
Container loading with multi-drop constraints

Søren Gram Christensen∗ David Magid Rousøe

Informatics and Mathematical Modelling, Technical University of Denmark

Kgs. Lyngby, Denmark

July 1, 2007

Abstract

In this paper an algorithm for the container loading problem (CLP)
with multi-drop constraints is presented. When adding multi-drop con-
straints we demand, that the relevant boxes must be available, without
rearranging others, when each drop-o� point is reached. To make the so-
lutions feasible in the real world, it is further demanded that all boxes are
placed in a feasible manner with respect to load bearing strength and with
proper support from below. This makes it possible to load consignments
originating from builder merchants.

A heuristic based on a tree search framework is proposed. It uses
greedy solutions to evaluate each choice taken. To make the framework
more generic, a dynamic breadth is proposed. Based on problem charac-
teristics and the time limit imposed, it will choose the breadth of the tree,
making sure that the time is utilised most pro�table.

The algorithm is tested on new real world data from a Danish company
distributing construction products. For the solutions to these problems
to be feasible in a real world setting both multi-drop- and load bearing
strength constraints are essential. The obtained results show, that the pro-
posed model and algorithm are able to solve the new real world problems in
fractions of a second. Furthermore, results obtained on benchmark prob-
lems indicate that the algorithm performs comparable with other more
specialised methods.
Keywords Packing; Container loading; Multi-drop; Load bearing strength;
Tree-search

1 Introduction

The container loading problem (CLP) is the problem of loading a subset of rect-
angular boxes into a rectangular container of �xed dimensions such that the vol-
ume of the packed boxes is maximized. If boxes belonging to di�erent customers
are loaded in the same container, a natural extension to CLP is multi-drop con-
straints, which demand that boxes should be available without rearranging other
boxes when a customer is reached. In recent literature the problem of combined
vehicle routing and container loading is considered. Gendreau et al. (2006a)
propose an algorithm to solve the combined problem with three dimensional

∗Tel.: +45 23661882
E-mail address: soren@gramchristensen.dk

1 INTRODUCTION 2

packing constraints. This problem is denoted the three dimensional loading ca-
pacitated vehicle routing problem (3L-CVRP). Other approaches have reduced
the loading constraints, so that only one or two dimensional loads are considered.
The two dimensional loading capacitated vehicle routing problem (2L-CVRP)
are dealt with by e.g. Gendreau et al. (2006b) and Iori et al. (2007). The one
dimensional variant, where multi-drop constraints are applied, is considered in
Doerner et al. (2007). Common to the approaches is that the two problems are
solved separately. A vehicle routing algorithm suggest routes which are checked
for feasibility by a packing algorithm. For this setup to work in a practical set-
ting, solutions to the CLP must be obtained fast, as typical many routes need
to be checked. Furthermore, when the container loading problem is combined
with vehicle routing the multi-drop constraints on CLP become essential.

Many di�erent properties make up the characteristics of container loading
problems. Both the typologies of cutting and packing problems by Dyckho�
(1990) and Wäscher et al. (2006) are good starting points for investigations
in the area of cutting and packing. When cutting and packing problems are
classi�ed, it is important to describe the dimensionality, the assortment of the
small items and large objects and the shape of the small items. In this paper
a heuristic for the three dimensional rectangular single container loading prob-
lem is presented. Using the typology of Wäscher et al. (2006) this problem is
classi�ed SLOPP, as a weakly heterogeneous assortment of boxes are consid-
ered. In the typology of Dyckho� (1990) the problem is classi�ed 3/B/O/F
and 3/B/O/R, as also problems with few boxes are considered in this paper.
We further demand that boxes are only rotated in feasible directions, meaning
that it should be respected if a box cannot be rotated in some given ways.

Bischo� and Ratcli� (1995) give an excellent overview of what is in the
typologies denoted problem extensions. These include both multi-drop- and
load bearing strength constraints and rotation restrictions. The load bearing
strength constraints ensure that boxes placed on top of each other does not
damage each other. This type of constraints becomes very important if the
problem is to load construction products, as these often have very di�erent
characteristics.

The CLP is known to be an NP-hard optimisation problem, as it contains
the well described knapsack problem. For this reason, when solution procedures
are developed, heuristics are often used. Mixed integer programming (MIP)
models have, however, been put forward. Chen et al. (1993) proposed a MIP
model to the multi-container loading problem, which can easily be changed to
also model the single container loading problem. Scheithauer (1998) proposed
a di�erent MIP model, which he uses to produce dual bounds to CLP.

When heuristics are used a general solution strategy is to divide the con-
tainer into smaller pieces, and then packing each of these separately. The point
often being to reduce the solution space from three dimensions to one or two.
Pisinger (2002) gives an excellent overview of these strategies. The most com-
mon dividing procedure is wall building, introduced by George and Robinson
(1980). A wall is constructed by making a vertical slice through the container.
The depth of a slice is de�ned by the depth of the �rst box placed in the wall.
As the slice is �lled, the boxes will create a wall-like formation. See e.g. Bort-
feldt and Gehring (2001) who combines wall building with a genetic algorithm.
Moura and Oliviera (2005) uses walls in combination with a GRASP approach,
and Pisinger (2002) uses a tree search to decide the depth of each wall. Davies

