
Compiling from Haste to CDFG:
a front end for an asynchronous circuit

synthesis system

Jonas Braband Jensen

Johan Sebastian Rosenkilde Nielsen

Supervisors: Sune F. Nielsen, Christian W. Probst, Jens Sparsø

Kongens Lyngby 2007

IMM-BSC-2007-08

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

iii

Abstract

We have implemented a compiler from the high-level asynchronous hardware pro-
gramming language Haste into a control-data flow graph, or CDFG. The CDFG rep-
resentation is used in the literature for scheduling and resource sharing optimisations
in hardware synthesis.

There exists a multitude of CDFG dialects in the literature, none of them directly
suitable for representing Haste, which has CSP-like parallel processes and channel
communication. Therefore we have designed our own dialect, and we compare it to
three prominent dialects from the literature.

The compiler translates a non-trivial subset of Haste into this dialect using the in-
termediate language Hurry as a stepping stone. In designing Hurry, our goal was to
simplify Haste to the greatest extent possible without losing descriptive power or in-
troducing inefficiencies. The resulting reduction in complexity makes Hurry suitable
not just for this project, but any system analysing Haste code should consider using
Hurry as an intermediate representation.

We have implemented a simulator for our CDFG dialect, and therefore a simulator
for Haste. This enabled us to test the compiler with both real-world programs and
unit tests that exercise corner cases of the language.

We have looked the possibility of performing optimisations on a CDFG, and we
describe problems that arise when we impose no well-formedness restrictions on it.

iv

Resumé

Vi har implementeret en compiler, der oversætter fra det høj-niveau, asynkrone
hardware-programmeringssprog Haste til en control-data flow graph, eller CDFG.
CDFG-repræsentationen er i litteraturen ofte brugt til schedulerings- og ressourcede-
lingsoptimeringer for hardwaresyntese.

Der er en mængde af CDFG-dialekter i litteraturen, men ingen af dem er direkte
brugbare til at beskrive Haste, der har CSP-lignende parallelle processer og kanal-
kommunikation. Derfor har vi designet vores egen dialekt, og vi sammenligner denne
med tre prominente dialekter fra litteraturen.

Compileren oversætter en signifikant del af Haste til denne dialekt ved hjælp af et
mellemliggende sprog Hurry. Under designet af Hurry var målet at simplificere Haste
mest muligt uden at miste udtrykskraft eller introducere ineffektive konstruktioner.
Den endelige reduktion i kompleksitet betyder, at Hurry ikke blot er passende for
dette projekt, men at ethvert projekt, der analyserer Haste kode, bør overveje at
bruge Hurry som et mellemliggende sprog.

Vi har implementeret en simulator for vores CDFG-dialekt og dermed en simulator
for Haste. Dette har gjort os i stand til at teste vores compiler med b̊ade virkelige
programmer og med komponent-tests, der afprøver sprogets randtilfælde.

Vi har undersøgt muligheden for at optimere p̊a CDFG’er, og vi beskriver problemer
der opst̊ar, n̊ar de ikke er underlagt noget krav om velformethed.

v

Preface

This thesis was prepared at the institute of Informatics and Mathematical Modelling
at the Technical University of Denmark in the period of January through June 2007.
It was part of the requirements for acquiring the B.Sc. degree in engineering.

We would like to thank our three supervisors Sune F. Nielsen, Christian W. Probst,
and Jens Sparsø for their guidance and advice during the project. We would also like
to thank the people of the Language Based Technology and System-on-Chip groups
for their advice and for generously making room, computers, and coffee available.

Kongens Lyngby, June 2007

Jonas Braband Jensen
Johan Sebastian Rosenkilde Nielsen

vi CONTENTS

Contents

1 Introduction 1
1.1 Organisation of this report . 3
1.2 Related work . 3

2 Introduction to Haste 5
2.1 Factorial in Haste . 6
2.2 Internal Representation . 7

3 Compiler design 8

4 The intermediate language Hurry 13
4.1 Factorial in Hurry . 14
4.2 Internal representation . 16
4.3 Translation from Haste to Hurry . 17
4.4 Limitations in Hurry and the translation 18

5 Control-data flow graphs 20
5.1 CDFG nodes . 21
5.2 Factorial in CDFG . 27
5.3 Observable behaviour . 29
5.4 Internal representation . 32

6 Translation from Hurry to CDFG 33
6.1 Base language . 34
6.2 I/O statements . 41
6.3 Subroutines . 42

7 Design choices 45
7.1 Forking of values . 45
7.2 Constants . 46
7.3 Complexity of nodes . 46
7.4 Representing channel communication 47
7.5 Representing procedures . 48
7.6 Representing parallel read/write . 50

8 Transformations on the CDFG 52
8.1 Well-formedness . 52
8.2 Implemented optimisations . 56

9 Tests 60
9.1 Larger programs . 62
9.2 CDFG simulator . 62

CONTENTS vii

10 Future work 64

11 Conclusion 66

A Malformed CDFGs 67

B Further details on MapStructure 75
B.1 Explaining the VoidForks specification 75
B.2 Explaining the SimplifySlice specification 77
B.3 Calling MapStructure . 78

C Guide to the source code 80
C.1 Running the compiler . 80
C.2 Exploring the source files . 82

D Limitations in the compiler 86
D.1 Limitations in the translation from Haste to Hurry 86
D.2 Limitations in the translation from Hurry to CDFG 87

E Details on Hurry 88

References 89

1

1 Introduction

The purpose of this project is to compile source code written in the high-level hard-
ware programming language Haste into a control-data flow graph, or CDFG. This can
be used as the first step in a hardware synthesis system that produces an integrated
circuit from Haste source code.

Unlike traditional software compilers, much potential optimisation for a hardware
compiler lies in making the code more parallel. One approach to this is to transform
the code into some CDFG dialect because dependencies between operations become
very clear in this form. The CDFG can then be scheduled as described in Sune F.
Nielsen’s research [Nielsen05] and [Nielsen07] and synthesised into a hardware circuit.
The main contribution of this project is to allow generation of large CDFGs in order
to benchmark that scheduling. Until now, the scheduling algorithms have only been
benchmarked with CDFGs that were small enough to construct by hand, but our
compiler will allow large and complex CDFGs to be generated from readable and
maintainable Haste source code.

x

BR
0 1

b

0 1
ME

+

x’

1

Figure 1.1: Simple example of a CDFG.

2 Introduction

A fragment of a CDFG is shown in figure 1.1 on the preceding page. That example
corresponds to the code:

if b then

x := x + 1

fi

Execution starts by placing the initial values of x and b on the top edges. The values
will flow in the direction of the arrows until they reach one of the nodes. Unlike
a traditional data flow graph, a CDFG also models control flow. The branch (BR)
node will move the data from the topmost input to either the left or right output,
depending on the value of the control input on the left. The merge (ME) node will
move data from either the left or right input to the bottom output, depending on the
value of its control input. Eventually there will be data on the bottom edge, which
will represent the new value of x.

Haste is special among hardware programming languages in that it compiles to asyn-
chronous circuits. While most microprocessors and other complex integrated circuits
in widespread use are synchronised globally by a clock signal that ticks millions or
billions of times per second, an asynchronous circuit attempts to start operations as
soon as possible rather than waiting for the clock signal. In exchange for the clock,
it uses two-way handshakes between components (such as arithmetic operators) so
that components can let each other know when they are ready to exchange data.

Although asynchronous circuits have been around since the fifties, they quickly fell
out of practical use after synchronous circuits surpassed them in terms of speed and
chip area [Sparsø01]. However, as clock frequencies are increasing increasing, chip
designers are experiencing difficulties distributing the clock over the entire chip area
without destroying its shape and level [Sparsø01]. This is spurring a renewed interest
in asynchronous chip design, creating a demand for better synthesis tools.

The Haste programming language by Handshake Solutions is the current state of
the art in high-level programming of asynchronous circuits. Their Haste compiler is
syntax-directed, which is another way of saying that it does not optimise the code.
Rather than viewing this as a shortcoming, they consider it a feature, as the pro-
grammer can predict almost exactly how his code will be compiled and does not have
to fear that the compiler is working against his own optimisations. This can be im-
portant when writing the performance-critical inner loops, but the programmer may
not have time to optimise the rest of the program so meticulously. Even if he could
do that, the code would become unreadable and unmaintainable. These are the same
reasons why modern software compilers are optimising.

More information about asynchronous circuits can be found in [Sparsø01] and they
will not be discussed further in this report.

The aim of this project is to develop a working compiler from a non-trivial subset of
Haste to a CDFG. As CDFG is a class of computation representations, it is necessary

1.1 Organisation of this report 3

to define a sensible dialect that is similar to what is generally found in the literature,
along with any necessary extensions for special Haste constructs. The dialect should
be kept small and the semantics simple. The aim of the CDFG is to reveal possible
parallelisms in the computation; the dialect of CDFG and the compilation of the
Haste constructs should reflect this. The resulting CDFG is to be used for scheduling
followed by some compilation to hardware, so it is also important to not introduce
inefficiencies with regard to area, speed, and energy consumption, which cannot be
easily removed. Finally, we wish to look at the prospects of optimising the CDFG
before scheduling.

1.1 Organisation of this report

Section 2 introduces the most important features of Haste. This is followed by section
3, which gives an overview of what we have implemented and what it can be used
for. Sections 4 and 5 describe two languages that we have designed for this project:
Hurry is our simplified internal representation of Haste, and CDFG is our output
language. Section 6 details how we translate from Hurry to CDFG, followed by a
discussion on the choices we made as we designed CDFG in section 7. The design
section follows the translation because it is important to understand how our design
is used when comparing with alternatives.

Section 8 discusses what can be done to transform a CDFG into one with identical
behaviour but better performance. It turns out that even the most intuitively correct
transformations can only be done under certain restrictions. The rest of the section
describes a number of optimisations that we have implemented, that should work un-
der those restrictions. Section 9 describes how we have tested our code and describes
a simulator for CDFG that we have written for testing purposes. We end the report
with a discussion of possibilities for future work building on this project in section
10 and a conclusion in section 11.

Appendix A shows CDFGs that each violate one of the well-formedness rules intro-
duced in section 8.1. Appendix B thoroughly describes a sophisticated transformation
function that we have implemented and used for several optimisations as described
in section 8.2.3. Appendix C is a guide to compiling and running the programs we
have produced in this project. Appendix D summarises all the Haste language fea-
tures that we do not support. Appendix E contains details on Hurry that were not
necessary for understanding the rest of this report.

1.2 Related work

The control-data flow graph, or CDFG, is a model of computation that has been
used for a variety purposes since the seventies. It can model hardware, software or
mathematics on both high and low levels of abstraction, and it can be extended with

4 Introduction

concepts such as recursive function calls or infinite queues. A summary of various
CDFG models can be found in [Dennis84].

The idea of scheduling a hardware description for higher performance using a CDFG
has been explored many times for synchronous circuits [DeMicheli94]. [Stok91] briefly
outlines how to extract a CDFG from a behavioural language, then develops algo-
rithms for assigning and scheduling in order to share the hardware for arithmetic
operators. Starting from a subset of VHDL, [Brage93] describes a complete imple-
mentation of a high-level synthesis system, which uses CDFGs as an intermediate
language but does not exploit the scheduling possibilities offered by the CDFG.

In his Ph.D. thesis [Nielsen05] and a subsequent paper [Nielsen07], Sune F. Nielsen
has developed a scheduler for asynchronous circuits based on heuristic techniques
known from Operations Research. This tool inputs an acyclic CDFG and produces
output in the Balsa [Bardsley98] hardware description language. The Balsa code
can then be synthesised with the available syntax-directed tools, thereby producing a
hardware circuit. The main purpose of our project is to generate such a CDFG from
a program written in the Haste language [Peeters05], enabling direct comparison of
the syntax-directed translation of the Haste source with the scheduled circuit.

When Balsa was developed, the most widespread high-level asynchronous hardware
description language was Tangram, developed by Philips Research. Balsa attempted
to be an open source and improved version of Tangram, extending it in some areas
and simplifying it in others. The Tangram language has since gained many of the
features that were introduced in Balsa, and its name has been changed to Haste.
Haste is currently the most popular language for asynchronous hardware description,
and future versions of the tool described in [Nielsen07] will output to Haste. Using
the tool produced in this project, it will also be able to input from Haste.

5

2 Introduction to Haste

This section introduces the parts of Haste that are required for understanding the
rest of this report, and how we represent Haste in our compiler. Further details about
the language can be found in [Peeters05]. If you already know Haste, you may skip
to section 2.2.

Haste has very low-level constructs for writing optimal code when performing syntax-
directed compilation. Still, its constructs are well-behaved, which makes it suitable
for optimisations performed by an automated tool.

It is a structured imperative language that can be programmed much like C or Pascal.
Because it targets hardware, it is fundamentally different from software languages;
for example, function calls cannot be recursive because there is no stack. There are
also benefits, particularly in describing parallel processes and communication between
them.

Two statements S1 and S2 can be composed as S1;S2, which will wait for S1 to finish
before executing S2. Alternatively, one may write S1||S2 to execute both statements
in parallel. Taking its inspiration from CSP, the principal way of communicating
between processes is over channels via the send statement (channel ! expression)
and receive statement (channel ? variable). The statement (c!x || c?y) is thus
equivalent to (y := x)

The send and receive statements are also used for synchronisation because they will
wait until there is a process ready to communicate at the other end of the channel. For
applications where the only purpose of the channel communication is to synchronise,
the special value ~ is used to denote “no data”. When there are several pending send
statements on a channel, it is arbitrary which of them communicates with a pending
receive and likewise if there are several pending receive statements.

In most programming languages, integer types are specified by their bit width. Haste
breaks with this tradition by defining them by their range instead. An 8-bit unsigned
integer thus has the type [0..255], but it is possible to restrict the types to unaligned
ranges such as [100..103]. Although the four values in that range could be represented
with only two bits, Haste still allocates seven bits for that type. The advantage of
having range types is that the code can be checked for integer overflows at compile-
time in many cases.

The concept of tuples is also important. They are known from functional program-
ming languages and are comparable to a struct from C. For example, <<2,3>> is a
tuple expression. It has the type <<[2..2], [3..3]>> and is represented by the
little-endian concatenation of the bits representing 2 and 3; i.e. 1011. Tuple ele-
ments can themselves be tuples, and variables can have tuple types. Channels or
variable references can also be tuples, as in <<a,b>> ! <<2,3>>, which is equivalent
to a!2 || b!3 as we will see later.

6 Introduction to Haste

Because the compiler from Handshake Solutions is syntax-directed, a statement such
as

x := x+1 ; y := y+1

will generate quite inefficient code. It will implement two adders on the physical
chip even though these are never used at the same time. Changing the sequential
composition to parallel composition would increase speed.

Alternatively, we could optimise for a smaller area by only implementing the incre-
mentation once and then calling it in sequence. Haste lets us do this by declaring a
procedure as in:

begin

inc :proc(v :var int ff).

v := v+1

|

inc(x) ; inc(y)

end

This saves the cost of implementing incrementation twice, but it adds the cost of a
procedure call. A procedure in Haste is compiled only once and can then be called
from many places, but only from one place at a time. Procedure arguments can be
both variables, channels, or even references to other procedures. Haste also has the
concept of a function, which is like a procedure with a single return value and no side
effects.

A Haste program is a collection of files, each exporting exactly one procedure or
function. A program can have exactly one main procedure or function.

2.1 Factorial in Haste

Figure 2.1 on the next page shows a typical Haste program implementing a loop
calculating the factorial function.

It starts by defining int to be a shorthand for the 32-bit unsigned integer type. Line
3 declares the main procedure named fact. It takes two channel parameters, where
the first is restricted to receiving, and the second is restricted to sending. Note that
the parameters are not values, but instead they are channels that can be used to
exchange values with the caller.

The forever do loop that encapsulates the rest of the procedure will never terminate.
Instead it will wait to receive a number on the input channel in line 7, calculate the
factorial function in the loops in lines 9 through 12, send the result to the output
channel in line 13 and then start over.

2.2 Internal Representation 7

1 int = type [0..2^32-1] &

2

3 fact : main proc (in?chan int & out!chan int).

4 begin x,y :var int ff

5 |

6 forever do

7 in ? x

8 ; y := 1

9 ; do x > 1 then

10 y := y * x

11 ; x := x - 1

12 od

13 ; out ! y

14 od

15 end

Figure 2.1: The factorial function in Haste

2.2 Internal Representation

As described in [Appel98], the first step in a compiler is to build an in-memory syntax
tree from the source file. Our compiler follows the standard practice of using lexer
and parser generators for this. After being parsed to a syntax tree, the source file is
no longer used; all further work is done on internal representations.

A snippet of Haste source code with the corresponding syntax tree is shown in fig-
ure 2.2 on the following page. The style of the lines of the tree show which syntax
group the sub-elements must belong to; e.g. the sub-elements of the binary operator
+ must be expressions.

We can parse the entire Haste language except for the compiler directives described
in [Peeters05, section 3.6], which are only used for optimisation and debugging. Pre-
processor support, as described in [Peeters05, section 3.5], can be enabled by filtering
the input file with the C preprocessor before compiling.

All Haste syntax can thus be converted into a syntax tree. This does not mean that
our compiler supports the entire Haste language, because the stages after parsing
only supports a subset of Haste. An overview of the limitations is given in section 3
and summarised in appendix D.

