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ABSTRACT

Nowadays there is an increasing interest in developing methods for
building music recommendation systems. In order to get a satis-
factory performance from such a system, one needs to incorporate
as much information about songs similarity as possible; however,
how to do so is not obvious. In this paper, we build on the ideas of
the Probabilistic Latent Semantic Analysis (PLSA) that has been
successfully used in the document retrieval community. Under this
probabilistic framework, any song will be projected into a rela-
tively low dimensional space of “latent semantics”, in such a way
that that all observed similarities can be satisfactorily explained us-
ing the latent semantics. Additionally, this approach significantly
simplifies the song retrieval phase, leading to a more practical sys-
tem implementation. The suitability of the PLSA model for rep-
resenting music structure is studied in a simplified scenario con-
sisting of 10.000 songs and two similarity measures among them.
The results suggest that the PLSA model is a useful framework to
combine different sources of information, and provides a reason-
able space for song representation.

1. INTRODUCTION

Given two songs, most people would agree that it is possible to tell
if the two songs are similar or not. However, similarity between
songs can be “defined” in many different ways: They may have
the same beat, the same guitar sound, the same lead singer, etc.
One may also extend the domain beyond the sound-based context,
and state that two songs are similar if they were produced in the
same year or if they are targeted to the same audience. In short,
similarities among songs are many and varied.

When building music recommendation systems, one would
like to integrate as much information about songs similarity as pos-
sible. This goal leads to a natural question: Given some song, does
the combination of all possible similarities point to a (non-empty)
set of songs? One could imagine that two different similarities are
mutually excluding, meaning that they point, for any given query
song, to disjoint sets of neighbors. If that were the case, then there
would be little interest in combining all thinkable similarities for
a single solution, since this solution would be an empty set. This
question of agreement is important and touched upon in a small
number of papers.

In [1], the authors study user consensus on a set of musical
artists, but the variability of user evaluations is “casting doubt on
the concept of a single ground truth”. This somehow surprising
conclusion may be a consequence of subjective user evaluations,

or simply of undetected underlying user groups. This claim is sup-
ported by [2], in which the agreement of different similarities, in-
cluding subjective, social and acoustic ones, is investigated. In
this study, the authors find that there is an agreement between sub-
jective and acoustic measures which is comparable to the internal
agreement between subjective users.

The question of agreement between similarities is, to the best
of our knowledge, not yet answered clearly by data. However, it
seems obvious that, to build powerful music recommendation sys-
tems, one should try to integrate different sources of information or
similarities between songs; how many such similarities one should
take into consideration is unclear, but the need to fuse different
sources of information seems evident.

Looking at the literature about music content-based search and
retrieval systems, we can find many different solutions to how the
information of the chosen features should be combined in order to
build a space where similarity between songs can be measured.
In [3], for instance, some low level features such as the loud-
ness, pitch, brightness, bandwidth and harmonicity, are aggregated
by the mean, variance and autocorrelation. In [4], the MFCCs
are binned using a vector quantization tree in which the decision
thresholds are set to maximize the mutual information between the
inputs and the labels of a training set. In other approaches, such
as [2, 5, 6], the data cloud of low level features is modeled using a
probability distribution, typically estimated using a Gaussian mix-
ture model (GMM). For many low-level features this is a sensible
thing to do and well justified given the empirical distribution of
the features. But as the feature set is expanded from, say MFCCs
or zero crossing rates, to playlist co-occurrence, production year,
or blog-gossip, it becomes increasingly unlikely that any practical
family of distributions will suffice to model the observations, and
thus to build a reasonable similarity space.

In this paper we propose a generalized framework for building
music recommendation systems that are based on a combination of
a number of, possibly redundant, sources of information regarding
song similarity. Our approach makes use of the ideas of Proba-
bilistic Latent Semantic Analysis (PLSA) [7, 8], which has been
successfully applied in web document retrieval, including the pos-
sibility of combining heterogeneous similarity measures between
documents, such as the appearance of common words or common
links [8]. The basic idea is to project the songs into a space of rel-
atively small dimension (the latent semantics) in such a way that
all observed similarities can be satisfactorily explained using the
latent semantics. In this way, the “overall” distance between two
songs can be determined from the latent semantics only. As in



the web document retrieval case, we will see that the application
of PLSA to build music models simplifies the implementation of
music recommendation systems, significantly reducing the com-
putational burden of the song retrieval phase.

