
Modeling and Simulation of
Glucose-Insulin Metabolism

Esben Friis-Jensen (s042244)

Kongens Lyngby 2007
IMM-Bachelor-2007-

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-Bachelor: ISSN

Preface

This B.sc thesis was carried out at Informatics and Mathematical Modelling
department, The Technical University of Denmark, under supervision of John
Bagterp Jørgensen.

ii

Summary

Diabetes is a widespread disease in the western world today. Many researchers
are working on methods for diagnosing and treating diabetes. A tool used for
this is mathematical models of the blood glucose and insulin kinetics.

In this thesis one of the models, Bergman’s minimal model is described trough
derivation and simulations. It is a model consisting of a glucose and an insulin
kinetics part. The part, describing glucose kinetics has the problem that it
overestimates glucose effectiveness SG and underestimates insulin sensitivity
SI , which is interpretation parameters of a test called the IVGTT (Intravenous
Glucose Tolerance Test).

Modifications and additions which could be done in order to describe the glucose
and insulin kinetics more thoroughly is described. Based on Bergman’s minimal
model, two coupled models are proposed. A coupling between the two basic
parts of Bergman minimal model and a coupling between the two modified parts
of Bergman’s minimal model. The basic coupling is called the original model. It
can be used to describe the IVGTT for a healthy and a glucose resistant subject.
Through calculation and simulation it is shown that the original model has a
equilibrium problem, when a parameter p5 is less than the basal concentration
Gb.

The modified coupling, which is able to describe the glucose-insulin system for
a type 1 diabetic on treatment is tested for reactions to insulin injections and
change in basal insulin production. A PID controller,controlling insulin delivery
is implemented, and it is shown how it can be used with the modified model, in
order to test it for meal disturbance.

iv

The final conclusion of the thesis is that both coupled models have problems, but
they can be used to approximately simulate the blood glucose-insulin system, if
you are aware where the problems occur.

Resumé

Diabetes er en udbredt sygdom i den vestlige verden i dag. Mange forskere
arbejder derfor p̊a at lave metoder til diagnose og behandling. Et værktøj brugt
til dette er matematiske modeller, som beskriver blod glukose-insulin systemet.

I denne tesis bliver en af disse modeller, Bergman’s minimale model, beskrevet
via udledning og simulering. Modellen best̊ar af en glukose og en insulin kinetik
beskrivelse. Den del, som beskriver glukose kinetiken har det problem at den
overestimerer glukose effektivitet SG og insulin følsomhed SI , som er fortolkn-
ingsparametre af en test kaldet IVGTT (Intravenøs glukose tolerance test).

For at kunne beskrive glukose og insulin kinetikken bedre, bliver der foresl̊aet
udvidelser og modificeringer af modellen. Baseret p̊a Bergmans minimale model,
foresl̊as to sammenkoblinger. Den ene er en kobling mellem de basale dele af
Bergmans minimale model og den anden er en kobling mellem den de udvidede
dele af Bergmans minimale model. Den basale kobling bliver kaldt den originale
model. Den kan bruges til at beskrive IVGTT’en for et rask og et glukose
resistant subjekt. Gennem beregning og simulering viser det sig, at den originale
model har et ligevægts problem n̊ar en bestemt parameter p5 er mindre end den
basale koncentration Gb.

Den udvidede kobling, som kan bruges til at beskrive type 1 diabetikere under
behandling, bliver testet for reaktioner p̊a insulin indsprøjtninger og ændringer
i den basale insulin produktion. En ’PID controller’, som kontrollerer insulin
produktionen, bliver implementeret. For at vise hvordan den kan bruges med
den udvidede model, med hensyn til test af forstyrrelse forsaget af måltider.

Den endelige konklusion p̊a denne tesis er, at begge sammenkoblinger har prob-

vi

lemer, men hvis man tager hensyn til problemerne,kan modellerne blive brugt
til, at approksimativt simulere blod glukose-insulin systemet.

Acknowledgements

I would like to thank my supervisor John Bagterp Jørgensen, for guidance during
the creation of this thesis and my family and girlfriend for support during the
process.

viii

Contents

Preface i

Summary iii

Resumé v

Acknowledgements vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 2

1.3 Thesis Structure . 2

1.4 The Blood Glucose-Insulin System 2

1.5 Diabetes . 3

1.6 Testing . 5

x CONTENTS

2 Bergman’s Minimal Model 9

2.1 Introduction to the Model . 9

2.2 The Model . 10

2.3 Open-loop,Closed-loop and Semiclosed-loop models 26

3 U(t)-How it can be used 29

3.1 The U(t) function . 29

3.2 The Open Loop Model . 29

3.3 The Closed Loop Model . 30

3.4 The Semi-Closed Loop Model . 34

4 Implementation in Matlab 35

4.1 Introduction . 35

4.2 Choice of Solver . 35

4.3 Discrete events . 36

4.4 GLUSIM . 37

4.5 INSSIM . 38

4.6 BERSIMU . 38

4.7 ESIM . 38

5 Simulations and Discussion 41

5.1 Introduction . 41

5.2 Simulations with the Glucose Minimal Model 41

5.3 Simulations with the Insulin Minimal Model 46

CONTENTS xi

5.4 Simulations with The Original Model 47

5.5 Simulations with The Modified Model 50

5.6 Discussion about the coupled models 59

6 Conclusion 63

A Matlab Programs 65

B ESIM - A SIMULATOR 105

B.1 Introduction . 105

B.2 Using Esim . 105

xii CONTENTS

Chapter 1

Introduction

1.1 Motivation

One of the biggest diseases in the western world today is diabetes. Many millions
suffer from the disease and the number is growing. The grow is mostly due to
the lifestyle in western world, with lots of unhealthy food. Because this is a large
problem many researchers try to find methods for diagnosing and treating the
disease. One of the approaches is to design a mathematical model describing the
glucose-insulin system. Diabetes is a malfunction in exactly this system. These
mathematical models can be used to diagnose, but also to create simulators to
test different treatment types. One of the mathematical models describes the
glucose-insulin system with a few number of parameters. This mathematical
model is called Bergman’s minimal model and was introduced in the eighties
[13]. It is a model in two separate parts one describing the glucose kinetics and
one describing the insulin kinetics. It is this model that will be described and
analyzed in this thesis.

2 Introduction

1.2 Problem Statement

In this thesis Bergman’s minimal model’s two parts will be analyzed for problems
and possibilities. Modifications and additions will also be done. Then two
coupled models will be proposed based on Bergman’s minimal model. The
original models and the coupled models will be implemented in simulators in
order to show the functionalities and problems. All this is to find out whether
or not the two coupled models could be used as trustworthy simulators for
the blood glucose-insulin system. Such a simulator could be used for different
purposes e.g testing of model predictive controllers [10]

1.3 Thesis Structure

Chapter 1-Introduction An introduction to the problems, which motivates
this thesis.

Chapter 2-Bergman’s Minimal Model A description of Bergman’s Mini-
mal Model and a proposing of two coupled models.

Chapter 3-U(t)-How it can be used A description of the possibilities with
one of the coupled models. The one describing a type 1 diabetic. In
this chapter a PID controller controlling the exogenous insulin infusion is
described.

Chapter 4-Implementation Description of the implementation of the models
in Matlab

Chapter 5-Simulations and Discussion Simulations showing the possibili-
ties and problems of the different models. And a discussion about the use
of the proposed coupled models.

Chapter 6-Conclusion Conclusion of the thesis

1.4 The Blood Glucose-Insulin System

The glucose-insulin system is an example of a closed-loop physiological system.
A healthy person, normally has a blood glucose concentration at about 70 −
110mg

dL . The glucose-insulin system helps us to keep this steady state. In
figure 1.1 a simple description of the system is shown. Most of the time a
healthy person is in the green area, having normal blood glucose concentration.

1.5 Diabetes 3

Figure 1.1: The blood glucose-insulin system

If the person then ingest additional glucose to the system e.g via a meal, the
person moves to the red area, with a higher blood glucose concentration. When
this happens a signal is sent to the pancreas, which β cells react by secreting
the hormone insulin. This insulin increase the uptake of glucose by the cells,
liver etc. and brings the person back in the green area. If the blood glucose
concentration goes below the normal level, the person is in the blue area. This
could happen as a response to exercise, which increase the glucose uptake. When
the person is in the blue area with low blood glucose concentration a signal is
also send to the pancreas. The pancreas α cells react by releasing glucagon.
This glucagon affects the liver cells to release glucose in to the blood until the
person is back in the green area again [2]. This is a very simple description
of a more complicated system. But it is this simplistic way of explaining the
metabolism, which will be presented in a mathematical model in this thesis.

1.5 Diabetes

Diabetes is a large problem today. According to the Diabetes Atlas 2003, 194
million people suffer from the disease. Diabetes is not a single disease, but
actually many. The connection between the deceases is that they are caused
by a disfunction in the blood glucose-insulin system. If not treated, diabetes
can lead to heart diseases, blindness and other malfunctions. The two most
frequently seen diabetes types are diabetes type 1 and diabetes type 2.

4 Introduction

1.5.1 Diabetes Type 1

When you suffer from type 1, the β cells are destroyed by an auto-immune
reaction in the body. This results in a very low insulin production (down to
10% of normal). At this production level the insulin cannot decrease the blood
glucose level fast enough, when the person eats. The blood glucose rises even
more because another missing function of insulin, namely the function to stop
the production of glucagon, when the blood glucose level is high. All this results
in a very high blood glucose level, if not treated. If the level goes beyond 180mg

dL ,
some of the glucose is released with the urine. The symptoms of diabetes type
1 are tiredness, hunger and loss of weight. Today you treat this type of diabetes
by injecting insulin into the body, by exercising and keeping a healthy diet. A
person suffering from diabetes type 1, is dependent of getting insulin injected
because nothing is secreted. Otherwise the person will die, because the body
cannot handle the high glucose level. [5]

1.5.2 Diabetes Type 2

Diabetes type 2 is the most common type of diabetes. When you have this type
of diabetes the pancreas is able to produce some insulin, and in some cases it
can produce insulin as for a healthy person. The problem is that the insulin
is not able to affect the cells, of the body to increase their uptake of glucose.
Thus people suffering from type 2 diabetes are insulin resistant. Over time the
number of β cells start to decrease, and then the type 2 diabetics should be
treated with insulin injections like a type 1 diabetic. Type 2 almost also have
the same symptoms as type 1 diabetes. [5]

These descriptions of the Diabetes types are simple, but actually it is com-
plicated, to describe these diabetes types in a model as you will see in the
simulation chapter.

1.5.3 Hyperglycemia

A person has hyperglycemia, when the blood glucose level is above 270mg
dL . This

can arise e.g. when a diabetic eats a large meal or has a low level of insulin in
the blood. Hyperglycemia is extremely dangerous if not treated.

1.6 Testing 5

1.5.4 Hypoglycemia

A person has hypoglycemia when the blood glucose level is below 60mg
dL . This

can happen ex. after too much exercise, a too large insulin dosage, small amount
of carbohydrates in the food or if the diabetic skips meals. Hypoglycemia can
result in loosing of the conscience. Avoiding hypoglycemia is an important issue
when you are using insulin as treatment.

1.5.5 Problems with Treatment

Today, as mentioned, you treat the insulin dependent patients, through exercise,
a healthy diet and most important by injection of insulin. These injections are
made with different devices, syringes, pumps etc. The problem with the devices
today, is that they all have to be controlled by the patient. And the injections is
not always done when actually needed. A perfect solution to the problem would
be to create a treatment type, where the patient, doesn’t have to think about
having diabetes. This could be a self-regulated pump acting like an artificial
pancreas.

1.6 Testing

Diabetes and other diseases caused by malfunctions in the glucose-insulin sys-
tem, is one of the reasons that many mathematical models have been made over
time to describe this dynamical system [7]. These mathematical models are
based on and used to interpret tests. The models and tests, can help to improve
the situation for many people suffering from diabetes.

1.6.1 The OGTT

One of the tests used is the Oral glucose tolerance test (OGTT) [15]. In this
test the subject fast for an 8 hour period [1] after which the blood glucose and
insulin concentrations are measured. Then the subject ingest glucose in a liquid
solution orally. After this ingestion you take new measurements for a three hour
period. The amount of glucose in the liquid is typically 75 g. From [15] the
following interpretations of the test results is derived:

OGTT with a 75 g glucose drink (2 hours after ingestion)

6 Introduction

Figure 1.2: The pattern of an OGTT. Green graph: Normal glucose tolerance.
Yellow graph: Pre-Diabetes. Red graph: Diabetes

Less than 140 mg/dL Normal glucose tolerance
From 140 to 200 mg/dL Pre-diabetes
more than 200 mg/dL Diabetes

a graphical representation of these limits can be seen in figure 1.2

1.6.2 The IVGTT

Another test is the Intravenous Glucose Tolerance Test (IVGTT). Together with
a mathematical model, this test can be used to estimate insulin sensitivity, SI ,
glucose effectiveness, SG, and the pancreatic responsiveness parameters φ1 and
φ2 in a subject [11]. One of the mathematical models used to interpret the
IVGTT is Bergman’s minimal model introduced in the next chapter. Here you
will also obtain information about the 4 parameters and how they are estimated.

The IVGTT test procedure begins with a injection of a glucose bolus intra-
venously, containing 0.30 g glucose pr. kg. bodyweight. Then you take blood
samples frequently for a 3 hour period. These blood samples are analyzed and
glucose and insulin levels are measured. A typical IVGTT for a normal subject,

1.6 Testing 7

Figure 1.3: An IVGTT for a Normal subject

from studies by Bergman et al. [11] is shown in figure 1.3. As you can see the
glucose level decays slowly to a minimum level below the basal value and then
slowly reaches the basal value. The insulin peaks just after the injection, and
then decays to a level above the baseline and then peaks a little again. finally
it decays to the basal value. This is just a typical pattern and the glucose and
insulin level may not behave exactly like this.

1.6.3 Fasting Blood Glucose

A third test, and a much easier test, is the fasting blood glucose. Here the
subject/patient has to fast for a period of 8-10 hours, then a measurement of
the glucose is made. [15]. The test results can be interpreted as:

From 70 to 99 mg/dL Normal glucose tolerance
From 100 to 125 mg/dL Pre-diabetes
more than 126 mg/dL Diabetes

8 Introduction

Chapter 2

Bergman’s Minimal Model

2.1 Introduction to the Model

You can design very complicated models, with many parameters, to describe
the glucose-insulin metabolism. But in many cases a simple model would be
sufficient to make a good analysis. A simple method with few parameters,
was introduced in the eighties by Richard N. Bergman and is called Bergman’s
minimal model [13] [7]. The model has been modified and examined many times.
In this chapter the evolution of the minimal model will be described, and two
models based on Bergman’s minimal model will be introduced.

10 Bergman’s Minimal Model

2.2 The Model

Bergman’s minimal model is a one compartment model, meaning that the body
is described as a compartment/tank with a basal concentration of glucose and
insulin. The minimal model actually contains two minimal models. One describ-
ing glucose kinetics, how blood glucose concentration reacts to blood insulin
concentration and one describing the insulin kinetics, how blood insulin concen-
tration reacts to blood glucose concentration. The two models respectively take
insulin and glucose data as an input. The two models have mostly been used
to interpret the kinetics during the IVGTT test, and in their original form they
cannot be used to much else [7], but with small additions or modifications they
can also be used to describe meals and exogenous insulin infusion [10]. In this
section a description of the two kinetics are done and finally two couplings are
proposed, which could be used as simulators of the entire blood glucose-insulin
system.