1 INTRODUCTION 3

and Bischo� (1999) propose a method that combines several walls into a block,
to increase stability. Methods where the container is split by horizontal slices
have also been developed. This is often called layers. Compared to the wall
approaches, layer approaches are said to produce more stable loads. Examples
can be seen in Bischo� and Ratcli� (1995), Ratcli� and Bischo� (1998) and
Lim and Zhang (2005). In stack building approaches (see e.g. Gehring and
Bortfeldt (1997) and Gilmore and Gomory (1965)) box stacks are constructed,
leaving only a two dimensional problem of arranging the stacks on the container
�oor. Other methods put together boxes in blocks before they are placed in the
container. A block typically consists of one or two types of boxes. Therefore the
advantage is, that each block can be tightly packed. This procedure is used by
Bortfeldt et al. (2003) in combination with a tabu search, by Mack et al. (2004)
with a hybrid parallel tabu search and simulated annealing, and by Eley (2002)
in combination with a tree search algorithm.

A common term used, in connection with wall and layer building algorithms,
but also by itself is guillotine cuts. The term is taken from cutting theory, and
it describes a cut going straight through an object. The cut will continue until
another guillotine cut is met or the object is cut through. When cutting glass, it
is often demanded that the cutting patterns are guillotine cuttable. In relation
to container loading, guillotine cuts can be used to split the container into
smaller pieces, which is utilised by Morabito and Arenales (1994).

Only few papers addresses the problem of container loading with multi-drop
constraints. Bischo� and Ratcli� (1995) propose a method, which load a single
customer at a time. Another approach is mentioned in Gendreau et al. (2006a),
where the combined routing and packing problem is solved. They use a tabu
search to �nd a solution to a strip packing problem which is good enough to
�t in the real container. The shared idea in the two approaches is to load the
boxes in the opposite sequence as they should be dropped o� (LIFO). The latter
approach furthermore introduces the idea to check the feasibility of an insertion,
before a box is placed. This was also done in Gendreau et al. (2006b) for a two
dimensional packing problem.

Another rarely mentioned extension, is the load bearing strength constraint.
How to incorporate this constraint into the algorithms is discussed in Ratcli�
and Bischo� (1998) and Bischo� (2004). The �rst approach uses the concept
of empty spaces to model the container whereas the latter uses two matrices to
represent occupied room in the container and remaining load bearing strength.
The latter approach can be seen as a simpli�cation of the ideas in Ngoi et al.
(1994) to represent the container room with matrices.

The problem, which is treated in this paper, is highly restricted compared
to most problems considered in the literature. We demand that boxes are
placed multi-drop- and load bearing strength feasible, only rotated in some
pre-described directions and given proper support from below.

In the next section the mathematical model handling the imposed constraints
is described. In Section 3 the proposed tree search algorithm and the new
dynamic breadth are introduced. In Section 4 the algorithm is tested on both
new real world data and on benchmark data from the OR-Library. On the
new data the introduced constraints are essential to make the loads practically
feasible. Finally some concluding remarks are given in Section 5.

2 MATHEMATICAL MODEL 4

2 Mathematical model

The container is placed in a coordinate system with the origin in the back-left-
lower corner. The length L of the container is placed along the x-axis, the width
W along the y-axis and the height H along the z-axis. Every box i ∈ B has
dimensions li, wi and hi and weight mi. Dependent on the chosen rotation of
the box the di�erent sides of the box will be placed parallel to the sides of the
container. To every box a set of feasible rotations are given. To a box there can
be either two, four or six feasible rotations. When a box i is placed it is placed
in the point (x, y, z) = (ai, bi, ci), which will also be denoted the minimum of
the box i = (ai, bi, ci). Furthermore when a box is placed the rotation of the
box is chosen. Then the maximum of the box is given by i = (ai, bi, ci). We
will be working with two distinct set of boxes. The set of already placed boxes
Bplaced and the set of not placed boxes BnPlaced.

To manage the space inside the container di�erent strategies are presented in
the literature. Ngoi et al. (1994) use a matrix representation to describe where
and how the boxes are placed inside a container. Another approach was pointed
out by George and Robinson (1980) based on empty spaces describing where
boxes can be placed. In the proposed algorithm we use empty spaces that are
allowed to overlap each other. This choice complicates the procedures needed
to update the empty spaces, as more spaces can be a�ected by the insertion
of a single box. On the other hand, this approach does not limit the spaces in
size unnecessarily. Every space s ∈ S is given by its minimum s = (xs, ys, zs)
and maximum s = (xs, ys, zs). A valid empty space is guaranteed to be empty,
therefore we need to check all spaces after a box is inserted, and update these
if the space is no longer empty.

To re�ect the reality met when for instance packing construction products
for distribution, it is necessary to allow the spaces to overhang each other. This
means that there is no guarantee of full support for the boxes. The amount
of support is controlled by the non-negative parameter γ, which describes how
large a part of a space that does not need support. If γ = 1, the supported and
the not supported parts of the space have the same size. If γ = 0, no overhang is
allowed. Additionally two variables α and β are used to describe where support
from below exists in the x- and y-dimensions, respectively.

2.1 Updating the empty spaces

When a solution to the CLP is constructed, many boxes are placed in the
container. The boxes are always placed in empty spaces. This ensures that all
boxes will have proper support from below. Furthermore we will always place
the box in the minimum of a space. This follows the concept of a normalised
packing. It can be shown that to any packing, an equally good normalised
packing exists. This was done by Martello et al. (2000), when packing a single
bin in the three dimensional bin packing problem and by Herz (1972) for the two
dimensional stock cutting problem. After a box is placed it will occupy some
of the space in the container, therefore the empty spaces need to be updated to
re�ect this new situation.

