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This paper presents the Steel Plate Storage Yard Crane
Scheduling Problem. The task is to generate a schedule for
two gantry cranes sharing tracks. The schedule must com-
ply with a number of constraints and at the same time be
cost efficient. We propose some ideas for a two stage plan-
ning/scheduling solution approach to the problem.

Problem Description
The Steel Plate Storage Yard Crane Scheduling Problem is
a difficult optimization problem, combining planning and
scheduling in an effort to generate feasible schedules for a
number of interacting cranes. The schedules must be appli-
cable in real world settings and the objective is to minimize
the overall cost. The cost is an aggregation of various costs
directly related to crane operation and of other indirect yard
operation costs. The schedules should at the same time in-
troduce certain desired long-term planning features to the
storage yard. Such features are introduced to improve the
quality of future schedules.

The problem instances origin from real world data. Costs
and constraints have been defined in close cooperation with
the industry. The industrial problem instances are of a large
size and hence it is important to create a solution method
that can make superior heuristic choices in little time.

The problem at hand is from a large steel shipyard. Steel
ships are constructed by welding together large steel plates.
The plates arrive to the yard, where they are stored for a
couple of weeks on average, before they are used in the pro-
duction. The plates are so large and heavy that the only pos-
sible way of storing them is by placing them in stacks in a
large storage yard. The plates are moved by electromagnets
mounted on two gantry cranes. The gantry cranes move on
the same set of tracks. As a consequence, the two cranes can
never pass each other. The plates arrive by ship and are in-
termediately moved to arrival stacks by a tower crane. The
movement of this crane is independent of the other cranes
and not a part of the planning problem considered here. We
consider the plates as a part of the optimization problem,
when the arrival stacks of the day have been built.

For all plates, we have a due date, i.e. the time where
this plate is to be moved to the exit belt. For all plates with
due date equal to the day of planning, we further have an
ordering in which they must be put on the exit belt. There is
some uncertainty on the due dates of the plates. Sometimes

the due date of a plate is changed, and we have to respect a
new due date instead.

Figure 1 illustrates the structure of the yard. The problem
is described in more detail in (Hansen 2003).

Modeling the Problem
The problem is modeled in two stages: a planning stage and
a scheduling stage. In the planning stage we generate a plan
that takes us from the current state of the yard to a final state
of the day. In the final state, all plates with deadline on the
current day are brought to the exit belt. At the same time,
the plan should leave the yard in the best possible condition
for the next day. The condition of the yard is assessed by a
static evaluator, which is described briefly later. To arrive
at a feasible and superior plan within reasonable computa-
tional time, our idea is to relax a number of the real world
constraints in the planning stage. Whatever is relaxed here
is fixed in the scheduling stage so that the final solution is
always fully descriptive. In the planning stage, we are going
to consider a solution as defined by a number of successive
actions. An action is defined by the following:

• The plate that is moved by the action.
• The destination of the action, i.e. where the plate is

moved.
• The time of the action.
• The crane to which the action is assigned.

The following relaxations of the definitions are possible:

• We may set the destination of an action to undefined.
• The time of the action may be left undefined. We may

still want to describe precedence between some actions
without specifying an exact time.

• Crane may be left undefined.

With the above relaxations, the idea is that we are able to
explore a large number of diverse plans and thereby we are
able to arrive at superior plans in the end. However, the plans
are not completely deterministic, as we have a number of
decisions which are still undefined. In the planning stage, an
estimate will be used for the costs of the undefined choices.

A call to the scheduling routine is going to determine
whether the plan has a feasible schedule and whether the
schedule is actually as good as we have estimated.



Figure 1: The storage yard as seen from above.

Solution Approach
The problem has been decomposed into two subproblems:
a planning problem and a scheduling problem. In the fol-
lowing we assume that the destinations of all actions are
specified in the planner. There may also be precedence con-
straints between actions. Some are directly implied by the
problem instance, e.g. moving a plate that is not on the top
of its stack, must naturally succeed the move of the top plate.
Other precedence constraints may not be compulsory from
a physical perspective, but may still provide the final state
of the yard with desired features, and are therefore applied.
Assignment of a crane to the actions and specification of the
exact time is left for the scheduler to do.

As emphasized earlier, this is just one way of defining the
split between planning and scheduling. However, this is a
promising split, as it allows for a very flexible search in the
planning algorithm. At the same time, estimating whether a
feasible schedule exists, and what the cost of such a schedule
will be, is easier than in a case, where more decisions are left
undefined in the planning.

Figure 2 is a side-view of a toy example with only five
stacks. Plates S6 and S11 are due on the current day with
S6 leaving the yard before S11. The exit belt is represented
by stack 5. We know that any feasible plan now holds the
actions: (S6 → 5) and (S11 → 5). Furthermore, there will
be some actions moving S5 prior to the action (S6 → 5).
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Figure 2: Side-view of a toy example.

The Planning Subproblem
The idea is to use well-known optimization techniques to
solve the planning problem. As the size of the problem is
huge, exact solution of a mathematical model is unlikely to
yield good results.