2.2.1 The Glucose Minimal Model

The original glucose minimal model describes how the glucose level behaves
according to measured insulin data during an IVGTT. The model is a one
compartment model divided into two parts. The first part is the main part
describing the glucose clearance and uptake. The second part describes the delay
in the active insulin I2 which is a remote interactor which level affects the uptake
of glucose by the tissues and the uptake and production by the liver. These two
parts are described mathematically by two differential equations namely [7]:

dG(t)
dt

= −(p1 + X(t))G(t) + p1Gb G(0) = G0 (1)

dX(t)
dt

= −p2X(t) + p3(I(t)− Ib) X(0) = 0 (2)

The best way to describe the meaning of these equations is to show how they
are derived. A description of the parameters and the terms of the equations is
then easier understood. The derivation is based on the description of the model
by Steil et al. [8] and the rule of mass balances:

2.2 The Model 11

accumulated = in− out + generated− consumed

Such a derivation will be done in the next subsection. In the derivation the
following parameters will be used:

Parameter Unit Description
t [min] Time

G(t) [mg/dL] Blood glucose Concentration
Gb [mg/dL] Steady state blood glucose concentration

(baseline)
I2(t) [mU/L] Active insulin concentration
X(t) [1/min] The effect of Active insulin.
I(t) [mU/L] Blood insulin concentration
Ib [mU/L] Steady state blood insulin concentration

(baseline)
VG [dL] Volume of the glucose compartment
VI2 [L] Volume of the remote pool
QG1 [dL/min] flow
QG2 [dL/min] flow
QI21 [L/min] flow
QI22 [L/min] flow
w1 [dl2/(min ·mU] effect factor
w2 [dl2/(min ·mU] effect factor

2.2.1.1 Deriving the Model

The model is represented as a compartment/tank with a volume VG. See figure
2.1. The glucose flows in and out of this compartment at a steady rate, resulting
in a basal concentration Gb. However this steady state can be changed when ex.
a bolus of glucose is injected. By using the rule of mass balances it is possible to
describe what happens in this compartment mathematically. The accumulated
part for the glucose compartment is the difference between the initial and final
mass:

accumulated = VG ·G(t0 + ∆t)− VG ·G(t0)

The income of glucose by the bolus is given by the initial condition G(0). As you
can see on figure 2.1 there are two types of outgoing mass, namely uptake by the

12 Bergman’s Minimal Model

Figure 2.1: Graphical representation of the minimal glucose model

liver and uptake by the peripheral. There is one type of in-going mass (besides
from the bolus) namely the production of glucose by the liver. This results in a
’in’ and ’out’ part determined by the threshold Gb basal glucose concentration.
This basal concentration is according to Steil et al. [8], given by the difference
between glucose and insulin independent production prodgluinsind and uptake
uptgluinsind. When the blood glucose level is above this basal concentration, the
glucose disappears by uptake by the liver (uptl) and the peripheral tissues (uptp).
But when the glucose level is below the basal concentration the liver produces
glucose until the basal level is reached. This balance between the production
and uptake by the liver, is referred to by Steil et al. [8] as NHGB (Net Hepatic
Glucose Balance). Both the NHGB and the uptake by the peripheral tissues,
can be enhanced by insulin. It is however not the blood insulin concentration
that gives this effect directly, but the so-called active insulin placed in a remote
pool. The NHGB and the uptake by the peripheral are given by:

uptp = (QG1 ·G(t) ·∆t + G(t) · k · w1 · I2(t) ·∆t) + uptgluinsind

NHGB = prodgluinsind − (QG2 ·G(t) ·∆t + G(t) · k · w2 · I2(t) ·∆t)

k is just a constant changing L to dl, so this is set to 1. All this can be inserted
in to the rule of mass balances

2.2 The Model 13

accumulated = in− out + generated− consumed ⇔

accumulated = NHGB − uptp ⇔

VG ·G(t0 + ∆t)− VG ·G(t0) = prodgluinsind − ((QG2 ·G(t) ·∆t

+ w1 · I2(t) ·G(t) ·∆t) + (QG1 ·G(t) ·∆t + w2 · I2(t) ·G(t) ·∆t))

− uptgluinsind

Steil et. al. [8] argues that the insulin/glucose independent terms are given by

prodgluinsind − uptgluinsind = QG1 ·Gb ·∆t + QG2 ·Gb ·∆t

This is what gives the threshold Gb. According to Cobelli et. al [12] this causes
some problems, described later. By inserting this term in the rule of mass
balance, you get the following

accumulated = in− out + generated− consumed ⇔

accumulated = NHGB − uptp ⇔

VG ·G(t0 + ∆t)− VG ·G(t0) = (QG1 ·Gb ·∆t + QG2 ·Gb ·∆t)

+ (QG2 ·G(t) ·∆t + w2 · I2(t) ·G(t) ·∆t)

+ (QG1 ·G(t) ·∆t + w1 · I2(t) ·G(t) ·∆t)

by dividing by ∆t and VG the following term is derived:

14 Bergman’s Minimal Model

G(t0 + ∆t)
∆t

=
QG1

VG
Gb +

QG2

VG
Gb − (

QG1

VG
G(t) +

w1

VG
G(t)I2(t) +

QG2

VG
G(t)

+
w2

VG
G(t)I2(t))

By setting QG1
VG

= k1, w1
VG

= k4, QG2
VG

= k5, w2
VG

= k6 and going to the limit ∆t → 0
it gives the following differential equation:

dG(t)
dt

= k1Gb + k5Gb − (k1G(t) + k4I2(t)G(t))− (k5G(t) + k6I2(t)G(t)

Now a differential equation is derived, but the active insulin I2 is delayed during
the transport across the capillaries, and the above differential equation does not
take this into account. So a mathematical expression must be derived for this
delay. The active insulin is in a remote pool. There is an outflow and a inflow
which can be applied to the rule of mass balance. The accumulated part is given
by:

accumulated = VI2 · I2(t0 + ∆t)− VI2 · I2(t0)

the ’in’ and ’out’ flow must again be considered together. When blood insulin
concentration I(t) is above its basal value Ib, insulin flows into the remote pool.
If the blood insulin concentration goes below its basal value insulin flows out of
the remote pool, this is referred to as balanceins. Another clearance aclearance

from the remote pool is the one that is proportional to the level of active insulin
I2(t). When the active insulin level in the remote pool rises this clearance rate
also rises. all this can be formulated in the rule of mass balances as:

2.2 The Model 15

accumulated = in + out + generated− consumed ⇔

accumulated = balanceins − aclearance ⇔

VI2 · I2(t0 + ∆t)− VI2 · I2(t0) = (QI21 · (I(t)− Ib)∆t)

− (QI22 · I2(t)∆t)

by dividing by ∆t and VI2 and then going to the limit ∆t → 0 you get the
following differential equation:

dI2(t)
dt

= −QI22

VI2

I2 +
QI21

VI2

(I(t)− Ib)

by setting QI21

VI2
= k2 and QI22

VI2
= k3 you get:

dI2(t)
dt

= −k3I2 + k2(I(t)− Ib)

This describes the delay in the change of I2(t) but instead of using this in the
mathematical expression, X(t), is introduced, which describes the effect of I2(t).
This is created by setting X(t) = (k4 + k6)I2(t) ⇔ I2(t) = X(t)

k4+k6
. By inserting

these in the two derived differential equations you get:

dG(t)
dt

= −(k1 + k5 + X)G(t) + (k1 + k5)Gb

dX(t)
dt

= −k3X(t) + k2(k4 + k6)(I(t)− Ib)

This model is described graphically in figure 2.2. The parameters are given in
the following table:

16 Bergman’s Minimal Model

Figure 2.2: The minimal model describing glucose kinetics

Parameter Unit Description
k1 [1/min] Glucose ability to increase uptake

by the peripheral
k2 [1/min] Insulin transport rate to remote pool
k3 [1/min] Rate of clearance of active insulin
k4 [L/(min · mU)] Active insulin effect on uptake by the

peripheral
k5 [1/min] Glucose ability to change NHGB
k6 [L/(min · mU)] Active insulin effect on NHGB

However the model still does not look like (1) and (2) introduced in the beginning
of this section. But by setting p1 = k1 + k5, p2 = k3 and p3 = k2(k4 + k6) (1)
and (2) are achieved.

2.2.1.2 Glucose Effectiveness and Insulin Sensitivity

The minimal glucose model has mostly been used to interpret the IVGTT (see
chapter 1). When you interpret you measure insulin levels during the test and
use them as input in the glucose minimal model. Then via this model and a
parameter estimation e.g. weighted non-linear least squares [11], two important

2.2 The Model 17

parameters: Glucose effectiveness and insulin sensitivity can be derived. The
glucose effectiveness is defined by Gaetano et al. [7] as the insulin independent
uptake rate and Cobelli et al. describes it as glucose ability to promote its own
disposal. In the glucose minimal model the glucose effectiveness SG is given by:

SG = p1

because p1 is the sum of the two uptake rates k1 and k5, which are independent
of X(t) but dependent on G(t). Insulin sensitivity is defined by Cobelli et al. [12]
as the ability of insulin to enhance glucose effectiveness. To find an expression
for insulin sensitivity in the glucose minimal model you must keep the effect
X(t) on a steady state [13]. This results in:

dX(t)
dt

= −p2X(t) + p3(I(t)− Ib) = 0 ⇔

X(t) =
p3

p2
(I(t)− Ib)

and by inserting this into (1) you get:

dG(t)
dt

= −(p1 +
p3

p2
(I(t)− Ib))G(t) + p1Gb

From this you can see that the ability of insulin to enhance the glucose effec-
tiveness p1 is given by SI = p3

p2
. Normal values for these parameters, when

using the glucose minimal model to interpret are approximately in the interval
[4·10−4, 8·10−4] L

min·mU for SI [11] and [0.01, 0.03] 1
min for glucose effectiveness.

2.2.1.3 Additions to the Model

To increase the functionalities of the glucose minimal model, thus it could be
used to simulate more than an IVGTT, some additions could be done. One of
the additions is a function describing what a meal would do to the glucose level.
This is done by adding a meal disturbance term D(t) to (1), so it looks like the
following:

18 Bergman’s Minimal Model

Figure 2.3: D(t) in Fishers form with drate = 0.05 and B=9

dG(t)
dt

= −(p1 + X(t))G(t) + p1Gb + D(t)

D(t) is the rate of mg glucose pr. dL entering the blood. This process of meal
absorbtion needs a description. A simple description of this was suggested by
Fisher [6] and looks like this:

D(t) = B · exp(−drate · t)

He suggested that the meal absorbtion description should be a function which
rapidly increases after the meal, and then decays to 0 in 2-3 hours. If you use
the values B = 9 and drate = 0.05 it gives the graph in figure 2.3.

Modeling with t is however not suitable, so instead of using the actual function
a differentiation of it is done, and used instead. This results in the following
differential equation

dD(t)
dt

= −drate ·D(t)

To use this differential equation in a modelbased simulator, it must be used as
a time-event. Time-events will be explained in the implementation chapter, but

2.2 The Model 19

basically during a simulation the simulation is stopped at a certain time, and
the equation is given an initial value corresponding to B in the function. It is
important to remember that this is also distributed into the compartment with
volume VG this means that in order to attain the rate in mg

min you must multiply
the function with this volume.

Another addition which could be done is a description of the glucose level in the
subcutaneous layer. When you measure blood glucose concentration you often
get the measurements from the subcutaneous layer. To make good comparisons
to measurements, the function Gsc(t) is introduced, it describes the glucose
concentration in the subcutaneous layer. A differential equation describing the
behavior of this function is introduced here:

dGsc(t)
dt

=
G(t)−Gsc(t)

5
−Rutln Gsc(0) = G(0)− 5 ·Rutln

This equation models a 5 min. first-order lag between the blood glucose con-
centration and the subcutaneous glucose concentration. The Rutln, Rate of
utilization, is the difference between the two concentrations in the steady state.
[10]. One of the major problems concerning creating a artificial pancreas, is the
delay between these two concentrations.

2.2.1.4 Problems with the Model

Recent studies by Cobelli et al [12] [4] [3] has shown that when using the minimal
glucose model to interpret an IVGTT, it overestimates SG and underestimates
SI , when an insulin response is present. Steil et. al [8] gives a graphical pre-
sentation of this problem, and this will also be done in the simulation chapter
of this thesis. Cobelli et al. [12] argues that the problem is due to the minimal
model not being able to distinguish between the glucose effect on its own dis-
posal (glucose effectiveness) and the total plasma clearance rate which decreases
as the G(t) increases. They present a solution to the problem by introducing an
extra non-accessible glucose compartment to the minimal model. Thus they can
distinguish between glucose effectiveness and the plasma clearance rate. This
model is not analyzed in this thesis, however it has proven to give a more accu-
rate SG and SI . A result derived in [3] with the 2-compartment minimal model
of glucose is that SG is approximately 60% lower and SI is approximately 35%
higher than the values attained during an IVGTT using the one-compartment
minimal model of glucose.

20 Bergman’s Minimal Model

Figure 2.4: Graphical representation of the insulin minimal model

2.2.2 The Insulin Minimal Model

Now the model describing glucose kinetics as a product of insulin data input has
been described. But a description of the insulin kinetics is missing. Bergman
et. al [13] presented the following minimal model of insulin kinetics, represented
here by the differential equation:

dI(t)
dt

= p6[G(t)− p5]+t− p4[I(t)− Ib] I(0) = I0 (3)

Like the glucose model, this insulin model is used to interpret the IVGTT. The
graphical representation of the model can be seen in figure 2.4, and like with
the glucose minimal model, a derivation, based on the rule of mass balances,of
the model is used to describe it. The derivation is based on assumptions by
Gaetano et al. [7] and Bergman et al. [13]. The parameters used are:

Parameter Unit Description
I(t) [mU/L] Blood insulin concentration
Ib [mU/L] Basal blood insulin concentration

G(t) [mg/dL] Blood glucose concentration
p5 [mg/dL] Threshold for blood glucose concentration
VI [L] Volume of insulin distribution pool
QI1 [L/min] flow
QI2 [mUdL

mgmin] flow

2.2 The Model 21

The accumulated part is the difference between the initial and the final blood
insulin mass:

accumulated = VI · I(t0 + ∆t)− VI · I(t0)

In a non type 1 diabetic subject, which this model can be used to describe, the
pancreas is the source of insulin. In a healthy person a small amount of insulin
is always created and cleared [5]. This helps to keep the basal concentration Ib.
The glucose independent production and the clearance of insulin is proportional
to the blood insulin concentration. If the insulin level is above basal concen-
tration the clearance increases, if the insulin level is below basal concentration
the basal production increases. When the glucose level gets high the pancreas
reacts by releasing more insulin at a certain rate. To explain this mathemati-
cally you have to derive a mathematical function describing the reaction of the
pancreas. This function is derived by Bergman et al. and adjusted by Gaetano
et al. [13][7] to become Pancreas(t) = [G(t)− p5]+ · t, in which [G(t)− p5]+ is
a term which has the value G(t)− p5 when positive and 0 when negative. So p5

is the limit deciding when the pancreas should produce more insulin and when
to stop. And the difference between G(t) − p5 determines how much it should
produce. The downside about this function is that it is very attached to the
IVGTT. As you can see on figure 1.3 the insulin during an IVGTT respond in
two peaks. The first peak is not described by this pancreas function but should
be given as the initial value of the insulin concentration I(0). The pancreas
function describes the second peak. The multiplying by t is described by Gae-
tano et al. [7] as caused by the pancreas response being proportional not only
to the hyperglycemia attained but also to the time elapsed from the glucose
stimulus. By inserting the basal production/clearance term and the pancreas
function as the ’in-out’ part in the rule of mass balances you get:

accumulated = in− out + generated− consumed ⇔

accumulated = Pancreas(t) + (Prodbasal − clearance) ⇔

VI · I(t0 + ∆t)− VI · I(t0) = (QI2 · [G(t)− p5]+ · t ·∆t)− (QI1 · (I(t)− Ib)∆t)

Then by dividing by VI and ∆t and going to the limit ∆t → 0 the following
differential equation is derived:

22 Bergman’s Minimal Model

Figure 2.5: The Insulin Minimal Model

dI(t)
dt

=
QI2

VI
[G(t)− p5]+ · t−

QI1

VI
(I(t)− Ib)

Setting p6 = QI2
VI

and p4 = QI1
VI

you have the equation (3). This is described
graphically in figure 2.5.

2.2.2.1 Pancreatic Response

The interpretation you can derive by using this original insulin minimal model
together with an IVGTT, are the pancreatic response parameters φ1 and φ2.
They describe the sensitivity of the pancreas at the first peak and at the second
peak respectively, and are given by [11]:

φ1 =
Imax − Ib

p4 · (G0 −Gb)
φ2 = p6 · 104

Normal values for these according to Bergman and Pacini derived in healthy
subjects using an IVGTT is in the interval 2 − 4mUdLmin

Lmg for φ1 and 20 −
35 mUdl

mgminL for φ2. In studies by Bergman et al. [14] they found an expression
for insulin tolerance in the minimal model namely φ2 · SI . If this was lower

2.2 The Model 23

Figure 2.6:

than 75 · 10−4 the person was low tolerant (see figure 2.6). Also the glucose
effectiveness was lower, and this could be due to the problems with the glucose
minimal model described earlier.

2.2.2.2 A Modification

The original insulin minimal model is very attached to the IVGTT, which makes
it good for interpreting this, but bad for other purposes. One of these purposes
could be to describe the insulin kinetics for a type 1 diabetic with no endogenous
insulin production. This could be done by exchanging the incoming part/the
pancreas with a function U(t) describing exogenous or endogenous insulin infu-
sion [10], [6]. Then the differential equation would look like the following:

dI(t)
dt

= −p4I(t) +
U(t)
VI

With this modification it is possible to describe the kinetics for a type 1 diabetic
on different treatment types. e.g. a pump.

2.2.3 Coupling the Minimal Models

Now the two minimal models describing respectively glucose kinetics and insulin
kinetics have been presented and modified. These are normally used indepen-

24 Bergman’s Minimal Model

dently with glucose data and insulin data respectively to estimate the param-
eters, and interpret an IVGTT. A coupling of the two parts would result in a
model describing the whole Blood glucose-insulin system. Two different cou-
plings are introduced here. A coupling between the original minimal models,
and a coupling between the modified minimal models.