This analogy between songs and documents can be regarded
as a purely technical convenience, but might also start a new line of
thinking in which songs aspects are interpreted as “words”. In any
case, if this is a fruitful analogy, future research could investigate
music using the elaborated machinery already deployed for web-
mining, and apply the suggested tool for boosting the performance
of music recommendation systems.

The rest of the paper is organized as follows: Section 2 intro-
duces the different levels of representation for music analysis that
will be used throughout the paper, while Section 3 reviews the for-
mulation for the Generalized version of PLSA that can be used for
the design of music recommendation systems that simultaneously
consider multiple measures of similarity between songs. Differ-
ent algorithms can be used to adjust the parameters of the PLSA
model; in this paper we consider Non-negative Matrix Factoriza-
tion (NMF) algorithms as described in Section 4. In Section 5 we
evaluate the possibilities of the approach by carrying out experi-
ments in a simplified scenario, and in Section 6 we extract some
conclusions about the work, and discuss lines for future research.

2. MUSIC REPRESENTATION LEVELS

In this section, we introduce some notation, and define the different
levels for music representation that will be considered along the
paper:

• Songs: This level corresponds to the pieces of music that are
known by the system. The set of all songs will be denoted
as{sl}

L
l=1.

• Similarities: Each of the different criteria that we use to
measure distances between songs. In this paper, we will
consider that each similarity criterion is characterized by a
set of clusters or groups (e.g.,c

(k)
j for thejth group associ-

ated to thekth similarity), and that each songsl is defined
by a certain distribution over the clusters of each similarity
criterion, subject to restrictions:

P (c
(k)
j |sl) > 0, ∀j, k

nk
X

j=1

P (c
(k)
j |sl) = 1, ∀k

wherenk is the number of groups along thekth similarity
dimension.

In a real situation, there are different ways in which we can
estimate this similarity information. For instance, when
the song recordings are available, we can directly extract
“sound features” from the music waveform (e.g., zero cross-
ing rate, MFCCs, spectrogram-based features, etc) and carry
out a hard or soft clustering in the resulting feature space.
There are also situations in which we have access to meta-
data information (e.g. music genre) that can be interpreted
as the labels of a multi-class classification problem. In such
cases, we can either use the class membership information
provided by the metadata or, alternatively, the outputs of
a classification system operating on the “sound features”
to predict the class membership probabilities associated to

each song. Other sources of information, such as web-
based search or playlist order can also be exploited.

• Latent Semantics: This is the representation space where
songs are projected to get a compact representation. As
with songs, each semantic group,zi, i = 1, . . . N , is rep-
resented by a certain distribution along each similarity di-
mension. These latent semantics are not known a priori,
but have to be determined from the set of songs and their
representations along the different similarity criteria.

The basic hypothesis we are accepting here is that it is possible
to find latent semantics that are able to simultaneously explain all
the available similarity information. In the next section we explain
how such a model can be obtained.

3. GENERALIZED PLSA FOR MUSIC SIMILARITIES
FUSION

Our model for modeling music structure is based on the Probabilis-
tic Latent Semantics Analysis (PLSA) that has been successfully
used in the analysis and retrieval of text documents [7]. The anal-
ogy is as follows: songs (documents) can belong to a set of hidden
and unknown states or groups,{zi}

N
i=1, i.e., the latent semantics.

We assume soft membership, so that each song can be represented
as distribution over the different hidden states, thus satisfying the
constraint:

N
X

i=1

P (zi|sl) = 1 (1)

whereP (zi|sl) is the probability that songsl belongs to the se-
mantic groupzi.

Next, each (hidden) group of songs is characterized by some
cluster distribution over each of the similarity dimensions we are
considering, i.e.,

zi : P (c
(k)
1 |zi), P (c

(k)
2 |zi), . . . , P (c(k)

nk
|zi)

Of course, each of these distributions have to be a real distribution,
i.e.,

Nk
X

j=1

P (c
(k)
j |zi) = 1 (2)

Now, we can expressP (c
(k)
j |sl) through the expansion

P (c
(k)
j |sl) =

N
X

i=1

P (c
(k)
j |zi, sl)P (zi|sl) (3)

=
N
X

i=1

P (c
(k)
j |zi)P (zi|sl) (4)

where we are assuming that all the knowledge about the cluster
distribution is propagated via the semantic groups.