8 Compiler design

forever do

in ? x;

x := x + 1;

out ! x

od

=⇒

Figure 2.2: An example of a syntax tree used to represent Haste internally.

3 Compiler design

This section explains our overall approach to compiling a Haste program into a CDFG.
We also outline how this CDFG could be translated back into hopefully more efficient
Haste code.

First of all, we have limited ourselves to supporting a subset of Haste. This is mostly
because we want to stay within the time frame of the project and because some
constructs are not very naturally expressed in CDFG form. Specifically, input/output
code in a CDFG does not enjoy the same increase in parallelism that data processing
does, as we discuss in section 5.3. The major language features missing in our compiler
are arrays, non-handshaking I/O (wires), and simultaneous read/write of variables.
A complete list can be found in appendix D.

Since we are implementing a subset of Haste that cannot do I/O directly to wires,
it cannot usefully implement the main procedure. Instead, we envision that users
will write the main procedure in syntax-directed Haste and from there call into one
or more procedures of optimised Haste that has been generated with our compiler’s
CDFG output as an intermediate step. The syntax-directed program is then an
external actor from our programs point of view, that interface with the optimised
program by calling a procedure and waiting for it to return, or by calling a procedure
and communicating on the channels passed to it. This is illustrated in figure 3.1 on
the next page.

Figure 3.2 on the facing page shows how we envision that the optimised code from fig-
ure 3.1 will be compiled from regular Haste code. Each step in the figure is explained
here:

1. Because the Haste language contains a great amount of syntactic sugar and

9

Figure 3.1: The encapsulation of our optimised code inside the main program. The
optimised code does not interact with the surrounding environment.

Figure 3.2: Overview of the steps in compilation from Haste to optimised Haste.

10 Compiler design

redundant constructions, our compiler translates the Haste source code into an
intermediate language that we have dubbed Hurry. This language is similar to
Haste, but it also has some features in common with CDFG. The next section
describes Hurry in greater detail.

2. The Hurry code is translated into a CDFG in a syntax-directed manner. This
step does not attempt to generate very efficient code when that goal conflicts
with the simplicity of its implementation.

3. The CDFG is optimised by a series of transformations that each turn a CDFG
into a more efficient one. This includes removal of nodes that have no influence
on the CDFG semantics and substitution of simple nodes for complex ones.
This step repairs most inefficiencies introduced by the translation to CDFG,
and it also catches inefficiencies that were already present in the original Haste
source.

4. The CDFG can now be given to the tool described in [Nielsen05] and [Nielsen07],
whose purpose is to determine which operations should be executed on shared
hardware in order to optimise for a desired trade-off between speed and circuit
area. It analyses the information about data dependencies and parallelism
inherent in the CDFG, then performs the scheduling based on heuristic guesses.

5. After scheduling, the code needs to be turned back into a form that can be
compiled to hardware. The tool from [Nielsen07] currently outputs to Balsa
[Bardsley98], but future versions will output to Haste or Hurry. Using Haste
again as output language may seem strange, but is possible because of Haste’s
low-level constructs, suitable for syntax-directed compilation. It would also be
possible to transform the CDFG directly into a circuit of handshake compo-
nents.

Figure 3.3 on the next page shows what we have actually implemented. In addition
to the path from Haste source code to CDFG source code we have added several
other output formats to aid in debugging and visualising the code:

• We have written a simulator that inputs a CDFG program and a list of input
data. When the simulation has either terminated or deadlocked, it returns
the program’s output. By comparing this output to the Handshake Solutions
simulator we can test the correctness of our translation to CDFG.

• A CDFG can be dumped to Graphviz format, which is an annotated description
of a directed graph that can be rendered as a PDF document. CDFG images
in this report, though in most cases rearranged by hand for demoting details
irrelevant to the respective discussion, have been generated in this manner. Our
source archive also contains a PDF for each of our unit tests.

• The CDFG program can be deparsed to or parsed from a simple text format.
To aid users of this compiler in parsing such text files, we have also implemented

11

Haste source

In-memory Haste

In-memory Hurry

In-memory CDFG Hurry source

CDFG source Graphviz source
Simulation

output

CDFG
C data

structure
PDF drawing

Figure 3.3: Overview of the data forms used in our compiler. The arrows indicate
which translations we have implemented.

12 Compiler design

a parser in the C programming language. By using or imitating one of these
parsers, our CDFG source format can easily be parsed from other programming
languages.

• Haste code can be deparsed from our in-memory representation back to a source
file. We use this to test the correctness of our parser.

• Hurry can be turned back into Haste. We use this to test the correctness of the
translation to Hurry.

• Hurry can be deparsed to a text file, which we have used in debugging the
translation to Hurry. If a CDFG scheduler used Hurry as its output language,
we would also need to implement a Hurry parser.

We have also written a unit test framework that ties the above-mentioned tools
together with a collection of Haste files. These tools are discussed further in section
9.

13

4 The intermediate language Hurry

The Haste language offers the programmer a great deal of syntactic sugar and compile-
time type checking. Although these features make Haste code more readable and
maintainable, it complicates the compiler to have to support many ways of writing
what is essentially the same code. For example, the following expressions all give
the result <<8,0,8>> if a = 5 and is of type [0..7] and s = 8 and is of some range
type:

• s * (a cast << [0..1], [0..1], [0..1] >>)

• s * bitvec(a)

• << s, s, s >> * (a cast << [0..1], [0..1], [0..1] >>)

• << s, s, s >> * bitvec(a)

• << s*bitvec(a).0, s*bitvec(a).1, s*bitvec(a).2 >>

Rather than restricting our compiler to a subset of Haste without these redundan-
cies, we chose to support most of the language but translate it to an intermediate
representation that we have dubbed Hurry. In doing this translation, we simplify the
language to the greatest extent possible without losing descriptive power or introduc-
ing inefficiencies. The examples above would all be translated into the same Hurry
expression:
s*(a slice 1) :: s*(a slice 1@1) :: s*(a slice 1@2)

The slice and :: operators are explained later in this section.

It is standard practice in compilers to use an intermediate language, and they often
use several. The popular GCC compiler currently uses three intermediate languages
[Stallman07, chapter 10], of which the first one resembles Hurry. Hurry is more high-
level than the intermediate languages suggested in both [Dragon] and [Appel98], but
this reflects the fact that our target language, CDFG, is more high level than the
machine languages conventionally targeted by compilers.

The most significant difference between Haste and Hurry is the type system. In Haste,
we have integer ranges, booleans, and arbitrarily nested tuples of these. In Hurry,
the type of a value is simply the number of bits used to represent it. In this way, the
type system of Hurry is closer to the actual wiring of the final circuit, while that of
Haste is similar to most software programming languages. An important consequence
of this choice is that most Hurry integer operators, such as multiplication, come in
both signed and unsigned flavours. We have thus shifted the consideration of types
from values to operations.

Especially when unusual range types are declared, this results in some loss of infor-
mation. If for example x were of type [0..5], the expression x+1 would have the type
[1..6]. If we only looked at the bit-widths, we would see that x was three bits wide,

14 The intermediate language Hurry

and with one added we would need four bits, although three bits were actually still
sufficient. We solve this problem in the translation to Hurry by slicing off the excess
bits whenever we can. The example would be translated into x+1 slice 3 meaning
that the adder in x+1 would output four bits, and we then discard the highest.

The type simplification means that the types of parameters in procedures and func-
tions will change, altering the signature of the subroutines. As internal calls will be
changed accordingly, this is only a problem for the export procedure that should be
visible to the outside. Therefore the translation to Hurry creates a Haste wrapper
procedure with the original signature, which simply calls the new procedure with ap-
propriate type casting. If the code should be translated back into Haste, this wrapper
should then be used as the export procedure.

With these types, the fit and cast operators of Haste are meaningless, but we must
preserve their behaviour in Hurry. Consider the following Haste expression, where x

is of type [0..3]:
x cast <<[0..1], [0..1]>> fit <<[0..3], [0..3]>>

The result is that the bits in x are interleaved with bits with value 0. Hurry uses the
unary operators slice and pad to achieve the same effect, where pad will expand a
number to a wider bit-width. We end up with the following Hurry code:

(x slice 1 upad 2) :: (x slice 1@1 upad 2)

The upad 2 means to pad without sign extension so that the result is two bits wide;
i.e. pad one zero. The x slice 1@1 means one bit wide from offset one in x; i.e. the
second bit in x.The binary operator :: concatenates the bits of its operands.

A number of implicit behaviours in Haste have become explicit in Hurry. For example,
Haste has implicit fits most places where two types meet. So if x is of type [-8..7],
the assignment x := -1 actually means x := (-1) fit [-8..7]. As -1 is one bit
wide, the assignment would then in Hurry be x := (-1) spad 4 to indicate that the
value should be sign extended to be four bits wide.

Identifiers used for variables, functions, etc. in Hurry are integers rather than strings.
The reason is that after having been translated to a CDFG and back to Hurry, the
program will have become so unrecognisable that the old identifiers have lost their
meaning and may as well be replaced with numbers.

4.1 Factorial in Hurry

To familiarise the reader with Hurry, figure 4.1 on the facing page shows the Hurry
code that results from translating the Haste program implementing the factorial
function shown in figure 2.1 on page 7.

The name of the procedure has changed to __HurryMain, which is the name of the
procedure the Haste wrapper procedure will call for preserving the original Haste
signature.

4.1 Factorial in Hurry 15

1 __HurryMain = proc (in ?chan t32 & out !chan t32).

2 begin y :var t32 ff narb!

3 |

4 begin x :var t32 ff narb!

5 |

6 forever do

7 (

8 (

9 (

10 in cast <<u32>> ? x cast <<u32>> ;

11 y := (1 upad t32)

12) ;

13 do (1 <U< x) then

14 (

15 y := (((y *U* x) slice t64) slice t32) ;

16 x := (((x -U- 1) slice t33) slice t32)

17)

18 od

19) ;

20 out ! y

21)

22 od

23 end

24 end

Figure 4.1: Factorial function from figure 2.1 on page 7 after translation to the Hurry
intermediate language. The variables and channels are just numbers in Hurry, but
have been renamed for easy comparison with the Haste code.

16 The intermediate language Hurry

The variable declarations look like verbose versions of those in Haste. This is caused
by the syntax being simpler and not allowing the abbreviated form of declaring
multiple variables of the same type.

The types in Hurry are just bit-widths, so they are simply printed as t followed by
the width.

At the receive on lines 10 we notice the casts on both sides. We need to support
the elaborate casts allowed in receive statements in Haste, and as receives are not
expressions, we cannot use pad and slice on the input value from the channel di-
rectly. We parameterise the receive with specifications on as what type the input
from the channel should be interpreted and as what type it should be placed in the
variables. As described in appendix E, it is sufficient that the types are both tuples
of bit-widths, each bit-width specified as either signed or unsigned. In this case, the
same type <<u32>>, meaning the tuple consisting of one unsigned 32 bit, is on both
sides, which results in the input from the channel being put unaltered into the vari-
ables. Thus, this is not actually cast operators as the ones in Haste, but parameters
of the receive statement.

The condition in the do loop are unchanged, except that it is explicit that the values
of x and 1 should be compared unsigned, denoted by the U. Likewise, it is explicit
that the multiplication and the subtraction in the body is unsigned. The slicings to
type t64 are unnecessary here, but are inserted automatically because the type of
the multiplication is [0..2^64-1]. Had the ranges of x or y not been powers of two
in Haste, the slice might have removed an excess bit. The slice to type t32 is the
fitting of the expression to the target variable’s type, which is implicit in assignments
in Haste.

This introduction should be sufficient to understand the rest of the report. The
interested reader can find more details on the specification in appendix E.

4.2 Internal representation

We represent Hurry as a syntax tree that resembles the one we used for Haste, but
is much simpler. Figure 4.2 on the facing page shows the Hurry syntax tree resulting
from translating the Haste snippet in figure 2.2 on page 8.

The send and receive statements’ channels are no longer represented by a sub-tree,
as they are simply lists of channel identifiers, as opposed to the complex channel
references that can be specified in Haste. The same simplification has been performed
on the variables in the receive and the assign statements.

4.3 Translation from Haste to Hurry 17

Figure 4.2: An example of a syntax tree used to represent Hurry internally.

4.3 Translation from Haste to Hurry

In this section we describe the approach and algorithm used to translate the Haste
syntax tree to Hurry.

The overall approach is to divide the translation into the syntactical elements of Haste
and translate each part by translating its constituents and collecting the results.
For example, we have a function fromStmt that translates a single statement and
another function fromExpr that translates a single expression. fromExpr given an
input expression like e1 + e2 will first call itself on the expressions e1 and e2 and then
merge their returned Hurry expressions in the correct translation of the addition.
Because Haste and Hurry are structurally quite close, most of the from-functions
simply return the Hurry counterpart of the syntax element, sometimes with some
necessary additional information. The entire translation is initiated with fromProgram

that will then descend into the syntax tree.

How a syntax sub-tree should be translated is not only defined by its constituents
but also by the context in which it is present; e.g. the type of variable x depends on
the declaration of that variable further up in the tree. Therefore, the from-functions
need this context information. We supply this by giving the functions an environment
that contains all the information needed to carry out the translation.

The well-structured way in which Haste is organised means that the only information
needed in the environment is the identifiers that are in scope and some of their
declared properties. For example, to translate function calls we need to know the
parameters and return type of the function in question, but not the entire body. The
information we need is neither Haste nor Hurry, so we use a custom description that
is the minimum necessary to perform the translation. The environment is simplified

18 The intermediate language Hurry

by Haste having only one name space; thus an identifier can point to at most one
declaration or definition at a time, rendering the environment a simple mapping from
identifiers in scope to their respective properties.

The types contained in the environment are also custom. We have dubbed them
ITypes (internal types), and they are like Haste types but with aliases expanded.
There are several reasons for using ITypes instead of Hurry types during the trans-
lation. As described at the beginning of section 4, with exact ranges in the types we
can determine the minimum bit-width that each expression can be sliced down to.
Another use is for getting the right result of a fit-expression, as we need to know
the entire nesting of tuples in the type; consider the example from earlier, where x is
of type [0..3]:

x cast <<[0..1], [0..1]>> fit <<[0..3], [0..3]>>

If we only used Hurry types during the translation, we would not know where in
the two-bit expression we should pad zeros when we reached the fit. Only because
we remember the entire tuple structure we can determine the correct way to slice
and pad. For this to work, we have let fromExpr return the IType of the expression
translated as well as the Hurry expression.

As the scope of local definitions and declarations ends whenever their encapsulated
bodies do, they only affect the environment needed to translate their bodies and
not outside. This tree-descending behaviour means that, e.g., the fromExpr might
have to change the environment before passing it to recursive calls for sub-expression
translation, but this change will not need to propagate to any other translations.
This holds true for all syntax elements but top-level declarations and definitions,
which means that only the functions doing these translations return an updated
environment. This makes the code cleaner and easier to follow.

The conversion to Hurry is rather clean and mostly does not introduce inefficiencies
in the code. The exception is perhaps the introduction of a number of unnecessary
slice operators, as seen in the factorial example in figure 4.1 on page 15. However,
if the Hurry code were to be translated back to Haste code with our translation
tool, a slice would be translating to a cast and a tuple selection, which should not
introduce inefficiencies in the actual hardware, as it is just wiring. If the Hurry code
were to be translated to CDFG, we have implemented an optimisation to remove
unnecessary slices in CDFGs, as described in section 8.2.3.

As mentioned in section 3, we have also implemented the translation from Hurry to
Haste. This was done very early in the project, which helped us be confident that no
information was lost in the translation to Hurry.

4.4 Limitations in Hurry and the translation

To limit the scope of the project, we do not support the entire Haste language in
Hurry. As already mentioned in section 3, we decided not to support arrays. There

4.4 Limitations in Hurry and the translation 19

are possible solutions on how to support arrays in CDFG, e.g. the one described
in [Stok91], but it would be very time-consuming to implement so we chose not to
support them in Hurry either. Also direct I/O with wires is unsupported, as they
are not naturally represented in CDFG. Apart from these, the unsupported features
are all relatively minor and supporting them would add little or no expressive power
to the language. Most of them could be implemented rather easily, but all in all it
would be time-consuming.

All the limitations are listed in appendix D.1 for the interested reader.

20 Control-data flow graphs

Figure 5.1: Example showing the steps of how (x + y)2 is computed by a CDFG.

5 Control-data flow graphs

This section introduces the CDFG representation of a program. After describing how
a CDFG performs computations, we introduce every node in our CDFG language in
isolation. Section 5.2 will follow up on this with an example that shows the nodes
connected to form a complete program. Section 5.3 contains an important discussion
on how to correctly implement the feature that separates our CDFG dialect from
most others: channel communication. The translation of Hurry into CDFG form is
not discussed until section 6.

A CDFG is an abstract description of a computation. It is a directed graph where
the edges carry data, and the nodes perform operations on the data. We call the
incoming edges of a node its inputs and the outgoing edges its outputs. We say that
an edge has a token if it currently has data on it, and when a node performs its
operation it fires. When fired, a node atomically removes a token on some or all of
its inputs and puts a token on some or all of its outputs. Each node has well-defined
semantics and can fire only when enough of its inputs have tokens on them. The
edges then explicitly specify the order in which the computations must be carried
out, as the tokens will only be present at a node, when that node may perform its
operation on the value of the token.

