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Summary 

This project examines the possibility to assess a number of quality parameters of the frying 
process for meat using multi-spectral vision technology. The project examines the possibility of 
creating measures for the frying-treatment of minced beef and diced turkey, and the 
agglutination of minced beef.  

 

Frying-Treatment Assessment 

It is extremely important to provide adequately processed minced beef and diced turkey to the 
end customer, among others since under processed meat comes with several health risks. 
Furthermore it is important to be able to assess the frying-treatment not only as raw and fried, 
but also based on the quality of the fried meat. E.g. it is important for turkey diced to have an 
attractive fried surface, but also still to have a juicy kernel.  

This project proposes a method for assessment of frying-treatment of the meat contained in an 
multi-spectral image, based on conventional image analysis and multivariate statistics. This 
method provides a measure, not only concerning raw or fried meat, but just as well the quality 
of the fried meat as evaluated by experts. Furthermore the thesis proposes a visualization 
method, which transforms a multi-spectral image to a RGB image, clearly showing the frying 
degree of each meat piece / granule contained in the image.  
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Agglutination of minced beef 

When frying minced beef using the continuous wok, a specially developed method is used to 
prevent agglutination. This method requires the meat to be frozen, when entered into the wok; 
if the meat fails to meet this requirement agglutination occurs. Agglutination in fried minced 
meat is unwanted as high quality minced beef should contain somewhat homogenous sized 
granules and no large meat lumps. Apart from the visual effects the large lumps can also lead 
to them being under processed, which obviously is unwanted.  

Using the images from each spectral band, a method is proposed creating a number of 
measures of agglutination from each image. These measures include mean meat granule size, 
maximum granule size encountered and number of meat granules per cm2. All of these 
measures have been examined and compared to the physical measure of strainer loss, from 
which it can be concluded that these can be used as measures of agglutination.  

 

Generally measures are proposed for all quality parameters examined. The proposed methods 
are not ready for production, as each method should be re-designed for the specific 
application, but they surely create a basis for future work. I believe this is a step towards the 
automated frying-process, eliminating the need for constant monitoring by an experienced 
process operator.  



 
   

Résumé 

Dette projekt undersøger muligheden for at fastsætte en række kvalitets parametre for 
stegeprocessor af kød, ved hjælp af multi-spektral billedanalyse. Projektet undersøger 
muligheden for at, opsætte mål for graden af stegningen af hakket oksekød og kalkun i tern, 
samt agglutinationen af hakket oksekød.  

 

Graden af stegning 

For både hakket oksekød og kalkun i tern, er det ekstremt vigtigt at kunden får kød der er 
gennemstegt, bl.a. fordi understegt kød kan medføre risiko for sygdomme etc.. Endvidere er 
det vigtigt at kunne vurdere det stegte kød ikke blot som rå og stegt, men baseret på kødets 
kvalitet. F.eks. er det vigtigt for en kalkun tern, at den har en tiltrækkende stegt overflade men 
stadig har en saftig kerne. 

I dette projekt er foreslået en metode der ved hjælp af konventionelle billedanalyse teknikker 
og multivariant statistik kan give et mål for stegningen af kødet indeholdt i et billede. Denne 
metode kan give et mål, der adskiller kød ikke blot på baggrund af rå eller stegt, men baseret på 
kvaliteten af kødet vurderet af eksperter. Endvidere er der foreslået en visualiserings metode, 
der transformere et multi-spektral billede til et RGB billede, hvor kød stykkerne tydeligt er 
markeret efter hvilken grad af stegning der er opnået.  
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Agglutinationen af hakket oksekød 

Ved stegning af hakket oksekød i den kontinuerte wok bruges en speciel udviklet metode, der 
forebygger agglutination af kødet. Denne metode kræver at kødet er frossent når det indføres i 
wokken, hvis dette ikke er tilfældet opleves der agglutination af kødet. Agglutination af kødet 
er uønsket da godt stegt hakket oksekød, bør have en nogenlunde homogen sammensætning af 
størrelsen af kød granuler og ikke indeholde store klumper af kød. Udover den visuelle effekt 
kan store klumper også medføre at de ikke bliver gennemstegt, hvilket selvfølgelig er uønsket. 

Ved hjælp af billederne af de forskellige spektrale bånd, er der foreslået en metode til at 
udtrække en række mål for agglutination fra hvert billede. Disse mål inkludere den 
gennemsnitlige størrelse af kød granulerne i billedet, størrelsen af den største granule fundet 
samt kød stykker pr. cm2. Alle disse mål er blevet undersøgt nærmere, og det kan konkluderes 
at disse kan bruges som mål for agglutinationen.  

 

Generelt set er der foreslået metoder til at estimere alle kvalitets parametre undersøgt. De 
foreslået metoder er ikke klar til produktion, da alle metoder bør tilpasses den specifikke 
applikation de er tiltænkt. Dog er det et skridt på vejen mod en automatiseret stegeproces, 
uden behov for konstant overvågning af en erfaren procesoperatør.  
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Chapter 1 Prologue 

This thesis concerns multi-spectral image analysis of frying processes in meat products. The 
main focus of the thesis is to assess various quality parameters for the meat frying process, 
using multi-spectral vision technology. The estimation of the quality parameters is thought to 
replace or be a supplement to the experienced process operators.  

The analysis presented throughout this thesis is based on multi-spectral images of food 
products, processed with state-of-the-art reproducible frying methods, developed at the centre 
for Food Production Engineering at BioCentrum. The images are acquired using the 
VideometerLab 2 multi-spectral camera, recording images in bands from 405[nm] to 970[nm], 
thereby covering the ultra blue, the visible and the near-infrared (NIR) bands.   

The use of multi-spectral imaging for quality assessment of food product has been proven 
possible in various different contexts. In [8] multi-spectral imaging is used for determination of 
oxidation in minced turkey patties, in [9] multi-spectral imaging is used for meat color 
evaluation of salami, water barrier estimations for biscuits and water contents estimation in 
bread and in [12] multi-spectral imaging is used for detection of oxidation in cheese.  
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1.1 Motivation 

This section provides an overview of the products examined and the motivation for examining 
these products.  

 

Minced beef 

BioCentrum at DTU has developed a patented, state-of-the-art method for industry scale 
frying of minced meat. In connection with developing this method, and the continuous wok, 
BioCentrum wants to explore possibility of monitoring certain properties using vision 
technology, minimizing the use of experienced process operators to continuously monitor the 
process. Furthermore vision technology has obvious advantages over conventional chemical or 
visual inspection methods. Vision technology provides a non-destructive and reproducible way 
of continuously examining a product; this compared to a conventional sample method saves 
both time and money and increases the quality of end product.  

The basic idea is for the vision technology to be able to replace or be a supplement to an 
experienced process operator. The properties examined for minced beef are the degree of 
frying treatment and the agglutination of meat. 

 

Diced turkey meat 

The continuous wok, developed at BioCentrum DTU, also enables high quality frying of 
turkey meat in a sliced or diced form, as known from various oriental stir-fried dishes. In this 
context BioCentrum wants to explore the possibility of monitoring a continuous production of 
diced turkey using vision technology.  

The process parameter to examine for turkey meat is the frying treatment. Compared to 
minced beef, the diced turkey meat however has some different properties and requirements. 
As the turkey meat is in dices and not minced, the meat might be at different frying stages 
down the meat lump, meaning the internal kernel might be under-processed at same time as 
the external layers are adequately processed. To examine this the diced turkey forms the basis 
for two types of examination, namely frying treatment assessment of diced turkey based on 
images of the surface, and frying treatment assessment based on sliced diced turkey, meaning 
the dices have been physically preprocessed before imaging, by slicing them into two pieces. 
This will enable us to examine, if the images of the surface are able to assess the frying 
treatment as well as by using images of the interior, thereby enabling a continuous monitoring 
without any physical interaction.  



 
16  Prologue
 

1.2 Overview - a Readers Guide 

The readers guide will provide an overview of the document structure. Here the various parts 
of the document are described, thus giving the reader a quick introduction to the various parts 
and providing a tool for effective reading the document. 

I - Domain Description 

The domain description is setting the scene for the project. It includes a description of all 
involved actors in this project, their goals, interest and involvement with respect to the project. 
Furthermore it describes the equipment and tools used throughout the project, to obtain and 
analyze the multi-spectral images.  

II - Theory 

The theory part will populate the scene set; describing the relevant theory used in the analysis 
of the multi-spectral images and introduces the relevant chemistry of meat in order to create a 
foundation for analyzing and interpreting the results of the multi-spectral analysis. 

As the intended audience of this thesis text has different backgrounds ranging from 
biotechnologists to vision experts, the theory part tries to cover the areas from the basics and 
up. This means vision experts are able to skip to chapters explaining the basics in image 
analysis without loosing continuity, whereas biotechnologists might gain insight from reading 
those.  

III - Data Analysis 

The data analysis part of the report performs the act using the scene populated by the theory. 
This part includes five chapters, the first four each describing one of the analyses performed in 
the thesis project, and the last examining the possibility to optimize the analyses by reducing 
the input data needed.  

The first four chapters can be read in random order, but it is advised to read them in 
chronological order to get continuity. The first four must be read before reading the last 
chapter in order to fully understand the methods and purpose.  

IV - Epilogue 

The epilogue evaluates the act; it contains the final conclusion and discussion of the results 
grained throughout the thesis project. Furthermore it contains a section where the project is 
put into perspective, commenting on the results gained and suggesting areas for further work.  

Lastly the epilogue contains reference to the literature used for the project, and a table of 
figures included in the thesis text.  



 

I 
Domain Descript ion 
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Chapter 2 Terminology Listing 

This chapter includes a list of the terminologies and abbreviations used throughout the thesis 
text. The table is included to increase similarity and consistency throughout the different 
chapters.  
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2.1 Abbreviations 

The abbreviations used throughout thesis text are given below in lexicographical order.  

ANOVA ANalysis Of VAriance 

CDA Canonical Discriminant Analysis 

CDF Canonical Discriminant Function 

CV Cross Validation 

DTU Technical university of Denmark. 

ECTS European Credit Transfer System 

FPE The Food Production Engineering Centre at BioCentrum 

FTS Frying Treatment Score 

HIPS Hyper-spectral Image Processing System 

IACG The Image Analysis and Computer Graphics group at IMM 

IMM 
Department of informatics and mathematic modeling, at the technical 
university of Denmark 

LOO Leave One Out Cross Validation 

LSE Least Squares Estimator  

MB Mega-Byte 

MSE Mean Squared Error 

MSI Multi-spectral imaging 

NIR Near-Infrared Reflectance 

OLS Ordinary Least Squares 

PC Principal Component 

PCA Principal Component Analysis 

RGB Red Green Blue 

RMSE Root Mean Squared Error 

ROI Region-Of-Interest 

SS Sum of Squares 



 
20  Involved Actors
 

Chapter 3 Involved Actors 

This chapter briefly describes the institutes and centers at DTU which have been involved in 
this thesis project. Their contribution to the project is lined up as well as the goals of their 
involvement.  



 
3.2 Institute of Informatics and Mathematical Modeling  21

 

3.1 BioCentrum 

BioCentrum, the largest institute at DTU, provides research and education in area of 
sustainable, environmentally friendly and competitive processes for the biotechnical industry 
and the food production industry.  

This thesis was done in cooperation with the research centre of Food Production Engineering 
(FPE) at BioCentrum. The FPE’s main research interest areas are heat treatment processes and 
their effect on food quality. The FPE is contributing to this project by providing access and 
guidance to the continuous wok, and providing expert knowledge in food processing and food 
quality parameters. FPE is supporting this project, to gain increased knowledge of the 
possibilities of using vision technology for continuously monitoring of frying processes.  

3.2 Institute of Informatics and Mathematical Modeling 

The institute of informatics and mathematic modeling (IMM) at DTU provides research and 
educations in the areas of mathematical modeling and computer science. IMM mainly focus 
their research on specific problems in the production industry and financial world. 

The thesis work was carried out in cooperation with the Image Analysis and Computer Graphics 
(IACG) group at IMM. The IACG group has a wide range of research area from geo-
informatics to medical image analysis. The IACG contributes to this project by providing 
expert knowledge and tools related to multi-spectral image analysis and industrial vision 
control. Furthermore IMM provides office space and technical equipment. IMM is supporting 
this project in order to gain increased knowledge about the application areas of multi-spectral 
vision technology.  
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Chapter 4 Equipment Used 

This chapter will describe the equipment used to carry out the thesis work. This includes 
describing the equipment used for acquiring and analyzing image data, as well as describing the 
relevant equipment used to process the various meat products. 

All equipment for image analysis has been provided by IMM, and all equipment for meat 
processing has been provided by BioCentrum.  
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4.1 VideometerLab 2 

VideometerLab 2 is a combination of a multi-spectral camera for laboratory analysis, and the 
accompanying software for image acquisition and analyses.  

4.1.1 Camera 

The VideometerLab 2 camera was used to acquire all image data used in the thesis. The camera 
is able to measure light intensity of an object in wavelengths spanning from the Ultra-blue to 
the Near-Infrared spectrum (NIR). The complete listings of wavelengths are given in Table 
4.1, for examples of application areas please refer to the full listing in Appendix A. 

Band Wavelength [nm] Color Band Wavelength [nm] Color 
1 430 Ultra Blue 10 700 Red 
2 450 Blue 11 850 NIR 
3 470 Blue 12 870 NIR 
4 505 Green 13 890 NIR 
5 565 Green 14 910 NIR 
6 590 Amber 15 920 NIR 
7 630 Red 16 940 NIR 
8 645 Red 17 950 NIR 
9 660 Red 18 970 NIR 

Table 4.1 - VideometerLab camera 2 - Wavelenght 

To ensure a total diffuse illumination of the object without shading and reflection, the camera 
is equipped with an Ulbricht sphere. The Ulbricht sphere is hollow sphere, internally painted 
with a diffuse reflecting paint, and an opening in the top and underside of the sphere. The top 
hole is used for placing the camera, whereas the bottom hole is used to place the image object. 
The camera with the characteristic Ulbricht sphere is shown in Figure 4.1. 

 
Figure 4.1 - VideometerLab 2 Camera 
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When acquiring an image the sphere is run down encapsulating the object, thereby ensuring no 
false light is illuminating the object. Following diodes of different wavelengths, placed in the 
rim of the sphere, will illuminate the object in turn while the camera is acquiring images.  

As the entire camera setup is quite complex, it requires calibration in order to ensure 
reducibility of the images. The VideometerLab 2 software can be used to calibrate the camera.  

4.1.2 Software 

Accompanying the VideometerLab 2 camera is the VideometerLab software package. This 
software is primarily used for calibrating the camera and acquiring images. However an 
upgrade of the license can be purchased, transforming the software package into a powerful 
image analysis tool.  

The upgraded software package not only includes conventional image analysis tools for 
segmentation and enhancing features in greyscale images. The tool also includes a transformation 
builder, which enables the use of well-known multi-spectral transformations as principal 
component analysis, maximum autocorrelation factor and canonical discriminant analysis. 
Furthermore the software package includes tools to apply segmentation procedures or 
transformations batch wise to a large number of images, reducing the time needed having to 
apply them manually on each image. 

4.1.2.1  Camera calibration 
To ensure the highest possible reproducibility of images, it is important to calibrate the camera 
before acquiring images. The calibration is a crucial part of using the camera since small 
variations in physical conditions, such as temperature, can cause the camera to lose calibration.  

Calibrating the camera uses three different plates fitting into underside opening of the sphere, a 
black, white and patterned plate.  

In addition to the camera calibration, the illumination should also be setup when changing the 
image object. This is needed to prevent saturation of pixels thereby ensuring high quality 
images of any object calibrated with.  

4.2 Matlab 

Along with analyzing the images in the VideometerLab software, Matlab is used for custom 
designed procedures, analyses which are not available in the VideometerLab software and for 
batch processing larger amounts of images. 
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Matlab is short for Matrix Laboratory, and provides an excellent platform for working with 
matrixes. As images and multivariate statistics are easily defined in matrix form, Matlab is the 
obvious choice. Furthermore Matlab provides an image processing toolbox, including a large 
variety of well-known image processing procedures. In addition to the Matlab image 
processing toolbox, Videometer provided a Multi-spectral image processing package, including 
procedures to perform transformations and visualizations.  

One of Matlabs drawbacks is poor memory management. This is especially a problem when 
working with multi-spectral images, as they usually take up more than 80mb per image. The 
memory problems can be overcome by regular reboots.    

4.3 The continuous wok 

Developed at BioCentrum-DTU to enable the scale-up of the stir frying process, the 
continuous wok has shown to be a powerful tool in industry scale food production. One of the 
main advantages of the continuous wok is the large numbers of application areas, such as stir-
frying of numerous types of vegetables and meat products for industry scale production. Other 
advantages of the continuous wok are low fat contents in the end-product, preservation of 
vitamins and abilities to re-heat frozen products on a normal frying pan, while preserving the 
nice properties introduces by the continuous wok process.  

The principle of the continuous wok as shown in Figure 4.2 is a horizontal placed thick-walled 
tube containing a helix with scrapers attached. The scrapers prevent the product being fried 
from sticking to the surface, resulting in increased heat treatment and increasing the risk of 
being burned. The helix is connected to an electric motor with adjustable speed, enabling 
regulation of the frying time. The tube is heated by gas burners placed with regularly spacing 
below the tube, thus ensuring equal temperatures over the entire tube. The gas burners are 
regulated to obtain a constant frying temperature.  

When frying a product, it is being entered into the wok in the inlet funnel, from where it is 
continuously transported to the outlet port by the helix. Beneath the outlet port is a conveyer 
belt from where is can be collected. The wok prototype used in the pilot plant, measures 1.6 
meter in length and 0.2 meter in diameter. 

 
Figure 4.2 - The continuous wok 





 

II 
Theory 
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Chapter 5 Multi‐spectral Imaging 

This chapter contains an introduction to multi-spectral imaging and the basic concepts and 
methods. The chapter will further introduce the notation and notion of images and concepts 
used throughout the thesis text.  

This chapter is intended for persons without specialized knowledge of multi-spectral imaging; 
professionals should however skim the chapter in-order to capture the notation and notion 
used.  
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5.1  Multi-spectral images 

Multi-spectral, or hyper-spectral images, are images acquired in a range of different 
wavelengths. Wavelengths often ranging from the visible to non-visible wavelengths, compared 
to conventional imaging only capturing information in the visible spectrums. The obvious 
advantage of multi-spectral images is the ability to detect properties, which are not usually 
visible for the human eye. Examples of such properties could be water and fat contents, and 
oxidation level. As multi-spectral images are different from conventional RGB images, this 
chapter will introduce the notion and notation used for such images.  

5.1.1 Notation 

A multi-spectral image can be perceived as a 3D matrix, where the two first axes represent the 
well known geometric image axes in an image (row and columns), and the third axis represents 
the number of bands the image consists off. This essentially means having a single grayscale 
image for each band available in the image.  

Let I denote the entire image matrix, r and c  represents the rows and columns in the image 
and b the spectral bands, thus giving a size of the matrix to be r c b× × . A specific item in 
I can then be referred to as , ,r c bi ; this concept is illustrated in Figure 5.1. 

 
Figure 5.1 - Matrix storage concept 

5.1.2 Transforming for statistics 

Having defined the image matrix, it comes clear it cannot be directly applied to conventional 
multivariate statistics, since conventional multivariate statistics requires the data to be 
transformed into a two dimensional matrix.  

This is since a statistical variables are usually not presented in a two dimensional space, but 
rather as a vector of observations of a variable. For multi-spectral images each band is thought 
as a variable, making the transformation of the entire image matrix into a two dimensional 
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matrix straightforward. This is done by simply combining the rows and columns keeping the 
division into spectral bands (variables). Thus giving a resulting matrix with the dimensions 
r c× and b . 

Obviously this transformation removes the spatial information from the bands, making the 
analysis only dependent on spectral variables. If needed it is however straightforward to 
reconstruct the spatial information, as long as one of the geometrical dimensions of the image 
is known. This concept is illustrated in Figure 5.2. 

 
Figure 5.2 - 2D transformation concept 

5.2 Spectrum measurements 

Having a multi-dimensional image with wavelengths associated with each dimension, makes it 
possible to plot a spectrum for interesting parts of image. A spectrum is normally plotted as 
the values of a single pixel, or as the mean values of a region-of-interest. For a region-of-
interest the standard deviation can be plotted as well, thereby given an impression of the 
deviation over the region. In Figure 5.3 is shown an example spectrum of a single meat pixel 
and a region-of-interest (ROI) plotted with the mean value and the standard deviation.  

 
Figure 5.3 - Example spectrum plot 
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5.3 False color composition 

The nature of a multi-spectral image makes it difficult to interpret by the human eye, if it 
where to perceive all available wavelengths at once. Instead false color composition can be 
used to display features otherwise not-visible for the human eye.  

The basic idea in false color composition is to extract specific bands or results from an analysis 
and assign a color to each band or feature extracted, thus giving an RGB image illustrating the 
results, such that it is easier for the human eye to perceive the features not normally visible.  

In Figure 5.4 a combination of regular RGB and false color composition is used to illustrate 
the frying degree of sliced diced turkey squares. The blue areas represent under processed meat 
and the red areas over processed meat, from the image it is clear that these samples contains an 
under-processed kernel, but has a somewhat adequately processed external layer.  

 
Figure 5.4 - False color composition for identifying frying treatment 

Using false color composition often comes with the problem of having different intensities in 
each band resulting in one band dominating the others. This problem can be overcome by 
scaling each band thereby getting a somewhat equal contributing from each band/analysis 
result.  
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Chapter 6 Digital Image Analysis 

This chapter will introduce some basic image analysis tools and methods used throughout the 
thesis. This chapter is included for readers without prior knowledge of digital image analysis; it 
can be skipped for readers with basic knowledge of digital image analysis without loosing 
continuity.  

These methods presented are general image analysis methods for 2 dimensional images, but are 
easily performed on 3 dimensional multi-spectral images by simply applying them to either one 
spectral band at a time or applying them on selected spectral bands.  
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6.1 Enhancement filters 

This section will describe enhancement filters as they are presented in [13]. The section starts 
by introducing the basics in filters, from where it moves on to describe a number of relevant 
and commonly used filters. The section focuses on enhancement filters, which, as the name 
implies, are used to enhance features in an image in order to clarify these for human or 
machine interpretation. 