Because we work with overlapping empty spaces many new spaces can be
generated when a box is inserted. Spaces on all six sides of the inserted box can
appear. In Figure 1 an example where three new spaces are generated is shown.

2 MATHEMATICAL MODEL 5

On the left picture the container is shown with the old invalid space. On the
right picture the new empty space are drawn on the container �oor.

Figure 1: Three new spaces generated after a box is inserted. On the left picture
the container is shown in three dimensions with the old invalid empty space. On the
right picture the container �oor is shown. The dark grey area illustrate where the
new spaces, indicated by dashed lines from their minimum to maximum, overlap each
other.

As mentioned, in general six new spaces can be generated after a box is
inserted. If we place box i in the container and it invalidates space s the potential
new empty spaces are given in Table 1. Here, space t = 1 is situated behind

Table 1: The spaces made in other spaces when inserting a box and reduced support
is allowed.

min Support

t xt y
t

zt αt βt

1 xs y
s

zs min(αs, ai) βs

2 ai y
s

zs αs βs

3 xs y
s

zs αs min(βs, bi)

4 xs bi zs αs βs

5 xs y
s

zs αs βs

6 xs y
s

ci min(ai, αs) min(bi, βs)

max

t xt yt zt

1 ai ys zs

2 min(αs · (1 + γ) − ai · γ, xs) ys zs

3 xs bi zs

4 xs min(βs · (1 + γ) − bi · γ, ys) zs

5 xs ys ci

6 min(ai · (1 + γ) − ai · γ, xs) min(bi · (1 + γ) − bI · γ, ys) zs

the box, space t = 2 is in front of, space t = 3 left of, t = 4 right of, t = 5 is
situated below the box and t = 6 is placed on top of the box. The spaces are
only generated if they are needed. In general only a subset of the six spaces are
generated from a single space. The space above is only generated when s = i,
i.e. if the the space has the same minimum as the box. This is necessary because
many spaces can have the same minimum but di�erent support from below.

When updating the empty spaces a number of crucial operations are per-
formed to keep the spaces as large and few as possible. First of all spaces which

2 MATHEMATICAL MODEL 6

have the same z and abut on each other are amalgamated. This is done based
on the supported parts of the spaces. Furthermore, it is demanded that spaces
which are subsets of other spaces are deleted. Finally, spaces which are too small
to hold any box will be deleted. This is only done if there is no chance that
the space will ever be amalgamated with another space. The details in these
operations are described more thoroughly in Christensen and Rousøe (2007).

2.2 A valid box placement

The way the spaces are constructed makes sure that boxes will have proper
support from below when they are placed in the container. This was one of
the extensions introduced on the problem at hand. Two more concerns have
to be taken into account. First of all the multi-drop constraints and secondly
that the boxes only have a limited load bearing strength. The validity of both
constraints are ensured before a box is placed in the container.

A solution to CLP is multi-drop feasible if boxes can be unloaded without
rearranging other boxes. In practice we demand that there exist a passage from
the box to an entrance of the container. We are working with whole surfaces
as entrances to the container and de�ne the four parameters X+, X−, Y +

and Y − to represent, if it is possible to unload boxes from the surfaces given
by (L, 0, 0) − (L,W,Z), (0, 0, 0) − (0,W,Z), (0,W, 0) − (L,W,Z) and (0, 0, 0) −
(L, 0, Z), respectively. X+ for instance represents whether the front of the
container is a valid unloading surface.

For each unloading direction a passage is de�ned as follows. There exist a
passage for box i in the X− direction if:

∀j ∈ Bplaced \ i | ai ≤ aj ∨ di ≥ dj ∨ ¬(bi < bj ∧ bj < bi).

There exist a passage for box i in the X+ direction if:

∀j ∈ Bplaced \ i | ai ≥ aj ∨ di ≥ dj ∨ ¬(bi < bj ∧ bj < bi).

There exist a passage for box i in the Y − direction if:

∀j ∈ Bplaced \ i | bi ≤ bj ∨ di ≥ dj ∨ ¬(ai < aj ∧ aj < ai).

There exist a passage for box i in the Y + direction if:

∀j ∈ Bplaced \ i | bi ≥ bj ∨ di ≥ dj ∨ ¬(ai < aj ∧ aj < ai).

Furthermore we demand that no boxes placed on top of box i has lower sequence
number. Two boxes i and j are placed on top of each other if they overlap in the
x- and y-dimensions, i.e. ai < aj ∧aj < ai∧bi < bj ∧bj < bi. If this happens we
demand that the lowest placed box has the higher sequence number. Without
loss of generality lets assume that box i is placed lower than box j and the
two boxes are placed on top of each other. Then we demand that the sequence
number of box i is at least as high as the sequence number of box j, i.e. di ≥ dj .

Now we can de�ne when a load is multi-drop feasible. A solution to CLP
respects the multi-drop constraints if: For all boxes i, there exist a passage in a
possible unloading direction, and no boxes j placed on top of box i, have higher
sequence number. This situation is controlled every time a box is inserted in
the solution. Thereby all partial loads are also multi-drop feasible.