The CDFG is initialised by putting tokens on some global input edges and letting
the nodes fire one by one until the computation has flowed through the entire CDFG
to some global output edges. At that time, these global output edges hold the result
of the computation.

Figure 5.1 demonstrates how tokens propagate in a CDFG as the nodes fire. In the
beginning state at the left no edges hold any tokens, so none of the displayed nodes
can fire. At some point, tokens carrying the value of x and y arrive on the top edges,
allowing the three nodes to fire in turn. Referring to the variables as x and y is only

5.1 CDFG nodes 21

for convenience – the CDFG contains no mention of variable names.

A CDFG can be described as a coloured Petri net where the edges are places and
the nodes are transitions. Like in Petri nets, once a node may fire, there is no
promise as to when this will occur and which other nodes might fire beforehand.
CDFGs are therefore well-suited to describe parallel computations which have such
non-determinism.

One of the great advantages of CDFG is that when two nodes are not ordered by
edges, it means that they can in most cases fire in any order. This explicitly reveals
the parallelisms in a program.

This is the extent to which the literature can agree on the term CDFG. Which nodes
are defined and their exact semantics are either abstracted away or defined anew each
time. The rest of this section therefore contains the details of our CDFG, which is
mostly based on [Brage93] but with significant alterations and extensions. In section
7 we discuss our designs and alternatives to our choices.

We restrict the edges of our CDFG to be 1-bounded; i.e., they can only contain one
token at a time. Thus, a node cannot fire if there is a token on one of the outputs it
would put tokens on. It is argued in [Stok91] that this does not restrict the CDFG
as opposed to being k-bounded, where there can be up to k tokens on an edge.
Unbounded edges are not an option, as that would be impossible to implement in
practice.

The type of an edge is simply a bit-width, and the data carried is a binary number
of that width. How the value on an edge is interpreted depends on the node that
receives the value and not on the edge; e.g. a node that performs addition can either
interpret both inputs as signed or both as unsigned numbers.

Edges carrying 0 bits play an important role in synchronising I/O, as we will see
later. The value of such an edge always reads as zero, but it behaves like any other
edge. The existence of 0-bit edges implies that an n-bit edge does not correspond
directly to n wires in hardware; in a hardware realisation of a CDFG, edges would
have extra wires for signalling data availability and finalisation.

5.1 CDFG nodes

This section introduces all of the nodes in our CDFG language. It should be read
casually at first to get the intuition behind the different nodes. It can then be used
as a reference when reading later sections.

Unless stated otherwise, our nodes can fire only if all of their outputs are empty and
all of their inputs have a token. Also, unless otherwise stated, a node’s inputs can
have any type and the output’s type corresponds to the minimum bit-width necessary
to contain the result.

22 Control-data flow graphs

5.1.1 Basic nodes

Our CDFG language resembles at its core what is often found in the literature. These
basic nodes behave almost exactly like in [Stok91]. The biggest difference is that in
[Stok91], most nodes have multiple outputs which all receive the same value. We
have instead added a Fork node that duplicates a value if it is used more than once.
This gives simpler, cleaner node semantics and avoids a special case that [Stok91] has
to cater for with regard to branchings.

BinOp is the node we use for all binary operators. The
actual operator is a parameter of the node, and is one
of {∗, +, −, =, 6=, <, ≤, ∧, ∨, ::}. All except ∧, ∨,
and :: are parameterised by a flag indicating whether
the input values are both signed or both unsigned. The
meaning of the operators should be clear, apart from ::,
which is simply concatenation of the input edges’ bits.
The ∧ and ∨ operators accept only one-bit inputs and
have a one-bit output, while the rest can have arbitrary
inputs and corresponding output.

+

 out

 left right

UnOp is the node we use for all unary operators. Again
the actual operator is a parameter of the node, and is
one of {−,¬, pad, slice, nop}. The − operator negates its
input, and the ¬ operator performs logical not on a one-
bit input. pad pads the input to an output type with or
without sign extension according to a parameter, and ac-
cepts only input shorter than (or equal to) the specified
output type. slice removes bits from the input and has
an offset parameter. Thus slice 2 on an UnOp node with
output type 4 outputs the third through sixth bit of the
input. It accepts only input of a type that can contain
the slice to be outputted. nop forwards the input un-
altered. We introduce it because it is practical during
translation and various optimisations, and it is trivial
to remove. As opposed to the other unary UnOps, it is
drawn simply as a dot because of its relative insignifi-
cance.

upad:8

 out

 in

 out

 in

Const simply outputs a specific constant value and is
one of the few nodes with no input. The semantics of
the node is that it fires whenever it can; i.e. when no
tokens are on its output edge.

16

 out

5.1 CDFG nodes 23

Fork is used when a value is needed more than once. It
has one input and two outputs, left and right, and when
it fires it puts the value of the input on both outputs.

left right

 in

Branch is used as an entrance node in
a branching control flow corresponding
to if or case. It has two inputs, control
and data, and a list of outputs. Each
output has a list of numbers associated
with them. If the value on the control
edge matches one of these, the data edge’s
value is forwarded to the corresponding
output; otherwise it is forwarded to an
“else” output. Only the selected output
needs to be empty in order for the node to
fire.

Merge is used as the exit node in a
branching control flow, and is the coun-
terpart of Branch. It has a list of data
inputs, a control input, and one output.
As with the Branch’s outputs, the inputs
each have a list of numbers associated
with them, and the control edge selects
which of the inputs’ value is forwarded
to the output. Like the Branch, it has an
“else” for numbers not otherwise matched.
It can fire whenever the control edge and
the selected input edge has a token and
the output is empty. All the data inputs
must have the same type.

Note that when the Branch and Merge

nodes only branch between 0 and 1,
corresponding to an if-statement, they
are drawn as in figure 1.1 on page 1.

BR

0, 1 2, 3 *

 in

0, 1 2, 3 *

ME

 out

 control

24 Control-data flow graphs

Void is used to remove a value that is of no further use.
It has only one input and simply removes all tokens put
on this edge.

 in

Entry is used as the entrance node
in a looping control flow. It resembles
the Merge but always chooses between
two input edges, 0 and 1. Thus, the
control edge must always be exactly 1
bit wide. Otherwise, it acts as Merge.
It is initialised, though, with a token on
the control edge with the value 0, thus
selecting the left branch the first time.
The reason for that will become clear
later. Entry is the only node that has
tokens on the edges initially.

Exit is used as the exit node in a
looping control flow. It is a special case
of Branch with only two outputs, 0 and
1. Following the conventions in the
literature, we specify it as a special node
to easily discern branchings and looping
constructs.

5.1.2 I/O nodes

Channel communication in Haste is essentially transfer of data, which is otherwise
represented by edges in the CDFG. However, it turns out that edges are not pow-
erful enough to replace channel communication, as there could be multiple readers
and writers on the same channel in parallel. In such cases it will not generally be
determinable at compile time which pair of sender and receiver will exchange data.

We therefore introduce the two nodes Send and Recv which are inspired by the com-
munication nodes in [Brage93]. They represent any channel communication, external
as well as internal. Alternative representations of channel communication are dis-
cussed in section 7.4.

As will be motivated and described in section 5.3, we introduce an I/O path to

5.1 CDFG nodes 25

maintain the order of channel communication. Therefore Recv and Send both have
an incoming and an outgoing I/O path, and we need the Sync node synchronising
after parallel actions. For now, it is sufficient to know that they are there, and their
meaning will be apparent later.

Recv is used for retrieving a value from a specific channel.
It has a data output as well as I/O path input and output.
Whenever there is a token on the input and none on the
outputs, it may fire if there is either a Send node elsewhere
in the graph that is ready to send a value, or there is ex-
ternally someone ready to send a value on that channel.
The latter can only occur if the channel is declared as an
external channel. When it fires, the input token is removed
and a token is put on both output edges. The value on the
data output is the value retrieved from the channel.

recv(4)

data io out

 io in

Send is used for sending a value via a specific channel.
It has a data input as well as I/O path input and output.
It may fire whenever there is a token on both inputs, no
token on the output, and someone is ready to receive on
the channel, as described under Recv.

send(4)

 io out

 io in data

Sync is used for synchronisation of two I/O paths, so chan-
nel communication will be done in the right order. It has
a left and right I/O path input and one I/O path output.
When fired, it simply removes the input tokens and put a
token on its output.

 io out

 io left io right

5.1.3 Procedure call nodes

Each procedure and function in the Haste source code will be represented by its own
CDFG and the entire program is simply the list of these CDFGs, each annotated
with an id. The CDFGs all “run” simultaneously, and a procedure call is simply
a Call node that triggers the firing of a node in another CDFG. The CDFGs can
share values by passing an argument, returning a value at the end of the call, and by
channel communication.

26 Control-data flow graphs

Haste supports channel parameters for procedures, and each CDFG therefore has a
list specifying which channels used in its body are parameters. For the main CDFG
this amounts to the external channels. When calling a procedure in Haste, the caller
must specify which of his local channels should be passed, or aliased, to the called
procedure. For each call, the aliased channels are static so we simply specify this in
the Call node.

If channel communication is used in a procedure, an I/O path must be present, which
is why all of the nodes introduced here support one. This is described in section 5.3
and for now it is sufficient to know that they exist.

Call is used for calling a specified CDFG to do a
computation. The node has a parameter for which
CDFG is called, and which channels are aliased in
the call. It can input one argument value and an
I/O path, and can output a return value from the
CDFG and an I/O path. Either of the inputs may
be omitted, and the return value as well. The output
I/O path must be present if the input I/O path is,
and omitted otherwise.
As soon as all inputs have tokens on them and there
are no tokens on the output, the Call node fires the
Param node of the called CDFG with the argument
value. This can only be done if the called CDFG
is not currently called elsewhere; i.e. pipelining and
recursion are not supported.
Once the called CDFG finishes, the Call node fires,
and its input tokens are removed, and tokens are
placed on the output edges. The returned value from
the called CDFG is placed on the return edge.
The Call node on the figure to the right calls CDFG 3
with channels 8 and 9 aliased to the first and second
channel parameter of CDFG 3 respectively.

call 3 (8, 9)

return io out

 arg io in

Param is used for activating the computation in the
CDFG when it is called. There is only one Param

node in each CDFG, and it fires exactly once when-
ever the CDFG is called. It can have an I/O path
output and a parameter output, either one of which
may be omitted. If the I/O path is present, a token
is put on it when the CDFG is called. If the param-
eter output is present, an argument value must be
passed when the CDFG is called, and this value is
then put on the parameter edge.

Param for CDFG 1

 param io

5.2 Factorial in CDFG 27

Return is used for ending the computation of the
CDFG and there is exactly one Return node on each
CDFG. It can have an input for a return value and
for an I/O path, either one of which may be omitted.
It fires whenever all inputs have tokens. If the return
input is present, the value on this edge is returned
to the caller when the node fires.

Return for CDFG 1

 return io

The Param and Return of a CDFG must both have the I/O edge or both omit it.
In either case, all Call nodes calling this CDFG must correspond to its Param and
Return nodes; e.g. if the invoked CDFG’s Param takes an argument all Call nodes
must supply it.

5.1.4 Exotic nodes

For completeness, we also need to add two exotic nodes, which are more rarely used.

Undef is like a Const node, except that it outputs an un-
specified value. It is used to represent an uninitialised vari-
able. out

Stop is used to stop a value from propagating any further.
It removes any tokens on its sole input, but never puts a
token on its output. The reason for having this and not
just using Void is described in section 8.1.

stop

 out

 in

5.2 Factorial in CDFG

We here go through the factorial function from section 4.1 on page 15 translated to
CDFG. The CDFG is shown in figure 5.2 on the following page.

We notice the Param and Return node which are present in all CDFGs. The dashed
path leaving the former is the I/O path whose purpose is roughly to control the order
of channel communication; it will be thoroughly described in the next section. The
Entry/Exit pair that directly follows is the forever do loop. This can be seen from its
condition, the nodes in area A, that always calculates 1; therefore, the Exit will never

28 Control-data flow graphs

Figure 5.2: The factorial function from figure 4.1 on page 15 after translation to
CDFG. This CDFG has been slightly optimised by hand and marked with areas for
legibility.

5.3 Observable behaviour 29

output a token on the left to the Return node, which corresponds to the procedure in
Hurry never terminating.

The body of the forever loop is the nodes in area B; the first thing is to receive on
channel 2 (channel in). The value received flows into the do loop, while the I/O path
flows to the Send node that will await the value resulting from the loop.

The do loop has two Entry/Exit pairs; one for each variable used inside it. The left
corresponds to y and the right to x. The initial input to y is 1 padded to fit into the
bit-width of the variable.

The condition of the do loop is what is calculated in area C and is given to all four
loop nodes via forks. We see here an edge from the right Entry to the left and likewise
for the Exits; this is simply an abbreviated form of forking the condition’s value yet
again and inserting it into all Entrys and Exits, used to avoid cluttering.

The body of the loop is in area D. x is used twice, so it is forked. We also see two
32-bit slices from Hurry. As can be seen, the unnecessary slice to 64 bit has been
removed by our optimisations as described in 8.2.3.

The variables’ results are put back into their Entry nodes, ready for another iteration
in the loop. As soon as the condition evaluates to 0, the left output of the Exits will
be used, and the value of y will be given to the awaiting Send, which will fire as soon
as the external actor is ready. The Entry nodes will not fire after the last iteration,
so there will remain a 0 on their control inputs, ready for the next iteration. When
the Send has fired, the I/O path returns to the Entry, and the forever loop performs
another iteration.

5.3 Observable behaviour

It is important that the observable behaviour of the CDFG is exactly as the speci-
fication in the original Haste code. There are three different observable behaviours
that we maintain in our model of the CDFG: External channel communication, final
return value of the CDFG, and deadlocks. Calculating the correct values is of course
essential, and the entirety of section 6 argues that our approach has this property.
This section discusses how we uphold constraints in the order of external channel
communication and how we conserve deadlocks in the Haste code.

It is not only the values we send to the external channels that are important, but
also the order in which all channel communication occurs. An external actor may
not only count on our system to be able to cope with a certain ordering of channel
communication, but may even act according to the order in which our system is
communicating. This makes it necessary to retain the restrictions that the Haste
code imposes on the order of channel communication when translating to CDFG.

30 Control-data flow graphs

send(a) send(b)

1 2

send(a) send(b)

1 2

Figure 5.3: CDFGs of a!1 ; b!2. The left is the näıve approach where no ordering
is specified, and the right CDFG is our approach, which includes the I/O path.

Consider this example with external channels a and b:
b?~ ; a?x

After synchronising on b, the code receives a value from a and stores it in x.

Now consider the following external actor running in parallel with the above code:
(a?y || a!1) ; b!~ ; a!2

The parallel statement in parenthesis is equivalent to assigning y := 1, and it can be
safely done because no other thread is using a. The b!~ statement will synchronise
with b?~ from above, and finally they will communicate on a to exchange the value
2.

If we allowed parallel execution of the channel communication on a and b, the external
actor might deadlock. This is because a?x in our code might handshake with the a!1
in the distributed assignment, and the a?y would then wait forever. Therefore, we
need to conserve the order of the communication.

Consider the following channel communication on external channels a and b:
a!1 ; b!2

Clearly, the only possible behaviour of this code is to first try sending on a and only
when this is finished, we can try sending on b. Imagine that the snippet would be
represented as the left CDFG in figure 5.3. As Const nodes have no input and fire
whenever there are no tokens on their output, the value input on the Send will always
be available. Therefore, the two Send nodes could fire in any order, thus changing
the observable behaviour of the program. To maintain the order of firing, we use an
I/O path of edges connecting the various channel communication nodes. All Recv

and Send nodes have an input from the I/O path, and only when there is a token on
this edge they may fire. When fired, they put a token on their output I/O path, thus
continuing the path of channel communication. The edges will never carry values, so
they will always be of bit-width 0. The right of figure 5.3 shows the correct translation
of the code, with an explicit I/O path from the Send a to the Send b to preserve the
order of communication. Notice that the I/O path is always drawn dashed to easily

5.3 Observable behaviour 31

separate it from data-carrying edges.

We also need to represent parallel communication, where it is important that any
ordering is acceptable. Consider for example the four external channels a, b, c, and
d:

(a!1 ; b!2) || (c!1 ; d!2)

In this example there are six acceptable orderings of channel communications: abcd,
acbd, cabd, acdb, cadb, and cdab. The only constraint is that b come after a and d

after c. A solution is that each side of the parallel composition has its own I/O path,
so the I/O path is forked into two before the parallel. To make sure that no further
channel communication occurs before both sides are finished, the two I/O paths must
be synchronised afterwards. This is the purpose of the Sync node, which collects two
I/O paths and outputs one. It puts a token on the output only when it has received
a token on all the inputs, thus securing the constraint.

Preserving the behaviour of deadlocking is also important. When some process dead-
locks, no behaviour later in that process must be visible. Consider the following
example with external channel out:

forever do skip od; out!(1+1)

Clearly, 2 should never be output, but whether or not 2 is calculated from 1+1 is
not observable. To preserve this behaviour, we simply need to make sure that the
I/O input edge on the Send node will never receive a token, but this can only be
known from considering the loop. In this case it is easy to see that the loop will
never terminate, but this cannot be determined in the general case of the do loop in
Haste. Therefore, we need to make sure that for every loop, the I/O path is only
continued if the loop terminates. This is done by letting the I/O path loop around
like the other values in the loop – exactly how this is done is described in section
6.1.4. We could then imagine an optimisation that removed the I/O path in cases
where it was actually not needed; e.g. if the loop always terminated.