6.1.1  Filter basics 

A digital filter for image processing can be described as a linear system S . S  is considered a 
black box, which when applied with an input ( )f x produces an output that is described 
as ( ) ( ( ))g x S f x= . For simplicity the image is, for now, represented in one dimension, thus 
giving: 

( ) ( )f x S g x→ →  (6.1) 

From this definition as a linear system, certain properties are inherited namely that it is linear 
and shift invariant. Having the linear system the description of the output can be expanded 
using the following integral: 

( ) ( ) ( )g x f t h x t dt= −∫  (6.2) 

This integral is called the convolution integral and can be expressed as g f h= ∗ . For the 
digital form we are dealing with, it is described as a summarization instead of an integral.  

( ) ( ) ( )
k

g i f k h i k
∞+

=∞−

= −∑  (6.3) 

For 6.2 and 6.3 the function h  is called the impulse response. Although the borders of the 
function h are defined to be infinite, it usually is set to zero outside a defined range. Having 
this in mind, and expanding h to be two-dimensional (as an image), the equation can now be 
expanded to:  

( ), ( , ) ( , )
j vi w

k i w l j v
g i j f k l h i k j l

++

= − = −

= − −∑ ∑  (6.4) 

From the equation it can now be derived that the value of ( , )g i j becomes a weighted sum of 
the pixels surrounding within a certain distance. The weight of each pixel is defined by h , 
which also can be referred to as the filter weights, filter mask or filter kernel. The size and 
weights of h varies from filter application to filter application. Figure 6.1 is illustrating an 
example of equation 6.4 in use. 
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Figure 6.1 - Basic filter operation 

Using this basic notion of a filter, it can be further expanded for filters in image processing. 
Since images are not blocked by physical properties, h can be defined arbitrarily and even 
changed over the image, thus resulting in a large flexibility and a large amount of useful filters.   

6.1.2 Example filters  

This section will describe a number of typical filters, along with their typical kernels, used in 
digital image processing.  

Mean filter 

The mean filter is a 
simple filter calculating 
the mean over a selected 
area. The size of the filter 
can be chosen to fit the 
application.  

Square shaped 

1 1 1
9 9 9

1 1 1
9 9 9

1 1 1
9 9 9

 

Plus shaped 

1
5

1 1 1
5 5 5

1
5

 

 

Weighted Mean filter 

A weighted mean filter is 
a mean filter with varying 
weights often related to 
the distance from the 
center pixel.  

 

Square shaped 

1 1 1
16 8 16

1 1 1
8 4 8

1 1 1
16 8 16

 

Plus shaped 

1
6

1 1 1
6 3 6

1
6

 

 
 

Mode filter 

The mode filter replaces the pixel by its most common neighbor. This can be useful for 
classification purposed, where a mean filter doesn’t make sense. E.g. the average of two 
pixels of the class poultry meat and four pixels of the class beef would not make sense, but 
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classifying it as beef most likely would. 

Median filter 

The median filter replaces the pixel by the median of the neighborhood pixels. The size can 
be defined as it is found suitable. It should be noted that unlike most of the other filters this 
needs a sorting mechanism in implementation and can therefore prove to be slow with large 
kernel sizes and large images.  

K nearest neighbor filter 

The nearest neighbor filter replaces the pixel with the average of the k pixels, which values 
are closest to the pixel in question. E.g. having a 3 3× filter with 6 nearest neighbors, means 
taking the average of the 6 pixels which value are closest to the pixel in question, discarding 
the remaining three pixel values.  

6.2 Mathematical morphology 

Morphology is said to be the study of forms and structure; mathematical morphology is an approach 
for the study of spatial forms and structures in digital images. This section focused on 
mathematical morphology of binary images, and from there moves the presented methods into 
the gray scale domain.  

6.2.1 Binary morphology 

As claimed in [13], an image can be considered a set S having the objects of the image as the 
subset X S⊂ . Using the set definition, it enables the use of set concepts and modifiers such 
as union, intersection, translation etc. and enables us to identify the properties of 
transformations such as anti-extensive, increasing, idem-potency and homo-topic. This section 
will not focus on the mathematical theory, since this is out of the thesis texts scope. Instead it 
will introduce the most common operations and concepts, starting with the simple translation. 
The translation is introduced since this forms a basis for understanding the other concepts 
introduces. Translating the set X with a vector h can be defined as: 

{ }:hX z S x X z x h= ∈ ∃ ∈ = +  (6.5) 

As it is observed the translation simply move the objects in an image based on the translation 
vector h .  

In order to define further operations the structuring element ( B ) is introduced, for the translation 
in equation 6.5, the structuring element can be said to be translation vector. However normally 
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the structuring element is a set of points centered on an origin. The use and importance of the 
structuring element will become apparent when introducing the common operators, but 
generally it is said that the structuring element is to morphology what the filter kernel is to filtering.  

6.2.1.1 Dilation 
One of the basic operators in morphology is dilation. Dilation of the set of objects X  with the 
structuring element B is defined as:  

b
b B

X B X
∈

⊕ =∪  (6.6) 

Meaning dilation enlarges the image X  depended on the structuring element in use. An 
example is given below. 

 
Figure 6.2 - Dilation example 

6.2.1.2 Erosion 
Intuitively introduction of the dilation, motivates the introduction of an opposite operation, 
namely the erosion. Erosion of a set X  with the structuring element B is defined as:  

b
b B

X B X −
∈

Θ =∩  (6.7) 

Erosion causes the image to shrink depended on the structuring element in use. An example of 
erosion is shown below. 

 

 
Figure 6.3 - Erosion example 

Having defined these two basics operations, they enable the introduction of two other useful 
operations opening and closing.  
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6.2.1.3 Opening and Closing 
Opening and closing are defined using the basic operators of erosion and dilation introduced in 
the prior section.  

Opening is defined as: 

( )BX B X X B B= = Θ ⊕D  (6.8) 

First image is eroded with B and the resulting image is then dilated with B. It can be hard to 
envision the outcome from the definition above, but generally opening is said to separate the 
particles in the image. 

An example is given here: 

 
Figure 6.4 - Opening example 

Closing is defined as: 

( )BX B X X B B• = = ⊕ Θ  (6.9) 

First the image is dilated with B, which is followed by erosion with B. Again it can be hard to 
envision the effects of this, it is normally said that closing connects the objects, and fills holes. 

An example is given here: 

 
Figure 6.5 - Closing example 

6.2.1.4 Reconstruction 
The reconstruction transformation is quite different from others introduced, in the sense it 
does not directly use a structuring element. Reconstruction instead uses two images of the 
same size (a marker ( )J and a mask ( )I ) to generate the resulting image.  
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The resulting image consists of the connected components in the mask, which is marked in 
marker image. A component is said to be marked if one of the pixels in the component is 
marked with a 1 in the marker.   

The reconstruction transformation is defined in [14] as “the union of components in I which contain 
at least one pixel in J ”. 

( )
k

I k
J I

J Iρ
∩ =∅

= ∪  (6.10) 

An example is given here: 

a) b) c)

 
Figure 6.6 – (a) The mask, (b) The marker, (c) Result of reconstruction 

6.2.2 Grayscale morphology 

Moving binary morphology into the grayscale domain proves to create useful tools, not only 
for the already defined binary operators, but also opens for new operations that prove to be 
powerful when analyzing the profile of grayscale image.  

6.2.2.1 Dilation and Erosion 
To move the first four of the introduced operations into the grayscale domain, is simply a 
matter of defining dilation and erosion. Before being able to do this, a definition of the 
grayscale structural element is needed.  

One of the approached is to simply keep the structural element in a binary form, or as it is also 
called having a flat structural element. This makes the transition into grayscale straight forward, 
since the OR operation will be equivalent to maximum and AND will be equivalent to 
minimum. Thus leading to the following definition of dilation 

[ ]
[ ] [ ]( )

,
max , ,
i j B

X B x m i n j b i j
∈

⊕ = − − +  (6.11) 

And the following for erosion: 

[ ]
[ ] [ ]( )

,
min , ,
i j B

X B x m i n j b i j
∈

Θ = − − −  (6.12) 
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It should be noted here that erosion and dilation on grayscale images, visually will have the 
opposite effect than on binary images. This is since 1 in a binary image means black and 0 
means white, which is opposite to grayscale images. In grayscale images large values means 
white and small values indicate black. Below is included an example of applying erosion and 
dilation to a grayscale image.  

a) b) c) d)

Figure 6.7 - (a) Original image, (b) Structural element, (c) Dilated image, (d) Eroded image 

The example images clearly show a brighter image after dilation and a darker after erosion, this 
is especially apparent around the eye. Moving opening and closing into the grayscale from here 
is straightforward and will therefore not be examined further.   

6.2.2.2 Reconstruction 
Recalling the reconstruction transformation it was said to “extract the connected components in the 
mask, which were marked in the marker”. This raises some questions when moving into a grayscale 
domain, when is components connected in a grayscale image? One obvious approach could be 
to state that if the pixel values are higher than a certain value k , the components are 
connected. This motivates the definition of a threshold function. The threshold function kT  for 
an image I is defined as: 

{ }( ) ( )k IT I p D I p k= ∈ ≥  (6.13) 

Moving reconstruction into the grayscale domain can be done thereby be done, by saying it is 
to extract the peaks from the mask which are marked in the marker. 

Using this it is now possible to define grayscale reconstruction for a mask I and a marker 
J both defined in the discrete set { }0,1,....( 1)D N= − such that J I≤ , meaning each pixel 

in the marker must not exceed the corresponding pixel value of the mask. The reconstruction 
transformation ( )I Jρ can then be defined as: ([14]) 

Ip D∀ ∈      [ ] ( )
( )

( )( ) max{ 0, 1 ( ) }
K II T kJ p k N p T Jρ ρ= ∈ − ∈  (6.14) 

The principle is illustrated in Figure 6.8. 
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Figure 6.8 – Reconstruction of the mask f from the marker g (Figure from [14]) 

6.2.2.3 H-Domes 
As mentioned in the introduction text of the section, greyscale morphology turns out to be a 
powerful tool for examining the profile of the image; this is due to the nature of the greyscale 
reconstruction transformation introduced. It turns out that using reconstruction it is possible 
to easily find the maximal structures or regional maximums in the images using a method 
called H-Domes. 

The H-Domes transformation creates the marker to use in reconstruction, directly from the 
mask and a value h  by simply subtracting this value from the mask. Having created the marker 
h-domes performs a reconstruction using the marker, and creates the resulting h-domes image 
by subtracting the reconstructed image from the original image leaving only the regional 
maximums in the image. This concept is illustrated in Figure 6.9.  

 
Figure 6.9 - H-Domes concept (From [14]) 

Formalising the concept gives the following definition.  

     ( ) ( )h ID I I I hρ= − −  (6.15) 

It becomes obvious from Figure 6.9, that it is extremely important to select an appropriate 
h value, in order to get a useful result.  
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Chapter 7 Multivariate Statistics  

This chapter introduces the multivariate statistical tools used through out the thesis. For each 
tool the mathematical background is reviewed and its application in multi-spectral image 
analysis is discussed.  

This chapter can be skipped by experts in multivariate statistics, and their application for multi-
spectral images. It is however advised to at least skim the chapter in order to capture the 
notation and notions used.  
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7.1 Principal Component Analysis 

One of the main challenges when examining multi-spectral images is the massive amount of 
data contained in the images. Most of the uninteresting data can be removed using clever pre-
processing techniques, but these still leaves multiple dimensions of interesting data to be 
examined. To assist in this examination the Principal Component Analysis (PCA) proves to be 
a very useful tool.  

PCA is essentially a method for re-expressing the multivariate data in a number of principal 
components, reorienting the data such that the first principal components (PC’s) account for 
the larger part of the variation present in the data. Or put in another way, the PCA creates a 
number of new variables, each a linear combination of the original variables, such that each 
new variable accounts for the largest part of the variation possible. The remainder of this 
section lines up the mathematics behind the PCA, provides a small example and discusses how 
it can be applied to multi-spectral images.   

7.1.1 Mathematics 

The goal of PCA is to find a projection u  of the standardized multivariate input 
data 1 2 pX = [x ,x ,...,x ]  (normalized to zero mean and unit variance), such that the resulting 

data z  covers the maximum variance possible.  

To maximize the variance, let’s examine how the variance of z can be described: 

1var( )
( 1)n

=
−

z u'X'Xu  (7.1) 

We notice that since the input is standardized, 1/( 1)n − X'X is the sample correlation matrix 
or the covariance matrix. This is denoted R , and can be substituted giving:  

var( ) =z u'Ru  (7.2) 
From this definition it is clear that u can be chosen to be arbitrary large, and thereby drive the 
variance towards infinity if there are no further constrains imposed. To prevent this, we require 
for u to be a unit vector such that 1=u'u , leaving the problem of maximizing equation 7.2, 
such that 1=u'u  is fulfilled. This problem is solved by forming the Lagrangian, and settings 
its first derivative to zero, this yields the following conditions to be met.  

=Ru λu      or     0=(R - λI)u  (7.3) 
Thus leaving an eigenvector problem, where u is the eigenvector and λ is the eigenvalue. The 
solution to this problem yields p eigenvectors and eigenvalues. Solving the eigenvector 
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problem will not be described further, as is rarely done by hand but often left up to one of the 
numerous computer programs created for the purpose.  

Having solved the eigenvector problem, the eigenvectors 1 2 pU = [u ,u ,...u ] can now be used, 

by multiplying them with the input values 1 2 pX = [x ,x ,...,x ] , to obtain the resulting principal 

components scores 1 2 pZ = [z ,z , ...,z ] . A discussion of how many of the eigenvectors to 

include is given in section 7.1.2, before moving to this lets examine the eigenvalues found.  

The eigenvalues obtained through the analysis, can be used to determine the amount of 
variance each projection includes. This can be proved since knowing λ=Ru u  and 1=u'u , 
the following substitution can be done: 

var( ) λ λ λ= = = =z u'Ru u' u u'u  (7.4) 

Showing that the eigenvalues expresses the amount of variance accounted for by the associated 
principal component. 

7.1.2 Determining the appropriate dimension reduction 

As one of the main purposes of the analysis is to reduce the dimensions of data, the next 
obvious step is to determine how many components should be retained. For this purpose a 
number of rules of thump exist, some of which are explained below.  

7.1.2.1 Kaiser’s rule 
The commonsense of choosing which principal component to retain, would be to keep the 
components which represents at least as much variance as any of the original variables. In the 
case of standardized variance this means keeping the components with an eigenvalue above 1. 
This approach seams somewhat reasonable, but cases exists where the cut-off value might 
need to be changed to a value higher than 1 because it is found that the lower components 
only contains noise. Or the value is set to lower than 1 to retain a certain amount of original 
variance. As with the other rules one should remember these are only guidelines and not the 
ground truth. 

7.1.2.2 Scree plot 
Propose by Cattell (1966), this is a graphical approach to the problem. The idea is to plot the 
eigenvalues of each component, and detect the elbow of the resulting curve, keeping the values 
higher than the detected elbow point. By the elbow Cattell means the point where the lower 
components decrease in a linear fashion. This approach has the apparent disadvantage of being 
quite ambiguous, since the elbow point rarely is clearly identifiable. 
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7.1.2.3 Visual selection for image analysis 
For the application of image analysis, choosing the relevant components can be done by 
simply visually examine the transformed data. By visually examining all the components, it 
becomes very obvious which components contain actual useable data, and which contains only 
noise enabling us to disregard these. As an example all components of PCA transformed image 
is given in Figure 7.1.  

PC1 – 74.67% PC2 – 24.44% 

 

PC3 – 0.38% PC4 – 0.25% 

 
PC5 – 0.09% PC6 – 0.03% 

 

PC7 – 0.02% PC8 – 0.02% 

 
PC9 – 0.01% PC10 – 0.01% 

 

PC11 – 0.01% PC12 – 0.01% 

 
PC13 – 0.01% PC14 – 0.01% 

 

PC15 – 0.01% PC16 – 0.01% 

 
 PC17 – 0.01% 

 

PC18 – 0.01%  

Figure 7.1 - Principal component and accounted variance 

From the visualization of the components, it is clear that all below the third component 
contain a large amount of noise, and it will hardly make sense to include these in any kind of 
analysis. This is also expressed in the amount of variance the lower components account for.  
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Generally the best approach is common sense applied along with one of the rules presented 
above. It is normally easy to make out which components to include when the purpose of the 
data is known. E.g. if the purpose of the analysis is to distinguish between what is meat and 
what is surrounding objects from the image used in Figure 7.1. The best solution would clearly 
be to use the second principal component, since this clearly outlines the meat present in the 
image.  

7.1.3 PCA for multi-spectral image analysis 

Numerous examples shows that PCA is widely used technique in multi-spectral imaging. It is 
used in [9] for separation of meat and fat in salami and in [10] where it is used as a tool for 
classifying species of fungi.  

Even though PCA is a widely used tool in multi-spectral images, it does have some properties 
that one needs to be aware of before applying it blindly. The first important thing to notice is 
that the image data needs to be transformed in order to fit the form required by PCA. PCA 
needs an input matrix as 1 2 pX = [x ,x ,...,x ] , meaning a two-dimensional matrix of variables. 

As an image is normally represented in a three dimensional matrix a transformation is needed, 
this transformation is explained in section 5.1.2. From 5.1.2 it is worth noticing the loss of the 
spatial information. Loosing spatial information is usually not a large problem, since in most 
analysis the spectral information is the interesting part, and since the spatial information can be 
easily recovered.  

Another important property of PCA is that it is a statistical method analysis of 
interdependence. Meaning it will enhance any patterns found in the supplied data, but will not 
necessarily find the pattern one is looking for based on a dependent variable. This calls for 
caution when determining the data to use in a PCA. An example is the transformed image 
from Figure 7.1. The image given to the PCA included both meat and surrounding objects, 
such as the Petri dish and the metal sheeting. It is clear that the results of the analysis, found a 
way of distinguishing between the unwanted object and the meat, but other than that the 
results does not say much about the frying degree of meat or other important meat properties. 
To investigate these it will be an advantage, to supply data only from areas containing meat, 
since it is here it the analysis should search for patterns.  

The last property mentioned motivates the introduction of the next analysis, namely a member 
of the “Analysis of Dependence”-family the Canonical Discriminant Analysis.  

7.2 Canonical Discriminant Analysis 

The Canonical Discriminant Analysis (CDA), is a member of the “Analysis of Dependence”-
family, meaning it is way of finding a pattern in a number of independent variables based on a 
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dependent variable given. The CDA specifically is said to find the largest possible separation of 
the classes given, using the information provided in the independent variables.   

7.2.1 Mathematics 

Using Fishers approach the objective of the analysis is to find the linear combination of the 
given variables, which leaves the highest separation of the given groups. In order to provide a 
measure of the separation a discriminant score is introduced. Meaning the goal of the analysis 
is to obtain a linear combination of the independent variables, giving the maximum different 
discriminant scores for each of the given groups.  

To formalize this let k denote the linear combination, [ , ,..., ]= 1 2 nX x x x denote the input 
variables where each group of values are split into the groups 1, ,...,2 iX X X . The discriminant 
scores are then be given as: 

=t Xk  (7.7) 

To optimize the difference between the groups Fisher proposed, maximizing the ratio of the 
across-groups sum-of-square matrix ( A ) to the within group sum-of-squares matrix ( W ) of 
the discriminant scores t . Resulting in the following problem: 

'Find  to maximize 
'

λ =
k Akk
k Wk

 (7.8) 

Taking the first derivative of Equation 7.8 and solving for k , results in the following 
eigenvector problem: 

λ-1W Ak = k  (7.9) 

Solving the eigenvector problem for a two group problem results in one linear combination 
(eigenvector), for a three group problem two linear combinations are found and so forward. 
Apart from the linear combinations the solutions also contains a number of associated 
eigenvalues, these are an expression of the functions ability to separate the groups. 

7.2.2 CDA for multi-spectral images 

As with the principal components analysis, the canonical discriminant analysis also has some 
issues to consider of when applying it to multi-spectral images. 

The canonical discriminant analysis requires, just as the principal component analysis, the data 
to be transformed into two dimensions. This leads to the same loss of spatial information as 
mentioned for the PCA, and is performed as illustrated in Figure 5.2. 

As CDA is an analysis of dependence, it sets out to find a linear combination which separates 
the classes given. The analysis will always find a combination that separates the classes in some 
way; it is therefore important to examine the solution found in order to verify that the linear 
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combination is reasonable with respect to the expected separation. As with the principal 
component analysis it is important to use common sense, and do a critical evaluation of the 
results found.  

7.3 Regression Analysis 

Often one of the main objectives of multi-variant statistics, and also image analysis, is the 
ability to make predications based on the observations available. Introducing regression 
analysis provides a tool to create a prediction model based on observations.   

To solve the problem of predicting a dependent variable based on a number of independent 
variables, the first step is to setup an appropriate model. In lower dimensional case it is often 
possible to plot the observations available and from the plot determine which model to use, 
this is however not always possible for higher dimensional cases where model validation 
techniques can be used as discussed in section 7.3.2. 

7.3.1 Least Square Regression 

Having determined an appropriate model, the next step is to use the available observations to 
make an estimation of the model parameters based on regression analysis, for this least square 
regression is introduced.  