As it is usual in the PLSA approach, we assume thatP (c
(k)
j |sl)

are unknown, but we have access to some estimations of these
quantities that we will denote as̃P (c

(k)
j |sl). Then, for each simi-

larity criterion, we would like to find the set of probabilitiesP (c
(k)
j |zi)

andP (zi|sl) that maximize the likelihood of our observations,

Y

j,l

P (c
(k)
j |sl)

P̃ (c
(k)
j

|sl)



Finally, taking logarithms, and introducing the decomposition model
for P (c

(k)
j |sl) [Eq. (3)], we get the following set of log-likelihoods

to be maximized:

Lk =
X

j,l

P̃ (c
(k)
j |sl) log

 

N
X

i=1

P (c
(k)
j |zi)P (zi|sl)

!

, (5)

for k = 1, . . . , K, K being the total number of available similari-
ties.

Note that the different log-likelihoods for different similari-
ties cannot be maximized independently since they are coupled
through termsP (zi|sl). As in [8], we propose to maximize the
following combined log-likelihood function

L =

K
X

k=1

αkLk (6)

whereαk, satisfying
P

k
αk = 1, measures the importance as-

signed to thekth similarity. Note that, proceeding in this way,
we can adjust models that are specially good at explaining dif-
ferent similarities (for instance, we can obtain a model which is
specially good at explaining similarity in the co-play dimension,
while still integrating some of the information in the other simi-
larity dimensions). The maximization of this mixed log-likelihood
w.r.t. P (c

(k)
j |zi) andP (zi|sl) can be carried out using different

methods, such as versions of the Expectation-Maximization algo-
rithm, or the Non-negative Matrix Factorization (NMF) approach
discussed in Section 4.

Song retrieval procedure

Once the PLSA model has been trained, we can use the latent se-
mantics for song retrieval using very compact expressions. For
instance, the probability that any song in the dataset should be rec-
ommended given some query song,sq, can be calculated using

P (s|sq) =
N
X

i=1

P (s|zi, sq)P (zi|sq)

=
N
X

i=1

P (s|zi)P (zi|sq)

=

N
X

i=1

P (zi|s)P (s)

P (zi)
P (zi|sq)

(7)

where we have used the assumption that song probability distribu-
tion propagates through the latent semantics in replacingP (s|zi, sq)
by P (s|zi), and whereP (s) is the a priori probability of each
song, that can be estimated, e.g., using a measure of song pop-
ularity. Finally, the a priori probabilities assigned to each latent
semantic can be precalculated using

P (zi) =
X

l

P (zi|sl)P (sl), i = 1, . . . , N (8)

Note that the complexity in evaluating (7) grows linearly with
the number of latent semantics. This is a very important advantage
with respect to the case in which similarity clusters were consid-
ered directly. Effectively, if the expansion were made with respect
to all clusters in all similarities, we would get

P (s|sq) =
X

j1···jK

P (s|c
(1)
j1

, . . . , c
(K)
jK

)P (c
(1)
j1

, . . . , c
(K)
jK

|sq)

(9)

In this sense, we can interpret the PLSA model as a bottleneck
that is reducing the complexity of the problem from all possible
combinations of clusters (

Q

i
nci

) to just the number of hidden
states (N ). Nevertheless, maximization of combined likelihood
(6) assures that the latent semantics retain as much information as
possible about the different similarity dimensions that are taken
into account.

Constrained song retrieval

The fact that PLSA is a probabilistic framework provides a lot of
flexibility when carrying out search tasks. For instance, imagine
that we want to constrain the search to one of the clusters. Then,
we can refine the search as follows:

P (s|sq, c
(k)
j ) =

N
X

i=1

P (s|zi, sq, c
(k)
j )P (zi|sq, c

(k)
j )

=
N
X

i=1

P (s|zi)P (zi|sq, c
(k)
j )

(10)

where we have used the fact that cluster information also propa-
gates through the hidden states. Note also that it is our assumption
that

P (c|z, s) =
P (z|c, s)P (c|s)

P (z|s)
= P (c|z),

so that we have also

P (s|sq, c
(k)
j ) =

N
X

i=1

P (zi|s)P (s)P (c
(k)
j |zi)P (zi|sq)

P (zi)P (c
(k)
j |sq)

=
N
X

i=1

P (zi|s)P (s)P (c
(k)
j |zi)P (zi|sq)

P (zi)
P

i
P (c

(k)
j |zi)P (zi|sq)

(11)

which depends just on the parameters of the PLSA model and the
a priori distribution of songs and semantic groups.