The semantics of the stop statement in Haste are the same as forever do skip od,
so as with loops we need to stop the I/O path from propagating. In CDFG we have
only flow of values, so stop must be translated to something that affects the flow of
all the variables in scope at this point. We have included the Stop node that simply
discards all tokens given to it and never outputs anything. All variables in scope at
the point when the stop command is met in Haste will have their own Stop node
in the CDFG, which makes sure the value will not flow any further. This includes
the I/O path, thus enforcing the constraint on external channel communication. The
reason for not just discarding the I/O path with a Void node will become clear in
section 8.1.

The solution of having an I/O path is not a novel idea and was used in both [Stok91,
Brage93]. In the first, however, each separate channel has its own I/O path, which
is not sufficient as demonstrated in the first example of this section. Our use of the
I/O path is similar to that of [Brage93]. Sections 7.4 and 8.1 also discuss the I/O
path and some of the implications of having it.

32 Control-data flow graphs

5.4 Internal representation

Although the CDFG can be considered a graph, it is not natural to represent the
connections between nodes as a simple relation; i.e. Edges ⊆ Vertices × Vertices as
usually done for graphs. This is because we may have multiple edges between the
same two nodes, as we saw in figure 5.1 on page 20. To solve this, and to make
the order of operands more clear for non-commutative nodes, we let Edges ⊂ N.
The nodes then contain information about which edge ids connect to which of their
inputs/outputs.

Consider the CDFG fragment from figure 5.1. During translation this will be repre-
sented by the nodes:

BinOp {binop = +, left = 1, right = 2, out = 3 , type = 9}

Fork {in = 3 , left = 4 , right = 5 , type = 9}

BinOp {binop = ∗, left = 4 , right = 5 , out = 6, type = 18}

The edge numbers in boxes are referred to twice: from their source node and from
their destination node. The remaining edge numbers are referred to once from some-
where outside of this CDFG fragment. Also notice that each node is annotated with
the type (bit width) of its output(s), which makes it easy to find the type of any
given edge.

To represent a complete program, we need a bit more information. As we shall
discuss later, a program is a list of CDFGs, each identified by a number. Each
CDFG is annotated with the list of channels that it takes as parameters.

After translation, the CDFG is represented by data structures that facilitate fast
traversal of the graph at the cost of containing more redundant information.

33

edge map =

{

x → 1

y → 2

edge map =

{

x → 3

y → 4

Figure 6.1: A CDFG under construction before and after the assignment x:= y

6 Translation from Hurry to CDFG

This section describes how we translate Hurry code into a CDFG. There is no single
correct way to perform this translation, and we have made many choices along the
way. The compiler resulting from these choices is discussed here, and we discuss
alternative solutions to some of them in section 7.

We first give an overview of our general approach, describing the data structures used
during translation. The following three subsections detail how each of the interesting
statements is translated to the CDFG nodes we saw in section 5.1.

During translation, the partially complete CDFG has an unconnected edge for each
variable in scope. These edges are tracked in a map of Variables → Edges that we
call the edge map. A statement such as x:= y will attach a Void node to the edge
currently associated with x, then fork the edge associated with y and update the edge
map so that x and y are associated with the left and right output of that Fork node.
This is illustrated in figure 6.1.

In general, every time we need the value of a variable we fork it, and one of the
resulting edges will be left unconnected so that this process can be repeated. When
a variable goes out of scope, its unconnected edge will be terminated by a Void node.

We value simplicity in the translating code over efficiency in the generated CDFG
because complex compiler code tends to have bugs. This approach results in some
statements being translated into inefficient and/or dead code – an example is the
terminating Void node for every variable described above. Later optimisation passes
will then attempt to remove dead code and optimise inefficient code so that these
translation artefacts will not be seen in the final result. As a real-life compiler would

34 Translation from Hurry to CDFG

normally include these optimisations anyway for improving what the programmer
originally wrote, it is actually a natural choice.

6.1 Base language

We will here describe the most basic of the Hurry constructs: unary and binary ex-
pressions and the statements found in all structured programming languages: assign-
ment, conditionals, loops, sequencing, etc. Translation of most of these are described
in both [Stok91] and [Brage93], although Haste introduces a few constructs that go
beyond these.

Treatment of the I/O path has some effect on these statements, but we defer that
discussion until section 6.2.

6.1.1 Expressions

Translation of an expression will yield a list of the nodes created for it, a result edge
carrying its value, and an updated edge map. Although expressions have no side
effects, they still need to update the edge map when they read variables. This is
because reading a variable introduces a Fork on that variable’s edge, and subsequent
reads need to use the new edge coming out of that fork.

When translating e.g. e1 + e2, we simply recursively translate e1 and e2 and combine
their result edges in a BinOp node with a + operator.

A literal integer expression is translated to a Const node, which has no inputs and
fires as often as possible; thus its value is always ready, even inside a loop.

6.1.2 Assignment

After conversion to Hurry, the general Haste assignment statement has been simplified
to the form (x1, . . . , xn) := expr where the left and right hand sides are equal in
bit width. It is translated by first translating expr, then splitting the resulting edge
into n edges, associating each left hand side variables with one of those edges. The
edges previously associated with the left hand side variables are then voided; i.e.
terminated with a Void node.

To split an edge into n edges, we fork it by attaching n−1 Fork nodes, then adding an
appropriate slice node to each of the resulting n leaf edges. This may seem inefficient,
but we have chosen not to optimise it further because the unneeded wires may be
removed at lower levels of the subsequent synthesis of the CDFG anyway.

Figure 6.2 on the facing page shows the result of translating (x, y):= y + z. The
y variable has a redundant Fork to Void because when we needed its value for the

6.1 Base language 35

x y z

x’ y’ z’

+

slice 8 slice 1@8

Figure 6.2: The CDFG translation of the statement (x, y):=y+z where (x, y, z) have
bit widths (8, 1, 8). This leaves the 8-bit sum in x and the carry bit in y.

36 Translation from Hurry to CDFG

addition we did not know that it was for the last time. Later optimisations removes
those two nodes.

6.1.3 Conditionals

Translation of the if statement is a good illustration of our general approach to
translating nested Hurry code to CDFG nodes. Starting with the boolean variables
x, y, and b in scope, we walk through the translation of the Hurry code:

if b then

y := y & x

fi

Figure 6.3 on the next page shows the CDFG under construction for each of the steps
below. The variable names on the ends of arrows reflect the contents of the edge map.

1. The are three variables in scope when we reach the if statement.

2. Variables that may be read but not written in the bodies (then/else) are
forked.

3. We create a pair of Branch/Merge nodes for each variable that may be read or
written in the bodies. The test (i.e. b) is connected to each of their control
edges. The edge map is updated so that all variables referred to are associated
with the 1 edges coming out of each Branch.

4. We translate the then statement; i.e. the assignment. The else statement is
translated similarly, but in this example it is empty.

5. We must now connect the output edges of the bodies to the Merge nodes, but
their inputs were already connected in step 3 and cannot be changed. We solve
this by connecting the edges with a nop node. Finally we need to update the
edge map. Variables that may have been written to will be associated with the
edges coming out of their Merge nodes, while the remaining Merge nodes will
just have their output voided.

6. After the rest of the program has been translated, an optimisation pass removes
the unneeded Merge and nop nodes. This is described in section 8.2.

The case statement is a generalisation of if and is translated similarly.

6.1.4 Loops

Simple loops are translated as in both [Stok91] and [Brage93]. A template for trans-
lation of a loop over three variables is shown in figure 6.4 on page 38. Recall that the
control edges entering Entry nodes are initialised to hold a token with value 0 when

6.1 Base language 37

Figure 6.3: The steps for translating if b then y := y & x fi to CDFG. The
horizontal arrows between BR and ME nodes mean that the control signal is forked
and passed to the next node.

38 Translation from Hurry to CDFG

Figure 6.4: Translation of a loop when three variables x, y, and z are in scope. This
figure is a redrawing of [Brage93, Figure 1-2].

computation begins. Without this, the loop could never start iterating because the
test is only executed after the initial tokens have passed through the Entry nodes. In
the final iteration, the test will give 0, and this will cause the values being computed
to escape the loop through the 0-output of the Exit nodes rather than passing through
the body again. The control token will also reach the Entry nodes, so they will be
left with a 0-token on their control inputs just as they began.

In translation, we first create a pair of Entry/Exit nodes for each variable in scope.
This introduces more nodes than needed, but dead code elimination removes the
unneeded pairs later. A loop of the form do test then body od is translated to the
form shown in figure 6.4. Being an expression, test can have no side effects, so the
variables pass through it as shown by the dotted lines.

As with conditionals, the edge map is updated so that variables which may be modi-
fied in the loop are associated with the edges coming out of their Exit nodes, and the
rest are forked before entering the loop.

We are not finished, though. Haste has a generalised loop statement of the form

do t1 then b1

or t2 then b2

...

od

6.1 Base language 39

do x > 0 then

x := x - 1

or x < 0 then

x := x + 1

od

=⇒

Figure 6.5: Translation of a loop with two guards. This example is basically a very
inefficient way of writing x:= 0. The arithmetic nodes have been simplified to avoid
cluttering the graph.

The loop executes the body of the first condition that evaluates to true. If all are
false, the loop terminates.

Such a loop is translated by nesting the topmost test/body pairs inside the test of
the lower ones. This is illustrated in figure 6.5, showing a loop with two tests using
one variable. When a token enters the outer loop, it will immediately flow into inner
loop and test t1 first. Only if that fails will the data flow continue to test t2. If both
tests fail, the outer loop terminates. If any test succeeds, the data flow will again
visit t1 first after executing the correct body.

40 Translation from Hurry to CDFG

6.1.5 Statement composition

The sequence operator (S1; S2) is particularly easy to implement: we first translate
S1 and then translate S2 in the resulting environment. This is because all necessary
sequencing is already explicit by the flow of data and the I/O path.

The parallel operator (S1 || S2) requires a bit more work. We fork the variables used
in either S1 or S2, and the edge map used in translating S1 will use the Forks’ left
outputs, and the map for S2 will use the right outputs. We must also fork the I/O
path and join it with a Sync node after translation of the two statements as explained
in section 5.3. At last, we merge the edge maps resulting from translating each side;
for the variables not written to, we can take the edge from either side. Variables
written to from exactly one side can be taken from that side. Unused edges are
voided as usual.

There is a problem if a variable is written to in both branches, or if it is read in one
and written in the other. Consider this code:

(x:=1 || x:=2); out ! x

It is not clear whether 1 or 2 will be the output. One could argue that since both
behaviours are valid, we could just make the choice at compile time, which is equiva-
lent to changing the || operator to ;. This is not good enough when we have channel
communication, however. Consider the following code with external channels in and
out:

x := 1; (in?x || out!x)

By sequencing his channel communication statements, an external actor controlling
both in and out should be able to dictate whether out is given 1 or whatever was
received on in, but this is only possible if the operations are truly parallel.

Because of this problem, we require that if a variable may be written to in one of
the parallel branches, it may not be referenced in the other. A compiler error will be
generated for programs violating this. An alternative solution is explored in section
7.6.

6.1.6 Arbitration keywords

Haste has arbitration keywords for variables, functions, and procedures for instructing
the compiler on whether arbitration is needed for controlling the access. These are
practical for situations where it might seem that arbitration would be needed, but the
programmer can guarantee that it is not. Variables need arbitration only for writing,
as parallel reading is always allowed. Arbitrated writing means parallel writing, which
we disallow in CDFG as described in the previous section.

For functions and procedures we ignore arbitration flags, because upholding them
inhibits parallelism. Consider the following example of a call to function f:

v := f(x); w := f(y)

6.2 I/O statements 41

The programmer guarantees that arbitration is not needed for f, because the second
call does not begin until the first call is finished. In CDFG however, the two calls
will share no flow and will therefore be implicitly parallel. If we wished to keep the
non-arbitration, we should impose an explicit ordering restriction. One of the aims
of the project is to uncover as much parallelism as possible for giving the scheduling
algorithm better conditions, so we have chosen to ignore all arbitration. If we were to
return to Haste or realise the CDFG in hardware at a later time, we could use static
analysis to determine which functions and procedures surely did not need arbitration,
and put arbitration on the rest.

Haste also support arbitration flags for channels, but we also discard those. Internal
channels are implicit in CDFG and never declared, so an explicit declaration should
be added for supporting arbitration. For reasons of time constraints we have not
implemented that.

6.2 I/O statements

Our modelling of channel communication in a CDFG with Send and Recv nodes
has mandated the introduction of an I/O path as described in section 5.3. During
translation, the I/O path is treated as a special variable, because it behaves like a
variable in many ways. Like variables, it is present in the edge map whenever it may
be needed.

The I/O path is pulled through all loops via a pair of Entry/Exit nodes even if it is not
used in the loop body. This ensures that tokens on the I/O path do not propagate
beyond the loop in case it never terminates, possibly allowing I/O that was not
intended. This is unnecessary in many cases, but we leave it to later optimisations
to remove it.

6.2.1 Send statement

While the general send statement in Hurry can output to multiple channels, the Send

node in CDFG can only output to one channel, so we translate the send statement
as if it were rewritten with temporary variables x1 through xn:

(c1, . . . , cn) ! expr =⇒
(x1, . . . , xn):= expr ;

(c1 ! x1 || . . . || cn ! xn)

It is not at all obvious that this translation is correct. Introducing parallel compo-
sition means that some of the sends can finish before all n channels are ready to
communicate. The Haste manual says nothing about how communication on a tu-
ple of channels is parallelised, so we designed an experiment that reveals what the
Handshake Solutions compiler does. The code snippet:

42 Translation from Hurry to CDFG

<<a,b>> ! <<~,~>> || (a?~ ; b?~)

will deadlock if and only if sending on a tuple of channels must wait for all channels
in the tuple to be matched up with a receiver before sending on any of them. It did
not deadlock in our tests, so we assume that our rewrite of the send statement is
correct.

After rewriting, each send statement uses only one channel and can be translated
directly to a Send node. The edge carrying the value to be sent is connected to the
data input on this node, and the edge currently carrying the I/O path is connected
to its sync input. The edge map is then updated so the I/O path is associated with
its sync output.

6.2.2 Receive statement

In our tests with the above snippet, we noticed that if we swap ? and !, it will
deadlock. This shows that the Handshake Solutions compiler does not parallelise
receive statements as it does send statements. We consider this behaviour to be
inconsistent, and since the language manual says nothing about what is correct, we
parallelise a receive on multiple channels as we did for the send.

The receive statement in Hurry is more complicated than the send statement due to
a strange design choice of Haste: the received value can be sliced up and padded with
or without sign extension in arbitrary places, but no other expressions can be applied
to it before storing it in a variable. We translate it to CDFG as if it were rewritten
with temporary variables y1 through yn:

(c1, . . . cn) cast (t1, . . . , tk) ? (x1, . . . , xm) cast (T1, . . . , Tk)

⇓

(c1 ? y1 || . . . || cn ? yn) ;

(x1, . . . , xm):= f(y1 :: . . . :: yn)

where the expression f contains the slices and pads that are equivalent to fitting each
ti to Ti.

Each rewritten receive statement can now be modelled with a Recv node, whose
sync input and output is connected like we did with the send statement. The Recvs’
data outputs are concatenated and the assignment is translated like a normal Hurry
assignment.

6.3 Subroutines

Both Haste and Hurry have a sharp distinction between functions and procedures.
The body of a function can contain only an expression, and it can only be called from

6.3 Subroutines 43

an expression. The body of a procedure can contain only a statement, and it can
only be called from a statement.

A CDFG program is a list of CDFGs, each identified by a number, and each containing
exactly one Param and one Return node. Each CDFG corresponds to a function or
a procedure in the original Haste code, but the distinction between functions and
procedures is lost after translation to CDFG.

Unlike a CDFG, procedures in Haste and Hurry have no return value. Instead they
can have output parameters, which can be used for the same purpose; these are
translated to having a return value in CDFG.

Figure 6.6 on the following page shows the signature of a procedure with every pa-
rameter type included, and how a call to it is translated.

Because a CDFG only takes a single argument, the arguments are concatenated
before the call. Likewise, the return value is split up. Channel arguments cannot be
expressed as data flow, so the call node is annotated with those directly.

A fundamental difference between Haste/Hurry and CDFG is that CDFGs cannot
be nested like functions and procedures can be. A nested procedure can access the
variables in its scope just as in traditional high-level languages. This is equivalent to
augmenting the procedure’s parameter list with the variables and channels accessed
from its scope, then passing those with every call. Figure 6.7 on page 45 shows an
example of how a nested procedure can be flattened. Our translation of procedure
declarations performs similar flattening.

Finally, Haste has special rules for parameterless functions declared inside expres-
sions. Because expressions have no side effects, the function will compute the same
value in its entire scope, so it needs only be calculated once. We translate this by
treating the function declaration just like a variable assignment. In retrospect, it
would have been more general to handle this in a subsequent optimisation step that
inlines calls where all callers give the same argument.

44 Translation from Hurry to CDFG

P :proc(in ?var byte // input variable

& out !var byte // output variable

& inout :var byte // input/output variable

& c1 ?chan byte // input channel

& c2 !chan byte // output channel

).