For simplicity least squares is introduced for a linear model, but can be easily extended with 
more terms. An optimal linear model has the following well-known form:  

0 1y xα α= +  (7.11) 
From this the estimated model can be defined as: 

0 1ŷ a a x= +  (7.12) 
And the error in the predicted value of y  can be described as: 

ˆi i ie y y= −  (7.13) 
Meaning the objective of the regression is to optimize 0a  and 1a  in order to minimize the 
summarized error term for all observations n . Using the measure of error introduced above 
will introduce a large number of suitable lines, since the negative error terms cancel positive 
error terms. To prevent this, the principle of least squares is applied defining the summarized 
error term as a squared error, thus insuring an always possible contribution to the error term: 

( )( )
2

2
0 1

1

n

i i
i

e y a a x
=

= − +∑  (7.14) 
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Having defined the rules for estimating the model, it is now possible to define the goodness of fit 
for a model. Meaning the amount of variance accounted for in the depended variable using 
model of the independent variables. This is defined as: 

( )
( )

2

2
2

ˆ
1 i ii

ii

y y
R

y y

−
= −

−
∑
∑

 (7.15) 

Having laid down the ground rules, we are now able to move on estimating the actual 
parameters. This calculation is eased and enables an expansion of the model with multiple 
independent variables by introducing a matrix notation, giving the new optimal model as: 

Y = Xb   where   

,
1

,

1
,

,

+

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎢ ⎥
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1 x ... x
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y b
1 x ... x

# #
# #

 (7.16) 

Where n is number of observations and p is the number of terms in the model. This leads to 
an estimated model defined as:  

ˆŷ = Xb  (7.17) 
It can then be showed that the most accurate fit can be obtained by estimating the parameters 
by: 

( )ˆ -1b = X'X X'y  (7.18) 

This line is also called the least square estimator (LSE), proving Equation 7.18 will not be included 
in this text since it is not in the scope of this thesis text.  

7.3.2 Cross validation 

Cross validation is a method which can be used to verify if the appropriate model was chosen, 
or to select the appropriate model among a number of models. Choosing a model blindly by 
optimizing for best squared error and increased R2-value introduces the risk of over-fitting the 
model. Having an over-fitted model means it adjusts to the training set values with expense of 
not generalizing.  

To prevent an over-fitted model, cross validation separates the available observations k  into 
n  sets. It then proceeds by, in turn, using one set of testing and the remaining for estimating 
the model parameters until all sets have been used for testing. For each turn the mean squared 
error (MSE) is recorded, this can then be used directly to select the appropriate model. This 
type of cross validation is called n-fold cross validation.  

A special case of cross validation is when k n= ; meaning only one observation is left out for 
testing at each step. This is naturally called Leave-One-Out (LOO) cross validation. LOO is good 
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when having a small dataset, but when having a large datasets a n-fold cross validation is 
preferable.  

7.3.3 Stepwise regression 

Having a depended variable and a number of independent variables, it is often an advantage to 
examine the influence of the independent variable on the model before including it. This can 
be used to examine if the independent variable has a noticeable effect on the depended 
variable, in order to decrease the complexity of a model by not including the least influential 
variables or even to try to estimate the best model allowing only a certain number of the 
independent variables.  

The basics in stepwise regression is to build a model, in steps by examining the available 
independent variables on at a time, including the ones that have the large influence (forward 
regression), and excluding the ones with lowest influence (backward regression).  

A step in the stepwise regression can decomposed into the following tasks: 

• Calculate the b̂ for the variables already in the model 

• For each variable not in model calculate the b� and corresponding F-ratio by:  

ˆ( ) ( )
( ) /( 2)

RSS RSSF
RSS N k

−
=

− −
b b

b

�
� where ( ) ( ) '  ( )RSS =b y - Xb y - Xb  (7.19) 

• Add the variable producing the largest F  

• For each variable included in the model calculate the corresponding F-ratio 

• If the ratio between the largest F-ratio for exclusion and the largest for inclusion is 
more that one, exclude the variable. (The ratio used can be changed to fit the 
application) 

The steps continue until a certain stop condition is encountered such as a maximum subset 
size or an F-ratio resulting in a certain significance level etc.  

7.3.4 Best-sub regression 

The stepwise method for including and excluding variables does not insure that the optimal 
subset of variables is selected. To insure the optimal subset is selected, it is possible to calculate 
the regression statistics for all possible subset, sorting them after the mean squared error.  

This approach will ensure the best subset is selected, but is very time consuming since the 
number of subsets to investigate increases very rapidly. 
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7.4 Analysis of Variance 

A special case of linear regression analysis is the analysis of variance (ANOVA). ANOVA is a 
tool for determining if a certain factor has a significant influence, on a dependent variable of 
an experiment. An example of use is to determine if the temperature in a frying process has a 
significant influence on the water contents in the end product.  

The basic idea behind ANOVA can be formulated as: “We will make an inference about differences 
among group means by comparing different estimates of variance associated with these observations” [6]. 

7.4.1 One factor ANOVA 

As the goal of ANOVA is to determine if a factor/treatment has an influence on a dependent 
variable, the analysis sets out to compare different estimates of variance, using a statistical test 
to determine if there is a significant difference between the estimates, thus yielding an 
influence.  

In order to continue, the notation of the one-factor ANOVA is introduced: 
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(7.20) 

Where n is the number of observations and m is the number of treatment groups. The basic 
model of the one factor ANOVA is given as: 

ij j ijY μ τ ε= + +  (7.21) 
Meaning an observation is made up by the mean value plus a treatment effect ( jτ ) and an 

error term. The analysis is now to test for the existence of the treatment effects, meaning the 
difference in the mean value across treatment groups. In order to do so, a null hypothesis is 
setup, saying all mean values are equal: 

1 2: ... 0o mH τ τ τ= = = =  (7.22) 
To test this hypothesis the ratio between two estimates of the with-in group variance ( 2σ ), the 
across group estimate ( 2

AS ) and the with-in group estimate ( 2
WS ), is used. This ratio is 

distributed as an F-statistic, meaning if the null hypothesis is true the ratio is close to one, 
whereas the ratio will be larger than one if the hypothesis is false. The with-in and across group 
estimates are given as: 

( )2

. ..
2

1

j j
j

A

n Y Y
S

m

−
=

−

∑
 (7.23) 



 
7.4 Analysis of Variance  51

 

( )2

.
2 1 ij j

i
W

j j

Y Y
S

m n

−
=

∑
∑  (7.24) 

The results of the ANOVA are most often presented in a so-called ANOVA table, for the 
one-factor example the tables looks like: 

Source Sum of Squares 
Degrees of 
Freedom 

Mean Square F-Ratio 

Across 2
AS  ( 1)m −  ( )2 1A AMS S m= − A WMS MS  

Within 2
WS  ( )n m−  ( )2

W WMS S n m= −  

Total ( )22
..T ij

i j

S Y Y= −∑∑ ( 1)n −    

Table 7.1 - One factor ANOVA table 

7.4.2 Two factor ANOVA 

Expanding the one-factor model to a two-factor model; means having two different kinds of 
treatments testing each for influence. An example could be testing if time and temperature in 
frying process has an influence on the water content in the final product. In addition to testing 
the two kinds of treatment for influence, one also tests the effects of the so-called interaction 
effect. This is the differences encountered, not accounted for by the main effects of the 
treatments.  

Expanding the notation from Equation 7.20 to the two factor model gives: 
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 (7.25) 

When n is the total number of observations and am is the number of treatment groups of factor 
1 and bm is the number of treatment groups of factor 2. This gives the following model of an 
observation ijkY : 

ijk j k jk ijkY μ α β αβ ε= + + + +  (7.26) 
As for the one-factor model the observation is made up by the mean value ( μ ), the effects of 
the treatments ( , ,j k jkα β αβ ) and an error term. To the test for the effects of the treatment 

three null hypotheses is setup, one for each factor suggesting it is not contributing.  
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As for the one-factor model an ANOVA table is setup, using F-statistics to accept or reject the 
null hypothesis.  

Source Sum of Squares 
Degrees of 
Freedom 

Mean Square F-Ratio 

Across aSS  ( 1)a bm m −  ( )1
a

A
a b

SS
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m m
=

−
 A
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MS
MS
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Within WSS  ( )a bn m m−  ( )
W

W
a b

SS
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n m m
=

−
  

Total TSS  ( 1)n −    
Table 7.2 - Two factor ANOVA table 

Where the sum of squares as given as: 
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Chapter 8 Meat Chemistry 

This chapter will introduce the relevant chemistry needed to perform a qualitative analysis of 
the processed meat. This includes describing what generally happens in stir frying, what makes 
up the color of meat, how and why the color changes over time and due to processing of the 
meat, also including other aspects that are crucial and / or interesting for the later analysis.  

This chapter can be skipped by professionals with expert knowledge in meat chemistry and 
frying processes of meat.  
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8.1 Stir frying 

A hypothesis of the mechanisms in the stir-frying process has been proposed in [2], in which a 
process model is formulated based on observations made during stir-frying. The hypothesis 
suggest that the stir-frying process can be divided into four phases each having their specific 
impact on the product. The process is illustrated on Figure 8.1. 

In the first phase the food product undergoes a rapid heat up, until reaching the temperature 
gradient established in phase 2. [2] Suggest the average temperature in the food product piece 
is about 80oC and around 90oC on the surface, this temperature is held down by the cooling 
resulting from evaporation.  

 
Figure 8.1 - Phases of the stir-frying process [2] 

In phases 3, the evaporation wears off and the food product forms crust, this crust has a large 
influence on the look, taste and feel of the product. It is in this phase the product forms the 
well-known fried taste and look. Over doing the heat treatment results in going into phase 4, 
producing an over processed product. The characteristics of over-processed products are low 
water contents and the well known burned black-brown colour.   

8.2 Meat pigments 

Meat contains a variety of meat pigments each contributing to the look and color of the meat 
product. This section examines some of the basic and important pigments, when it comes to 
color evaluation of meat.  
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One of the basic pigments in meat is the meat fat. The pigments contained in meat fat varies 
considerable in both type and quantities, therefore it is very hard to explain the exact pigments 
in meat fat [11]. It can however generally be concluded that visually the age of the animal has a 
direct effect on the color of the fat, as the animal grows older the fat darkness in color from 
the white cream color, to a more yellowish color.  

A much more interesting pigment in meat with regards to the frying process is the muscle 
pigments. The muscle pigments basically consist of myoglobin and small quantities of 
haemoglobin. These pigments, is of special interest in this context, since this determines the 
color of the meat in different stages, also relating to the frying process.  

Myoglobin consists of the protein globin, enclosing a so-called heme group. The heme group is 
an iron atom with six bounding points, one of these is bound to the protein, and four is bound 
to nitrogen atoms, leaving one open to bind to either water or oxygen.  

 
Figure 8.2 - Heme group 

This open bind is enabling myoglobin to be an oxygen holder / transporting pigment in the 
muscle. The atom bound to the 6th binding is a determining factor of the color of the pigment. 
In addition to the binding, the oxidation state of the iron atom also determines the color of 
myoglobin. In the living state of the tissue, the iron is in a ferrous state (Fe2+) but the oxidation 
state may change to a ferric state (Fe3+) in the dead tissue due to various processing of the 
meat. The last factor determining the color of the pigment is the state of the protein. When 
stress (such as extreme heat) is applied to the protein, the protein gets de-naturated resulting in 
an irreversible change in the molecular structure. These changes in the pigments can be 
summed op in the following table, showing the color in each state. 

Pigment Oxidation step The 6th bind Protein state Color 
Reduced Myoglobin Ferrous (Fe2+) H2O Native Purple 
Oxy-myoglobin Ferrous (Fe2+) O2 Native Red 
Met-myoglobin Ferric (Fe3+) H2O Native Brown 
De-natured globin Ferric (Fe3+) H2O De-Naturated Gray-brown 

Table 8.1- Muscle pigment colors 
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When cocked the myoglobin is changing to one of these states depending on the temperature. 
Rare meat cocked to 60oC keeps the dark read color of oxy-myoglobin, if cocked to over 75oC 
it gets the gray-brown color of the de-natured met-myoglobin.  

As myoglobin, haemoglobin is used as an oxygen carrier in an animal. Where myoglobin is the 
muscle oxygen carrier, haemoglobin is the blood oxygen carrier. Since haemoglobin is mostly 
present in blood, it is clear that muscles contains only small quantities of this compared to 
amount of myoglobin. Having this in mind and since the two pigments are structurally very 
alike haemoglobin will not be discussed further in this chapter.  

8.3 The Millard reaction 

When meat is exposed to temperatures around 150oC further reactions related to browning, 
taste and odor occurs, one of these is the Millard reaction. In the Millard reaction glucose and 
the amino acid glycine reacts forming, the brownish melanoid pigments. These pigments give 
the meat the distinctive look of roasted meat.  

8.4 Fibrous Tissue  

An important part of the meat structure is fibrous tissue. In muscle fibrous tissues forms a 
three-dimensional network, which supports the muscle cells, and therefore is of big importance 
for the fell of the meat. Fibrous tissue mainly consists of the protein collagen. As an animal 
grows older the weak bindings in collagen is replaced with harder bindings thus making the 
meat non-tender.  

When the meat is heated the collage protein, starts to de-naturate at 60oC, thus making the 
meat more non-tender until 80oC. From 80oC the meat will start to get tender due to the break 
of the harder cross-bindings and peptide-bindings. The de-naturation of the collage protein 
furthermore has the property, that it expels water and fat due to contraction. These effects of 
the de-naturation are of special interest for since the water and fat absorbs in the NIR bands 
available.  
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Chapter 9 Assessment of Frying 
Treatment for Minced Beef 

Adequate frying treatment of minced meat is crucial, not only to ensure extermination of 
microorganisms, but also to ensure high quality and well tasting meat. This chapter examines 
the possibilities to assess the frying treatment of minced meat using non-destructive multi-
spectral vision technology.  

The methods and results obtained in this chapter have been presented in the following 
publications: 

A Method for Frying Treatment Assessment of Minced Meat Using Multi-Spectral Imaging. 
The article is to be submitted to the 3rd International Symposium on Recent Advances in Food 
Analysis. 

A Method for Frying Treatment Assessment of Meat Using Multi-Spectral Vision Technology 
The poster was presented on the 2007 Industrial Vision Day, the 23rd of May at the Technical 
University of Denmark.  

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat 
The article is to be submitted to Elsevier’s international journal Food Control.  
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9.1 Sample preparation 

Using the continuous wok and the method developed in [5] for frying of minced meat, a 
number of samples where prepared in accordance with the experiment design included in 
Appendix B.  

Frozen minced meat with a fat percentage of 15-18% purchased from the wholesale supplier 
Inco Denmark Amba. Copenhagen was used. The meat was crushed using a hammer into 
pieces of 150[g]. These pieces where then chopped using a meat chopper (Kilia 57cm 
diameter). 1[kg] of meat was chopped at a time, until it was finely divided into pieces of 
approximately 5[mm]. Exaggeration of the chopping should be avoided due to the forming of 
heat during chopping.  

Figure 9.1 - Meat pieces before and after meat chopper 

After chopping the meat was contained in plastic cups each containing 100[g], and cooled 
down using ice to prevent the meat from thawing until it was to be fried.  

9.1.1 Wok-frying 

The samples where prepared by feeding 800[g] of the still frozen meat to the wok, for each 
sample regulating parameters for time and temperature. The temperature was altered using the 
steps 200oC, 225oC and 250oC, for each temperature step four samples was prepared varying 
the frying time from 120[s] to 240[s] in 40[s] intervals.  

This combination of temperature and time, following [4], results in samples that have 
characteristics of under- and adequate-processed meat. It can be argued that some of the 
samples can have characteristics of over-processed meat. These samples are in this context 
perceived as adequately-processed, since the by far largest part of the meat granules are 
adequate-processed, containing only a few over-processed granules which are easily identified 
by the human eye due the very characteristic black-brown color. It is important to note that the 
under-processed meat does not contain raw-meat, but instead is used as a term for meat with 
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high moisture and fat content, thereby having a lower frying quality. The meat samples are 
divided into processing classes in accordance with Table 9.1.  

Temp / Time 120[s] 160[s] 200[s] 240[s] 
200oC Under Under Under Under 
225 oC Under Adequate Adequate Adequate 
250 oC Adequate Adequate Adequate Adequate 

Table 9.1 - Processing degree of meat samples 

9.1.2 Image acquisition 

For each combination of time and temperature, three sub-samples were taken out for imaging, 
giving triple determination of the results. For each sub-sample a Petri dish was filled and a 
finger was run over removing excess particles, leaving a somewhat homogenous surface for 
image acquisition. The images where acquired using the VideometerLab software, and saved in 
the hips format. For details of storing refer to Appendix B. 

9.2 Chemical experiment 

To examine the water contents of the meat, water determination was performed. Water 
contents are examined since it can be argued, that it to some degree can be used as an indicator 
of the frying treatment.   

The experiments are done by taking 20[g] meat of each sample and making it homogeneous in 
a liquidizer. From the homogeneous 20[g] of meat, three samples of approximately 2[g] are 
taken out and dried at 105oC for 24 hours. The difference between the weights before drying 
and after makes up the water content.  

9.2.1 Results water determination 

The results of the water determination are given in Appendix C and summarized in Table 9.2.  

120 [sec] 160 [sec] 200 [sec] 240 [sec] Water contents
 Mean σ Mean σ Mean σ Mean σ 

200oC 54.3% 0.217 52.7% 0.440 51.5% 0.212 51.2% 0.425 
225oC 53.4% 0.150 54.0% 0.136 52.5% 0.411 51.3% 0.240 
250oC 51.0% 0.185 46.3% 0.206 49.7% 0.273 48.3% 0.226 

Table 9.2 - Water contents - Minced Meat 

Generally the results show a low deviation within the sub-samples. The results further shows, 
as expected, that the under processed meat same to have higher water contents than the 
adequately processed meat.  



 
9.3 Pre‐Processing  61

 

From Table 9.2 it is hard to conclude if both the frying time and temperature, has an effect on 
the water contents of the end product. To examine this further a two-factor ANOVA is 
performed, the results are presented in Table 9.3.  

  Sum of Squares df Mean Square F-Ratio Pr > F 
Across 177.44 11 16.13 135.38 0.0000 
Time 29.42 3 9.81 83.29 0.0000 
Temperature 111.69 2 55.85 468.71 0.0000 
Time x Temperature 36.33 6 6.05 50.81 0.0000 
Within 2.86 24 0.12   
Total 181.59 35    

Table 9.3 - ANOVA table water content - Minced Meat 

The ANOVA clearly shows that both the frying time and temperature, has a large influence on 
the water contents of the end product, furthermore it shows that the interaction effect is very 
influential. 

9.3 Pre-Processing 

Despite the attempt to create a homogenous surface, the nature of the meat granules results in 
the forming of dents, which leads to a large variation over the image parts consisting of meat. 
This and the fact that the images also contains other objects than meat (Petri dish, metal plate 
from imaging device) stress the need for pre-processing of the images.  

The pre-processing procedure is to isolate the tops of the meat granules, removing all other 
objects, thereby ensuring less variation over the image data and a reduction in the data to 
analyze. It should be noted that there will still exists some variation due the natural variation as 
a results of frying minced meat, it is not the purpose of the pre-processing algorithm to 
remove this.  

9.3.1 Eradicate non-meat objects 

In the first step of the pre-processing procedure the goal is to eradicate all non-meat objects 
found in the image. Examining the spectrum of the objects in the images (Figure 9.2a), it 
shows the lower bands of the image shows a clear separation of the objects. This will allow of 
a simple threshold operation to remove the un-wanted objects.  The histogram curves of 
various interesting bands shown in Figure 9.2b further supports this proposition. 
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a) 

 

b)

Figure 9.2 - a) Spectrum Background / Foreground, b) Histogram curves 

Using a score based technique to select the optimal band and threshold value, will enable an 
optimal eradication of the non-meat objects for every picture, regardless of intensity and 
distribution of the objects. The score parameter defined is based on the following features: 

ValueFirstPeak 
The height of the first peak found in the histogram. This would represent the 
foreground of the image.  

ValueSumLastPeaks  
The sum of the peak values of the last peaks; this is used to calculate the ratio between 
the first and the last peaks. This ratio is useful since a low ratio could imply noise peaks, 
instead of actual background peaks.  

DistanceFirstSecond 
The distance between the first and the second peak. A large distance implies it a good 
separation of the background and foreground, whereas a low distance implies low 
separation.  

WidthFirstAtHalfMax 
The width of the first peak at half of the maximum value, this is an expression of the 
variance of the peak. A too large variance might imply more than one distinct feature.  

From these features the best score is calculated using the following equation. The equation has 
been derived from a number of experiments.  

3

1ValueSumLastPeaksscore ×(DistanceFirstSecond)×
ValueFirstPeak WidthFirstAtHalfMax

=  (9.1) 

From the equation it can be derived that narrow peaks far from each other will get large score, 
whereas low and wide connected peaks will get a low score as intended for the separation. The 
scores are only calculated for bands lower than 650[nm], calculating for higher bands would 
not make sense due the nature of the spectrums. 

Experience shows that the resulting region-of-interest masks still include a thin line originating 
from Petri dish. In order to remove the line, a 5x5 median filter applied to the ROI. The filter 
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not only removes the thin line, but also creates a smoother border around the isolated meat 
area. The ROI before filtering, the resulting ROI and the difference image is shown in Figure 
9.3.  

a) b) c)

 
Figure 9.3 - a) ROI before filtering, b) ROI after filtering, c) a-b 

9.3.2 Isolate meat tops 

Having removed the non-meat objects, there still is a large variation over the meat left in the 
image. This is due to the granule structure of the meat, creating dents in surface. The next step 
of the pre-processing procedure is to isolate the top of the granules, to ensure less variation 
over the granules.  

In-order to isolate the granule tops the h-domes segmentation technique is used, along with a 
threshold on the resulting h-domes image. To get the optimal results of the h-domes 
segmentation profiles of the image has been examined, concluding that band 10 (700 [nm]) 
with an h-value of 35 and a threshold value of 7 is an appropriate choice.  

Below is shown an example image along with the image after removing non-meat objects and 
the mask obtained using the h-domes transformation. 

a) b) c)

 
Figure 9.4 – a) Example image, b) After eradication of non-meat objects, c)Resulting pre-processing mask 
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9.4 Preliminary spectrum comparison 

To stress the relevance of further analysis a preliminary spectrum comparison is performed. 
This comparison will outline the changes observed in the spectra due to heat treatment of the 
meat. For each meat sample a mean spectrum is derived from the image area consisting only of 
meat, these spectra form the basis for the comparison.   

It is found that the differences introduced are best visualized by normalizing the spectrums 
around band 8. 

