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Summary

This project examines the possibility to assess a number of quality parameters of the frying
process for meat using multi-spectral vision technology. The project examines the possibility of
creating measures for the frying-treatment of minced beef and diced turkey, and the
agglutination of minced beef.

Frying-Treatment Assessment

It is extremely important to provide adequately processed minced beef and diced turkey to the
end customer, among others since under processed meat comes with several health risks.
Furthermore it is important to be able to assess the frying-treatment not only as raw and fried,
but also based on the quality of the fried meat. E.g. it is important for turkey diced to have an
attractive fried surface, but also still to have a juicy kernel.

This project proposes a method for assessment of frying-treatment of the meat contained in an
multi-spectral image, based on conventional image analysis and multivariate statistics. This
method provides a measure, not only concerning raw or fried meat, but just as well the quality
of the fried meat as evaluated by experts. Furthermore the thesis proposes a visualization
method, which transforms a multi-spectral image to a RGB image, clearly showing the frying
degtee of each meat piece / granule contained in the image.
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Agglutination of minced beef

When frying minced beef using the continuous wok, a specially developed method is used to
prevent agglutination. This method requires the meat to be frozen, when entered into the wok;
if the meat fails to meet this requirement agglutination occurs. Agglutination in fried minced
meat is unwanted as high quality minced beef should contain somewhat homogenous sized
granules and no large meat lumps. Apart from the visual effects the large lumps can also lead
to them being under processed, which obviously is unwanted.

Using the images from each spectral band, a method is proposed creating a number of
measures of agglutination from each image. These measures include mean meat granule size,
maximum granule size encountered and number of meat granules per cm? All of these
measures have been examined and compated to the physical measure of strainer loss, from
which it can be concluded that these can be used as measures of agglutination.

Generally measures are proposed for all quality parameters examined. The proposed methods
are not ready for production, as each method should be re-designed for the specific
application, but they surely create a basis for future work. I believe this is a step towards the
automated frying-process, eliminating the need for constant monitoring by an experienced

process operator.



Resume

Dette projekt undersoger muligheden for at fastsette en rxkke kvalitets parametre for
stegeprocessor af ked, ved hjxlp af multi-spektral billedanalyse. Projektet undersoger
muligheden for at, opsatte mil for graden af stegningen af hakket oksekod og kalkun i tern,
samt agglutinationen af hakket oksekod.

Graden af stegning

For bade hakket oksekod og kalkun i tern, er det ekstremt vigtigt at kunden far ked der er
gennemstegt, bl.a. fordi understegt kod kan medfere risiko for sygdomme etc.. Endvidere er
det vigtigt at kunne vurdere det stegte kod ikke blot som rd og stegt, men baseret pd kedets
kvalitet. F.eks. er det vigtigt for en kalkun tern, at den har en tiltreekkende stegt overflade men
stadig har en saftig kerne.

I dette projekt er foresliet en metode der ved hjxlp af konventionelle billedanalyse teknikker
og multivariant statistik kan give et mal for stegningen af kedet indeholdt i et billede. Denne
metode kan give et mal, der adskiller ked ikke blot pd baggrund af ri eller stegt, men baseret pa
kvaliteten af kedet vurderet af eksperter. Endvidere er der foreslaet en visualiserings metode,
der transformere et multi-spektral billede til et RGB billede, hvor ked stykkerne tydeligt er
markeret efter hvilken grad af stegning der er opniet.



Résumeé iX

Agglutinationen af hakket oksekod

Ved stegning af hakket oksekod i den kontinuerte wok bruges en speciel udviklet metode, der
forebygger agglutination af kedet. Denne metode kraver at kedet er frossent nir det indfores i
wokken, hvis dette ikke er tilfeeldet opleves der agglutination af kedet. Agglutination af kedet
er uonsket da godt stegt hakket oksekod, bor have en nogenlunde homogen sammensatning af
storrelsen af kod granuler og ikke indeholde store klumper af ked. Udover den visuelle effekt
kan store klumper ogsid medfore at de ikke bliver gennemstegt, hvilket selvfolgelig er uonsket.

Ved hjalp af billederne af de forskellige spektrale band, er der foresliet en metode til at
udtraekke en rekke mil for agglutination fra hvert billede. Disse mal inkludere den
gennemsnitlige storrelse af kod granulerne i billedet, stotrelsen af den storste granule fundet
samt kod stykker pr. cm?. Alle disse mal er blevet undersogt nermere, og det kan konkluderes

at disse kan bruges som mal for agglutinationen.

Generelt set er der foresldet metoder til at estimere alle kvalitets parametre undersogt. De
foresldet metoder er ikke klar til produktion, da alle metoder ber tilpasses den specifikke
applikation de er tiltenkt. Dog er det et skridt pd vejen mod en automatiseret stegeproces,
uden behov for konstant overvigning af en erfaren procesoperator.
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Chapter 1 Prologue

This thesis concerns multi-spectral image analysis of frying processes in meat products. The
main focus of the thesis is to assess various quality parameters for the meat frying process,
using multi-spectral vision technology. The estimation of the quality parameters is thought to
replace or be a supplement to the experienced process operators.

The analysis presented throughout this thesis is based on multi-spectral images of food
products, processed with state-of-the-art reproducible frying methods, developed at the centre
for Food Production Engineering at BioCentrum. The images are acquired using the
VideometerLab 2 multi-spectral camera, recording images in bands from 405[nm]| to 970[nm],
thereby covering the ultra blue, the visible and the near-infrared (NIR) bands.

The use of multi-spectral imaging for quality assessment of food product has been proven
possible in various different contexts. In [8] multi-spectral imaging is used for determination of
oxidation in minced turkey patties, in [9] multi-spectral imaging is used for meat color
evaluation of salami, water bartier estimations for biscuits and water contents estimation in

bread and in [12] multi-spectral imaging is used for detection of oxidation in cheese.
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1.1 Motivation

This section provides an overview of the products examined and the motivation for examining

these products.

Minced beef

BioCentrum at DTU has developed a patented, state-of-the-art method for industry scale
frying of minced meat. In connection with developing this method, and the continuous wok,
BioCentrum wants to explore possibility of monitoring certain properties using vision
technology, minimizing the use of experienced process operators to continuously monitor the
process. Furthermore vision technology has obvious advantages over conventional chemical or
visual inspection methods. Vision technology provides a non-destructive and reproducible way
of continuously examining a product; this compared to a conventional sample method saves
both time and money and increases the quality of end product.

The basic idea is for the vision technology to be able to replace or be a supplement to an
experienced process operator. The properties examined for minced beef are the degree of
frying treatment and the agglutination of meat.

Diced turkey meat

The continuous wok, developed at BioCentrum DTU, also enables high quality frying of
turkey meat in a sliced or diced form, as known from various oriental stir-fried dishes. In this
context BioCentrum wants to explore the possibility of monitoring a continuous production of
diced turkey using vision technology.

The process parameter to examine for turkey meat is the frying treatment. Compared to
minced beef, the diced turkey meat however has some different properties and requirements.
As the turkey meat is in dices and not minced, the meat might be at different frying stages
down the meat lump, meaning the internal kernel might be under-processed at same time as
the external layers are adequately processed. To examine this the diced turkey forms the basis
for two types of examination, namely frying treatment assessment of diced turkey based on
images of the surface, and frying treatment assessment based on sliced diced turkey, meaning
the dices have been physically preprocessed before imaging, by slicing them into two pieces.
This will enable us to examine, if the images of the surface are able to assess the frying
treatment as well as by using images of the interior, thereby enabling a continuous monitoring

without any physical interaction.
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1.2 Overview - a Readers Guide

The readers guide will provide an overview of the document structure. Here the various patts
of the document are described, thus giving the reader a quick introduction to the various parts
and providing a tool for effective reading the document.

I - Domain Description

The domain description is setting the scene for the project. It includes a description of all
involved actors in this project, their goals, interest and involvement with respect to the project.
Furthermore it describes the equipment and tools used throughout the project, to obtain and
analyze the multi-spectral images.

II - Theory

The theory part will populate the scene set; describing the relevant theory used in the analysis
of the multi-spectral images and introduces the relevant chemistry of meat in order to create a

foundation for analyzing and interpreting the results of the multi-spectral analysis.

As the intended audience of this thesis text has different backgrounds ranging from
biotechnologists to vision experts, the theory part tries to cover the areas from the basics and
up. This means vision experts are able to skip to chapters explaining the basics in image
analysis without loosing continuity, whereas biotechnologists might gain insight from reading
those.

III - Data Analysis

The data analysis part of the report performs the act using the scene populated by the theory.
This part includes five chapters, the first four each describing one of the analyses performed in
the thesis project, and the last examining the possibility to optimize the analyses by reducing
the input data needed.

The first four chapters can be read in random order, but it is advised to read them in
chronological order to get continuity. The first four must be read before reading the last
chapter in order to fully understand the methods and purpose.

IV - Epilogue

The epilogue evaluates the act; it contains the final conclusion and discussion of the results
grained throughout the thesis project. Furthermore it contains a section where the project is
put into perspective, commenting on the results gained and suggesting areas for further work.

Lastly the epilogue contains reference to the literature used for the project, and a table of
figures included in the thesis text.
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Chapter 2 Terminology Listing

This chapter includes a list of the terminologies and abbreviations used throughout the thesis
text. The table is included to increase similarity and consistency throughout the different

chapters.



2.1 Abbreviations

19

2.1 Abbreviations

The abbreviations used throughout thesis text are given below in lexicographical order.

ANOVA ANalysis Of VAriance

CDA Canonical Discriminant Analysis

CDF Canonical Discriminant Function

CvV Cross Validation

DTU Technical university of Denmark.

ECTS European Credit Transfer System

FPE The Food Production Engineering Centre at BioCentrum

FTS Frying Treatment Score

HIPS Hyper-spectral Image Processing System

IACG The Image Analysis and Computer Graphics group at IMM

IMM Department of informatics and mathematic modeling, at the technical
university of Denmark

LOO Leave One Out Cross Validation

LSE Least Squares Estimator

MB Mega-Byte

MSE Mean Squared Error

MSI Multi-spectral imaging

NIR Near-Infrared Reflectance

OLS Otrdinary Least Squares

PC Principal Component

PCA Principal Component Analysis

RGB Red Green Blue

RMSE Root Mean Squared Error

ROI Region-Of-Interest

SS Sum of Squares




20 Involved Actors

Chapter 3 Involved Actors

This chapter briefly describes the institutes and centers at DTU which have been involved in
this thesis project. Their contribution to the project is lined up as well as the goals of their

involvement.
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3.1 BioCentrum

BioCentrum, the largest institute at DTU, provides research and education in area of
sustainable, environmentally friendly and competitive processes for the biotechnical industry
and the food production industry.

This thesis was done in cooperation with the research centre of Food Production Engineering
(FPE) at BioCentrum. The FPE’s main research interest areas are heat treatment processes and
their effect on food quality. The FPE is contributing to this project by providing access and
guidance to the continuous wok, and providing expert knowledge in food processing and food
quality parameters. FPE is supporting this project, to gain increased knowledge of the
possibilities of using vision technology for continuously monitoring of frying processes.

3.2 Institute of Informatics and Mathematical Modeling

The institute of Znformatics and mathematic modeling (IMM) at DTU provides research and
educations in the areas of mathematical modeling and computer science. IMM mainly focus
their research on specific problems in the production industry and financial world.

The thesis work was carried out in cooperation with the Image Analysis and Computer Graphics
(LACG) group at IMM. The IACG group has a wide range of research area from geo-
informatics to medical image analysis. The IACG contributes to this project by providing
expert knowledge and tools related to multi-spectral image analysis and industrial vision
control. Furthermore IMM provides office space and technical equipment. IMM is supporting
this project in order to gain increased knowledge about the application areas of multi-spectral

vision technology.
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Chapter 4 Equipment Used

This chapter will describe the equipment used to carry out the thesis work. This includes
describing the equipment used for acquiring and analyzing image data, as well as desctibing the

relevant equipment used to process the various meat products.

All equipment for image analysis has been provided by IMM, and all equipment for meat
processing has been provided by BioCentrum.
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4.1 VideometerLab 2

VideometerLab 2 is a combination of a multi-spectral camera for laboratory analysis, and the
accompanying software for image acquisition and analyses.

4.1.1 Camera

The VideometerLab 2 camera was used to acquire all image data used in the thesis. The camera
is able to measure light intensity of an object in wavelengths spanning from the Ultra-blue to
the Near-Infrared spectrum (NIR). The complete listings of wavelengths are given in Table
4.1, for examples of application areas please refer to the full listing in Appendix A.

Band | Wavelength [nm] Color Band | Wavelength [nm] Color
1 430 Ultra Blue 10 700 Red
2 450 Blue 11 850 NIR
3 470 Blue 12 870 NIR
4 505 Green 13 890 NIR
5 565 Green 14 910 NIR
6 590 Amber 15 920 NIR
7 630 Red 16 940 NIR
8 645 Red 17 950 NIR
9 660 Red 18 970 NIR

Table 4.1 - VideometerLab camera 2 - Wavelenght

To ensure a total diffuse illumination of the object without shading and reflection, the camera
is equipped with an Ulbricht sphere. The Ulbricht sphere is hollow sphere, internally painted
with a diffuse reflecting paint, and an opening in the top and underside of the sphere. The top
hole is used for placing the camera, whereas the bottom hole is used to place the image object.
The camera with the characteristic Ulbricht sphere is shown in Figure 4.1.

Figure 4.1 - VideometerLab 2 Camera
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When acquiring an image the sphere is run down encapsulating the object, thereby ensuring no
false light is illuminating the object. Following diodes of different wavelengths, placed in the
rim of the sphere, will illuminate the object in turn while the camera is acquiring images.

As the entire camera setup is quite complex, it requires calibration in order to ensure
reducibility of the images. The Videometerlab 2 software can be used to calibrate the camera.

4.1.2 Software

Accompanying the Videometerlab 2 camera is the VideometerLab software package. This
software is primarily used for calibrating the camera and acquiring images. However an
upgrade of the license can be purchased, transforming the software package into a powerful

image analysis tool.

The upgraded softwate package not only includes conventional image analysis tools for
segmentation and enhancing features in greyscale images. The tool also includes a transformation
builder, which enables the use of well-known multi-spectral transformations as principal
component analysis, maximum autocorrelation factor and canonical discriminant analysis.
Furthermore the software package includes tools to apply segmentation procedures or
transformations batch wise to a large number of images, reducing the time needed having to

apply them manually on each image.

4.1.2.1 Camera calibration

To ensure the highest possible reproducibility of images, it is important to calibrate the camera
before acquiring images. The calibration is a crucial part of using the camera since small

variations in physical conditions, such as temperature, can cause the camera to lose calibration.

Calibrating the camera uses three different plates fitting into underside opening of the sphere, a
black, white and patterned plate.

In addition to the camera calibration, the illumination should also be setup when changing the
image object. This is needed to prevent saturation of pixels thereby ensuring high quality
images of any object calibrated with.

4.2 Matlab

Along with analyzing the images in the VideometerLab software, Matlab is used for custom
designed procedures, analyses which are not available in the Videometerlab software and for

batch processing larger amounts of images.
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Matlab is short for Matrix Laboratory, and provides an excellent platform for working with
matrixes. As images and multivariate statistics are easily defined in matrix form, Matlab is the
obvious choice. Furthermore Matlab provides an image processing toolbox, including a large
variety of well-known image processing procedures. In addition to the Matlab image
processing toolbox, Videometer provided a Multi-spectral image processing package, including

procedures to perform transformations and visualizations.

One of Matlabs drawbacks is poor memory management. This is especially a problem when
working with multi-spectral images, as they usually take up more than 80mb per image. The

memoty problems can be overcome by regular reboots.

4.3 The continuous wok

Developed at BioCentrum-DTU to enable the scale-up of the stir frying process, the
continuous wok has shown to be a powerful tool in industry scale food production. One of the
main advantages of the continuous wok is the large numbers of application areas, such as stit-
frying of numerous types of vegetables and meat products for industry scale production. Other
advantages of the continuous wok are low fat contents in the end-product, preservation of
vitamins and abilities to re-heat frozen products on a normal frying pan, while preserving the

nice properties introduces by the continuous wok process.

The principle of the continuous wok as shown in Figure 4.2 is a horizontal placed thick-walled
tube containing a helix with scrapers attached. The scrapers prevent the product being fried
from sticking to the surface, resulting in increased heat treatment and increasing the risk of
being burned. The helix is connected to an electric motor with adjustable speed, enabling
regulation of the frying time. The tube is heated by gas burners placed with regularly spacing
below the tube, thus ensuring equal temperatures over the entire tube. The gas burners are

regulated to obtain a constant frying temperature.

When frying a product, it is being entered into the wok in the inlet funnel, from where it is
continuously transported to the outlet port by the helix. Beneath the outlet port is a conveyer
belt from where is can be collected. The wok prototype used in the pilot plant, measures 1.6
meter in length and 0.2 meter in diameter.

Inlet funnel

Frying tube \L

TAAANAANNNNNANNANNNNNAN

— — — — — — — — — —

B T T T e T P T P P P
SN  EEEEEEEEEE——=—=

Qutlet port Heat source (natural gas)

Figure 4.2 - The continuous wok
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Chapter 5 Multi-spectral Imaging

This chapter contains an introduction to multi-spectral imaging and the basic concepts and
methods. The chapter will further introduce the notation and notion of images and concepts
used throughout the thesis text.

This chapter is intended for persons without specialized knowledge of multi-spectral imaging;
professionals should however skim the chapter in-order to capture the notation and notion

used.
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5.1 Multi-spectral images

Multi-spectral, or hyper-spectral images, ate images acquired in a range of different
wavelengths. Wavelengths often ranging from the visible to non-visible wavelengths, compared
to conventional imaging only capturing information in the visible spectrums. The obvious
advantage of multi-spectral images is the ability to detect properties, which are not usually
visible for the human eye. Examples of such properties could be water and fat contents, and
oxidation level. As multi-spectral images are different from conventional RGB images, this
chapter will introduce the notion and notation used for such images.

5.1.1 Notation

A multi-spectral image can be perceived as a 3D matrix, where the two first axes represent the
well known geometric image axes in an image (row and columns), and the third axis represents
the number of bands the image consists off. This essentially means having a single grayscale
image for each band available in the image.

Let | denote the entite image matrix, I'and C represents the rows and columns in the image
and b the spectral bands, thus giving a size of the matrix to be F XCxD. A specific item in

1 can then be referred to asi, ., ; this concept is illustrated in Figure 5.1.

\\J\\

Figure 5.1 - Matrix storage concept

5.1.2 Transforming for statistics

Having defined the image matrix, it comes clear it cannot be directly applied to conventional
multivariate statistics, since conventional multivariate statistics requires the data to be

transformed into a two dimensional matrix.

This is since a statistical variables are usually not presented in a two dimensional space, but
rather as a vector of observations of a vatiable. For multi-spectral images each band is thought

as a variable, making the transformation of the entire image matrix into a two dimensional
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matrix straightforward. This is done by simply combining the rows and columns keeping the
division into spectral bands (variables). Thus giving a resulting matrix with the dimensions
rxcandb.

Obviously this transformation removes the spatial information from the bands, making the
analysis only dependent on spectral variables. If needed it is however straightforward to
reconstruct the spatial information, as long as one of the geometrical dimensions of the image
is known. This concept is illustrated in Figure 5.2.

I CXFr

[/

Figure 5.2 - 2D transformation concept

5.2 Spectrum measurements

Having a multi-dimensional image with wavelengths associated with each dimension, makes it
possible to plot a spectrum for interesting parts of image. A spectrum is normally plotted as
the values of a single pixel, or as the mean values of a region-of-interest. For a region-of-
interest the standard deviation can be plotted as well, thereby given an impression of the
deviation over the region. In Figure 5.3 is shown an example spectrum of a single meat pixel

and a region-of-interest (ROI) plotted with the mean value and the standard deviation.

Example Spectrum Plots

180 — T

100 -

[1Standard Deviation ROI
Mlean RO
Single Pixel Spectrum

50

460 500 550 600 650 700 740 600 as0 900 950
Wavelength [nm]

Figure 5.3 - Example spectrum plot
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5.3 False color composition

The nature of a multi-spectral image makes it difficult to interpret by the human eye, if it
where to perceive all available wavelengths at once. Instead false color composition can be
used to display features otherwise not-visible for the human eye.

The basic idea in false color composition is to extract specific bands or results from an analysis
and assign a color to each band or feature extracted, thus giving an RGB image illustrating the
results, such that it is easier for the human eye to perceive the features not normally visible.

In Figure 5.4 a combination of regular RGB and false color composition is used to illustrate
the frying degree of sliced diced turkey squares. The blue areas represent under processed meat
and the red areas over processed meat, from the image it is clear that these samples contains an

under-processed kernel, but has a somewhat adequately processed external layer.

Figure 5.4 - False color composition for identifying frying treatment
Using false color composition often comes with the problem of having different intensities in
each band resulting in one band dominating the others. This problem can be overcome by

scaling each band thereby getting a somewhat equal conttibuting from each band/analysis
result.
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Chapter 6 Digital Image Analysis

This chapter will introduce some basic image analysis tools and methods used throughout the
thesis. This chapter is included for readers without prior knowledge of digital image analysis; it
can be skipped for readers with basic knowledge of digital image analysis without loosing

continuity.

These methods presented are general image analysis methods for 2 dimensional images, but are
easily performed on 3 dimensional multi-spectral images by simply applying them to either one
spectral band at a time or applying them on selected spectral bands.
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6.1 Enhancement filters

This section will describe enhancement filters as they ate presented in [13]. The section statts
by introducing the basics in filters, from where it moves on to describe a number of relevant
and commonly used filters. The section focuses on enhancement filters, which, as the name
implies, are used to enhance features in an image in order to clarify these for human or

machine interpretation.

6.1.1 Filter basics

A digital filter for image processing can be described as a linear system S. S is considered a
black box, which when applied with an input f (X) produces an output that is described

as §(X) = S(f (X)) . For simplicity the image is, for now, represented in one dimension, thus
giving:

f(x)>S—>g(x) 6.1)
From this definition as a linear system, certain properties are inherited namely that it is linear

and shift invariant. Having the linear system the description of the output can be expanded
using the following integral:

g(x)= f(®h(x—t)dt ©6.2)

This integral is called the convolution integral and can be expressed as g = f *h. For the

digital form we are dealing with, it is desctibed as a summarization instead of an integral.

0+
g(i)= > f(k)h(i—k) 63)
k=oo—
For 6.2 and 6.3 the funcdon h is called the impulse response. Although the borders of the
function h are defined to be infinite, it usually is set to zero outside a defined range. Having
this in mind, and expanding Nto be two-dimensional (as an image), the equation can now be
expanded to:

a(i, j)= Iﬁf i f(k,Dh(@i-k, j-1I) (6.4)

From the equation it can now be derived that the value of g(i, J) becomes a weighted sum of
the pixels surrounding within a certain distance. The weight of each pixel is defined byh,
which also can be referred to as the filter weights, filter mask or filter kernel. The size and
weights of hvaties from filter application to filter application. Figure 6.1 is illustrating an

example of equation 6.4 in use.
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Figure 6.1 - Basic filter operation

Using this basic notion of a filter, it can be further expanded for filters in image processing.

Since images are not blocked by physical properties, Ncan be defined arbitrarily and even

changed over the image, thus resulting in a large flexibility and a large amount of useful filters.

6.1.2 Example filters

This section will describe a number of typical filters, along with their typical kernels, used in

digital image processing,.

Mean filter

The
simple

mean filter is a

filter calculating
the mean over a selected
area. The size of the filter
can be chosen to fit the

application.

Square shaped Plus shaped

Yo Yo % %
% % ¥ %%
% %

SR R
R R

Weighted Mean filter

A weighted mean filter is
a mean filter with varying
weights often related to
the distance from the

center pixel.

Square shaped Plus shaped

He Yo Jis 7
% N K %6 15 %%
He Y6 Jis %

Mode filter

The mode filter replaces the pixel by its most common neighbor. This can be useful for

classification purposed, where a mean filter doesn’t make sense. E.g. the average of two

pixels of the class poultry meat and four pixels of the class beef would not make sense, but
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classifying it as beef most likely would.

Median filter

The median filter replaces the pixel by the median of the neighborhood pixels. The size can
be defined as it is found suitable. It should be noted that unlike most of the other filters this
needs a sorting mechanism in implementation and can therefore prove to be slow with large

kernel sizes and large images.

Knearest neighbor filter

The nearest neighbor filter replaces the pixel with the average of the £ pixels, which values
are closest to the pixel in question. E.g. having a 3 x 3filter with 6 nearest neighbors, means
taking the average of the 6 pixels which value are closest to the pixel in question, discarding

the remaining three pixel values.

6.2 Mathematical morphology

Motphology is said to be #he study of forms and structure; mathematical morphology is an approach
for the study of spatial forms and structures in digital images. This section focused on
mathematical morphology of binary images, and from there moves the presented methods into
the gray scale domain.

6.2.1 Binary morphology

As claimed in [13], an image can be considered a set S having the objects of the image as the
subset X S . Using the set definition, it enables the use of set concepts and modifiers such
as union, intersection, translation etc. and enables us to identify the properties of
transformations such as anti-extensive, increasing, idem-potency and homo-topic. This section
will not focus on the mathematical theory, since this is out of the thesis texts scope. Instead it
will introduce the most common operations and concepts, starting with the simple translation.
The translation is introduced since this forms a basis for understanding the other concepts
introduces. Translating the set X with a vector N can be defined as:

X, ={zeS[Ixe X :2=x+h} (6.5)

As it is observed the translation simply move the objects in an image based on the translation

vector h .