...

will be called as

call P (c1, c2)

io path’

inoutinout

::

io path

in’out’inout’

slice 8slice 8@8

Figure 6.6: Example of how a call to a procedure using all supported parameter types
is translated.

45

Main :main proc(out !chan int).

begin x,y :var int := 1

& P :proc(a ?var int).

x := x + a

; out ! x

| P(x)

; P(y)

end

=⇒

P :proc(a ?var int

& x :var int

& out !chan int).

x := x + a

; out ! x

& Main :main proc(out !chan int).

begin x,y :var int := 1

| P(x, x, out)

; P(y, x, out)

end

Figure 6.7: Example of how a nested procedure that accesses a variable and a channel
in its scope can be moved out to the global scope.

7 Design choices

As mentioned in section 5, the literature does not agree on the exact definition of a
CDFG. This leaves us with many choices in the design of our dialect. We discuss the
most important and far-reaching of these in this section.

We have drawn inspiration from [Brage93], [Stok91], [Dennis84], and [Nielsen07] when
designing our CDFG. Where [Stok91] and [Dennis84] are mostly concerned with the-
ory and modelling of computations, [Brage93] and [Nielsen07] use their CDFGs for
more practical purposes. They are all similar in most respects, though.

7.1 Forking of values

Whenever an output value of a node is to be used more than once we use Fork nodes.
In the literature, these nodes are usually omitted, so all nodes have multiple equal
outputs. This way a BinOp node would have two outputs if its value were used
twice. This approach is used in both [Stok91], [Brage93], [Dennis84], and [Nielsen07],
and it has the advantage of not requiring a Fork node. The drawback is that the
behaviour of Fork must be contained in every other node, so nothing is saved in
terms of complexity. Even though most nodes have built-in forks in [Stok91], the
Branch/Merge and Entry/Exit nodes do not, which is compensated for by adding
“link nodes” with roughly the same semantics as our Fork.

A chain of Fork nodes acts as a FIFO buffer, which can increase parallelism in some
cases. In the majority of cases, though, the Forks would supply buffer space where it
improves nothing, so they would be a burden to the circuit. We suggest that this is
solved by viewing the Fork nodes as part of the wires rather than actual nodes when

46 Design choices

synthesising a CDFG into hardware. This retains the simplicity of our representation
for the high-level optimisation steps while still allowing later steps to have a more
concrete view of the CDFG. It is only generally correct to remove buffer space in
that manner if the CDFG adheres to certain well-formedness criteria as section 8.1
discuss.

7.2 Constants

Constants in [Stok91] fire exactly once at the beginning of the program. To use their
value more than once, they must therefore be carried into loops and conditionals like
regular variables. This would result in many more Entry/Exit and Branch/Merge pairs
than needed, which is not desirable in a practical implementation.

Constants in [Brage93] only fire when triggered by the I/O path, which makes data
flow follow control flow more strictly than necessary. [Brage93] concludes that it
would give better performance to trigger the constants locally.

We use the Const node from [Nielsen07], which has no inputs and fires as often as
possible. This ensures that its value is always available when needed.

An obvious concern is whether the constants might fire so often that it seriously
increases the power consumption of the circuit. This turns out not to be a problem
because the flow of tokens from a Const eventually reaches a node where it must wait
for some non-constant value. For example, in the translation of x + 1, the Const can
only fire once before it must wait for x. There may be a significant amount of wasted
computation if the constant goes through a loop, but the overhead is still bounded and
thus acceptable for a long-running program. The overhead is unbounded if a Const

node is connected directly or indirectly to Void, but such constructs are removed by
dead code elimination.

7.3 Complexity of nodes

Most of the nodes in our CDFG are rather simple, which gives them a certain elegance
at the expense of larger CDFGs. We have already talked about how our Fork node
makes the other nodes simpler. The slice node is also simpler than it could be, as it
lacks support for multiple outputs; this made our translation of (x, y, z):= e require
two Fork nodes and three slice nodes rather than just one “multi-slice”.

Semantically simple nodes make it easier to automate analysis and optimisation of
the CDFG in many cases. However, it also makes the CDFG look very different from
its Haste source code, making it very hard to translate the CDFG back to Haste
code in a form that looks anything like the original source. In particular, a do loop
can now only be recognised by finding all of its Entry/Exit nodes, then following
their edges to learn which nodes correspond to its test and body. The problem is

7.4 Representing channel communication 47

now that an optimisation may have drawn edges between the loop’s body and its
surroundings, making it impossible to define where exactly it ends. This could be
solved by disallowing such optimisations, which is a rule we consider in section 8.1.

Translating loops and conditionals into many small nodes rather than one complex
node will potentially increase parallelism because they can operate independently of
each other. This independence carries a cost in synthesised circuit area, so it is a
disadvantage if it cannot be successfully exploited. In the case of loops, all Entry/Exit

components must wait for the same test, whose result is then copied out to all of their
control inputs. The independence can benefit parallelism here because Entry/Exit

pairs are allowed to lag behind the rest of the loop if they do not contribute to its
test, as long as there is sufficient buffer space to hold their control tokens. However,
as with the Fork nodes treated above, we expect that this is seldom utilised, meaning
that the independence is a most often a disadvantage. We could therefore imagine
that a synthesis tool would try to deduce where each loop’s body and condition were
and synthesise as if the Entrys and Exits were synchronised.

Despite the potential problems, we have stuck with the small-node representation of
loops and conditionals traditionally found in the literature, hoping that the benefit
of simplicity would outweigh their disadvantages.

7.4 Representing channel communication

Translation of Haste code requires some way of representing channel communication.
In the previous works on CDFGs we could find, the closest thing to channel commu-
nication is [Brage93], who has a node for sampling the level of a wire and for writing
a value to an output latch, enabling data exchange with the external environment.
Our Send and Recv nodes behave like these, except that they wait for the other party
to handshake before they can fire.

Our representation of channel communication is a layer of semantic rules “above”
the data flow defined by the CDFG’s edges. By this we mean that due to channel
communication it is not possible to follow the data flow in a CDFG simply by following
the edges. We would have liked to model channel communication with edges only,
but there are a number of problems with that approach:

• Channels for exchanging data with the external environment still need to be
modelled somehow. This means that we must have Send and Recv nodes, so our
data structure would not become simpler even if we could do internal channel
communication over edges with the nodes we have currently.

• A näıve translation of internal channel communication would be to just draw
a data edge from the sender to the receiver along with synchronising their I/O
paths. This turns out to be inadequate because Haste allows multiple senders
and multiple receivers on the same channel in parallel. It will not be determined

48 Design choices

until run-time which pair of sender and receiver will exchange data, so we would
need special components to perform this arbitration.

• If we draw edges from senders to receivers, there is no restriction on where they
may go. They could run from the body of one loop into the body of another,
or they could run from the left branch of a conditional into the right one. One
may see this as an advantage of the CDFG representation over traditional tree-
like representations, but we see in section 8.1 that it becomes very hard to do
optimisations if we have no restrictions on where edges may go.

• It would become more complicated to pass around channels as procedure pa-
rameters, and we would have to put all procedures in the same CDFG to enable
inter-procedural channel communication.

Having decided against channel communication over edges, we also needed to decide
upon the role of the I/O path. Our nodes for channel communication (Recv, Send,
Sync) and procedure calls (Call, Param, Return) give special treatment to the I/O path
and keep it completely isolated from the data edges just as it is done in [Brage93].
This is not truly necessary; one could create an I/O path from a data edge by slicing
it to a width of 0 bits, or one could synchronise an I/O path with a data edge by
concatenating them with the BinOp node for concatenation. Such techniques could
remove the special I/O path output edges from Recv and Param as well as the special
I/O path input edges in Send and Return.

The Sync node would be entirely redundant because it is a special case of concatena-
tion, since concatenation of two 0-bit edges produce a 0-bit result after waiting for a
token on them both. The Stop node is redundant as well, or at least it does not need
an input edge because discarding input can be done by Void just as well.

Despite the simplifications we could get by mixing the I/O path with data, we opted
to keep them isolated by convention, although our data structures do not prevent
mixing them. This choice comes from a desire to be able to recognise the I/O path
in optimisations coming after translation to CDFG. At the same time, we wanted to
leave open the possibility of mixing them in case we changed our mind later. Section
8.1 points out other potential problems with mixing I/O path and data edges. Section
8.2.4 describes an optimisation we have implemented as a proof of concept that mixing
the I/O path with data can be advantageous.

7.5 Representing procedures

Procedure calls in our CDFG dialect is modelled in roughly the same manner as in
[Stok91]: each procedure has its own CDFG, and calls are modelled in a semantic
layer independent of the data flow defined by edges. This adds more complexity
to our CDFG dialect, which we generally want to avoid. This section will explore
alternative implementations of procedure calls.

7.5 Representing procedures 49

Procedure calls are not possible in [Brage93] or in the static data flow graphs of
[Dennis84]. They are also absent from the Balsa language, and [Bardsley98] seems to
indicate that they were not originally present in Tangram, the predecessor of Haste.
Instead of real procedure calls, they have defined procedures, which are conceptually
equivalent to macros in C. At each “call” they are simply copied at compile time,
and their arguments are substituted for their parameters. This language feature is
also present in Haste; although useful for many purposes, it is not interesting for this
discussion because it is invisible after translation to Hurry.

The purpose of procedure calls is to access a shared resource from more than one place
so it does not have to be copied on the circuit. An alternative to procedure calls –
and the only option in Balsa – is to use channel communication. The equivalent of
a procedure would then be a process that runs in an infinite loop, taking input from
one channel and placing output on another after doing some computation. This is
the behaviour of our running example of the factorial function that we first saw on
page 7.

If the users of the procedure can guarantee that they will never use it in parallel, then
this works. Otherwise there must be some way of arbitrating between contending
users. This could be modelled by letting each user send an id value along with the
data for his call. When it is time to return the result, the id value will decide on
the channel to return the value to, thus choosing the correct recipient. The shared
procedure would then look like:

forever do

in ? <<id,parameter>>

; result := ... // perform some computation on parameter

; case id

is 0 then caller0 ! result

or 1 then caller1 ! result

...

si

od

It gets more complicated though, because Haste procedures can take channels as
arguments besides data. This creates a temporary run-time aliasing of those channels
for the duration of the procedure call. To emulate this behaviour in the channel-call
model, the caller would have to send channel parameters along as arguments in the
same manner as the id value. Because channel parameters may be referenced multiple
times during the call, as opposed to a return value, this could create a large number
of case statements. This can be worked around by creating yet another process for
each aliased channel whose only purpose is to send a value to the right place, given
a value and an id.

The reason why we did not implement procedure calls as channels is that it may ruin
performance. Channel aliasing in Haste is most likely implemented very efficiently by

50 Design choices

flipping a simple switch on the circuit to re-route the wires during the call. Replacing
this with case statements could destroy the very performance that we are aiming to
optimise.

7.6 Representing parallel read/write

As described in section 6.1.5, our compiler will exit with an error if it sees a write to a
variable that may occur in parallel with a read or a write to the same variable. Using
an idea similar to the one we saw for procedure calls above, this could have been
emulated with channel communication to a process running in parallel with the main
program. This process first reads a command from a control channel, then either
sends or receives the variable over a data channel, depending on the command.

Figure 7.1 on the facing page shows an example of how this could be implemented. It
works because the users of x follow the protocol of only communicating over x_data
after having successfully communicated over x_ctl. This allows us to declare x_data
as not using arbitration for send (narb!) or receive (narb?), while x_ctl must arbi-
trate between contending senders (arb!).

The code should convey the impression that this would not be an efficient solution.
It is therefore more interesting conceptually than practically, so our compiler does
not implement it.

7.6 Representing parallel read/write 51

begin x_ctl :chan [0..1] arb!

& x_data :chan int narb! narb? narrow

|

// Process running in parallel with main program

begin x :var int

& command :var [0..1]

| forever do

x_ctl ? command

; case command

is 0 then x_data ! x

or 1 then x_data ? x

si

od

end

||

... the rest of the program goes here ...

// Transformation of: (x := 2 || x := 3) ; out ! x

(

(x_ctl!1; x_data!2) || (x_ctl!1; x_data!3)

; begin tmp :var int

| (x_ctl!0; x_data?tmp)

; out ! tmp

end

)

...

end

Figure 7.1: A transformation of the statement (x := 2 || x := 3) ; out ! x

that makes it acceptable for our compiler.

52 Transformations on the CDFG

8 Transformations on the CDFG

When the Haste code has been successfully translated into a CDFG it is obvious to
ask whether we can apply optimising transformations on it. We have many traditional
optimisations, such as dead code elimination and common subexpression elimination
[Dragon]. On top of this, we might be able to utilise the CDFG representation,
and come up with optimisations that would be hard to do with conventional code
representation.

In both [Stok91] and [Brage93] several of the classical optimisations from [Dragon]
are suggested, though only informally described. It turns out that it is dangerous to
use these informal descriptions as basis for implementations as the complexity of the
CDFG behaviour makes it hard to predict when a transformation is correct. This
problem can be partially solved by restricting the CDFGs to adhere to some well-
formedness requirement. In section 8.1 we give an example of why such a restriction
could be helpful, what it could look like, and which issues must be addressed in future
work before it could be safely applied.

In the section that follows it, we describe a series of small optimisations that we
have implemented. These optimisations assume that the CDFGs given abide to the
well-formedness described in section 8.1. We have not proven the optimisations to
be correct, but with informal arguments and testing, we are fairly certain that they
are. Thus, they are solely a practical addition to our compiler.

8.1 Well-formedness

When our translation is done, the resulting CDFG has certain nice properties; e.g. a
path leaving a loop must always go through an Exit node. A potential strength of the
CDFG formalism, however, is that CDFGs can break those properties and still have
well-defined behaviour. An example of this is the right CDFG in figure 8.1 on the next
page where a Const 0 node outputs the I/O path. We could imagine optimisations
that transformed our original CDFG obeying the properties into one that did not,
thus making it necessary for later optimisations to cope with non-restricted CDFGs.

However, having such a liberal view on valid CDFGs makes it hard to predict the
consequences of even simple transformations. A clear example of this is the removal
of nop nodes. We insert nop nodes during conversion and during certain optimisations
because it is an easy way to tie edges together. As they just forward all values given
on the input, removing them after compilation should be easy.

A problem with nop-removal is evident on the right CDFG in figure 8.1. When
compiling the Haste program snippet with our compiler, the result is the CDFG in
the middle. By following the flow of tokens systematically, one can see that the CDFG
on the right has the same behaviour, and therefore one could imagine optimisations
that transformed the middle CDFG into this.

8.1 Well-formedness 53

forever do

a?~ ;

b?~

od

=⇒
⋆=⇒

⋆

⋆

0

recv(a)

recv(b)

Figure 8.1: An example of a Haste program snippet that can be translated to the
middle CDFG and magically optimised into the left CDFG where we cannot add a
nop without changing the behaviour.

The problem is that adding a nop node in between the two Recv nodes in the CDFG
on the right changes the behaviour of the program: without the nop, the CDFG is
forced to interleave the communications on the channels, as there can be only one
token on an edge at a time. Having a nop node on the edge between the Recvs would
make it act like a one-place FIFO buffer, making it able to receive twice on a before
having to send the first time on b. When adding a nop can change the behaviour, we
cannot in the general case remove nops without changing the behaviour.

The nop removal is such a simple and seemingly correct transformation that if we
need advanced analyses to determine where it can be applied safely, the more complex
transformations seem well out of reach. A nop only provides a buffer on the edges
it connects, so all optimisations removing nodes or re-routing edges always have to
take some measure of buffer sizes into account, if nops cannot be safely removed.
An example of this is when we view the Fork nodes as just wiring instead of actual
nodes when synthesising, as described in section 7.1. If we cannot in the general case
remove nops, we cannot do this simplification.

There is a natural objection to the example however: The I/O path is initiated from
a node other than a Param node, which is outside its intended use. This, in turn,
implies that we have a concept of well-formedness of the I/O path which we adhere
to. In the CDFGs we produce from the translation, the I/O path has a list of nice
properties, like being initiated in Param nodes. If we were to specify these properties

54 Transformations on the CDFG

1

0 1
EN

0

EX
0 1

+

(nop)

Figure 8.2: When the nop is present on the edge going out of the loop, the add node
will fire once, but if the nop is omitted, the add will never fire.

and require all CDFGs to obey them in order to be well-formed, we might be able to
save the intuition that the removal of nop nodes is legal on well-formed CDFGs.

Unfortunately, it is not enough to require well-formedness on the I/O path alone for
such a guarantee. In the example in figure 8.2, there is no I/O path, but the presence
of a nop node still changes the behaviour. The loop will iterate twice, the first time
with the value 1 and the second with 0. If the edge leaving the loop from inside the
body had no nop, then after the first iteration the edge would have a token waiting
for the add node to fire. Therefore, when the token in the next iteration reached the
Fork node, it would not be able to fire, deadlocking the loop. If there was a nop,
however, the Fork node could fire the second time, and in turn letting both the Exit

node and add node fire once.

This example breaks an intuitive requirement that has nothing to do with the I/O
path: edges may not begin inside a loop and end outside it. It also leaves a token
stranded on the left input of the add node, which disallows re-entrance of the CDFG.

This example relies on nodes whose semantics are quite standard in the literature,
and it even works with the constant nodes of [Brage93], which only fires when it

8.1 Well-formedness 55

receives a token from the I/O path.