3 TREE SEARCH 7

The concept of load bearing strength (LBS) was �rst suggested by Bischo�
and Ratcli� (1995). The basic idea is that all boxes are fragile to some extent.
Hence, we need to guarantee that no boxes are put under more pressure from
other boxes than allowed. Load bearing strength is a measure for how much
weight a given box can carry without being damaged.

To model this feature we need to know, for every box i ∈ B what its load
bearing strength is. This is denoted LBSi. In our model there exist one LBS-
value for every box, no matter how the box is rotated. This di�ers from the work
of Ratcli� and Bischo� (1998) who use three LBS, one for each dimension. We
will assume that the mass of the products are homogeneous distributed in the
products. When dealing with construction products this is in most situations
the case. However, if boxes are overhanging the moment of force is neglected. Of
course only boxes which support each other should be strained with each others
weight. Furthermore boxes which does not have full support should strain other
boxes with more weight proportional to the not supported area.

To handle this the concept of box stacks is introduced. A box stack bs ∈ BS,
with reference point, r = (rx, ry, 0), is composed of all boxes where

ai < rx < ai ∧ bi < ry < bi ∧
(
ci = 0 ∨ (∃j ∈ bs, j 6= i|ci = cj)

)
is true. This means that boxes are only members of a box stack, if they have
support in the reference point by either another box in the box stack or the
container �oor.

When a box is overhanging it means that the supported area is smaller than
the base area of the box. The supported area of box j is denoted Sareaj . When
we try to insert a box the following check should be made for all boxes in the
di�erent box stacks wherein the inserted box is a member:

LBSi ≥
∑
j∈bs

ci<cj

mj

Sareaj

, ∀i ∈ bs.

3 Tree search

To manage in which sequence the di�erent boxes in a CLP are placed, a tree
search heuristic is proposed. It places one box in each node of the search tree.
Thereby each node constitutes a partial solution PS. Like Eley (2002) the
space choice is made greedily and each insertion is evaluated by a corresponding
greedy solution. All di�erent combinations of box types and associated feasible
rotations are tried in each node. Because of the tremendous amount of di�erent
possible choices, it is not possible to inspect them all. Therefore the breadth λ
is introduced to restrict the number of solutions kept from each depth. Often a
limited time is available when solving problems. If this is the case a single value
for the breadth is not desirable. If λ is chosen too low the search will �nish
prematurely, if it is chosen too high the search will never reach the bottom
of the tree. Therefore a dynamic breadth is proposed. This breadth changes
its value based on estimates of how much time it will take to �nish the search.
Di�erent weighting strategies are used to control in which depth of the tree more
time should be spent. Another improvement to the tree search was proposed
in Christensen and Rousøe (2007), where a part of the greedy solution is kept
in the partial solution. This will be denoted accelerated tree search and proved
successful when there is only one customer in the problems.

3 TREE SEARCH 8

3.1 The greedy algorithm

As both the space choice and the evaluation of each insertion depend on the
greedy procedure, this procedure becomes fundamental to the overall tree search.
The generic framework of the method is shown in Algorithm 1. The deciding
point in the algorithm is how line 4 is performed.

Algorithm 1: Greedy

1: repeat

2: Choose subset of BnPlaced
3: while More boxes can be placed do
4: Find feasible box/rotation/space combination
5: Insert found box in the found space
6: Update empty spaces and boxes
7: end while

8: until stop

Before entering the while loop, the option to work on a limited number of
customers at a time, is given. This can help control the packing sequence more
thoroughly. If it is chosen to load boxes from one customer at a time - starting
with the customer visited last and ending with the one visited �rst - this will
indeed be a LIFO (Last-In-First-Out) packing. This follows the ideas introduced
by Bischo� and Ratcli� (1995) and Gendreau et al. (2006a) to accommodate for
multi-drop constraints. The minimum number of boxes present in the subset of
BnPlaced used when running the inner loop of the greedy algorithms is called
κ. The point of splitting the batch in smaller subsets should be not to mix up
boxes from di�erent customers. Loading one customer at a time, however, could
be too strict.

The algorithm stops if: 1) all boxes are packed, 2) no boxes in the current
subset of BnPlaced �t in the remaining empty spaces or 3) there are no more
empty spaces.

The greedy method has a very simple strategy when choosing the next box
to place. It depends on that the boxes are sorted with descending order by
sequence and volume, sequence and biggest surface, or sequence and largest
dimension. Also the sequence in which the di�erent feasible box rotations are
tried is important. Six di�erent strategies are tested. The �rst favours the
biggest dimension placed along the x-dimension, the middle dimension along the
y-dimension and the smallest dimension along the z-dimension. This is denoted
XY Z. The second favours the biggest dimension along the x-dimension, the
middle one along the z-dimension and the smallest along y-dimension, which is
denoted XZY . The same principle make up the last four rotation sequences,
which are denoted Y XZ, Y ZX, ZXY and ZY X. Finally also the empty spaces
are sorted. This is done according to their position in the container, starting
with the spaces with low x, y and z in that sequence.

The procedure chooses the �rst space and then tries to �nd a box that can
be placed in it, starting with the most promising box according to the chosen
box sort rule. When a feasible combination have been found it is chosen and
the box is inserted. This makes this greedy methods extremely fast, compared
to evaluating all boxes with all possible rotations in all possible spaces. The
possibility to �x the box and rotation is given. Thereby a greedily chosen space

3 TREE SEARCH 9

to the combination is found.