2.2.3.1 The Original Model

The first coupling proposed is a coupling between the original minimal mod-
els, without additions and/or modifications. From now on this coupled model,
will be called the original model. The model is represented by the following
differential equations:

dG(t)
dt

= −(p1 + X(t))G(t) + p1Gb G(0) = G0 (1)

dX(t)
dt

= −p2X(t) + p3(I(t)− Ib) X(0) = X0 (2)

dI(t)
dt

= p6[G(t)− p5]+t− p4[I − Ib] I(0) = I0 (3)

With the parameters:

Parameter Unit Description
G(t) [mg/dL] Blood glucose concentration
X(t) [1/min] The effect of active insulin
I(t) [mU/L] Blood insulin concentration
Gb [mg/dL] Basal blood glucose concentration
Ib [mU/L] Basal blood insulin concentration
p1 [1/min] Glucose clearance rate independent of insulin
p2 [1/min] Rate of clearance of active insulin

(decrease of uptake)
p3 [L/(min2mU)] Increase in uptake ability caused by

insulin.
p4 [1/min] decay rate of blood insulin.
p5 [mg/dL] The target glucose level
p6 [mUdL

Lmgmin] Rate of pancreatic
release after glucose bolus

2.2 The Model 25

Figure 2.7: The liver, one of the main actors in the glucose-insulin system

This model is suited for simulating different IVGTT tests, for healthy and for
glucose resistant(type 2 diabetics) subjects. Studies by Gaetano et al. have
shown that a coupling between these original minimal models, does not allow
a steady state for p5 < Gb [7]. This is easy to prove, because in a steady state
dG(t)

dt = dX(t)
dt = dI(t)

dt = 0. This is only possible when G(t) = Gb,X(t) = 0 and
I(t) = Ib. But for p5 < Gb the term p6[Gb− p5]+ > 0 This means that a steady
state(equilibrium) can not be attained. Besides this problem, this coupling also
adopts the problem with the glucose minimal model.

2.2.3.2 The Modified Model

The second coupling proposed is a coupling between the minimal models with
modifications and additions. This coupled model will be referred to as the
modified model. This model contains the following differential equations:

dG(t)
dt

= −(p1 + X(t))G(t) + p1Gb + D(t) G(0) = G0

dX(t)
dt

= −p2X(t) + p3(I(t)− Ib) X(0) = X0

dI(t)
dt

= −p4I(t) +
U(t)
VI

I(0) = I0

dD(t)
dt

= −drate ·D(t) D(0) = D0

dGsc(t)
dt

=
G(t)−Gsc(t)

5
−Rutln Gsc(0) = G0 − 5 ·Rutln

26 Bergman’s Minimal Model

With the parameters given in the following table:

Parameter Unit Description
G(t) [mg/dL] Blood glucose concentration
X(t) [1/min] The effect of active insulin
I(t) [mU/L] Blood insulin concentration
D(t) [mg/dL/min] Meal disturbance function

Gsc(t) [mg/dL] Subcutaneous glucose concentration
U(t) [mu/min] exogenous insulin
Gb [mg/dL] Basal blood glucose concentration
Ib [mU/L] Basal blood insulin concentration
VI [L] Volume of insulin distribution pool
p1 [1/min] Glucose clearance rate independent of insulin
p2 [1/min] Rate of clearance of active insulin

(decrease of uptake)
p3 [L/(min2mU)] Increase in uptake ability caused by

insulin.
p4 [1/min] decay rate of blood insulin.

drate [1/min] decay rate of the meal disturbance

This model could be used to simulate the glucose-insulin system for a type 1
diabetic on treatment. The model is not attached to a single type of test. thus
it has more possibilities concerning simulations of meal disturbance and insulin
injections. It can be used to test model predictive controllers [10]. And this
could make it a tool in the search of an artificial pancreas. This model also
adopts the problem with the glucose minimal model.

2.3 Open-loop,Closed-loop and Semiclosed-loop
models

In a mathematical model like the coupled model, you can distinguish between
open-loop, closed-loop and a semiclosed-loop models. In the open-loop model
there is no connection between the glucose and the insulin compartment. An
open-loop model could describe a diabetic injecting a predetermined amount of
insulin at certain times, where the injections not are based on the glucose level.
The modified model in its pure form is an open loop model. In a closed-loop
model there is a a full loop connection. The original model is an example of
a closed loop model. At last there is a semi-closed model. In a semiclosed
model the loop is not constant. An example of this could be if the U-term in

2.3 Open-loop,Closed-loop and Semiclosed-loop models 27

the modified minimal model was decided by a measurement of G(t) at a certain
time, and then was given a value for a certain period, until the next measurement
was made. A Semiclosed-model using the modified model is described by M.E
Fisher [6].

28 Bergman’s Minimal Model

Chapter 3

U(t)-How it can be used

3.1 The U(t) function

One of the possibilities with the modified model, is to analyze/test different
infusion ideas. You can do this through the exogenous insulin term U(t). In
this chapter some of the possibilities with this U-term is described.

3.2 The Open Loop Model

The easiest way to use the infusion term U(t), is to use it to describe insulin
injections, or to give it a constant value. In this way you can analyze how a day
could look like for a Type 1 diabetic, using injections as treatment. You could
also analyze how the blood glucose and insulin levels reacts to the injections.

30 U(t)-How it can be used

3.3 The Closed Loop Model

Many researchers are working on how to create an insulin pump, which works
as an artificial pancreas. Such a pump would have to react to the glucose level.
You could call the pump a controller, because it controls the glucose level by
manipulating the insulin dosage. By using the U-term in the modified minimal
model, it is possible to implement such a controller and test it. This would
turn the open-loop coupled model into a closed-loop model. In this section a
controller will be described. This is just to show how a controller could be
used together with the modified model. Thus this is not an attempt to create a
perfect controller.

3.3.1 Introduction to the PID controller

In many processes, especially industrial, controllers are used to keep some kind
of a steady state. This could be a tank filled with water, where you want to
keep the water at a certain level. One of the frequently used controllers are the
PID controller [9]:

u(t) = Kc[e(t) +
1
Ti

∫ t

e(τ)dτ + Td
de(t)
dt

] = P + I + D

This controller looks at the error e = uc − y, where uc is the setpoint, and y
is the measured value. The controller consists of three control elements. P,the
proportional part, I, the integral part, and D, the derivative part.

3.3.1.1 P

The proportional part of the controller Kce(t) is the one that increases or de-
creases u proportional to the error e. Kc is a constant known as proportional
gain. proportion of the error e, u is changed. One way to estimate this constant
is to use:

Kc =
umax − umin

pB

3.3 The Closed Loop Model 31

where umin and umax is the limitations of the output u, and pB is the propor-
tional band.

3.3.1.2 I

Kc
1
Ti

∫ t
e(t)dτ , the integral part of the controller, is also called the reset term.

This part helps to obtain the steady state value automatically. The constant Ti

is called the reset time.

3.3.1.3 D

The last term KcTd
de(t)

dt is the derivative part. This part you could also call
the predictor. This part of the controller predicts what is happening next, and
controls the output according to this. The constant Td is derivative time.

3.3.2 Using the Controller

If you want to use the controller with a certain problem, you have to implement
it in Matlab. One way to do this is by finding the transfer-function of the PID
controller, to get the time response:

L(s) = Kc(1 +
1

Tis
+ Tds)

However the derivative should not be implemented. instead of implementing
this you approximate the Tds part with Tds ≈ Tds

1+
Tds

N

. This gives the following

transfer-function:

L(s) = Kc(1 +
1

Tis
+

Tds

1 + Tds
N

) ⇔

L(s) = Kc

TiTd(1 + 1
N)s2 + (Ti + Td

N)s + 1
Ti(Td

N s2 + Tds)

32 U(t)-How it can be used

From this transfer function you can do a realization(going to the state-space
domain) and obtain A,B,C and D in the system:

dx(t)
dt

= Ax(t) + Be(t)

y = Cx(t) + De(t)

Which is easy to implement in e.g. Matlab using the Matlab function ssdata
(see implementation chapter).

3.3.3 Controlling U(t)

The function of the controller could be to keep the blood glucose concentration
at a steady state. In [10] a range of 60 mg/dL - 180 mg/dL is suggested.
Thus a setpoint in that range could be chosen. Thus is the error term e(t)
given by e(t) = G(t) − setpoint. When this error is zero U(t) should have a
basal value, describing the normal flow of insulin into the I compartment in a
healthy person. From the original model, you can see that this normal value is
U(t) = VIp4 ·Normal insulin basal level. This normal basal level, is the amount,
which makes the glucose stay at the basal concentration, when the error term
is zero. This would be Ib for a healthy person. In this way you get a closed-
loop model, which can be used in an attempt to describe the glucose-insulin
metabolism in a diabetic with an artificial pancreas. The two new equations
implemented in the model are:

U(t) = |VIp4Ibnormal
+ Cx(t) + D(G(t)− setpoint)|

dx(t)
dt

= Ax + B(G(t)− setpoint)

where x(t) =
(

x1

x2

)
, A =

(
A1 A2

A3 A4

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)
and D is a scalar.

Then the model is ready. But you still need to fit the parameters Kc,Ti and Td

in order to control U(t), almost as a real pancreas would do. This process is
called tuning and this will be examined in the next section.

3.3 The Closed Loop Model 33

Figure 3.1: A graphical description of how the PID controller could work

3.3.4 Tuning the PID Controller, to the Model

The aim of the controller,is to act like an artificial pancreas, in order to do this
you need to tune the parameters Kc, Ti and Td. There are several methods
you can use to tune the PID controller. Empirical tuning, where you adjust the
parameters according to the output until you reach a good result, and tuning
via a mathematical model. Before you tune the model, you should decide how
it should work. What is the maximum and minimum glucose level allowed, how
fast should the controller bring down the glucose level. And this brings another
question namely what is the maximum amount of insulin possible to infuse.
Questions like these must be answered before a tuning.

34 U(t)-How it can be used

3.3.5 Using Other Controllers

Here a PID controller was chosen, to create a closed-loop model. But this is just
to show how it could be done. A much better controller could be made, which
could predict and control the insulin injections much better. This was just to
show one of the possibilities with the model.

3.4 The Semi-Closed Loop Model

In a closed-loop model, the U(t) reacts instantly every time something happens
to the blood glucose concentration. In a semi-closed model, a reading is made of
the blood glucose concentration at pre-decided times. This could be every 3rd
hour. Then the size of U(t) is determined by the size of this reading. Examples
of such controllers are described by Fisher [6].

Chapter 4

Implementation in Matlab

4.1 Introduction

In this section a short description of the different implementations in Matlab
are given. In the first sections the general issues concerning implementing ODE-
simulators are described. Then each of the simulators used in this thesis are
given a short description. One of the simulators, namely the one based on the
modified model, is given a graphical user interface. This simulator can be used
to simulate many of the problems and possibilities with the minimal model,
especially concerning meals and insulin infusion.

4.2 Choice of Solver

The solver used in the simulators is the ODE15s. Which has the following call:

[T,Y] = ode15s(odefun,tspan,y0,options)

odefun is the function containing the system,tspan is the timespan you want to
integrate over, y0 are the initial values, and in options you can define differ-

36 Implementation in Matlab

ent settings for the solver. The method uses backward differentiation formulas
(Gears method). It is an implicit multistep method. The reason why this solver
is chosen instead of another Matlab solver, for instance ODE45, which could be
more efficient, is because of its stability and that it still contain all the same
functions as ODE45 does.

4.3 Discrete events

In the minimal model two types of discrete events are present, which must be
taken into account when creating a simulator. Namely state-events and time-
events.

4.3.1 State-Events

State-events, are changes in state of some parameter during the time period
chosen. In the insulin minimal model the term [G(t) − p5]+ is a state-event.
When G(t) is larger than p5 the term has the positive value given by the term
inside the brackets. This is when insulin is secreted. But when G(t) goes below
p5 the value is 0, because no insulin should be secreted. This is a change of
state. This change of state must be done at the correct time when solving the
system. A naive approach to handle this state-event would be to include the
following if-statement(in pseudo) in the system to be solved:

IF G(t) > p5
(G(t)-p5)+ = G(t)-p5

ELSE
(G(t)-p5) = 0

END

But this could result in a change at a inexact time, because the timestep would
have to be completed before an if-statement could be read. Instead of using this
naive approach ODE15s has a function, where you can deal with state-events
like this. Basically you create an event function containing the term G(t) − p5

and then by inserting this function in the options and calling ODE15s with the
following:

[T,Y,TE,YE,IE] = ode15s(odefun,tspan,y0,options)

4.4 GLUSIM 37

you can detect zero crossings in the event function. Thus when you implement
this in the simulators, you make two odefun. One containing the model with
the term G(t)− p5 and one where the term is zero. Then you start solving and
every time a zero crossing is detected you stop the solver and restart it with
the other odefun, at the event time given in TE. ODE15s finds the exact time
where the event happens. This gives a more exact picture, than in the naive
approach.

4.3.2 Time-Events

In the modified model two time-events are present. The U-term can be changed
at a certain time and the meal disturbance function can be given a initial value
to decay from. Time events are easier to handle than state-events, because the
user decides the time where the change should happen. So when dealing with
time-events, you basically stop the solver at the time where the value should be
changed, change the value and then restart the solver.

4.4 GLUSIM

GLUSIM is an implementation of the glucose minimal model (eq. 1-2). It can be
used to simulate an IVGTT based on insulin measurement data. In this model,
there is a time-event, for each new insulin data value. But instead of stopping
the solver for each new datapoint, which wouldn’t give a smooth solution, an
interpolation of the points are made using the Matlab function interp1. Then
the system is solved with ODE15s. The call of the function is

[GE,SI,RES,T] = glusim(parametertype,data)

parametertype defines which parametergroup to use. The parametergroups are
found in the file parameters1.m. data is the input data, typically measurement
data. The simulator gives you the solutions RES to the times T. And in ad-
dition the glucose effectiveness GE and the insulin sensitivity SI. The function
containing the model in this simulator is bergmanpart1. All of the files related
to GLUSIM can be found in the appendix.

38 Implementation in Matlab

4.5 INSSIM

INSSIM is the implementation of the insulin minimal model (eq 3). It can also
be used to simulate an IVGTT. Here the glucose measurement data is used as
input and a interpolation is done like with GLUSIM. The insulin model contains
the state-event mentioned in a previous section, and is dealt with in the way
described there. The call of the function is:

[pan2,RES,T] = inssim(parametertype,data)

again parametertype is the choice of parametergroup. The parametergroups can
be found in the file parameters2.m. data is again the data you use as input.
Besides the solution and time the simulator gives you the second pancreatic
response parameter. The functions containing the model are bergmanpart21 and
bergmanpart22. The event function used is implemented in bergmanpart2event.
All the files are in the appendix.

4.6 BERSIMU

To have the ability to simulate a IVGTT for the entire blood glucose-insulin
system a simulator based on the original model is implemented and it is called
BERSIMU. The state-event is handled like in INSSIM. The functions used are
bermod1,bermod2 and bermodevent. The call of the function is:

[PAN2,GE,SI,RES,T] = bersimu(parametertype,tspan)

Like GLUSIM and INSSIM it uses a parameter file (parameters) and gives the
solution + additional parameters. The files can be seen in the appendix

4.7 ESIM

All of the previous simulators GLUSIM, INSIM and BERSIMU, are all very
simple simulators, with very limited possibilities in concern to to meal distur-
bance and simulations of diabetics. In this section an implementation of the
simulator ESIM, based on the modified model is described. This simulator has

4.7 ESIM 39

more possibilities than the previous mentioned simulators, and it will be given
a graphical user interface to make it easier to use.

4.7.1 Simulator

The simulation program used by ESIM is called MODBERSIM, and it has the
following call

[SG,SI,RES,T] = modbersim(infuse,control,tspan,initval
,p,b,a,tmeals,mealsam,tin,inam)

In which the input are

infuse the size of the basal insulin delivery

Control decides whether or not to use the PID controller, if control = 0 the
controller is not used, if not, the controller is used

tspan timespan

initval initial values

p vector containing the 4 p-parameters

b vector containing the 3 values Gb,Ib and VI

a vector containing the setpoints for the pid controller

tmeals vector containing time of meals in min.

mealsam vector containing initial rate of meal absorbtion

tin vector containing time of insulin injections

inam vector containing amount of insulin injected

Besides this input, the program uses the file parametersesim, where the param-
eter for the PID controller can be found. The output is the results, times, SG

and SI given by the definition of the glucose minimal model. The model the
simulator uses is implemented in the function MODBERMOD.