It seems then, that this is not simply a problem that we have because of channel
communication or rash node definitions, but something that any definition of CDFG
semantics should consider. Neither [Brage93] nor [Stok91] do that, but from their
translation algorithm and from the loose descriptions of suggested optimisations, it
seems that they silently assume the CDFGs to obey certain rules of well-formedness:

• An edge may not begin inside a loop’s body and end outside it.

• An edge may not begin inside a loop’s condition and end outside it.

• An edge may not cross between different branches of a branching.

• An edge may not begin inside a branching and end outside it.

• The I/O path may only be initiated by a Param node and only be terminated
by a Return node

• If the I/O path has been forked, it may only be merged by a Sync node.

To back up this list, we have constructed a number of unorthodox CDFGs where
nop nodes cannot be removed safely. These are shown along with a short description
in appendix A. They are written in our own CDFG dialect, but only relying on
behaviour readily expressed in the dialects of [Brage93, Stok91, Dennis84].

There are obvious questions that need to be answered before these requirements can
be used, e.g. “what is the inside and outside of a loop’s body?”, “what defines a
loop and can two loops with different conditions be intertwined?”, “what exactly
defines the I/O path”, etc. The answer is in most particular cases intuitive, but to
answer them in general we need a precise formal definition of the well-formedness
requirements.

Having formal requirements that the CDFGs should adhere to, we would like to prove
that the transformations we come up with are correct. To do this, we would need
a formalisation of the CDFG semantics, a formal definition of semantic equivalence
between two CDFGs, and a framework in which we can prove these equivalences
under a transformation. Formalising the semantics has been done several times;
in [Brage93, Stok91, Kavi86, Bojsen93] different formal semantics are specified but
their aims are all different from ours, so it is unclear if any of their solutions would
be expedient for our purposes. In particular [Bojsen93] shows correctness of a CDFG
with regard to a high-level specification, but the problem of specifying semantic
equivalence between CDFGs without such prior specifications is not dealt with. Thus,
this is a very interesting field of future work that should be examined properly.

It should be noted that without well-formedness we might still be able to come up
with optimisations that could be proven correct. However, it seems that it is then

56 Transformations on the CDFG

hard to find advanced optimisations that are correct, and proving them might be
even harder.

The CDFGs produced by our compiler adhere to all the well-formedness rules above.
The Stop node was actually introduced instead of using Void nodes so the fifth rule
would be obeyed when translating a stop statement. Channel communication can
emulate the transfer of data done by edges, and could thus emulate edges that would
violate the first four requirements. This appears not to be a problem, though, as long
as the I/O path obeys the last two requirements.

Returning to the removal of nop nodes, we have not been able to construct a CDFG
adhering to the list of well-formedness requirements where it cannot be safely applied.
This is of course far from a proof of correctness, but combined with a number of loose
arguments, we are rather certain that it is a safe transformation on the well-formed
CDFGs our compiler produces.

8.2 Implemented optimisations

After this discussion on the need for well-formedness, we now describe some optimisa-
tions that we have implemented. They assume that the input program only consists
of well-formed CDFGs according to the requirements listed in section 8.1, and ex-
cept for Channel merging, they all return well-formed CDFGs. Channel merging
is included for proof of concept that useful optimisations violating well-formedness
exists.

We do not have proofs for the correctness of these, but are rather confident that
they are safe under the well-formedness restrictions, based on informal arguments
and on testing we have done. These optimisations should therefore not be seen as a
contribution to theory, but rather to the practicality of our compiler.

8.2.1 RemoveNop

We have not been able to construct a CDFG that adhered to the well-formedness
requirements in section 8.1 and where nops could not be safely removed. As Haste
uses explicit variables or channels for buffering values, we are fairly certain that the
compilation from Haste to CDFG will never introduce CDFGs that depend on nodes
for buffering, and therefore not on nops. We have therefore implemented RemoveNop.
Several of the other optimisation do not remove nodes themselves, but translate them
to nop nodes and let them be removed by RemoveNop.

8.2 Implemented optimisations 57

8.2.2 Dead code elimination

Dead code elimination is the classic transformation of removing code that certainly
does not affect the result and side effects of the computation [Dragon]. In CDFG it
amounts to removing unnecessary nodes. Under the restriction of well-formedness,
dead code elimination becomes exceedingly simple to implement.

Nodes only affect the computation of nodes that depend on them, except for channel
communication nodes. The only side effects of running a CDFG is the channel com-
munication and the possible value returned by the Return node. Therefore, nodes
that are not a predecessor of a channel communication or the Return node can never
affect any observable behaviour and can be removed. As well-formedness requires
that the I/O path is only terminated by the Return node, all channel communication
nodes are predecessors of the Return node. Thus, we need only begin from the Return

node and traverse backwards via the edges, marking all nodes in the process. All
unmarked nodes must be dead and can be removed.

8.2.3 MapStructure

When performing transformations on graphs, it is a recurring task to find some set
of nodes connected in a certain way and replacing it with another set of nodes. For
this purpose, we have implemented MapStructure, which provide a flexible way of
specifying which structure to be matched upon and what transformation that should
be performed. With it, we have implemented three optimisations:

VoidForks finds all occurrences of a Fork where one of the outputs ends in a Void;
this can be simplified by removing these two nodes. To ease the actual imple-
mentation they are instead replaced by a nop, which is itself removed later.

SimplifySlice finds occurrences of a chain of slice or nop nodes with at least one
slice; they can be simplified to just one slice.

RemoveTrivialSlice finds occurrences of slice nodes that has the same input and
output type; they can just be removed. As with VoidForks they are reduced to
nops which are removed later.

When called, MapStructure will replace every occurrence of some structure in a
single CDFG with new nodes. The pattern language used to specify what structure
MapStructure should match upon is quite powerful and supports matching arbitrary
nodes, logical and and or matching on sub-structures, and recursive matching on
structures. Though general, it has keywords and flags for securing good performance,
and the three optimisations above have the same asymptotic running-time as if they
had been implemented by hand.

58 Transformations on the CDFG

recv(4)

data r io out

send(4)

s io out

data s io inr io in

=⇒

::

slice:0 data

s io out r io out

data

s io in r io in

Figure 8.3: Channel communication that can be merge. It requires that there are no
other Sends or Recvs on channel 4.

Though these optimisations are simple, MapStructure supports matching on complex
structures, and should make it much easier to implement later optimisations. See
appendix B for further details on this language and how to specify SimplifySlice and
VoidForks in it.

8.2.4 Channel merging

To demonstrate that useful optimisations that break the well-formedness require-
ments exist, we have implemented the channel merging optimisation. We are confi-
dent that requiring well-formedness is the most advantageous approach to optimisa-
tions, so channel merging is included for proof of concept and not due to a change of
heart.

The optimisation finds instances of channels that are not parameters in a CDFG,
that are never aliased in calls, and where there is only one Send and Recv and they
are in the same CDFG. Then the transfer of data is always deterministic and can be
exchanged with edges. It can be transformed as shown on figure 8.3. We must make
sure that tokens on the two incoming I/O paths and the incoming data path are all

8.2 Implemented optimisations 59

present before we output on any of the outgoing edges, because this is the behaviour
of the Send/Recv. This is ensured by first synchronising the I/O paths with a Sync,
and then synchronising the result with the incoming data path. This clearly violates
the well-formedness requirement that an I/O path may only terminate in a Return

node, but its behaviour is still well-defined. We then create a new I/O path from the
result by forking it and slicing it to 0 bits.

Apart from breaking well-formedness when concatenating data with the I/O path,
the channel merging can introduce edges that exit bodies and conditions of loops
and bodies of branches. In the general case, then, channel merging breaks all well-
formedness requirements but the last.

We are reasonably confident that this optimisation is correct if the incoming CDFG
is well-formed. It will, however, output a non-well-formed CDFG, and we therefore
apply it as the next to last optimisation. The last is ClearCDFG described in the
next section, which will not be affected by it.

8.2.5 ClearCDFG

Simply because it was very easy to implement and convenient for several of our tests,
we have implement ClearCDFG that removes CDFGs that will never be called. We
begin from the main CDFG and simply marking all CDFGs that may be called from
that, marking CDFGs maybe called from them, etc. Unmarked CDFGs can never be
called and are removed.

60 Tests

Haste Hurry

Handshake Solutions
simulator

CDFG

CDFG file Our simulator

Our C parser

Figure 9.1: The transformations experienced by the Haste code running in our test
suite. The double arrows are followed just once.

9 Tests

Reading the preceding sections should have given the impression that this compiler
is a complex piece of software. Not only are the translation rules hard to get right,
but the sheer size of the Haste subset that we support means that there is no way to
make our compiler small and simple.

To ensure robustness, we have written over 40 small Haste programs, each exercising
a few features of the Haste language. These range from ordinary calculations such
as the factorial function to strange corner cases of I/O synchronisation. These files
are used by our test suite, which converts them between our various representations,
checking at each step that the output from the simulators remains unchanged.

Figure 9.1 shows an overview of the states that the code passes through when running
the test suite. This complements figure 3.3 on page 11 and shows that our test suite
exercises all of the tools we have written except the Hurry deparser and the Graphviz
output. Note that figure 9.1 is slightly more high-level than figure 3.3, so all the same
nodes are not present.

A Haste program entering the test suite is first given to the Handshake Solutions
reference compiler and simulator, giving us the output against which we compare our

61

$ time ./test

t/arithmetic_types.ht ... OK

t/arithmetic_types.ht (through Hurry) ... OK

t/assign.ht ... OK

t/assign.ht (through Hurry) ... OK

[cut 72 lines]

t/tupleIO.ht ... OK

t/tupleIO.ht (through Hurry) ... OK

t/wrapper.ht ... OK

t/wrapper.ht (through Hurry) ... OK

All tests OK

./test 0.85s user 0.41s system 82% cpu 1.515 total

Figure 9.2: The output of running our test suite. The timing statistics at the bottom
show that it takes 1.5 seconds to run all 40 tests on a Pentium M 1.86 GHz laptop.
This does not include the time spent in the Handshake Solutions compiler.

own tools. The Haste code will then be translated to Hurry. We can translate back
and forth between Haste and Hurry any number of times, and the code resulting
from these translations can be subjected to the entire test suite again. Our test suite
does this just once. The Hurry code will be compiled to CDFG, then deparsed to a
file. This file is fed to our C parser to check that it is not rejected. It is also read
back into our CDFG simulator, and the test suite verifies that it produces the same
output as the Handshake Solutions simulator.

Figure 9.2 shows what it looks like to invoke the test suite. Each file is simulated
four times in total: with both the Handshake Solutions simulator and our own, and
both directly from the Haste source and after being translated back from Hurry.

The test suite employs a few tricks for practical reasons. Because the Handshake
Solutions tools are commercial, we cannot install them on our own machines. We
therefore invoke them remotely by copying the Haste files over the network and
running the tools on the machines on which they are installed. Because the Handshake
Solutions tools spend several seconds on each file, we maintain a cache of their output,
as it should not change when given a file with the same contents. This speeds up a
typical test run by an order of magnitude.

62 Tests

9.1 Larger programs

We were fortunate enough to obtain copies of two programs that were written by
students attending DTU course 02204 “Design of Asynchronous Circuits”. The first
is a division algorithm using the Newton-Raphson method, and the second is a “Mini-
MIPS” processor as introduced in the DTU course 02151. This gave us an opportunity
to test our tools on larger programs than our unit tests.

The division program only used the subset of Haste supported by our compiler, so it
could be compiled and simulated with no changes except for the correction of a small
syntax error that was tolerated by the Handshake Solutions compiler.

The MIPS uses arrays for storing its program, data memory, and registers, so we
had to modify it heavily to make our compiler accept it. We tried emulating arrays
in two ways, both of them applying some semi-manual transformation on the source
code before compiling. The first approach is to store the array as one huge variable
holding all of its contents. The second is to have many small variables, each holding
one array element. In both approaches there are large auto-generated case statements
to translate index numbers to data.

To test the MIPS, we output the addresses and values for each write to registers or
data memory. In the approach where the memory is one huge variable, our simulator
outputs the same numbers as the Handshake Solutions simulator. In the approach
with many small variables there appears to be a bug in our compiler or simulator, as
some of the numbers are different. We have not had time to investigate this further,
and we fear that such a bug may be hard to isolate due to the size of the MIPS
program.

9.2 CDFG simulator

Our CDFG simulator starts by performing some consistency checks to be reasonably
confident that the CDFG is a valid instance of the data structure described in section
5.4. This is primarily a check that each edge connects exactly two nodes along with
a type check of each node’s outputs compared to its inputs.

The CDFG simulator works by maintaining a map of Edges → Z ∪ {empty} to keep
track of the token on each edge. It also maintains a work-list containing all nodes
that may fire at any given time. For performance this list should be small, but for
correctness it must be a valid over-approximation. Nodes are added to that list when
tokens are placed on their inputs or removed from their outputs. In the main loop
of the simulator, each node on the work-list is checked to see if it can fire, which
is determined in a node-specific way. Regardless of whether it fires, it is removed
from the list. If the work-list becomes empty at some point, the program must be
dead-locked, and simulation ends.

9.2 CDFG simulator 63

Because the program is not guaranteed to terminate, we have to apply some principle
of fairness to the simulation. Consider a program that contains an infinite loop:
forever do skip od || out ! 1

Some node in the infinite loop will always be ready to fire, so it would be seman-
tically correct to never fire the Send node. It would not be a realistic simulation,
though, because if this program were compiled into a circuit it would surely output
1 immediately. Our work-list implementation resembles a FIFO, ensuring that nodes
are never starved in this manner.

The simulator is further complicated by the support for channel communication and
procedure calls. Channels are supported by maintaining queues of the nodes that
may be ready to send or receive on each channel. For procedure calls, we maintain a
map of Channels → Channels used to resolve the channel aliases that are created at
run-time when a CDFG is called with channel parameters. We must also remember
which node called a given CDFG in order to send the return value back to the right
place, and we must maintain a queue of nodes that are pending to call a given CDFG
after it returns its current call.

64 Future work

10 Future work

The project has ended with a working compiler with good performance, but there
are many areas, practical as well as theoretical, that would be interesting to explore
further.

Seen from the perspective of a professional Haste programmer, it is imperative that
the compiler supports arrays of the types in Haste. A quick-fix solution like the one
we mentioned in 9.1 would yield terrible performance if it were to be synthesised, and
is not realistic. A possible solution is described in [Stok91], though it is uncertain if
the addition of procedure calls and internal channel communication imposes problems
on that solution.

The compiler is thought of as a front end for an optimising synthesis tool, and as
with all optimising compilers, it is not expected that it will perform better than
hand-optimised code compiled syntax-directedly. As the transformation to CDFG
removes much optimisation done by the programmer, it would be an advantage for a
programmer to be able to use compiler directives to toggle when to compile syntax-
directedly and when to optimise. This could most easily be done if the back end of
compiler were to output in optimised Haste code. We could then collect the untouched
and the optimised Haste code in one, and compile it syntax-directedly by Handshake
Solutions’ compiler in the end.

It is, as we have seen in section 8.1, very easy to overlook unwanted behaviour in a
given CDFG. It is therefore important that the translation we perform from Hurry
to CDFG is proven to be correct with regards to semantics. This, of course, requires
formal semantics for both Hurry and CDFG and a framework in which to perform
semantic equivalence. In [Bojsen93], a framework for proving correctness of a CDFG
with regard to a behavioural specification is set up, and it might be possible to utilise
the methods described there. This would require the translation of Hurry into the
logic that is used as the specification language, which might be as difficult to prove
correct as the translation from Hurry to CDFG, however.

There is much potential in performing optimisations on the CDFG, but doing this
would probably require that we limit ourselves to some notion of well-formed CDFGs.
To find a well-formedness definition, it should first be examined what properties we
wish our well-formed CDFGs to abide, just as we sought to make nop-removal legal
in 8.1. We should then find a set of requirements, formalise them, and then prove
that under those requirements CDFGs do indeed abide to the properties.

With a formalisation in hand, we can think of many optimisations that could be in-
teresting to prove correct and implement afterwards: Common sub-expression elim-
ination, invariant code motion, loop unrolling, inlining, etc [Dragon]. To prove an
optimisation correct, however, we would need the formalisation of the CDFG seman-
tics and a notion of semantic equivalence. These can be expressed in a multitude of
ways, many of which might prove to be unhandy when trying to perform correctness

65

proofs, so it should be done with care. On this field, we have a promising approach
that we would have liked to examine further, but because of time constraints, we
have not come to any concrete results.

When working under a well-formedness restriction, it would be convenient if the data
structure representing the CDFG guaranteed well-formedness was upheld; e.g. by
encapsulating the bodies and conditionals of loops. This might simplify optimisations
and analyses considerably. If it were reflected in a formalisation of the CDFG, it might
also simplify the proofs performed with it.

As an ending note, the CDFG representation might not only be an advantage with
hardware languages, but also for software. As computers are becoming increasingly
parallel, extracting parallelism from a sequential program becomes an attractive way
to increase performance.

66 Conclusion

11 Conclusion

The main result of this project is a working compiler from a subset of Haste to a
CDFG. The compiler is envisioned to be used as a first step in an optimising synthesis
tool for Haste.