In order to define further operations the structuring element (B ) is introduced, for the translation

in equation 0.5, the structuring element can be said to be translation vector. However normally
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the structuring element is a set of points centered on an origin. The use and importance of the
structuring element will become apparent when introducing the common operators, but

generally it is said that zhe structuring element is to morphology what the filter kernel is to filtering.

6.2.1.1 Dilation

One of the basic operators in motphology is dilation. Dilation of the set of objects X with the
structuring element B is defined as:

X®B=[JX,

Nt (6.6)

Meaning dilation enlarges the image X depended on the structuring element in use. An

example is given below.

X1

Figure 6.2 - Dilation example

6.2.1.2 Erosion

Intuitively introduction of the dilation, motivates the introduction of an opposite operation,
namely the erosion. Erosion of a set X with the structuring element B is defined as:

XOB =X,

i (6.7

Erosion causes the image to shrink depended on the structuring element in use. An example of

erosion is shown below.

Figure 6.3 - Erosion example

Having defined these two basics operations, they enable the introduction of two other useful

operations opening and closing,.
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6.2.1.3 Opening and Closing

Opening and closing are defined using the basic operators of erosion and dilation introduced in

the prior section.
Opening is defined as:

XoB=X,=(X©B)®B (6.8)
First image is eroded with B and the resulting image is then dilated with B. It can be hard to

envision the outcome from the definition above, but generally opening is said to separate the

particles in the image.

An example is given here:

X1

it

Figure 6.4 - Opening example
Closing is defined as:

XeB=X,=(X®B)©B (6.9)

First the image is dilated with B, which is followed by erosion with B. Again it can be hard to
envision the effects of this, it is normally said that closing connects the objects, and fills holes.

An example is given here:

b

XL ]

Figure 6.5 - Closing example

6.2.1.4 Reconstruction

The reconstruction transformation is quite different from others introduced, in the sense it
does not directly use a structuring element. Reconstruction instead uses two images of the

same size (a marker ( J ) and a mask( I ) ) to generate the resulting image.
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The resulting image consists of the connected components in the mask, which is marked in

marker image. A component is said to be marked if one of the pixels in the component is

marked with a 1 in the marker.

The reconstruction transformation is defined in [14] as “#he union of components in | which contain

at least one pixel in J .

An example is given here:

(6.10)

b)

Figure 6.6 — (a) The mask, (b) The marker, (c) Result of reconstruction

6.2.2 Grayscale morphology

Moving binary morphology into the grayscale domain proves to create useful tools, not only

for the already defined binary operators, but also opens for new operations that prove to be

powerful when analyzing the profile

6.2.2.1 Dilation and Erosion

of grayscale image.

To move the first four of the introduced operations into the grayscale domain, is simply a

matter of defining dilation and erosion. Before being able to do this, a definition of the

grayscale structural element is needed.

One of the approached is to simply keep the structural element in a binary form, or as it is also

called having a flat structural element. This makes the transition into grayscale straight forward,

since the OR operation will be equivalent to maximum and AND will be equivalent to

minimum. Thus leading to the following definition of dilation

X @ B = max

[i,JeB]

And the following for erosion:

X®B = min

[i,jeB]

(x[m—in—j]+b[i, j])

(x[m—=i,n—j]-bl[i, j])

6.11)

(6.12)
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It should be noted here that erosion and dilation on grayscale images, visually will have the
opposite effect than on binary images. This is since 1 in a binary image means black and 0
means white, which is opposite to grayscale images. In grayscale images large values means
white and small values indicate black. Below is included an example of applying erosion and
dilation to a grayscale image.

Figure 6.7 - (a) Original image, (b) Structural element, (c) Dilated image, (d) Eroded image

The example images clearly show a brighter image after dilation and a darker after erosion, this
is especially apparent around the eye. Moving opening and closing into the grayscale from here
is straightforward and will therefore not be examined further.

6.2.2.2 Reconstruction

Recalling the reconstruction transformation it was said to “extract the connected components in the
mask, which were marked in the marker”. This raises some questions when moving into a grayscale
domain, when is components connected in a grayscale image? One obvious approach could be
to state that if the pixel values are higher than a certain value Kk, the components are
connected. This motivates the definition of a #hreshold function. The threshold function T, for

an image | is defined as:
T.(N={peD,|I(p)=k| 6.13)

Moving reconstruction into the grayscale domain can be done thereby be done, by saying it is
to extract the peaks from the mask which are marked in the marker.

Using this it is now possible to define grayscale reconstruction for a mask | and a marker
J both defined in the discrete set D = {0,1,....(N —1)} such that J < | | meaning each pixel

in the marker must not exceed the corresponding pixel value of the mask. The reconstruction
transformation P, (J) can then be defined as: ([14])

¥peD,  p(3)(p)=max{ke[O,N-1]|lpep (T ()} (614

The principle is illustrated in Figure 6.8.
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Figure 6.8 — Reconstruction of the mask ffrom the marker g (Figure from [14])

6.2.2.3 H-Domes

As mentioned in the introduction text of the section, greyscale morphology turns out to be a
powerful tool for examining the profile of the image; this is due to the nature of the greyscale
reconstruction transformation introduced. It turns out that using reconstruction it is possible
to easily find the maximal structutes or regional maximums in the images using a method
called H-Domes.

The H-Domes transformation creates the marker to use in reconstruction, directly from the
mask and a value N by simply subtracting this value from the mask. Having created the marker
h-domes performs a reconstruction using the marker, and creates the resulting h-domes image
by subtracting the reconstructed image from the original image leaving only the regional
maximums in the image. This concept is illustrated in Figure 6.9.

Subtraction

NN

Figure 6.9 - H-Domes concept (From [14])

Formalising the concept gives the following definition.
D,(1)=1-p,(1-h) 619

It becomes obvious from Figure 6.9, that it is extremely important to select an appropriate
hvalue, in order to get a useful result.
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Chapter 7 Multivariate Statistics

This chapter introduces the multivariate statistical tools used through out the thesis. For each
tool the mathematical background is reviewed and its application in multi-spectral image

analysis is discussed.

This chapter can be skipped by experts in multivariate statistics, and their application for multi-
spectral images. It is however advised to at least skim the chapter in order to capture the

notation and notions used.
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7.1 Principal Component Analysis

One of the main challenges when examining multi-spectral images is the massive amount of
data contained in the images. Most of the uninteresting data can be removed using clever pre-
processing techniques, but these still leaves multiple dimensions of interesting data to be
examined. To assist in this examination the Principal Component Analysis (PCA) proves to be

a very useful tool.

PCA is essentially a method for re-expressing the multivariate data in a number of principal
components, reorienting the data such that the first principal components (PC’s) account for
the larger part of the variation present in the data. Or put in another way, the PCA creates a
number of new variables, each a linear combination of the original variables, such that each
new variable accounts for the largest part of the variation possible. The remainder of this
section lines up the mathematics behind the PCA, provides a small example and discusses how
it can be applied to multi-spectral images.

7.1.1 Mathematics

The goal of PCA is to find a projection W of the standardized multivariate input

data X =[X,,X;eee Xp] (normalized to zero mean and unit variance), such that the resulting

data Z covers the maximum variance possible.

To maximize the variance, let’s examine how the variance of z can be described:

var(z) = u'X'Xu 7.1

(n-1)
We notice that since the input is standardized, 1/(N —1)X'Xis the sample correlation matrix

ot the covariance matrix. This is denoted R, and can be substituted giving:

var(z) =u'Ru (7.2)
From this definition it is clear that U can be chosen to be arbitrary large, and thereby drive the
variance towards infinity if there are no further constrains imposed. To prevent this, we require
for W to be a unit vector such thatu'u =1, leaving the problem of maximizing equation 7.2,
such that u'u =1 is fulfilled. This problem is solved by forming the Tagrangian, and settings
its first derivative to zero, this yields the following conditions to be met.

Ru=2u or (R-ADu=0 (7.3)

Thus leaving an eigenvector problem, where Uis the eigenvector and Ais the eigenvalue. The
solution to this problem yields P eigenvectors and eigenvalues. Solving the eigenvector
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problem will not be described further, as is rarely done by hand but often left up to one of the

numerous computer programs created for the purpose.

Having solved the eigenvector problem, the eigenvectors U =[u,,u, ,...llp] can now be used,
by multiplying them with the input values X =[X,,X; ..., X, ], to obtain the resulting principal
components scores Z =[z,,Z, ,...,Zp] . A discussion of how many of the eigenvectors to

include is given in section 7.1.2, before moving to this lets examine the eigenvalues found.

The eigenvalues obtained through the analysis, can be used to determine the amount of
variance each projection includes. This can be proved since knowing Ru=Au andu'u=1,
the following substitution can be done:

var(z)=u'Ru=u'Au=Au'u=41 (7.4)

Showing that the eigenvalues expresses the amount of variance accounted for by the associated

principal component.

7.1.2 Determining the appropriate dimension reduction

As one of the main purposes of the analysis is to reduce the dimensions of data, the next
obvious step is to determine how many components should be retained. For this purpose a

number of rules of thump exist, some of which are explained below.

7.1.2.1 Kaiser's rule

The commonsense of choosing which principal component to retain, would be to keep the
components which represents at least as much variance as any of the original variables. In the
case of standardized variance this means keeping the components with an eigenvalue above 1.
This approach seams somewhat reasonable, but cases exists where the cut-off value might
need to be changed to a value higher than 1 because it is found that the lower components
only contains noise. Or the value is set to lower than 1 to retain a certain amount of original
variance. As with the other rules one should remember these are only guidelines and not the
ground truth.

7.1.2.2 Scree plot

Propose by Cattell (19606), this is a graphical approach to the problem. The idea is to plot the
eigenvalues of each component, and detect the e/bow of the resulting curve, keeping the values
higher than the detected elbow point. By the e/bow Cattell means the point where the lower
components decrease in a linear fashion. This approach has the apparent disadvantage of being
quite ambiguous, since the elbow point rarely is cleatly identifiable.
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7.1.2.3 Visual selection for image analysis

For the application of image analysis, choosing the relevant components can be done by
simply visually examine the transformed data. By visually examining all the components, it
becomes very obvious which components contain actual useable data, and which contains only
noise enabling us to disregard these. As an example all components of PCA transformed image
is given in Figure 7.1.

PC1 — 74.67% PC2 — 24.44% PC3 —0.38% PC4 - 0.25%
PC5 — 0.09% PC6 — 0.03% PC7 —0.02% PC8 — 0.02%
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PC9 —0.01% PC10 —0.01% PC11 —0.01% PC12 - 0.01%

PC13 - 0.01% PC14 - 0.01% PC15 - 0.01% PC16 — 0.01%

PC17 —0.01% | PC18 — 0.01%

sa

Figure 7.1 - Principal component and accounted variance
From the visualization of the components, it is clear that all below the third component
contain a large amount of noise, and it will hardly make sense to include these in any kind of
analysis. This is also expressed in the amount of variance the lower components account for.
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Generally the best approach is common sense applied along with one of the rules presented
above. It is normally easy to make out which components to include when the purpose of the
data is known. E.g. if the purpose of the analysis is to distinguish between what is meat and
what is surrounding objects from the image used in Figure 7.1. The best solution would clearly
be to use the second principal component, since this clearly outlines the meat present in the
image.

7.1.3 PCA for multi-spectral image analysis

Numerous examples shows that PCA is widely used technique in multi-spectral imaging. It is
used in [9] for separation of meat and fat in salami and in [10] where it is used as a tool for

classifying species of fungi.

Even though PCA is a widely used tool in multi-spectral images, it does have some properties
that one needs to be awate of before applying it blindly. The first important thing to notice is
that the image data needs to be transformed in order to fit the form required by PCA. PCA

needs an input matrix as X = [X;,X, ., X, ], meaning a two-dimensional mattix of variables.

As an image is normally represented in a three dimensional matrix a transformation is needed,
this transformation is explained in section 5.1.2. From 5.1.2 it is worth noticing the loss of the
spatial information. Loosing spatial information is usually not a large problem, since in most
analysis the spectral information is the interesting part, and since the spatial information can be

easily recovered.

Another important property of PCA is that it is a statistical method analysis of
interdependence. Meaning it will enhance any patterns found in the supplied data, but will not
necessarily find the pattern one is looking for based on a dependent variable. This calls for
caution when determining the data to use in a PCA. An example is the transformed image
from Figure 7.1. The image given to the PCA included both meat and surrounding objects,
such as the Petri dish and the metal sheeting. It is clear that the results of the analysis, found a
way of distinguishing between the unwanted object and the meat, but other than that the
results does not say much about the frying degree of meat or other important meat properties.
To investigate these it will be an advantage, to supply data only from areas containing meat,

since it is here it the analysis should search for patterns.

The last property mentioned motivates the introduction of the next analysis, namely a member

of the “Analysis of Dependence”-family the Canonical Discriminant Analysis.

7.2 Canonical Discriminant Analysis

The Canonical Discriminant Analysis (CDA), is a member of the “Analysis of Dependence”-
family, meaning it is way of finding a pattern in a number of independent vatiables based on a
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dependent variable given. The CDA specifically is said to find the largest possible separation of
the classes given, using the information provided in the independent variables.

7.2.1 Mathematics

Using Fishers approach the objective of the analysis is to find the linear combination of the
given variables, which leaves the highest separation of the given groups. In order to provide a
measure of the separation a disctiminant score is introduced. Meaning the goal of the analysis
is to obtain a linear combination of the independent variables, giving the maxinum different
discriminant scores for each of the given groups.

To formalize this let K denote the linear combination, X =[X,,X,,...,X,]denote the input
variables where each group of values ate split into the groups X, X, ,..., X,. The discriminant

scores are then be given as:

t=Xk (7.7)
To optimize the difference between the groups Fisher proposed, maximizing the ratio of the
across-groups sum-of-square matrix (A) to the within group sum-of-squares matrix (W) of
the discriminant scores t . Resulting in the following problem:
k'Ak
k'Wk

Taking the first derivative of Equation 7.8 and solving fork, results in the following

Find k to maximize A =

(7.8)

eigenvector problem:

-1
W~ Ak = 1k (7.9)
Solving the eigenvector problem for a two group problem results in one linear combination
(eigenvector), for a three group problem two linear combinations are found and so forward.
Apart from the linear combinations the solutions also contains a number of associated

eigenvalues, these are an expression of the functions ability to separate the groups.

7.2.2 CDA for multi-spectral images

As with the principal components analysis, the canonical discriminant analysis also has some

issues to consider of when applying it to multi-spectral images.

The canonical discriminant analysis requites, just as the principal component analysis, the data
to be transformed into two dimensions. This leads to the same loss of spatial information as
mentioned for the PCA, and is performed as illustrated in Figure 5.2.

As CDA is an analysis of dependence, it sets out to find a linear combination which separates
the classes given. The analysis will always find a combination that separates the classes in some

way; it is therefore important to examine the solution found in order to verify that the linear
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combination is reasonable with respect to the expected separation. As with the principal
component analysis it is important to use common sense, and do a critical evaluation of the

results found.

7.3 Regression Analysis

Often one of the main objectives of multi-variant statistics, and also image analysis, is the
ability to make predications based on the observations available. Introducing regtession

analysis provides a tool to create a prediction model based on observations.

To solve the problem of predicting a dependent variable based on a number of independent
variables, the first step is to setup an appropriate model. In lower dimensional case it is often
possible to plot the observations available and from the plot determine which model to use,
this is however not always possible for higher dimensional cases where model validation

techniques can be used as discussed in section 7.3.2.

7.3.1 Least Square Regression

Having determined an appropriate model, the next step is to use the available observations to
make an estimation of the model parameters based on regression analysis, for this least square
regression is introduced.

For simplicity least squares is introduced for a linear model, but can be easily extended with
more terms. An optimal linear model has the following well-known form:

Yy=a,+aX (7.11)
From this the estimated model can be defined as:

y=2a,+aX (7.12)

And the error in the predicted value of Y can be described as:

&=Yi Y (7.13)
Meaning the objective of the regression is to optimize 8, and @, in order to minimize the
summarized error term for all observations N. Using the measure of error introduced above
will introduce a large number of suitable lines, since the negative error terms cancel positive
error terms. To prevent this, the principle of Jeast squares is applied defining the summarized

error term as a squared error, thus insuring an always possible contribution to the error term:

2

e’ :Z(yi ~(a, +a,%)) (7.14)

n
i=1
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Having defined the rules for estimating the model, it is now possible to define the goodness of fit
for a model. Meaning the amount of variance accounted for in the depended variable using
model of the independent variables. This is defined as:

R2 =1 zi(yi _9i)2

=l-="7 (7.15)
zi(yi - y)

Having laid down the ground rules, we are now able to move on estimating the actual

parameters. This calculation is eased and enables an expansion of the model with multiple

independent variables by introducing a matrix notation, giving the new optimal model as:

1 x,; . X, b
Y1 0

3 ) X e Xy, ]
Y=Xb where Y=| : || X=|. Sy b=] o (7.16)
: : b
Va 1 ox,, - X, prt
Where n is number of observations and p is the number of terms in the model. This leads to
an estimated model defined as:

§=Xb (7.17)
It can then be showed that the most accurate fit can be obtained by estimating the parameters
by:

b=(X'X)" X'y (7.18)
This line is also called the least square estimator (ILSE), proving Equation 7.18 will not be included
in this text since it is not in the scope of this thesis text.

7.3.2 Cross validation

Cross validation is a method which can be used to verify if the appropriate model was chosen,
or to select the appropriate model among a number of models. Choosing a model blindly by
optimizing for best squared error and increased R?-value introduces the risk of over-fitting the
model. Having an over-fitted model means it adjusts to the training set values with expense of

not generalizing,

To prevent an over-fitted model, cross validation separates the available observations K into
N sets. It then proceeds by, in turn, using one set of testing and the remaining for estimating
the model parameters until all sets have been used for testing. For each turn the mean squared
error (MSE) is recorded, this can then be used directly to select the appropriate model. This

type of cross validation is called #-fold cross validation.

A special case of cross validation is when K = N'; meaning only one observation is left out for
testing at each step. This is naturally called Leave-One-Out (LOO) cross validation. LOO is good
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when having a small dataset, but when having a large datasets a #-fold cross validation is

preferable.

7.3.3 Stepwise regression

Having a depended variable and a number of independent variables, it is often an advantage to
examine the influence of the independent variable on the model before including it. This can
be used to examine if the independent variable has a noticeable effect on the depended
variable, in order to decrease the complexity of a model by not including the least influential
variables or even to try to estimate the best model allowing only a certain number of the
independent variables.

The basics in stepwise regression is to build a model, in steps by examining the available
independent variables on at a time, including the ones that have the large influence (forward

regression), and excluding the ones with lowest influence (backward regression).

A step in the stepwise regression can decomposed into the following tasks:
e Calculate the b for the variables already in the model

e For each variable not in model calculate the b and cotresponding F-ratio by:

_ RSS(b)—RSS(b)
~ RSS(b)/(N -k —2)

where RSS(b) = (y-Xb)' (y-Xb) (719,

Add the variable producing the largest F

For each variable included in the model calculate the corresponding F-ratio

If the ratio between the largest F-ratio for exclusion and the largest for inclusion is
more that one, exclude the variable. (The ratio used can be changed to fit the
application)

The steps continue until a certain stop condition is encountered such as a maximum subset

size or an F-ratio resulting in a certain significance level etc.

7.3.4 Best-sub regression

The stepwise method for including and excluding variables does not insure that the optimal
subset of variables is selected. To insure the optimal subset is selected, it is possible to calculate

the regression statistics for all possible subset, sorting them after the mean squared error.

This approach will ensure the best subset is selected, but is very time consuming since the

number of subsets to investigate increases very rapidly.
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7.4 Analysis of Variance

A special case of linear regression analysis is the analysis of variance (ANOVA). ANOVA is a
tool for determining if a certain factor has a significant influence, on a dependent variable of
an experiment. An example of use is to determine if the temperature in a frying process has a

significant influence on the water contents in the end product.

The basic idea behind ANOVA can be formulated as: “We will make an inference abont differences
among group means by comparing different estimates of variance associated with these observations” [6].

7.4.1 One factor ANOVA

As the goal of ANOVA is to determine if a factor/treatment has an influence on a dependent
variable, the analysis sets out to compare different estimates of variance, using a statistical test
to determine if there is a significant difference between the estimates, thus yielding an

influence.
In order to continue, the notation of the one-factor ANOVA is introduced:

Y, = the ith observation in treatment group

Y. = iZYU = mean of treatment group |

Ton 4 (7.20)

Y :%ZZYU = overall mean
3

Where # is the number of observations and 7 is the number of treatment groups. The basic
model of the one factor ANOVA is given as:

Vi SHATEE (7.21)
Meaning an obsetvation is made up by the mean value plus a treatment effect (7;) and an
error term. The analysis is now to test for the existence of the treatment effects, meaning the

difference in the mean value across treatment groups. In order to do so, a null hypothesis is

setup, saying all mean values are equal:

H,io,=7,=..=7,=0 (7.22)
To test this hypothesis the ratio between two estimates of the with-in group variance (%), the
across group estimate (S.) and the with-in group estimate (Sj ), is used. This ratio is
distributed as an F-statistic, meaning if the null hypothesis is true the ratio is close to one,
whereas the ratio will be larger than one if the hypothesis is false. The with-in and across group

estimates are given as:

. Zj:”j (V.j ‘\7“)2

m-1

52 (7.23)
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sz - 1 v ) (7.24)

The results of the ANOVA are most often presented in a so-called ANOVA table, for the
one-factor example the tables looks like:

Degrees of i
Source | Sum of Squares Freedom Mean Square F-Ratio
Across Si (m-1) MS, = Sf\/(m _1) MSA/MSW
Within Se (n-m) |MS, =S, /(n-m)
2 —\2
Total |5t = ZZ(YU' ‘Y..) (n-1)
i

Table 7.1 - One factor ANOVA table

7.4.2 Two factor ANOVA

Expanding the one-factor model to a two-factor model; means having two different kinds of
treatments testing each for influence. An example could be testing if time and temperature in
frying process has an influence on the water content in the final product. In addition to testing
the two kinds of treatment for influence, one also tests the effects of the so-called nseraction

¢ffect. 'This is the differences encountered, not accounted for by the main effects of the
treatments.

Expanding the notation from Equation 7.20 to the two factor model gives:

Y, = the ith observation in level j of factor 1 and level k of factor 2

\7‘]3 = mean for level j of factor 1

Y, =mean for level k of factor 2 (7.25)
V_jk = mean for level j of factor 1 and level k of factor 2 and

Y =overall mean

When #is the total number of observations and M, is the number of treatment groups of factor

1 and my is the number of treatment groups of factor 2. This gives the following model of an

observation Yy, :

Yix = Hta;+ B +af + & (7.26)
As for the one-factor model the observation is made up by the mean value (), the effects of

the treatments (&}, f,af; ) and an etror term. To the test for the effects of the treatment

three null hypotheses is setup, one for each factor suggesting it is not contributing.
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H ag=a,=..=a, =0
Ho B =P =.=p, =0 (7.27)
H,:ap =ap,=..=af,, =0
As for the one-factor model an ANOVA table is setup, using F-statistics to accept or reject the
null hypothesis.
s Sum of § Degrees of Mean $ F-Rati
ource |Sum of Squares Freedom ean Square -Ratio
SS MS
_ MS, = 2Ja A
Across SS, (m,m, 1) A (mamb _1) MS,,
SS(a) MS (@)
— MS =
Factor 1 SS (0-') (m, -1 (a) (ma _1) MS,,
SS(B) MS (ﬂ)
Factor 2 SS(B) (m, -1) (B) (m-1) s,
SS(ap) MS (aﬂ)
Interact SS (aﬂ) (ma 1)(mb l) (aﬂ) (ma —l)(mb _1) MSW
ithi SS MS,, = _SSw
Within W (n—m,m,) “n-mm)
Total SS; (n-1)
Table 7.2 - Two factor ANOVA table
Where the sum of squares as given as:
SS, =SS (a)+ SS (ﬂ)+ SS (aﬂ)
SS (a) = an. (Y_j _Y____)z
j
$8(8)=2n (V- )’
k
- - o o
SS(af) =22 (Y-J'k =YYk _Y---) (729
i K

SSy = Z;E(Yuk -V )2
ss, = ZZj:Zk)(Yi,-k V)
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Chapter 8 Meat Chemistry

This chapter will introduce the relevant chemistry needed to perform a qualitative analysis of
the processed meat. This includes describing what generally happens in stir frying, what makes
up the color of meat, how and why the color changes over time and due to processing of the
meat, also including other aspects that ate crucial and / or interesting for the later analysis.

This chapter can be skipped by professionals with expert knowledge in meat chemistry and

frying processes of meat.
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8.1 Stir frying

A hypothesis of the mechanisms in the stir-frying process has been proposed in [2], in which a
process model is formulated based on observations made during stir-frying. The hypothesis
suggest that the stir-frying process can be divided into four phases each having their specific
impact on the product. The process is illustrated on Figure 8.1.

In the first phase the food product undergoes a rapid heat up, until reaching the temperature
gradient established in phase 2. [2] Suggest the average temperature in the food product piece
is about 80°C and around 90°C on the surface, this temperature is held down by the cooling
resulting from evaporation.