Our initial idea is to apply a local search metaheuristic
(e.g. Simulated Annealing) to the problem. This requires

the definition of the solution space, and from that the defini-
tion of a neighborhood. Further, we also need to define the
objective function.

Represent the solution of a planning problem as an or-
dered list of actions. With the earlier definition of an action,
the final state of the yard is fully determined by the planning
solution. From this representation of a solution, a neighbor-
hood can be defined as follows:
• Remove an action from the plan.
• Add a new action, i.e. choose a new plate to be moved

and specify where to move it.
• Change destination of an existing action.
• Reorder actions, i.e. give an existing action a new posi-

tion in the ordering.
When moving to neighbor solutions, we need to check

that the new solution is feasible. All actions must be feasible
with respect to their position in the ordering given by the
solution.

To illustrate what a solution may look like, assume that
we have the following solution to the planning problem of
Figure 2:
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The solution yields the final state of the storage yard illus-
trated on Figure 3.
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Figure 3: The final state of the storage yard for the toy ex-
ample of Figure 2.

Another solution leading to the same final state can obvi-
ously be reached by two neighborhood transitions, e.g.:
1. Remove action (S5 → 3).
2. Change destination of action (S5 → 1) to stack 3.

The new solution is:

(S
5
¼3) (S

6
¼5) (S

11
¼5) (S

1
¼2)



The Scheduling Subproblem
From a solution to the planning problem it is now the task to
generate a complete and feasible schedule. First, the order-
ing of tasks must be relaxed to allow for parallel execution
of actions. Most actions are locally independent from each
other. These independencies are detected and only meaning-
ful precedence constraints are kept for the scheduler. The
problem is now similar to a traditional scheduling problem.
We have a number of actions (operations) that we need to
carry out on two cranes (machines). Between operations
there are several temporal constraints. The anti-collision
constraint is an important temporal constraint added by the
fact that we have two cranes in operation. Since the crane
operation times are of a stochastic nature, we need to intro-
duce buffers, enforced by temporal constraints. The buffers
ensure that no crane collision occurs, even with disturbances
in operation time. For major disturbances, the scheduling
problem and possibly the whole planning may have to be
resolved.

For the example of Figure 2, let us assume that the first
of the two solutions are found by the planning solver. Now,
we have to schedule the actions. For the actions we have the
following precedence constraints:
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We may hence, if no other constraints are violated, be able
to schedule actions (S5 → 3) and (S1 → 2) on one crane
and in parallel actions (S6 → 5) and (S11 → 5) on the other
crane. In a very simple world, where moving from one stack
to its neighbor takes 1 time unit and lifting or dropping a
plate takes 1 time unit and when these times are not stochas-
tic, the following schedule is feasible:
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Including all precedence constraints from the planning so-
lution may restrict the scheduler too much. If initial testing
shows this to be the case, we could allow the scheduler to
slightly rearrange actions in order to arrive at better sched-
ules.

We plan to approach the scheduling problem with stan-
dard solution methods. A promising possibility is to use
Constraint Programming to solve the scheduling problem.
We may also try Integer Programming models or perhaps
tailored heuristics.

Evaluation of Solutions
It still remains to define the direct and indirect costs of the
problem. Moreover, these have to be transformed into es-
timates for partly undefined actions and for the static eval-
uation. The yard has a fixed daily throughput and hence it
becomes our task to comply with throughput constraints and
at the same time minimize costs.

The costs that apply include:

• Salary to the crane operators.
• Electricity costs of crane movement and magnet activa-

tion.
• Crane maintenance.

These costs can be mapped to the make-span of the sched-
ule, the total distance traveled by the cranes, and the total
number of lifts/drops. The salary is adjustable only in large
steps (i.e. if we can go from 2 working shifts to 1.5 shifts,
some of the crane operators may be employed part time only,
or they may get reassigned to other tasks for half of their
shift). According to the management of the yard, the main
part of the cost comes from maintenance of the cranes.

The make-span of a schedule is not directly inferable from
the planning solution. Therefore, it has to be estimated at
this point. We do know that it is closely related to the to-
tal execution time of all actions. Total travel distance and
number of lift/drops are apparent in the planning solution.

The overall objective is to minimize the cost of the result-
ing schedules. However, the cost minimized is the sum of
the cost of the day of planning plus all future costs (to some
extend). Hence, the optimal solution is not necessarily a so-
lution that minimizes the cost of the current day; it also has
to leave the storage in an attractive state. The static evaluator
is used to measure attractiveness of a state by the following
measures:

• How well are stacks sorted?
• How close are almost due plates to the exit-belt?
• How close are the stack heights to a uniform distribution?

What is Next?
The next step in the development is to implement the de-
scribed methods and to conduct some initial experiments on
problems of a reasonable size. It may still be too hard to
do experiments on real size data, but we need to assess the
approach described. These tests are going to reveal whether
major changes have to be imposed. The advantages and pos-
sible disadvantages of the decided split between planning
and scheduling module will become more transparent and
we will modify the model accordingly.
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