3.2 Dynamic breadth

As mentioned, the choice of λ is crucial for the performance of the tree search. A
reasonable choice depends on both the problem at hand and the time available
to solve it. Partly because of this and partly because it could be a good idea to
change the breadth throughout the search, a dynamic breadth is introduced.

The dynamic breadth is calculated on the �y, based on the remaining time,
∆t, and the estimated time necessary to get to the bottom of the search tree
through one branch tbranch,PS . This leads to the following value of the breadth
in depth p:

λp =
∆t

tbranch,PS
· W (1)

where W is a weight which will be explained in details later in this section.
The time used in one branch of the tree is not trivially estimated, as it depends
on many factors varying independently. The most important of these are the
number of di�erent boxes possible to place, the possible rotations of these, the
number of spaces in the container and the depth of the branch. All these factors
cannot be taken into account and instead a simpli�ed estimate is used.

The time tPS , it takes to expand one partial solution PS in the tree is esti-
mated to be linear dependent on the number of not yet loaded boxes |BnPlaced,PS |,
and given by:

tPS = K · |BnPlaced,PS |. (2)

To expand a partial solution all feasible combinations of box types and rotations
are evaluated by the greedy method. tPS and |BnPlaced,PS | are estimated based
on the average time used to develop all the possible solutions and the average
number of boxes not loaded in each node. The expansion time varies between the
di�erent partial solutions, mainly because di�erent boxes are available. Based
on tPS and |BnPlaced,PS |, K can be found. To make a full solution, many boxes
need to be placed. The best estimate on how many boxes should be placed, is
the number of boxes placed in the best found solution so far. The number of
not placed boxes in the best know solution is denoted |B∗

nPlaced|. The total time
tbranch,PS needed to get from a partial solution PS to the leafs in the tree, can
now be found as the integral:

tbranch,PS =
∫ |BnP laced,P S |

|B∗nP laced|
K · x dx (3)

Thereby the breadth λp in each depth is estimated as:

λp =
⌊

2∆t · |BnPlaced,PS |
tPS ·max (|BnPlaced,PS |2 − |B∗

nPlaced|2, 3)
· W
⌋

(4)

If more or the same number of boxes are placed in the partial solution than in
the best solution found so far, the di�erence in the denominator in Equation
(4) becomes non-positive. This is not desirable. The di�erence �describes� how
many boxes we need to place before we are at the leaf of the branch. If we
have not found a solution where all boxes are placed this is at least one more.
Therefore we take the larger number of 3 and the di�erence. The new breadth

4 NUMERICAL EXPERIMENTS 10

λp is sensitive to changes in the time measure tPS and �uctuations in this time
could change the breadth unwanted. Hence, it is chosen that λp can change
with maximum 20% compared to λp−1. If the breadth is too small to change
at all (for instance λp−1 = 2) then it is allowed to change the breadth with ±1.
Of course λp ≥ 1 most hold at all times.

When building the search tree, it is not necessarily best to have the same
breadth in the start and the end. When only a few boxes are placed in the
container, it is di�cult to estimate which choice of placement for the next box
is best. Therefore a tree that narrows in during the execution could lead to
better solutions than an equally weighted tree. To test this, a weight W is
introduced in Equation (1). It is determined as:

W = max

(2− |Bplaced,PS |
|B∗
placed|

)ψ
, 1

 (5)

where ψ ∈ R. If ψ = 1 the weight W will in the beginning be close to 2 and
the chosen breadth is thereby twice as wide as the estimated breadth. In the
end the weight is close to 1 and not in�uencing the estimated breadth. By
changing ψ the impact of the weight can be adjusted. If more boxes are placed
in the partial solution we are looking at than in the best found solution, the

expression
(
2− |Bplaced,P S |

|B∗placed|

)
will evaluate to a value smaller than 1. If this

happens we change the breadth unwanted, therefore the smallest allowed W is
set to 1.

The dynamic breadth makes the tree search more generic. Without user
intervention and business knowledge it is possible to solve problems of very
di�erent nature with the same setting for the tree search. At the same time all
time available is used and we are able to get to the bottom of the search tree.
This makes the dynamic breadth well suited for problems where a limited (and
strict) time is available. The concept of the dynamic breadth does not only
apply to container loading problems but to tree search algorithms of any kind,
where a single value for the breadth of the tree is not appropriate.

4 Numerical experiments

To test the proposed algorithm di�erent time horizons are used. When solving
benchmark problems from the OR-Library 60 seconds are used as a time limit.
On the new real life problems only 10 seconds are used as the time limit. These
relative short times should re�ect the need for fast solutions when for instance
the problems are solved in a vehicle routing context. The best settings for the
algorithm is using rotation sequence strategy Y XZ, which favours the largest
dimension of the box along the y-dimension, the middle dimension along the
x-dimension and the smallest dimension in the z-dimension. The boxes should
furthermore be sorted by their sequence and volume. Additionally when more
customers are considered, the greedy procedure should only consider boxes from
a single customers at the time, i.e. κ = 1. Finally, based on preliminary
experiments, the breadth weight factor ψ is set to 0. Further details can be
found in Christensen and Rousøe (2007). The algorithm is implemented in
C++ and all tests are performed on Linux machines with 2,4GHz 64 bit AMD
processors and 2GB RAM.