4. NMF OPTIMIZATION OF THE PLSA MODEL

In [9] the authors showed the relation between Non-negative Ma-
trix Factorization (NMF) using Kullback-Leibler divergence and
PLSA. In this section, we propose a multiplicative NMF update
scheme for determining the unknown parameters of the combined
PLSA model. Instead of minimizing the log-likelihood cost func-
tion (6), we will solve the following NMF optimization problem

min
W(k),H

K
X

k=1

αk||P̃
(k) − W

(k)
H||2F (12)

s.t. W
(k) ≥ 0,H ≥ 0 (13)

where ||A||2F denotes the squared Frobenius norm of a matrix,
hence

P

i,j
A

2
i,j , andA ≥ 0 means that all elements inA are

non-negative.
By proper normalization ofW(k) andH we ensure the valid-

ity of the following interpretation

“

W
(k)

H

”

j,l
=

N
X

i=1

P (c
(k)
j |zi)P (zi|sl), (14)



from which,W(k)
j,i = P (c

(k)
j |zi) andHi,l = P (zi|sl).

One way of minimizing (12) is to use a multiplicative update
method, see e.g. [10]. Assuming the algorithm has converged
to some point within the feasible region whereW

(k) > 0 and
H > 0, it can be shown that this point is a stationary point, which
may or may not be a local minimum (see [10] for a more complete
discussion about algorithms for solving NMF types of problems).

The following pseudo-code provides a multiplicative update
scheme for solving the NMF problem given in 12. It can be easily
seen that, if matricesW(k) andH are initialized to strictly pos-
itive values, then these matrices remains positive throughout the
iterations, as a consequence of multiplicative update scheme.

1. InitializeW
(k) andH.

2. Iterate:

(a)

W
(k)
j,i =

(P̃(k)
H

T )j,i

(W(k)HHT )j,i + 10−9
W

(k)
j,i (15)

for k = 1, . . . , K.

(b) NormalizeW(k) such that
P

j
W

(k)
j,i = 1

for i = 1, . . . , N andk = 1, . . . , K

(c)

Hi,l =

P

k
αk

“

W
(k)

P̃
(k)
”

i,l

P

k
αk

“

W(k)T
W(k)H

”

i,l
+ 10−9

Hi,l

(16)

3. Repeat 2 until some convergence criteria is met.

5. EXPERIMENTS

5.1. Dataset description

To illustrate the suitability of the PLSA model we have used a data
set which was downloaded from the free section of the Amazon
music service1. This data set has been previously used in combina-
tion with a genre plug-in for Winamp (see [11]). The original data
set consists of12631 music snippets, most of them of length∼ 30
secs. distributed unevenly among227 genres and sub-genres. The
original taxonomy provided by Amazon had problems with over-
lapping genres, e.g., how can one differentiate between Interna-
tional/Rock and just Rock?. Since we are going to use the genre
information as a source of similarity between songs, and in order
to minimize confusion among genres, we decided to keep only the
songs belonging to unambiguous first level genres. Constraining
also the minimum snippet length to10 secs. resulted in a total
number of9823 music snippets distributed among the following
12 genres : “Rock” (2446), “Blues” (644), “Classical (Instrumen-
tal)” (361), “Country” (733), “Dance & DJ” (1002), “Folk” (872),
“Jazz” (1261), “New Age” (596), “Opera & Vocal” (287), “Pop”
(1005), “Rhythm & Blues” (287) and “Rap & Hip-Hop” (329).

1Downloaded in August,2005.

5.2. Song similarity extraction

In this experimental section we consider two different kinds of
similarities that are estimated from the raw audio data, and com-
bined using the PLSA model. Once a set of “sound features”
are extracted, a first similarity measure makes use of the avail-
able genre information, while the second one is just based on the
similarity among the extracted sound features.

5.2.1. “Sound feature” extraction

Here we make use of aggregated features as described in [12].
We extracted the first seven Mel Frequency Cepstral Coefficients
(MFCC) on a20msec. time-scale with10msec. overlap. The first
coefficient is discarded (to remove the influence of different record-
ing volumes). Then, MFCCs are collected using a window size
of one second, thus creating a six dimensional time series of100
samples. For each such block, the time series is modelled using
a multivariate autoregressive model (MAR) of lag three :xn =
P3

p=1 Apxn−p + ep, wherexn is used to denote a vector of
MFCC features inside the window. The values of the three ma-
tricesAp, together with the mean and covariance of the residuals,
en, are concenated into a single feature vector (MAR feature) of
length135, representing one second of the music snippet.