To perform this task we first designed an intermediate language Hurry that simplifies
Haste to a great extent, but without losing descriptive power or introducing ineffi-
ciencies. Using an intermediate language as a stepping stone in a compiler is standard
practice, and it simplified the actual translation to CDFG immensely.

None of the dialects of CDFG described in the literature directly supports the Haste
features of CSP-like parallel processes and channel communication. We therefore
designed our own CDFG dialect, which was based upon [Brage93], but with significant
alterations and extensions. We have compared our dialect with prominent dialects
from the literature, and generally remain satisfied with our design. The approach
and actual translation from Hurry to CDFG was described in detail.

To test the correctness of the compiler, we have implemented a simulator for our
CDFG dialect, which also means that we have a simulator for our source language
Haste. We have implemented a testing framework that revolves around comparing
simulation results with the simulator from Handshake Solutions, which stresses every
part of our compiler.

We have examined the possibility of optimising the resulting CDFG using the classical
compiler optimisations. Our results show that without a well-formedness requirement
on its structure, it is difficult to safely perform even simple optimisations. With the
starting point being the intuition that the nop node, CDFG’s counterpart of the skip
statement, can be safely removed from any well-formed CDFG, we propose a list of
well-formedness requirements. There is still a long way to go, as this list should be
formalised and the starting point shown to actually hold under the requirements.
However, it is an important problem that we have not seen discussed elsewhere in
the literature and has great perspective for future work.

The compiler is accompanied by a number of tools for translating between various
representations. There are programs for executing the simulator, a parser and a
deparser for a format describing the CDFG, another parser for this written in C, and
a deparser for producing Graphviz files to visualise the CDFG.

As a conclusive remark, we believe that our compiler and associated tools can be
helpful in advancing the state of asynchronous hardware synthesis.

67

A Malformed CDFGs

In section 8.1 we introduced a list of well-formedness requirements for CDFG. This
list was based upon a number of unorthodox CDFGs that we have constructed such
that the presence of a nop node change their behaviour. In this section we present
and shortly describe those CDFGs.

It should be noted that no Haste code could be compiled with our compiler and result
in these CDFGs, as our compiler only produces CDFGs that are well-formed under
the restrictions in section 8.1. However, they have all been written manually in the
CDFG language that we can parse, and have been tested with the CDFG simulator
to have the specified behaviour.

An edge may not begin inside a loop’s body and end outside it

The CDFG is shown in figure A.1 on the next page. The loop will iterate twice,
each time decrementing the number that runs through. With the nop present,
the path from the Fork after the Exit to the add node can hold two tokens, and
each of the two first iterations will put one there. Then the condition will run
a third time, yielding a 0 which causes a token on the left output of the Exit.
Then the add node can fire once, letting a token leave the CDFG.

Without the nop node, the second iteration will have a token stuck on the edge
after the Exit and before the Fork node, because the token on the edge before
the add node will disallow it to fire. The CDFG will deadlock there and no
token will ever leave the add node.

An edge may not begin inside a loop’s condition and end outside it

An example of this was shown in figure 8.2 on page 54.

An edge may not cross between different branches of a branching

The CDFG is shown in figure A.2 on page 69. The principle is that the
Branch/Merge pair will only let tokens through once it has got a token on
each branch because of the add node. The right Entry/Exit pair make it possi-
ble to get this. The loop will iterate twice, and in both iterations a token will
be input on the Branch. In the first iteration, the condition will be 1 and in the
second it will be 0. The first token will be stuck in between the Branch/Merge

pair, so the left Entry/Exit pair will not begin its second iteration. The right
one will, though, as its input is independent from the Branch/Merge, and this
will cause a second token to pass down to the Branch.

Now, if the nop is present, the control edge for the Merge will have room for the
second token, meaning that the Fork just before can fire. This in turn makes
the Branch fire, giving the add node the second token. Then the Merge will
fire twice, letting the left Entry/Exit pair perform its two iterations, and in the
end, a token will escape on the left output of the left Exit. Had the nop not

68 Malformed CDFGs

2

0 1
EN

0

<

-

EX
0 1

+

(nop)

1

Figure A.1: An edge may not begin inside a loop’s body and end outside it.

69

Figure A.2: An edge may not cross between different branches of a branching.

70 Malformed CDFGs

BR
0 1

(nop)

0 1
ME

+

Figure A.3: An edge may not begin inside a branching and end outside it.

been there, the Fork before the control edges of the Branch and Merge would
not have had room to fire, deadlocking the CDFG.

An edge may not begin inside a branching and end outside it

Because of the complexity of this example, we have extracted the essential
part of it, shown in figure A.3. The surrounding looping construction that is
necessary for the example to work is shown on figure A.4 on the next page, and
resembles that of the last example. That will not be described in further detail.

The surrounding construction makes sure that the branching will get three
tokens with value 0, 0 and 1 before having to output anything. If the nop is
present, the branching will then output a single token with value 1, and if it is
omitted, it will deadlock.

The first token will go through the left branch and get stuck just before the
add node. The second token will also go through the left branch, but because
of the first token, the Merge cannot fire. Therefore, a token will be stuck on
its control edge. The third token will reach the Branch and the Fork before
its control. Now, if the nop is omitted, the token from the second iteration
will disallow the Fork to fire, hence preventing the Branch from ever receiving a

71

Figure A.4: An edge may not begin inside a branching and end outside it.

72 Malformed CDFGs

token on the control edge, deadlocking the CDFG. Had the nop been there, on
the other hand, the Fork could fire, letting the Branch fire in turn. This would
output a token on the right edge, which would give the add node its second
input. This would cause it to fire, causing it to output a token.

The I/O path may only be initiated by a Param node and only be termi-
nated by a Return node

In the CDFG in figure A.5 on the facing page, the channels a and b are exter-
nal channels, and the I/O path has been voided after the Recv on channel b.
The CDFG will loop forever and receive on the channels. The CDFG might
in the first iteration receive on channel a and not on b, leaving a token on the
input edge to b’s Recv. The loop will continue to next iteration, and if the
nop is omitted, the Fork in the body cannot fire because of the stranded token,
freezing the CDFG until the external actor sends on b. If, however, the nop

was there, the Fork could fire, making the Recv on a capable of firing. This is
different externally visible behaviour, as explained in section 5.3.

This requirement is why we have Stop node instead of terminating the I/O path
with a Void node when translating a stop statement.

If the I/O path has been forked, it may only be merged by a Sync node.

This example is similar to the CDFG in figure 8.1 on page 53, as the problem
with the nop arises from a pipelining effect on the I/O path. In figure A.6 on
page 74, channels a and b are external. The I/O path is forked and the two
resulting paths meet again in each of the Entry nodes, which violates the rule.

When the Param node fires, a token will arrive on each Entry node. The left
token will propagate freely until the Recv on channel a, which may fire, leaving
a token before the Recv on b. The token on the right will propagate through
the Entry/Exit pair, through the left Entry node’s right input and end up before
the Recv on channel a. We would now have a token before each Recv. Now, if
the nop was omitted, the Recv on a would not be allowed to fire because of the
token on its output edge, freezing the CDFG until the external actor sends on
b. If the nop was there, however, there would be room for it to fire, and as with
the last example, this changes the externally visible behaviour.

73

Param for CDFG 1

0 1
EN

Return for CDFG 1

EX
0 1

recv(a)

recv(b)

(nop)

1

Figure A.5: The I/O path may only be initiated by a Param node and only be
terminated by a Return node.

74 Malformed CDFGs

Figure A.6: If the I/O path has been forked, it may only be merged by a Sync node.

75

B Further details on MapStructure

This section will follow up on the description of MapStructure begun in section 8.2.3.

When called, MapStructure will replace every occurrence of some structure in a single
CDFG with new nodes. Which constructs to match upon are defined by providing
MapStructure a list of structures that each has the following definition:

structure ::= (id, interface, element)

element ::= element ∨ element

| element ∧ element

| edge = edge

| node(hint, f)

| struct(id, interface)

The grammar will be described by explaining VoidForks and SimplifySlice.

The structures are identified by ids, and when calling MapStructure an id is given
which is the main structure to match upon. MapStructure matches on both edges
and nodes, and a matching is a specification of which edges and nodes that has
been matched upon. The matching maps match-ids to the edges and nodes, where a
match-id is a number specified by the caller, so he can easily extract specific elements
of his match.

B.1 Explaining the VoidForks specification

A simple structure is the one used by VoidForks:

(

s, [], node(none, fvoid) ∧ node(output(e), ffork)
)

s is simply the id of the only structure used. The interface is only used with multiple
structures so it is an empty list here, but we discuss it in the SimplifySlice example.
The structure matches on two nodes, which are matched upon by two functions fvoid

and ffork respectively. These functions are from M → N → (M ∪ none), where
M is a matching, N is the set of nodes, and none here denotes that no match was
possible. The first argument is the partial match that has been performed so far and
the second is the node which is to be tested to match. If the node was satisfying with
regard to the partial matching, the function returns the original matching along with
any necessary updates, and otherwise it returns none. The fvoid will only accept a
Void node and the ffork will only accept a Fork node whose left or right output is the
Void just matched.

76 Further details on MapStructure

There are three ways of specifying the relationship between the nodes to be matched
upon:

• The node function can compare the edges of the node given, to the edges and
nodes already matched upon in the partial matching.

• A hint can be given as in the example where the Fork match has the hint
output(e).

• Two match-ids to edges can be set equal, which means that if only one of the
match-ids maps to an edge, the other will be set to map to it as well, and if
they both map to an edge, it must be the same edge.

The first can always be used and can be arbitrarily complex, as any function can be
given. However, it is slow as MapStructure will in the worst case try all nodes in the
CDFG.

When it is possible, using hints is much more efficient. Apart from none that just
means no hint, there are two possibilities, input(e) and output(e). The former means
that the match-id e maps to an input edge to the node to look for, and the latter
means the e maps to an output edge. This is of course only sensible if e maps to
something in the partial matching, so in VoidForks, the fvoid must be sure to update
the matching with a mapping for e before we try matching on ffork. We are looking
for a Fork with an output into a Void, so when fvoid is given a Void node, it will map
e to the input of that node. MapStructure will therefore only try to give the node at
the other end of e to ffork, and only if this is a Fork, the matching is a success. This
means that the possible nodes to try is limited to just one.

The third option is mostly used with recursive structures and we will get back to that
in the SimplifySlice example.

When MapStructure finds a matching, it will exchange the matched nodes with new
nodes. The new structure is found by calling a function given when MapStructure
was called, that takes the matching and returns a list of new nodes. The point of this
is that the replacement nodes often depends on what was matched; e.g. in VoidForks,
the input, output, and type of the nop to replace the nodes with depends on the
Fork and Void matched upon. The function can easily extract these input and output
edges because the ffork function added mappings from specific match-ids to them.
The type can be easily extracted as well, because MapStructure supports that some
arbitrary auxiliary data is collected during the matching. So when ffork matches a
Fork, it adds the type to the matching as auxiliary data.

B.2 Explaining the SimplifySlice specification 77

smain =⇒ sback

eenter → nil eenter → nil
emid → 3 eexit → 3

sback =⇒ smain

eenter → 1
eexit → 3

eenter → 1
emid → 3

Figure B.1: The left is an example of how smain can transfer mappings to edges to
sback when the latter is called, and the right is how the former receives mappings
when sback has found a successful match.

B.2 Explaining the SimplifySlice specification

A more complex example is the three structures for the SimplifySlice:
(

smain, [], node(none, fmain)

∧ struct(sback, [eenter , emid]) ∧ struct(sforth, [emid2, eexit])
)

(

sback, [eenter , eexit], node(output(eexit), fback)

∧ (struct(sback, [eenter , emid]) ∨ eenter = emid)
)

(

sforth, [eenter , eexit], (node(input(eenter), fforth) ∧ struct(sforth, [emid, eexit]))

∨ emid = eexit)
)

The purpose of the main structure smain is to match a chain of slice and nop nodes,
with at least one slice in it. This is done by matching a single slice node n with
fmain, and then “calling” the structure sback followed by the structure sforth. The
former will go backwards from n and match at least one slice or nop, but as many as
possible. The latter will go forwards from n, doing the same, but may match none.

Each called instance of a structure will have its own matching. This way we can sup-
port recursive structures, as each instance of a structure will have its own mappings
from match-ids to matched elements. To traverse the matchings, each also contains a
mapping from struct-ids to sub-structures; e.g. the matching from smain will contain
a mapping from sback to that structure’s matching.

The interface of a struct or a call to a struct, is simply a list of match-ids and is used
to share mappings to edges between calling and called structures. The concept of the
interface resembles the way parameters in Prolog functions can both be arguments
and return values.

When a structure is called it starts with an empty matching but for a few match-ids
mapped to edges; these are the match-ids given in the interface of a structure. The
calling structure has a list of match-ids and will transfer their mappings pairwise to
the called structure’s list of match-ids, as depicted on the left part of figure B.2.

The interface is also used for transferring mappings back. When the called structure
has found a successful match, the calling structure will receive those of the mappings

78 Further details on MapStructure

from match-ids that are in the interface. This is depicted on the right side of figure
B.2.

The structure sback finds the entire chain of slices and nops whose last output was
eexit. This is done by first matching on a node whose output is eexit with the function
fback. It will match on a slice or a nop, and when successful it maps emid to that
node’s input. Then it tries to call itself recursively with an interface that makes the
called version find the chain of slices and nops whose last output was emid. If this
fails it is because we are already at the chain’s end, and we specify that eexit should
map to what emid maps to. This way, we find the other end of the chain which is
transferred back via the interfaces to the original smain caller.

The structure sforth is almost the same, except that it will succeed even though no
nodes are matched; i.e. its eenter was already at the end of the chain. This is because
we wish to find all chains of length two or more, and we are already guaranteed one
in each of smain and sback.

When smain has been matched the mapping function is called, and it should exchange
the chain of nodes with a single slice whose input and output will be what eenter and
eexit maps to in the smain’s matching. A slice is parameterised with a type and
an offset, and to find these two values for the replacement slice, we have to look
at all the slices of the chain. As was utilised in VoidForks, MapStructure supports
arbitrary auxiliary data in the matchings, so we can collect this information while
matching, even when calling sub-structures. Therefore, we carry around type and
offset information in the matching and the functions fmain, fback, and fforth simply
update the auxiliary data when matching a slice. The mapping function then simply
extract these data.

B.3 Calling MapStructure

When called, MapStructure will replace every occurrence of the main structure in a
single CDFG with the output of the mapping function.

MapStructure differs between two cases of mappings: whether or not the mapping
has the property that the replacement structure can never be part of a later matching.
Mappings with this property, of which all three of our optimisations belong, has the
advantage that MapStructure does not need to search from the beginning each time it
has performed a mapping. If the replacement structure might introduce nodes that
were a part of later matching, this might not be true, and MapStructure, lacking
more advanced techniques, restarts the search every time it has performed a single
mapping.

As MapStructure supports arbitrary matching node functions, it cannot analyse
whether the mapping has this time-saving property or not, so it is given as a flag
when MapStructure is called. If MapStructure is told that the mapping has this

B.3 Calling MapStructure 79

property when it actually hasn’t, the mappings will still be applied but will only find
matchings that consists of nodes that were in the original CDFG.

80 Guide to the source code

C Guide to the source code

If you have not already received our code by email, please request a copy by emailing
us at s042078@student.dtu.dk and s042282@student.dtu.dk.

It is written in the Standard ML programming language and has been tested with
the SML/NJ and MLton compilers. This section first walks through the steps of
compiling and running our source, then lists the purpose of every file in it.

C.1 Running the compiler

Although the compiler itself is written in portable SML, the build system and test
suite are written for UNIX only, so running them on Windows requires either Cygwin
or a lot of work. We have tested it on Linux and Solaris. The Handshake Solutions
compiler only runs on Linux.

Our code has a fair number of dependencies, although most are optional:

• Either SML/NJ or MLton is required, although the source should be portable to
any other Standard ML compiler that implements the SML/NJ utility library.
Compiling with SML/NJ is faster, but the resulting code is much slower than
with MLton. We have tested our code with SML/NJ versions 110.58 and 110.65
and MLton version 20051202.

• Perl is required for interpreting the scripts for the automated test suite. If the
Handshake Solutions compiler is invoked on a remote machine, Perl must also
be installed there. We have tested on version 5.8.1 and 5.8.8.

• The Graphviz suite, specifically the dot program, is required for generating
graphs to visualise the CDFGs. We have tested on version 2.12.

• The Ghostscript package, specifically the gs program, is needed to lay out the
output of Graphviz as a multi-page PDF. If this is not installed, one can run
dot manually after splitting the output of our tool hastedot into multiple files.
We have tested on ESP Ghostscript 815.04.

• A C compiler is needed to compile the C parser, which is part of the test suite.
We have tested on GCC 4.2.0.

• The Handshake Solutions toolchain “TiDE” is assumed to be present by our
test script, but it can be disabled with the -o switch. We have tested on version
5.1.0.

To get started running our compiler, extract our source code:
unzip imm-bsc-2007-08.zip

Now change to our source directory:

C.1 Running the compiler 81

cd imm-bsc-2007-08/src

The Makefile is set up to compile with SML/NJ per default. If compiling with MLton,
edit the Makefile and uncomment the appropriate three lines as per the instructions.
Now the code can be compiled with:
make

If there were no errors, try to run the test script in off-line mode:
./runtests -o |perl

This should give output similar to that of figure 9.2 on page 61.