 
Figure 9.5 - Preliminary spectra comparison 

Figure 9.5 clearly shows differences introduced by the heat treatment. The main difference is 
observed in the upper bands where protein, fat and water have absorption. This is expected 
since meat expels water and fat, due to contraction as a result of the de-naturation of the 
proteins. The changes in this part are mainly observed as an introduction of a “break” on the 
curve around 950[nm].  

Furthermore it is a general tendency is that the more heat applied the larger is the ratio to band 
8 is in the higher bands, this is clearly observed in Figure 9.5 where the under-processed 
samples all are grouped together below the other spectra. 

Further interesting is the minor differences in lower bands; especially band 4 and 6 was 
expected to have larger differences due to met-myoglobin and oxy-myoglobin. This is however 
not the case, most likely since the all samples have undergone sufficient heat treatment, such 
that the myoglobin is transformed into de-naturated met-myoglobin.  
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9.5 Multivariate analysis 

To further enhance the differences found in the preliminary spectra comparison, in-order to 
provide an assessment of the frying treatment, various multivariate analyses are applied.  

9.5.1 Principal Component Analysis 

Recalling the principal component analysis (PCA) it will extract the patterns in the images, 
accounting for the largest part of the variation. The PCA was performed on the pre-processed 
images, to insure that it only takes the variation introduced by the meat applied with different 
heat treatment into account.  

It was found that the first two PCA components accounts for 96.7% of the total variance 
(85,26% and 11,67% respectively), examining the lower components, accounting for very small 
amounts of variation, they mainly show noise and are therefore not examined further. To 
examine the first two components further, histograms of the pre-processed and transformed 
images are plotted.  

a) b)

 
Figure 9.6 – a) Histogram curves PCA component 1, b) Histogram curves PCA component 2 

From the histograms it is observed that different heat treatments results in different 
displacements of the top of the histogram curves. This displacement is generally more 
apparent in first component than in the second, but cannot be used directly from any of the 
components since the variation is very small. Instead one can use the combination of the two 
components to investigate the results further. To examine the combination the mean of the 
first and second component for each frying degree is plotted in a scatter plot.  

The scatter plot is given in Figure 9.7. The plot shows two groupings of observations, which 
almost corresponds to the under- and adequately-processed division of meat samples however 
with some exceptions. To further enhance these groupings and their similarity to the 
under/adequate treatment classes, the border line between the under- and adequately 
processed observations is calculated and plotted using their classes discriminant functions. The 
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border line shows that the top right grouping, corresponds to the under-processed meat, with 
the exceptions of two measurements namely 250oC 120[s] and 225oC 240[s], and the bottom 
left grouping corresponds to the adequately-processed meat.  

 
Figure 9.7 - PCA1 and PCA2 scatter plot 

Generally it seams like it is possible to do an assessment of the heat treatment using PCA, 
however it does not seam completely accurate. The inaccuracy is not only observed in the 
scatter plot, but also the histograms plotted since they show little division between the 
different frying degrees. 

9.5.2 Canonical Discriminant Analysis 

In addition to the PCA, a canonical discriminant analysis is also applied to the images to see if 
it is able to separate the classes better than the PCA.   

The images were preprocessed as described in 9.2, and divided into the classes described in 
Table 9.1. The canonical discriminant analysis was then performed, deriving the optimal linear 
combination of the 18 bands separating the data into the two processing classes.  

To examine the separation of the data, a histogram curve for a transformed image from each 
frying degree is derived and plotted in Figure 9.8. 
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Figure 9.8 - Histogram – CDA 

The histogram curves show a good separation of the different frying degrees, based on the top 
of the histogram curves. The under-processed samples seam to have their tops from 1 and 
down, whereas the adequately-processed samples seam to have their tops from 1 and up. The 
curves however seams to be somewhat wider, than the ones derived from the PCA. The wider 
curves indicate the image contains a variety of different frying degree, having such a range of 
different frying degrees seams inevitable in a process like this.  

From the projections of the first CDF it seams like CDA is able to separate the frying degree 
using only one projection, and therefore it is decided to continue the heat treatment 
assessment using CDA.  

Examining the derived linear combination, also called the canonical discriminant function, 
gives an impression of which bands are the most important in separating the frying degrees.  

 
Figure 9.9 - Loadings Canonical Discriminant Function 

The loadings of the CDF show that the most influential bands to the CDF seams to be 3, 10, 
17 and 18. This is in accordance with the preliminary spectrum analysis, in which it was 
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concluded that higher values in the upper bands implies longer heat treatment, also it was 
found that most of the lower bands had little or no effect on the heat treatment.   

9.5.3 The Frying-Treatment Score 

As concluded in the prior section, the CDF derived from the CDA can be used to give an 
assessment for the frying degree in the images. The next step it to define a measure of the 
frying treatment based on that linear combination.  

The measure of frying treatment will be denoted the Frying-Treatment Score and abbreviated 
FTS. Recalling the CDF function, the results of applying it to a multi-spectral image is a 
projection of the 18 bands, thereby essentially creating a grayscale image. The grayscale images 
can be compared, and one will find an intensity difference between the meats at different 
frying degrees. However since we, for now, are not interested in a visual inspection of the 
meat, but rather a measure for the entire image, it is decided that the FTS for minced beef is to 
be defined as: 

The Frying-Treatment Score (FTS) for a multi-spectral image containing minced beef, is the 
mean value of the pixels in the pre-processed image, containing only meat, projected with the 
CDF derived in 9.5.2 

Having this definition of the FTS for minced beef images, it is now possible to plot the scale 
of the FTS. Meaning plotting the FTS for the various images, thus giving an impression of 
how the FTS is distributed. Furthermore using the values from the images, it is possible to 
examine from which FTS value the images are categorized as adequately-processed, this is 
simply the mean value of the two groups (under and adequately processed) mean values. This 
cut-off point is found to be at a FTS value of 0.95. The mean of the three sub-sample images 
for each frying degree, and the cut-off point is plotted on the Frying-Treatment Score scale in 
Figure 9.10.  

 
Figure 9.10 - Frying-Treatment Score - Minced Meat 

From the points on the scale, one observes that the no samples seams to be placed on the 
wrong side of the cut-off point. Furthermore it is observed that the Frying-Treatment Score 
seams to be increasing along with the frying treatment. Having defined the FTS the next parts 
will show some applications of use.  



 
9.5 Multivariate analysis  69

 

9.5.4 Regression analysis  

To investigate the relation between temperature, frying time and the FTS factor, the relation is 
fitted using least square regression. The model is created such that it gives an estimated time 
based on the measured FTS and frying temperature, this is done since this will give an 
estimation of a value for which the ground truth is known.  

To find the optimal degree of the regression model a 3-fold cross validation is used, dividing 
the dataset in three subsets. This is done by having one value for each combination of time and 
temperature in each subset; this is possible since triple determination was used when acquiring 
the images.  

From the cross validation the root mean square error and the R2 value is determined; this can 
be used to select the appropriate model. The results are shown in Table 9.4. 

Polynomial degree RMSETest RMSETrain R2 
1 44.78 44.71 0.00 
2 39.58 32.97 0.43 
3 30.97 26.85 0.62 
4 120.34 24.10 0.67 
5 122.51 23.57 0.68 

Table 9.4 - Cross Validation Results 

From the validation results of the various models, it can be concluded that the optimal 
relationships is the cubic relationship. Furthermore the results show that the cubic relation 
accounts for 62% of the variance in time. From the cubic relation contours are drawn as 
shown in Figure 9.11.  

 
Figure 9.11 – ISO lines frying time 

The inaccuracy which occurs in regression clearly shows in the contours drawn. For example 
are the contours suggesting that a high frying treatment score can be achieved at 200oC using a 
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relatively short frying time, this is of-course incorrect and suggest that the top-left-most part of 
the plot is invalid.  

As the modeling of frying time suggests the optimal relation is cubic, it can be assumed that 
this is also the case for modeling the FTS based on time and temperature. By doing so the 
parameters are estimated with a goodness of fit of R2 = 0.65, meaning 65 percent of the 
variance in FTS is accounted for by the temperature and frying time. This is an acceptable 
result, but it also shows that factors beyond the time and temperature have a significant impact 
on the FTS. Some of these effects can be the known varying quality parameters of minced 
beef, an example is the fat percent in minced meat, in [22] it is found that in one batch (from 
the same wholesale supplier as used for this experiment) the fat percentage can vary from 9% 
to 14% in meat said to contain 15-18%.  

Having estimated the parameters for the polynomial using regression, it can now be used to 
further model the relationship between frying time, temperature and frying-treatment. This is 
done by deriving the contour lines for the FTS at various interesting FTS values. The contours 
are plotted in Figure 9.12.  

 
Figure 9.12 - FTS Contours, Time vs. Temperature 

The model of FTS values implies that meat prepared at 120[sec] or less regardless of 
temperature (from 200oC to 250oC) does not seam to reach the frying degree of adequate-
processed meat, which to some extend can be a fair approximation for the range plotted. It 
further shows that meat prepared at 200oC regardless of frying time, does not reach the 
adequate-processed frying degree either. 
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9.6 Visualization 

The prior section in this chapter presents a method for evaluation the frying degree of an 
image using the Frying-Treatment Score. This section will examine a way of visualizing the 
results, by creating a false RGB image enabling an easy way of examining the frying degree.  

Recalling the CDF derived, it is creating a projection of the 18 band multi-spectral image, 
which essentially is a grayscale image changing in insensitivity based on the projected value of 
each pixel. However since the changes in the intensity is rather small, it is decided to scale the 
grayscale change over series of RGB values. This will create a false RGB image of the original 
image, assigning a certain color to a specific FTS value. The FTS values will be scaled to the 
RGB values as shown in Figure 9.13. 

 
Figure 9.13 - FTS values to RGB 

To further enhance the ease of visualization, only the parts of image containing meat, meaning 
the part isolated by the pre-processing, is converted using the false color composition, the 
remaining parts of the image are shown as if they were acquired using a regular camera. 
Examples of images converted are shown in Figure 9.14. All the resulting images are included 
in Appendix D.  

a) b) c)

Figure 9.14 - a) 200oC - 160[s], b) 225oC – 200[s] c) 250oC – 160[s] 

These examples clearly show how the visualization is able to show which meat granules are 
adequately processed and which are under-processed.  
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9.7 Discussion 

This chapter shows how it is possible to assess the frying-treatment of minced beef using 
multi-spectral images and multivariate statistics. By using canonical discriminant analysis to 
derive the optimal linear combination, separating the images at different frying degrees, a 
Frying-Treatment Score (FTS) is defined based on the result of the projection. It is found that 
the defined FTS gives an assessment of the frying treatment, such that increased frying 
treatment results in an increased FTS. Using the FTS of all the images in the dataset, it is 
possible to define the FTS cut-off point, from where meat can be categorized as adequately 
processed; this point is found to be at 0.95.  

Using the Frying-Treatment Score a model is created, to estimate the FTS based on the frying 
time and temperature. The model created is able to account for 65% of the variance in the FTS 
values, based on frying time and temperature. This relatively low amount of variance is most 
likely due the fact that some parameters with-in the minced meat, such as fat percentage, can 
vary within a batch making it harder for the analysis to generalize for a specific type of minced 
meat. Also other factors such a temperature when entered into the wok, and time from frying 
to imaging can create inaccuracies.  

Along with the defining FTS, an example of how it could be used to visualize the frying 
treatment is given. The visualization transforms a multi-spectral image into a RGB image, in 
which the meat objects are colored based on the FTS values. The entire dataset converted to 
these false RGB images are given in Appendix D. 
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Chapter 10 Agglutination of Minced 
Beef  

The frying process described in [5] requires the minced meat to be frozen when it enters the 
continuous wok; if the process fails to comply with this requirement the resulting meat has a 
tendency to agglutinate. It is important for fried minced meat that the meat has a uniform size, 
and that is does not include large lumps. This chapter examines the possibility to detect such 
agglutination using vision technology.  

 

The methods and results obtained in this chapter have been presented in the following 
publications: 

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat 
The article is to be submitted to Elsevier’s international journal Food Control.  
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10.1 Sample preparation 

The meat samples used in this experiment was prepared in accordance with the experiment 
design included in Appendix C, using the method briefly described in section 9.1.  

After chopping the meat it was contained in plastic cups, without cooling to thaw for the time 
specified in the experiment design. After thawing the meat was placed on ice to prevent further 
thawing before frying. The time on ice was held to a minimum to prevent the meat from 
freezing.  

Figure 10.1 - Meat contained in plastic cups without cooling, and tray to use for cooling during frying 

The experiment design specifies three thaw times namely 30, 90 and 150 minutes.  

10.1.1 Wok frying 

When the thaw time elapsed samples where fried in the continuous wok, at different 
temperatures and times to examine the frying treatments effect on agglutination. The 
temperatures used was 200oC and 225oC, and for each of these temperatures a sample was 
created with the frying times 160[s] and 240[s]. This provides us with samples having 
characteristics of both under- and adequate processed.   

10.1.2 Image acquisition  

For each combination of thaw time, frying time and temperature, 3 sub-samples where taken 
out for imaging. The sub-samples taken out for imaging were selected such that it ensured a 
somewhat representative selection of the entire sample. Meaning it was ensured that large 
particle were present in the sub-samples, if they were present in the entire sample production. 
The sub-samples where placed in a Petri dish and a finger was run over to remove excess 
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particles. The images were acquired using the VideometerLab software and saved in the hips 
format. 

10.2 Physical / chemical experiments  

To examine some of the physical and chemical properties of the fried meat, two experiments 
were made. One to determine the amount of large particles and one to determine the water 
content of the meat. 

10.2.1 Strainer loss 

In order to examine the amount of large particles in the meat sample, the meat was run 
through a strainer and the amount of meat kept in the strainer was measured. The strainer used 
had square holes with a side length of 1.1-1.2 cm.  

 
Figure 10.2 - Strainer 

Thaw time / 
Temperature

Frying time 
[s] 

Before strainer 
[g] 

After strainer 
[g] 

Loss [g] Loss % 

30 min      
200oC 160 162.4 160.7 1.7 1.04 
200oC 240 208.2 208.2 0.0 0.00 
225oC 160 240.3 239.8 0.5 0.21 
225oC 240 317.7 314.7 3.0 0.94 

    Avg. 0.55 
1h 30 min      

200oC 160 264.2 259.2 5.0 1.88 
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Thaw time / 
Temperature 

Frying time 
[s] 

Before strainer 
[g] 

After strainer 
[g] 

Loss [g] Loss % 

200oC 240 487.7 462.9 24.8 5.09 
225oC 160 457.7 446.7 11.0 2.40 
225oC 240 352.1 544.2 7.8 2.22 

    Avg. 2.90 
2h 30 min      

200oC 160 310.5 290.0 20.5 6.59 
200oC 240 350.3 327.0 23.3 6.65 
225oC 160 371.3 349.0 22.3 6.01 
225oC 240 287.9 268.8 19.1 6.63 

    Avg. 6.47 
Table 10.1 – Strainer loss 

The results of the strainer loss experiment shows a loss of <1% for the samples without 
considerable thawing, and a loss of 6-7% for meat let to thaw for 2½ hours. This clearly shows 
the thaw time has a significant influence on the agglutination. Furthermore the results imply 
that the frying treatment has no significant effect on the strainer loss, as the variance of the 
strainer loss over frying treatment seams to be rather sporadic. This is investigated further in a 
later section.  

10.2.2 Water content determination 

A water content determination was performed using the method described in the in the prior 
chapter. The results of the water determination is given in Appendix F and summarized in 
Table 10.2.  

200oC 160 [sec] 200oC 240 [sec] 225oC 160 [sec] 225oC 240 [sec] Water contents / 
Thaw time Mean σ Mean σ Mean σ Mean σ 

30 min 50.3% 0.401 46.6% 0.245 45.3% 1.828 46.0% 0.080 
1h 30min 43.4% 0.189 48.1% 0.672 47.5% 3.036 45.0% 0.271 
2h 30min 48.8% 0.209 49.2% 0.117 53.8% 0.261 50.5% 0.325 

Table 10.2 - Water contents - Minced Meat 

The results generally seam to follow the same scheme as in the prior chapter, where water 
contents decrease when frying treatment increases. Since it was concluded in the prior chapter 
that both frying time and temperature, has a significant influence on the water contents, this 
will not be examined further. Instead an ANOVA is performed to examine if the thaw time 
has an influence on the water contents. For this purpose the frying time and temperature is 
combined into a factor called treatment. This is done to simplify the analysis to a two factor 
analysis; the resulting ANOVA table is given in Table 10.3.  

Source Sum of Squares df Mean Square F-Ratio Pr > F 
Across 273.08 11 24.83 22.31 0.0000 
Treatment 14.45 3 4.82 4.33 0.0142 
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Source Sum of Squares df Mean Square F-Ratio Pr > F 
Thaw time 138.39 2 69.19 62.17 0.0000 
Treatment x Thaw Time 120.23 6 20.04 18.00 0.0000 
Within 26.71 24 1.12   
Total 299.41 35    

Table 10.3 - ANOVA table water content - Minced Meat 

The results of the ANOVA show that the thaw time is greatly influential on the water contents 
of the end product. From Table 10.2 it seams like the water content increase as the wait time 
increases. Furthermore the ANOVA results show that the interaction effect of thaw time and 
temperature is also significantly influential.  

10.3 Pre-processing  

As with the samples used in Chapter 9 (for frying treatment assessment), the samples used for 
this analysis also included unwanted objects in the images. Due to the similar process of 
acquiring the images the first stage of the pre-processing can be reused. For more details on 
separating the meat objects from the other objects refer to section 9.3.1. 

Since the analysis for this chapter concentrates on the spatial properties of the image, namely 
the formation of lumps in the meat, a different approach than the one taken in the prior 
chapter is taken. To examine the formation of lumps in the image, one must carefully extract 
the meat granules present in the image, as opposed to the prior chapter where the main goal 
was to minimize the spectral information by isolating the granule tops. The approach for a 
carefully isolation of the meat granules is explained further in the following section.  

10.4 Assessing agglutination 

Having the preprocessed images, containing only meat, the goal of the analysis is to isolate the 
meat granules, using the spatial information of those to provide measures for the agglutination 
in the meat samples.  

10.4.1 Optimal band selection 

Since a spatial analysis is needed, it is important to select the optimal band of those available 
for performing the analysis. For the detection of lumps it is important that the band is able to 
distinguish between tops and dents in the meat sample. 

To examine this property, a profile derived from a line, going through the horizontal middle, 
of the grayscale image of each band is created. The middle of the image is chosen, since this 
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contains meat granules over the entire profile, thus giving a better basis for comparison. Below 
is shown the profile plot, along with the corresponding grayscale image of the band. 

Figure 10.3 - Band 1 Figure 10.4 - Band 2 
 

Figure 10.5 - Band 3 

   

Figure 10.6 - Band 4 Figure 10.7 - Band 5 
 

Figure 10.8 - Band 6 
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Figure 10.9 - Band 7 Figure 10.10 - Band 8 
 

Figure 10.11 - Band 9 

 

Figure 10.12 - Band 10 Figure 10.13 - Band 11 
 

Figure 10.14 - Band 12 
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Figure 10.15 - Band 13 Figure 10.16 - Band 14 
 

Figure 10.17 - Band 15 

 

Figure 10.18 - Band 16 Figure 10.19 - Band 17 
 

Figure 10.20 - Band 18 

The profiles show that the lower bands profile is flickering a lot, and seams to be spanning 
over a low range of values thus making it unfit for this purpose. Around band 10 and up the 
curves become smoother, and the range of values used increases to a higher level, thus making 
them more fit for the purpose. It is chosen to use band 11 shown on Figure 10.13 for the 
purpose as this seams like the better fit. 
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10.4.2 Detection of meat granules and lumps 

The method for detection of meat granules must be able to detect both large and small 
granules; and be able to separate the meat granules in the Petri dish even if they are located 
very close together, as it is the case with the sample images, were they are located even on top 
of each other. 

For this purpose an h-domes segmentation technique is used, followed by a threshold and a 
connected component analysis for detecting meat granules. Recalling the basics of H-Domes 
segmentation a h  value must be determined. To determine an optimal value for h the profile 
of band 11 can be examined again. Since the profile of meat granules is independent of 
orientation of the profile-line, the profile examined is again given for the horizontal line 
though the middle of the preprocessed image. 

 
Figure 10.21 - Profile band 11 

The h  value must be small enough to separate all different granules, both also large enough to 
not create several spikes representing a single granule. Inspecting the profile shows that a value 
between thirty and forty, will be able to separate the granules creating only one spike for each 
granule. Through experiments the h value is chosen to be 35.  

The next challenge is to select an appropriate threshold value for the resulting h-dome image. 
To assist in this selection the resulting image and the profile of this image is useful. 
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Figure 10.22 - H-Domes image & profile 

Selecting a useful threshold value involves selecting a value which is small enough to include all 
significant granules, and large enough to avoid separating the spikes from large meat granules, 
thus being very similar to the section of an appropriate h value. From the profile in Figure 
10.22 it can be derived that 7 seams like an appropriate threshold value. Using 7 as threshold 
value will result in the binary image given in Figure 10.23. 

 
Figure 10.23 - H-Domes with threshold on 7 

 
Figure 10.24 - Threshold image w. median filter 

Figure 10.23 clearly shows that this technique is able to isolate the meat granules as needed; but 
the image still includes some noise-like elements which can disturb the connected component 
analysis. To remove the noise a 5x5 median filter is applied, this removes the larger part of the 
noise and provides a smoother image for the connected component analysis; the median 
filtered image is given in Figure 10.24. 

The last step of the analysis is to find some measures for the agglutination. The first measure 
defined will simply count the number of connected components in the image, thus giving an 
approximation of the number of meat granules in the image. 4-connectivity is used for the 
connected components analysis. This is used since some of the meat granules are placed very 
close to each other, making 8-connectivity a better fit for the background. The second measure 
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defined is the mean size of the meat granules found, this measure can later be converted from 
pixel to cm2, as the relation between pixels and square centimeters is known for the 
VideometerLab camera. Finally a third measure is defined as the maximum granule size 
detected in the image. 