5.2.2. Learning similarity from “sound features”

In web documents we have direct access toP̃ (c
(k)
j , s), which are

given either by the term frequency or by the hyperlink frequency.
In other words, in document analysis we have direct access to the
similarity information, while in music we mostly have access to
sound features. From sound features, however, we can estimate
different types of similarity information, possibly using some of
the metadata associated with the songs. In this paper, we have
used two different approaches, the first of them being a supervised
method, and the second following an unsupervised approach:

Similarity c(1) (supervised): Having some kind of labels for the
songs in our dataset, for instance, genre labels, we could
straightforwardly use these as̃P (c

(k)
j |sl). In most databases

music snippets typically belong to a single genre only, hence,
P̃ (c

(k)
j |sl) can be either0 or 1. A more powerful approach

is to train a classifier to predict the a posteriori probability
of each of the classes, so that we acquire information about
soft-membership to classes.

As a first similarity measure we have used the outputs of a
neural network trained using the MAR features as inputs,
and the genre-information as the desired labels. The neural
network consists of a non-linear feature extraction phase,
using the rKOPLS algorithm presented in [13], followed by
a linear classifier. Though each MAR feature was assigned
to just one genre, soft membership of the music snippets
to the different genres was determined using late fusion.
Hence, simply summing the outputs of all MAR features in
one snippet and normalizing to get

P

j
P̃ (c

(1)
j |s) = 1.

Similarity c(2) (unsupervised): We can straightforwardly derive
valid similarity sources of information by carrying out a
hard or soft clustering in the “sound features” space. In
this paper, to obtain a second similarity dimension, MAR
features were clustered using a K-means algorithm with co-
sine distance measure. The cosine distance was chosen to



provide improved robustness in high dimensions. Five fold
cross-validation was used determine a reasonable number
of clusters (70) for the dataset. Though the clustering uses
hard assignment, soft membership was obtained using the
same strategy that was explained for the supervised case.

We should mention here that other approaches for learning
music similarity can also be used. An example could be in terms of
co-occurrence in playlists, i.e., how often music pieceA is played
after music pieceB and vice-versa.

5.3. Results and discussion

The modified NMF algorithm suggested in Section 4 was run with
a varying dimension of the “latent semantics” ranging from3 to
48. Considering also different valuesα between0 (only simi-
larity c(2) was used) and1 (using onlyc(1) similarity measure),
a dimension of42 latent semantics was found from a reasonable
compromise in the Frobenious norm error ( i.e., a smaller number
resulted in larger error, while a larger number of dimensions only
provided very slight reductions of the error). A dimensionality of
42 is more or less in-between the12 dimensions used in similarity
c(1) and the70 dimensions used for the similarity measurec(2). In
any case, note that this number is much smaller than the number of
possible combinations using one cluster from each similarity crite-
rion, and thus the PLSA approach provides a much more compact
and convenient representation for song recommendation than the
direct use of (9). In each run of the NMF algorithm, the algorithm
was stopped after1000 iterations, which seemed reasonable when
considering the error as a function of the iterations.

Figure 1(a) shows the Frobenius norm error calculated be-
tween the empirical distributioñP (c

(1)
j |sl) and the model (W(1)

andH) as a function of varyingα. Figure (b) shows the corre-
sponding log-likelihood, just to illustrate the good correspondence
between both errors, and how the likelihood increases with de-
creasing Frobenious norm. Withα = 0, the latent space is es-
timated purely from thec(2) similarity measure, which explains
the high approximation error to the real distribution. Conversely,
whenα = 1 (this corresponds to considering only thec(1) similar-
ity measure) a much better solution, with respect to similarityc(1),
is obtained. It is interesting to notice (see also [8]) that the error is
smaller the rangeα = 0.3 to α = 0.9 than forα = 1. In other
words, incorporating some information about thec(2) similarity,
serves to improve the capabilities of the PLSA model to represent
similarity in dimensionc(1). Actually, the latent semantics model
with α = 0.9 has been found to increase the genre classification
rate provided by the rKOPLS-based genre classifier2.

Figure 2(a) shows the Frobenious norm error calculated be-
tween thec(2) similarity measure and the corresponding model
(W(2) and H). Looking at both Figs. 1 and 2, one can con-
clude that using only one of the similarities alone always results
in a very small likelihood of the observations associated to the
other similarity. However, there exists good compromise values of
α ∈ [0.3, 0.8], given that all these values would provide improved
performance on the first similarity dimension, while keeping a rea-
sonably good representation for the second similarity.