A

Surface —4

temp,—.g/
Fase 1: //Centre

Heating temp.
up —

Temperature / water evaporation

e Fase 3: Fase 4:
Quasi-stationary Browning | Over done!
condition with (stop at
evaporation cooling phase 3!)
Tid

Figure 8.1 - Phases of the stir-frying process [2]

In phases 3, the evaporation wears off and the food product forms crust, this crust has a large
influence on the look, taste and feel of the product. It is in this phase the product forms the
well-known fried taste and look. Over doing the heat treatment results in going into phase 4,
producing an over processed product. The characteristics of over-processed products are low

water contents and the well known burned black-brown colour.

8.2 Meat pigments

Meat contains a variety of meat pigments each contributing to the look and color of the meat
product. This section examines some of the basic and important pigments, when it comes to

color evaluation of meat.
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One of the basic pigments in meat is the meat fat. The pigments contained in meat fat varies
considerable in both type and quantities, therefore it is very hard to explain the exact pigments
in meat fat [11]. It can however generally be concluded that visually the age of the animal has a
direct effect on the color of the fat, as the animal grows older the fat darkness in color from
the white cream color, to a more yellowish color.

A much more interesting pigment in meat with regards to the frying process is the muscle
pigments. The muscle pigments basically consist of myoglobin and small quantities of
haemoglobin. These pigments, is of special interest in this context, since this determines the
color of the meat in different stages, also relating to the frying process.

Myoglobin consists of the protein globin, enclosing a so-called heme group. The heme group is
an iron atom with six bounding points, one of these is bound to the protein, and four is bound
to nitrogen atoms, leaving one open to bind to either water or oxygen.

HOOC

CO0OH

Figure 8.2 - Heme group

This open bind is enabling myoglobin to be an oxygen holder / transporting pigment in the
muscle. The atom bound to the 6% binding is a determining factor of the color of the pigment.
In addition to the binding, the oxidation state of the iron atom also determines the color of
myoglobin. In the living state of the tissue, the iron is in a ferrous state (Fe?*) but the oxidation
state may change to a ferric state (Fe’") in the dead tissue due to various processing of the
meat. The last factor determining the color of the pigment is the state of the protein. When
stress (such as extreme heat) is applied to the protein, the protein gets de-naturated resulting in
an irreversible change in the molecular structure. These changes in the pigments can be
summed op in the following table, showing the color in each state.

Pigment Oxidation step | The 6 bind | Protein state Color
Reduced Myoglobin Ferrous (Fe?") H,O Native Purple
Oxy-myoglobin Ferrous (Fe?") O2 Native Red
Met-myoglobin Ferric (Fe3t) H,O Native Brown
De-natured globin Ferric (Fe3*) H,O De-Naturated | Gray-brown

Table 8.1- Muscle pigment colors
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When cocked the myoglobin is changing to one of these states depending on the temperature.
Rare meat cocked to 60°C keeps the datk read color of oxy-myoglobin, if cocked to over 75°C
it gets the gray-brown color of the de-natured met-myoglobin.

As myoglobin, haemoglobin is used as an oxygen cartier in an animal. Where myoglobin is the
muscle oxygen carrier, haemoglobin is the blood oxygen cartier. Since haemoglobin is mostly
present in blood, it is clear that muscles contains only small quantities of this compared to
amount of myoglobin. Having this in mind and since the two pigments are structurally very
alike haemoglobin will not be discussed further in this chapter.

8.3 The Millard reaction

When meat is exposed to temperatures around 150°C further reactions related to browning,
taste and odor occurs, one of these is the Millard reaction. In the Millard reaction glucose and
the amino acid glycine reacts forming, the brownish melanoid pigments. These pigments give

the meat the distinctive look of roasted meat.

8.4 Fibrous Tissue

An important part of the meat structure is fibrous tissue. In muscle fibrous tissues forms a
three-dimensional network, which supports the muscle cells, and therefore is of big importance
for the fell of the meat. Fibrous tissue mainly consists of the protein collagen. As an animal
grows older the weak bindings in collagen is replaced with harder bindings thus making the

meat non-tender.

When the meat is heated the collage protein, starts to de-naturate at 60°C, thus making the
meat more non-tender until 80°C. From 80°C the meat will start to get tender due to the break
of the harder cross-bindings and peptide-bindings. The de-naturation of the collage protein
furthermore has the property, that it expels water and fat due to contraction. These effects of
the de-naturation are of special interest for since the water and fat absorbs in the NIR bands
available.
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Chapter g Assessment of Frying
Treatment for Minced Beef

Adequate frying treatment of minced meat is crucial, not only to ensure extermination of
microorganisms, but also to ensure high quality and well tasting meat. This chapter examines
the possibilities to assess the frying treatment of minced meat using non-destructive multi-
spectral vision technology.

The methods and results obtained in this chapter have been presented in the following
publications:

A Method for Frying Treatment Assessment of Minced Meat Using Multi-Spectral Imaging.
The article is to be submitted to the 3 International Symposium on Recent Advances in Food
Analysis.

A Method for Frying Treatment Assessment of Meat Using Multi-Spectral Vision Technology
The poster was presented on the 2007 Industrial Vision Day, the 23t of May at the Technical
University of Denmark.

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat
The atticle is to be submitted to Elseviet’s international journal Food Control.
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9.1 Sample preparation

Using the continuous wok and the method developed in [5] for frying of minced meat, a
number of samples where prepared in accordance with the experiment design included in
Appendix B.

Frozen minced meat with a fat percentage of 15-18% purchased from the wholesale supplier
Inco Denmark Amba. Copenhagen was used. The meat was crushed using a hammer into
pieces of 150[g]. These pieces where then chopped using a meat chopper (Kilia 57cm
diameter). 1[kg] of meat was chopped at a time, until it was finely divided into pieces of
approximately 5[mm)]. Exaggeration of the chopping should be avoided due to the forming of
heat during chopping.

Figure 9.1 - Meat pieces before and after meat chopper

After chopping the meat was contained in plastic cups each containing 100[g], and cooled
down using ice to prevent the meat from thawing until it was to be fried.

9.1.1 Wok-frying

The samples where prepared by feeding 800[g| of the still frozen meat to the wok, for each
sample regulating parameters for time and temperature. The temperature was altered using the
steps 200°C, 225°C and 250°C, for each temperature step four samples was prepared varying
the frying time from 120]s] to 240[s] in 40[s] intervals.

This combination of temperature and time, following [4], results in samples that have
characteristics of under- and adequate-processed meat. It can be argued that some of the
samples can have characteristics of over-processed meat. These samples are in this context
perceived as adequately-processed, since the by far largest part of the meat granules are
adequate-processed, containing only a few over-processed granules which are easily identified
by the human eye due the very characteristic black-brown color. It is important to note that the

under-processed meat does not contain raw-meat, but instead is used as a term for meat with
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high moisture and fat content, thereby having a lower frying quality. The meat samples are

divided into processing classes in accordance with Table 9.1.

Temp / Time 120[s] 160[s] 200[s] 240[s]
200°C Under Under Under Under
225°C Under Adequate | Adequate | Adequate
250°C Adequate | Adequate | Adequate | Adequate

Table 9.1 - Processing degree of meat samples

9.1.2 Image acquisition

For each combination of time and temperature, three sub-samples were taken out for imaging,
giving triple determination of the results. For each sub-sample a Petri dish was filled and a
finger was run over removing excess particles, leaving a somewhat homogenous surface for
image acquisition. The images where acquired using the Videometerlab software, and saved in
the hips format. For details of storing refer to Appendix B.

9.2 Chemical experiment

To examine the water contents of the meat, water determination was performed. Water
contents are examined since it can be argued, that it to some degree can be used as an indicator

of the frying treatment.

The experiments are done by taking 20[g] meat of each sample and making it homogeneous in
a liquidizer. From the homogeneous 20[g] of meat, three samples of approximately 2[g] are
taken out and dried at 105°C for 24 hours. The difference between the weights before drying
and after makes up the water content.

9.2.1 Results water determination

The results of the water determination are given in Appendix C and summarized in Table 9.2.

Water contents 120 [sec] 160 [sec] 200 [sec] 240 [sec]
Mean G Mean c Mean G Mean c
200°C 54.3% | 0.217 | 52.7% | 0.440 | 51.5% | 0.212 | 51.2% | 0.425
225°C 53.4% | 0.150 | 54.0% | 0.136 | 52.5% | 0.411 | 51.3% | 0.240
250°C 51.0% | 0.185 | 46.3% | 0.206 | 49.7% | 0.273 | 48.3% | 0.226

Table 9.2 - Water contents - Minced Meat
Generally the results show a low deviation within the sub-samples. The results further shows,
as expected, that the under processed meat same to have higher water contents than the

adequately processed meat.
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From Table 9.2 it is hard to conclude if both the frying time and temperature, has an effect on
the water contents of the end product. To examine this further a two-factor ANOVA is
performed, the results are presented in Table 9.3.

Sum of Squares df Mean Square | F-Ratio Pr>F
Across 177.44 11 16.13 135.38 0.0000
Time 29.42 3 9.81 83.29 0.0000
Temperature 111.69 2 55.85 468.71 0.0000
Time x Temperature 36.33 6 6.05 50.81 0.0000
Within 2.86 24 0.12
Total 181.59 35

Table 9.3 - ANOVA table water content - Minced Meat

The ANOVA clearly shows that both the frying time and temperature, has a large influence on
the water contents of the end product, furthermore it shows that the interaction effect is very

influential.

9.3 Pre-Processing

Despite the attempt to create a homogenous surface, the nature of the meat granules results in
the forming of dents, which leads to a large variation over the image parts consisting of meat.
This and the fact that the images also contains other objects than meat (Petri dish, metal plate
from imaging device) stress the need for pre-processing of the images.

The pre-processing procedure is to isolate the tops of the meat granules, removing all other
objects, thereby ensuring less variation over the image data and a reduction in the data to
analyze. It should be noted that there will still exists some variation due the natural variation as
a results of frying minced meat, it is not the purpose of the pre-processing algorithm to

remove this.

9.3.1 Eradicate non-meat objects

In the first step of the pre-processing procedure the goal is to eradicate all non-meat objects
found in the image. Examining the spectrum of the objects in the images (Figure 9.2a), it
shows the lower bands of the image shows a clear separation of the objects. This will allow of
a simple threshold operation to remove the un-wanted objects. The histogram curves of

various interesting bands shown in Figure 9.2b further supports this proposition.
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Figure 9.2 - a) Spectrum Background / Foreground, b) Histogram curves
Using a score based technique to select the optimal band and threshold value, will enable an
optimal eradication of the non-meat objects for every picture, regardless of intensity and
distribution of the objects. The score parameter defined is based on the following features:

ValueFirstPeak
The height of the first peak found in the histogram. This would represent the
foreground of the image.

ValueSumLastPeaks

The sum of the peak values of the last peaks; this is used to calculate the ratio between
the first and the last peaks. This ratio is useful since a low ratio could imply noise peaks,
instead of actual background peaks.

DistanceFirstSecond

The distance between the first and the second peak. A large distance implies it a good
separation of the background and foreground, whereas a low distance implies low
separation.

WidthFirstAtHalfMax
The width of the first peak at half of the maximum value, this is an expression of the
variance of the peak. A too large variance might imply more than one distinct feature.

From these features the best score is calculated using the following equation. The equation has
been derived from a number of experiments.

ValueSumLastPeaks . . 1
score = - x (DistanceFirstSecond)x — - 3
ValueFirstPeak WidthFirstAtHalfMax

From the equation it can be derived that narrow peaks far from each other will get large score,

.1)

whereas low and wide connected peaks will get a low score as intended for the separation. The
scores are only calculated for bands lower than 650[nm)], calculating for higher bands would
not make sense due the nature of the spectrums.

Experience shows that the resulting region-of-interest masks still include a thin line originating
from Petri dish. In order to remove the line, a 5x5 median filter applied to the ROL. The filter
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not only removes the thin line, but also creates a smoother border around the isolated meat
area. The ROI before filtering, the resulting ROI and the difference image is shown in Figure
9.3.

a) b)

Figure 9.3 - a) ROI before filtering, b) ROI after filtering, c) a-b

9.3.2 Isolate meat tops

Having removed the non-meat objects, there still is a large variation over the meat left in the
image. This is due to the granule structure of the meat, creating dents in surface. The next step
of the pre-processing procedure is to isolate the top of the granules, to ensure less variation

over the granules.

In-order to isolate the granule tops the h-domes segmentation technique is used, along with a
threshold on the resulting h-domes image. To get the optimal results of the h-domes
segmentation profiles of the image has been examined, concluding that band 10 (700 [am)])
with an h-value of 35 and a threshold value of 7 is an appropriate choice.

Below is shown an example image along with the image after removing non-meat objects and

the mask obtained using the h-domes transformation.

Figure 9.4 — a) Example image, b) After eradication of non-meat objects, c)Resulting pre-processing mask
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9.4 Preliminary spectrum comparison

To stress the relevance of further analysis a preliminary spectrum comparison is performed.
This comparison will outline the changes observed in the spectra due to heat treatment of the
meat. For each meat sample a mean spectrum is derived from the image area consisting only of

meat, these spectra form the basis for the comparison.

It is found that the differences introduced are best visualized by normalizing the spectrums
around band 8.
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Figure 9.5 - Preliminary spectra comparison

Figure 9.5 clearly shows differences introduced by the heat treatment. The main difference is
observed in the upper bands where protein, fat and water have absorption. This is expected
since meat expels water and fat, due to contraction as a result of the de-naturation of the
proteins. The changes in this part are mainly observed as an introduction of a “break” on the

curve around 950[nm].

Furthermore it is a general tendency is that the more heat applied the larger is the ratio to band
8 is in the higher bands, this is clearly observed in Figure 9.5 where the under-processed
samples all are grouped together below the other spectra.

Further interesting is the minor differences in lower bands; especially band 4 and 6 was
expected to have larger differences due to met-myoglobin and oxy-myoglobin. This is however
not the case, most likely since the all samples have undergone sufficient heat treatment, such

that the myoglobin is transformed into de-naturated met-myoglobin.
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9.5 Multivariate analysis

To further enhance the differences found in the preliminary spectra comparison, in-order to

provide an assessment of the frying treatment, various multivariate analyses are applied.

9.5.1 Principal Component Analysis

Recalling the principal component analysis (PCA) it will extract the patterns in the images,
accounting for the largest part of the variation. The PCA was performed on the pre-processed
images, to insure that it only takes the variation introduced by the meat applied with different
heat treatment into account.

It was found that the first two PCA components accounts for 96.7% of the total variance
(85,26% and 11,67% respectively), examining the lower components, accounting for very small
amounts of variation, they mainly show noise and ate therefore not examined further. To
examine the first two components further, histograms of the pre-processed and transformed

images are plotted.

a) - Higtagram - PCA comporint 1 b) gt Histogram - PCA compaonent 2

Figure 9.6 — a) Histogram curves PCA component 1, b) Histogram curves PCA component 2

From the histograms it is observed that different heat treatments results in different
displacements of the top of the histogram curves. This displacement is generally more
apparent in first component than in the second, but cannot be used directly from any of the
components since the variation is very small. Instead one can use the combination of the two
components to investigate the results further. To examine the combination the mean of the
first and second component for each frying degree is plotted in a scatter plot.

The scatter plot is given in Figure 9.7. The plot shows two groupings of observations, which
almost corresponds to the under- and adequately-processed division of meat samples however
with some exceptions. To further enhance these groupings and their similarity to the
undetr/adequate treatment classes, the border line between the undet- and adequately
processed observations is calculated and plotted using their classes discriminant functions. The
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border line shows that the top right grouping, corresponds to the under-processed meat, with
the exceptions of two measurements namely 250°C 120[s] and 225°C 240[s], and the bottom
left grouping corresponds to the adequately-processed meat.
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Figure 9.7 - PCA1 and PCA2 scatter plot

Generally it seams like it is possible to do an assessment of the heat treatment using PCA,
however it does not seam completely accurate. The inaccuracy is not only observed in the
scatter plot, but also the histograms plotted since they show little division between the
different frying degrees.

9.5.2 Canonical Discriminant Analysis

In addition to the PCA, a canonical discriminant analysis is also applied to the images to see if
it is able to separate the classes better than the PCA.

The images were preprocessed as described in 9.2, and divided into the classes described in
Table 9.1. The canonical discriminant analysis was then performed, deriving the optimal linear
combination of the 18 bands separating the data into the two processing classes.

To examine the separation of the data, a histogram curve for a transformed image from each
frying degree is detrived and plotted in Figure 9.8.
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Figure 9.8 - Histogram — CDA

The histogram curves show a good separation of the different frying degrees, based on the top
of the histogram curves. The under-processed samples seam to have their tops from 1 and
down, whereas the adequately-processed samples seam to have their tops from 1 and up. The
curves however seams to be somewhat wider, than the ones derived from the PCA. The wider
curves indicate the image contains a variety of different frying degree, having such a range of
different frying degrees seams inevitable in a process like this.

From the projections of the first CDF it seams like CDA is able to separate the frying degree
using only one projection, and therefore it is decided to continue the heat treatment

assessment using CDA.
Examining the derived linear combination, also called the canonical discriminant function,
gives an impression of which bands are the most important in separating the frying degrees.
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Figure 9.9 - Loadings Canonical Discriminant Function

The loadings of the CDF show that the most influential bands to the CDF seams to be 3, 10,

17 and 18. This is in accordance with the preliminary spectrum analysis, in which it was
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concluded that higher values in the upper bands implies longer heat treatment, also it was
found that most of the lower bands had little or no effect on the heat treatment.

9.5.3 The Frying-Treatment Score

As concluded in the prior section, the CDF derived from the CDA can be used to give an
assessment for the frying degree in the images. The next step it to define a measure of the
frying treatment based on that linear combination.

The measure of frying treatment will be denoted the Frying-Treatment Score and abbreviated
FTS. Recalling the CDF function, the results of applying it to a multi-spectral image is a
projection of the 18 bands, thereby essentially creating a grayscale image. The grayscale images
can be compared, and one will find an intensity difference between the meats at different
frying degrees. However since we, for now, are not interested in a visual inspection of the
meat, but rather a measure for the entire image, it is decided that the FTS for minced beef is to
be defined as:

The Frying-Treatment Score (F1S) for a multi-spectral image containing minced beef; is the
mean valne of the pixels in the pre-processed image, containing only meat, projected with the
CDF derived in 9.5.2

Having this definition of the FTS for minced beef images, it is now possible to plot the scale
of the FTS. Meaning plotting the FTS for the various images, thus giving an impression of
how the FIS is distributed. Furthermore using the values from the images, it is possible to
examine from which FTS value the images are categorized as adequately-processed, this is
simply the mean value of the two groups (under and adequately processed) mean values. This
cut-off point is found to be at a FTS value of 0.95. The mean of the three sub-sample images
for each frying degree, and the cut-off point is plotted on the Frying-Treatment Score scale in
Figure 9.10.
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Figure 9.10 - Frying-Treatment Score - Minced Meat

From the points on the scale, one observes that the no samples seams to be placed on the
wrong side of the cut-off point. Furthermore it is observed that the Frying-Treatment Score
seams to be increasing along with the frying treatment. Having defined the FTS the next parts

will show some applications of use.
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9.5.4 Regression analysis

To investigate the relation between temperature, frying time and the FTS factor, the relation is

fitted using least square regression. The model is created such that it gives an estimated time

based on the measured FTS and frying temperature, this is done since this will give an

estimation of a value for which the ground truth is known.

To find the optimal degree of the regression model a 3-fold cross validation is used, dividing

the dataset in three subsets. This is done by having one value for each combination of time and

temperature in each subset; this is possible since triple determination was used when acquiring

the images.

From the cross validation the root mean square error and the R? value is determined; this can

be used to select the appropriate model. The results are shown in Table 9.4.

Polynomial degree | RMSEtest | RMSETrin R2
1 44.78 4471 0.00
2 39.58 32.97 0.43
3 30.97 26.85 0.62
4 120.34 24.10 0.67
5 122.51 23.57 0.68

Table 9.4 - Cross Validation Results

From the validation results of the various models, it can be concluded that the optimal

relationships is the cubic relationship. Furthermore the results show that the cubic relation

accounts for 62% of the variance in time. From the cubic relation contours are drawn as

shown in Figure 9.11.
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The inaccuracy which occurs in regression clearly shows in the contours drawn. For example

are the contours suggesting that a high frying treatment score can be achieved at 200°C using a
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relatively short frying time, this is of-course incorrect and suggest that the top-left-most part of
the plot is invalid.

As the modeling of frying time suggests the optimal relation is cubic, it can be assumed that
this is also the case for modeling the FTS based on time and temperature. By doing so the
patameters are estimated with a goodness of fit of R?> = 0.65, meaning 65 percent of the
variance in FTS is accounted for by the temperature and frying time. This is an acceptable
result, but it also shows that factors beyond the time and temperature have a significant impact
on the FTS. Some of these effects can be the known varying quality parameters of minced
beef, an example is the fat percent in minced meat, in [22] it is found that in one batch (from
the same wholesale supplier as used for this experiment) the fat percentage can vary from 9%
to 14% in meat said to contain 15-18%.

Having estimated the parameters for the polynomial using regression, it can now be used to
further model the relationship between frying time, temperature and frying-treatment. This is
done by deriving the contour lines for the FTS at various interesting FTS values. The contours
are plotted in Figure 9.12.
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Figure 9.12 - FTS Contours, Time vs. Temperature

The model of FTIS values implies that meat prepared at 120[sec|] or less regardless of
temperature (from 200°C to 250°C) does not seam to reach the frying degree of adequate-
processed meat, which to some extend can be a fair approximation for the range plotted. It
further shows that meat prepared at 200°C regardless of frying time, does not reach the
adequate-processed frying degree either.
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9.6 Visualization

The prior section in this chapter presents a method for evaluation the frying degree of an
image using the Frying-Treatment Score. This section will examine a way of visualizing the
results, by creating a false RGB image enabling an easy way of examining the frying degree.

Recalling the CDF derived, it is creating a projection of the 18 band multi-spectral image,
which essentially is a grayscale image changing in insensitivity based on the projected value of
each pixel. However since the changes in the intensity is rather small, it is decided to scale the
grayscale change over series of RGB values. This will create a false RGB image of the original
image, assigning a certain color to a specific FTS value. The FTS values will be scaled to the
RGB values as shown in Figure 9.13.

-2 1

Figure 9.13 - FTS values to RGB

To further enhance the ease of visualization, only the parts of image containing meat, meaning
the part isolated by the pre-processing, is converted using the false color composition, the
remaining parts of the image are shown as if they were acquired using a regular camera.
Examples of images converted are shown in Figure 9.14. All the resulting images are included
in Appendix D.

Figure 9.14 - 2) 200°C - 160[s], b) 225°C — 200[s] c) 250°C — 160[s]

These examples clearly show how the visualization is able to show which meat granules are

adequately processed and which are under-processed.
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9.7 Discussion

This chapter shows how it is possible to assess the frying-treatment of minced beef using
multi-spectral images and multivariate statistics. By using canonical discriminant analysis to
derive the optimal linear combination, separating the images at different frying degrees, a
Frying-Treatment Score (FTS) is defined based on the result of the projection. It is found that
the defined FTS gives an assessment of the frying treatment, such that increased frying
treatment results in an increased FTS. Using the FIS of all the images in the dataset, it is
possible to define the FTS cut-off point, from where meat can be categorized as adequately
processed; this point is found to be at 0.95.

Using the Frying-Treatment Score a model is created, to estimate the FTS based on the frying
time and temperature. The model created is able to account for 65% of the variance in the FTS
values, based on frying time and temperature. This relatively low amount of variance is most
likely due the fact that some parameters with-in the minced meat, such as fat percentage, can
vary within a batch making it harder for the analysis to generalize for a specific type of minced
meat. Also other factors such a temperature when entered into the wok, and time from frying

to imaging can create inaccuracies.

Along with the defining FTS, an example of how it could be used to visualize the frying
treatment is given. The visualization transforms a multi-spectral image into a RGB image, in
which the meat objects are colored based on the FTS values. The entire dataset converted to
these false RGB images are given in Appendix D.
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Chapter1o  Agglutination of Minced
Beef

The frying process described in [5] requires the minced meat to be frozen when it enters the
continuous wok; if the process fails to comply with this requirement the resulting meat has a
tendency to agglutinate. It is important for fried minced meat that the meat has a uniform size,
and that is does not include large lumps. This chapter examines the possibility to detect such
agglutination using vision technology.

The methods and results obtained in this chapter have been presented in the following
publications:

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat
The article is to be submitted to Elsevier’s international journal Food Control.
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10.1 Sample preparation

The meat samples used in this experiment was prepated in accordance with the experiment
design included in Appendix C, using the method briefly described in section 9.1.

After chopping the meat it was contained in plastic cups, without cooling to thaw for the time
specified in the experiment design. After thawing the meat was placed on ice to prevent further
thawing before frying. The time on ice was held to a minimum to prevent the meat from

freezing.

=—

Figure 10.1 - Meat contained in plastic cups without oling, and tray to use for cooling during frying

The experiment design specifies three thaw times namely 30, 90 and 150 minutes.