10.4.3 Estimation of meat area 

Since all images acquired have a slightly different placement of the Petri dish, some images 
might include more of the Petri dish than others. Therefore a dynamic solution to the 
estimation of the area containing meat is needed.  

First step is to crop the pre-processed images such that only the area containing meat is kept, 
thus throwing away the areas around the meat containing no information. Having cropped the 
image the dimensions can be directly used to estimate the meat area. Since the camera does not 
capture the entire Petri dish, the dish in the image can be assumed to be elliptic, thus easing the 
calculation of the meat area. This principle is shown in Figure 10.25. 

 
Figure 10.25 - Ellipse area estimation 

The elliptic area can be calculated as: 

1 1

2 2PixelsArea a b w hπ π= ⋅ ⋅ = ⋅ ⋅  (10.1) 

From [9] it is known that the relation between pixel and centimeter in the VideometerLab 

camera is given as 0.077 mm
pixel

⎡ ⎤
⎣ ⎦ , this enables the conversion from pixels to cm2. 

2

20.077

100
Pixels

cm
Area

Area
=

⋅
 (10.2) 

Having the meat area and the number of detected meat granules, the last measure of 
agglutination can be defined as meat pr. cm2. This and the measures for mean size and 
maximum size is derived for all available images, and discussed further in section 10.4.4. 
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10.4.4 Results 

For each sample image the estimated meat pr. cm2, mean size of granules, standard deviation 
of size and the maximum granule size is derived. All results are derived in square centimeters 
using the relation between pixels and centimeters from [9], the complete results table is 
included in Appendix G, and a summary is given in Table 10.4.   

Thaw Time / 
Treatment 

Meat pr. cm2 
Mean granule 

size 
σ granule size 

Maximum 
granule size 

30 min     
200oC – 160[s] 6.37 0.0553 0.0949 0.5616 
200oC – 240[s] 7.38 0.0476 0.0744 0.4958 
225oC – 160[s] 6.18 0.0562 0.0950 0.6376 
225oC – 240[s] 5.56 0.0638 0.1055 0.6901 

Avg. 6.38 0.0557 0.0925 0.5963 
     

1h 30min     
200oC – 160[s] 6.45 0.0535 0.0969 0.8081 
200oC – 240[s] 5.91 0.0602 0.0162 0.9482 
225oC – 160[s] 6.29 0.0555 0.3199 0.8489 
225oC – 240[s] 5.46 0.0634 0.1119 0.7143 

Avg. 6.03 0.0582 0.1588 0.8299 
     

2h 30min     
200oC – 160[s] 5.55 0.0638 0.1254 1.0656 
200oC – 240[s] 5.20 0.0720 0.1673 1.8337 
225oC – 160[s] 5.29 0.0686 0.0892 0.9022 
225oC – 240[s] 5.24 0.0677 0.1469 1.0957 

Avg. 5.32 0.0680 0.1322 1.2243 
Table 10.4 - Results image analysis 

The results of the measures illustrate how they are able to assist in an assessment of 
agglutination. It is clear to see that the meat pr. cm2 is decreasing as the thaw time increases, 
and that the meat granule size and maximum granule size increases along with the thaw time.  

10.5 Analyzing results 

This section will explore the relation between the physical method and image analysis method 
for measuring agglutination. The two methods have obvious differences, e.g. the physical 
method takes the entire meat sample into account, whereas the image analysis method only 
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uses the top layer of the three Petri dishes of meat, despite of the differences the results of the 
methods still proves to be comparable.  

10.5.1 Initial comparison 

The first action taken to compare the four measures, strainer loss, meat pr. cm2, mean granule 
size and maximum granule size, is to normalize them to zero mean and unit variance. This is 
done to be able to plot them in the same plot, and thereby get an impression on how they 
relate.  

 
Figure 10.26 - Agglutination Measures 

From the plot it is observed that the granule size measures and the strainer loss is positive 
correlated, and the strainer loss and meat pr. cm2 is negative correlated, this was also expected. 
Overall it can be concluded that there is a high correlation between the strainer loss and the 
measures acquired using image analysis. Thus showing these can be used for assessing 
agglutination.  

10.5.2 Regression analysis 

To further investigate the relation between the measures and the strainer loss, and to 
investigate the relation between frying degree and strainer loss, two types of regression analysis 
is performed. One tries to model the strainer loss based on the measures gained through the 
image analysis, and the second one tries to model the strainer loss based on the thaw time and 
the frying degree. 

10.5.2.1 Modelling strainer loss by spatial measures  
From the image analysis results it has been chosen to use the maximum meat granule size and 
the mean granule size. These are selected as they are independent of the image area and 
therefore more realistic in a production scenario.  
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To determine which regression model is the optimal a 3-fold cross validation is performed 
dividing the dataset into three subsets, each containing one image for a combination of thaw 
time, frying time and frying temperature. The strainer loss is modeled using a 1st, 2nd, 3rd, 4th  
and 5th degree polynomial, for each model the R2 value and the root mean square error is 
recorded in Table 10.5. 

Polynomial degree RMSETest RMSETrain R2 
1 2.04 1.80 0.48 
2 1.83 1.67 0.56 
3 106.47 1.50 0.58 
4 687.11 1.09 0.72 
5 3815.52 0.68 0.83 

Table 10.5 - Cross Validation Results 

Based on the root mean square error it seams like the squared relation is the optimal. The 
relation is found to give a 2 0.56R = , meaning 56% of the variation is accounted for using 
these parameters. In Figure 10.27 contours are plotted using the estimated parameters. 

 
Figure 10.27 - Estimated Strainer Loss 

10.5.2.2 Modelling strainer loss by spectral measures 
Another interesting approach to the strainer loss, is to model it based on the thaw time and the 
degree of frying, this will help enlighten aspects of the agglutination e.g. if it can be minimized 
by applying a higher frying treatment. To get a measure of the degree of frying, the definition 
from the prior chapter is used to derive a FTS for each image used for agglutination 
assessment. 

Again 3-fold cross validation is used and the R2 and root mean square errors are recorded 
resulting in Table 10.6. 

Polynomial degree RMSETest RMSETrain R2 
1 0.80 0.77 0.91 
2 0.70 0.68 0.93 
3 0.73 0.67 0.93 
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4 0.77 0.62 0.94 
5 1.60 0.60 0.94 

Table 10.6 - Cross Validation Results 

The results show that the optimal model of the strainer loss based on frying treatment and 
thaw time is squared, this relation has the smallest error and accounts for 0.93% of the 
variation using these parameters. This shows a large improvement in both R2 and error from 
the spatial properties, meaning it is easier to predict the strainer loss knowing the thaw time 
and frying treatment. This is also expected since the thaw time has a large influence on the 
strainer loss.  

To illustrate the relation contour lines are plotted in Figure 10.28, the contour lines support the 
suggestion made in [4] suggesting that higher heat treatment results in lower agglutination. This 
seam to be especially significant for higher FTS values (> 1).  

 
Figure 10.28 - Estimated Strainer Loss 

10.6 Discussion 

The results obtain in this chapter shows how it is possible to obtain measures from a multi-
spectral image containing minced meat, which can assist in assessing agglutination for minced 
meat. The chapter defines the measures: meat pr. cm2, mean granule size and maximum 
granule size and derives these for all sample images.  

From the resulting data it is found that these have a high correlation to the strainer loss, which 
shows that these can be used to assess the agglutination of minced meat. This relation is 
investigated further using regression analysis, this further supported the proposition.  

Furthermore the relation between agglutination, thaw time and frying treatment is examined, 
concluding that the frying treatment seams to have some influence of the agglutination. 
Namely that increased frying treatment can decrease the agglutination of the minced meat.  
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Chapter 11 Assessment of Frying 
Treatment for Diced Turkey 

Adequate frying treatment is important for preparing turkey meat, not only to provide 
correctly tasting meat having the correct consistency, but also to ensure healthy poultry meat 
free of potentially dangerous microorganism. This chapter will examine how frying treatment 
can be assessed for turkey squares, directly from or on a conveyor belt, without use of any 
physical pre-processing of the meat.  

 

The methods and results obtained in this chapter have been presented in the following 
publications: 

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat 
The article is to be submitted to Elsevier’s international journal Food Control.  

A Method for Frying Treatment Assessment of Meat Using Multi-Spectral Vision Technology 
The poster was presented on the 2007 Industrial Vision Day, the 23rd of May at the Technical 
University of Denmark.  
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11.1 Sample preparation 

Whole turkey breasts were purchased in the retail store Netto, the turkey breast was prepared in 
accordance with the experiment design in Appendix G. A short description of the process, the 
wok frying and the image acquisition processes are included here.  

11.1.1 Wok frying 

The turkey breast where cut into pieces of approximately 10[g], 20 pieces were taken out for 
control measurements. The result of the control measurement is given in Table 11.1. The 
results show that the average weight is very close to the expected 10[g], however with a 
noticeable deviation. This is unfortunately typical when human interaction is needed, and it is 
acceptable for this experiment. 

Meat piece # Weight [g] Meat piece # Weight [g] 
1 10.60 12 10.97 
2 10.31 13 6.63 
3 9.77 14 10.65 
4 8.67 15 9.70 
5 9.32 16 7.25 
6 9.01 17 8.38 
7 9.53 18 10.08 
8 14.02 19 6.78 
9 6.81 20 13.01 
10 7.19 Avg. 9.48 
11 10.05 Std. 2.09 

Table 11.1 – Weight distribution turkey squares 

After chopping, the meat piece where scalded for 7 seconds in boiling water. The scalding 
coagulates the soluble meat proteins in the surface layer, thereby preventing the meat form 
sticking to walls of the wok. 

a)

 

b)

 
Figure 11.1 – a) Meat before lowering into boiling water, b) Meat after scalding 
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The basic experiment had the combinations of frying temperature and time given in Table 
11.2. Table 11.2 furthermore shows the division into classes of under-, adequate- and over-
processed meat.  

Temp / Time 3 min 4 min 6 min 7 min 9 min 
250o[C] Under Under Adequate - - 
275o[C] - Under Adequate Adequate Over 
300o[C] - Adequate Over Over - 

Table 11.2 - Temperature, time and expected frying treatment combinations 

This division of meat is based on the following observations made during a test frying, 
conducted before the experiment, and is made in cooperation with a trained butcher. The 
under processed turkey meat is characteristic by having a clearly under processed core, easily 
identified when slicing, furthermore the surface is very bright and the meat is generally very 
moist. The adequately processed meat has a homogeneous looking core, the meat is moist and 
has a darker surface compared to the under processed meat. The over processed meat, has a 
homogenous core as the adequately processed meat but is generally slightly less moist and has 
a noticeably darker surface than the other processing degrees. 

In addition to the experiments described above an experiment was conducted at 275oC and 7 
minutes with non-scaled meat to investigate the effect of scalding before frying. Furthermore 
an experiment was made at 275oC and 300oC at 6 minutes, with a larger load of meat to 
investigate any effects the loading will have on the meat.  

11.1.2 Image acquisition 

For each experiment conducted three sub-samples consisting of four pieces of meat was taken 
out for imaging. The pieces were placed on a Petri dish with as much space as possible 
between them. The images where acquired using VideometerLab and saved in the hips format.  

11.2 Chemical experiment 

In order to establish a physical measure of comparison, a water content analysis was 
performed. The water contents were determined by taking 2-3 meat pieces of each sample, 
making them homogeneous with a liquidizer. From the homogeneous mass three samples of 
approximately 2[g] was taken out for 24 hours of drying at 105oC, the weight was registered 
before and after drying.  

11.2.1 Water contents results 

The complete results of the water contents experiment is presented in Appendix I, and 
summarized in Table 11.3.  
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3 min 4 min 6 min 7 min 9 min Type / 
Temp. Mean σ Mean σ Mean σ Mean σ Mean σ 
250oC 66.9% 0.019 64.4% 0.318 64.9% 0.152 - - - - 
275oC - - 66.8% 0.052 65.1% 0.200 65.0% 0.060 62.8% 0.099 
300oC - - 66.4% 0.334 63.7% 0.102 67.0% 0.310 - - 

W.o. scald. 
275oC 

- - - - - - 68.2% 0.055 - - 

150g load. 
275oC 

- - - - 65.4% 0.297 - - - - 

150g load. 
300oC 

- - - - 64.2% 0.076 - - - - 
Table 11.3 - Water contents - Diced Turkey 

To further examine the influence of frying time and temperature on the water content a two-
factor ANOVA was created. The results are summarized in the ANOVA Table 11.4. 

Source Sum of Squares df Mean Square F-Ratio Pr > F 
Across 67.83 14 4.84 54.19 0.0000 
Time 40.13 4 10.03 112.22 0.0000 
Temperature 3.99 2 1.99 22.35 0.0000 
Time x Temperature 23.69 8 2.96 33.13 0.0000 
Within 1.34 15 0.09   
Total 70.35 29    

Table 11.4 - ANOVA table water content - Diced Turkey 

The ANOVA shows that the frying time has a very large influence on the water content, and 
that the temperature seams to have less influence. Furthermore the interaction effect also 
seams to be quite influential. 

Considering the additional samples, it seams like increasing the load have no effect on the 
water content, and that scalding the meat might have a influence on the water contents. This 
however cannot be finally concluded from these results, as only a single sample without 
scalding was created.  

11.3 Pre-processing 

As it was the case with the other images acquired, the images contain objects which are not 
relevant to our analysis. Objects as the Petri dish and the metal sheeting of the camera, the pre-
processing process is to eliminate these objects.  

In-order to find a suitable method for eradicating the un-wanted object, the spectrums of these 
objects are examined and compared to the spectrum of the meat. Furthermore the histogram 
of selected interesting bands is investigated to assess the usefulness of a simple threshold 
solution. The spectra and histograms are shown in Figure 11.2. 
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a) b)

 
Figure 11.2 – a) Spectra of interesting objects, b) Histogram of interesting bands 

As it can be observed in Figure 11.2a, the un-wanted objects has spectra that is very different 
compared to the meat. However when examining the histograms in Figure 11.2b, it is observed 
that the values are somewhat overlapping, meaning there is no zero value between the top 
representing meat pixel and the tops representing other objects. This can lead to undesired 
eradication of meat pixels and/or preservation of pixels belonging to un-wanted objects.  

Instead of doing a threshold on an existing band, it is possible to take advantage of the 
spectrum shape. It is observed that the pixel value of un-wanted objects does not vary much 
throughout the bands, compared to the values of the meat. This property can be used by 
subtracting band 2 (450[nm]) from band 13 (890[nm]), the pixel values of meat will now be 
very high compared to the pixel value of the other objects. This is shown in Figure 11.3 where 
the difference image is shown along with histogram.  

a) 

 

b) 

 
Figure 11.3 - a) 890[nm] - 450[nm], b) histogram of 890[nm] - 450[nm] 

From the histogram it is clear that the low values (<40) represent the un-wanted objects, 
whereas the large spike around 110 is representing the meat pixels. Doing a threshold around 
41, should leave us with a mask covering the meat objects only. It however is observed that 
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after doing the threshold, a few unwanted pixels from the Petri dish is still present. These can 
be removed by applying a 5x5 median filter as illustrated in Figure 11.4.  

a) b)

 
Figure 11.4 - a) Mask without median filter, b) Mask after applying median filter 

Since the meat squares are cut out in an approximate cubical form, there is no need to perform 
further processing for isolation meat tops etc..  

11.4 Preliminary analysis 

In-order to determine if a basis exists for assessing frying treatment based on the spectral 
information, a preliminary analysis of spectrums from different frying degrees are examined. A 
random image from each combination of frying time and temperature is selected, and the 
spectrum is derived from a ROI containing meat and plotted in Figure 11.5 

It is observed in the plot, that the differences between the different frying degrees seam to be 
substantial enough to continue the analysis. The plot clearly shows that there are differences 
over the entire spectrum, however largest in the lower visual part. This is a noticeable 
difference from the minced meat, where the differences were largest in the NIR spectrum.  

 
Figure 11.5 - Preliminary spectra analysis 
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11.5 Multivariate analysis 

To assess the frying quality of the meat, the differences found in the preliminary analysis is to 
be enhanced by applying various multivariate analyses.  

11.5.1 Principal Component Analysis 

The first analysis to apply is the principal component analysis (PCA). This analysis will extract 
pattern found in the image, expressing it in a new multi-dimensional image.  

The PCA was performed on pre-processed images, resulting in faster and more precise analysis 
since only differences in the meat data is examined. It was found that the two first components 
of the PCA accounts for 97.1% of the total variance (77.6% and 19.5% respectively), 
examining the remaining components shows that they were mainly containing noise, it is 
therefore decided to proceed examining the first two components.  

For each frying degree (temperature and time combination) an image was transformed using 
the two first components of the PCA. From the resulting data a histogram was derived to 
examine the distribution over the components. The histograms are given in Figure 11.6. 

a) b)

Figure 11.6 - a) PCA component 1 histogram, b) PCA component 2 histogram 

From the histograms it seams like the first component creates a displacement of the histogram 
curves separating the over-processed meat from the other processing degree. And the second 
component seams to be better for separating the under-processed from the other processing 
degrees. Thus suggesting a combination of these could be used. This can be examined closer 
by plotting the mean value of the populations, into a plot where each component represents an 
axis.  
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Figure 11.7 - Population means PCA1 vs. PCA2 

This is illustrated in Figure 11.7, from the plot it seams like the two populations being under-
processed and over-processed are gathered in two corners of the plot, thus implying the frying 
treatment can be assessed using these components. To illustrate this further the boundary 
lines, computed from the discriminant functions separating the classes, is plotted as well. The 
boundary line suggests that it is mainly the second principal component which is used for 
classification into classes. From this is can be concluded that the variations found by the PCA 
seam to reflect the variation in frying treatment.  

11.5.2 Canonical Discriminant Analysis 

Another obvious analysis to apply is the canonical discriminant analysis, finding a 
transformation separating the data from different frying degrees as much a possible. The 
classes used for the analysis are the ones given in Table 11.2 separating the meat into under-, 
adequately- and over-processed meat classes.  

Separating the dataset into 3 group’s results in two linear canonical discriminant functions, as 
with the components from the PCA, these can be used to derive histograms of transformed 
images. The histograms are given in Figure 11.8.  

a) b)

 
Figure 11.8 - a) CDF 1 Histograms, b) CDF 2 Histograms 



 
96  Assessment of Frying Treatment for Diced Turkey
 

The histogram shows that the first CDF seams to create a displacement of the histogram curve 
based on the frying treatment of the data. Furthermore it is noted that the histogram curves 
has a narrower bell shape, compared to the ones for the principal components. The second 
CDF however does not seam to create a displacement based on frying treatment. 

To further examine the first CDF, the loadings is plotted thereby giving an impression of 
which bands are important with regard to separating the various frying-treatments of diced 
turkey.   

 
Figure 11.9 - Loadings Canonical Discriminant Function 

The loadings for the CDF show that the visual part of the spectrum (<700nm) seams to play a 
very important role in separating the frying treatments, as compared to the minced meat where 
the high loadings mainly was present in the NIR bands.   

11.5.3 The Frying-Treatment Score 

To have a general base of comparison for the frying degree based on image analysis, the 
Frying-Treatment Score (FTS) for turkey meat is to be defined. Both multivariate analysis 
applied to the images, was able to separate the defined frying degrees. However the PCA 
needed two dimensions to separate the data into all classes, whereas the first canonical 
discriminant function seamed to be able to do the job on its own. Furthermore the histogram 
curves for the data applied with the first CDF, were smoother and had a narrower bell shape 
than those for the principal components, this motivates using the first CDF for defining the 
FTS.  

Using the first CDF for defining the FTS is the same approach as used for the minced meat, 
however with different loadings for the CDF. This motivates a definition of the FTS similar to 
the one for minced meat; the definition for diced turkey is formulated as: 

The Frying-Treatment Score (FTS) for a multi-spectral image containing the surfaces of diced 
turkey, is the mean value of the pixels in the pre-processed image, containing only diced turkey, 
projected with the CDF derived in 11.5.2. 
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This definition of the FTS now enables us to derive the scale of the FTS for diced turkey, 
giving an impression of the distribution of meat over the scale. Furthermore it enables the 
definition of the cut-off points, where meat is categorized as adequately-processed instead of 
under-processed and where meat is categorized as over-processed instead of adequately-
processed. These can be found by finding the average of the two class’ averages. The cut-off 
between under- and adequately processed meat is found to be -0.118, and the cut-off between 
adequately- and over-processed is found to be 1.05. 

 
Figure 11.10 - Frying-Treatment Score - Diced Turkey 

From the points plotted on the scale, one observed that the two of samples which was 
intended as adequately processed are not within the cut-off points. This is undesirable and 
could motivate another definition of the cut-off points, if they were to be used for 
categorization purposes.  

11.5.4 Regression analysis 

To investigate the relation between FTS, time and temperature, regression is used to try to 
model the frying time in seconds using the FTS and temperature. Models of 1st, 2nd, 3rd, 4th and 
5th degree polynomials are tested using a 3-fold cross validation. The dataset are divided such 
that each contains a value of each combination of time and temperature.  

The result of the cross validation is given in Table 11.5. 

Polynomial degree RMSETest RMSETrain R2 
1 70.75 70.09 0.55 
2 47.75 41.92 0.83 
3 44.62 34.22 0.88 
4 48.34 32.97 0.89 
5 186.45 25.16 0.92 

Table 11.5 – Cross Validation Results 

The cross validation results suggest the optimal model to be a cubic, this has the smallest error 
and a R2 of 0.88, meaning 0.88% of the variance in time is accounted for by the FTS and 
temperature. The model gained is illustrated by drawing the contours of the interesting frying 
times in Figure 11.11. 
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Figure 11.11 - Frying Time Contours 

The model seams to be an acceptable approximation, it basically suggest higher frying times 
results in a higher frying-treatment score which is correct. Also it suggests that very high frying 
times are needed in order to obtain adequately processed meat at 250oC, which is also correct. 

These results suggest that a model for the frying-treatment score, based on frying time and 
temperature will also have a cubic relation. Using this knowledge the model is estimated with 

2 0.98R = which means the by far largest part of the variance in the data is accounted for, this 
further support the FTS as useful measure of frying degree.  

The resulting model is used to draw contour lines for the system.  