4 NUMERICAL EXPERIMENTS 11

4.1 OR-Library problems

A number of CLP instances are found in the OR-Library. These problems were
�rst used by Bischo� and Ratcli� (1995). There exists 7 distinct �les, which we
will denote data groups, each containing 100 CLP instances. Every data group is
distinguished by the number of di�erent box types present in the CLP instances.
In the problems from the �rst data group (BR1), there are three di�erent box
types. This increases to 20 di�erent box types in the last data group (BR7).
These problems are used to test the performance of the algorithm and the e�ect
of the multi-drop constraint. The latter is accomplished by randomly assigning
a customer number to each box. The number of customers in a problem is
denoted nC. When solving these problems we demand that all placed boxes
have full support from below, i.e. γ = 0. Furthermore, in instances with more
than one customers the only way out of the container is given by the direction
X+.

In Figure 2 the results of the test are shown. On the horizontal axis the
number of customers in the problems, are shown. Each line represents results
from distinct data groups. A clear connection between the number of customers

Figure 2: The results dependencies on the number of customers and the number of
box types.

and the solution quality can be seen. The �gure, furthermore, reveals that the
solution quality depends not only on this, but also on the combination of the
number of box types and the number of customers in the problem. When only
3 box types exist (BR1) the solution quality only drops 5% going from 1 to 50
customers, when 20 box types exist (BR7) the di�erence is approximately 30%.

It is not surprising, that the di�cult problems both have many customers
and box types. When the load is only weakly heterogeneous the multi-drop
constraint will have little e�ect, as several boxes of each box type are available
to all customers, leaving much freedom when choosing each box. Moreover, also
the e�ect of full support from below becomes more serious when we are forced
to load boxes in a certain sequence given by the customer numbers of the boxes.

4 NUMERICAL EXPERIMENTS 12

The algorithm proposed in this paper have not been designed to solve the
problems from the OR-Library without customers. A tuning to make a more
fair comparison with other approaches have, however, been carried out. It was
found that better performance is obtained if using an accelerated tree search in
combination with a greedy method based on Bischo� and Ratcli� (1995) method
for multi-drop problems. Also the breadth weight factor is changed. Now the
best value is ψ = 2, which indicates that more time should be used in the top
of the tree.

The greedy method proposed by Bischo� and Ratcli� (1995) evaluate all
possible insertions against each other, choosing the one which utilise a stack
in a space the best way. The accelerated search keeps a part of the greedy
solution, which is tightly packed. In this way this method is able to get faster
down through the search tree. This approach is elaborated in Christensen and
Rousøe (2007). The results obtained with this setting is reported in Table 2.
The test shows an average volume utilisation of 90,5%, looking across all data

Table 2: Test of OR-Library problems with one customer.

Data group Min. Avg. Max. SD.

BR1 83,38 90,48 96,81 2,70
BR2 85,31 91,16 94,93 1,89
BR3 87,77 91,33 94,97 1,53
BR4 87,91 90,98 94,09 1,34
BR5 86,41 90,83 93,25 1,32
BR6 87,03 90,19 93,12 1,26
BR7 84,81 88,36 91,48 1,27
All 83,38 90,48 96,81 1,93

groups. The best results obtained are for BR3, with 8 di�erent box types, where
the average is 91,3%. The worst results are obtained for BR7 (20 box types)
with 88,4%. The data group that vary most in solution quality is BR1, with the
highest standard deviation and also containing both the overall best and worst
results.

The overall average of 90,5% is indeed better than the results reported in
Figure 2, where the average for one customer is 89,1%. As seen in Table 3, this

Table 3: Average volume utilisations and di�erence for the two methods, One and
More

nC
Method

Di�.
One More

1 90,48 89,07 1,41
2 83,33 85,96 -2,63
5 72,10 78,52 -6,42
10 65,25 72,64 -7,39
50 56,16 64,45 -8,29
All 73,46 78,13 -4,67

however, is only in the case with one customer. The table shows the results ob-
tained when the method is used on problems with more customers, along with

4 NUMERICAL EXPERIMENTS 13

the results obtained with the best method when more customers are present.
Method One is the method that is better when one customer exists, method
More is the method which is better when more customers exist. In the last col-
umn, the di�erence between obtained results, is shown. Even though the gain
for the one customer problems is notable, it is also obvious that the method
behaves badly, when applied to problems with more customers. This is partly
because of the accelerated methods, which does not consider the customer num-
bers on the boxes and partly because of the slower greedy method.

The results for one customer can be compared to work done by other authors.
A selection of results obtained by others, can be seen in Table 4 together with
our results. Common for all the algorithms is that full support of the boxes
are required. When comparing our algorithm with others, it is important to

Table 4: Solution quality compared to other authors.

Authors Avg.

Bischo� and Ratcli� (1995) 84,94
Bortfeldt and Gehring (2001) 90,06
Eley (2002) 88,75
Bortfeldt et al. (2003) 92,20
Moura and Oliviera (2005) 89,73
Lim and Zhang (2005) 91,81
Our method 90,48

remember that our method is not particularly created to solve problems from
the OR-Library. It should be able to handle them, as well as more complex
problems. The time limit used is also a consideration. We have set the time limit
to 60 seconds. Except for the algorithm proposed in Bischo� and Ratcli� (1995)
all other implementations use more time. The results obtained by Bischo� and
Ratcli� (1995) are the combined method of two single construction method,
which takes very little time to evaluate. The results by Bortfeldt, Gehring, and
Mack (2003) and Eley (2002) are obtained, using a time limit of 10 minutes.
In the genetic algorithm from Bortfeldt and Gehring (2001) a time limit of
500 seconds is used. Moura and Oliviera (2005) reports that average solutions
times are under 64 seconds, when they perform 200 iterations of their GRASP
approach. The solution times reported by Lim and Zhang (2005), spans between
1 and 4600 seconds.