10.1.1 Wok frying

When the thaw time elapsed samples where fried in the continuous wok, at different
temperatures and times to examine the frying treatments effect on agglutination. The
temperatures used was 200°C and 225°C, and for each of these temperatures a sample was
created with the frying times 160[s] and 240[s]. This provides us with samples having
characteristics of both under- and adequate processed.

10.1.2 Image acquisition

For each combination of thaw time, frying time and temperature, 3 sub-samples where taken
out for imaging. The sub-samples taken out for imaging were selected such that it ensured a
somewhat representative selection of the entire sample. Meaning it was ensured that large
particle were present in the sub-samples, if they were present in the entire sample production.

The sub-samples where placed in a Petri dish and a finger was run over to remove excess
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particles. The images were acquired using the VideometerLab software and saved in the hips

format.

10.2 Physical / chemical experiments

To examine some of the physical and chemical properties of the fried meat, two experiments

were made. One to determine the amount of large particles and one to determine the water

content of the meat.

10.2.1 Strainer loss

In order to examine the amount of large particles in the meat sample, the meat was run

through a strainer and the amount of meat kept in the strainer was measured. The strainer used
had square holes with a side length of 1.1-1.2 cm.

Figure 10.2 - Strainer

Thaw time / | Frying time | Before strainer | After strainer Loss [g] | Loss %
Temperature [s] [g] [g]
30 min
200°C 160 162.4 160.7 1.7 1.04
200°C 240 208.2 208.2 0.0 0.00
225°C 160 240.3 239.8 0.5 0.21
225°C 240 317.7 314.7 3.0 0.94
Avg. 0.55
1h 30 min
200°C 160 264.2 259.2 5.0 1.88
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Thaw time / | Frying time | Before strainer | After strainer Loss [g] | Loss %
Temperature [s] [g] [g]
200°C 240 487.7 462.9 24.8 5.09
225°C 160 457.7 446.7 11.0 2.40
225°C 240 352.1 544.2 7.8 2.22
Avg. 2.90
2h 30 min
200°C 160 310.5 290.0 20.5 6.59
200°C 240 350.3 327.0 23.3 6.65
2250C 160 371.3 349.0 22.3 6.01
225°C 240 287.9 268.8 19.1 6.63
Avg. 647

Table 10.1 — Strainer loss

The results of the strainer loss experiment shows a loss of <1% for the samples without
considerable thawing, and a loss of 6-7% for meat let to thaw for 2%z hours. This clearly shows
the thaw time has a significant influence on the agglutination. Furthermore the results imply
that the frying treatment has no significant effect on the strainer loss, as the variance of the
strainer loss over frying treatment seams to be rather sporadic. This is investigated further in a
later section.

10.2.2 Water content determination

A water content determination was performed using the method described in the in the prior

chapter. The results of the water determination is given in Appendix F and summarized in
Table 10.2.

Water contents /| 200°C 160 [sec] | 200°C 240 [sec] | 225°C 160 [sec] | 225°C 240 [sec]
Thaw time Mean c Mean c Mean c Mean c
30 min 50.3% | 0.401 | 46.6% | 0.245 | 45.3% | 1.828 | 46.0% | 0.080
1h 30min 43.4% | 0.189 | 48.1% | 0.672 | 47.5% | 3.036 | 45.0% | 0.271
2h 30min 48.8% | 0.209 | 49.2% | 0.117 | 53.8% | 0.261 | 50.5% | 0.325

Table 10.2 - Water contents - Minced Meat

The results generally seam to follow the same scheme as in the prior chapter, where water
contents decrease when frying treatment increases. Since it was concluded in the prior chapter
that both frying time and temperature, has a significant influence on the water contents, this
will not be examined further. Instead an ANOVA is performed to examine if the thaw time
has an influence on the water contents. For this purpose the frying time and temperature is
combined into a factor called #reatment. This is done to simplify the analysis to a two factor
analysis; the resulting ANOVA table is given in Table 10.3.

Source Sum of Squares| df Mean Square F-Ratio Pr>F
Across 273.08 11 24.83 22.31 0.0000
Treatment 14.45 3 4.82 4.33 0.0142
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Source Sum of Squares| df | Mean Square | F-Ratio Pr>F
Thaw time 138.39 2 69.19 62.17 0.0000
Treatment x Thaw Time 120.23 6 20.04 18.00 0.0000
Within 26.71 24 1.12
Total 299.41 35

Table 10.3 - ANOVA table water content - Minced Meat

The results of the ANOVA show that the thaw time is greatly influential on the water contents
of the end product. From Table 10.2 it seams like the water content increase as the wait time
increases. Furthermore the ANOVA results show that the interaction effect of thaw time and

temperature is also significantly influential.

10.3 Pre-processing

As with the samples used in Chapter 9 (for frying treatment assessment), the samples used for
this analysis also included unwanted objects in the images. Due to the similar process of
acquiring the images the first stage of the pre-processing can be reused. For more details on
separating the meat objects from the other objects refer to section 9.3.1.

Since the analysis for this chapter concentrates on the spatial properties of the image, namely
the formation of lumps in the meat, a different approach than the one taken in the prior
chapter is taken. To examine the formation of lumps in the image, one must carefully extract
the meat granules present in the image, as opposed to the prior chapter where the main goal
was to minimize the spectral information by isolating the granule tops. The approach for a
carefully isolation of the meat granules is explained further in the following section.

10.4 Assessing agglutination

Having the preprocessed images, containing only meat, the goal of the analysis is to isolate the
meat granules, using the spatial information of those to provide measures for the agglutination
in the meat samples.

10.4.1 Optimal band selection

Since a spatial analysis is needed, it is important to select the optimal band of those available
for performing the analysis. For the detection of lumps it is important that the band is able to
distinguish between tops and dents in the meat sample.

To examine this property, a profile detived from a line, going through the horizontal middle,
of the grayscale image of each band is created. The middle of the image is chosen, since this
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contains meat granules over the entire profile, thus giving a better basis for comparison. Below

is shown the profile plot, along with the corresponding grayscale image of the band.
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Figure 10.18 - Band 16

Figure 10.19 - Band 17

Figure 10.20 - Band 18

The profiles show that the lower bands profile is flickering a lot, and seams to be spanning
over a low range of values thus making it unfit for this purpose. Around band 10 and up the
curves become smoother, and the range of values used increases to a higher level, thus making
them more fit for the purpose. It is chosen to use band 11 shown on Figure 10.13 for the
purpose as this seams like the better fit.
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10.4.2 Detection of meat granules and lumps

The method for detection of meat granules must be able to detect both large and small
granules; and be able to separate the meat granules in the Petri dish even if they are located
very close together, as it is the case with the sample images, were they are located even on top
of each other.

For this putpose an h-domes segmentation technique is used, followed by a threshold and a
connected component analysis for detecting meat granules. Recalling the basics of H-Domes
segmentation a N value must be determined. To determine an optimal value for Nthe profile
of band 11 can be examined again. Since the profile of meat granules is independent of
orientation of the profile-line, the profile examined is again given for the horizontal line
though the middle of the preprocessed image.
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Figure 10.21 - Profile band 11

The h value must be small enough to separate all different granules, both also large enough to
not create several spikes representing a single granule. Inspecting the profile shows that a value
between thirty and forty, will be able to separate the granules creating only one spike for each
granule. Through experiments the h value is chosen to be 35.

The next challenge is to select an appropriate threshold value for the resulting h-dome image.
To assist in this selection the resulting image and the profile of this image is useful.
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Selecting a useful threshold value involves selecting a value which is small enough to include all
significant granules, and large enough to avoid separating the spikes from large meat granules,
thus being very similar to the section of an appropriate Nvalue. From the profile in Figure
10.22 it can be derived that 7 seams like an appropriate threshold value. Using 7 as threshold
value will result in the binary image given in Figure 10.23.

Figure 10.23 - H-Domes with threshold on 7 Figure 10.24 - Threshold image w. median filter

Figure 10.23 clearly shows that this technique is able to isolate the meat granules as needed; but
the image still includes some noise-like elements which can disturb the connected component
analysis. To remove the noise a 5x5 median filter is applied, this removes the larger part of the
noise and provides a smoother image for the connected component analysis; the median

filtered image is given in Figure 10.24.

The last step of the analysis is to find some measures for the agglutination. The first measure
defined will simply count the number of connected components in the image, thus giving an
approximation of the number of meat granules in the image. 4-connectivity is used for the
connected components analysis. This is used since some of the meat granules are placed very
close to each other, making 8-connectivity a better fit for the background. The second measure



10.4 Assessing agglutination 83

defined is the mean size of the meat granules found, this measure can later be converted from
pixel to cm? as the relation between pixels and square centimeters is known for the
VideometerLab camera. Finally a third measure is defined as the maximum granule size
detected in the image.

10.4.3 Estimation of meat area

Since all images acquired have a slightly different placement of the Petri dish, some images
might include more of the Petri dish than others. Therefore a dynamic solution to the
estimation of the area containing meat is needed.

First step is to crop the pre-processed images such that only the area containing meat is kept,
thus throwing away the areas around the meat containing no information. Having cropped the
image the dimensions can be directly used to estimate the meat area. Since the camera does not
capture the entire Petri dish, the dish in the image can be assumed to be elliptic, thus easing the
calculation of the meat area. This principle is shown in Figure 10.25.

Figure 10.25 - Ellipse area estimation

The elliptic area can be calculated as:

1 1

Area,  =7-a-b=z-—w-—=h (10.1)
2 2

Pixels
From [9] it is known that the relation between pixel and centimeter in the VideometerLab

camera is given as 0.077 [m%ixel:| , this enables the conversion from pixels to cm?.

0.077" - Area,,
Area | = ——————f (10.2)

Z 100
Having the meat area and the number of detected meat granules, the last measure of
agglutination can be defined as meat pr. cm? This and the measures for mean size and
maximum size is derived for all available images, and discussed further in section 10.4.4.
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10.4.4 Results

For each sample image the estimated meat pr. cm?, mean size of granules, standard deviation

of size and the maximum granule size is derived. All results are derived in square centimeters

usin, e relation between pixels and centimeters from e complete results table is
g the relation between pixels and timeters f; [9], th plet Its tabl

included in Appendix G, and a summary is given in Table 10.4.

Thaw Time / Mean granule . Maximum
Meat pr. cm? : o granule size i
Treatment size granule size
30 min
200°C - 160][s] 6.37 0.0553 0.0949 0.5616
200°C - 240][s] 7.38 0.0476 0.0744 0.4958
225°C - 160]s] 6.18 0.0562 0.0950 0.6376
225°C - 240][s] 5.56 0.0638 0.1055 0.6901
Avg. 6.38 0.0557 0.0925 0.5963
1h 30min
200°C - 160][s] 6.45 0.0535 0.0969 0.8081
200°C - 240][s] 5.91 0.0602 0.0162 0.9482
225°C - 160][s] 6.29 0.0555 0.3199 0.8489
225°C — 240][s] 5.46 0.0634 0.1119 0.7143
Avg. 6.03 0.0582 0.1588 0.8299
2h 30min
200°C - 160]s] 5.55 0.0638 0.1254 1.0656
200°C - 240][s] 5.20 0.0720 0.1673 1.8337
225°C - 160][s] 5.29 0.0686 0.0892 0.9022
225°C - 240][s] 5.24 0.0677 0.1469 1.0957
Avg. 5.32 0.0680 0.1322 1.2243

Table 10.4 - Results image analysis

The results of the measures illustrate how they are able to assist in an assessment of

agglutination. It is clear to see that the meat pr. cm? is decreasing as the thaw time increases,

and that the meat granule size and maximum granule size increases along with the thaw time.

10.5 Analyzing results

This section will explore the relation between the physical method and image analysis method

for measuring agglutination. The two methods have obvious differences, e.g. the physical

method takes the entire meat sample into account, whereas the image analysis method only
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uses the top layer of the three Petri dishes of meat, despite of the differences the results of the
methods still proves to be comparable.

10.5.1 Initial comparison

The first action taken to compare the four measures, strainer loss, meat pr. cm?, mean granule
size and maximum granule size, is to normalize them to zero mean and unit variance. This is
done to be able to plot them in the same plot, and thereby get an impression on how they

relate.

Agglutination Measures
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Figure 10.26 - Agglutination Measures
From the plot it is observed that the granule size measures and the strainer loss is positive
correlated, and the strainer loss and meat pr. cm? is negative correlated, this was also expected.
Overall it can be concluded that there is a high correlation between the strainer loss and the
measures acquired using image analysis. Thus showing these can be used for assessing
agglutination.

10.5.2 Regression analysis

To further investigate the relation between the measures and the strainer loss, and to
investigate the relation between frying degree and strainer loss, two types of regression analysis
is performed. One tries to model the strainer loss based on the measures gained through the
image analysis, and the second one tries to model the strainer loss based on the thaw time and

the frying degree.

10.5.2.1 Modelling strainer loss by spatial measures

From the image analysis results it has been chosen to use the maximum meat granule size and
the mean granule size. These are sclected as they are independent of the image area and

therefore more realistic in a production scenario.
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To determine which regression model is the optimal a 3-fold cross validation is performed
dividing the dataset into three subsets, each containing one image for a combination of thaw
time, frying time and frying temperature. The strainer loss is modeled using a 1%, 2nd, 3rd, 4th
and 5% degree polynomial, for each model the R? value and the root mean squate error is

recorded in Table 10.5.

Polynomial degree | RMSErcs | RMSETin R2
1 2.04 1.80 0.48
2 1.83 1.67 0.56
3 106.47 1.50 0.58
4 687.11 1.09 0.72
5 3815.52 0.68 0.83

Table 10.5 - Cross Validation Results
Based on the root mean square error it seams like the squared relation is the optimal. The

relation is found to give aR” =0.56 , meaning 56% of the vatiation is accounted for using

these parameters. In Figure 10.27 contours are plotted using the estimated parameters.
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Figure 10.27 - Estimated Strainer Loss

10.5.2.2 Modelling strainer loss by spectral measures

Another interesting approach to the strainer loss, is to model it based on the thaw time and the
degree of frying, this will help enlighten aspects of the agglutination e.g. if it can be minimized
by applying a higher frying treatment. To get a measure of the degree of frying, the definition
from the prior chapter is used to derive a FIS for each image used for agglutination

assessment.

Again 3-fold cross validation is used and the R? and root mean square errors are recorded
resulting in Table 10.6.

Polynomial degree | RMSErces | RMSETin R?
1 0.80 0.77 0.91
2 0.70 0.68 0.93
3 0.73 0.67 0.93
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0.77 0.62 0.94

5 1.60 0.60 0.94
Table 10.6 - Cross Validation Results

The results show that the optimal model of the strainer loss based on frying treatment and
thaw time is squared, this relation has the smallest error and accounts for 0.93% of the
variation using these parameters. This shows a large improvement in both R? and error from
the spatial properties, meaning it is easier to predict the strainer loss knowing the thaw time
and frying treatment. This is also expected since the thaw time has a large influence on the
strainer loss.

To illustrate the relation contour lines ate plotted in Figure 10.28, the contour lines support the
suggestion made in [4] suggesting that higher heat treatment results in lower agglutination. This
seam to be especially significant for higher FTS values (> 1).

Estimated Strainer Loss [%)]

Frying-Treatment Score
=2 2 o = = ==
£ ol o —_ ha = =2 o

[=]
R

=]

1 1
40 60 a0 100 120
Thaw Time [min]

Figure 10.28 - Estimated Strainer Loss

10.6 Discussion

The results obtain in this chapter shows how it is possible to obtain measures from a multi-
spectral image containing minced meat, which can assist in assessing agglutination for minced
meat. The chapter defines the measures: meat pr. cm? mean granule size and maximum

granule size and derives these for all sample images.

From the resulting data it is found that these have a high correlation to the strainer loss, which
shows that these can be used to assess the agglutination of minced meat. This relation is

investigated further using regression analysis, this further supported the proposition.

Furthermore the relation between agglutination, thaw time and frying treatment is examined,
concluding that the frying treatment seams to have some influence of the agglutination.
Namely that increased frying treatment can decrease the agglutination of the minced meat.
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Chapteria  Assessment of Frying
Treatment for Diced Turkey

Adequate frying treatment is important for preparing turkey meat, not only to provide
correctly tasting meat having the correct consistency, but also to ensure healthy poultry meat
free of potentially dangerous microorganism. This chapter will examine how frying treatment
can be assessed for turkey squartes, directly from or on a conveyor belt, without use of any

physical pre-processing of the meat.

The methods and tesults obtained in this chapter have been presented in the following
publications:

New Vision Technology for Multidimensional Quality Monitoring of Continuous Frying of Meat
The article is to be submitted to Elsevier’s international journal Food Control.

A Method for Frying Treatment Assessment of Meat Using Multi-Spectral Vision Technology
The poster was presented on the 2007 Industrial Vision Day, the 23t of May at the Technical
University of Denmark.
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11.1 Sample preparation

Whole turkey breasts were purchased in the retail store Ne#o, the turkey breast was prepared in

accordance with the experiment design in Appendix G. A short description of the process, the

wok frying and the image acquisition processes are included here.

11.1.1 Wok frying

The turkey breast where cut into pieces of approximately 10[g], 20 pieces were taken out for

control measurements. The result of the control measurement is given in Table 11.1. The

results show that the average weight is very close to the expected 10[g], however with a

noticeable deviation. This is unfortunately typical when human interaction is needed, and it is

acceptable for this experiment.

Meat piece # Weight [g] Meat piece # Weight [g]
1 10.60 12 10.97
2 10.31 13 6.63
3 9.77 14 10.65
4 8.67 15 9.70
5 9.32 16 7.25
6 9.01 17 8.38
7 9.53 18 10.08
8 14.02 19 6.78
9 6.81 20 13.01
10 7.19 Avg. 9.48
11 10.05 Std. 2.09

Table 11.1 — Weight distribution turkey squares

After chopping, the meat piece where scalded for 7 seconds in boiling water. The scalding

coagulates the soluble meat proteins in the surface layer, thereby preventing the meat form
sticking to walls of the wok.

a)r

Figure 11.1 — a) Meat before lowering into boiling water, b) Meat after scalding
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The basic experiment had the combinations of frying temperature and time given in Table
11.2. Table 11.2 furthermore shows the division into classes of under-, adequate- and over-

processed meat.

Temp / Time 3 min 4 min 6 min 7 min 9 min
250°[C] Under Under Adequate - .
275°[C] - Under Adequate Adequate Over
300°[C] - Adequate Over Over -

Table 11.2 - Temperature, time and expected frying treatment combinations

This division of meat is based on the following obsetvations made during a test frying,
conducted before the experiment, and is made in cooperation with a trained butcher. The
under processed turkey meat is characteristic by having a clearly under processed core, easily
identified when slicing, furthermore the surface is very bright and the meat is generally very
moist. The adequately processed meat has a homogeneous looking core, the meat is moist and
has a darker surface compared to the under processed meat. The over processed meat, has a
homogenous core as the adequately processed meat but is generally slightly less moist and has
a noticeably darker surface than the other processing degtees.

In addition to the experiments described above an experiment was conducted at 275°C and 7
minutes with non-scaled meat to investigate the effect of scalding before frying. Furthermore
an experiment was made at 275°C and 300°C at 6 minutes, with a larger load of meat to

investigate any effects the loading will have on the meat.

11.1.2 Image acquisition

For each experiment conducted three sub-samples consisting of four pieces of meat was taken
out for imaging. The pieces were placed on a Petri dish with as much space as possible
between them. The images where acquired using VideometerLab and saved in the hips format.

11.2 Chemical experiment

In order to establish a physical measure of comparison, a water content analysis was
performed. The water contents were determined by taking 2-3 meat pieces of each sample,
making them homogeneous with a liquidizer. From the homogeneous mass three samples of
approximately 2[g] was taken out for 24 hours of drying at 105°C, the weight was registered
before and after drying.

11.2.1 Water contents results

The complete results of the water contents experiment is presented in Appendix I, and
summatized in Table 11.3.
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Type / 3 min 4 min 6 min 7 min 9 min
Temp. |Mean c Mean c Mean c Mean G Mean G
250°C 66.9% | 0.019 | 64.4% | 0.318 | 64.9% | 0.152 - - - -
275°C - - 66.8% | 0.052 | 65.1% | 0.200 | 65.0% | 0.060 | 62.8% | 0.099
300°C - - 66.4% | 0.334 | 63.7% | 0.102 | 67.0% | 0.310 - -
W.o. scald.
- - - - - - 0 - -
2750C 68.2% | 0.055
150g load. o
- - - - . 2 - - - -
2750C 65.4% | 0.297
150g load. 0
300°C - - - - 64.2% | 0.076 - - - -

Table 11.3 - Water contents - Diced Turkey

To further examine the influence of frying time and temperature on the water content a two-
factor ANOVA was created. The results are summarized in the ANOVA Table 11.4.

Source Sum of Squares df Mean Square | F-Ratio Pt >F
Across 67.83 14 4.84 54.19 0.0000
Time 40.13 4 10.03 112.22 0.0000
Temperature 3.99 2 1.99 22.35 0.0000
Time x Temperature 23.69 8 2.96 33.13 0.0000
Within 1.34 15 0.09
Total 70.35 29

Table 11.4 - ANOVA table water content - Diced Turkey

The ANOVA shows that the frying time has a very large influence on the water content, and
that the temperature seams to have less influence. Furthermore the interaction effect also

seams to be quite influential.

Considering the additional samples, it seams like increasing the load have no effect on the
water content, and that scalding the meat might have a influence on the water contents. This
however cannot be finally concluded from these results, as only a single sample without
scalding was created.

11.3 Pre-processing

As it was the case with the other images acquired, the images contain objects which are not
relevant to our analysis. Objects as the Petri dish and the metal sheeting of the camera, the pre-
processing process is to eliminate these objects.

In-order to find a suitable method for eradicating the un-wanted object, the spectrums of these
objects are examined and compared to the spectrum of the meat. Furthermore the histogram
of selected interesting bands is investigated to assess the usefulness of a simple threshold
solution. The spectra and histograms are shown in Figure 11.2.
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a) . Spectra b) x10° Histogram - Interesting Spectra
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Figure 11.2 — a) Spectra of interesting objects, b) Histogram of interesting bands

As it can be observed in Figure 11.2a, the un-wanted objects has spectra that is very different
compared to the meat. However when examining the histograms in Figure 11.2b, it is observed
that the values are somewhat overlapping, meaning there is no zero value between the top
representing meat pixel and the tops representing other objects. This can lead to undesired
eradication of meat pixels and/or preservation of pixels belonging to un-wanted objects.

Instead of doing a threshold on an existing band, it is possible to take advantage of the
spectrum shape. It is observed that the pixel value of un-wanted objects does not vary much
throughout the bands, compared to the values of the meat. This property can be used by
subtracting band 2 (450[nm]) from band 13 (890[nm]), the pixel values of meat will now be
very high compared to the pixel value of the other objects. This is shown in Figure 11.3 where
the difference image is shown along with histogram.

a)

b) wiot Histogram - Difference Image - §90-450 [nm]
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Figure 11.3 - a) 890[nm] - 450[nm], b) histogram of 890[nm] - 450[nm]

From the histogram it is clear that the low values (<40) represent the un-wanted objects,
whereas the large spike around 110 is representing the meat pixels. Doing a threshold around
41, should leave us with a mask covering the meat objects only. It however is observed that
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after doing the threshold, a few unwanted pixels from the Petri dish is still present. These can

be removed by applying a 5x5 median filter as illustrated in Figure 11.4.

N

Figure 11.4 - a) Mask without median filter, b) Mask after applying median filter

Since the meat squares are cut out in an approximate cubical form, there is no need to perform

further processing for isolation meat tops etc..

11.4 Preliminary analysis

In-order to determine if a basis exists for assessing frying treatment based on the spectral
information, a preliminary analysis of spectrums from different frying degrees are examined. A
random image from each combination of frying time and temperature is selected, and the

spectrum is derived from a ROI containing meat and plotted in Figure 11.5

It is observed in the plot, that the differences between the different frying degrees seam to be
substantial enough to continue the analysis. The plot clearly shows that there are differences
over the entire spectrum, however largest in the lower visual part. This is a noticeable

difference from the minced meat, where the differences were largest in the NIR spectrum.
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Figure 11.5 - Preliminary spectra analysis
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11.5 Multivariate analysis

To assess the frying quality of the meat, the differences found in the preliminary analysis is to
be enhanced by applying various multivariate analyses.

11.5.1 Principal Component Analysis

The first analysis to apply is the principal component analysis (PCA). This analysis will extract

pattern found in the image, expressing it in a new multi-dimensional image.

The PCA was performed on pre-processed images, resulting in faster and more precise analysis
since only differences in the meat data is examined. It was found that the two first components
of the PCA accounts for 97.1% of the total variance (77.6% and 19.5% respectively),
examining the remaining components shows that they were mainly containing noise, it is
therefore decided to proceed examining the first two components.

For each frying degree (temperature and time combination) an image was transformed using
the two first components of the PCA. From the resulting data a histogram was derived to
examine the distribution over the components. The histograms are given in Figure 11.6.
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Figure 11.6 - a) PCA component 1 histogram, b) PCA component 2 histogram

From the histograms it seams like the first component creates a displacement of the histogram
cutrves separating the over-processed meat from the other processing degree. And the second
component seams to be better for separating the under-processed from the other processing
degrees. Thus suggesting a combination of these could be used. This can be examined closer
by plotting the mean value of the populations, into a plot where each component represents an

axis.
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Figure 11.7 - Population means PCA1 vs. PCA2

This is illustrated in Figure 11.7, from the plot it seams like the two populations being under-
processed and over-processed are gathered in two corners of the plot, thus implying the frying
treatment can be assessed using these components. To illustrate this further the boundary
lines, computed from the discriminant functions separating the classes, is plotted as well. The
boundary line suggests that it is mainly the second principal component which is used for
classification into classes. From this is can be concluded that the variations found by the PCA

seam to reflect the variation in frying treatment.