40 Implementation in Matlab

4.7.2 PID controller

if control 6= 0 the PID controller is used by the program MODBERSIM. The
A,B,C and D described in chapter 3 in the section about the PID controller, is
found by using the following code:

Kc = 0.2; Ti = 500; Td = 120;

N = 10;
num = conv(Kc,[Ti*Td*(1+1/N) (Ti+Td/N) 1]);
den = conv([Ti 0],[Td/N 1]);

sys = tf(num,den);
[Apid,Bpid,Cpid,Dpid]=ssdata(sys);

First the tuning parameters are defined. Then the transfer function is created
(tf). Then finally you go to the state-space domain by using the function ssdata.
MODBERSIM and the files related parametersesim and MODBERMOD can be
found in the appendix.

4.7.3 GUI

To make the simulator MODBERSIM user friendly a GUI (Graphical user in-
terface) has been created, and is called ESIM. When creating a GUI in Matlab,
you first create the components: textboxes, frames etc. and then you give them
callbacks, meaning that you attach a function to the component, and when
something happens with the component the attached function is called. This
function then contains the reaction to the change. Another important thing
when creating GUI’s is to make error messages, that makes it impossible for the
user, to make errors. These error boxes are also found in the attached callback
function. The components are created with the function uicontrol and here you
can also define the callback function. The program ESIM is in the appendix
together with screenshots and a short description of the program.

Chapter 5

Simulations and Discussion

5.1 Introduction

In the previous chapters Bergman’s minimal model, has been described and
modified. In this chapter different kind of simulations will be done, in order
to show the problems and possibilities described. Initially simulations with
GLUSIM, which is an implementation of the glucose minimal model will be
done. The issue regarding underestimation and overestimation of SI and SG

will be analyzed. Next the insulin minimal model implemented in INSSIM will
be used to describe the basics of this model. n. Then the two coupled models,
the original and the modified model, will be looked upon and used for simulation.
Finally a short discussion,based on all the simulations, about the use of these
coupled models will be done.

5.2 Simulations with the Glucose Minimal Model

The glucose minimal model (see chapter 2) has been implemented into the Mat-
lab program GLUSIM. In this section some of the possibilities and problems
with this model will be shown.

42 Simulations and Discussion

Figure 5.1: Graphical representation of the measured data used to estimate
parameters of an IVGTT [11]

5.2.1 The IVGTT

The glucose minimal model is used to interpret the glucose kinetics of an IVGTT.
These interpretations are based on parameter estimation, using measured blood
insulin concentrations during the test as input to the model. Bergman et al.
[11] have made the program MINMOD, which uses a weighted non-linear least
squares method to estimate the parameters. They use the measured data shown
in figure 5.1. These data are for a normal subject.

The basal values measured are Gb = 92mg
dL and Ib = 7.3mU

L (shown on figure
5.1 with blue dotted lines). By inserting the insulin data as input, and using
MINMOD they derive the following parameters:

p1 = 0.03082 p2 = 0.02093 p3 = 1.062 · 10−5 G(0) = 287
mg

dL

This gives a glucose effectiveness SG = 0.03082 and a insulin sensitivity SI =
p3
p2

= 5.07 · 10−4 which are both inside the normal range [11]. The parameters
are inserted into GLUSIM, and the insulin data are given as input. The graphs
derived by doing this can be seen in figure 5.2.

As you can see the GLUSIM simulation follows the measured data nicely like
it should. Now a decrease and increase of the parameter p1 which is also the
glucose effectiveness SG, will be tried in order to show the influence of this
parameter according to the minimal model. The rest of the parameters are kept
at the previous given values. In figure 5.3 you can see the results. When SG

is halved the decay of the glucose level becomes slower. When SG is doubled
the level decays faster. This parameter does not change anything according to

5.2 Simulations with the Glucose Minimal Model 43

Figure 5.2: Simulation of MINMOD data with GLUSIM. The black dots on
graph 1 represents measured glucose values, and the dotted line is Gb

Figure 5.3: Green graph: SG = 0.03. Blue Graph: SG = 0.06. Red graph:
SG = 0.015. Black circles: Measured data (MINMOD). Dotted line: Gb

active insulin effect as you can see on the second graph.

Now the same test is done with insulin sensitivity SI . The results are shown in
figure 5.4. When SI is doubled by doubling p3 the effect of active insulin is also
approximately doubled. And when SI is halved due to a halved p3, the effect
is approximately halved. When you do the same by halving and doubling p2 it
also changes the effect but not as much as a change in p3. Basically this shows
how a high insulin sensitivity increases the effect of active insulin to decay the
glucose level and how a low sensitivity decreases the effect of active insulin. But
it also shows that there is a difference in having a high SI due to a high p3 in
contrary to a high SI due to a low p2.

44 Simulations and Discussion

Figure 5.4: In the top graphs p3 = 1.062 · 10−5 and in the bottom graphs:
p2 = 0.02093. Green graphs: SI = 5 · 10−4, Blue graphs: SI = 10 · 10−4,Red
graphs: SI = 2.5 · 10−4

5.2 Simulations with the Glucose Minimal Model 45

Figure 5.5: The IVGTT with no insulin response simulated with GLUSIM

5.2.2 The Problem with the Glucose Minimal Model

In the first chapter, the problem with the glucose minimal model was described.
This problem turned up when parameters were estimated with an IVGTT with
insulin response. In such case the glucose effectiveness SG was overestimated and
the insulin sensitivity was underestimated. This can be shown graphically by
using the same parameters, used in the previous section to simulate an IVGTT.
But instead of using the measurement data as input the insulin is constantly set
to the basal value Ib = 7.3mg

dL . Describing that the insulin has no effect. The
results of doing this are visualized in figure 5.5.

As you can see the glucose still decays very fast, and according to Steil et al. [8]
this decay is too fast. Cobelli et al. [3] uses their 2-compartment model, which
is not analyzed in this thesis, to estimate that SG should be about 60% lower
and SI should be 35% higher. This is used in a simulation with GLUSIM, by
setting p1 = p1 − p1 · 60% and p3 = p3 · 135%. These parameters are simulated
with and without an insulin response, and the result can be seen in figure 5.6.
When using these parameter-estimation the curve do not quite fit the glucose
curve when insulin is responding, but the parameters are also just estimated.
Without the insulin response and the new parameters, the glucose level decay
much slower than before, but not slow enough according to the results given by
Steil et al. in which the baseline not even is reached after 240 min. All this
shows that the glucose minimal model has a lack in giving a SG and SI which
fit in all situations. This makes it difficult to use it in a simulator, because its
difficult to describe a subject using this model.

46 Simulations and Discussion

Figure 5.6: The IVGTT with and without insulin response simulated with
GLUSIM using the parameter estimations of SG and SI from [3]

5.3 Simulations with the Insulin Minimal Model

In this section simulations are done with INSSIM, an implementation of the
insulin minimal model.

5.3.1 The IVGTT

Like with the glucose minimal model, Bergman et al. [11] have also used their
MINMOD program to estimate parameters for the insulin minimal model, by
using the glucose measurements shown in figure 5.1. They derive the following
parameters:

p4 = 0.3 p5 = 89.5 p6 = 0.3349 · 10−2 I(0) = 403.4
mU

L

Before the first pancreatic response φ1 is calculated the computed values at time

5.4 Simulations with The Original Model 47

Figure 5.7: Simulation with MINMOD data with INSSIM. the black dots are
measured data, the dotted line is Ib.

0 and time 2 are neglected, because this are the times (see measured data) where
the insulin level rises to the first peak, and in the insulin minimal model the
rise to the first peak cannot be computed. So instead of having Imax = 403.4
they have Imax = 132.5 [11]. and G(0), in the formula is then actually the
measured value 4 min. after the injection. Then the pancreatic responses can
be calculated:

φ1 =
Imax − Ib

p4(G(0)−Gb)
=

132.5− 7.3
0.3(287− 92)

= 2.14

φ2 = p6 · 104 = 33.49

By using the measured glucose data and the derived parameters as input you get
the graph on figure 5.7. The INSSIM data follows the measured data. Computed
times until the 4th min. should be neglected as earlier described.

5.4 Simulations with The Original Model

The coupling between the two original minimal models is implemented in the
Matlab program BERSIMU. This coupling gives a full picture of the blood
glucose-insulin system, and need no measured data as input. In this section the
possibilities, ex. simulation of a type 2 diabetic and a graphical presentation of
the problems that occurs when p5 < Gb will be done.

48 Simulations and Discussion

5.4.1 Comparison

When using the original coupled model, it would be possible to fit the model to
an IVGTT, in a single step. But would this give the same parameters as with
the separate minimal models In the lack of a estimation program, a comparison,
between the graphs simulated with BERSIMU and GLUSIM AND INSSIM, is
done to check for differences. The parameters used for the models are the ones
derived with MINMOD, introduced in the previous sections:

p1 = 0.03082 p2 = 0.02093 p3 = 1.062 · 10−5 G(0) = 287
mg

dL

p4 = 0.3 p5 = 89.5 p6 = 0.3349 · 10−2 I(0) = 403.4
mU

L

The results are shown in figure 5.8. The comparison shows small differences
between the original model and the separate model simulation. This shows that
a parameter estimation using the original model, would result in a different set
of parameters, and a new index for the interpretation parameters SI , SG, φ1

and φ2.

5.4.2 The Problem with The Original Model

As explained in the section about the original model, the coupling has a problem,
namely that no equilibrium can be obtained when p5 < Gb. In figure 5.9 this
problem is illustrated by a comparison between two simulations with BERSIMU.
One where p5 = 89.5 and one where p5 = 94. The parameters from the previous
section is used so Gb = 92mg

dL . The graphs show how the equilibrium is found
when (G(t) = Gb, X(t) = 0, I(t) = Ib for the simulation with p5 = 94. But for
the simulation with p5 = 89.5, no equilibrium is found. instead the vibrations
for the blood insulin concentration seems to grow.

5.4.3 Simulating a Type 2 Diabetic

One of the possibilities given by the original model is to simulate an IVGTT
for a insulin-independent type 2 diabetic. In studies by Bergman et al. [14]
they found that a low SG and a φ2SI below 75 · 10−4 was in common for low
tolerant (glucose resistant) subjects. The study showing that a low glucose
effectiveness is present in a low tolerant subject, can be due to the problem

5.4 Simulations with The Original Model 49

Figure 5.8: Comparison between data simulated with the separate minimal
models and the coupled model. Red graphs are simulated with either GLUSIM
or INSSIM and blue graphs are simulated with BERSIMU

50 Simulations and Discussion

Figure 5.9: Comparison between simulations done with p5 < Gb (blue graphs)
and p5 > Gb (red graphs), baselines: Gb and Ib (black dotted lines)

with the glucose minimal model, in which glucose effectiveness is overestimated
and insulin sensitivity is underestimated. In figure 5.10 the IVGTT for subjects
with low SG , low φ2SI and with both low SG and φ2SI respectively are shown.
These are compared to a good tolerant subject described with the previously
used parameters, but with p5 = 94, due to the equilibrium problem with the
coupling. The simulation results show how the subjects with low SG and low
φ2SI respectively has a slower decay. And when both of these terms are low
the decay is very slow. These simulations shows how the pattern of a type 2
diabetic (glucose resistant) could look like.

5.5 Simulations with The Modified Model

In this section simulations with the modified model are done. The modified
model contains many possibilities in regard to meal disturbance and insulin
infusion. First an attempt to simulate the pattern of a type 1 diabetic during
fasting is attempted, then the effect of meals and insulin injections are shown.
Finally the PID controller is tuned and tested, in order to show the possibility
of using a controller with the model.

5.5 Simulations with The Modified Model 51

Figure 5.10: Blue graphs: Normal subject SG = 0.0308 and φ2SI = 169.93, Red
graphs: Low SG = 0.0001 and normal φ2SI = 169.93, Green graphs: Normal
SG = 0.0308 and low φ2SI = 5.07, Magenta graphs: low SG = 0.0001 and low
φ2SI = 5.07

52 Simulations and Discussion

5.5.1 A Type 1 Diabetic

In this section an attempt to simulate the pattern of a type 1 diabetic during
fasting is done. In the section about the glucose minimal model it was shown
that if the parameters were estimated based on a IVGTT with insulin response,
they could not be used to show how the subject would react if no insulin response
was present. Here an attempt to simulate a diabetic during fasting is tried. An
untreated type 1 diabetic has a very high blood glucose concentration, due to
the fact that none or almost none insulin is produced. In these simulations the
function U(t) is given the constant value 0. Gb is set to an arbitrary high value
Gb = 200mg

dL . The basal insulin concentration Ib for a type 1 diabetic is set to
Ib = 0mU

L . By using these values and using the following parameters for a type
1 diabetic derived in a study by Lynch et al. [10]:

p1 = 0.028735
1

min
, p2 = 0.028344

1
min

p3 = 5.035 · 10−5 L

min2mU

you get the results shown in figure 5.11. everything stays at the steady state.
One could argue that it is wrong to set Ib = 0, because then the effect of
any ı́nsulin coming in, would be the same as for a healthy person having a
basal insulin concentration at e.g. Ib = 15mU

L . Having Ib = 15mU
L and zero

insulin production would give the effect of insulin a negative effect, which would
increase the glucose value. This does not seem likely. Whether or not insulin
has the same effect independently of the basal concentration would require a
better physiological understanding of the system.

5.5.2 Meal disturbance

One of the possibilities with the modified model, is to see how the model/system
reacts to a meal disturbance. By using the parameters from the previous section
a meal disturbance simulation is done. In figure 5.12 the result of three meals
of different sizes are given, using Fisher’s meal disturbance function and values
of 3, 5 and 12. no insulin response is given. These graphs show that the glucose
level rises and then decays inside a 2-hour period. This fast clearance of glucose
is most likely due to the parameters estimated by Lynch et al. has been affected
by the problems with the glucose minimal model, an overestimation of SG and
a underestimation of SI . So p1 should have a lower value, which would slow
down the decay. But this was just to show that the model reacts to the meal
disturbance.

5.5 Simulations with The Modified Model 53

Figure 5.11: Attempt to simulate a fasting period for a type 1 diabetic.

Figure 5.12: Meal disturbance graphs at zero insulin. Black dotted lines are
baseline Gb

54 Simulations and Discussion

Figure 5.13: Insulin Injections given at time 100. Black dotted lines are baselines
Gb and Ib.

5.5.2.1 Insulin Injections

Another possibility with the modified model, is to use the U(t) function and see
how the model reacts to an insulin shot, and or a change in the basal delivery.
If it is assumed that the injections is injected in a time period of 1 minut, a
simulation can be done of an insulin injection. The parameters used are the
same as before. In figure 5.13 graphs for 3 injections of sizes 100mU ,500mU
and 1000mU is given. This shows how the model describe an insulin injection
effect on the blood glucose concentration. This is however a very simplistic
attempt to simulate an injection, because there are different types of insulin,
fast-acting and short acting. By changing p4 the clearance rate of insulin, you
can change how long time the insulin should act (see figure 5.14). but a model
describing some delays could be a good idea to add to the model.

Another way to use the U(t) function is to give it a constant value, so it describes
a constant delivery of a certain size. For the type 1 diabetic used in the previous
simulations the delivery is 0. In figure 5.15 the basal delivery is changed from 0
to 20 mU

min . This results in a new steady state for blood glucose concentration at
G(t) = 100mg

dL . So with a change in basal delivery it is possible to change the
basal concentration of glucose. This basal delivery could be given by a pump.

5.5 Simulations with The Modified Model 55

Figure 5.14: Insulin Injection at time 10 of 100mU with a low p4 = 0.01. Black
dotted lines are baselines Gb and Ib.

Such a controlled pump is described in the next section by the PID controller,
introduced in chapter 3.

5.5.3 The Artificial Pancreas

In chapter 3, a PID controller, was introduced. This PID controller could be
used to create an artificial pancreas. In this section a tuning and a testing of
this PID controller is described. Some of the issues regarding the creation of
a controller will be discussed. The PID controller, is not the best choice of
controller and this is not the purpose. The purpose is to show how a controller
can be used together with the minimal model.

5.5.3.1 Tuning the PID Controller

If the PID controller, has to work as an artificial pancreas it has to be tuned.
Here an empirical tuning is done based on the pattern of an IVGTT and the
reactions to a meal disturbance. The parameters used are:

56 Simulations and Discussion

Figure 5.15: Basal delivery changed to U(t) = 20. Black dotted lines are base-
lines Gb and Ib

Gb = 81
mg

dL
, Ib = 15

mU

L
, VI = 12L, p4 = 0.3

1
min

p1 = 0.028735
1

min
, p2 = 0.028344

1
min

p3 = 5.035 · 10−5 L

min2mU

These are the parameters describing a type 1 diabetic [10]. One thing to notice
is that Ib = 15mU

L . This means that is assumed that the controller has been
there for sometime and has created a basal concentration of Ib = 15mU

L . In
order to keep this delivery a basal rate of p4IbVI is infused as mentioned in
chapter 3. This means that the controller controls the additional delivery, but
can also subtract from the basal. By looking at the IVGTT derived by Bergman
et al. [11], which is a typical pattern of IVGTT, and comparing it to the output
of MODBERSIM an empirical tuning is done and the following parameters are
derived:

Kc = 0.2, Ti = 500, Td = 120 N = 10

5.5 Simulations with The Modified Model 57

Figure 5.16: The comparison between the IVGTT from MINMOD [11] and the
tuned IVGTT

As you see the integral part of the controller 1
Ti

is very small, and can almost
be neglected, this makes the PID controller a PD controller. The graphs of the
simulated IVGTT, with the ”Artificial Pancreas” can be seen in figure 5.16.