Our results are not fully competitive with the best methods developed to
solve the OR-Library problem instances. However, within a reasonable time
limit an average volume utilisation above 90% are obtained.

4.2 Distribution of construction products

From a builders merchant eight problems have been gathered. These have all
been solved by the company, indicating that it is possible to �nd optimal solu-
tions to the consignments. Besides the eight problems given from the company,
nine new random consignment, based on the data from the original eight prob-
lems, are constructed. This gives the possibility to test the algorithm when it is
not given, that all boxes should �t in the container. In the problems, relatively
few boxes are present. However, the load bearing strength of the boxes are very

4 NUMERICAL EXPERIMENTS 14

di�erent, which along with the multi-drop constraints make these problems dif-
�cult. For these trucks it is allowed to unload boxes in the directions given by
X+, Y + and Y − and overhang are allowed with γ = 0, 2. The results obtained
on the 17 problems are summarised in Table 5.

Table 5: Results obtained with the algorithm on problems from a builders merchant.

Problem No. of Volume Volume Time Tot. no. No. of boxes

customers ratio utilisation s of boxes left out

O
ri
g
in
a
l

1 2 16,47 16,47 0,00 3 0
2 1 5,47 5,47 0,00 3 0
3 2 20,17 20,17 0,00 9 0
4 3 18,11 18,11 0,00 22 0
5 4 15,74 15,74 0,00 8 0
6 2 7,93 7,93 0,00 8 0
7 1 51,72 51,72 0,00 11 0
8 6 71,21 71,21 0,00 19 0

G
e
n
e
ra
te
d

9 4 39,17 35,23 8.64 25 1
10 4 83,68 61,97 3.94 31 16
11 9 52,06 42,18 6.63 22 5
12 5 76,11 58,37 3.43 22 4
13 6 75,80 59,35 1.82 25 6
14 5 31,54 31,54 1.26 20 0
15 7 69,73 55,94 6.61 28 9
16 7 40,51 32,11 1.48 20 4
17 4 28,10 24,16 0.02 17 1

For the original problems most of the best solutions were found in the �rst
node of the tree, but for two problems, the solutions were found in a depth of 2
and 4, respectively.

Figure 3 shows an optimal solution to problem 8. Two sub �gures are shown.

Figure 3: An optimal solution to problem 8.

The left one shows the sequence of the boxes, whereas the right one shows the
di�erent product types. The depicted solution is optimal and has a volume
utilisation of 71%. There are 6 customers and 19 boxes. Information about
which colour corresponds to which customer and all the products and the truck,
can be seen on Table 6. The list shows that very di�erent products are placed
on the same load, both big pallets of rockwool, stacks of gypsum boards and

5 CONCLUSION 15

long tree poles. This indicate that a key factor is to be able to measure the
load bearing strength of the products. A ton of stone cannot be placed on top
of some tiles for the bathroom.

Table 6: List of products corresponding to the packing shown on Figure 3.

Customer # Dimensions Rotations Weight LBS Description

cm kg kg/cm2

- - 720× 250× 280 - 9500* - The truck
1 (Dark blue) 3 240× 90× 58 0× 0× 1 777 0.1 Gypsum boards
1 1 360× 90× 16 0× 1× 1 193 0.02 Gypsum bars
1 4 100× 60× 53 1× 1× 1 3 0.0002 Rockwool
2 (Light blue) 2 100× 100× 113 0× 0× 1 900 0.1 Founda. blocks
3 (Turquoise) 1 120× 80× 70 0× 0× 1 250 -1 Tiles
4 (Green) 1 420× 95× 83 0× 0× 1 1500 0.1 Tree poles
4 1 450× 112× 65 0× 0× 1 1500 0.1 Tree poles
4 1 500× 85× 35 0× 1× 1 100 0.1 Wood boards
4 1 38× 31× 29 1× 1× 1 5 -1 Cardboard box
5 (Yellow) 1 228× 60× 16 0× 1× 1 40 0.03 Flooring
6 (Orange) 3 200× 120× 265 0× 0× 1 75 -1 Rockwool

* The capacity of the truck

The results on the original problems show, that the algorithm is able to solve
the problems corresponding to the loads actually driven by a builders merchant
within a very short time. This shows that the model is �exible enough to allow
realistic loads to be packed. Looking on the results obtained from the generated
problems, it is seen that a larger amount of the container is utilised. This is
a natural consequence of the characteristics of the problems, where a larger
box/container volume ratio is present. However, in only one of the generated
problems all boxes are placed.

The results show, that even for the problems with only around 30% box/-
container volume ratio, all boxes cannot be placed. This shows that for problems
of this type, with many highly odd sized boxes, with very di�erent characteris-
tics, both concerning load bearing strength and customer numbers, the volume
ratio alone is not a very good indication of how hard a problem is to solve.

In Figure 4 the best found solution to problem 9 is shown. The problem
has 4 customers and a total of 25 boxes. The volume utilisation is 34%. In the
solution, a 5,4 metre long box with wood has not been packed. It is easy to see
that the remaining box, almost going from one end of the truck to the other, is
hard to place without neglecting the sequence constraint.