11.5.2 Canonical Discriminant Analysis

Another obvious analysis to apply is the canonical discriminant analysis, finding a
transformation separating the data from different frying degrees as much a possible. The
classes used for the analysis are the ones given in Table 11.2 separating the meat into under-,

adequately- and over-processed meat classes.

Separating the dataset into 3 group’s results in two linear canonical discriminant functions, as
with the components from the PCA, these can be used to derive histograms of transformed
images. The histograms are given in Figure 11.8.

21) 50001 Histograms - COF 1 b) et Histograms - COF 2

2

Figure 11.8 - a) CDF 1 Histograms, b) CDF 2 Histograms
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The histogram shows that the first CDF seams to create a displacement of the histogram curve
based on the frying treatment of the data. Furthermore it is noted that the histogram curves
has a narrower bell shape, compared to the ones for the principal components. The second

CDF however does not seam to create a displacement based on frying treatment.

To further examine the first CDF, the loadings is plotted thereby giving an impression of
which bands are important with regard to separating the various frying-treatments of diced
turkey.

Canonical Discriminant Function
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Figure 11.9 - Loadings Canonical Discriminant Function

The loadings for the CDF show that the visual part of the spectrum (<700nm) seams to play a
very important role in separating the frying treatments, as compared to the minced meat where

the high loadings mainly was present in the NIR bands.

11.5.3 The Frying-Treatment Score

To have a general base of comparison for the frying degree based on image analysis, the
Frying-Treatment Score (FTS) for turkey meat is to be defined. Both multivariate analysis
applied to the images, was able to separate the defined frying degrees. However the PCA
needed two dimensions to separate the data into all classes, whereas the first canonical
discriminant function seamed to be able to do the job on its own. Furthermore the histogram
curves for the data applied with the first CDF, were smoother and had a narrower bell shape
than those for the principal components, this motivates using the first CDF for defining the
FTS.

Using the first CDF for defining the FTS is the same approach as used for the minced meat,
however with different loadings for the CDF. This motivates a definition of the FTS similar to

the one for minced meat; the definition for diced turkey is formulated as:

The Frying-Treatment Score (FLS) for a multi-spectral image containing the surfaces of diced
turkey, is the mean value of the pixels in the pre-processed image, containing only diced turkey,
projected with the CDF derived in 11.5.2.
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This definition of the FTS now enables us to derive the scale of the FTIS for diced turkey,
giving an impression of the distribution of meat over the scale. Furthermore it enables the
definition of the cut-off points, where meat is categorized as adequately-processed instead of
under-processed and where meat is categorized as over-processed instead of adequately-
processed. These can be found by finding the average of the two class’ averages. The cut-off
between under- and adequately processed meat is found to be -0.118, and the cut-off between
adequately- and over-processed is found to be 1.05.
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Figure 11.10 - Frying-Treatment Score - Diced Turkey

From the points plotted on the scale, one observed that the two of samples which was
intended as adequately processed are not within the cut-off points. This is undesirable and
could motivate another definition of the cut-off points, if they were to be used for

categorization purposes.

11.5.4 Regression analysis

To investigate the relation between FTS, time and temperature, regression is used to try to
model the frying time in seconds using the FTS and temperature. Models of 1%, 27d, 34, 4t and
5t degree polynomials are tested using a 3-fold cross validation. The dataset are divided such
that each contains a value of each combination of time and temperature.

The result of the cross validation is given in Table 11.5.

Polynomial degree | RMSEre« | RMSETrin R?
1 70.75 70.09 0.55
2 47.75 41.92 0.83
3 44.62 34.22 0.88
4 48.34 32.97 0.89
5 186.45 25.16 0.92

Table 11.5 — Cross Validation Results

The cross validation results suggest the optimal model to be a cubic, this has the smallest error
and a R? of 0.88, meaning 0.88% of the variance in time is accounted for by the FIS and
temperature. The model gained is illustrated by drawing the contours of the interesting frying
times in Figure 11.11.
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Figure 11.11 - Frying Time Contours

The model seams to be an acceptable approximation, it basically suggest higher frying times
results in a higher frying-treatment score which is correct. Also it suggests that very high frying

times are needed in order to obtain adequately processed meat at 250°C, which is also correct.

These results suggest that a model for the frying-treatment score, based on frying time and
temperature will also have a cubic relation. Using this knowledge the model is estimated with

R? = 0.98 which means the by far largest part of the variance in the data is accounted for, this
further support the FTS as useful measure of frying degree.

The resulting model is used to draw contour lines for the system.
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Figure 11.12 - FTS Contours Turkey Squares

The most interesting contour lines are the one at -0.118 which represents the cut-off line
between under- and adequately-processed turkey squares and the one at 1.05 which represents
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the cut-off line between adequately- and over-processed turkey squares. Within these lies the
production window giving the optimal fried turkey diced.

From these lines it can be derived that the optimal temperature is around 285°C, as this gives
the largest interval of times resulting in an adequate processing of the meat. As the temperature
drop or increases the time window for adequately processed meat narrows.

11.6 Visualization

Having defined a way of assigning each image an FTS, another method for evaluation of the
frying-treatment is proposed in this section, namely a visual approach. Visualizing the results
gained via the analysis provides the process operator with a tool for visual evaluating the meat.

Recalling the CDF used for assigning a FTS value, this creates a projection of the 18 band
image onto one band. The resulting band is essentially a RGB image, which intensity varies
over the degree of frying-treatments. As for the minced meat, the changes in intensity are so
small it is hard for the eye to interpret. To enhance the differences a scale for converting them
into a RGB image is created. By examining the histogram curves from Figure 11.6a, it is found
that the scale should cover FTS values from -4 to +4.

-4 0 4

Figure 11.13 - FTS values to RGB

As for the minced meat images, only the parts of the image containing meat is converted using
the scale from Figure 11.13, the remaining parts of the image is presented as if it was acquired
with a regular camera. The entire data has been converted and is included in Appendix J, below

is shown some samples.
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Figure 11.14 - a) 250°C - 4min, b) 275°C - 7min, c) 300°C - 6min

The sample image clearly shows the essence of the visualization, the underdone meat pieces
are mainly covered by blue pixel, the adequately processed ate covetred by green/yellow pixels

and the over processed show large red areas on the over processed meat.

11.7 Discussion

This chapter shows the principles used for frying treatment assessment of minced meat can be
transferred to assessment of frying treatment for diced turkey meat. It is however only the
principles that can be used as the meat naturally has large spectral differences a new canonical
discriminant function must be computed for each type of meat. Using the CDA method the
Frying-Treatment Score for diced turkey is defined.

The FTS is used to derive contours illustrating the optimal combinations of temperature and
time for frying of turkey meat. The model of FTS based on frying time and temperature,
proves to cover 98% of the variance in the FTS, which is an excellent result, compared to the
one achieved for minced meat. This also comes to show in the contour lines, as these seam to
give a very realistic illustration of the frying process. The counters can among others be used

to adjust the settings of the wok in future when frying turkey squates.

Furthermore the FTS is used to create a visualization of the frying degree. This visualization
creates a false RGB image, assigning colors to FTS values of the transformed image. The
resulting images shows to give a very intuitive approach, to estimating the frying treatment of
the meat contained in the image.

Using the FTS as defined in this chapter, it is now possible to analyze the effects scalding
before frying and loading of the wok has to frying degree.

To investigate the effects of scalding the FTS is found for the samples without scalding at
275°C 7min. The mean FTS of the samples without scalding is -0.286, which actually indicates
that it is under processed, compared to the normal mean FTS at 275°C 7min which is 0.356.
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This indicates that scalding has an effect on the frying degree, as well as on the water contents
of the meat as found in section 11.2.1, but cannot be finally concluded without further
experiments.

Next the effect of increased loading is investigated using the same procedure. The mean FTS
for a 150g loading at 275°C 6min is found to be 0.555, this indicates an increase in frying
degree from the normal 0.220 at 275°C 6min. The same tendency is found at 300°C 6min,
where the increased loading images have a mean FTS of 2.093 compared to the normal 1.982.
The increased FTS was expected since blockings was observed in the frying pipe; the helix was
simply not large enough to move the high loading of meat, resulting in some meat being left
behind receiving additional frying treatment.
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Chapteri12  Assessment of Frying
Treatment for Sliced Diced Turkey

In the prior chapter a method was found to assess frying treatment for turkey squares without
any physical pre-processing. This chapter will investigate a method for assessment of frying
treatment using sliced turkey squares, and compare this method to the assessment of frying-

treatment based on the surface of turkey squares.

Slicing the turkey square intuitively gives a better domain for comparison of frying treatment,
as the sliced dices of inadequately cocked meat will show areas of the meat where the proteins
has not denatured yet, thus keeping the raw reddish color easily observed even for the human
eye and introducing larger spectral differences.
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12.1 Sample preparation

The turkey pieces where prepared in accordance with the description provided in section 11.1,
with the exception of the image acquisition which is described beneath.

12.1.1 Image acquisition

For each combination of time and temperature 3 sub-samples of four pieces of meat where
taken out for imaging. The meat pieces where cut into half’s, and placed, with the internal part
facing against the camera, in a Petri dish with appropriate spacing. The images where acquired
using the VideometerLab camera and saved in the HIPS format.

12.2 Chemical experiments

Since the turkey squares used in this chapter are identical with the squares used in Chapter 11,
there will not be performed any further physical or chemical experiments. For a recap on the
results refer to section 11.2.

12.3 Pre-processing

Since the images was acquired using the same scheme as the images from the prior chapter, the
need for removing the unwanted objects still exists. The images basically contain the same
objects as in the prior chapter, but since the turkey pieces have been sliced it introduces a
larger variation over the meat pieces. To examine these variations, spectra for red under-
processed meat, white adequately-processed meat, Petri dish and metal sheeting have been
plotted in Figure 12.1.
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Figure 12.1 - Pre-processing spectra comparison
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The spectrums show that it is not possible to perform a simple threshold operation on a single
band, since there at no band is a large enough separation. Instead the spectrums show that the
unwanted items have a lower variation over the bands, than the meat spectrums. This
motivates us to use the method used in the prior chapter, namely subtracting band to gain
separation. Examining the spectrums shows it a good separation would occur when subtracting
the band at 430[nm)] from the band at 850[nm], the histogram for the resulting image is shown
below, along with the histogram obtained by using the bands used in the prior chapter.
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Figure 12.2 — Pre-processing histogram curves

From the histogram curves it is obvious that the 850-430[nm]| subtraction, gives the by far
better separation of the objects. The histogram curve can further be used to assess a good
threshold value, at first sight it looks like a value between 40 and 50 would give a good
separation since this is the local minima of the curve. By experimenting it is found that the
optimal value is 47.

Figure 12.3 show the results of each step of the preprocessing. From Figure 12.3c, showing the
result of the threshold operation, it is observed a small amount of distortion in the image. This
is removed by applying a 5x5 media filter resulting in the image shown in Figure 12.3d.




12.4 Preliminary analysis 105

Figure 12.3 - a) Initial image (RGB), b) 850-430[nm], c) Threshold 47, d) Threshold + 5x5 median filter

Since the meat squares due the slicing have a level top, there is no need for further pre-

processing to isolate the meat.

12.4 Preliminary analysis

To examine the differences in the spectrums based on heat treatment, a spectrum is derived
for each combination of time and temperature. The spectrum is derived manually by selecting

a ROI on a random meat pieces from the sample images.

Figure 12.4 - Preliminary spectrum comparison

Figure 12.4 shows a large difference in the spectrum shape between the under-processed and
the adequately/over-processed meat. Especially around the bands 500-700[nm] larger
difference is shown, in this context it is worth noticing that the band at 505[nm]| which shows
met-myoglobin and the band at 590[nm] which shows oxy-myoglobin have large difference,
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implying that the interior of the meat is not processed enough to change the state of the
proteins.

Further the figure shows minor differences from adequately-cocked meat to over-cocked meat.
The minor differences can imply that it might be more difficult to separate these classes, than
to separate them from the under-processed.

12.5 Multivariate analysis

To investigate if the differences found in the spectrums can be used to assess the frying-

treatment, multivariate analyses are applied to the data.

12.5.1 Principal component analysis

Applying the Principal Component Analysis (PCA) to the data, creates a new 18 dimension
image, each new dimension a linier combination (component) of the original 18 dimensions

sorted after the maximum variance accounted for.

The linear combinations have been derived using a pre-processed data set. From the derived
combinations it is obsetved that the three first dimension accounts for 96.14% of the total
variation (76.48%, 16.34% and 3.32% respectively), the remaining dimensions only seam to
contain noise and is therefore not examined further. The three first principal components is
applied to the pre-processed images, and histogram curves of the new dimensions are plotted.
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Figure 12.5 - Histogram Curves, a) First principal component, b) Second principal component

Examining the first principal component, it shows very rough curves, implying that it shows
features not related to the frying degree, but rather to the differences found over the surface of
the turkey square. Examining the histogram curves of the second component shows a
somewhat identical same scheme. The bell shapes are generally very wide, this either because
the interior of the meat dices contains a variety of different frying-treatment, or because the

component captures a pattern not related to the frying-treatment.
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Extracting the histogram curves of the third o210 Histogram PCA3
. . . . ———260%C - 3rmin
principal component shows a similar scheme ———
as with the two prior components. The bell 2k 2£0°% - Gmin
. X . . L. : 275°C - drnin
shape is very varying in width, and it is hard to N R 275°C - Biin
: . 150 ; 275°C - Tmin
conclude if the displacements of the curves - R e S
are due to frying-treatment. L N | T e dmn
1F PN - ——-300°C - Bmin
) . L AN 2| = = -a00c - 7min
Having examined the first three principal A 0
: N
. I . i - :
components, it can be concluded that ns LT TR O
A “
principal component analysis is unfit for the . J»/ L . S 3 E‘V‘_
purpose of assessing frying-treatment for o a0 0 o e =

sliced diced turkey squates.
Figure 12.6 — Histogram curves third component

12.5.2 Canonical discriminant analysis

Finding the PCA unfit for the purpose, Canonical Discriminant Analysis (CDA) is examined.
The CDA finds the linear combination separating the defined classes best possible, logically
resulting in two combinations when separating 3 classes, as is the case with the diced turkey
dataset.

The pre-processed images have been divided into classes according to Table 11.2, and the
CDA is applied, resulting in two linear combinations or canonical discriminant functions
(CDF). The two CDF’s have been applied to all pre-processed images and the histogram

curves are derived to examine the results.
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Figure 12.7 - Histogram curves, a) CDF1, b) CDF2

Examining the first discriminant function shows large improvements compared to the
principal components. The histogram curves are much smoother indicating that the feature
found applies to the larger part of the turkey square, and more importantly the top of the
cutrves seams to be displaced according to frying degree, implying this is a useable tool for an
assessment of the frying degree. Furthermore it is observed that the bell form of the curves,
especially at the lower frying degtrees, are wider compated to those from the frying-degree
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examinations of minced meat and diced turkey, this can be explained by the nature of the
sliced turkey dices. A sliced turkey diced which is inadequate processed, have a internal kernel
of meat that has a low frying degree, surrounded by a ring of meat with a higher frying degree,
thus creating an wider bell shape covering various frying degrees.

Examining the second CDF shows curves that are smooth but, there is not indication that the
displacements of the tops are due to changes in the frying treatment.

To examine the findings further, and to rule out that the second canonical discriminant
function has no influence when it comes to determining frying treatment, the mean value of
the histograms are plotted in xy-plot with each axis representing a CDF. To further illustrate
the divisions of group’s, the border lines are detived using bayes classifier.
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Figure 12.8 - CDF1 & CDF2 plot

The plotted values clearly show a division of classes based on the CDF 1 value, and not the
CDF2 value. The border line between under- and adequately-processed meat seams to be
almost vertical, which also implies that these can be separated using only the first CDF. The
border second line however seams to have a screw, but when examining the data it can be seen
that intuitively one would place a vertical line instead, again motivating a separation using only
the first CDF. To further understand how the CDF separates the frying degrees, the loadings

of the function are examined.
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Figure 12.9 - Loadings CDF 1



12.5 Multivariate analysis 109

The loading shows that the bands really influencing the value are the lower visual bands
(<700[nm]), this fit the conclusions from the preliminary spectrum compatison. Furthermore
it seams as the higher bands (<890) also has some influence on determining the frying-

treatment.

12.5.3 The Frying-Treatment Score

The prior section shows how data can be transformed, such that their histogram value gives an
impression of the frying degree of the meat in question. This method is obviously identical to
the one used for minced meat and the surface evaluation of diced turkey, this motivates a
similar definition of the Frying-Treatment Score.

There is however one major difference, the two definitions of FTS from minced meat and the
surface of diced turkey are defined such that when the frying-treatment increases so does the
FTS, Figure 12.8 shows this is not the case for the CDF derived for sliced turkey. To obtain a
consistent Frying-Treatment Score scale throughout this thesis, it is decided to multiply the
CDF for sliced diced turkey with -1, to obtain the regular scheme, thus defining the FTS as:

The Frying-Treatment Score (F1S) for a multi-spectral image containing sliced diced turkey,
is the mean valne of the pixels in the pre-processed image, containing only the interior of the
diced meat, projected with the CDF derived in 12.5.2 multiplied by -1.

It can be argued that this definition may cause problems for the meat squates at lower frying
degrees, as these contain a variety of FTS values, and the deviation is not taken into question in
this definition. It is however believed that since the larger part of the meat dice is under-
processed; these pixels will be able to drag the FTS down to the intended level.

Having defined the FTS, it is now possible to define the cut-off line between under-,
adequately- and over-processed meat. This is defined by finding the mean between the groups
mean. The cut-off value between under- and adequately-processed meats is found to be -0.276;
meaning meat with values beneath this is under-processed. Between adequately- and over-
processed meats the mean value is found to be 0.884; meaning values above this indicates
over-processed meat, and values between -0.276 and 0.884 implies adequately processed meat.
FTS value from sample images and the cut-off lines are shown in Figure 12.10.
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Figure 12.10 - Frying-Treatment Score - Minced Meat
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12.5.4 Regression analysis

As with the prior definitions of FTS, the definition is used to examine the relation between
FTS, frying time and frying temperature.

The first model created is modeling the frying time, based FTS and frying temperature. Using
3-fold cross validation the frying time is modeled using a 1%, 2°d, 3rd 4t and 5% degree
polynomial, the root mean square error and the R? value is recorded, the result is given in
Table 12.1.

Polynomial degree | RMSErcs | RMSETin R?
1 47.73 41.27 0.87
2 41.50 31.24 0.92
3 40.19 29.81 0.93
4 53.96 28.96 0.93
5 75.55 26.94 0.94

Table 12.1 - Cross Validation Results

The cross validation suggest the 34 degtee polynomial to be the best model for modeling the
time based on temperature and the FTS. From this model the contour lines are drawn for the
interesting frying times.
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Figure 12.11 - Frying Time Contours

This model of the frying time implies that increasing time and temperature results in a higher
frying treatment, which is known to be true. The model however seams to include some
inaccuracy concerning long frying times at the low temperatures; this can be expected as this is

based purely on a generalization, since no data exists for long frying times at low temperatures.

These results imply that the optimal model for FTS based on time and temperatute also is a 3t
degree polynomial. Modeling this gives a R? of 0.96 which shows that almost all variation of
the frying-treatment score can be captured using the time and temperature. This further
support the definition of FTS as a measure for the frying treatment applied. The contour lines
for this model are shown in Figure 12.12.
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Figure 12.12 - FTS Contours Sliced Turkey Diced

The model derived from the sliced turkey dices, are quite similar to the one derived for the
surface images of the diced turkey. Both suggest the production window for producing
adequately processed meat is widest at the temperatures around 275°C, and narrows down for
lower and higher temperatures. It is however worth noticing that the frying time for obtaining
adequately processed meat at high temperature (>290°C), does not drop as significantly for the
sliced model compared to the surface model. Also the time needed to obtain adequately

processed meat at low temperatures, is significantly lower than for the surface model.

12.6 Visualization

As for the surface images of the diced turkey, a visualization method for examining the frying-
treatment of entire images is proposed. The goal of the visualization is to provide a tool for
visual inspection of the frying-treatment, which is better then using a conventional RGB
image.

As for the visualization of the other types of meat, the FTS for each pixel containing meat is
used to assign an appropriate color. Examining the histogram curves in Figure 12.7a it can be
concluded that the scale should cover FTS values from -5 to 5, below is shown the scale used.

.5 0 5

Figure 12.13 - FTS values to RGB
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As for the surface images of diced turkey, the parts of the image containing other objects than
meat are shown in normal RGB style. The entire dataset has been converted and is included in

Appendix K; samples of the converted images are shown below.

Figure 12.14 - a) 250°C - 3min, b) 275°C - 6min, c) 300°C - 7min
The samples clearly show how the under processed meat, have a under processed kernel (blue),
and a shell that seams to be adequately processed. Furthermore the adequately processed meat
in Figure 12.14b shows a homogenous green / yellow color as expected, and the over

processed meat diced shows large red areas indicating they are over processed.

12.7 Discussion

In this chapter a method for frying treatment assessment of physically pre-processed diced
turkey has been proposed. The method proposed is based on the same principles as used for
treatment assessment of minced meat and non-physically preprocessed turkey squares, thus
showing this method is applicable for vatious types of meat. As for the other types of meat the
method defines a Frying-Treatment Score, providing us with a value representing the frying-
treatment of the meat contained in the image.

The FTS values of all available sample images have been used in a regression analysis, to
examine the relation between the FTS values and the frying time and temperature of the meat.
The regression analysis shows that using a cubic relation, the estimated parameters are able to
account for 96% of the variance in the TS values using frying time and temperature. This is
very good results and further support the use of FTS for a measure of frying-treatment.

Furthermore a visualization technique is proposed. The technique is able to take advantage of
the spatial and spectral properties of the image, creating a RGB image clearly showing the
frying-treatment of the various parts of the meat. This is especially clear when examining
images of under processed meat, where the under-processed kernel clearly stands out from the

outer ring of adequately processed meat.
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The method obtained can be used to examine the effects of increased loading in the wok. The
FTS for a normal loading at 275°C 6min is 0.5232, but for the higher loading it is 0.3241 thus
indicating a decrease in frying treatment. For 300°C 6min the values are almost equal being
1.1062 and 1.0223 respectively, thus showing a slight increase in frying treatment. From this is
cannot be finally concluded if the frying treatment increases due to higher loading of the wok.

Examining the meat sample without scalding it shows that their mean FTS is -0.4916, this is
way lower than the FTS of 0.5332 for samples with scalding, and at the same time and
temperature. This indicates that the scalding have a significant influence on the frying-
treatment, as it was also observed in the prior chapter. It is however not possible to provide a

final conclusion based on a single sample.
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Chapter13  Reducing Spectral Bands

The prior part of the thesis shows how it is possible to assess quality parameters, such as frying
treatment based on multi-spectral images of meat products. When applying this technique to a
real life scenario, it introduces the problem of acquiring multi-spectral images on a running
conveyor belt. To simplify this process, it is an advantage to be able to reduce the number of
bands needed to assess the quality parameters of the meat. Reducing the spectral bands not
only reduce the complexity of acquiring images, but also reduces computational times thus
improving the response time of the system. This chapter will examine the possibility to reduce
the bands used for each of the applications examined in the prior chapters.

Numerous approaches exist for reducing the number of spectral bands, mainly presented in
area of hyper-spectral satellite images. In [17] techniques based on information entropy,
spectral derivatives and contrast measures are discussed. However since we essentially need to
model a linear function by removing some of the parameters, stepwise regression is selected to
be used for this chapter.
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13.1 Reducing for Frying Treatment Assessment

The main objective of reducing bands used for frying treatment assessment is essentially to
examine how many bands are needed to emulate the results of the canonical disctiminant
function, with a reasonable error. The optimal solution to the regression problem, with respect
to minimum error rate, will therefore be including all 18 bands since this will create an error of

zero. The “optimal” solution can be written as:

y=X-b (13.1)
Whete X contains all spectral bands, b is the canonical discriminant function detived for the

specific type of meat and y is the Frying-Treatment Score for the specific pixel. The estimated

solution with regards to the minimum bands required can be defined as:

y=X,-b (13.2)
Where X contains the reduced number of spectral bands and an intercept term, and b is the

weights calculated by least square regression for the reduced number of bands and the
intercept term. The interpretation of “winimum bands required’ is based on an evaluation of the
mean squared error and the amount of variance accounted for by the bands, further

explanation is given below when selecting the optimal reduction for each meat type.

The solutions are acquired using stepwise regtession, this does not guarantee the best results,
but it is an acceptable alternative to the time consuming best subset method. Tests performed
shows that due to the immense amount of data and the rapid increase in complexity,
calculations for a best subset regression reduction to 5 bands last over 1%z hours, whereas

stepwise regression does the job in about 70 seconds.

13.1.1 Minced Beef

In-order to obtain an as accurate solution as possible all images where loaded, pre-processed
and the canonical discriminant function for minced beef where applied. Since this resulted in a
very large amount of data, making the analysis very time consuming it was chosen to reduce
the data by only using every 50 pixel of an image, this can be done since after the reduction
over 530000 observations where still available for the analysis.

