac -cp .. EpsTest.java util /*. java grammar /*. java
17 java -ea -cp .. jp.EpsTest
18

19 SemTest: SemTest.java
20 javac -cp .. SemTest.java util /*. java lexer /*. java semantics /*. java
21 java -ea -cp .. jp.SemTest
22

23 rungc: GC.class
24 java -ea -cp .. jp.GC TestGrammar.gr
25

26 gram: TestGrammar.gr GC.class
27 sed '/GRAMMAR BEGIN/,$$d ' Test.java > Test.java.new
28 echo '// GRAMMAR BEGIN //' >> Test.java.new
29 java -ea -cp .. jp.GC TestGrammar.gr >> Test.java.new
30 sed -n '/GRAMMAR END/,$$p ' Test.java >> Test.java.new
31 mv Test.java Test.java.bak
32 mv Test.java.new Test.java
33

34 GC.class: GC.java
35 javac -cp .. GC.java
36

37 clean:
38 rm -f *.class **/*. class *.bak

TestGrammar.gr

The grammar for jp.Test, for use with the grammar compiler.

1 #################
2 # Words #
3 #################
4

5 adjectives = _adjective_ adjectives |
6

7 determiner = the adjectives
8

9 transitiveVerb = is | are
10

11 intransitiveVerb = shines | is | are
12

13 staticSpatialAdposition = in | on | at | under | above | behind | beside
14

15 #################
16 # Phrases #
17 #################
18
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19 nounPhrase = determiner _countNoun_
20 | _massNoun_
21 | _properNoun_
22

23 adpositionalPhrase = staticSpatialAdposition nounPhrase
24

25 predicate = intransitiveVerb
26 | intransitiveVerb adpositionalPhrase
27 | transitiveVerb nounPhrase
28 | transitiveVerb _adjective_
29

30 #################
31 # Sentence #
32 #################
33

34 simpleSentence = nounPhrase predicate
35

36 sentence = simpleSentence
37

38 sentences = sentence period sentences
39 | sentence period
40

41 input = sentence
42 | sentences
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