As it can be seen this controller is not fitted perfectly. However if you want
to create a good artificial pancreas, this is not important. The main target
should be to bring down the glucose level fast, without infusing so much insulin,
that it results in hypoglycemia, where the glucose level becomes too low. The
two major issues when you want to create an artificial pancreas, is that it has
to react fast, and has to be able to determine infusion based on subcutaneous
measurements.

5.5.3.2 Testing the Controller

Further testing of the PID-controller based artificial pancreas is done, in order
to see if it works correctly. Testing of controllers, like this, which have great
influence on peoples life are very important.

The minimal model could be used to test these controllers, but this would be

58 Simulations and Discussion

Figure 5.17: Testing the tuned PID controller. Meal test, with break-
fast,lunch,dinner and snack. The first graph show the meal rates. initial values
for the meal rates are chosen to be between 5-10 mg

dL

a very simple test. A more detailed model, is therefore necessary. In this
case the controller is tested by simulating an OGTT and a whole day with
different meals. For the OGTT the result should show a healthy subject (Blood
glucose concentration less than 140mg

dL after 2 hours). For the meal test a set
of demands are derived from the study by Lynch et al. [10], The blood glucose
level should return to the steady state within 3 hours, 0 < U(t) < 100 mu

min and
60mg

dL < G(t) < 180mg
dL . Both the OGTT and the meals are simulated with

Fishers meal disturbance function. figure 5.17 and 5.18 show the results of the
test. The results show that the controller keeps the glucose inside the given
boundaries in both scenarios.

5.5.3.3 The Problems with the Controller

Even though the tests gave good results. The controller still has some problems.
The empirical tuning is very rough, and further testing would probably show
some problems, e.g. hypoglycemia, with the PID controller. Another problem is
that the controller is tuned to a certain set of parameters, so it would only work
for this single subject.Thus this controller is not perfect, but just an example of

5.6 Discussion about the coupled models 59

Figure 5.18: Testing the tuned PID controller. OGTT test, at time 10 the initial
rate of fishers meal disturbance function is set to 10 mg

dL

how a controller can be used together with the modified model.

5.6 Discussion about the coupled models

The two coupled models which both are based on the glucose-and insulin mini-
mal models, has now been analyzed according to possibilities and problems. In
this section a summary is given, in order to discuss whether or not the coupled
models are usable.

5.6.1 The Original Model

The original model, based on the two basic minimal models, has some good
functionalities, shown in the simulations. First of all it could be used to interpret
an IVGTT in a single step for the entire blood glucose system. Secondly it can
be used to simulate different IVGTT’s for both healthy and glucose resistant
subjects. Finally due to the low number of parameters it is very easy to use.

60 Simulations and Discussion

The model however have some problems. If the parameter p5 < Gb no equilib-
rium can be found. Another problem is that the model adopts the problem of
the glucose minimal model: overestimation of SG and underestimation of SI .
This means that a inaccurate picture is given on the influence of glucose and
insulin respectively.

The original model, can be used inside a limited area, namely to simulate and
interpret an IVGTT. In this limited area the equilibrium problem plays a minor
role so the model could be used to give a approximate picture of an IVGTT.
However this picture would be inaccurate due to the problem with the glucose
minimal model.

5.6.2 The Modified Model

The modified model has a many possibilities. It can be used to show the reac-
tions of a type 1 diabetic to a meal disturbance, an insulin shot and a change
in basal delivery of insulin. Due to the few number of parameters it is easy to
use, compared to other models (Sorenson etc. [8]).

The most interesting function of the modified model is the possibility to attach a
controller, which controls the glucose level by manipulating the insulin delivery.
This is interesting, because one of the great issues in the diabetes-world today is
the search for a controller acting like an artificial pancreas. With the modified
model with a controller attached it is possible to test how such a controller would
react to meal disturbance. Even though it would only give an approximate
picture, it would be a good starting point, if you want to know whether your
controller works or not.

As described the modified model has some good functionalities. But like the
original model it also adopts the problem of the glucose minimal model. This
makes it difficult to describe a subject using the minimal model, because the
model does not have the ability to slow down the total plasma clearance rate
due to the rise in glucose, when no insulin response is present.

The modified model can be used to give a rough picture of how the blood
glucose-insulin system is for a type 1 diabetic with exogenous insulin delivery,
and how this subject reacts to a given meal disturbance. But the model does
not give a full picture of the system in all of its aspects, so when using it to e.g.
test a controller, you have to be cautious and aware of the problems, which can
occur.

5.6 Discussion about the coupled models 61

5.6.3 Could the models be used

The original model and the modified model, are both very simple models, which
does not give a full picture of the blood glucose-insulin system. But both of
the models are able to give an approximate picture of the system.The original
model can be used to simulate IVGTT’s. But due to the problems of the adopted
glucose minimal model, it is not a good model to use to interpret these tests.

The modified model has good functionalities for testing of controllers. But it
only gives a very general picture, so you could not use the modified model to
certify that a controller is working 100% correct.

Basically it is almost impossible to make a model, which describes the blood
glucose-insulin system 100% correct, but mathematical models are a good tool
to give an approximate picture. Both of the models are able to give this approx-
imate picture, with a few number of parameters. Both of the models could be
used for simulations as long as you are aware, that this is very simple models,
giving a rough picture of the blood glucose-insulin system, and that this picture
is not always correct due to the problems of the models.

62 Simulations and Discussion

Chapter 6

Conclusion

In this thesis the construction of a mathematical model describing the whole
blood glucose-insulin system was tried. Two models was derived. They were
both based upon the two minimal models of Bergman’s minimal model, which
is primarily used to interpret an IVGTT.

These two minimal models carried some problems. One of the problems was
that the glucose minimal model overestimates SG and SI when fitted to data
with a insulin response. This makes it difficult to simulate different scenarios
with this model. And maybe this model is to minimal to describe the aspects
when no insulin response is present.

One of the coupled models the original model is very attached to the IVGTT and
is able of simulating IVGTT for both healthy and glucose resistant subjects. It
did however have the problem that no equilibrium could be obtained for p5 < Gb,
and that makes it mathematically incorrect. It also adopted the problem of the
glucose minimal model, which makes it a poor model for interpretation of the
IVGTT.

The other coupled model, the modified model was not attached to a single test.
It contained the possibility to simulate the reaction to a meal disturbance and
the reaction to a insulin injection or a change in basal insulin delivery. A PID
controller was also implemented to show how the model could be used to test

64 Conclusion

controllers. Such a test however would only be very rough due to the simplicity
of the minimal model.

The modified model, like the original model, adopted the problem of the glucose
minimal model, and among other things this made it difficult to simulate a type
1 diabetic without treatment.

Thus the coupled models were not perfect, but but if used with caution to the
problems, they could be used to give approximations to how the blood glucose-
insulin system would react in a certain situation and one of the positive sides of
the coupled models is that they are very easy to use.

Appendix A

Matlab Programs

A.0.4 glusim.m

function [GE,SI,RES,T] = glusim(parametertype,data)

parameters1

p = [p1 p2 p3];
b = [Gb Ib];
startval = [G0 X0];
GE = p1;
SI = p3/p2;
tmin = Data(1,1);
tmax = Data(end,1);
tmin = 0;
tmax = 182;
tspan = [tmin tmax];

[T,RES] = ode15s(@bergmanpart1,tspan,startval,[],Data,p,b);

% Gbvec = Gb∗ones(size(T));
% figure
% plot(T,RES(:,1),’−b’,’linewidth’,3)
% hold on
% plot(T,Gbvec,’−−black’,’linewidth’,3)
% plot(Data(:,1),Data(:,2),’∗black’)

66 Matlab Programs

% V = axis; axis([0 182 V(3) V(4)]);
% title(’BLOOD GLUCOSE LEVEL,SIMULATED WITH GLUSIM’,’fontsize’,16)
% xlabel(’TIME [MIN]’,’fontsize’,14)
% ylabel(’GLUCOSE LEVEL [mg/dL]’,’fontsize’,14)
% legend(’Glucose level’,’Baseline Gb’,’Measured data’)
% figure
% plot(T,RES(:,2),’−b’,’linewidth’,3)
% title(’ACTIVE INSULIN EFFECT,SIMULATED WITH GLUSIM’,’fontsize’,16)
% xlabel(’TIME [MIN]’,’fontsize’,14)
% ylabel(’ACTIVE INSULIN EFFECT [1/MIN]’,’fontsize’,14)
% V = axis; axis([0 182 V(3) V(4)]);
% figure
% plot(Data(:,1),Data(:,3),’oblack’,’linewidth’,3)
% title(’MEASURED INSULIN DATA’,’fontsize’,16)
% xlabel(’TIME [MIN]’,’fontsize’,14)
% ylabel(’BLOOD INSULIN LEVEL’,’fontsize’,14)

A.0.5 bergmanpart1.m

%∗∗
% Minimal Model part 1 (glucose)
% Matlab Implementation by Esben Friis−Jensen, s042244
% DTU. 2007
%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 2 more inputs:
%∗∗
% p is a vector of size (3,1), containing the 3 parameters p1, p2 and p3
%∗∗
% b is a vector of size (2,1) containing the basal values Gb and Ib
%∗∗
function [dres] = bergmanpart1(t,res,input,p,b)

dres = zeros(2,1); % a column vector with 7 elements

if size(input,1) > 1 || size(input,2) > 1
I = interp1(input(:,1),input(:,3),t);
else
I = input;
end

%∗∗
% The equations
%∗∗
dG = −p(1)∗(res(1)−b(1)) − res(2)∗res(1);
dX = −p(2)∗res(2)+ p(3)∗(I−b(2));

dres(1) = dG;
dres(2) = dX;
%∗∗

67

A.0.6 parameters1.m

%∗∗∗
% Parameters for the Minimal Model part 1 : Glucose kinetics
% Implemented by Esben Friis−Jensen, DTU. To be used together with the
% program glusim
%∗∗∗
% Parameters for the p−vector
%∗∗
% p0 − Theoretical glucose level at time zero above baseline.
% p1 − Glucose effectiveness (Insulin independent).
% p2 − Rate of the spontaneous decrease of tissue glucose uptake ability.
% p3 − increase in uptake ability per unit of insulin conc. over baseline
% (insulin dependent).
%∗∗
% Parameters for the b−vector
%∗∗
% Gb − Baseline glycemia.
% Ib − Baseline insulemnia.
%∗∗

Data = data;

%∗∗
% Here the parameters are setup
%∗∗
if parametertype == 1 % Parameter group 1

%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.03082; p2 = 0.02093; p3 = 1.062E−5;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0;

end

if parametertype == 2 % Parameter group 1
%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.03082; p2 = 0.01046; p3 = 1.062E−5;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0;

68 Matlab Programs

end

if parametertype == 3 % Parameter group 1
%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.03082; p2 = 0.04186; p3 = 1.062E−5;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0;

end

A.0.7 inssim.m

function [pan2,RES,T] = inssim(parametertype,data)

parameters2

p = [p4 p5 p6];
b = [Ib];
startval = [I0];
options = odeset(’Events’,@bergmanpart2event);
tspan = Data(:,1);

tstart = Data(1,1);
tmax = Data(end,1);

begin = 1;
while tstart < tmax

state2 = (bergmanpart2event(tstart,startval,Data,p,b) == 0);

if bergmanpart2event(tstart,startval,Data,p,b) > 0
[T1,RES1,Te,Ye,Ie]=ode15s(@bergmanpart21,[tstart tmax],startval,options,Data,p,b);

else
[T1,RES1,Te,Ye,Ie]=ode15s(@bergmanpart22,[tstart tmax],startval,options,Data,p,b);

end

if state2 == 1
startval = Ye(1,:);
tstart = Te(1,1);
T1 = [];
RES1 = [];

elseif ˜isempty(Ie)
startval = Ye(end,:);

69

tstart = Te(1,1);
else

tstart = tmax;
end

Ye = [];
Ie = [];
Te = [];

theend = begin + (size(T1,1)−1);
RES(begin:theend,1) = RES1;
T(begin:theend,1) = T1;
begin = theend + 1;

end

pan2 = p6∗10ˆ4;

A.0.8 bergmanpart21.m

%∗∗
% Minimal Model part 2 (Insulin). state 1
% Matlab Implementation by Esben Friis−Jensen, s042244
% DTU. 2007
%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 2 more inputs:
%∗∗
% p is a vector of size (3,1), containing the 3 parameters p4, p5 and p6
%∗∗
% b is a vector of size (1,1) containing the basal value Ib
%∗∗
function [dres] = bergmanpart21(t,res,input,p,b)

global G

dres = zeros(1,1); % a column vector

G = interp1(input(:,1),input(:,2),t);

%∗∗
% The equations
%∗∗
dI = p(3)∗(G−p(2))∗t − p(1)∗(res(1)−b(1));

dres(1) = dI;
%∗∗

70 Matlab Programs

A.0.9 bergmanpart22.m

%∗∗
% Minimal Model part 2 (Insulin). state 1
% Matlab Implementation by Esben Friis−Jensen, s042244
% DTU. 2007
%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 2 more inputs:
%∗∗
% p is a vector of size (2,1), containing the 3 parameters p4, p5 and p6
%∗∗
% b is a vector of size (1,1) containing the basal value Ib
%∗∗
function [dres] = bergmanpart22(t,res,input,p,b)

global G

dres = zeros(1,1); % a column vector

G = interp1(input(:,1),input(:,2),t);

%∗∗
% The equations
%∗∗
dI = − p(1)∗(res(1)−b(1));

dres(1) = dI;
%∗∗

A.0.10 bergmanpart2event.m

function [rese,isterminal,direction]= bergmanpart2event(t,res,input,p,b)

G = interp1(input(:,1),input(:,2),t);

rese = G−p(2);
isterminal = 1;
direction = 0;

A.0.11 parameters2.m

%∗∗∗
% Parameters for the Minimal Model

71

% Implemented by Esben Friis−Jensen, DTU. To be used together with the
% program BERSIMU
%∗∗∗
% Parameters for the p−vector
%∗∗
% p0 − Theoretical glucose level at time zero above baseline.
% p1 − Glucose effectiveness (Insulin independent).
% p2 − Rate of the spontaneous decrease of tissue glucose uptake ability.
% p3 − increase in uptake ability per unit of insulin conc. over baseline
% (insulin dependent).
% p4 − first order decay rate contant for insulin (n).
% p5 − Target glucose level
% p6 − Rate of pancreatic release of insulin after glucose bolus pr. min.
% pr. mg/dL above target glycemia
%∗∗
% Parameters for the b−vector
%∗∗
% Gb − Baseline glycemia.
% Ib − Baseline insulemnia.V I − Volume of insulin compartment in liters.
% Rutln − Baseline for the glucose level in the subcutaneuos layer.
% Gbsc − Rate of utilization
% drate − Decay rate for meals, also known as alpha.
%∗∗

Data = data;

%∗∗
% Here the parameters are setup
%∗∗
if parametertype == 1 % Parameter group 1

%∗∗
% p−values
%∗∗
p4 = 0.3; p5 = 89.5; p6 = 0.003349;

%∗∗
% b−values
%∗∗
Ib = 7.3;
%∗∗
% Initial values
%∗∗
I0 = Ib+396;

end

A.0.12 bersimu.m

%∗∗
% BERSIMU − A simulator for Bergmans original minimal model. (coupled)
% Implemented by Esben Friis−Jensen, s042244, DTU
%
% It is used together with the file parameters, and the functions bermod1
% and bermod2.