To examine the impact of the band reduction a stepwise regression where performed,
recording the root mean square error and R? value at each step to obtain a plot of the
evolution of these variables through the different reductions as shown in Figure 13.1.
Furthermore the optimal subsets of bands at each step where recorded and given in Table 13.1
along with the root mean squared error and the R? value.
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Minimizing Bands for Frying-Treatment Assessment - Minced Beef
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Figure 13.1 - RMSE & R? for band reduction — Minced Beef

Subset | Bands included Root Mean R2
size [1(2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17 |18 | Square Error
1 0.7199 0.7643
2 0.4031 0.9261
3 0.3449 0.9459
4 0.2927 0.9610
5 0.2609 0.9690
6 0.2236 0.9773
7 0.1606 0.9883
8 0.1066 0.9948
9 0.0819 0.9969
10 0.0717 0.9977
1 0.0616 0.9983
12 0.0495 0.9989
13 0.0416 0.9992
14 0.0298 0.9996
15 0.0208 0.9998
16 0.0113 0.9999
17 0.0033 0.9999
18 0.0000 1.0000

Table 13.1 - Band reduction results - Minced Beef

The R? value, the measure for the variance accounted for, increases dramatically when adding

the first four variables, after which it increase at a much lower rate. Also the RMSE is
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decreasing at a higher rate for the first variables, than for the adding the last which is also
expected. From these results is can be concluded that using four variables seams like a
somewhat optimal band reduction, since this still includes 96.1% percent of the variation and
an acceptable root mean square error. Including more variable will have a too large cost,
compared to the increase in accuracy gained.

Examining the bands to include, namely band 3, 11, 12 and 18 at first sight shows that the NIR
bands are very important thus proving the motivation for this project. When comparing to the
values of the CDF function, ones notices that all for these four have large weights, but are not
the ones with the highest weights. An example is band 10 which have a much higher weight
but seams to be excluded since band 11 in combination with band 18 covers the variance
better, thus implying redundancy in the bands which were also expected.

Another interesting property of the selected bands is that it is possible to perform the pre-
processing, defined for the minced beef images, using two of these bands, 3 and 11. Originally
the pre-processing mechanism selected the optimal band between band 1 and 8 to separate the
meat from the surrounding objects, but from the spectrum plotted in Figure 9.2a, it is
observed that band 3 seams to be able to do the job on its own, if it is the only one available.
For further pre-processing band 10 was used to perform a h-domes segmentation, it is
however shown in Chapter 10 that band 11 is able to do an equivalently good job for the h-
domes segmentation.

To further investigate the goodness of the reduction to 4 bands, a number of images are
transformed using the new weights and their resulting histogram is plotted, as for the CDF
transformed data in Figure 9.8.
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Figure 13.2 - Histograms curves - 4 bands used
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Comparing Figure 13.2 with Figure 9.8 it becomes clear that they are very alike, thus implying
the new projection found via band reduction actually produces similar results using 4 bands as
the CDF using 18 bands. Also it can be noted that the curves in Figure 13.2 are more bell
shaped not having a tail towards higher values as can be observed in Figure 9.8. This implies
some of the distortion is removed, giving each image less deviation and thereby enabling a
more precise FTS value.

13.1.2 Diced Turkey

Equivalent to the minced beef case, all images available were used in order to ensure the most
accurate result. The images are loaded, pre-processed and every 25 pixel are taken out for the
analysis. The increase from every 50 to every 25 pixel is possible since the turkey images
contain a smaller percentage of meat in every image, thus making the observations available for
the analysis approximately the same as for the minced beef.

At each regression step the RMSE and R? value was recorded along with the bands in the
optimal subset found. The results are plotted in Figure 13.3 and given in Table 13.2.
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Figure 13.3 - RMSE & R2 for band reduction — Diced Turkey
Subset | Bands included Root Mean Rz
size [1(2(3|/4|5|6|7|8|9|10|11|12|13|14|15|16|17 |18 | Square Error
1 0.5698 0.8475
2 0.4404 0.9089
3 0.3963 0.9262
4 0.3533 0.9414
5 0.2931 0.9596
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Subset | Bands included Root Mean R?
size [1(2|3|/4|5|6|7|8|9|10|11(12|13|14|15|16|17|18| Square Error
6 0.2572 0.9689
7 0.2107 0.9791
8 0.1727 0.9860
9 0.1519 0.9891
10 0.1276 0.9924
11 0.0990 0.9954
12 0.0780 0.9971
13 0.0584 0.9984
14 0.0418 0.9992
15 0.0254 0.9997
16 0.0126 0.9999
17 0.0041 0.9999
18 0.0000 1.0000

Table 13.2 - Band reduction results - Diced Turkey

From Figure 13.3 it is observed the rapid increase in variance accounted for decreases as the
fifth band is added. It is therefore decided to carry on, including five bands as this gives an
acceptable R? and root mean square error. Including more bands is simply not feasible as it

gives a too small increase in accuracy compared to the cost.

Examining the bands to include, it is band 3, 7, 10, 12 and 18, it is clear that they include a
larger part of visual bands than for minced meat. This implies the assessment of the frying
treatment is for a large part depended on the look of the meat, rather than the properties
derived form the NIR bands. Common for the two is however that band 18 is included, this is
also be expected as water has absorbance in this band, and water content is good indicator of
the frying degree. Comparing the selected bands with the CDF for diced turkey, again it is
observed that it is not necessarily the bands with the highest weight that has the highest
impact. E.g. band 12 (870 nm) does not have a high weight in the CDF, but still seams to be
rather important for the assessment of the frying degree.

Considering the issue of performing pre-processing, the originally proposed procedure was
using band 2 and 13. However when examining the spectrums in Figure 11.2a it becomes clear
that band 3 and 12 also would be able to do the job, as they have some of the same properties.

To further examine the correctness of the results using the reduced bands, histogram curves
are derived for images transformed using the new five band transformation. The histograms
are plotted in Figure 13.4.
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Histograms - Using 5 bands
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Figure 13.4 — Histogram curves - 5 bands used

Comparing Figure 13.4 to the original histogram curves in Figure 11.8a shows only minor
differences, thus showing the 5 band reduction is a good approximation to the 18 band CDF.

The differences observed are primarily more smooth cutves, indicating a smaller deviation of

the data giving a better approximation of the frying degree.

13.1.3 Sliced Diced Turkey

The process used for reducing bands for the sliced diced turkey images is the same as for the
diced turkey images. All images where loaded, preprocessed and every 25 pixel where taken out
to use for band reduction calculations. As with the other band reductions the RMSE and R?
value where recorded and plotted for each step. The plotted curves are shown in Figure 13.5

and the results are given in Table 13.3.
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Figure 13.5 - RMSE & R2 for band reduction — Sliced Diced Turkey
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Subset | Bands included Root Mean R?
size |1(2|3|4|5|6|7[8|9|10|11|12(13|14|15|16|17 |18 | Square Error
1 0.9117 0.6268
2 0.7334 0.7585
3 0.5021 0.8868
4 0.4430 0.9119
5 0.4077 0.9254
6 0.3257 0.9524
7 0.3257 0.9524
8 0.2434 0.9734
9 0.2020 0.9816
10 0.1695 0.9871
1 0.1368 0.9916
12 0.1019 0.9953
13 0.0795 0.9972
14 0.0492 0.9989
15 0.0362 0.9994
16 0.0164 0.9999
17 0.0043 0.9999
18 0.0000 1.0000

Table 13.3 - Band reduction results - Sliced Diced Turkey

Examining Figure 13.5 shows the rapid increase in variance accounted for, slows down after
adding the fourth variable. This motivates the use of the four band solution. It should be noted
that the root mean square error seams somewhat high using this solution, but to get a large
reduction in the root mean square error 2-4 extra variables must be included which is simply
not worth the cost.

The bands to use for the solution are band 1, 3, 9 and 13. It is worth noticing that these bands
expect band 13 all are in the visual part of the spectrum, and that band 18 is not included as it
was for the two prior band reductions. Furthermore it can be noted that these band all stands
out in the CDF weights in Figure 12.9.

The pre-processing of the images for sliced diced turkey originally was designed using band 1
and 11; where only band 1 is included in the subset to use after reduction. However examining
Figure 12.1, show that the preprocessing process could be redesigned using band 1 and 13,
since the difference between band 11 and 13 are quite small. This leads to the conclusion that
the preprocessing could be performed using only these bands.

To examine the solution further histogram curves has been derived from a number of images
transformed with the new 4 band projection.
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Histograms - Using 4 bands
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Figure 13.6 - Histogram curves - 4 bands used

The histogram cutves are very like the ones in Figure 12.7a, the lower frying degrees still have a
very wide bell shape since they contain meat with a variety of different frying degrees. Worth
noticing is that the curves in Figure 13.6, generally have a more narrow shape, implying some
kind of generalization was introduced by using only 4 bands. Fortunately the displacement of
the tops still seams to be correct with regards to the frying degree, and the generalization only
seams to be an advantage for assessing the frying degree.

13.2 Reducing for Agglutination Assessment

The reduction of bands for agglutination assessment of minced beef is somewhat different
from the band reduction in relation to the frying degree. This is since the agglutination
assessment focuses on the spatial properties of specific bands, and not the properties of all
bands combined.

From Chapter 10 it can be concluded that the bands needed perform the agglutination
assessment is the lower bands from 1 to 8, used to separate meat from the other objects in the
image, and band 11 to perform the actual granule isolation. However as concluded in section
13.1.1 the separation of meat from the other objects could be performed using only band 3,
thus leaving us with band 3 and 11 as the required for assessing agglutination.

Comparing this to the bands needed to assess frying treatment of minced beef (3, 11, 12 and
18), band 3 and 11 are both included, meaning it is possible to do both the frying treatment

assessment and the agglutination assessment using only these four bands.
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13.3 Discussion

This chapter shows how it is possible to reduce the bands needed for frying treatment
assessment of minced beef, diced turkey and sliced diced turkey from eighteen to a maximum
of five, without losing significant information regarding the frying treatment. Furthermore it
shows that the agglutination assessment for minced beef, can be performed adding no

additional bands than those needed for the frying treatment assessment of minced beef.

This significant reduction in bands decreases the complexity of implementing a system for
production purposes. It not only decreases the space and time needed for image acquisition,

but also reduces computation time.

Comparing the results of bands needed for frying treatment assessment of images containing
the surface of different meat types, minced beef required band 3, 11, 12 and 18, and diced
turkey required band 3, 7, 10, 12 and 18. Both meat types used band 3, 12 and 18 implying
these generally are important for frying treatment assessment. Of these bands band 18 was
expected, since this band gives and indication of water contents which is known to decrease
due to increased heat treatment. Common for the two subsets are also a combination of both
visual and NIR bands are used, showing that the appearance of the meat is not the only
indicator of the frying degree, also features which are not normally visible to the human eyes

plays an important role, thus proving the motivation of this project.






IV
Epilogue



126 Conclusion

Chapter14  Conclusion

The goal of this project was to examine the possibility of assessing various quality parameters,
with regards to the frying process of a two meat products, namely minced beef and diced
turkey. The quality parameters to assess for minced beef, was frying treatment and
agglutination. The parameters assessed for diced turkey was the frying-treatment of two types
of samples, namely whole (analyzing the surface) and sliced (analyzing the interior). A
conclusion for each quality parameter is given below, along with some concluding remarks on
the project.

Agglutination

This thesis suggests a method for assessment for the agglutination in minced meat, based on
the spatial properties of the image. Even though it is mainly the spatial properties which are
utilized, the advantage gained through multi-spectral imaging is however still obvious, as band

11, a NIR band, plays an essential role in created the various measures of agglutination.

The spatial properties of the images ate used to define a number of measures, such as meat pr.
cm?, maximum granule size etc.. These measures are held against the physical measure of
agglutination, the strainer loss. It was found that the mean granule size and the maximum

granule size measures had a very high correlation with the strainer loss. These measures also



Conclusion 127

have the advantage of being more application independent, as these don’t vary with the loading
of meat in the image and the image area.

To further examine these spatial measures relation with the strainer loss, regression analysis is
used to create a model of the strainer loss based on these measures, the model shows to be
able to cover 56% of the variance in the strainer loss at a RMSE of 1.83. This seams like a
fairly good approximation considering the differences between the measures. The results of the
regression clearly show that the measures can be used to assess agglutination, perhaps not in
the form of an estimation of the strainer loss, which also is not an optimal measure for the
process operator. Instead another application could be to give direct feedback to the process
operator, providing him with the current mean size of the granules on the belt, and the
maximum granule size found, or simplified even further just sound an alarm when the

agglutination has risen to certain level.

Frying Treatment Assessment

The second quality parameter assessed is the frying treatment of two types of meat, minced
meat and diced tutkey. The frying-treatment to assess is not only based on if the meat is raw or
fried, but rather on the quality of the frying-treatment assessed by experts. To assess frying
treatment for these meat types, various multivariate statistical methods taking advantage of
spectral properties of the multi-spectral images were examined. A common solution was found

for assessing the frying treatment for all meat types, using canonical discriminant analysis.

The method finds the optimal linear combination, creating the largest separation of the image
data at the various frying degrees using an extensive dataset. It should be noted that for
obvious reasons it is required to derive a separate linear combination from meat type to meat
type. From the linear combination a Frying-Treatment Score for each image can be derived, as
the mean of the projected values of the pixels containing meat.

To examine the FTIS relation with frying time and temperature, a model is created using
regression. Using cross validation it was found that the optimal relation between FTS, and
frying time and temperature is cubic. Using a cubic relation the parameters can be estimated to
account for 65% to 98% of the variance in the FTS, using frying time and temperature.

The 65% percent was achieved for modeling the frying-treatment of minced meat, this is not
an impressive results compared to the 98% from the turkey dices. The low amount of variance
accounted for suggest other factors not examined to be influent. One of theses could be the
quality of minced meat, as this known to vary. An example is the fat percentage which is
known to be very varying ([22]). Another reason for the relatively low amount of variance
accounted for could be the general larger variation over the minced meat samples.

For the diced turkey, two examinations were created one for examining the frying-treatment
based on the surface, and one for the interior based on sliced turkey dices. Both show
impressive results modeling the FTS by time and temperature, accounting for 95% and 98%
respectively. Generally it was found the model for the surface of diced turkey seams to be the
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most accurate based on the contours derived. The contours correctly show how the
production window for adequately processed diced turkey narrows down for high and low
temperatures, in the way that high frying times are required for low temperatures, and low
frying times for high temperature.

In addition to the model of FIS by frying time and temperature, another application of the
FTS is suggested, namely a visualization of the results. This visualization uses the FTS for each
pixel value to create a false RGB image, with each color assigned to a specific frying degree.
The visualization is done for minced beef and both types of diced turkey. The false RGB
images seams to be a powerful tool for examining specific meat sample, giving a very good

impression of the frying-treatment of each part / granule of the meat in question.

Having defined the FIS and shown how it could be used as an application, the linear
combination leading to an FTS value is further examined, to investigate the possibility of
reducing the bands used, thus decreasing the complexity and the implementation costs. It was
found that the assessment of the FTS can be effectuated using only 4-5 spectral bands without
loosing considerable information. This 72% reduction in the bands required is very promising
with regards to the implementation of such a system.

Concluding remarks

Opverall the thesis project proves that it is possible to assess certain quality parameters, with
regards to the frying process of various meat products using multi-spectral imaging. The thesis
shows how to take advantage of multi-spectral imaging, using both the spatial and spectral
properties to extract an assessment of the quality parameters. Using the spatial information in
the image given an edge, compared to conventional spectroscopy methods where only spectral

information is used.

The results gained throughout this thesis is however not ready to be used in a production
scenario without further research. Suggestions of future work are presented in Chapter 15.
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Chapter15  Putting into perspective

The motivation for doing this thesis project was to examine the possibility to assess quality
parameters using multi-spectral vision technology. This project proposes a method for
assessment of frying-treatment of various types of meats and some measures for agglutination
of minced beef. The methods proposed have been presented in two articles and one poster, of
which the poster has been presented and the two articles are pending for publication.

Future work in this area could include maturing the method for production. The first step
towards production is taken in Chapter 13, where it is shown how the number of spectral
bands needed for assessing the quality parameters can be minimized. Aside from the band
reduction more testing and research is still needed to better understand the nature of measures
proposed in this thesis, and to adapt these to actual applications.

Also interesting could be to examine if / how the measutres could be used in an automatic
regulation system of the wok, maybe even enabling industry production of fried meat without

being dependent on experienced process operators.

Another approach for future work, could be examining if the method for frying-treatment
assessment can be transferred to other meat types, this is most likely the case as it is already
shown it can be used for at least two types. Further interesting could be to investigate if the
method is general enough to be transferred to other applications such as vegetables, which is

one of the main application areas of the continuous wok.
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Appendix A VideometerLab2-
Wavelength table

This table shows the wavelengths which the VideometerLab 2 camera is able to record, along
with sample applications of the specific wavelength.

Band Wavelength [nm] Color Example application
1 430 Ultra Blue Chlorophyll A
2 450 Blue Riboflavin
3 470 Blue RGB, Blue
4 505 Green RGB Green, Met-myoglobin
5 565 Green RGB Green
6 590 Amber Oxy-myoglobin
7 630 Red RGB red
8 645 Red Chlorophyll B
9 660 Red Oxidation, Clorophyll A
10 700 Red Oxidation
11 850 NIR Baseline
12 870 NIR Baseline
13 890 NIR Unsaturated fat
14 910 NIR Protein
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15 920 NIR

16 940 NIR Fat
17 950 NIR Protein
18 970 NIR Water
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Appendix B Experiment Design January
(Danish)

Jens Adler-Nissen
Forsegsplan 29/1 07 — wokstegning af hakket ked

Tilberedning af ravaren:

Det frosne kad knuses i stykker pa ikke over 150 g. Mellem 0.5 og 1 kg.
hakkes batchvis i hurtighakkeren (Kilia 57 cm diameter) pa laveste
hastighed indtil kedet er findelt til omkring 5 mm. stykker (tager et par
minutter). Hakningen ma ikke overdrives af hensyn til
temperaturstigningen. Efter hakningen opsamles kagdet (der er let som sne) i
plastbaegre med ca. 100g i hver.

Til hvert forsgg bruges 8 plast baegre = ca. 800g.

Der bar ikke hakkes og afvejes mere end hvad der kan bruges inden for ca.
Y time. Stil evt. baegerne i is eller koldt. Det skulle kunne lade sig gere at na
4 forseg, svarende til en temperatur.
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Wokstegning:

Nar temperaturen har indstillet sig, tilsattes baegerne en af gange for hver
omdrejning pa sneglen. Produktet opsamples fra transportbandet, saledes at
de farst ankomne 50-100g. og de sidste ca. 150-200 g. kasseres. Det totale
udbytte er ca. 500-600 g. dvs. at der kan regnes med at der opsamles
omkring 250-300 g. feerdig ked per forsgg. Det opsamlede produkt
anbringes i plastposer, der er maerket.

Forsggsparametre:

200°C: tid: 120 s — 160 s — 200 s 240 s

225°C: tid: 120 s - 160s—200s 240 s

250°C: tid: 120 s — 160 s — 200 s 240 s

Forsggene kares med den laveste temperatur farst.

Videometer optagelse:

Praverne laegges i en petriskal i et sa tykt lag, at man kan se bunden. Der
laves 2 petriskale for hvert forsgg saledes at man far dobbelt bestemmelser
af billede-optagelsen (eller 3 petriskale, sa man far trippel-bestemmelser).
Resten af preverne gemmes (i kaleskab til naeste dag) til vandbestemmelse;
evt. nedfrysning.

Vandbestemmelse:

Ca. 20 g. preve homogeniseres i en miniblender. Vandbestemmelsen sker pa
ca. 2 g. preve, som tarres ved 110°C i 24 timer i afvejede foliebeaegre — der
laves trippel-bestemmelse.
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Appendix C Results Moisture Contents
January Experiment
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Moisture content Cup weight: 03152 [g]
Weight Moisture contents
Before [g]  After [g] [g] Percent Std.
200 Degress

120 [sec] Gns. 54.32574 0.216905
| 2.2552 1.2018 1.0534 54.29897
Il 2.3603 1.2446 1.1157 54.55479
1} 2.3984 1.2709 1.1275 54.12346

160 [sec] Gns. 52.66065 0.440206
| 2.5152 1.3455 1.1697 53.16818
Il 2.2626 1.2425 1.0201 52.38266
1] 2.3287 1.273 1.0557 52.43109

200 [sec] Gns. 51.49194 0.212021
| 2.292 1.2735 1.0185 51.52266
Il 2.2892 1.2689 1.0203 51.68693
1] 2.4396 1.3505 1.0891 51.26624

240 [sec] Gns. 51.1633 0.424912
| 2.65 1.4485 1.2015 51.46051
Il 2.3924 1.3257 1.0667 51.35278
1] 2.2587 1.2738 0.9849 50.67661

225 Degress

120 [sec] Gns. 53.16467 0.150364
| 2.2983 1.244 1.0543 53.16424
Il 2.4538 1.3136 1.1402 53.31525
1] 2.5527 1.3665 1.1862 53.01453

160 [sec] Gns. 53.96302 0.136475
| 2.5732 1.3533 1.2199 54.02569
Il 2.7768 1.4523 1.3245 53.80647
I 2.2095 1.1855 1.0240 54.05691

200 [sec] Gns. 52.55215 0.411431
| 2.3866 1.3076 1.0790 52.09037
Il 2.1817 1.1947 0.9870 52.87972
I 2.2081 1.2108 0.9973 52.68635

240 [sec] Gns. 51.27254 0.239858
| 2.1957 1.2304 0.9653 51.33209
Il 2.3231 1.2989 1.0242 51.00852
] 2.4445 1.3484 1.0961 51.47701

250 Degress

120 [sec] Gns. 51.00601 0.185106
| 2.2633 1.2657 0.9976 51.20887
Il 2.3871 1.3312 1.0559 50.96288
1} 2.4599 1.3694 1.0905 50.84627

160 [sec] Gns. 46.28823  0.206039
| 2.3025 1.3821 0.9204 46.31409
Il 2.4745 1.4797 0.9948 46.07049
11} 2.6846 1.5833 1.1013 46.48012

200 [sec] Gns. 49.70203  0.272753
| 2.3971 1.3666 1.0305 49.49805
Il 2.4202 1.3762 1.0440  49.5962
I} 2.4265 1.3706 1.0559 50.01184

240 [sec] Gns. 48.27531 0.225915
| 2.5683 1.4854 1.0829 48.06267
Il 2.459 1.4246 1.0344 48.25077

Il 2.332 1.3536 0.9784  48.5125
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Appendix D Visualization Results -
Minced Meat

This appendix includes all images acquired of minced meat, each have been transformed for
ease of inspection using the visualisation method from section 9.6 for minced meat.

Temperature 200°C
120[s] 160[s] 200[s] 240[s]
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Temperature 225°C
120[s] 160[s] 200[s] 240[s]
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Appendix E Experiment Design March
(Danish)

Seren Blond Daugaard
Forsegsplan 14/3 07 — Wok stegning af hakket ked

Formal:

Formalet med disse forsgg er at undersgge klumpning i hakket kad,
afhaengig af temperaturen far stegning, temperaturen under stegning og
stege tid.

Tilberedning af ravaren:

Det frosne kad knuses i stykker pa ikke over 150 g. Mellem 0.5 og 1 kg.
hakkes batchvis i hurtighakkeren (Kilia 57 cm diameter) pa laveste
hastighed indtil kedet er findelt til omkring 5 mm. stykker (tager et par
minutter). Hakningen ma ikke overdrives af hensyn til
temperaturstigningen. Efter hakningen opsamles kagdet (der er let som sne) i
plastbaegre med ca. 100g i hver.

Til hvert forsgg bruges 8 plast baegre = ca. 800g.
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Alt kad klargares fra starten af forsgget, nar tiden fra hakning til stegning er
opnaet stilles plast baegrene i is for at stoppe opteningen indtil disse skal i
wokken.

Wokstegning:

Nar temperaturen har indstillet sig, tilsattes beegerne en af gangen for hver
omdrejning pa sneglen. Produktet opsamples fra transportbandet, saledes at
de forst ankomne 50-100g. og de sidste ca. 150-200 g. kasseres. Det totale
udbytte er ca. 500-600 g. dvs. at der kan regnes med at der opsamles
omkring 250-300 g. feerdig kad per forsag.

Det opsamlede produkt anbringes i foliepakker eller poser, der er merket og
der laves si maling efter hver gennemgang.

Forsagsparametre:

Tid fra hakning til stegning Stegetemperatur [Tid i wok Hz for wok

~30 min

For at stoppe optoningen bor 200°C 160s 44,32

bagerne stilles i is nar de 30 min er [2000C 240s 29,55

opniet. 2250C 160s 44,32
225°C 240s 29,55

~1t 30min

For at stoppe optoningen bor 200°C 160s 44,32

bazgerne stilles i is nar de 1t 30 min [2000C 240s 29,55

er opniet. 2250C 160s 44,32
225°C 240s 29,55

~2t 30min

For at stoppe optoningen bor 200°C 160s 44,32

baegerne stilles i is nar de 2t 30 min [2000C 240s 29,55

er opniet. 2250C 160s 44,32
2250C 240s 29,55

Forsggene kares kronologisk i overensstemmelse med ovenstaende tabel.
Si tab:

Der bruges en si med kvadratiske huller pd 1,1 - 1,2 cm.