 
Figure 11.12 - FTS Contours Turkey Squares 

The most interesting contour lines are the one at -0.118 which represents the cut-off line 
between under- and adequately-processed turkey squares and the one at 1.05 which represents 
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the cut-off line between adequately- and over-processed turkey squares. Within these lies the 
production window giving the optimal fried turkey diced.  

From these lines it can be derived that the optimal temperature is around 285oC, as this gives 
the largest interval of times resulting in an adequate processing of the meat. As the temperature 
drop or increases the time window for adequately processed meat narrows.  

11.6 Visualization 

Having defined a way of assigning each image an FTS, another method for evaluation of the 
frying-treatment is proposed in this section, namely a visual approach. Visualizing the results 
gained via the analysis provides the process operator with a tool for visual evaluating the meat.  

Recalling the CDF used for assigning a FTS value, this creates a projection of the 18 band 
image onto one band. The resulting band is essentially a RGB image, which intensity varies 
over the degree of frying-treatments. As for the minced meat, the changes in intensity are so 
small it is hard for the eye to interpret. To enhance the differences a scale for converting them 
into a RGB image is created. By examining the histogram curves from Figure 11.6a, it is found 
that the scale should cover FTS values from -4 to +4. 

 
Figure 11.13 - FTS values to RGB 

As for the minced meat images, only the parts of the image containing meat is converted using 
the scale from Figure 11.13, the remaining parts of the image is presented as if it was acquired 
with a regular camera. The entire data has been converted and is included in Appendix J, below 
is shown some samples.  
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a) b) c)

Figure 11.14 - a) 250oC - 4min, b) 275oC - 7min, c) 300oC - 6min 

The sample image clearly shows the essence of the visualization, the underdone meat pieces 
are mainly covered by blue pixel, the adequately processed are covered by green/yellow pixels 
and the over processed show large red areas on the over processed meat.  

11.7 Discussion 

This chapter shows the principles used for frying treatment assessment of minced meat can be 
transferred to assessment of frying treatment for diced turkey meat. It is however only the 
principles that can be used as the meat naturally has large spectral differences a new canonical 
discriminant function must be computed for each type of meat. Using the CDA method the 
Frying-Treatment Score for diced turkey is defined.  

The FTS is used to derive contours illustrating the optimal combinations of temperature and 
time for frying of turkey meat. The model of FTS based on frying time and temperature, 
proves to cover 98% of the variance in the FTS, which is an excellent result, compared to the 
one achieved for minced meat. This also comes to show in the contour lines, as these seam to 
give a very realistic illustration of the frying process. The counters can among others be used 
to adjust the settings of the wok in future when frying turkey squares.  

Furthermore the FTS is used to create a visualization of the frying degree. This visualization 
creates a false RGB image, assigning colors to FTS values of the transformed image. The 
resulting images shows to give a very intuitive approach, to estimating the frying treatment of 
the meat contained in the image.  

Using the FTS as defined in this chapter, it is now possible to analyze the effects scalding 
before frying and loading of the wok has to frying degree.  

To investigate the effects of scalding the FTS is found for the samples without scalding at 
275oC 7min. The mean FTS of the samples without scalding is -0.286, which actually indicates 
that it is under processed, compared to the normal mean FTS at 275oC 7min which is 0.356. 
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This indicates that scalding has an effect on the frying degree, as well as on the water contents 
of the meat as found in section 11.2.1, but cannot be finally concluded without further 
experiments. 

Next the effect of increased loading is investigated using the same procedure. The mean FTS 
for a 150g loading at 275oC 6min is found to be 0.555, this indicates an increase in frying 
degree from the normal 0.220 at 275oC 6min. The same tendency is found at 300oC 6min, 
where the increased loading images have a mean FTS of 2.093 compared to the normal 1.982. 
The increased FTS was expected since blockings was observed in the frying pipe; the helix was 
simply not large enough to move the high loading of meat, resulting in some meat being left 
behind receiving additional frying treatment.   
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Chapter 12 Assessment of Frying 
Treatment for Sliced Diced Turkey 

In the prior chapter a method was found to assess frying treatment for turkey squares without 
any physical pre-processing. This chapter will investigate a method for assessment of frying 
treatment using sliced turkey squares, and compare this method to the assessment of frying-
treatment based on the surface of turkey squares.  

Slicing the turkey square intuitively gives a better domain for comparison of frying treatment, 
as the sliced dices of inadequately cocked meat will show areas of the meat where the proteins 
has not denatured yet, thus keeping the raw reddish color easily observed even for the human 
eye and introducing larger spectral differences. 
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12.1 Sample preparation 

The turkey pieces where prepared in accordance with the description provided in section 11.1, 
with the exception of the image acquisition which is described beneath.  

12.1.1 Image acquisition 

For each combination of time and temperature 3 sub-samples of four pieces of meat where 
taken out for imaging. The meat pieces where cut into half’s, and placed, with the internal part 
facing against the camera, in a Petri dish with appropriate spacing. The images where acquired 
using the VideometerLab camera and saved in the HIPS format.   

12.2 Chemical experiments 

Since the turkey squares used in this chapter are identical with the squares used in Chapter 11, 
there will not be performed any further physical or chemical experiments. For a recap on the 
results refer to section 11.2.  

12.3 Pre-processing 

Since the images was acquired using the same scheme as the images from the prior chapter, the 
need for removing the unwanted objects still exists. The images basically contain the same 
objects as in the prior chapter, but since the turkey pieces have been sliced it introduces a 
larger variation over the meat pieces. To examine these variations, spectra for red under-
processed meat, white adequately-processed meat, Petri dish and metal sheeting have been 
plotted in Figure 12.1.  

 
Figure 12.1 - Pre-processing spectra comparison 
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The spectrums show that it is not possible to perform a simple threshold operation on a single 
band, since there at no band is a large enough separation. Instead the spectrums show that the 
unwanted items have a lower variation over the bands, than the meat spectrums. This 
motivates us to use the method used in the prior chapter, namely subtracting band to gain 
separation. Examining the spectrums shows it a good separation would occur when subtracting 
the band at 430[nm] from the band at 850[nm], the histogram for the resulting image is shown 
below, along with the histogram obtained by using the bands used in the prior chapter.  

 
Figure 12.2 – Pre-processing histogram curves 

From the histogram curves it is obvious that the 850-430[nm] subtraction, gives the by far 
better separation of the objects. The histogram curve can further be used to assess a good 
threshold value, at first sight it looks like a value between 40 and 50 would give a good 
separation since this is the local minima of the curve. By experimenting it is found that the 
optimal value is 47.  

Figure 12.3 show the results of each step of the preprocessing. From Figure 12.3c, showing the 
result of the threshold operation, it is observed a small amount of distortion in the image. This 
is removed by applying a 5x5 media filter resulting in the image shown in Figure 12.3d.  
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Figure 12.3 - a) Initial image (RGB), b) 850-430[nm], c) Threshold 47, d) Threshold + 5x5 median filter 

Since the meat squares due the slicing have a level top, there is no need for further pre-
processing to isolate the meat.  

12.4 Preliminary analysis 

To examine the differences in the spectrums based on heat treatment, a spectrum is derived 
for each combination of time and temperature. The spectrum is derived manually by selecting 
a ROI on a random meat pieces from the sample images.  

 
Figure 12.4 - Preliminary spectrum comparison 

Figure 12.4 shows a large difference in the spectrum shape between the under-processed and 
the adequately/over-processed meat. Especially around the bands 500-700[nm] larger 
difference is shown, in this context it is worth noticing that the band at 505[nm] which shows 
met-myoglobin and the band at 590[nm] which shows oxy-myoglobin have large difference, 
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implying that the interior of the meat is not processed enough to change the state of the 
proteins.  

Further the figure shows minor differences from adequately-cocked meat to over-cocked meat. 
The minor differences can imply that it might be more difficult to separate these classes, than 
to separate them from the under-processed.  

12.5 Multivariate analysis 

To investigate if the differences found in the spectrums can be used to assess the frying-
treatment, multivariate analyses are applied to the data.  

12.5.1 Principal component analysis 

Applying the Principal Component Analysis (PCA) to the data, creates a new 18 dimension 
image, each new dimension a linier combination (component) of the original 18 dimensions 
sorted after the maximum variance accounted for.  

The linear combinations have been derived using a pre-processed data set. From the derived 
combinations it is observed that the three first dimension accounts for 96.14% of the total 
variation (76.48%, 16.34% and 3.32% respectively), the remaining dimensions only seam to 
contain noise and is therefore not examined further. The three first principal components is 
applied to the pre-processed images, and histogram curves of the new dimensions are plotted.  

a)

 

b)

Figure 12.5 - Histogram Curves, a) First principal component, b) Second principal component 

Examining the first principal component, it shows very rough curves, implying that it shows 
features not related to the frying degree, but rather to the differences found over the surface of 
the turkey square. Examining the histogram curves of the second component shows a 
somewhat identical same scheme. The bell shapes are generally very wide, this either because 
the interior of the meat dices contains a variety of different frying-treatment, or because the 
component captures a pattern not related to the frying-treatment. 
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Extracting the histogram curves of the third 
principal component shows a similar scheme 
as with the two prior components. The bell 
shape is very varying in width, and it is hard to 
conclude if the displacements of the curves 
are due to frying-treatment.  

Having examined the first three principal 
components, it can be concluded that 
principal component analysis is unfit for the 
purpose of assessing frying-treatment for 
sliced diced turkey squares.   

Figure 12.6 – Histogram curves third component 

12.5.2 Canonical discriminant analysis 

Finding the PCA unfit for the purpose, Canonical Discriminant Analysis (CDA) is examined. 
The CDA finds the linear combination separating the defined classes best possible, logically 
resulting in two combinations when separating 3 classes, as is the case with the diced turkey 
dataset. 

The pre-processed images have been divided into classes according to Table 11.2, and the 
CDA is applied, resulting in two linear combinations or canonical discriminant functions 
(CDF). The two CDF’s have been applied to all pre-processed images and the histogram 
curves are derived to examine the results.  

a) 

 
Figure 12.7 - Histogram curves, a) CDF1, b) CDF2 

Examining the first discriminant function shows large improvements compared to the 
principal components. The histogram curves are much smoother indicating that the feature 
found applies to the larger part of the turkey square, and more importantly the top of the 
curves seams to be displaced according to frying degree, implying this is a useable tool for an 
assessment of the frying degree. Furthermore it is observed that the bell form of the curves, 
especially at the lower frying degrees, are wider compared to those from the frying-degree 
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examinations of minced meat and diced turkey, this can be explained by the nature of the 
sliced turkey dices. A sliced turkey diced which is inadequate processed, have a internal kernel 
of meat that has a low frying degree, surrounded by a ring of meat with a higher frying degree, 
thus creating an wider bell shape covering various frying degrees.   

Examining the second CDF shows curves that are smooth but, there is not indication that the 
displacements of the tops are due to changes in the frying treatment.  

To examine the findings further, and to rule out that the second canonical discriminant 
function has no influence when it comes to determining frying treatment, the mean value of 
the histograms are plotted in xy-plot with each axis representing a CDF. To further illustrate 
the divisions of group’s, the border lines are derived using bayes classifier.   

 
Figure 12.8 - CDF1 & CDF2 plot 

The plotted values clearly show a division of classes based on the CDF 1 value, and not the 
CDF2 value. The border line between under- and adequately-processed meat seams to be 
almost vertical, which also implies that these can be separated using only the first CDF. The 
border second line however seams to have a screw, but when examining the data it can be seen 
that intuitively one would place a vertical line instead, again motivating a separation using only 
the first CDF.  To further understand how the CDF separates the frying degrees, the loadings 
of the function are examined.  

 
Figure 12.9 - Loadings CDF 1 
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The loading shows that the bands really influencing the value are the lower visual bands 
(<700[nm]), this fit the conclusions from the preliminary spectrum comparison. Furthermore 
it seams as the higher bands (<890) also has some influence on determining the frying-
treatment. 

12.5.3 The Frying-Treatment Score 

The prior section shows how data can be transformed, such that their histogram value gives an 
impression of the frying degree of the meat in question. This method is obviously identical to 
the one used for minced meat and the surface evaluation of diced turkey, this motivates a 
similar definition of the Frying-Treatment Score.  

There is however one major difference, the two definitions of FTS from minced meat and the 
surface of diced turkey are defined such that when the frying-treatment increases so does the 
FTS, Figure 12.8 shows this is not the case for the CDF derived for sliced turkey. To obtain a 
consistent Frying-Treatment Score scale throughout this thesis, it is decided to multiply the 
CDF for sliced diced turkey with -1, to obtain the regular scheme, thus defining the FTS as: 

The Frying-Treatment Score (FTS) for a multi-spectral image containing sliced diced turkey, 
is the mean value of the pixels in the pre-processed image, containing only the interior of the 
diced meat, projected with the CDF derived in 12.5.2 multiplied by -1. 

It can be argued that this definition may cause problems for the meat squares at lower frying 
degrees, as these contain a variety of FTS values, and the deviation is not taken into question in 
this definition. It is however believed that since the larger part of the meat dice is under-
processed; these pixels will be able to drag the FTS down to the intended level.  

Having defined the FTS, it is now possible to define the cut-off line between under-, 
adequately- and over-processed meat. This is defined by finding the mean between the groups 
mean. The cut-off value between under- and adequately-processed meats is found to be -0.276; 
meaning meat with values beneath this is under-processed. Between adequately- and over-
processed meats the mean value is found to be 0.884; meaning values above this indicates 
over-processed meat, and values between -0.276 and 0.884 implies adequately processed meat. 
FTS value from sample images and the cut-off lines are shown in Figure 12.10. 

 
Figure 12.10 - Frying-Treatment Score - Minced Meat 
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12.5.4 Regression analysis 

As with the prior definitions of FTS, the definition is used to examine the relation between 
FTS, frying time and frying temperature.  

The first model created is modeling the frying time, based FTS and frying temperature. Using 
3-fold cross validation the frying time is modeled using a 1st, 2nd, 3rd, 4th and 5th degree 
polynomial, the root mean square error and the R2 value is recorded, the result is given in 
Table 12.1. 

Polynomial degree RMSETest RMSETrain R2 
1 47.73 41.27 0.87 
2 41.50 31.24 0.92 
3 40.19 29.81 0.93 
4 53.96 28.96 0.93 
5 75.55 26.94 0.94 

Table 12.1 - Cross Validation Results 

The cross validation suggest the 3rd degree polynomial to be the best model for modeling the 
time based on temperature and the FTS. From this model the contour lines are drawn for the 
interesting frying times. 

 
Figure 12.11 - Frying Time Contours 

This model of the frying time implies that increasing time and temperature results in a higher 
frying treatment, which is known to be true. The model however seams to include some 
inaccuracy concerning long frying times at the low temperatures; this can be expected as this is 
based purely on a generalization, since no data exists for long frying times at low temperatures.  

These results imply that the optimal model for FTS based on time and temperature also is a 3rd 
degree polynomial. Modeling this gives a R2 of 0.96 which shows that almost all variation of 
the frying-treatment score can be captured using the time and temperature. This further 
support the definition of FTS as a measure for the frying treatment applied. The contour lines 
for this model are shown in Figure 12.12. 
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Figure 12.12 - FTS Contours Sliced Turkey Diced 

The model derived from the sliced turkey dices, are quite similar to the one derived for the 
surface images of the diced turkey. Both suggest the production window for producing 
adequately processed meat is widest at the temperatures around 275oC, and narrows down for 
lower and higher temperatures. It is however worth noticing that the frying time for obtaining 
adequately processed meat at high temperature (>290oC), does not drop as significantly for the 
sliced model compared to the surface model. Also the time needed to obtain adequately 
processed meat at low temperatures, is significantly lower than for the surface model.  

12.6 Visualization 

As for the surface images of the diced turkey, a visualization method for examining the frying-
treatment of entire images is proposed. The goal of the visualization is to provide a tool for 
visual inspection of the frying-treatment, which is better then using a conventional RGB 
image.  

As for the visualization of the other types of meat, the FTS for each pixel containing meat is 
used to assign an appropriate color. Examining the histogram curves in Figure 12.7a it can be 
concluded that the scale should cover FTS values from -5 to 5, below is shown the scale used. 

 
Figure 12.13 - FTS values to RGB 
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As for the surface images of diced turkey, the parts of the image containing other objects than 
meat are shown in normal RGB style. The entire dataset has been converted and is included in 
Appendix K; samples of the converted images are shown below. 

a) b) c)

Figure 12.14 - a) 250oC - 3min, b) 275oC - 6min, c) 300oC - 7min 

The samples clearly show how the under processed meat, have a under processed kernel (blue), 
and a shell that seams to be adequately processed. Furthermore the adequately processed meat 
in Figure 12.14b shows a homogenous green / yellow color as expected, and the over 
processed meat diced shows large red areas indicating they are over processed.   

12.7 Discussion 

In this chapter a method for frying treatment assessment of physically pre-processed diced 
turkey has been proposed. The method proposed is based on the same principles as used for 
treatment assessment of minced meat and non-physically preprocessed turkey squares, thus 
showing this method is applicable for various types of meat. As for the other types of meat the 
method defines a Frying-Treatment Score, providing us with a value representing the frying-
treatment of the meat contained in the image.  

The FTS values of all available sample images have been used in a regression analysis, to 
examine the relation between the FTS values and the frying time and temperature of the meat. 
The regression analysis shows that using a cubic relation, the estimated parameters are able to 
account for 96% of the variance in the FTS values using frying time and temperature. This is 
very good results and further support the use of FTS for a measure of frying-treatment. 

Furthermore a visualization technique is proposed. The technique is able to take advantage of 
the spatial and spectral properties of the image, creating a RGB image clearly showing the 
frying-treatment of the various parts of the meat. This is especially clear when examining 
images of under processed meat, where the under-processed kernel clearly stands out from the 
outer ring of adequately processed meat.  
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The method obtained can be used to examine the effects of increased loading in the wok. The 
FTS for a normal loading at 275oC 6min is 0.5232, but for the higher loading it is 0.3241 thus 
indicating a decrease in frying treatment. For 300oC 6min the values are almost equal being 
1.1062 and 1.0223 respectively, thus showing a slight increase in frying treatment. From this is 
cannot be finally concluded if the frying treatment increases due to higher loading of the wok. 

Examining the meat sample without scalding it shows that their mean FTS is -0.4916, this is 
way lower than the FTS of 0.5332 for samples with scalding, and at the same time and 
temperature. This indicates that the scalding have a significant influence on the frying-
treatment, as it was also observed in the prior chapter. It is however not possible to provide a 
final conclusion based on a single sample.  
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Chapter 13 Reducing Spectral Bands  

The prior part of the thesis shows how it is possible to assess quality parameters, such as frying 
treatment based on multi-spectral images of meat products. When applying this technique to a 
real life scenario, it introduces the problem of acquiring multi-spectral images on a running 
conveyor belt. To simplify this process, it is an advantage to be able to reduce the number of 
bands needed to assess the quality parameters of the meat. Reducing the spectral bands not 
only reduce the complexity of acquiring images, but also reduces computational times thus 
improving the response time of the system.  This chapter will examine the possibility to reduce 
the bands used for each of the applications examined in the prior chapters.  

Numerous approaches exist for reducing the number of spectral bands, mainly presented in 
area of hyper-spectral satellite images. In [17] techniques based on information entropy, 
spectral derivatives and contrast measures are discussed. However since we essentially need to 
model a linear function by removing some of the parameters, stepwise regression is selected to 
be used for this chapter. 
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13.1 Reducing for Frying Treatment Assessment 

The main objective of reducing bands used for frying treatment assessment is essentially to 
examine how many bands are needed to emulate the results of the canonical discriminant 
function, with a reasonable error. The optimal solution to the regression problem, with respect 
to minimum error rate, will therefore be including all 18 bands since this will create an error of 
zero. The “optimal” solution can be written as: 

⋅y = X b   (13.1) 
Where X contains all spectral bands, b is the canonical discriminant function derived for the 
specific type of meat and y  is the Frying-Treatment Score for the specific pixel. The estimated 
solution with regards to the minimum bands required can be defined as:  

ˆˆ ⋅Ry = X b   (13.2) 

Where RX contains the reduced number of spectral bands and an intercept term, and b̂ is the 
weights calculated by least square regression for the reduced number of bands and the 
intercept term. The interpretation of “minimum bands required” is based on an evaluation of the 
mean squared error and the amount of variance accounted for by the bands, further 
explanation is given below when selecting the optimal reduction for each meat type.  

The solutions are acquired using stepwise regression, this does not guarantee the best results, 
but it is an acceptable alternative to the time consuming best subset method. Tests performed 
shows that due to the immense amount of data and the rapid increase in complexity, 
calculations for a best subset regression reduction to 5 bands last over 1½ hours, whereas 
stepwise regression does the job in about 70 seconds.  

13.1.1 Minced Beef  

In-order to obtain an as accurate solution as possible all images where loaded, pre-processed 
and the canonical discriminant function for minced beef where applied. Since this resulted in a 
very large amount of data, making the analysis very time consuming it was chosen to reduce 
the data by only using every 50 pixel of an image, this can be done since after the reduction 
over 530000 observations where still available for the analysis.  

To examine the impact of the band reduction a stepwise regression where performed, 
recording the root mean square error and R2 value at each step to obtain a plot of the 
evolution of these variables through the different reductions as shown in Figure 13.1. 
Furthermore the optimal subsets of bands at each step where recorded and given in Table 13.1 
along with the root mean squared error and the R2 value. 
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Figure 13.1 - RMSE & R2 for band reduction – Minced Beef 

 

 Bands included Subset 
size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Root Mean 
Square Error 

R2 

1             0.7199 0.7643 
2             0.4031 0.9261 
3             0.3449 0.9459 
4             0.2927 0.9610 
5             0.2609 0.9690 
6             0.2236 0.9773 
7             0.1606 0.9883 
8             0.1066 0.9948 
9             0.0819 0.9969 
10             0.0717 0.9977 
11             0.0616 0.9983 
12             0.0495 0.9989 
13             0.0416 0.9992 
14             0.0298 0.9996 
15             0.0208 0.9998 
16             0.0113 0.9999 
17             0.0033 0.9999 
18             0.0000 1.0000 

Table 13.1 - Band reduction results - Minced Beef 

The R2 value, the measure for the variance accounted for, increases dramatically when adding 
the first four variables, after which it increase at a much lower rate. Also the RMSE is 
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decreasing at a higher rate for the first variables, than for the adding the last which is also 
expected. From these results is can be concluded that using four variables seams like a 
somewhat optimal band reduction, since this still includes 96.1% percent of the variation and 
an acceptable root mean square error. Including more variable will have a too large cost, 
compared to the increase in accuracy gained. 