72 Matlab Programs

%∗∗
% The call
%∗∗
% [SG,SI] = bersimu(parametertype,tspan)
%∗∗
% Where the input are:
%∗∗
%∗∗
% PARAMETERTYPE:
% An integer. This is the choice of parameters. The parametergroups can be
% found in the parameters file, where you can change the values as you
% like.
%∗∗
% TSPAN:
% Should be a vector containing [t min t max]
%∗∗

function [pan2,GE,SI,RES,T] = bersimu(parametertype,tspan)

%∗∗
% In the file parameters, all the parameters are setup
%∗∗
parameters;
%∗∗
% the values from parameters are loaded into the vectors p and b
%∗∗
p = [p1 p2 p3 p4 p5 p6];
b = [Gb Ib];
GE = p(1);
SI = p(3)/p(2);
pan2 = p(6)∗10ˆ4

%∗∗
% Here the initial values and options are chosen
%∗∗
if size(tspan,2) ˜= 2

display(’−−−−−−−−−−−−−−−WARNING−−−−−−−−−−−−−−−−−−−−−’)
display(’NO SIMULATION EXECUTED DUE TO THE FOLLOWING’)
display(’Your TSPAN vector should contain 2 elements’)
display(’−−−’)
return

end
t min = tspan(1);
t max = tspan(2);
startval = [G0 X0 I0]; % Initial values
options = odeset(’Events’,@bermodevent);

%∗∗
% Basic simulation, without any disturbance
%∗∗
tstart = t min;
begin = 1;

73

while tstart < t max

state2 = (bermodevent(tstart,startval,p,b) == 0);

if bermodevent(tstart,startval,p,b) > 0
[T1,RES1,Te,Ye,Ie]=ode15s(@bermod1,[tstart t max],startval,options,p,b);

else
[T1,RES1,Te,Ye,Ie]=ode15s(@bermod2,[tstart t max],startval,options,p,b);

end

if state2 == 1
startval = Ye(1,:);
tstart = Te(1,1);
T1 = [];
RES1 = [];

elseif ˜isempty(Ie)
startval = Ye(1,:);
tstart = Te(1);

else
tstart = t max;

end
Ye = [];
Ie = [];
Te = [];

theend = begin + (size(T1,1)−1);
RES(begin:theend,1:3) = RES1;
T(begin:theend,1) = T1;
begin = theend + 1;

end

%∗∗

%∗∗
% If you want the numbers in mmol/L instead of mg/dL for glucose
%∗∗
% gi = gi./18;
% Gb = Gb./18;
% RES(:,1) = RES(:,1)./18;
%∗∗

%∗∗

A.0.13 bermod1.m

%∗∗
% Original Minimal Model Matlab Implementation by Esben Friis−Jensen, s042244
% DTU. 2007

74 Matlab Programs

%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 2 more inputs:
%∗∗
% p is a vector of size (6,1), containing the 4 parameters p1, p2, p3 and
% p4,p5,p6
%∗∗
% b is a vector of size (2,1) containing the 2 basal values Gb, Ib
%∗∗

function [dres] = bermod1(t,res,p,b)

dres = zeros(3,1); % a column vector with 5 elements

%∗∗
% The Minimal Model function 1
%
% res(1) = G
% res(2) = X
% res(3) = I
%∗∗

%∗∗
% The equations
%∗∗
dG = −p(1)∗(res(1)−b(1)) − res(2)∗res(1);
dX = −p(2)∗res(2)+ p(3)∗(res(3)−b(2));
dI = p(6)∗(res(1)−p(5))∗t − p(4)∗(res(3)−b(2));

dres(1) = dG;
dres(2) = dX;
dres(3) = dI;

%∗∗

A.0.14 bermod2.m

%∗∗
% Minimal Model Matlab Implementation by Esben Friis−Jensen, s042244
% DTU. 2007
%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 2 more inputs:
%∗∗
% p is a vector of size (6,1), containing the 6 parameters p1, p2, p3 and

75

% p4,p5,p6
%∗∗
% b is a vector of size (2,1) containing the 2 basal values Gb, Ib
%∗∗
function [dres] = bermod2(t,res,p,b)

dres = zeros(3,1); % a column vector with 5 elements

%∗∗
% The Minimal Model function 2
%
% res(1) = G
% res(2) = X
% res(3) = I
%∗∗

%∗∗
% The equations
%∗∗
dG = −p(1)∗(res(1)−b(1)) − res(2)∗res(1);
dX = −p(2)∗res(2)+ p(3)∗(res(3)−b(2));
dI = − p(4)∗(res(3)−b(2));

dres(1) = dG;
dres(2) = dX;
dres(3) = dI;

%∗∗

A.0.15 bermodevent.m

function [rese,isterminal,direction]= bermodevent(t,res,p,b)

rese = res(1)−p(5);
isterminal = 1;
direction = 0;

A.0.16 parameters.m

%∗∗∗
% Parameters for the Minimal Model
% Implemented by Esben Friis−Jensen, DTU. To be used together with the
% program BERSIMU
%∗∗∗

76 Matlab Programs

% Parameters for the p−vector
%∗∗
% p0 − Theoretical glucose level at time zero above baseline.
% p1 − Glucose effectiveness (Insulin independent).
% p2 − Rate of the spontaneous decrease of tissue glucose uptake ability.
% p3 − increase in uptake ability per unit of insulin conc. over baseline
% (insulin dependent).
% p4 − first order decay rate contant for insulin (n).
% p5 − Target glucose level
% p6 − Rate of pancreatic release of insulin after glucose bolus pr. min.
% pr. mg/dL above target glycemia
%∗∗
% Parameters for the b−vector
%∗∗
% Gb − Baseline glycemia.
% Ib − Baseline insulemnia.V I − Volume of insulin compartment in liters.
%∗∗

%∗∗
% Here the parameters are setup
%∗∗
if parametertype == 1 % Parameter group 1

%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.03082; p2 = 0.02093; p3 = 1.062E−5; p4 = 0.3; p5 = 94; p6 = 0.003349;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0; I0 = Ib + 396;

end

if parametertype == 2 % Parameter group 2
%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.0001; p2 = 0.02093; p3 = 1.062E−5; p4 = 0.3; p5 = 94; p6 = 0.003349;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0; I0 = Ib + 396;

end

if parametertype == 3 % Parameter group 3

77

%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.0308; p2 = 0.02093; p3 = 1.062E−6; p4 = 0.3; p5 = 94; p6 = 0.0010;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0; I0 = Ib + 396;

end

if parametertype == 4 % Parameter group 3
%∗∗
% p−values
%∗∗
p0 = 195; p1 = 0.0001; p2 = 0.02093; p3 = 1.062E−6; p4 = 0.1; p5 = 94; p6 = 0.0010;
%∗∗
% b−values
%∗∗
Gb = 92; Ib = 7.3;
%∗∗
% Initial values
%∗∗
G0 = Gb + p0; X0 = 0; I0 = Ib + 396;

end

A.0.17 modbersim.m

%∗∗
% MODBERSIM − A simulator for the Modified version of Bergmans minimal
% model. Implemented by Esben Friis−Jensen, s042244, DTU
%∗∗
% The call
%∗∗

function [SG,SI,RES,T] = modbersim(infuse,control,tspan,initval,p,b,a,...
tmeals,mealsam,tin,inam)

%∗∗
% Defining parameters not defined in the GUI
%∗∗
parametersesim
startval = initval;
SG = p(3)/p(2);
SI = p(1);
%∗∗

78 Matlab Programs

% Creation of the table with time events
%∗∗
ttimeevents = [tmeals’;tin’];
mtimeevents = [mealsam’;zeros(size(tin))’];
itimeevents = [zeros(size(tmeals))’;inam’];
timeevents = [ttimeevents,mtimeevents,itimeevents];
timeevents = sortrows(timeevents,[1 3]); % sort the rows according to time.

% find rows where two timeelements are the same.
deletevec = [];
i = 1;
for k=1:size(ttimeevents,1)−1

if timeevents(k,1) == timeevents(k+1,1)
if timeevents(k,2) ˜= 0 && timeevents(k+1,2) == 0

timeevents(k+1,2) = timeevents(k,2);
deletevec(i) = k;
i = i+1;

end
if timeevents(k,3) ˜= 0 && timeevents(k+1,3) == 0

timeevents(k+1,3) = timeevents(k,3);
deletevec(i) = k;
i = i+1;

end
if timeevents(k,2) == 0 && timeevents(k,3) == 0 && timeevents(k+1,2) ˜= 0

deletevec(i) = k;
i = i+1;

end
if timeevents(k,2) == 0 && timeevents(k,3) == 0 && timeevents(k+1,3) ˜= 0

deletevec(i) = k;
i = i+1;

end
if timeevents(k,2) == 0 && timeevents(k,3) == 0 && timeevents(k+1,2) == 0 ...

&& timeevents(k+1,3) == 0
deletevec(i) = k;
i = i+1;

end
end

end

% delete the rows not needed anymore
for w = 1:size(deletevec,2)
timeevents(deletevec(w),:) = [];
deletevec = deletevec − 1;
end
initialrow = [tspan(1)−0.1 0 0];
timeevents = [initialrow;timeevents];
%∗∗

%∗∗
% THE SIMULATION
%∗∗
infusion = infuse;
tstart = tspan(1);
size1 = 1;

79

size3 = size(startval,2);
options = odeset(’RelTol’,1e−4,’AbsTol’,[1e−8 1e−8 1e−8 1e−8 1e−8 1e−8 1e−8]);
timeinj = 0.5;

for i = 1:size(timeevents,1)−1

[T1,RES1] = ode15s(@modbermod,[timeevents(i,1)+timeinj...
timeevents(i+1,1)],...
startval,options,p,b,a,infusion,control);

startval = RES1(end,:);
startval(1,5) = startval(1,5)+ timeevents(i+1,2);

infusion = timeevents(i+1,3);

[T2,RES2] = ode15s(@modbermod,[timeevents(i+1,1),...
timeevents(i+1,1)+timeinj],...
startval,options,p,b,a,infusion,control);

infusion = infuse;

startval = RES2(end,:);

size2 = size1 + size(RES1,1)+size(RES2,1)−1;
RES(size1:size2,1:size3) = [RES1;RES2];
T(size1:size2,1) = [T1;T2];
size1 = size2;
A = i;

end

[T3,RES3] = ode15s(@modbermod,...
[timeevents(A+1,1)+timeinj,tspan(2)],startval,options,p,b,a,...

infusion,control);
RES = [RES;RES3];
T = [T;T3];

% figure
% plot(T,RES(:,1))
% figure
% plot(T,RES(:,5))

%∗∗
% If you want the numbers in mmol/L instead of mg/dL for glucose
%∗∗
% gi = gi./18;
% Gb = Gb./18;
% RES(:,1) = RES(:,1)./18;
% RES(:,4) = RES(:,4)./18;
%∗∗

%∗∗
% Here the plots are chosen
%∗∗

80 Matlab Programs

%∗∗

A.0.18 modbermod.m

%∗∗
% Modified Minimal Model Matlab Implementatin by Esben Friis−Jensen, s042244
% DTU. 2007
%∗∗
% This function should be solved with a ODESOLVER, this could be one of the
% Matlab standard ODESOLVERS like ODE45 or ODE15s.
%∗∗
% Besides the basic time t, and the res vector it should have 3 more inputs:
%∗∗
% p is a vector of size (4,1), containing the 4 parameters p1, p2, p3 and
% p4.
%∗∗
% b is a vector of size (6,1) containing the 5 basal values Gb, Ib, Gbsc,
% V I,Rutln and alpha
%∗∗
% infuse is a parameter deciding the size of the infusion u, if infuse is
% negative the artificial pancreas based on a PID controller is used.
%∗∗
function [dres] = modbermod(t,res,p,b,a,infuse,control)

global Apid Bpid Cpid Dpid drate Rutln

dres = zeros(7,1); % a column vector with 7 elements

%∗∗
% The Modified Minimal Model
%
% res(1) = G
% res(2) = X
% res(3) = I
% res(4) = Gsc
% res(5) = D
% res(6) = x1
% res(7) = x2
%∗∗

% ∗∗∗
% Here it is decided to use a controller, or to infuse insulin as a certain
% amount.
%∗∗
if control == 0

u = infuse;
else

% u = b(3)∗p(4)∗a(2);
u = abs(b(3)∗p(4)∗a(2)+ Cpid∗[res(6);res(7)]+Dpid∗(res(1)−a(1)));

end
%∗∗

81

% The equations
%∗∗
dG = −p(1)∗res(1)+p(1)∗b(1) − res(2)∗res(1)+ res(5);
dX = −p(2)∗res(2)+ p(3)∗(res(3)−b(2));
dI = −p(4)∗res(3)+ u/b(3);
dGsc = (res(1)−res(4))/5 − Rutln;
dD = −drate∗res(5);
dx = Apid∗res(6:7,1) + Bpid∗(res(1)−a(1));

dres(1) = dG;
dres(2) = dX;
dres(3) = dI;
dres(4) = dGsc;
dres(5) = dD;
dres(6:7,1) = dx;
%∗∗

A.0.19 parametersesim.m

%∗∗∗
% Parameters for the Modified Minimal Model
% Implemented by Esben Friis−Jensen, DTU. To be used together with the
% program MODBERSIM
%∗∗∗

global Apid Bpid Cpid Dpid drate Rutln

Rutln = 0.74;
%∗∗
% Used for meal simulation
%∗∗
RES = [];
T = [];
drate = 0.05; % this is used for all simulations with meals.
%∗∗
%∗∗
% The PID Controller is loaded here
% ∗∗∗
Kc = 0.2; Ti = 500; Td = 120;

N = 10;
num = conv(Kc,[Ti∗Td∗(1+1/N) (Ti+Td/N) 1]);
den = conv([Ti 0],[Td/N 1]);

sys = tf(num,den);
[Apid,Bpid,Cpid,Dpid]=ssdata(sys);

A.0.20 esim2.m

82 Matlab Programs

function varargout = esim(varargin)
close all
clear all

%∗∗
% Default values for the parameters
%∗∗

p = zeros(1,4);
b = [92,15,12];
a = [92,15];
tmeals = [1,60,120,180];
mealsam = zeros(1,4);
tin = [1 60 120 180];
inam = zeros(1,4);
tspan = [0,300];
initval = [b(1) 0 b(2) b(1)−5∗0.74 0 0 0];
tmaxcheck = max(tmeals(4),tin(4));
tmincheck = min(tmeals(1),tin(1));
newt = [];
decider = 0;
decider2 = 0;

%∗∗
% Creating the window
%∗∗
window = figure(’name’,’ESIM’,’position’,[0,0,1024,745],’menubar’,...
’none’,’toolbar’,’none’,...

’color’,[0,0,0]);
headlinepanel = uipanel(’Position’,[.04 .91 .42 .07],...

’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1],’bordertype’...
,’none’);
tspanpanel = uipanel(’Title’,’Time Span’,’FontSize’,12,...

’Position’,[.04 .84 .42 .07],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

initvalpanel = uipanel(’Title’,’Initial Values’,’FontSize’,12,...
’Position’,[.04 .765 .42 .07],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

parameterpanel = uipanel(’Title’,’Subject’,’FontSize’,12,...
’Position’,[.04 .60 .42 .16],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

unitpanel = uipanel(’Title’,’Units’,’FontSize’,12,...
’Position’,[.04 .535 .42 .06],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

mealpanel = uipanel(’Title’,’Meals’,’FontSize’,12,...
’Position’,[.04 .36 .42 .17],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

controllerpanel = uipanel(’Title’,’Controller’,’FontSize’,12,...
’Position’,[.04 .29 .42 .06],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

infusionpanel = uipanel(’Title’,’Infusion’,’FontSize’,12,...
’Position’,[.04 .16 .42 .12],’fontweight’,’bold’,...

83

’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);
simulatorpanel = uipanel(’Position’,[.04 .05 .2 .10],’fontweight’,’bold’,...

’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1],’bordertype’,’none’);
datapanel = uipanel(’title’,’Data’,’fontsize’,12,’Position’,...
[.25 .05 .21 .10],’fontweight’,’bold’,...

’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);
axespanel = uipanel(’Position’,[0.47 .05 .53 0.95],’fontweight’,’bold’,...

’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1],’bordertype’,’none’);
setpointpanel = uipanel(’Title’,’Setpoints’,’FontSize’,12,...

’Position’,[.04 .20 .42 .07],’fontweight’,’bold’,...
’backgroundcolor’,[0,0,0],’foregroundcolor’,[1,1,1]);

set(setpointpanel,’visible’,’off’)

%∗∗
% Defining the default colors
%∗∗
bcwindow = [0,0,0];
fcwindow = [1,1,1];
bctspanpanel = [0,0,0];
fctspanpanel = [1,1,1];
bcparameterpanel = [0,0,0];
fcparameterpanel = [1,1,1];
bcmealpanel = [0,0,0];
fcmealpanel = [1,1,1];
bccontrollerpanel = [0,0,0];
fccontrollerpanel = [1,1,1];
bcinfusionpanel = [0,0,0];
fcinfusionpanel = [1,1,1];
bccontrollerpanel = [0,0,0];
fccontrollerpanel = [1,1,1];
%∗∗

% bccontrollerpanel = [0,0.3,0.6];
% fccontrollerpanel = [1,1,1];

%∗∗
% Constructing the components
%∗∗
%AXES
%∗∗
ax1 = axes(’Parent’,axespanel,’units’,’pixels’,...

’Position’,[55 480 450 150],’nextplot’,’replace’);
ax2 = axes(’Parent’,axespanel,’units’,’pixels’,...

’Position’,[55 260 450 150],’nextplot’,’replace’);
ax3 = axes(’Parent’,axespanel,’units’,’pixels’,...