Additionally, as we have already mentioned, the PLSA ap-
proach provides a much more compact representation space than

2Classification rates for some of the most unlikely classes increased
significantly, e.g., from0% to 14% and40% for the “Country” and “New
age” genres, respectively
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Fig. 1. Figure (a) shows the Frobenius norm error between the
empirical distribution (̃P (c

(1)
j |sl), ∀j, l) and the model given by

W
(1) andH as a function ofα. Figure (b) shows the correspond-

ing log-likelihood.

the combined used of the clusters in similarityc(1) andc(2) and,
therefore, a more convenient space for music recommendation.

6. CONCLUSIONS

In this paper we have presented the extension of the PLSA frame-
work for its application in music recommendation systems. Basi-
cally, the proposed PLSA model works by projecting the songs
into a latent semantic space. This space is obtained by maxi-
mizing a combined log-likelihood which takes into account dif-
ferent sources of similarity between songs. By doing so, the latent
semantics can satisfactorily explain all observed similarities and
provide a very convenient representation for song retrieval, while
keeping complexity under control. Preliminary experimental tests
carried out combining two measures of similarly provided a better
representation than when using just one of the similarity dimen-
sions alone.

We think that the analogy between documents and songs is a
fruitful one, and opens new lines for investigating music structure
using the elaborated machinery already deployed for web-mining,
and for improving the performance of music recommendation sys-
tems.
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Fig. 2. Figure (a) shows the Frobenius norm error between the
empirical distribution (̃P (c

(2)
j |sl), ∀j, l) and the model given by

W
(2) andH as a function ofα. Figure (b) shows the correspond-

ing log-likelihood.

Acknowledgments
This work has been partly by Spanish Ministry of Education and
Science grant CICYT TEC-2005-00992, by Madrid Community
grant S-505/TIC/0223 and by the Danish Technical Research Coun-
cil, through the framework project ‘Intelligent Sound’,
www.intelligentsound.org (STVF No. 26-04-0092).

7. REFERENCES

[1] D. Ellis, B. Whitman, A. Berenzweigh, and S. Lawrence,
“The quest for ground truth in musical artists similarity,”

in Proc. of the Intl. Symp. on Music Information Retrieval,
2002.

[2] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman, “A large
scale evaluation of acoustic and subjective music similarity
measures,” inProc. of the Intl. Symp. on Music Information
Retrieval, 2003.

[3] E. Wold, T. Blum, D. Keislar, and J. Wheaton, “Content-
based classification, search, and retrieval of audio,”IEEE
Multimedia, vol. 3, pp. 27–36, 1996.

[4] J. Foote, “Content-based retrieval of music and audio,” in
Multimedia Storage and Archiving Systems II, Proc. of SPIE,
vol. 3229, pp. 138–147, 1997.

[5] J.-J. Aucouturier and F. Pachet, “Music similarity measures:
What’s the use?,” inProc. of the Intl. Symp. on Music Infor-
mation Retrieval, 2002.

[6] B. Logan and A. Solomon, “A music similarity function
based on signal analysis,” in IEEE Intl. Conf. on Multimedia
& Expo, 2001.

[7] T. Hofmann, “Probabilistic Latent Semantic Analysis,” in
Proc. 15th Conf. on Uncertainty in Artificial Intelligence, pp.
289–296, 1999.

[8] D. Cohn and T. Hofmann, “The Missing Link – A Proba-
bilistic Model of Document Content and Hypertext Connec-
tivity,” in Neural Information Processing Systems 13, 2001.

[9] E. Gaussier and C. Goutte, “Relation between PLSA and
NMF and implications,” inSIGIR, pp. 601–602, 2005.

[10] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca and
R. J. Plemmons “Algorithms and Applications for Approx-
imate Nonnegative Matrix Factorization,” inComputational
Statistics and Data Analysis. Elsevier. To appear, 2007.

[11] T. Lehn-Schiøler, J. Arenas-García, K. B. Petersen and L. K.
Hansen “A Genre Classification Plug-in for Data Collection,”
in International Symposium on Music Information Retrieval
(ISMIR), 2006.

[12] A. Meng and P. Ahrendt and J. Larsen and L. K. Hansen
“Temporal Feature Integration for Music Genre Classifica-
tion,” in IEEE Transactions on Audio, Speech and Language
Processing. To appear, 2007.

[13] J. Arenas-García, K. B. Petersen and L. K. Hansen, “Sparse
Kernel Orthonormalized PLS for feature extraction in large
data sets,”, inAdvances in Neural Information Processing
Systems 19, MIT Press, Cambridge, MA, 2007