Examining the bands to include, namely band 3, 11, 12 and 18 at first sight shows that the NIR 
bands are very important thus proving the motivation for this project. When comparing to the 
values of the CDF function, ones notices that all for these four have large weights, but are not 
the ones with the highest weights. An example is band 10 which have a much higher weight 
but seams to be excluded since band 11 in combination with band 18 covers the variance 
better, thus implying redundancy in the bands which were also expected.  

Another interesting property of the selected bands is that it is possible to perform the pre-
processing, defined for the minced beef images, using two of these bands, 3 and 11. Originally 
the pre-processing mechanism selected the optimal band between band 1 and 8 to separate the 
meat from the surrounding objects, but from the spectrum plotted in Figure 9.2a, it is 
observed that band 3 seams to be able to do the job on its own, if it is the only one available. 
For further pre-processing band 10 was used to perform a h-domes segmentation, it is 
however shown in Chapter 10 that band 11 is able to do an equivalently good job for the h-
domes segmentation.   

To further investigate the goodness of the reduction to 4 bands, a number of images are 
transformed using the new weights and their resulting histogram is plotted, as for the CDF 
transformed data in Figure 9.8. 

 
Figure 13.2 - Histograms curves - 4 bands used 
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Comparing Figure 13.2 with Figure 9.8 it becomes clear that they are very alike, thus implying 
the new projection found via band reduction actually produces similar results using 4 bands as 
the CDF using 18 bands. Also it can be noted that the curves in Figure 13.2 are more bell 
shaped not having a tail towards higher values as can be observed in Figure 9.8. This implies 
some of the distortion is removed, giving each image less deviation and thereby enabling a 
more precise FTS value.  

13.1.2 Diced Turkey 

Equivalent to the minced beef case, all images available were used in order to ensure the most 
accurate result. The images are loaded, pre-processed and every 25 pixel are taken out for the 
analysis. The increase from every 50 to every 25 pixel is possible since the turkey images 
contain a smaller percentage of meat in every image, thus making the observations available for 
the analysis approximately the same as for the minced beef.  

At each regression step the RMSE and R2 value was recorded along with the bands in the 
optimal subset found. The results are plotted in Figure 13.3 and given in Table 13.2. 

 
Figure 13.3 - RMSE & R2 for band reduction – Diced Turkey 

 

 Bands included Subset 
size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Root Mean 
Square Error 

R2 

1             0.5698 0.8475 
2             0.4404 0.9089 
3             0.3963 0.9262 
4             0.3533 0.9414 
5             0.2931 0.9596 
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 Bands included Subset 
size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Root Mean 
Square Error 

R2 

6            0.2572 0.9689 
7            0.2107 0.9791 
8            0.1727 0.9860 
9            0.1519 0.9891 
10            0.1276 0.9924 
11            0.0990 0.9954 
12            0.0780 0.9971 
13            0.0584 0.9984 
14            0.0418 0.9992 
15            0.0254 0.9997 
16            0.0126 0.9999 
17            0.0041 0.9999 
18            0.0000 1.0000 

Table 13.2 - Band reduction results - Diced Turkey 

From Figure 13.3 it is observed the rapid increase in variance accounted for decreases as the 
fifth band is added. It is therefore decided to carry on, including five bands as this gives an 
acceptable R2 and root mean square error. Including more bands is simply not feasible as it 
gives a too small increase in accuracy compared to the cost.  

Examining the bands to include, it is band 3, 7, 10, 12 and 18, it is clear that they include a 
larger part of visual bands than for minced meat. This implies the assessment of the frying 
treatment is for a large part depended on the look of the meat, rather than the properties 
derived form the NIR bands. Common for the two is however that band 18 is included, this is 
also be expected as water has absorbance in this band, and water content is good indicator of 
the frying degree. Comparing the selected bands with the CDF for diced turkey, again it is 
observed that it is not necessarily the bands with the highest weight that has the highest 
impact. E.g. band 12 (870 nm) does not have a high weight in the CDF, but still seams to be 
rather important for the assessment of the frying degree.  

Considering the issue of performing pre-processing, the originally proposed procedure was 
using band 2 and 13. However when examining the spectrums in Figure 11.2a it becomes clear 
that band 3 and 12 also would be able to do the job, as they have some of the same properties.  

To further examine the correctness of the results using the reduced bands, histogram curves 
are derived for images transformed using the new five band transformation. The histograms 
are plotted in Figure 13.4. 
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Figure 13.4 – Histogram curves - 5 bands used 

Comparing Figure 13.4 to the original histogram curves in Figure 11.8a shows only minor 
differences, thus showing the 5 band reduction is a good approximation to the 18 band CDF. 
The differences observed are primarily more smooth curves, indicating a smaller deviation of 
the data giving a better approximation of the frying degree.  

13.1.3 Sliced Diced Turkey 

The process used for reducing bands for the sliced diced turkey images is the same as for the 
diced turkey images. All images where loaded, preprocessed and every 25 pixel where taken out 
to use for band reduction calculations. As with the other band reductions the RMSE and R2 
value where recorded and plotted for each step. The plotted curves are shown in Figure 13.5 
and the results are given in Table 13.3.   

 
Figure 13.5 - RMSE & R2 for band reduction – Sliced Diced Turkey 
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 Bands included Subset 
size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Root Mean 
Square Error 

R2 

1            0.9117 0.6268 
2            0.7334 0.7585 
3            0.5021 0.8868 
4            0.4430 0.9119 
5            0.4077 0.9254 
6            0.3257 0.9524 
7            0.3257 0.9524 
8            0.2434 0.9734 
9            0.2020 0.9816 
10            0.1695 0.9871 
11            0.1368 0.9916 
12            0.1019 0.9953 
13            0.0795 0.9972 
14            0.0492 0.9989 
15            0.0362 0.9994 
16            0.0164 0.9999 
17            0.0043 0.9999 
18            0.0000 1.0000 

Table 13.3 - Band reduction results - Sliced Diced Turkey 

Examining Figure 13.5 shows the rapid increase in variance accounted for, slows down after 
adding the fourth variable. This motivates the use of the four band solution. It should be noted 
that the root mean square error seams somewhat high using this solution, but to get a large 
reduction in the root mean square error 2-4 extra variables must be included which is simply 
not worth the cost. 

The bands to use for the solution are band 1, 3, 9 and 13. It is worth noticing that these bands 
expect band 13 all are in the visual part of the spectrum, and that band 18 is not included as it 
was for the two prior band reductions. Furthermore it can be noted that these band all stands 
out in the CDF weights in Figure 12.9.  

The pre-processing of the images for sliced diced turkey originally was designed using band 1 
and 11; where only band 1 is included in the subset to use after reduction. However examining 
Figure 12.1, show that the preprocessing process could be redesigned using band 1 and 13, 
since the difference between band 11 and 13 are quite small. This leads to the conclusion that 
the preprocessing could be performed using only these bands.  

To examine the solution further histogram curves has been derived from a number of images 
transformed with the new 4 band projection.  
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Figure 13.6 - Histogram curves - 4 bands used 

The histogram curves are very like the ones in Figure 12.7a, the lower frying degrees still have a 
very wide bell shape since they contain meat with a variety of different frying degrees. Worth 
noticing is that the curves in Figure 13.6, generally have a more narrow shape, implying some 
kind of generalization was introduced by using only 4 bands. Fortunately the displacement of 
the tops still seams to be correct with regards to the frying degree, and the generalization only 
seams to be an advantage for assessing the frying degree.  

13.2 Reducing for Agglutination Assessment 

The reduction of bands for agglutination assessment of minced beef is somewhat different 
from the band reduction in relation to the frying degree. This is since the agglutination 
assessment focuses on the spatial properties of specific bands, and not the properties of all 
bands combined. 

From Chapter 10 it can be concluded that the bands needed perform the agglutination 
assessment is the lower bands from 1 to 8, used to separate meat from the other objects in the 
image, and band 11 to perform the actual granule isolation. However as concluded in section 
13.1.1 the separation of meat from the other objects could be performed using only band 3, 
thus leaving us with band 3 and 11 as the required for assessing agglutination.  

Comparing this to the bands needed to assess frying treatment of minced beef (3, 11, 12 and 
18), band 3 and 11 are both included, meaning it is possible to do both the frying treatment 
assessment and the agglutination assessment using only these four bands.  
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13.3 Discussion 

This chapter shows how it is possible to reduce the bands needed for frying treatment 
assessment of minced beef, diced turkey and sliced diced turkey from eighteen to a maximum 
of five, without losing significant information regarding the frying treatment. Furthermore it 
shows that the agglutination assessment for minced beef, can be performed adding no 
additional bands than those needed for the frying treatment assessment of minced beef. 

This significant reduction in bands decreases the complexity of implementing a system for 
production purposes. It not only decreases the space and time needed for image acquisition, 
but also reduces computation time.  

Comparing the results of bands needed for frying treatment assessment of images containing 
the surface of different meat types, minced beef required band 3, 11, 12 and 18, and diced 
turkey required band 3, 7, 10, 12 and 18. Both meat types used band 3, 12 and 18 implying 
these generally are important for frying treatment assessment. Of these bands band 18 was 
expected, since this band gives and indication of water contents which is known to decrease 
due to increased heat treatment. Common for the two subsets are also a combination of both 
visual and NIR bands are used, showing that the appearance of the meat is not the only 
indicator of the frying degree, also features which are not normally visible to the human eyes 
plays an important role, thus proving the motivation of this project.  
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Chapter 14 Conclusion 

The goal of this project was to examine the possibility of assessing various quality parameters, 
with regards to the frying process of a two meat products, namely minced beef and diced 
turkey. The quality parameters to assess for minced beef, was frying treatment and 
agglutination. The parameters assessed for diced turkey was the frying-treatment of two types 
of samples, namely whole (analyzing the surface) and sliced (analyzing the interior). A 
conclusion for each quality parameter is given below, along with some concluding remarks on 
the project.  

 

Agglutination 

This thesis suggests a method for assessment for the agglutination in minced meat, based on 
the spatial properties of the image. Even though it is mainly the spatial properties which are 
utilized, the advantage gained through multi-spectral imaging is however still obvious, as band 
11, a NIR band, plays an essential role in created the various measures of agglutination. 

The spatial properties of the images are used to define a number of measures, such as meat pr. 
cm2, maximum granule size etc.. These measures are held against the physical measure of 
agglutination, the strainer loss. It was found that the mean granule size and the maximum 
granule size measures had a very high correlation with the strainer loss. These measures also 
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have the advantage of being more application independent, as these don’t vary with the loading 
of meat in the image and the image area.  

To further examine these spatial measures relation with the strainer loss, regression analysis is 
used to create a model of the strainer loss based on these measures, the model shows to be 
able to cover 56% of the variance in the strainer loss at a RMSE of 1.83. This seams like a 
fairly good approximation considering the differences between the measures. The results of the 
regression clearly show that the measures can be used to assess agglutination, perhaps not in 
the form of an estimation of the strainer loss, which also is not an optimal measure for the 
process operator. Instead another application could be to give direct feedback to the process 
operator, providing him with the current mean size of the granules on the belt, and the 
maximum granule size found, or simplified even further just sound an alarm when the 
agglutination has risen to certain level.  

 

Frying Treatment Assessment 

The second quality parameter assessed is the frying treatment of two types of meat, minced 
meat and diced turkey. The frying-treatment to assess is not only based on if the meat is raw or 
fried, but rather on the quality of the frying-treatment assessed by experts. To assess frying 
treatment for these meat types, various multivariate statistical methods taking advantage of 
spectral properties of the multi-spectral images were examined. A common solution was found 
for assessing the frying treatment for all meat types, using canonical discriminant analysis.  

The method finds the optimal linear combination, creating the largest separation of the image 
data at the various frying degrees using an extensive dataset. It should be noted that for 
obvious reasons it is required to derive a separate linear combination from meat type to meat 
type. From the linear combination a Frying-Treatment Score for each image can be derived, as 
the mean of the projected values of the pixels containing meat.  

To examine the FTS relation with frying time and temperature, a model is created using 
regression. Using cross validation it was found that the optimal relation between FTS, and 
frying time and temperature is cubic. Using a cubic relation the parameters can be estimated to 
account for 65% to 98% of the variance in the FTS, using frying time and temperature.  

The 65% percent was achieved for modeling the frying-treatment of minced meat, this is not 
an impressive results compared to the 98% from the turkey dices. The low amount of variance 
accounted for suggest other factors not examined to be influent. One of theses could be the 
quality of minced meat, as this known to vary. An example is the fat percentage which is 
known to be very varying ([22]). Another reason for the relatively low amount of variance 
accounted for could be the general larger variation over the minced meat samples.  

For the diced turkey, two examinations were created one for examining the frying-treatment 
based on the surface, and one for the interior based on sliced turkey dices. Both show 
impressive results modeling the FTS by time and temperature, accounting for 95% and 98% 
respectively. Generally it was found the model for the surface of diced turkey seams to be the 
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most accurate based on the contours derived. The contours correctly show how the 
production window for adequately processed diced turkey narrows down for high and low 
temperatures, in the way that high frying times are required for low temperatures, and low 
frying times for high temperature.   

In addition to the model of FTS by frying time and temperature, another application of the 
FTS is suggested, namely a visualization of the results. This visualization uses the FTS for each 
pixel value to create a false RGB image, with each color assigned to a specific frying degree. 
The visualization is done for minced beef and both types of diced turkey. The false RGB 
images seams to be a powerful tool for examining specific meat sample, giving a very good 
impression of the frying-treatment of each part / granule of the meat in question. 

Having defined the FTS and shown how it could be used as an application, the linear 
combination leading to an FTS value is further examined, to investigate the possibility of 
reducing the bands used, thus decreasing the complexity and the implementation costs. It was 
found that the assessment of the FTS can be effectuated using only 4-5 spectral bands without 
loosing considerable information. This 72% reduction in the bands required is very promising 
with regards to the implementation of such a system.  

 

Concluding remarks 

Overall the thesis project proves that it is possible to assess certain quality parameters, with 
regards to the frying process of various meat products using multi-spectral imaging. The thesis 
shows how to take advantage of multi-spectral imaging, using both the spatial and spectral 
properties to extract an assessment of the quality parameters. Using the spatial information in 
the image given an edge, compared to conventional spectroscopy methods where only spectral 
information is used.  

The results gained throughout this thesis is however not ready to be used in a production 
scenario without further research. Suggestions of future work are presented in Chapter 15. 
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Chapter 15 Putting into perspective  

The motivation for doing this thesis project was to examine the possibility to assess quality 
parameters using multi-spectral vision technology. This project proposes a method for 
assessment of frying-treatment of various types of meats and some measures for agglutination 
of minced beef. The methods proposed have been presented in two articles and one poster, of 
which the poster has been presented and the two articles are pending for publication.  

Future work in this area could include maturing the method for production. The first step 
towards production is taken in Chapter 13, where it is shown how the number of spectral 
bands needed for assessing the quality parameters can be minimized. Aside from the band 
reduction more testing and research is still needed to better understand the nature of measures 
proposed in this thesis, and to adapt these to actual applications.  

Also interesting could be to examine if / how the measures could be used in an automatic 
regulation system of the wok, maybe even enabling industry production of fried meat without 
being dependent on experienced process operators.   

Another approach for future work, could be examining if the method for frying-treatment 
assessment can be transferred to other meat types, this is most likely the case as it is already 
shown it can be used for at least two types. Further interesting could be to investigate if the 
method is general enough to be transferred to other applications such as vegetables, which is 
one of the main application areas of the continuous wok. 
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Appendix A VideometerLab 2 – 
Wavelength table  

This table shows the wavelengths which the VideometerLab 2 camera is able to record, along 
with sample applications of the specific wavelength.  

Band Wavelength [nm] Color Example application 
1 430 Ultra Blue Chlorophyll A 
2 450 Blue Riboflavin 
3 470 Blue RGB, Blue 
4 505 Green RGB Green, Met-myoglobin 
5 565 Green RGB Green 
6 590 Amber Oxy-myoglobin 
7 630 Red RGB red 
8 645 Red Chlorophyll B 
9 660 Red Oxidation, Clorophyll A 
10 700 Red Oxidation 
11 850 NIR Baseline 
12 870 NIR Baseline 
13 890 NIR Unsaturated fat 
14 910 NIR Protein 
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15 920 NIR  
16 940 NIR Fat 
17 950 NIR Protein 
18 970 NIR Water 
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Jens Adler-Nissen 
Forsøgsplan 29/1 07 – wokstegning af hakket kød 
 
Tilberedning af råvaren: 
Det frosne kød knuses i stykker på ikke over 150 g. Mellem 0.5 og 1 kg. 
hakkes batchvis i hurtighakkeren (Kilia 57 cm diameter) på laveste 
hastighed indtil kødet er findelt til omkring 5 mm. stykker (tager et par 
minutter). Hakningen må ikke overdrives af hensyn til 
temperaturstigningen. Efter hakningen opsamles kødet (der er let som sne) i 
plastbægre med ca. 100g i hver.  
Til hvert forsøg bruges 8 plast bægre = ca. 800g. 
Der bør ikke hakkes og afvejes mere end hvad der kan bruges inden for ca. 
½ time. Stil evt. bægerne i is eller koldt. Det skulle kunne lade sig gøre at nå 
4 forsøg, svarende til en temperatur.  
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Wokstegning: 
Når temperaturen har indstillet sig, tilsættes bægerne en af gange for hver 
omdrejning på sneglen. Produktet opsamples fra transportbåndet, således at 
de først ankomne 50-100g. og de sidste ca. 150-200 g. kasseres. Det totale 
udbytte er ca. 500-600 g. dvs. at der kan regnes med at der opsamles 
omkring 250-300 g. færdig kød per forsøg. Det opsamlede produkt 
anbringes i plastposer, der er mærket.  
Forsøgsparametre: 
200oC: tid: 120 s – 160 s – 200 s 240 s 
225oC: tid: 120 s – 160 s – 200 s 240 s 
250oC: tid: 120 s – 160 s – 200 s 240 s 
Forsøgene køres med den laveste temperatur først. 
 
Videometer optagelse: 
Prøverne lægges i en petriskål i et så tykt lag, at man kan se bunden. Der 
laves 2 petriskåle for hvert forsøg således at man får dobbelt bestemmelser 
af billede-optagelsen (eller 3 petriskåle, så man får trippel-bestemmelser). 
Resten af prøverne gemmes (i køleskab til næste dag) til vandbestemmelse; 
evt. nedfrysning. 
 
Vandbestemmelse: 
Ca. 20 g. prøve homogeniseres i en miniblender. Vandbestemmelsen sker på 
ca. 2 g. prøve, som tørres ved 110oC i 24 timer i afvejede foliebægre – der 
laves trippel-bestemmelse.  
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Moisture content Cup weight: 0.3152 [g]
Weight Moisture contents

Before [g] After [g] [g] Percent Std.
200 Degress

120 [sec] Gns. 54.32574 0.216905
I 2.2552 1.2018 1.0534 54.29897
II 2.3603 1.2446 1.1157 54.55479
III 2.3984 1.2709 1.1275 54.12346

160 [sec] Gns. 52.66065 0.440206
I 2.5152 1.3455 1.1697 53.16818
II 2.2626 1.2425 1.0201 52.38266
III 2.3287 1.273 1.0557 52.43109

200 [sec] Gns. 51.49194 0.212021
I 2.292 1.2735 1.0185 51.52266
II 2.2892 1.2689 1.0203 51.68693
III 2.4396 1.3505 1.0891 51.26624

240 [sec] Gns. 51.1633 0.424912
I 2.65 1.4485 1.2015 51.46051
II 2.3924 1.3257 1.0667 51.35278
III 2.2587 1.2738 0.9849 50.67661

225 Degress
120 [sec] Gns. 53.16467 0.150364

I 2.2983 1.244 1.0543 53.16424
II 2.4538 1.3136 1.1402 53.31525
III 2.5527 1.3665 1.1862 53.01453

160 [sec] Gns. 53.96302 0.136475
I 2.5732 1.3533 1.2199 54.02569
II 2.7768 1.4523 1.3245 53.80647
III 2.2095 1.1855 1.0240 54.05691

200 [sec] Gns. 52.55215 0.411431
I 2.3866 1.3076 1.0790 52.09037
II 2.1817 1.1947 0.9870 52.87972
III 2.2081 1.2108 0.9973 52.68635

240 [sec] Gns. 51.27254 0.239858
I 2.1957 1.2304 0.9653 51.33209
II 2.3231 1.2989 1.0242 51.00852
III 2.4445 1.3484 1.0961 51.47701

250 Degress
120 [sec] Gns. 51.00601 0.185106

I 2.2633 1.2657 0.9976 51.20887
II 2.3871 1.3312 1.0559 50.96288
III 2.4599 1.3694 1.0905 50.84627

160 [sec] Gns. 46.28823 0.206039
I 2.3025 1.3821 0.9204 46.31409
II 2.4745 1.4797 0.9948 46.07049
III 2.6846 1.5833 1.1013 46.48012

200 [sec] Gns. 49.70203 0.272753
I 2.3971 1.3666 1.0305 49.49805
II 2.4202 1.3762 1.0440 49.5962
III 2.4265 1.3706 1.0559 50.01184

240 [sec] Gns. 48.27531 0.225915
I 2.5683 1.4854 1.0829 48.06267
II 2.459 1.4246 1.0344 48.25077
III 2.332 1.3536 0.9784 48.5125  
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Appendix D Visualization Results – 
Minced Meat 

This appendix includes all images acquired of minced meat, each have been transformed for 
ease of inspection using the visualisation method from section 9.6 for minced meat.  