5 Conclusion

When solving real world problems like the ones encountered by builders mer-
chants who distribute construction products to construction sites, the need to
incorporate both load bearing strength and multi-drop constraints to the or-
dinary CLPs are essential. Without these considerations products may get
damaged during transport and inappropriate routes are driven when reallocat-
ing the products are not possible. A tree search with a dynamic breadth is
proposed to solve the problems which are very di�erent in characteristics. The
dynamic breadth turnes out to be a valuable improvement to the tree search,
as it makes sure that the available time is used most pro�table. The results
are very promising as optimal solutions to real world problems are obtained in

REFERENCES 16

Figure 4: The best found solution to problem 9.

fractions of a second. Results obtained on benchmark problems indicate that
the algorithm performs comparable with other more specialised methods.

References

E.E. Bischo�. Three-dimensional packing of items with limited load bearing
strength. European Journal of Operations Research, 168:952�966, 2004.

E.E. Bischo� and M.S.W. Ratcli�. Issues in the delevopment of container load-
ing problem. Omega, 23:277�390, 1995.

A. Bortfeldt and H. Gehring. A hybrid genetic algorithm for the container
loading problem. European Journal of Operations Research, 131:143�161,
2001.

A. Bortfeldt, H. Gehring, and D. Mack. A parallel tabu search algorithm for
solving the container loading problem. Parallel Computing, 29:641�662, 2003.

C.S. Chen, S.M. Lee, and Q.S. Shen. An analytical model for the container
loading problem. European Journal of Operations Research, 80:68�76, 1993.

S. G. Christensen and D. M. Rousøe. Container loading with multi-drop con-
straints. Master's thesis, Informatics and Mathematical Modelling, Technical
University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-
2800 Kgs. Lyngby, 2007. http://www2.imm.dtu.dk/pubdb/p.php?5225.

A.P. Davies and E.E. Bischo�. Weight distribution considerations in container
loading. European Journal of Operations Research, 114:509�527, 1999.

K. Doerner, G. Fuellerer, M. Gronalt, R. Hartl, and M. Iori. Metaheuristics for
the vehicle routing problem with loading constraints. Networks, 49:294�307,
2007.

REFERENCES 17

H. Dyckho�. A typology of cutting and packing problems. European Journal of
Operations Research, 44:145�159, 1990.

M. Eley. Solving container loading problems by block arrangement. European
Journal of Operations Research, 141:393�409, 2002.

H. Gehring and A. Bortfeldt. A genetic algorithm for solving the container
loading problem. International Transactions in Operations Research, 4:401�
418, 1997.

M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search algorithm for
a routing and container loading problem. Transportation Science, 40:342�350,
2006a.

M. Gendreau, M. Iori, G. Laporte, and S. Martello. A tabu search heuris-
tic for the vehicle routing problem with two-dimensional loading constraints.
Networks, to appear, 2006b.

J.A. George and D.F. Robinson. A heuristic for packing boxes into a container.
Computers and Operations Research, 7:147�156, 1980.

P.C. Gilmore and R.K. Gomory. Multistage cutting stock problems of two and
more dimensions. Operations Research, 13:94�120, 1965.

J.C. Herz. Recursive computational procedure for twodimensional stock cutting.
IBM Journal of Research and Development, 16:462�469, 1972.

M. Iori, J.J. Salazar Gonzalez, and D. Vigo. An exact approach for the vehicle
routing problem with two dimensional loading constraints. Transportation
Science, 41:253�264, 2007.

A. Lim and X. Zhang. The container loading problem. In ACM Symposium on
Applied Computing, 2005.

D. Mack, A. Bortfeldt, and H. Gehring. A parallel hybrid local search algorihtm
for the container loading problem. International Transactions in Operations
Research, 11:511�533, 2004.

S. Martello, D. Pisinger, and D. Vigo. The three-dimensional bin packing prob-
lem. Operations Research, 48:256�267, 2000.

R. Morabito and M. Arenales. An AND/OR-graph approach to the container
loading problem. International Transactions in Operations Research, 1:59�73,
1994.

A. Moura and J.O. Oliviera. A GRASP approach to the container-loading
problem. Transportation and Logistics, pages 50�57, 2005.

B.K.A. Ngoi, M.L. Tay, and E.S. Chua. Applying spatial representation tech-
niques to the container packing problem. International Journal of Production
Research, 32:111�123, 1994.

D. Pisinger. Heuristics for the container loading problem. European Journal of
Operations Research, 141:382�392, 2002.

REFERENCES 18

M.S.W. Ratcli� and E.E. Bischo�. Allowing for weight considerations in con-
tainer loading. OR Spektrum, 20:65�71, 1998.

G. Scheithauer. LP-based bounds for the container and multi-container loading
problem. International Transactions in Operations Research, 6:199�213, 1998.

G. Wäscher, H. Hauÿner, and H. Schumann. An improved typology of cutting
and packing problems. European Journal of Operations Research, to appear,
2006.

	1 Introduction
	2 Mathematical model
	2.1 Updating the empty spaces
	2.2 A valid box placement

	3 Tree search
	3.1 The greedy algorithm
	3.2 Dynamic breadth

	4 Numerical experiments
	4.1 OR-Library problems
	4.2 Distribution of construction products

	5 Conclusion