For hver prgve afvejes en tom foliebakke og veegten noteres. Herefter
afvejes kad prgven og vaegten noteres. Produktet tilsaettes si’en, opsamles i
den tomme foliebakken, vejes og vaegten noteres.

Vegtene noteres ved hjelp af en printet version af regnearket Si-tab-
Marts-070312 _xls.

Videometer optagelse:
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Praverne leegges i en petriskal i et sa tykt lag, at man ikke kan se bunden.
Der laves 2 petriskale for hvert forsgg saledes at man far dobbelt
bestemmelser af billede optagelsen (eller 3 petriskale, sa man far trippel
bestemmelser).

Billederne gemmes i HIPS formatet efter faglgende navne konvention:
[TidFgrWok]\[Temp]_[Tid]_[#]-hips

Resten af praverne gemmes (i kgleskab til naeste dag) til vandbestemmelse;
evt. nedfrysning.

Vandbestemmelse:

Ca. 20 g. preve homogeniseres i en miniblender. Vandbestemmelsen sker pa
ca. 2 g. preve, som tarres ved 110°C i 24 timer i afvejede foliebeaegre — der
laves trippel-bestemmelse.
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Appendix F Results Moisture Contents
March Experiment
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Moisture content - March Experiment
Weight Moisture contents
Cup [g] Before[g] After[g] [g] Percent Std.
~30 min
200C - 160 S Gns. 50.29219  0.4006
I 0.3166 2.4739  1.3846 1.0893 50.49367
Il 0.315 2.7244 _1.5064 1.2180 _ 50.552
I 0.315 2.4735  1.3979 1.0756 _ 49.8309
200C - 240 S Gns. 46.55977  0.2452
I 0.3171 2.3497 1.4015 0.9482 46.64961
Il 0.3167 2.287__1.3751 0.9119 46.28229
Il 0.3172 2.497  1.478 1.0190 46.74741
225C - 160 S Gns. 4527876 1.8283
| 0.3145 2.5059 _1.4674 1.0385 _ 47.3898
Il 0.3138 2.3687  1.4596 0.9091  44.2406
il 0.3144 2.4476__ 1.5046 0.9430 44.20589
225C - 240 S Gns. 46.03677 ___ 0.0799
| 0.3148 27729 1.6412 1.1317 _46.03962
Il 0.3151 2.4365 1.4616 0.9749  45.9555
il 0.3153 2.4634 1.4728 0.9906 46.11517
~1t 30 min
200C - 160 S Gns. 43.38688  0.1889
I 0.3174 2.2935 1.4395 0.8540 43.21644
Il 0.3171 25012 1.5543 0.9469 _43.35424
I 0.3178 2.622__1.6176 1.0044 43.58997
200C - 240 S Gns. 48.13233 _ 0.6723
| 0.3151 2.7089 _ 1.558 1.1509 48.07837
Il 0.3163 2.5402__1.4841 1.0561 _47.48865
il 0.3143 2.498 14317 1.0663 _48.82997
225C - 160 S Gns. 475126 3.0361
| 0.3161 2.5419  1.446 1.0959 _49.23623
Il 0.3162 2.6694 1.5094 1.1600 49.29458
il 0.3159 2.3174 _1.4366 0.8808 44.00699
225C-240 S Gns. 45.04778 _ 0.2705
| 0.3154 25017 1.5632 1.0285 45.18297
Il 0.3152 2.3632_ 1.447 0.9162 44.73633
il 0.3153 2.5159 1.5207 0.9952 45.22403
~2t 30 min
200C - 160 S Gns. 48.8079  0.2093
| 0.316 2.3366_ 1.3459 0.9907 _49.02999
Il 0.3158 2.3271 _ 1.346 0.9811  48.7794
Il 0.317 2.3629 1.3683 0.9946  48.6143
200C - 240 S Gns. 4923749 0.1167
| 0.3164 2.5687__1.4568 1.1119 49.36731
Il 0.3172 25473 1.4514 1.0959 49.14129
il 0.317 2.4146 _ 1.3825 1.0321 _49.20385
225C-160 S Gns. 53.80139 _ 0.2608
| 0.3156 2.4282_1.2858 1.1424 54.07555
Il 0.3161 2.2394  1.2052 1.0342_53.77216
il 0.3155 2.3681 _1.2688 1.0993 53.55646
225C-240 S Gns. 50.51604 _ 0.3248
[ 0.3162 25641 1.4208 1.1433 _ 50.8608
Il 0.3163 2.4373  1.3668 1.0705 50.47148
il 0.3153 2.6317 _1.4685 1.1632_50.21585
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Appendix G Results measures of
agglutination
Wait time / | Frying time [s] / Image Image Image
Temperature| Ni]easgureme[n]t Samp%e | Sampige I Sampl% I Average|  Std.
30 min
200°C 160
Meat pr. cm? 6.43 6.81 5.88 6.37 | 0.4676
Mean size 0.0549 0.0494 0.0615 0.0553 | 0.0060
Std. dev. size 0.0889 0.0885 0.1072 0.0949 | 0.0107
Max. size 0.5293 0.4663 0.6894 0.5616 | 0.1150
200°C 240
Meat pr. cm? 7.71 7.96 6.48 7.38 | 0.7922
Mean size 0.0459 0.0441 0.0528 0.0476 | 0.0046
Std. dev. size 0.0704 0.0726 0.0801 0.0744 | 0.0050
Max. size 0.4342 0.5486 0.5046 0.4958 | 0.0577
225°C 160
Meat pr. cm? 6.03 6.59 5.92 6.18 0.3593
Mean size 0.0574 0.0512 0.0601 0.0562 | 0.0045
Std. dev. size 0.0941 0.0829 0.1081 0.0950 | 0.0126
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Wait time / | Frying time [s] / Image Image Image
Temperature| Ni,easgureme[n]t Samp%e | Samplge I Sampl% I Average|  Std.
Max. size 0.7216 0.4890 0.7023 0.6376 | 0.1290
225°C 240
Meat pr. cm? 5.46 5.33 5.90 5.56 0.2987
Mean size 0.0648 0.0653 0.0614 0.0638 | 0.0021
Std. dev. size 0.1069 0.1057 0.1041 0.1055 | 0.0014
Max. size 0.6680 0.6144 0.7880 0.6901 | 0.0889
Avg. meat pr.cm®| 6.38
Avg. size | 0.0557
Avg. std. dev. size | 0.0925
Avg. max. size | 0.5963
1h 30 min
200°C] 160
Meat pr. cm? 6.62 6.60 6.13 6.45 0.2768
Mean size 0.0529 0.0493 0.0585 0.0535 | 0.0046
Std. dev. size 0.0852 0.0834 0.1221 0.0969 | 0.0219
Max. size 0.6070 0.6164 1.2010 0.8081 | 0.3402
200°C] 240
Meat pr. cm? 5.59 6.09 6.05 5.91 0.2749
Mean size 0.0642 0.0567 0.0596 0.0602 | 0.0038
Std. dev. size 0.1199 0.1113 0.0883 0.1065 | 0.0162
Max. size 1.1956 1.1653 0.4836 0.9482 | 0.4026
225°C] 160
Meat pr. cm? 6.20 6.86 5.81 6.29 0.5303
Mean size 0.0557 0.0501 0.0607 0.0555 | 0.0053
Std. dev. size 0.0932 0.7514 0.1150 0.3199 | 0.3738
Max. size 0.9469 0.4540 1.1459 0.8489 | 0.3562
225°C 240
Meat pr. cm? 491 6.04 5.43 5.46 0.5638
Mean size 0.0689 0.0551 0.0662 0.0634 | 0.0073
Std. dev. size 0.1217 0.1083 0.1057 0.1119 | 0.0086
Max. size 0.6959 0.7567 0.6904 0.7143 | 0.0368
Avg. meat pr.cm® | 6.03
Avg. size | 0.0582
Avg. std. dev. size | 0.1588
Avg. max. size | 0.8299
2h 30 min
200°C) 160
Meat pr. cm? 4.80 5.93 5.92 555 | 0.6466
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Wait time / | Frying time [s] / Image Image Image
Temperature| Ni,easgureme[n]t Samp%e I Sampﬁe I Samplg I Average|  Std.
Mean size 0.0740 0.0600 0.0575 0.0638 | 0.0089
Std. dev. size 0.1461 0.1291 0.1010 0.1254 | 0.0228
Max. size 1.3014 0.8408 1.0547 1.0656 | 0.2305
200°C 240
Meat pr. cm? 4.79 5.10 5.72 520 | 0.4743
Mean size 0.0764 0.0747 0.0648 0.0720 | 0.0063
Std. dev. size 0.1619 0.2037 0.1363 0.1673 | 0.0340
Max. size 1.4465 2.7996 1.2549 1.8337 | 0.8419
225°C 160
Meat pr. cm? 4.80 5.94 5.14 529 | 0.5853
Mean size 0.0765 0.0603 0.0688 0.0686 | 0.0081
Std. dev. size 0.0138 0.1210 0.1328 0.0892 | 0.0655
Max. size 0.7897 1.1142 0.8028 0.9022 | 0.1837
225°C 240
Meat pr. cm? 5.61 4.97 5.13 524 | 0.3289
Mean size 0.0600 0.0743 0.0689 0.0677 | 0.0072
Std. dev. size 0.1275 0.1643 0.1490 0.1469 | 0.0185
Max. size 0.8468 1.4823 0.9581 1.0957 | 0.3393
Avg. meat pr. cm® | 5.32
Avg.size | 0.0680
Avg. std. dev. size | 0.1322
Avg. max. size | 1.2243
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AppendixH
Experiment Design April (Danish)

Seren Blond Daugaard
Forsegsplan 16/4 07 — Wok stegning af kalkun ked

Formal:
Formalet med disse forsgg er at undersgge stegnings graden af kalkun kad i
tern, afhaengig af temperaturen under stegning og stege tid.

Tilberedning af ravaren:

Kalkun brystet udskeeres til stykker af ca. 10g. (ca. 2*2*2 cm). Der udtages
20 stykker til kontrol vejning, til vejningen bruges Tabel 1 — Vaegt skema.
For at undga klaebning i starten af stegeprocessen, skal kadet skoldes. Dette
geres ved at nedsaenke kadet i en gryde med kogende vand (som en
frituregryde) i ca. 7 sekunder, alt kadet skal skoldes med udtagelse af ca.
600 g. der bruges til kontrol stegningen (Forseg 2). Efter skoldning tilsattes
en procent fedt til kadet og det blandes godt.

Efter udskeering og skoldning opdeles kadet i baeegere med 10 stykker i hver
(ca. 100g). Der skal bruges 6 kopper til hvert forsgg (ca. 600g).
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Alt kadet kan Kklargares for forsggende da kadets temperatur fgr stegning
ikke har indflydelse pa stegeprocessen.

Wok stegning:

Forsgg 1

Nar temperaturen har indstillet sig, tilsattes beegerne en af gangen for hver
omdrejning pa sneglen. Produktet kan opsamles direkte fra samlebandet i
foliebakker til nedkaling. Efter nedkeling skeeres ca. halvdelen af kedet i
halve. Kgdet l&egges herefter i markerede plast-poser (en til hele, og en til
halve stykker) til VideometerLab optagelse.

Forsggsparametre:

Stegetemperatur [Tidi wok  |Forventet stegningsgrad

250°C 3 min. Tydelig ra., hvid overflade

250°C 4 min. Stadig ra, hvid overflade

250°C 6 min. Stegning ok, overflade bleg, saftig
275°C 4 min. Ra, Ok overflade men bleg

275°C 6 min. Fin stegning, saftig, overflade ok
275°C 7 min. Fin stegning, saftig, overflade ok
275°C 9 min. Fin stegning, saftig, overflade markere

0g spradere.

300°C 4 min. Tegn pa ra, god overflade.

300°C 6 min. Ok stegning, meget mark overflade
300°C 7 min. Ok stegning, meget mark overflade
Forsgg 2

For at kontrollere at skoldning ingen effekt har pa stegningsgraden, laves en
kontrol stegning med de 600g. kad der ikke blev skoldet. Disse steges ved
275°C 7 min., ca. halvdelen skaeres igennem og praverne ligges i to poser en
til hele og en til halve stykker. Poserne skal tydeligt markeres som ”1kke
skoldet” samt med temperatur og tid.
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Forseg 3
For at undersgge variationen i kadet ved overfyldning af wokken laves
fglgende forsgg.

Stegetemperatur [Tid i wok Fyldning grad
275°C 6 min. 150 g. pr. kop * 4 kopper
300°C 6 min. 150 g. pr. kop * 4 kopper

Efter behandling skeeres ca. halvdelen af prgverne over, og hver prgve
pakkes i to poser, en til hele og en til halve, der er tydeligt markeret med
fyldningsgrad, temperatur og tid.

Videometer optagelse:

Praverne leegges i en petriskal med fire-fem kedstykker i hver. Der laves 3
petriskale for hvert forsgg saledes at man far trippel bestemmelser af billede
optagelsen. Ved de halve stykker er det vigtigt at stykkerne ligger med
”indersiden” opad.

Billederne gemmes i HIPS formatet efter falgende navne konvention:

Forsgg 1
[TempI\[Tid]_[HEL/SNIT]_[#]-hips

Forsgg 2
uSkoldning\[Temp]_ [Tid]_[HEL/SNIT]_[#]-hips

Forseg 3
Fyldning\[Fyldning] [Temp] [Tid]_ [HEL/SNIT] [#]-hips

Resten af praverne gemmes (i kagleskab til naeste dag) til vandbestemmelse;
evt. nedfrysning.

Vandbestemmelse:

Ca. 20 g. preve homogeniseres i en miniblender. Vandbestemmelsen sker pa
ca. 2 g. prgve, som tarres ved 110°C i 24 timer i afvejede foliebeaegre — der
laves trippel-bestemmelse.

Skemaer:
Tabel 1 — Vaegt skema
Kod stykke  Vagt [g] Keod stykke Vagt [g]
1 [a] 12 [9]
2 [a] 13 [a]
3 [0] 14 [a]
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Appendix| Results Moisture Contents
April Experiment
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Moisture content - April Experiment

Weight Moisture contents
Cup [g] Before[g] After [g] [g] Percent Std. Dev.
250C
3min Gns. 66.99612 0.0195
| 0.3165 2.3383 0.984 1.3543 66.98486
Il 0.3159 2.338 0.9835 1.3545 66.98482
1l 0.317 2.192 0.9354 1.2566 67.01867
4min Gns. 64.44339 0.3180
| 0.3151 2.5223 1.0945 1.4278 64.68829
Il 0.3156 2.6349 1.1486 1.4863 64.08399
111 0.3152 2.231 0.9942 1.2368 64.55789
6min Gns. 64.93053 0.1523
| 0.3155 2.446 1.0658 1.3802 64.78291
Il 0.3156 2.5734 1.1076 1.4658 64.92161
1l 0.3153 2.3538 1.0270 1.3268 65.08707
275C
4min Gns. 66.76658 0.0520
| 0.3161 2.2315 0.9538 1.2777 66.70669
Il 0.3156 2.4573 1.0268 1.4305 66.79273
111 0.3152 2.4851 1.0356 1.4495 66.80031
6min Gns. 65.1227 0.2005
| 0.3159 2.4755 1.0653 1.4102 65.29913
Il 0.3159 2.4877 1.0781 1.4096 64.90469
1l 0.3157 2.4279 1.0515 1.3764 65.16428
6min - 150 g fyldning Gns. 65.26754  0.2971
| 0.3144 2.4686 1.0596 1.4090 65.40711
Il 0.3142 2.3445 1.0263 1.3182 64.92637
1l 0.3149 2.7449 1.154 1.5909 65.46914
7min Gns. 64.99262 0.0600
| 0.3162 2.6272 1.1247 1.5025 65.01514
Il 0.3153 2.2966 1.008 1.2886 65.03811
il 0.3153 2.6631 1.1388 1.5243 64.92461
7min - Uden skold Gns. 68.1728 0.0547
| 0.3155 2.6478 1.058 1.5898 68.16447
Il 0.3161 2.3316 0.9564 1.3752 68.23121
1l 0.3153 2.4306 0.9896 1.4410 68.12272
9min Gns. 62.78468 0.0991
| 0.3142 2.7338 1.2169 1.5169 62.69218
Il 0.3149 2.5165 1.1345 1.3820 62.77253
111 0.3152 2.8452 1.2541 1.5911 62.88933
300C
4min Gns. 66.39196 0.3344
| 0.3155 2.9995 1.2082 1.7913 66.73994
Il 0.3147 2.4375 1.0349 1.4026 66.07311
1l 0.3148 2.5858 1.0787 1.5071 66.36284
6min Gns. 63.70523 0.1020
| 0.3156 2.4352 1.0874 1.3478 63.58747
Il 0.315 2.719 1.1861 1.5329 63.76456
11} 0.3135 2.4561 1.0899 1.3662 63.76365
6min - 1509 fyldning Gns. 64.22403 0.0760
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Appendix J Visualization results-Diced
Turkey

The appendix includes all images of the sutface of the diced turkey meat, converted using the
method described in section 11.6.

Temperature 250°C
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Temperature 300°C

4 min
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Appendix K Visualization results -
Sliced Diced Turkey

The appendix includes all images of the sutface of the diced turkey meat, converted using the
method described in section 12.6.

Temperature 250°C

3 min
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Temperature 275°C

4 min
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Appendix L Poster and presentation for
2007 Vision Day

The following poster “.4 Method for Frying Treatment Assessment of Meat Using Multi-Spectral 1V ision
Technology” and accompanying slide show presentation was presented on the 2007 Industtial
Vision Day, the 23t of May at the Technical Univertsity of Denmark.
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Minced Beef and Diced Turkey Meat

Samples created using on the
continuous wok at BioCentrum

Multi-spectral image acquisition
using the VideometerLab camera

18 bands spanning from 430 [nm] to
970 [nm] recorded in a 12801960
pixel resolution

Allimage are pre-processed to
isolate relevant meat areas

hlulti-variant statistical methods are
applied to all datassts

Canonical Discriminant Analysis is
found to be appropriate

The first Canonical Discriminant
Function (CDF) shows large
separation of frying degress

A Frying Treatment-Score (FTS)
can be defined from the first
Canonical Discriminant Function

The FTS can be used (o assess the
meat quality with respect to the
frying degree

The FTS is used to model the frying
process based on frying time and
temperature
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Appendix M A Method for Frying
Treatment Assessment of Minced Meat
Using Multi-Spectral Imaging (Article)

The article was submitted for the 14% International Conference on Image Analysis and
Processing (ICIAP), but rejected as it was out of scope of the conference.

The atticle is to be submitted to the 3 International Symposium on Recent Advances in Food
Analysis.
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A Method for Fryving Treatment Assessment of Minced Meat Using
Multi-Spectral Imaging

Soren Blond Daugaard', Jens Michael Carstensen®
IMM, Informatics and Mathematical Modeling, Technical University of Denmark
Building 321, DK-2800 Kgs. Lyngby, Denmark
s053042@student.du.dll, jme@imm.dtu.dic

Abstract

Using a newly developed method for frving minced
meat for industry scale applications, a method for
assessment of the frving treatment using multi-spectral
vision technology is examined.

The method uses a combination of mathematical
morphological — segmentation  and  mulfi-spectral
analysis techniques to find the optimal combination of
the 18 multi-spectral bands that give a measure of the
Jfrving treatment. This e is mapped against
frving time and frying temperature fo give an
expression of how they should be combined to obtain
an adeguate frying treatment.

Keywords:  canonical  discriminant  analysis,
mathematical morphology, H-Domes, NIR,  heat,
oxidation, VideometerLab.

1. Introduction

Industry scale production of fried minced meat for
products as lasagna, chili con came etc. where small
discrete particles 1s preferred, has been very hard to
produce since the meat tends to agglomerate, and
exude water resulting in a boiled product [1]. A
method for industry scale production of minced meat
has been developed at BioCentrum, DTU. Using this
method the potential of categorizing the produced meat
as having under- or adequate-processed characteristics
using multi-spectral vision technology is examined.

Using vision technology for quality testing of food
production has the obvious advantage of being able to
continuously monitor a production using non-
destructive methods thus increasing quality and
minimizing cost.

2. Dataset

2.1. Sample preparation

Using the method for wok-frying minced meat as
described in [1] and the continuous wok described in
[2] a number of samples was prepared. The samples
where prepared at the temperatures 200°C, 225°C and
250°C, and with the frying time changing from 120[s]
to 240[s] in 40[s] intervals. These combinations of
time and temperature provides us with samples that
have characteristics of being under- and adequately-
processed as well as a few samples which had the
characteristics of being over-processed. These are
categorized as adequately-processed in this context,
since the samples mainly contains adequate-processed
meat and only in smaller amounts meat granules of
over-processed meat, which can be easily identified
using the human eye due the it very characteristic
black-brown burned color.

Table 1. Meat samples and processing degree
120[s] | 160[s] | 200[s] | 240[s]
200°C | Under Under Under Under
225°C | Under | Adequate | Adequate | Adequate
250°C | Adequate | Adequate | Adequate | Adequate

The samples said to be under-processed 15 not
necessarily under-processed in the sense that they
cannot be served, but rather have the characteristics of
being under-processed such as high levels of water and
fat contents, Whereas the adequately-processed meat
mainly represents the best quality meat as concluded in

(4]
2.2. Data acquisition

To acquire the multi-spectral image data the
VideometerLab 2 camera was used. VideometerLab 2
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is a multi-spectral camera for laboratory analysis [3],
acquiring data in 18 bands spanning from Ultra-Blue to
Near-Infrared in a 960x1280 pixel resolution; the
wavelengths used are given in Table 2. Some of
interesting wavelength are at 505[nm] and 590[nm]
where met-myoglobin and  oxy-myoglobin  shows
reflectance. Also interesting are the upper parts of the
wavelengths where water, fat and protein have
reflectance since the contents and structure of these are
known to change during fryving.

For each meat sample, 3 sub-samples where taken
out for imaging. For each sub-sample a small dish was
filled, and a finger was run over to remove the excess
particles, leaving a somewhat homogenous surface.
The resulting image-data where saved in the hips
format to ease access from Matlab and the
VideometerLab software, thus resulting in 2.94 GB
image data.

Table 2. VideometerLab bands

Band # Wavelength [nm] Color
1 430 Ultra blue
2 450 Blue
3 470 Blue
4 505 Green
5 565 Green
6 590 Amber
7 630 Red
8 615 Red
9 660 Red
10 700 Red
11 850 NIR
12 870 NIR
13 890 NIR
14 910 NIR
15 920 NIR
16 940 NIR
17 950 NIR
18 970 NIR

3. Methods

To minimize the variation over the image data
given, a pre-processing taking advantage of the spatial
properties of the image is used to select the interesting
areas. Further analysis of the relevant data is
performed using cancnical discriminant analysis, to
find the optimal linear combination that gives a
measure of the frying treatiment.

3.1. H-Domes

H-Domes is a morphologically segmentation
technique for determining maximal structures in grey-
scale images. The H-Domes method uses the original
images as a mask, from the mask a marker is generated
by subtracting a predefined valueh. Using grayscale
morphologically  reconstruction  the  image i
reconstructed from the marker. Subtracting the
reconstructed image from the marker gives the h-
domes of the original image. The h-domes are then
structuralty opened to remove any small graing present.
Figure 1 shows the concepts of H-domes.

Figure 1. H-Domes concept

3.2. Pre-processing procedure

In-order to remove unwanted objects and to reduce
the imumense data amount, the H-Domes segmentation
technique was used. The segmentation was performed
on band 10 since this band, independent of fiving
treatment, visually shows little variation from the
fat/meat/frying product composition and thus more
relates to the sample topography of the minced meat.
After doing the H-Domes segmentation a threshold
value was applied to the resulting image, leaving only
the tops and the surrounding metal plate of the imaging
device. The metal plate was removed from the mask
manually. Figure 2 shows one of the sample images
along with the mask generated by pre-processing,

Figure 2. Meat dish and mask
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3.3. Canonical discriminant function

Canonical discriminant  analysis  (also  called
Fisher*s discriminant analysis) is used to find the linear
combination which leads to the greatest separation of

two or more groups. Let Xy and xmbe two groups,

and 7 denote the within group sum-of-squares matrix
and A denote the between group sum-of-square matrix
the problem can be written as:
Ak
Find k to maximize A = —— (1)

I Wi
Taking the first derivative of this yields an eigen-
value problem described by:

Wt dk= Ak @
Having two groups this results in one optimal linear
function & °x called the canonical discriminant
function. The function can be used to categorize data
using the decision rule:
ko= ) > 0 @
‘Where 1 is the overall observation mean.

4. Results and discussion
4.1. Preliminary spectrum comparison

To determine it a basis for performing further
analysis of the data exists, the spectrums of meat
granules from various frying degrees is compared to
find a visual coherence between the amount of fiving
and the spectrum.

L] 0 3 ] (] ] 0

fom
Figure 3. Meat spectrums

To clarify the coherence between the amount of
frying and spectrum of the meat, the spectrums have
been normalized arcund band 8. The normalized data
shows a clear trend, as the amount of fiying of the
meat increases, it introduces a “break™ on the curve
around 950[nm)], likely due to a change in fat and

water contents. Whereas the under-done meat which
has a curve which is more smoothly descending in the
last part of the spectrum due to higher amounts of fat
and water.