Temperature 200oC 
120[s] 160[s] 200[s] 240[s] 
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Temperature 225oC 
120[s] 160[s] 200[s] 240[s] 
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Temperature 250oC 
120[s] 160[s] 200[s] 240[s] 
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Appendix E Experiment Design March 
(Danish) 

Søren Blond Daugaard 
Forsøgsplan 14/3 07 – Wok stegning af hakket kød 
 
Formål: 
Formålet med disse forsøg er at undersøge klumpning i hakket kød, 
afhængig af temperaturen før stegning, temperaturen under stegning og 
stege tid.  
 
Tilberedning af råvaren: 
Det frosne kød knuses i stykker på ikke over 150 g. Mellem 0.5 og 1 kg. 
hakkes batchvis i hurtighakkeren (Kilia 57 cm diameter) på laveste 
hastighed indtil kødet er findelt til omkring 5 mm. stykker (tager et par 
minutter). Hakningen må ikke overdrives af hensyn til 
temperaturstigningen. Efter hakningen opsamles kødet (der er let som sne) i 
plastbægre med ca. 100g i hver.  
Til hvert forsøg bruges 8 plast bægre = ca. 800g. 
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Alt kød klargøres fra starten af forsøget, når tiden fra hakning til stegning er 
opnået stilles plast bægrene i is for at stoppe optøningen indtil disse skal i 
wokken.  
 
Wokstegning: 
Når temperaturen har indstillet sig, tilsættes bægerne en af gangen for hver 
omdrejning på sneglen. Produktet opsamples fra transportbåndet, således at 
de først ankomne 50-100g. og de sidste ca. 150-200 g. kasseres. Det totale 
udbytte er ca. 500-600 g. dvs. at der kan regnes med at der opsamles 
omkring 250-300 g. færdig kød per forsøg.  
Det opsamlede produkt anbringes i foliepakker eller poser, der er mærket og 
der laves si måling efter hver gennemgang.  
Forsøgsparametre: 
Tid fra hakning til stegning Stegetemperatur Tid i wok Hz for wok 
~30 min    

200oC 160s 44,32 
200oC 240s 29,55 

For at stoppe optøningen bør 
bægerne stilles i is når de 30 min er 
opnået.  225oC 160s 44,32 
 225oC 240s 29,55 
    
    
~1t 30min    

200oC 160s 44,32 
200oC 240s 29,55 

For at stoppe optøningen bør 
bægerne stilles i is når de 1t 30 min 
er opnået. 225oC 160s 44,32 
 225oC 240s 29,55 
    
    
~2t 30min    

200oC 160s 44,32 
200oC 240s 29,55 

For at stoppe optøningen bør 
bægerne stilles i is når de 2t 30 min 
er opnået. 225oC 160s 44,32 
 225oC 240s 29,55 
    
    
Forsøgene køres kronologisk i overensstemmelse med ovenstående tabel.  
Si tab: 
Der bruges en si med kvadratiske huller på 1,1 – 1,2 cm.  
For hver prøve afvejes en tom foliebakke og vægten noteres. Herefter 
afvejes kød prøven og vægten noteres. Produktet tilsættes si’en, opsamles i 
den tomme foliebakken, vejes og vægten noteres.  
Vægtene noteres ved hjælp af en printet version af regnearket Si-tab-
Marts-070312.xls.  
 
Videometer optagelse: 
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Prøverne lægges i en petriskål i et så tykt lag, at man ikke kan se bunden. 
Der laves 2 petriskåle for hvert forsøg således at man får dobbelt 
bestemmelser af billede optagelsen (eller 3 petriskåle, så man får trippel 
bestemmelser). 
 
Billederne gemmes i HIPS formatet efter følgende navne konvention: 
[TidFørWok]\[Temp]_[Tid]_[#].hips 
 
Resten af prøverne gemmes (i køleskab til næste dag) til vandbestemmelse; 
evt. nedfrysning. 
 
Vandbestemmelse: 
Ca. 20 g. prøve homogeniseres i en miniblender. Vandbestemmelsen sker på 
ca. 2 g. prøve, som tørres ved 110oC i 24 timer i afvejede foliebægre – der 
laves trippel-bestemmelse.  
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Moisture content - March Experiment
Weight Moisture contents
Cup [g] Before [g] After [g] [g] Percent Std. 

~30 min
200C - 160 S Gns. 50.29219 0.4006

I 0.3166 2.4739 1.3846 1.0893 50.49367
II 0.315 2.7244 1.5064 1.2180 50.552
III 0.315 2.4735 1.3979 1.0756 49.8309

200C - 240 S Gns. 46.55977 0.2452
I 0.3171 2.3497 1.4015 0.9482 46.64961
II 0.3167 2.287 1.3751 0.9119 46.28229
III 0.3172 2.497 1.478 1.0190 46.74741

225C - 160 S Gns. 45.27876 1.8283
I 0.3145 2.5059 1.4674 1.0385 47.3898
II 0.3138 2.3687 1.4596 0.9091 44.2406
III 0.3144 2.4476 1.5046 0.9430 44.20589

225C - 240 S Gns. 46.03677 0.0799
I 0.3148 2.7729 1.6412 1.1317 46.03962
II 0.3151 2.4365 1.4616 0.9749 45.9555
III 0.3153 2.4634 1.4728 0.9906 46.11517

~1t 30 min
200C - 160 S Gns. 43.38688 0.1889

I 0.3174 2.2935 1.4395 0.8540 43.21644
II 0.3171 2.5012 1.5543 0.9469 43.35424
III 0.3178 2.622 1.6176 1.0044 43.58997

200C - 240 S Gns. 48.13233 0.6723
I 0.3151 2.7089 1.558 1.1509 48.07837
II 0.3163 2.5402 1.4841 1.0561 47.48865
III 0.3143 2.498 1.4317 1.0663 48.82997

225C - 160 S Gns. 47.5126 3.0361
I 0.3161 2.5419 1.446 1.0959 49.23623
II 0.3162 2.6694 1.5094 1.1600 49.29458
III 0.3159 2.3174 1.4366 0.8808 44.00699

225C - 240 S Gns. 45.04778 0.2705
I 0.3154 2.5917 1.5632 1.0285 45.18297
II 0.3152 2.3632 1.447 0.9162 44.73633
III 0.3153 2.5159 1.5207 0.9952 45.22403

~2t 30 min
200C - 160 S Gns. 48.8079 0.2093

I 0.316 2.3366 1.3459 0.9907 49.02999
II 0.3158 2.3271 1.346 0.9811 48.7794
III 0.317 2.3629 1.3683 0.9946 48.6143

200C - 240 S Gns. 49.23749 0.1167
I 0.3164 2.5687 1.4568 1.1119 49.36731
II 0.3172 2.5473 1.4514 1.0959 49.14129
III 0.317 2.4146 1.3825 1.0321 49.20385

225C - 160 S Gns. 53.80139 0.2608
I 0.3156 2.4282 1.2858 1.1424 54.07555
II 0.3161 2.2394 1.2052 1.0342 53.77216
III 0.3155 2.3681 1.2688 1.0993 53.55646

225C - 240 S Gns. 50.51604 0.3248
I 0.3162 2.5641 1.4208 1.1433 50.8608
II 0.3163 2.4373 1.3668 1.0705 50.47148
III 0.3153 2.6317 1.4685 1.1632 50.21585  



 
150  Appendix G ‐ Results measures of agglutination
 

Appendix G Results measures of 
agglutination 

Wait time / 
Temperature 

Frying time [s] / 
Measurement 

Image 
Sample I 

Image 
Sample II 

Image 
Sample III Average Std. 

30 min            
200oC 160          

 Meat pr. cm2 6.43 6.81 5.88 6.37 0.4676 
 Mean size 0.0549 0.0494 0.0615 0.0553 0.0060 
 Std. dev. size 0.0889 0.0885 0.1072 0.0949 0.0107 
 Max. size 0.5293 0.4663 0.6894 0.5616 0.1150 

200oC 240      
 Meat pr. cm2 7.71 7.96 6.48 7.38 0.7922 
 Mean size 0.0459 0.0441 0.0528 0.0476 0.0046 
 Std. dev. size 0.0704 0.0726 0.0801 0.0744 0.0050 
 Max. size 0.4342 0.5486 0.5046 0.4958 0.0577 

225oC 160      
 Meat pr. cm2 6.03 6.59 5.92 6.18 0.3593 
 Mean size 0.0574 0.0512 0.0601 0.0562 0.0045 
 Std. dev. size 0.0941 0.0829 0.1081 0.0950 0.0126 
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Wait time / 
Temperature

Frying time [s] / 
Measurement 

Image 
Sample I 

Image 
Sample II 

Image 
Sample III Average Std. 

 Max. size 0.7216 0.4890 0.7023 0.6376 0.1290 
225oC 240      

 Meat pr. cm2 5.46 5.33 5.90 5.56 0.2987 
 Mean size 0.0648 0.0653 0.0614 0.0638 0.0021 
 Std. dev. size 0.1069 0.1057 0.1041 0.1055 0.0014 
 Max. size 0.6680 0.6144 0.7880 0.6901 0.0889 

  Avg. meat pr. cm2 6.38  
 Avg. size 0.0557  

 Avg. std. dev. size 0.0925  
  Avg. max. size 0.5963  

1h 30 min            
200oC 160          

 Meat pr. cm2 6.62 6.60 6.13 6.45 0.2768 
 Mean size 0.0529 0.0493 0.0585 0.0535 0.0046 
 Std. dev. size 0.0852 0.0834 0.1221 0.0969 0.0219 
 Max. size 0.6070 0.6164 1.2010 0.8081 0.3402 

200oC 240      
 Meat pr. cm2 5.59 6.09 6.05 5.91 0.2749 
 Mean size 0.0642 0.0567 0.0596 0.0602 0.0038 
 Std. dev. size 0.1199 0.1113 0.0883 0.1065 0.0162 
 Max. size 1.1956 1.1653 0.4836 0.9482 0.4026 

225oC 160      
 Meat pr. cm2 6.20 6.86 5.81 6.29 0.5303 
 Mean size 0.0557 0.0501 0.0607 0.0555 0.0053 
 Std. dev. size 0.0932 0.7514 0.1150 0.3199 0.3738 
 Max. size 0.9469 0.4540 1.1459 0.8489 0.3562 

225oC 240      
 Meat pr. cm2 4.91 6.04 5.43 5.46 0.5638 
 Mean size 0.0689 0.0551 0.0662 0.0634 0.0073 
 Std. dev. size 0.1217 0.1083 0.1057 0.1119 0.0086 
 Max. size 0.6959 0.7567 0.6904 0.7143 0.0368 

  Avg. meat pr. cm2 6.03  
 Avg. size 0.0582  

 Avg. std. dev. size 0.1588  
  Avg. max. size 0.8299  

             
2h 30 min            

200oC 160     
 Meat pr. cm2 4.80 5.93 5.92 5.55 0.6466 
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Wait time / 
Temperature 

Frying time [s] / 
Measurement 

Image 
Sample I 

Image 
Sample II 

Image 
Sample III Average Std. 

 Mean size 0.0740 0.0600 0.0575 0.0638 0.0089 
 Std. dev. size 0.1461 0.1291 0.1010 0.1254 0.0228 
 Max. size 1.3014 0.8408 1.0547 1.0656 0.2305 

200oC 240      
 Meat pr. cm2 4.79 5.10 5.72 5.20 0.4743 
 Mean size 0.0764 0.0747 0.0648 0.0720 0.0063 
 Std. dev. size 0.1619 0.2037 0.1363 0.1673 0.0340 
 Max. size 1.4465 2.7996 1.2549 1.8337 0.8419 

225oC 160      
 Meat pr. cm2 4.80 5.94 5.14 5.29 0.5853 
 Mean size 0.0765 0.0603 0.0688 0.0686 0.0081 
 Std. dev. size 0.0138 0.1210 0.1328 0.0892 0.0655 
 Max. size 0.7897 1.1142 0.8028 0.9022 0.1837 

225oC 240      
 Meat pr. cm2 5.61 4.97 5.13 5.24 0.3289 
 Mean size 0.0600 0.0743 0.0689 0.0677 0.0072 
 Std. dev. size 0.1275 0.1643 0.1490 0.1469 0.0185 
 Max. size 0.8468 1.4823 0.9581 1.0957 0.3393 

  Avg. meat pr. cm2 5.32  
Avg. size 0.0680

Avg. std. dev. size 0.1322
Avg. max. size 1.2243
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Appendix H  
Experiment Design April (Danish) 

Søren Blond Daugaard 
Forsøgsplan 16/4 07 – Wok stegning af kalkun kød 
 
Formål: 
Formålet med disse forsøg er at undersøge stegnings graden af kalkun kød i 
tern, afhængig af temperaturen under stegning og stege tid.  
 
Tilberedning af råvaren: 
Kalkun brystet udskæres til stykker af ca. 10g. (ca. 2*2*2 cm). Der udtages 
20 stykker til kontrol vejning, til vejningen bruges Tabel 1 – Vægt skema.  
For at undgå klæbning i starten af stegeprocessen, skal kødet skoldes. Dette 
gøres ved at nedsænke kødet i en gryde med kogende vand (som en 
frituregryde) i ca. 7 sekunder, alt kødet skal skoldes med udtagelse af ca. 
600 g. der bruges til kontrol stegningen (Forsøg 2). Efter skoldning tilsættes 
en procent fedt til kødet og det blandes godt.  
Efter udskæring og skoldning opdeles kødet i bægere med 10 stykker i hver 
(ca. 100g). Der skal bruges 6 kopper til hvert forsøg (ca. 600g). 
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Alt kødet kan klargøres før forsøgende da kødets temperatur før stegning 
ikke har indflydelse på stegeprocessen.   
 
Wok stegning: 
Forsøg 1 
Når temperaturen har indstillet sig, tilsættes bægerne en af gangen for hver 
omdrejning på sneglen. Produktet kan opsamles direkte fra samlebåndet i 
foliebakker til nedkøling. Efter nedkøling skæres ca. halvdelen af kødet i 
halve. Kødet lægges herefter i markerede plast-poser (en til hele, og en til 
halve stykker) til VideometerLab optagelse.  
Forsøgsparametre: 
Stegetemperatur Tid i wok Forventet stegningsgrad 
   
250oC 3 min. Tydelig rå., hvid overflade 
250oC 4 min. Stadig rå, hvid overflade 
250oC 6 min. Stegning ok, overflade bleg, saftig 
   
275oC 4 min. Rå, Ok overflade men bleg 
275oC 6 min. Fin stegning, saftig, overflade ok 
275oC 7 min. Fin stegning, saftig, overflade ok 
275oC 9 min. Fin stegning, saftig, overflade mørkere 

og sprødere.  
   
300oC 4 min. Tegn på rå, god overflade.  
300oC 6 min. Ok stegning, meget mørk overflade 
300oC 7 min. Ok stegning, meget mørk overflade 
 
Forsøg 2 
For at kontrollere at skoldning ingen effekt har på stegningsgraden, laves en 
kontrol stegning med de 600g. kød der ikke blev skoldet. Disse steges ved 
275oC 7 min., ca. halvdelen skæres igennem og prøverne ligges i to poser en 
til hele og en til halve stykker. Poserne skal tydeligt markeres som ”Ikke 
skoldet” samt med temperatur og tid.  
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Forsøg 3 
For at undersøge variationen i kødet ved overfyldning af wokken laves 
følgende forsøg.  
Stegetemperatur Tid i wok Fyldning grad 
   
275oC 6 min. 150 g. pr. kop * 4 kopper  
300oC 6 min. 150 g. pr. kop * 4 kopper  
   
Efter behandling skæres ca. halvdelen af prøverne over, og hver prøve 
pakkes i to poser, en til hele og en til halve, der er tydeligt markeret med 
fyldningsgrad, temperatur og tid.  
 
Videometer optagelse: 
Prøverne lægges i en petriskål med fire-fem kødstykker i hver. Der laves 3 
petriskåle for hvert forsøg således at man får trippel bestemmelser af billede 
optagelsen. Ved de halve stykker er det vigtigt at stykkerne ligger med 
”indersiden” opad.   
 
Billederne gemmes i HIPS formatet efter følgende navne konvention: 
Forsøg 1 
[Temp]\[Tid]_[HEL/SNIT]_[#].hips 
Forsøg 2 
uSkoldning\[Temp]_[Tid]_[HEL/SNIT]_[#].hips 
Forsøg 3 
Fyldning\[Fyldning]_[Temp]_[Tid]_[HEL/SNIT]_[#].hips 
 
Resten af prøverne gemmes (i køleskab til næste dag) til vandbestemmelse; 
evt. nedfrysning. 
 
Vandbestemmelse: 
Ca. 20 g. prøve homogeniseres i en miniblender. Vandbestemmelsen sker på 
ca. 2 g. prøve, som tørres ved 110oC i 24 timer i afvejede foliebægre – der 
laves trippel-bestemmelse.  
 
Skemaer: 

Tabel 1 – Vægt skema 

Kød stykke Vægt [g] Kød stykke Vægt [g] 
1 [g] 12 [g]
2 [g] 13 [g]
3 [g] 14 [g]
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4 [g] 15 [g]
5 [g] 16 [g]
6 [g] 17 [g]
7 [g] 18 [g]
8 [g] 19 [g]
9 [g] 20 [g]
10 [g]Gns. [g]
11 [g]Varians  

  



 
Appendix I ‐ Results Moisture Contents April Experiment  157

 

Appendix I Results Moisture Contents 
April Experiment 
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Moisture content - April Experiment
Weight Moisture contents
Cup [g] Before [g] After [g] [g] Percent Std. Dev.

250C
3min Gns. 66.99612 0.0195

I 0.3165 2.3383 0.984 1.3543 66.98486
II 0.3159 2.338 0.9835 1.3545 66.98482
III 0.317 2.192 0.9354 1.2566 67.01867

4min Gns. 64.44339 0.3180
I 0.3151 2.5223 1.0945 1.4278 64.68829
II 0.3156 2.6349 1.1486 1.4863 64.08399
III 0.3152 2.231 0.9942 1.2368 64.55789

6min Gns. 64.93053 0.1523
I 0.3155 2.446 1.0658 1.3802 64.78291
II 0.3156 2.5734 1.1076 1.4658 64.92161
III 0.3153 2.3538 1.0270 1.3268 65.08707

275C
4min Gns. 66.76658 0.0520

I 0.3161 2.2315 0.9538 1.2777 66.70669
II 0.3156 2.4573 1.0268 1.4305 66.79273
III 0.3152 2.4851 1.0356 1.4495 66.80031

6min Gns. 65.1227 0.2005
I 0.3159 2.4755 1.0653 1.4102 65.29913
II 0.3159 2.4877 1.0781 1.4096 64.90469
III 0.3157 2.4279 1.0515 1.3764 65.16428

6min - 150 g fyldning Gns. 65.26754 0.2971
I 0.3144 2.4686 1.0596 1.4090 65.40711
II 0.3142 2.3445 1.0263 1.3182 64.92637
III 0.3149 2.7449 1.154 1.5909 65.46914

7min Gns. 64.99262 0.0600
I 0.3162 2.6272 1.1247 1.5025 65.01514
II 0.3153 2.2966 1.008 1.2886 65.03811
III 0.3153 2.6631 1.1388 1.5243 64.92461

7min - Uden skold Gns. 68.1728 0.0547
I 0.3155 2.6478 1.058 1.5898 68.16447
II 0.3161 2.3316 0.9564 1.3752 68.23121
III 0.3153 2.4306 0.9896 1.4410 68.12272

9min Gns. 62.78468 0.0991
I 0.3142 2.7338 1.2169 1.5169 62.69218
II 0.3149 2.5165 1.1345 1.3820 62.77253
III 0.3152 2.8452 1.2541 1.5911 62.88933

300C
4min Gns. 66.39196 0.3344

I 0.3155 2.9995 1.2082 1.7913 66.73994
II 0.3147 2.4375 1.0349 1.4026 66.07311
III 0.3148 2.5858 1.0787 1.5071 66.36284

6min Gns. 63.70523 0.1020
I 0.3156 2.4352 1.0874 1.3478 63.58747
II 0.315 2.719 1.1861 1.5329 63.76456
III 0.3135 2.4561 1.0899 1.3662 63.76365

6min - 150g fyldning Gns. 64.22403 0.0760
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Appendix J Visualization results – Diced 
Turkey 

The appendix includes all images of the surface of the diced turkey meat, converted using the 
method described in section 11.6. 

Temperature 250oC 
3 min 4 min 6 min 
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Temperature 275oC 
4 min 6 min 7 min 9 min 
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Temperature 300oC 
4 min 6 min 7 min 
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Appendix K Visualization results – 
Sliced Diced Turkey 

The appendix includes all images of the surface of the diced turkey meat, converted using the 
method described in section 12.6. 

Temperature 250oC 
3 min 4 min 6 min 
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Temperature 275oC 
4 min 6 min 7 min 9 min 
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Temperature 300oC 
4 min 6 min 7 min 
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Appendix L Poster and presentation  for 
2007 Vision Day 

The following poster “A Method for Frying Treatment Assessment of Meat Using Multi-Spectral Vision 
Technology” and accompanying slide show presentation was presented on the 2007 Industrial 
Vision Day, the 23rd of May at the Technical University of Denmark.  
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Appendix M A Method for Frying 
Treatment Assessment of Minced Meat 
Using Multi‐Spectral Imaging (Article) 

The article was submitted for the 14th International Conference on Image Analysis and 
Processing (ICIAP), but rejected as it was out of scope of the conference.  

The article is to be submitted to the 3rd International Symposium on Recent Advances in Food 
Analysis.
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Appendix N New Vision Technology for 
Multidimensional Quality Monitoring of 
Continuous Frying of Meat (Article) Draft 

The following article is currently in a draft form, but will be submitted to Elsevier’s journal of 
Food Control when completed.   
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Appendix O DVD 

 

 

This DVD contains subsets of the datasets used throughout the project, all publications 
created and the Matlab source files created. 

 

To use the DVD simply insert it into your DVD drive, if the DVD does not 
automatically start open the index.htm file on the DVD.  

 