’position’,[55 40 450 150],’nextplot’,’replace’);
%∗∗
% STATIC TEXT
%∗∗
Headline = uicontrol(’parent’,headlinepanel,’Style’,’text’,’String’,’ESIM’,...
’Position’,[140,2,150,50],...

’fontsize’,34,’backgroundcolor’,bcwindow,...,
’foregroundcolor’,fcwindow);

ax1header = uicontrol(’parent’,axespanel,’Style’,’text’,’String’,...

84 Matlab Programs

’Blood glucose level’,’Position’,[180,640,150,20],...
’fontsize’,12,’backgroundcolor’,[0,0,0],...,
’foregroundcolor’,[1,1,1],’fontweight’,’bold’);

ax2header = uicontrol(’parent’,axespanel,’Style’,’text’,’String’....,
’Active Insulin Effect’,’Position’,[180,420,150,20],...

’fontsize’,12,’backgroundcolor’,[0,0,0],...,
’foregroundcolor’,[1,1,1],’fontweight’,’bold’);

ax3header = uicontrol(’parent’,axespanel,’Style’,’text’,’String’,...
’Insulin Level’,’Position’,[180,200,150,20],...

’fontsize’,12,’backgroundcolor’,[0,0,0],...,
’foregroundcolor’,[1,1,1],’fontweight’,’bold’);

%∗∗
% STATIC TEXT FOR TSPAN
%∗∗
tminimum = uicontrol(’parent’,tspanpanel,’Style’,’text’,’String’,...
’Starttime [min]:’,’Position’,[12,8,100,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

tmaximum = uicontrol(’parent’,tspanpanel,’Style’,’text’,’String’,...
’End time [min]:’,’Position’,[210,8,100,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

%∗∗
% EDIT TEXT FOR TSPAN
%∗∗
tminimumedit = uicontrol(’parent’,tspanpanel,’Style’,’edit’,’String’,tspan(1),...

’Position’,[120,8,60,20],...
’Callback’,{@tminimum Callback});

tmaximumedit = uicontrol(’parent’,tspanpanel,’Style’,’edit’,’String’,tspan(2),...
’Position’,[320,8,60,20],...
’Callback’,{@tmaximum Callback});

%∗∗
% STATIC TEXT FOR INITVAL
%∗∗
G0 = uicontrol(’parent’,initvalpanel,’Style’,’text’,’String’,’G0:’,...
’Position’,[20,8,20,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

I0 = uicontrol(’parent’,initvalpanel,’Style’,’text’,’String’,’I0:’,...
’Position’,[175,8,20,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

Gsc0 = uicontrol(’parent’,initvalpanel,’Style’,’text’,’String’,’Gsc0:’,...
’Position’,[300,8,40,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

%∗∗
% EDIT TEXT FOR INITVAL
%∗∗
G0edit = uicontrol(’parent’,initvalpanel,’Style’,’edit’,’String’,initval(1),...

’Position’,[50,8,60,20],...

85

’Callback’,{@G0 Callback});
I0edit = uicontrol(’parent’,initvalpanel,’Style’,’edit’,’String’,initval(3),...

’Position’,[210,8,60,20],...
’Callback’,{@I0 Callback});

Gsc0edit = uicontrol(’parent’,initvalpanel,’Style’,’edit’,’String’,initval(4),...
’Position’,[350,8,60,20],...
’Callback’,{@Gsc0 Callback});

%∗∗
% POPUPMENU−LOADING OF PARAMETERS
%∗∗
popup = uicontrol(’parent’,parameterpanel,’Style’,’popupmenu’,...

’String’,{’Default’,’Type 1 (use control)’,...
’Type 1 (No control)’,’Last example’},...
’Position’,[170,75,100,20],...
’Callback’,{@popup Callback});

%∗∗
% STATIC TEXT FOR PARAMETERS (POPUP)
%∗∗
popuptext = uicontrol(’parent’,parameterpanel,’Style’,’text’,...
’String’,’Predefined parameters:’,’Position’,[15,75,150,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

%∗∗
% STATIC TEXT FOR PARAMETERS
%∗∗
p1 = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’p1:’,’Position’,[20,45,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

p2 = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’p2:’,’Position’,[120,45,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

p3 = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’p3:’,’Position’,[220,45,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

p4 = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’p4:’,’Position’,[320,45,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...
’foregroundcolor’,fcparameterpanel);

Gb = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’Gb:’,’Position’,[20,10,20,20],...
’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

Gbunit = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’...
’[mg/dL]’,’Position’,[95,10,50,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...
,’foregroundcolor’,fcparameterpanel);

Gbunit2 = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’[mmol/L]’,’Position’,[95,10,51,20],...

86 Matlab Programs

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel,’visible’,’off’);

Ib = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,’Ib:’,...
’Position’,[175,40,10,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

Ibunit = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’[mU/L]’,’Position’,[255,10,50,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

VI = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,’VI:’...
,’Position’,[320,10,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

VIunit = uicontrol(’parent’,parameterpanel,’Style’,’text’,’String’,...
’[L]’,’Position’,[395,10,20,20],...

’fontsize’,10,’backgroundcolor’,bcparameterpanel,...,
’foregroundcolor’,fcparameterpanel);

%∗∗
%EDIT TEXT BOXES USED FOR PARAMETERS
%∗∗
p1edit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,p(1),...

’Position’,[50,45,60,20],...
’Callback’,{@p1 Callback});

p2edit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,p(2),...
’Position’,[150,45,60,20],...
’Callback’,{@p2 Callback});

p3edit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,p(3),...
’Position’,[250,45,60,20],...
’Callback’,{@p3 Callback});

p4edit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,p(4),...
’Position’,[350,45,60,20],...
’Callback’,{@p4 Callback});

Gbedit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,b(1),...
’Position’,[50,10,40,20],...
’Callback’,{@Gb Callback});

Ibedit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,b(2),...
’Position’,[210,10,40,20],...
’Callback’,{@Ib Callback});

VIedit = uicontrol(’parent’,parameterpanel,’Style’,’edit’,’String’,b(3),...
’Position’,[350,10,40,20],...
’Callback’,{@VI Callback});

%∗∗
% CHECKBOX FOR UNITS
%∗∗
checkboxunits = uicontrol(’parent’,unitpanel,’Style’,’checkbox’,’String’,...
’Use mmol/L instead of mg/dL’,’Position’,[25,6,300,20],...

’fontsize’,10,’backgroundcolor’,bccontrollerpanel,...,
’foregroundcolor’,fccontrollerpanel,’Callback’,...

{@checkboxunits Callback});

%∗∗
% STATIC TEXT FOR MEALS
%∗∗

87

time = uicontrol(’parent’,mealpanel,’Style’,’text’,’String’,’Time [min]:’,...
’Position’,[20,70,70,20],...

’fontsize’,10,’backgroundcolor’,bcmealpanel,...,
’foregroundcolor’,fcmealpanel);

meal = uicontrol(’parent’,mealpanel,’Style’,’text’,’String’,...
’Meal [mg/dL/min]:’,’Position’,[20,30,110,20],...

’fontsize’,10,’backgroundcolor’,bcmealpanel,...,
’foregroundcolor’,fcmealpanel);

meal2 = uicontrol(’parent’,mealpanel,’Style’,’text’,’String’,...
’Meal [mmol/L/min]:’,’Position’,[20,30,110,20],...
’fontsize’,10,’backgroundcolor’,bcmealpanel,...,
’foregroundcolor’,fcmealpanel,’visible’,’off’);

meal3 = uicontrol(’parent’,mealpanel,’Style’,’text’,’String’,...
’The numbers given in the meal fields are initial rates which decays...

exponentially’,’Position’,[20,10,400,12],...
’fontsize’,8,’backgroundcolor’,bcmealpanel,...,
’foregroundcolor’,fcmealpanel);

%∗∗
%EDIT TEXT BOXES USED FOR MEALS
%∗∗
mealtime1edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,tmeals(1),...

’Position’,[140,70,60,20],...
’Callback’,{@mealtime1 Callback});

mealtime2edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,tmeals(2),...
’Position’,[210,70,60,20],...
’Callback’,{@mealtime2 Callback});

mealtime3edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,tmeals(3),...
’Position’,[280,70,60,20],...
’Callback’,{@mealtime3 Callback});

mealtime4edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,tmeals(4),...
’Position’,[350,70,60,20],...
’Callback’,{@mealtime4 Callback});

meal1edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,mealsam(1),...
’Position’,[140,30,60,20],...
’Callback’,{@meal1 Callback});

meal2edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,mealsam(2),...
’Position’,[210,30,60,20],...
’Callback’,{@meal2 Callback});

meal3edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,mealsam(3),...
’Position’,[280,30,60,20],...
’Callback’,{@meal3 Callback});

meal4edit = uicontrol(’parent’,mealpanel,’Style’,’edit’,’String’,mealsam(4),...
’Position’,[350,30,60,20],...
’Callback’,{@meal4 Callback});

%∗∗
% CHECKBOX FOR CONTROLLER CHOICE
%∗∗
checkbox1 = uicontrol(’parent’,controllerpanel,’Style’,’checkbox’,...
’String’,’Use a controller to control insulin injection’,’Position’,...
[25,6,300,20],...

’fontsize’,10,’backgroundcolor’,bccontrollerpanel,...,
’foregroundcolor’,fccontrollerpanel,’Callback’,{@Checkbox1 Callback});

88 Matlab Programs

%∗∗
% STATIC TEXT FOR INFUSION
%∗∗
time = uicontrol(’parent’,infusionpanel,’Style’,’text’,’String’,...
’Time [min]:’,’Position’,[20,45,70,20],...

’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

infuse = uicontrol(’parent’,infusionpanel,’Style’,’text’,’String’,...
’Infusion [mU]:’,’Position’,[10,10,110,20],...

’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

%∗∗
%EDIT TEXT BOXES USED FOR INFUSION
%∗∗
infusetime1edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,tin(1),...

’Position’,[140,45,60,20],...
’Callback’,{@infusetime1 Callback});

infusetime2edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,tin(2),...

’Position’,[210,45,60,20],...
’Callback’,{@infusetime2 Callback});

infusetime3edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,tin(3),...
’Position’,[280,45,60,20],...
’Callback’,{@infusetime3 Callback});

infusetime4edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,tin(4),...
’Position’,[350,45,60,20],...
’Callback’,{@infusetime4 Callback});

infuse1edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,inam(1),...
’Position’,[140,10,60,20],...
’Callback’,{@infuse1 Callback});

infuse2edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,inam(2),...
’Position’,[210,10,60,20],...
’Callback’,{@infuse2 Callback});

infuse3edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,...
’String’,inam(3),...
’Position’,[280,10,60,20],...
’Callback’,{@infuse3 Callback});

infuse4edit = uicontrol(’parent’,infusionpanel,’Style’,’edit’,’String’,inam(4),...
’Position’,[350,10,60,20],...
’Callback’,{@infuse4 Callback});

%∗∗
% STATIC TEXT FOR SETPOINTS
%∗∗
setpoint1 = uicontrol(’parent’,setpointpanel,’Style’,’text’,’String’,...
’G setpoint:’,’Position’,[12,8,100,20],...

’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

setpoint2 = uicontrol(’parent’,setpointpanel,’Style’,’text’,’String’,...

89

’I setpoint:’,’Position’,[210,8,100,20],...
’fontsize’,10,’backgroundcolor’,bctspanpanel,...,
’foregroundcolor’,fctspanpanel);

%∗∗
% EDIT TEXT FOR SETPOINTS
%∗∗
setpoint1edit = uicontrol(’parent’,setpointpanel,’Style’,...
’edit’,’String’,a(1),...

’Position’,[120,8,60,20],...
’Callback’,{@setpoint1 Callback});

setpoint2edit = uicontrol(’parent’,setpointpanel,’Style’,...
’edit’,’String’,a(2),...

’Position’,[320,8,60,20],...
’Callback’,{@setpoint2 Callback});

%∗∗
% PUSH BUTTON
%∗∗
simulate1 = uicontrol(’parent’,simulatorpanel,’Style’,’pushbutton’,...
’String’,’SIMULATE’,...

’Position’,[2,20,200,30],’fontsize’,12,’fontweight’,’bold’,...
’backgroundcolor’,[0,0.3,0.6],’foregroundcolor’,[1,1,1],...
’Callback’,{@simulate1 Callback});

%∗∗
% STATIC TEXT FOR DATA
%∗∗
ge1 = uicontrol(’parent’,datapanel,’Style’,’text’,’String’,...
’Glucose effectiveness:’,’Position’,[1,30,150,20],...

’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

is1 = uicontrol(’parent’,datapanel,’Style’,’text’,’String’,...
’Insulin sensitivity:’,’Position’,[10,10,110,20],...

’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

ge2 = uicontrol(’parent’,datapanel,’Style’,’text’,’String’,p(1),...
’Position’,[140,30,50,20],...
’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

is2 = uicontrol(’parent’,datapanel,’Style’,’text’,’String’,p(3)/p(1),...
’Position’,[140,10,50,20],...

’fontsize’,10,’backgroundcolor’,bcinfusionpanel,...,
’foregroundcolor’,fcinfusionpanel);

%∗∗
% CALLBACKS FOR TSPAN
%∗∗

function tminimum Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

90 Matlab Programs

errordlg(’You must enter a numeric value in field starttime’,...
’Bad Input’,’modal’)
set(tminimumedit,’String’,tspan(1))
return

end
if user entry >= tspan(2)

errordlg(’Not a valid time span’,’Bad Input’,’modal’)
set(tminimumedit,’String’,tspan(1))
return

end
if user entry < 0

errordlg(...
’The value in the field starttime must be positive or 0’,...

’Bad Input’,’modal’)
set(tminimumedit,’String’,tspan(1))
return

end
tspan(1) = user entry;
% changing the meal and infusion time, so the default values fit
% inside the new timespan
newt = linspace(tspan(1),tspan(2),6);
tmeals(1) = newt(2);tmeals(2) = newt(3);tmeals(3)=newt(4);
tmeals(4) = newt(5);
tin(1) = newt(2);tin(2) = newt(3);tin(3)=newt(4);tin(4) = newt(5);
set(mealtime1edit,’String’,tmeals(1))
set(mealtime2edit,’String’,tmeals(2))
set(mealtime3edit,’String’,tmeals(3))
set(mealtime4edit,’String’,tmeals(4))
set(infusetime1edit,’String’,tin(1))
set(infusetime2edit,’String’,tin(2))
set(infusetime3edit,’String’,tin(3))
set(infusetime4edit,’String’,tin(4))

end

function tmaximum Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field end time’,...
’Bad Input’,’modal’)

set(tmaximumedit,’String’,tspan(2))
return

end
if user entry <= tspan(1)

errordlg(’Not a valid time span’,’Bad Input’,’modal’)
set(tmaximumedit,’String’,tspan(2))
return

end
tspan(2) = user entry;

newt = linspace(tspan(1),tspan(2),6);
tmeals(1) = newt(2);tmeals(2) = newt(3);tmeals(3)=newt(4);
tmeals(4) = newt(5);
tin(1) = newt(2);tin(2) = newt(3);tin(3)=newt(4);tin(4) = newt(5);
set(mealtime1edit,’String’,tmeals(1))

91

set(mealtime2edit,’String’,tmeals(2))
set(mealtime3edit,’String’,tmeals(3))
set(mealtime4edit,’String’,tmeals(4))
set(infusetime1edit,’String’,tin(1))
set(infusetime2edit,’String’,tin(2))
set(infusetime3edit,’String’,tin(3))
set(infusetime4edit,’String’,tin(4))

end
%∗∗
% CALLBACKS FOR INITVAL
%∗∗
function G0 Callback(hObject,eventdata)

user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field G0’,...
’Bad Input’,’modal’)
set(G0edit,’String’,initval(1))
return

end
if user entry < 0

errordlg(’You must have a positive G0’,’Bad Input’,’modal’)
set(G0edit,’String’,initval(1))
return

end
initval(1) = user entry;

end

function I0 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field I0’,...
’Bad Input’,’modal’)

set(I0edit,’String’,initval(3))
return

end
if user entry < 0

errordlg(’You must have a positive I0’,’Bad Input’,’modal’)
set(I0edit,’String’,initval(3))
return

end
initval(3) = user entry;

end

function Gsc0 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field Gsc0’,...
’Bad Input’,’modal’)
set(X0edit,’String’,initval(4))
return

end
if user entry < 0

errordlg(’You must have a positive Gsc0’,’Bad Input’,’modal’)
set(Gsc0edit,’String’,initval(4))
return