Further interesting is that the spectrums do not
show remarkable differences in the bands reflecting
met-myoglobin and oxy-myoglobin. This is since all
samples of the meat have undergone sufficient heat
treatment, such that the by-far largest part of the
myoglobin has been transformed into de-naturated
met-myoglobin.

4.2. Canonical discriminant analysis
Tt was found that a basis for separating the various

frying degrees based on their differences in spectral
characteristics exists. In order to examine this further a

canonical discriminant analysis (CDA) was performed
on the preprocessed data, separating them into the
classes as described in Table 1. The resulting grayscale
images show a clear change in the insensitivity of the
meat granules based on the frying time, the resulting
images are shown in Figure 4 (The contrast of these
images has been increased to clarify differences.).

Figure 4. From upper-left — 200°C 16[sec],
250°C 160[sec], 225°C 120[sec],
225°C 160[sec]

To investigate these differences further the
histogram of the marked regions of interest in the
images are plotted. From the histogram it is clear that
the mean value of histogram curves can prove as a tool
for separating the meat into the classes needed. The
mean value of the histogram is here from called the
frying-treatment score (FTS).



172 Appendix M - A Method for Frying Treatment Assessment of Minced Meat

L L L 1 N "
] ) o Fl 4 [ [

Figure 5. ROl histogram

Using the FTS scores from all samples, the cut-off
score  between under-processed and adequately
processed meat is found to 1.1708. In-order to examine
the coherence between temperatures, frying time and
the FTS score, cubic regression was used to fit the
results to the two wvanables, time and temperature.
Having found the approximated polynomial, contours
can be approximated to describe the vanous fiying
degrees as illustrated in Figure 6. In Figure 6 the term
“gcore” directly applies to the fiving degrees and the
FTS score mentioned earlier. A fiying degree above
1.17 or as named in Figure 6 the “Adequate-Processed
Cut-Off Line™ represents meat that are adequate
processed, whereas a fiying degree below naturally
refers to insufficiently-processed meat.

Figure 6. Contours and cut-off line

A number of contours other than the cut-off line are
drawn to show how the frying degree evolves with
relation to temperature and tme. From the
approximated cut-off line it is shown that meat
processed at 120 seconds or less, regardless of
temperature does not reach a fiying degree which can
be described as adequately processed, in addition to
this the contours also shows that the same applies to
temperatures of 200°C regardless of frying time.

5. Conclusion

Using data from the laboratory a method for
assessment of frying treatment for minced meat using
multi-spectral imaging is developed. The fiying
treatment 1s assessed by applying a canonical
disciminant function the image, derived from an
extensive amount of test data, and thereafter denving
the mean of image histogram called the fiying-
treatment score (FTS). The FTS values of the samples
are used to approximate the coherence between the
variables, this coherence are used to denve time-
temperature contours for varions frying degrees.

The results obtained leads to the conclusion that an
assesgment of the fiving treatment for minced meat,
using non-destructive multi-spectral vision technology,
1g possible. Furthermore the contours created in this
article can be used as a guideline for tuning the
continuous wok; to achieve higher quality fried minced
meat.
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Appendix N New Vision Technology for
Multidimensional Quality Monitoring of
Continuous Frying of Meat (Article) Draft

The following article is currently in a draft form, but will be submitted to Elseviet’s journal of
Food Control when completed.



174 Appendix N - New Vision Technology for Multidimensional Quality

New Vision Technology for Multidimensional Quality Monitoring of
Continuous Frying of Meat

Seren Blond Daugaard, Jens Adler-Nissen, Jens Michael Carstensen

1. Introduction

Loose particles of fried minced meat or meat cut in small strips or dices are characteristic

components of a wide range of popular dishes all over the world. Chili con carne, lasagne,
hash, and a range of Oriental stir-fried dishes are some well-known examples. Many of these
dishes are sold as ready-made meals in retail and also served in canteens and in fast food
restaurants. The initial frying of the meat for these dishes is an important process step, since
the frying gives the meat a desired flavour and colour which cannot be obtained by e.g.
boiling, dielectric cooking or microwave cooking of the meat (Pearson & Gillett, 1996, 105-
115).

Proper frying of minced and cut meat is not an easy operation to carry out in large scale,
however. Deep-fat frying is the most widely used frying process for large scale productions,

but deep-fat frying is not suitable for minced meat. Furthermore, deep-fat frying usually

results in a high uptake of fat, depending on the product (Makinson, 1987), while the uptake
of fat in plain meat after pan frying is quite low (Clausen & Ovesen, 2007). From visits paid
to several industries producing ready-made meals we have observed that a common procedure
is to fry minced meat batch wise by contact frying in large pans or vessels. The same applies
to meat cut in small pieces; although deep-fat frying is possible in that case, contact frying in
pans, on frying tables or on frying conveyor bands is preferred when a high sensory quality
and low fat content is desired. In most cases the resulting quality of the fried meat is evaluated
and controlled by trained operators who usually judge the progress of the process by visual
inspection.

This situation that process control is effectuated through the subjective judgment of an

experienced operator 1s not confined fo frying processes; it 1s common 1n other food
processes, too; for example in the baking industry and in the confectionary industry.
However, the trust invested in the experienced human does not always live up to expectations
when confronted with a statistical evaluation.

The visual judgment by a process operator can be supported by heuristic decision-making
systems (Perrot, Ioannou, Gilles, Allais, Curt, Chevallereau, & Trystram, 2002) or substituted

by different on-line measuring systems in combination with suitable control algorithms
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(Haley & Mulvaney, 19953; Linko & Linko, 1998). The introduction of near-infrared
reflection (NIR) spectroscopy for on-line measurements of water and fat was a break-through
for such systems in the food industry (Hoyer, 1997; Schwarze, 1997), and NIR presents
further potentials in quality monitoring and classification, such as distinguishing between
fresh fish meat from frozen and thawed fish meat (Uddin, Okazaki, Turza, Yomiko, Tanaka,
& Fukuda, 2005).

As a measuring principle NIR does not directly match visual quality monitoring, and

different vision technologies are therefore also being investigated for on-line quality
measurements, for example of fresh poultry, apples and other fruits (Chen, Chao, & Kim,
2002; Abdullah, Mohamad-Saleh, Fathinul-Syahir, & Mohd-Azemi, 2006). It is, however,
still difficult with most vision technologies to reliably distinguish small differences in the
appearance of food products, because the visual variation is typically within shades of red,
shades of green, shades of yellow etc. A way to solve this and to combine the strengths of
vision technology and spectroscopy is to use multispectral imaging in the visual and
shortwave infrared range of wavelengths. This opens up for the possibility of using vision
technology for surface chemistry mapping in addition to visual appearance mapping

(Carstensen, Hansen, Lassen & Hansen 2006).

1.1. The Videometer vision technology

A new principle in vision technology researched and developed by the Technical
University of Denmark and commercialised by www.videometer.com is based on the
following principle (Carstensen & Folm-Hansen 2000): The product is placed under an
Ulbricht sphere (a sphere painted white on the inside giving diffuse backscattering of the
light) and illuminated with light-emitting diodes (LEDs) placed along the rim of the sphere.
The LEDs cast light at specified wavelengths up into the sphere to be reflected as scattered
light onto the product. This gives a uniform and reproducible illumination over a large arca
(50 em?). The technology has proven its ability in difficult sorting tasks such as classification
Maletti 2003; Gomez 2005; Hansen 2003, Clemmensen & Ersbell 2006). All these tasks
normally require a visual assessment by trained personnel, and the results suggest that the
Videometer technology may match the visual judgment of the experienced food process
operator rather closely.

The present work aims at investigating the potential use of this new vision technology for

quality monitoring of food processes in cases where small differences in colour, size and
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shape are crucial. The frying of meat in a new continuous frying process to be described
below presents an excellent case, since it is possible to make reproducible and not
exaggerated variations in the sensory (taste) quality by changing the process conditions. The
applied changes in process conditions also results in small, but noticeable changes in the
visual appearance of the fried meat; thus simulating typical conditions facing the process

operator.

1.2. The continuous frying process

Heat treatment of meat causes the meat fibres and the collagen to contract, resulting in a
considerable exuding of meat juice (Tornberg, 2005). If the juice is not evaporated
instantaneously in the frying process, the well-known result is boiling rather than frying. A
new continuous stir-frying process originally developed for stir-frying of vegetables (Adler-
Nissen, 2002; Adler-Nissen, 2007) has proved to be able to give instantaneous evaporation of
the exuded juice when small pieces of meat (5-20 g) are fried. The processed pieces have an
attractive fried, brown crust and a juicy texture. Even minced meat can be fried, provided the
meat is frozen and disintegrated in the frozen state by chopping immediately before frying
(Adler-Nissen, 2006).

with a stainless steel conveyor helix with scrapers (Adler-Nissen, 2002). The heat source is
natural gas. Measured portions of ingredients and oil are added at one end of the frying tube at
each turning of the helix. The product is transported and tossed simultaneously by the helix
and leaves the machine through a port at the other end.

The main process parameters in the continuous frying process are: temperature of the
frying tube (this is regulated by feed back signals to the gas flow valves from temperature
sensors in the tube wall) and process time (this is regulated by the rotational speed of the
helix). Combinations of temperature and time define a process window within which the
resulting product quality is optimal; outside these limits the product is either under-processed

or over-processed

2. Materials and methods

2.1 Samples

2.1.1 Minced beef

Frozen minced beef with 15-18% fat was purchased through a wholesale supplier, Inco
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Danmark a.m.b.a, Copenhagen. The blocks of meat (2 kg) were stored at —30°C. The blocks
were crushed with a hammer in coarse pieces. Portions of about 1 kg were chopped at a time
in an industrial bowel meat chopper (Kilia 57cm diameter) at the lowest speed step to prevent
heating. The chopping was continued (about 2-3 min.) until the frozen meat was disintegrated
with no large lumps left.

800 g of the disintegrated, frozen meat was fed in consecutive portions of 100g to the

continuous frying machine described above at pre-selected temperatures and frying times.

Samples where prepared at the temperatures 200°C, 225°C and 250°C; the frying time varied
from 120([s] to 240[s] in 40[s] intervals. These combinations of frying time and temperature
provided samples which had characteristics of being under and adequately processed, as
sensory evaluated by the expert judgment of one of the authors (Adler-Nissen) together with a
skilled meat technician. “Under processed” meant that the characteristic fried flavour was not
adequately developed. The texture was firm but not dry in all cases. Visually, there was a
slight tendency of the samples fried at 200°C being more grey and less brown than the other
samples. None of the samples were over processed, which would have meant that they would
have been dry and/or dark in colour.

The process conditions were chosen so to produce samples that would be acceptable or
nearly acceptable. It is of no interest to include test conditions which would result in samples
being clearly of unsatisfactory quality, since in this paper the vision technology is tested for
its ability to distinguish small differences.

The division of meat into processin

degree is given in Table 1.

Table 1 - Proces

Time / Temp 120[s] 160[s] 200[s] 240[s]
200°C Under Under Under Under
225°C Under Adequate Adequate Adequate
250°C Adequate Adequate Adequate Adequate

To examine the effect of partial thawing of the minced beef before frving, samples were

left to thaw for various specified times at room temperature. Excessive thawing may result in
agglutination of the minced meat during the frying, giving rise to coarse lumps of fried meat
(Adler-Nissen 2006). Three sample sets were thawed for 30 minutes, 1 hour and 30 minutes
and 2 hours and 30 minutes, respectively. Each sample set included four samples processed at
225°C and 250°C and with frying times of 160[s] and 240[s]. To create a physical measure of

agglutination all samples were run through a strainer with 1.1 ecm square holes immediately



178

Appendix N - New Vision Technology for Multidimensional Quality

after frying. Strainer loss in percent of the total sample weight has previously been used as a

measure of the degree of agglutination (Slot 2004).

2.1.2 Diced turkey meat

Turkey breasts were cut in dices of approximately 10[g]. 20 samples were taken out for
control measurements, showing an average of 9.48[g] with a standard deviation of 2.09[g];
this is a typical and acceptable variation in size. Before frying the pieces were scalded for 7
seconds in a large pot of hoiling water. The scalding coagulates the soluble meat proteing in
the surface layer and prevents the meat from sticking to the walls of the cooking vessel — or in
this case to the helix and frying tube of the continuous fryving machine. Samples were
prepared at 250°C, 275°C and 300°C, and frving times varying from 180[s] to 540[s]. These
combinations of frying time and temperature provided samples characterised as being under-,
adequately- and over-processed. The assessment was mead by expert judgment as in the case
of the minced meat. The categorization of samples into the processing classes is given in
Table 2.

Table 2 - Processing times and categorization of diced turkey

Time/ Temp| 180[s] 240[s] 360[s] 420[s] 540[s]

250°C Under  Under  Adequate - -

275°C - Under Adequate Adequate  Over
300°C - Adequate  Over Over -

2.1.3 Determination of water content

20g of meat was homogenized in a small Braun household blender with rotating knife.
Three samples of approximately 2g were transferred to disposable aluminium pans taken and
dried at 105°C for 24 hours in an oven. Water content was calculated from the difference

between the weights of sample before and after drying.

2.2 Visible and near-infrared sample acquisition
For all combinations of times and temperature three sub-samples were taken out for
imaging, The samples were placed in plastic petri dishes (10em diameter). The multi-spectral
images were acquired using the VideometerLab 2 camera, a multi-spectral camera for
laboratory analysis acquiring images in 18 bands spanning from Ultra Blue (UB) to Near-
Infrared (NIR) in a 960x1280 pixel resolution. The wavelengths used are given in Table 3.
Table 3 - VideometerLab 2 Wavelengths
Wavelength Color | # Wavelength Color | # Wavelength Color

1 430[nm] UB |7 630[am] Red |13 890[am] NIR

Lh
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Wavelength Color | # Wavelength Color | # Wavelength Color
450[nm] Blue (8 645[nm] Red |14 910[nm] NIR
470 [nm]  Blue {9 660 [nm] Red |15 920[nm] NIR
505 [nm] Green [10 700 [nm]  Red (16 940 [nm] NIR
565 [nm] Green [11 850 [nm] NIR [17 950 [nm] NIR
590 [nm] Amber|12 870 [nm] NIR [18 970 [nm] NIR

AN W s W N

2.3 Image pre-processing

Due to the method of image acquisition, the images include objects not relevant to the
analysis such as the metal sheeting from the camera, and the petri dish used to contain the
meat. To ensure that these objects will not interfere with the analysis, a pre-processing step is
included to remove the objects and isolate the meat pieces. The pre-processing is done by
maximizing the contrast between the sample material and the other objects; thus enabling a
threshold operation. Maximizing the contrast is done either by choosing a single appropriate
wavelength or, in the case of the diced turkey, by subtracting two wavelengths and using the
spectral differences as the image for further processing. The diced turkey meat samples
needed no further pre-processing, while additional pre-processing was needed for the minced

meat samples. For the images used for frying treatment assessment, this processing aimed at

isolating the top part of the meat particles to minimise the spectral differences in the image
from the rounded surface of the meat granules. The procedure used for this purpose is an h-
domes segmentation technique (Vincent, 1993). This technique extracts the peaks of the
image higher than a certain value /; by carefully choosing the h-value it is possible to isolate
the top of the meat granules.

The process of isolating meat objects for the agglutination assessment differs from the
above procedure by focusing on the ability to separate and measure the size of the meat
particles. In order to ensure a common separation of meat granules regardless of frying
treatment, it is crucial to perform this separation using a spectral band which is practically

independent of frying treatment. Examining spectra and profiles over the images revealed that

band 11 was the best fit for the purpose. This band was used to perform an h-domes
segmentation followed by a threshold, and various filter operations leaving a binary image

clearly outlining the meat granules existing in the image.

2.4 Data analysis

2.4.1 Canonical Discriminant Analysis

To enhance the differences in the spectra introduced by increased heat treatment, a
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Canonical Discriminant Analysis (CDA) was applied. CDA is multivariate statistical method,
used to find the largest possible separation of two or more classes based on a number of
independent variables.

In this case the class division is based on the categorization of being under, adequately or
over processed as given in section 2.1. The independent variables are the images of the 18
spectral bands acquired by the VideometerLab camera. From the groups of data, CDA finds

the optimal linear combination of the 18 variables which create the largest possible

separation, called the Canonical Discriminant Functions (CDF).

2.4.3 Spatial Measurements
A connected component analysis using 4-connectivity is applied to the images; this
analysis finds the number of non-connected components in the images, here representing a

meat granule, and their corresponding pixel size. Knowing that ratio between pixel and
millimetres in the VideometerLab camera are 0.077 [”"% i el} conversion of the pixel size

found in the image is straightforward. For each image the maximum granule size found and
the mean granule size is extracted. These measures are chosen since they will be consistent

regardless of the image size and amount of meat in the image.

3. Results and discussion

3.1 Assessing Frying Treatment
The measured water contents are given in Table 4 and Table 5. The data show the

expected tendency of decreasing water contents based on increased heat treatment.

Table 4 - Water - Minced Beef
Water 120 [sec] 160 [sec] 200 [sec] 240 [sec]
contents Mean Std. | Mean Std. | Mean Std. | Mean Std.
200°C 543% 0217 527% 0440 515% 0212 51.5% 0425
225°C 53.4% 0150 54.0% 0.136 525% 0411 525% 0240
256°€ SHEOWN—O0185—463% 026649 7% 627349 7% 0226
Table 5 - Water ¢ - Diced Turkey
‘Water 3 min 4 min 6 min 7 min 9 min
contents Mean  Std. Mean  Std. Mean Std. [ Mean Std. | Mean  Std.
250°C 66.9% 0.019 644% 0318 649% 0.152 - - - -
275°C - - 66.8% 0.052 65.1% 0200 650% 0.060 62.8% 0.099
300°C - - 66.4% 0334 63.7% 0102 67.0% 0.310 - -
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Canonical Discriminant Analyses were performed on the data from minced beef and
diced turkey separately. For the minced meat data set this results in a single Canonical
Discriminant Function (CDF), which separates the under-processed meat from the
adequately-processed. It is found that after applying the CDF to the 18 band images, the
resulting greyscale images shows a displacement of the image histograms curve based on the
frying degree. This is illustrated in Figure la where histogram curves are shown for selected
interesting frying degrees. From this observation the Frying-Treatment Score (FT S) can be
defined as the mean value of the image transformed with the derived CDF. Having defined
the FTS it can is observed from Figure la, that a low FTS score relates to a low degree of heat
treatment, whereas higher FTS scores relate to increased heat treatment. In this context it is
further interesting to find the exact cut-ofl pomt between the meat categorized as under-
processed and adequately-processed. This cut-off point is found to be a FTS of 0.95 for
minced meat.

Because the diced turkey meat is divided into three classes, the CDA results in two
discriminant functions, Examining the functions shows that the first CDF has the same
property as for the minced beefl;, namely a displacement, based the on frving degree, of the
image histograms after applying it. This enables a similar definition of the Frying-Treatment
Score (FTS) as for minced meat, again it is observed that higher heat treatment leads to a
higher FTS value. Following this observation the cut-off points are determined and found to
be -0.118 for dividing the under-processed from adeguately-processed meat and 1.05 for
dividing adequately-processed from over-processed meat.
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Figure 1 - Histogram curves for ransformed images, a) minced beef, b) diced turkey
3.2 Modelling Frying-Treatment

The prior section shows how 1t 1s possible to measure the fryving degree of minced meat
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and diced turkey meat using multi-spectral images. Using the data derived from all images
acquired it is possible to create a model of the frying process using least square regression. To
select an appropriate model, several models (polynomials of different degrees) have been
validated using 3-fold cross validation. The cross validation is performed by trying to
determine the frying time in seconds based on the temperature and FTS value, the root mean
square error is recorded along with the R* given in Table 6.

Table 6 - Cross Validation Results

Polynomial Minced Beef Diced Turkey
degree RMSE7.s RMSEra, R’ | RMSErs RMSEra R
1 44.78 44.71 0.00| 7075 70.09 0.55
2 39.58 32.97 0.43 47.75 4192 0.83
3 30.97 26.85 0.62 44.62 34.22 (.88
4 120.34 24.10 0.67 48,34 3207 .89
5 122,51 23.57 0.68 | 18645 25.16 0.92

From the results of the cross validation it can be observed that the optimal maodel for both
minced beef and diced turkey meat 15 cubic. Using these models contours are created for the
frying time based on FTS and temperature; the contour lines are shown in Figure 2a and
Figure 2b.

a) Estmated Fryang tme [sec] by Estimated Frying Time [56c]
T T - p—

Temparature ']

Figure 2 - Frying time contour lines, ay minced beef, b) diced turkey
Using the optimal polynomial degree found in the cross validation, models of the frying-

treatment score based on {rving -time and —temperature are created. The models created
account for 63% and 98% percent of the variation respectively. The model derived for minced
beel implies the lower boundary of the process window [or adequately-processed minced beel
is a temperature around 205°C, and a frying time higher than 130[sec] at any higher

lemperature.
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b) Estimated Frying Treatmert Scors
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Figure 3 - Frying-treatment score contour lines, a) minced beef, b) diced turkey
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meat that is widest time-wise around 280°C where it is possible to get adequately cooked
meat at a large variety of times. Furthermore it does not suggest a minimum temperature
within the range plotted, but rather narrows down the possible frying times at both low and
high frying temperatures. It is obvious that at temperatures outside the tested range, the

samples would be either inadequately fried on the surface or burnt on the surface.

3.3 Assessing agglutination

For each image the mean granule size and maximum granule size was recorded, all values
are summarized in Table 7. The mean granule size and maximum granule size is shown as the
average over the three images analysed for each combination of times and temperature.

Table 7 - Agglutination measurements physical and spatial

Thaw frying Tempoerature Strainer ;r:fulrs;a;c S;ﬁzn g?a‘i;gﬁl?sa;(z-e S;fanr?ﬂa:
time time [s] [°C] Loss [%] [om’] size form’] sizo
30m 160 200 1.04 0.055 0.006 0.562 0.115
240 200 0 0.048 0.005 0.49 0.057
160 225 0.21 0.056 0.005 0.638 0.129
240 225 0.94 0.064 0.002 0.690 0.088
1h 30m 160 200 1.88 0.054 0.005 0.808 0.340
240 200 5.09 0.060 0.004 0.948 0.402
160 225 2.40 0.056 0.005 0.849 0.356
240 225 2.22 0.063 0.007 0.714 0.036
Zh 30m 160 200 6.59 0.064 0.009 1.066 0.230
240 200 6.65 0.072 0.006 1.834 0.842
160 225 6.01 0.0686 0.008 0.902 0.184
240 225 6.63 0.068 0.007 1.096 0.339

10
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The strainer losses are very small (<1%) for the first sample set and increases to 6-7%
after 2% hours thawing. This is not a large proportion, but it is enough to consider the
products in this sample set less satisfactory in quality. As expected the spatial measurements
for mean granule size and maximum granule increase as the strainer loss increase. The
deviations of the spatial measurements are in an acceptable scale, supporting these measures
as a mean to assess agglutination. To further stress this, a model is created to predict strainer
loss from the two spatial properties, this will show how much of the strainer loss variance can
be accounted for by using these measurements. The results of a 3-fold cross validation to

select the appropriate regression model are shown in Table 8.

Table 8 - Cross Validation Results
Polynomial | Spatial Properties

degree | RMSE;,, RMSEn., R
1 2.04 1.80 048
2 1.83 1.67 0.56
3 106.47 1.50 0.58
4 687.11 1.09 0.72

The cross validation shows that a quadratic polynomial is the optimal model for
modelling the strainer loss based on the spatial properties. 56% of the variance is accounted
for by the spatial properties this is an acceptable results considering the deviations of the

spatial measures. This also shows in contour lines which captures the expected tendencies.

Ectimatad Straingr Logs [%]

03 11 13 15 17 19 2
Max Granule San

Figure 4 - Estimated strainer loss
The strainer loss model based on the spatial properties, show the expected tendency that

higher mean and maximum size found results in higher strainer loss. Also it shows that the

maximum size seams to have a somewhat higher influence than the mean size.

11
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4. Conclusion

The results obtained leads to the conclusion that multi-spectral vision technology can be
used as a tool to assess quality parameters for a meat frying process, such as frying treatment
assessment and assessment of agglutination for minced beef. Two widely different meat

products, minced beef and diced turkey, have been tested. Using image analysis techniques

and statistics a method for deriving a Frying-Treatment Score (FTS) is developed and may be

constitute a process “window” for optimal processing. This process window, of course,
depends on the nature of the product.

The vision technology cannot substitute the initial of experimentation with a new product
and process, and this is also not the intention. Once, however, the optimal process conditions
have been established, the vision technology can reliably test, if the product fulfils the criteria
of being optimally processed or not.

The article also presents a method for detecting even small degrees of agglutination in
fried minced meat, using a single NIR wavelength practically independent of heat treatment.
This measurement is important, since agglutination is a severe fault.

The imaging has so far been an off-line technique, requiring the taking of samples.

However, the method can reasonably easily be adapted to on-line measurements by placing
the imaging sphere above the conveyor band transporting the fried meat products from the
frying machine. The mechanical solution of this is fairly trivial and is not investigated in the

present paper.
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Appendix O DVD

This DVD contains subsets of the datasets used throughout the project, all publications
created and the Matlab source files created.

To use the DVD simply insert it into your DVD drive, if the DVD does not
automatically start open the index.htm file on the DVD.