If you have access to the Handshake Solutions compiler, copy the example remote
invocation script to htenv:
cp htenv.example htenv

Now edit htenv to invoke the Perl interpreter on the machine where the Handshake
Solutions compiler is installed. If this is the local machine, the second line should
simply be exec perl. If it is a remote machine, ensure that the method of remote
invocation does not require typing a password interactively; this can be done with
ssh-agent. Now the full test suite can be run with
./test

Besides running the test suite, our various tools can also be invoked directly. To
invoke a tool t, build it with make t, then invoke it as:
./t <input file >output file

The following tools are available:

hastecdfg: Compiles a Haste source file to a CDFG source file.

hastesim: Compiles a Haste source file to a CDFG and simulates it. If the main
procedure in that file has any input channels, hastesim takes an argument
for each channel containing space-separated data. For example, the greatest
common divisor program that is part of our test suite takes two arguments and
is simulated as:
./hastesim "111 123 42" "22 45 56" <t/gcd.ht

This should print
1 3 14

hastepdf: Produces a PDF file from Haste code, where each page is the CDFG of
one procedure or function. Requires Graphviz and Ghostscript to be installed.

hastedot: Compiles a Haste source file to an input file for the Graphviz dot utility,
except that a program with multiple procedures will become multiple digraphs,
which dot cannot handle in one file. Splitting it into multiple files can be done
manually, or the supplied Perl script multidot.pl can be used. This should
mostly be preferred over hastepdf if you do not have access to Ghostscript or
do not desire a PDF as output.

cdfgdot: Like hastedot, but takes a CDFG source file as input.

82 Guide to the source code

cdfgsim: Like hastesim, but takes a CDFG source file as input.

through-hurry: Translates a Haste source file into Hurry and back again, out-
putting the resulting Haste code.

deparse: Parses a Haste source file and deparses it. It should give the exact same
program back except for minor details such as whitespace.

debug-hurry: Takes a Haste source file as input and gives three different outputs,
concatenated: the same as deparse, the Hurry translation of the file, then the
same as through-hurry.

Note that the behaviour of all the tools is unspecified for invalid Haste programs.
We assume that the user will check his program for validity with the official Haste
compiler before using ours. This choice was made because the focus in this project
is on the results and models rather than ease of use.

C.2 Exploring the source files

The source archive contains the following at the top level:

bugreport/: A copy of a bug report we sent to Handshake Solutions concerning three
bugs in their compiler. Their reply confirming our findings is also in there.

c-parser/: The C parser along with two sample CDFG files. The make test target
verifies that parsing is successful on a sample CDFG. The parser produces no
output except for an indication of success. See section 3.

src/: The source files for our compiler. The purpose of each file is briefly described
in the following sections.

report.pdf: This report.

C.2.1 SML sources

CDFG.sml: The data types defining CDFG along with utility functions acting on
those types. See section 5.4.

CDFGDot.sml: Main function for the cdfgdot tool.

CDFGSim.sml: Main function for the cdfgsim tool.

ClearCDFG.sml: Optimisation that removes CDFGs that are never called. See sec-
tion 8.2.5.

C.2 Exploring the source files 83

Compile.sml: Utility function to compile the Haste program given on standard input
into a CDFG.

DeadCode.sml: Optimisation for dead code elimination. See section 8.2.2.

DebugHurry.sml: Main function for the debug-hurry tool.

DeparseCDFG.sml: Turns an in-memory CDFG program into a string.

DeparseHaste.sml: Turns an in-memory Haste program into a string.

DeparseHurry.sml: Turns an in-memory Hurry program into a string.

DotCDFG.sml: Turns an in-memory CDFG program into a source file for Graphviz.
The four booleans near the top can be changed to tune the output for debugging.

Globals.sml: Utility functions and aliases used from many of the other files.

Haste.sml: The data types defining the Haste concrete syntax tree. See section 2.2.

HasteCDFG.sml: Main function for the hastecdfg tool.

HasteDot.sml: Main function for the hastedot tool.

HastePDF.sml: Main function for the hastepdf tool.

HasteSim.sml: Main function for the hastesim tool.

Hurry.sml: The data types defining Hurry along with utility functions acting on
those types. See section 4 and appendix E.

Lexer.lex: Lexer for Haste to be compiled with the ml-lex lexer generator. The
newer ml-ulex can also be used in compatibility mode.

LexerCDFG.lex: Lexer for CDFG to be compiled with the ml-lex lexer generator.
The newer ml-ulex can also be used in compatibility mode.

MLtonRun.sml: Wrapper used for our programs when compiled with MLton.

MapStructure.sml: Generic utility for matching a pattern of nodes and edges, then
replacing them. Used by optimisations. See appendix B.

MergeChannels.sml: Optimisation that removes channel communication when pos-
sible, and substitute it with edges. See section 8.2.4.

NJRun.sml: Wrapper used for our programs when compiled with SML/NJ.

Optimise.sml: Applies all of our optimisations to a CDFG in the correct order.

Parse.sml: Contains a function that returns a Haste syntax tree when given an input
stream. This wraps the invocation of the lexer and parser together.

84 Guide to the source code

ParseCDFG.sml: Contains a function that returns a CDFG data structure when given
an input stream. This wraps the invocation of the CDFG lexer and parser
together.

Parser.grm: Declarative specification of the Haste grammar. The ML-Yacc tool will
generate a parser from this.

ParserCDFG.grm: Declarative specification of the CDFG source format. The ML-
Yacc tool will generate a parser from this.

RemoveNop.sml: Optimisation that removes nop nodes from a CDFG. See section
8.2.1.

RemoveTrivialSlice.sml: Optimisation to remove slice nodes that have no effect.
See section 8.2.3.

SimCDFG.sml: CDFG simulator. Contains a function that takes a CDFG program
and a list of integers for each of its input channels, then returns a list of integers
for each of its output channels.

SimplifySlice.sml: Simplifies a chain of slice nodes into a single slice node.

TestDeparseHaste.sml: Main function for the deparse tool.

ThroughHurry.sml: Main function for the through-hurry tool.

ToCDFG.sml: Translation from Hurry to CDFG. See section 6.

ToHaste.sml: Translation from Hurry to Haste. Used in testing Hurry as outlined
in section 9.

ToHurry.sml: Translation from Haste to Hurry. See section 4 and appendix E.

VoidForks.sml: Optimisations replacing Fork nodes with nop if one of their edges
leads into Void.

C.2.2 Other sources

diplom/: Directory containing student programs from course 02204.

malformed/: Directory containing the hand-written malformed CDFGs described in
appendix A along with a short readme for how to use each of them and interpret
the output they give when simulated with cdfgsim.

pdfs/: Directory containing a PDF file for each of our unit tests, showing how its
CDFG looks.

t/: Directory containing all of our unit tests

C.2 Exploring the source files 85

Makefile: Rules for compiling our source code. Change the lines near the top to
switch between SML/NJ and MLton.

build-mlton.sh: Helper shell script for building a program with MLton.

build-nj.sh: Helper shell script for building a program with SML/NJ.

htenv.example: Template for remote invocation of Handshake Solutions compiler.
Used by the test script as described in appendix C.1.

multidot.pl: Helper program for creating a multi-page PDF file from the output of
our hastedot tool. Use hastepdf instead of this.

recvtests: Perl script that runs on the (possibly) remote computer containing the
Handshake Solutions toolchain. Do not invoke this directly.

runtests: Perl script that runs the test suite. It is usually not invoked directly, but
that can be done as ./runtests -o |perl. Usually it is called from test.

test: Small wrapper script for passing an argument to make tests. This is the
entry point of the test suite when properly configured.

86 Limitations in the compiler

D Limitations in the compiler

This section will describe all Haste constructs that we do not support in our compiler.
They are divided into the features we do not support in Hurry and the ones we do
not support in CDFG.

D.1 Limitations in the translation from Haste to Hurry

Hurry was designed as the simplification of Haste before the actual translation to
CDFG. This made it naturally suited to be the step where we left out the features of
Haste that we would not support. In the following we will give a complete list of all
features missing from Hurry.

We chose not to support direct I/O statements that deals with wires rather than
handshake channels. They are not naturally represented in a CDFG. Besides, when
using these, the Haste programmer most likely requires syntax-directed compilation
in order to get the timing right. It is our intention that the timing-sensitive I/O part
of a design is maintained in separate files that are not touched by our compiler, so
we do not support keywords such as wire, probe, wait, edge, and sel.

The sample expression is also not supported. Although sample can be used for other
purposes than direct I/O, such use is discouraged by the Haste manual.

The import keyword used to spread the program over multiple files is unsupported.
This does not add power to the language, and it is only useful for large designs.
However, it is not troublesome to add to the compiler at a later time.

Haste has some special features that only apply to the top-level main procedure
[Peeters05], and these are not supported in Hurry, simply because it would be time-
consuming to support them.

Output parameters with tuple types are not fully supported in procedure calls. A
procedure with the declaration p : proc (a !var <<int,int>>)where int is some
range type would normally be called with p(z) where z is of type <<int, int>>, but
Haste also supports calls like p(<<x,y>>) where both x and y is of type int. This
last call is unsupported due to the simplification of the type system.

Arrays of any kind are unsupported. There are possible solutions on how to support
arrays in CDFG, e.g. the one described in [Stok91], but it would be very time-
consuming to implement so we chose to omit them. It should be possible to later
add support for them within our compiler framework, although this would require an
extension of Hurry and probably also CDFG.

Furthermore, the following list of features are not supported due to time-constraints
and would require an extension in Hurry to be supported:

• Conditional initialisation of variables as in x : var int := 0 if y.

D.2 Limitations in the translation from Hurry to CDFG 87

• func and proc parameters for procedures.

• Global variables

• Broadcast channels

• Haste supports that the export subroutine be a function or a procedure, but
we only support the latter.

Haste supports very complex manifest expressions; i.e. expressions whose value must
be computed at compile time. To limit the scope of the project, we chose to fully
support only the integer operations. Booleans are supported in the way that false

is regarded as 0 and true is 1. As manifest booleans are mostly used in case, this
works for most cases, but e.g. the expression true + true, if evaluated at compile
time, will return 2, which is seldom what the programmer wanted. All other manifest
expressions are unsupported. Unfortunately, this means that we do not support case
with a tuple expression as condition. Supporting this would require a little reworking
in the conversion to Hurry, but it has no consequences for the design of Hurry.

Finally, the following list of features are not supported, simply due to time-constraints,
but it would only require changes in the conversion to Hurry to support:

• Descending selection of tuples which reverses the order of elements as in x.7..0

• Calling a procedure and specifying parameters by name

• Enumerator types

D.2 Limitations in the translation from Hurry to CDFG

There are a few features that are supported in Hurry but unsupported in CDFG.

As discussed in section 6.1.5, parallel read/write and parallel write/write to a variable
is not supported. In section 7.6 we discuss a possible solution to how this could be
supported without extending our CDFG language or semantics.

Procedure parameters declared as I/O are converted into two: an In and an Out.
This changes the signature of the procedure, but for all internal procedures it is
not a problem as calls are changed accordingly. However, for the export procedure,
it is a problem. The CDFG data structures do not contain enough information to
reconstruct the signature if a later tool could translate CDFG to Haste, so it would
require an extension to CDFG to support.

All arbitration flags are discarded. This is discussed in section 6.1.6.

88 Details on Hurry

E Details on Hurry

This section contains some more details on the conversion to Hurry. It is not required
for the understanding of the report, but is interesting for a deeper understanding of
our conversion or the source code. It continues the description from section 4.

Haste discerns between declarations and definitions, while Hurry only has declara-
tions. This is because a definition in Haste is comparable to a macro in C and similar
languages: it only exists to save the programmer from typing the same text many
times. In the translation to Hurry, we simply expand the definition whenever it is
referenced.

Although we do not have tuples in Hurry, we need the ability to group variables
and channels in assignments and channel communication statements. A location, i.e.
something that can be assigned to, is represented as a tree of tuples and casts of
identifiers in Haste, and the same is true for a channel reference. Because casts are
allowed anywhere in channel references and locations, complicated statements like

a cast <<s4,s4>> ? <<x, <<y,z>> cast s16>>

are possible in Haste. If a is an 8-bit channel while x, y, and z are 8-bit signed
variables, the above is a valid receive statement. It performs a read on channel a,
which is split into two 4-bit signed numbers. The first of those (the low bits) are
sign-extended to 8 bits by the implicit fit around the ? sign and assigned to x. The
second number (the high bits) is sign-extended to 16 bits and then distributed with
the lower 8 bits in y and the upper 8 bits in z. Thus z will always be either all ones
or all zeroes.

As the above example shows, Haste allows elaborate bit manipulations in receive
statements, and we need to support this in Hurry too. Fortunately, it is possible
to simplify the receive statement by flattening the trees on both sides into lists and
moving the resulting simple casts as far out as possible. The example then becomes:

<<a>> cast <<s4,s4>> ? <<x,y,z>> cast <<s8,s16>>

In general, it is possible to simplify every receive statement in Haste to the form
<<a, b, . . .>> cast <<t1, . . . , tN>> ? <<x, y, . . .>> cast <<T1, . . . , TN>>

where all types t∗ are bit-widths that are either signed or unsigned, and T∗ are bit-
widths. This is how we represent it in Hurry. The assignment and send statements can
be represented without casts on both sides because their right side is an expression,
where we can insert an explicit fit rather than using the implicit one around the
assignment or send operator.

The if and case statements of Haste have been simplified so that the else clause is
mandatory rather than optional. An absent else clause is translated to else skip

or else stop respectively. The else clause of the case expression in Haste is also
optional because it is not needed when all possible inputs are accounted for in the
branches. Hurry makes it mandatory. When translating a case expression with no
else clause, we replace the final branch with else.

89

References

[Peeters05] A. Peeters, M. de Wit. Haste Manual, Version 3.0. Handshake Solu-
tions 2005
http://handshakesolutions.com/Technology/Haste/Article-14902.html

[DeMicheli94] G. De Micheli. Synthesis and optimization of digital circuits. McGraw-
Hill, 1994

[Brage93] J.P. Brage. Foundations of High-Level Synthesis System. Ph.D. thesis,
Danmarks Tekniske Højskole, 1993

[Stok91] L. Stok. Architectural Synthesis and Optimization of Digital Systems.
Ph.D. thesis, Technische Universiteit Eindhoven, 1991

[Nielsen05] S.F. Nielsen. Behavioral synthesis of asynchronous circuits. Ph.D. the-
sis, Technical University of Denmark, 2005.

[Nielsen07] S.F.Nielsen, J.Sparsø and J.Madsen. Behavioral Synthesis of Asyn-
chronous Circuits using Syntax Directed Translation as Backend. Sub-
mitted to IEEE Transactions on Very Large Scale Integration, Nov
2006.

[Dennis84] J.B. Dennis. Models of Data Flow Computation. IEEE Computer So-
ciety CompCon 1984, pp. 346-354.

[Bardsley98] A. Bardsley. Balsa: An Asynchronous Circuit Synthesis System.
M.Phil. thesis, University of Manchester, 1998

[Sparsø01] J. Sparsø and S. Furber (eds.). Principles of asynchronous circuit de-
sign - A systems perspective. Kluwer Academic Publishers, 2001

[Bojsen93] P. Bojsen. Formalizing Data Flow Graphs. Ph.D. thesis, Technical Uni-
versity of Denmark, 1994

[Dragon] A.V. Aho, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986

[Appel98] A.W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998

[Stallman07] R.M. Stallman and the GCC Developer Community. GNU Compiler
Collection Internals. Free Software Foundation, 1988-2007
http://gcc.gnu.org/onlinedocs/gccint.pdf

[Kavi86] K.M. Kavi, B.P. Buckles, U.N. Bhat. A Formal Definition of Data
Flow Graph Models. IEEE Transactions on Computers, 1986, vol C-35
no. 11, p. 940-948,

	1 Introduction
	1.1 Organisation of this report
	1.2 Related work

	2 Introduction to Haste
	2.1 Factorial in Haste
	2.2 Internal Representation

	3 Compiler design
	4 The intermediate language Hurry
	4.1 Factorial in Hurry
	4.2 Internal representation
	4.3 Translation from Haste to Hurry
	4.4 Limitations in Hurry and the translation

	5 Control-data flow graphs
	5.1 CDFG nodes
	5.2 Factorial in CDFG
	5.3 Observable behaviour
	5.4 Internal representation

	6 Translation from Hurry to CDFG
	6.1 Base language
	6.2 I/O statements
	6.3 Subroutines

	7 Design choices
	7.1 Forking of values
	7.2 Constants
	7.3 Complexity of nodes
	7.4 Representing channel communication
	7.5 Representing procedures
	7.6 Representing parallel read/write

	8 Transformations on the CDFG
	8.1 Well-formedness
	8.2 Implemented optimisations

	9 Tests
	9.1 Larger programs
	9.2 CDFG simulator

	10 Future work
	11 Conclusion
	A Malformed CDFGs
	B Further details on MapStructure
	B.1 Explaining the VoidForks specification
	B.2 Explaining the SimplifySlice specification
	B.3 Calling MapStructure

	C Guide to the source code
	C.1 Running the compiler
	C.2 Exploring the source files

	D Limitations in the compiler
	D.1 Limitations in the translation from Haste to Hurry
	D.2 Limitations in the translation from Hurry to CDFG

	E Details on Hurry
	References