92 Matlab Programs

end
initval(4) = user entry;

end

%∗∗
% CALLBACKS FOR PARAMETERS
%∗∗

function popup Callback(hObject,eventdata)
str = get(popup, ’String’);
val = get(popup,’Value’);
switch str{val};

case ’Default’
p(1) = 0; p(2) = 0; p(3) = 0; p(4) = 0;
b(1) = 92; b(2) = 15; b(3) = 12; a(1) = 92; a(2) = 15;
set(p1edit,’string’,p(1));
set(p2edit,’string’,p(2));
set(p3edit,’string’,p(3));
set(p4edit,’string’,p(4));
set(Gbedit,’string’,b(1));
set(Ibedit,’string’,b(2));
set(setpoint1edit,’string’,a(1));
set(setpoint2edit,’string’,a(2));

case ’Type 1 (use control)’
p(1) = 0.03; p(2) = 0.03; p(3) = 0.00005; p(4) = 0.1;
b(1) = 81.3; b(2) = 15; b(3) = 12; a(1) = 81.3; a(2) = 15;
set(p1edit,’string’,p(1));
set(p2edit,’string’,p(2));
set(p3edit,’string’,p(3));
set(p4edit,’string’,p(4));
set(Gbedit,’string’,b(1));
set(Ibedit,’string’,b(2));
set(setpoint1edit,’string’,a(1));
set(setpoint2edit,’string’,a(2));

case ’Type 1 (No control)’ % User selects Membrane.
p(1) = 0.001; p(2) = 0.03; p(3) = 0.00005; p(4) = 0.1;
b(1) = 81.3; b(2) = 0; b(3) = 12; a(1) = 81.3; a(2) = 15;
set(p1edit,’string’,p(1));
set(p2edit,’string’,p(2));
set(p3edit,’string’,p(3));
set(p4edit,’string’,p(4));
set(Gbedit,’string’,b(1));
set(Ibedit,’string’,b(2));
set(setpoint1edit,’string’,a(1));
set(setpoint2edit,’string’,a(2));

case ’Last example’ %
p(1) = 0.03; p(2) = 0.03; p(3) = 0.00005; p(4) = 0.1;
b(1) = 81.3; b(2) = 15; b(3) = 12; a(1) = 81.3; a(2) = 15;
set(p1edit,’string’,p(1));
set(p2edit,’string’,p(2));
set(p3edit,’string’,p(3));
set(p4edit,’string’,p(4));
set(Gbedit,’string’,b(1));
set(Ibedit,’string’,b(2));
set(setpoint1edit,’string’,a(1));
set(setpoint2edit,’string’,a(2));

93

end
end

function p1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field p1’...
,’Bad Input’,’modal’)
set(p1edit,’String’,p(1))
return

end
p(1) = user entry;
set(ge2,’string’,p(1))

end

function p2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field p2’,...
’Bad Input’,’modal’)
set(p2edit,’String’,p(2))
return

end
p(2) = user entry;
set(is2,’string’,p(3)/p(2))

end

function p3 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field p3’,...
’Bad Input’,’modal’)
set(p3edit,’String’,p(3))
return

end
p(3) = user entry;
set(is2,’string’,p(3)/p(2))

end

function p4 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field p4’,...
’Bad Input’,’modal’)

set(p4edit,’String’,p(4))
return

end
p(4) = user entry;

end

function Gb Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

94 Matlab Programs

errordlg(’You must enter a numeric value in field Gb’,’Bad Input’,...
’modal’)
set(Gbedit,’String’,b(1))
return

end
if user entry < 0

errordlg(’You must have a positive Gb’,’Bad Input’,’modal’)
set(Gbedit,’String’,b(1))
return

end
b(1) = user entry;

end

function Ib Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field Ib’,...
’Bad Input’,’modal’)

set(Ibedit,’String’,b(2))
return

end
if user entry < 0

errordlg(’You must have a positive Ib’,’Bad Input’,’modal’)
set(Ibedit,’String’,b(2))
return

end
b(2) = user entry;

end

function VI Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field VI’,...
’Bad Input’,’modal’)

set(VIedit,’String’,b(3))
return

end
if user entry < 0

errordlg(’You must have a positive VI’,’Bad Input’,’modal’)
set(VIedit,’String’,b(3))
return

end
b(3) = user entry;

end
%∗∗
%∗∗
% CALLBACKS FOR MEALS
%∗∗

function mealtime1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field time ...
(meal 1)’,’Bad Input’,’modal’)
set(mealtime1edit,’string’,tmeals(1))
return

95

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan in...
field time (meal 1)’,’Bad Input’,’modal’)
set(mealtime1edit,’string’,tmeals(1))
return

end
if tspan(1) >= user entry

errordlg(’You must enter a time inside the timespan in field ..
time (meal 1)’,’Bad Input’,’modal’)
set(mealtime1edit,’string’,tmeals(1))
return

end
tmeals(1) = user entry;

end

function mealtime2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field time
(meal 2)’,’Bad Input’,’modal’)
set(mealtime2edit,’string’,tmeals(2))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan in
field time (meal 2)’,’Bad Input’,’modal’)
set(mealtime2edit,’string’,tmeals(2))
return

end
if tmeals(1) >= user entry

errordlg(’You must enter a time larger than the one in
the field time (meal 1)’,’Bad Input’,’modal’)
set(mealtime2edit,’string’,tmeals(2))
return

end
tmeals(2) = user entry;

end

function mealtime3 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field time
(meal 3)’,’Bad Input’,’modal’)
set(mealtime3edit,’string’,tmeals(3))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan in
field time (meal 3)’,’Bad Input’,’modal’)
set(mealtime3edit,’string’,tmeals(3))
return

end
if tmeals(2) >= user entry

errordlg(’You must enter a time larger than the one in

96 Matlab Programs

the field time (meal 2)’,’Bad Input’,’modal’)
set(mealtime3edit,’string’,tmeals(3))
return

end
tmeals(3) = user entry;

end

function mealtime4 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field time
(meal 4)’,’Bad Input’,’modal’)
set(mealtime4edit,’string’,tmeals(4))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan in
field time (meal 4)’,’Bad Input’,’modal’)
return

end
if tmeals(3) >= user entry

errordlg(’You must enter a time larger than the one in
the field time (meal 3)’,’Bad Input’,’modal’)
set(mealtime4edit,’string’,tmeals(4))
return

end
tmeals(4) = user entry;

end

function meal1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field meal 1’,...
’Bad Input’,’modal’)
set(meal1edit,’string’,mealsam(1))
return

end
if user entry < 0

errordlg(’You must have a positive initial meal rate
in field meal 1’,’Bad Input’,’modal’)
set(meal1edit,’string’,mealsam(1))
return

end
mealsam(1) = user entry;

end

function meal2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field meal 2’,...
’Bad Input’,’modal’)
set(meal2edit,’string’,mealsam(2))
return

end
if user entry < 0

97

errordlg(’You must have a positive initial meal rate in
field meal 2’,’Bad Input’,’modal’)
set(meal2edit,’string’,mealsam(2))
return

end
mealsam(2) = user entry;

end

function meal3 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field meal
3’,’Bad Input’,’modal’)
set(meal3edit,’string’,mealsam(3))
return

end
if user entry < 0

errordlg(’You must have a positive initial meal rate in
field meal 3’,’Bad Input’,’modal’)
set(meal3edit,’string’,mealsam(3))
return

end
mealsam(3) = user entry;

end

function meal4 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field meal 4’...
,’Bad Input’,’modal’)
set(meal4edit,’string’,mealsam(4))
return

end
if user entry < 0

errordlg(’You must have a positive initial meal rate in
field meal 4’,’Bad Input’,’modal’)
set(meal4edit,’string’,mealsam(4))
return

end
mealsam(4) = user entry;

end
%∗∗

%∗∗
% CALLBACKS FOR CHECKBOX1 /controller
%∗∗

function Checkbox1 Callback(hObject,eventdata)
if (get(hObject,’Value’) == get(hObject,’Max’))

set(infusionpanel,’visible’,’off’)
set(setpointpanel,’visible’,’on’)
decider = 1;

else
set(infusionpanel,’visible’,’on’)
set(setpointpanel,’visible’,’off’)

98 Matlab Programs

decider = 0;
end
end

%∗∗
% CALLBACKS FOR INFUSION
%∗∗

function infusetime1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field time
(infusion 1)’,’Bad Input’,’modal’)
set(infusetime1edit,’string’,tin(1))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan in
field time (infusion 1)’,’Bad Input’,’modal’)
set(infusetime1edit,’string’,tin(1))
return

end
if tspan(1) >= user entry

errordlg(’You must enter a time inside the timespan in
field time (infusion 1)’,’Bad Input’,’modal’)
set(infusetime1edit,’string’,tin(1))
return

end
tin(1) = user entry;

end

function infusetime2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field
time (infusion 2)’,’Bad Input’,’modal’)
set(infusetime2edit,’string’,tin(2))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan
in field time (infusion 2)’,’Bad Input’,’modal’)
set(infusetime2edit,’string’,tin(2))
return

end
if tin(1) >= user entry

errordlg(’You must enter a time larger than the one
in the field time (infusion 1)’,’Bad Input’,’modal’)
set(infusetime2edit,’string’,tin(2))
return

end
tin(2) = user entry;

end

function infusetime3 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));

99

if isnan(user entry)
errordlg(’You must enter a numeric value in field
time (infusion 3)’,’Bad Input’,’modal’)
set(infusetime3edit,’string’,tin(3))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the timespan
in field time (infusion 3)’,’Bad Input’,’modal’)
set(infusetime3edit,’string’,tin(3))
return

end
if tin(2) >= user entry

errordlg(’You must enter a time larger than the one
in the field time (infusion 2)’,’Bad Input’,’modal’)
set(infusetime3edit,’string’,tin(3))
return

end
tin(3) = user entry;

end

function infusetime4 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in
field time (infusion 4)’,’Bad Input’,’modal’)
set(infusetime4edit,’string’,tin(4))
return

end
if tspan(2) <= user entry

errordlg(’You must enter a time inside the
timespan in field time (infusion 4)’,’Bad Input’,’modal’)
set(infusetime4edit,’string’,tin(4))
return

end
if tin(3) >= user entry

errordlg(’You must enter a time larger than
the one in the field time (infusion 3)’,’Bad Input’,’modal’)
set(infusetime4edit,’string’,tin(4))
return

end
tin(4) = user entry;

end

function infuse1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field
infusion 1’,’Bad Input’,’modal’)
set(infuse1edit,’string’,inam(1))
return

end
if user entry < 0

errordlg(’You must enter a positive infusion size
in field infusion 1’,’Bad Input’,’modal’)

100 Matlab Programs

set(infuse1edit,’string’,inam(1))
return

end
inam(1) = user entry;

end

function infuse2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field
infusion 2’,’Bad Input’,’modal’)
set(infuse2edit,’string’,inam(2))
return

end
if user entry < 0

errordlg(’You must enter a positive infusion size in field infusion 2’,’Bad Input’,’modal’)
set(infuse2edit,’string’,inam(2))
return

end
inam(2) = user entry;

end

function infuse3 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field meal 3’,’Bad Input’,’modal’)
set(infuse3edit,’string’,inam(3))
return

end
if user entry < 0

errordlg(’You must enter a positive infusion size in field
infusion 3’,
’Bad Input’,’modal’)
set(infuse4edit,’string’,inam(3))
return

end
inam(3) = user entry;

end

function infuse4 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field infusion 4’,
’Bad Input’,
’modal’)
set(infuse4edit,’string’,inam(4))
return

end
if user entry < 0

errordlg(’You must enter a positive infusion size in field
infusion 4’,’Bad Input’,’modal’)
set(infuseedit,’string’,inam(4))
return

end
inam(4) = user entry;

101

end

%∗∗
% SETPOINT CALLBACKS
%∗∗

function setpoint1 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field G setpoint’,...
’Bad Input’,’modal’)
set(setpoint1edit,’string’,a(1))
return

end
if user entry < 0

errordlg(’You must enter a positive value in field G setpoint’,...
’Bad Input’,’modal’)
set(setpoint1edit,’string’,a(1))
return

end
a(1) = user entry;

end

function setpoint2 Callback(hObject,eventdata)
user entry = str2double(get(hObject,’string’));
if isnan(user entry)

errordlg(’You must enter a numeric value in field I setpoint ’
,’Bad Input’,’modal’)
set(setpoint2edit,’string’,a(2))
return

end
if user entry < 0

errordlg(’You must enter a positive value in field I setpoint ’
,’Bad Input’,’modal’)
set(setpoint2edit,’string’,a(2))
return

end
a(2) = user entry;

end

%∗∗
% CALLBACKS FOR checkboxunits
%∗∗

function checkboxunits Callback(hObject,eventdata)
if (get(hObject,’Value’) == get(hObject,’Max’))

set(meal,’visible’,’off’)
set(meal2,’visible’,’on’)
set(Gbunit,’visible’,’off’)
set(Gbunit2,’visible’,’on’)
b(1) = b(1)/18;
set(Gbedit,’string’,b(1))
decider2 = 1;

102 Matlab Programs

else
set(meal2,’visible’,’off’)
set(meal,’visible’,’on’)
set(Gbunit2,’visible’,’off’)
set(Gbunit,’visible’,’on’)
b(1) = b(1)∗18;
set(Gbedit,’string’,b(1))
decider2 = 0;

end
end

%∗∗
% PUSHBUTTON CALLBACKS
%∗∗

function simulate1 Callback(hObject,eventdata)
limit2 = 180;
limit1 = 60;
if decider2 == 1

limit2 = limit2/18;
limit1 = limit1/18;

end
[SG,SI,RES,T] = modbersim(0,decider,tspan,initval,p,b,a,tmeals,...
mealsam,tin,inam);
Gbvec = b(1)∗ones(size(T));
Ibvec = b(2)∗ones(size(T));
limithigh = limit2∗ones(size(T));
limitlow = limit1∗ones(size(T));
plot(ax1,T,RES(:,1),’−b’,T,RES(:,4),’−r’,T,Gbvec,’−−black’,T,...
limithigh,’−−magenta’,T,limitlow,’−−magenta’,’linewidth’,3)
plot(ax2,T,RES(:,2),’−b’,’linewidth’,3)
plot(ax3,T,RES(:,3),’−b’,T,Ibvec,’−−black’,’linewidth’,3)
set(ax1,’xcolor’,’white’)
set(ax1,’ycolor’,’white’)
set(ax2,’xcolor’,’white’)
set(ax2,’ycolor’,’white’)
set(ax3,’xcolor’,’white’)
set(ax3,’ycolor’,’white’)
legend(ax1,’Level’,’Subcutaneous level’,’Baseline’)
legend(ax2,’Level’)
legend(ax3,’Level’,’Baseline’)
xlabel(ax1,’[min]’,’color’,’white’)
ylabel(ax1,’[mg/dL]’,’color’,’white’)
xlabel(ax2,’[min]’,’color’,’white’)
ylabel(ax2,’[1/min]’,’color’,’white’)
xlabel(ax3,’[min]’,’color’,’white’)
ylabel(ax3,’[mU/L]’,’color’,’white’)
axis(ax1,’tight’)
axis(ax2,’tight’)
axis(ax3,’tight’)

end

103

end

104 Matlab Programs

Appendix B

ESIM - A SIMULATOR

B.1 Introduction

Esim is the user interface making the modified model easier to use. Esim is a Matlab
program. However you must have some knowledge about this model and the parame-
ters, to use the program.

B.2 Using Esim

In Esim you first define the timespan. Then you define the subject to simulate. There
are two different kinds of simulation implemented in Esim, namely simulation with
and without a controller

B.2.1 Simulation without a controller

By standard no controller is used, which means no insulin response is given automat-
ically. In this simulation part you are able to see the subjects reaction to injections
and meals. The results are shown in the right of the screen, by the three graphs

106 ESIM - A SIMULATOR

Figure B.1: ESIM, WHEN CONTROLLER NOT IS CHOSEN

blood glucose concentration, Effect of active insulin and blood insulin concentration.
A screenshot taken from this simulation part is given in figure B.1

B.2.2 Simulation with a controller

By checking the box ’Use a controller to control insulin’ is checked you are in the other
simulation part. Here you can see how the controller react to a mealdisturbance. In
figure B.2 a screenshot from this simulation part is given.

B.2 Using Esim 107

Figure B.2: ESIM, WHEN CONTROLLER IS CHOSEN

108 ESIM - A SIMULATOR

Bibliography

[1] Diabetes type 1. www.umm.edu.

[2] Yang Kuang Athena Markroglou, Jiaxu Li. Mathematical models and software
tools for the glucose-insulin regulatory system and diabetes: an overview. Applied
numerical mathematics, 56:559–573, may 2006.

[3] Andrea Caumo Claudio Cobelli and Matteo Omenetto. Overestimation of minimal
model glucose effectiveness in presence of insulin response is due to undermodel-
ing. American Journal of Physiology, 278:E481–E488, 1999.

[4] Andrea Caumo Claudio Cobelli, Francesca Bettini and Michael J. Quon. Overes-
timation of minimal model glucose effectiveness in presence of insulin response is
due to undermodeling. American Journal of Physiology, 275:E1031–E1036, 1998.

[5] Steno Diabetes Center Dorte Hammelev, Novo Nordisk. diabetes og insulin........
Novo Nordisk, 1:1–42, april 2006.

[6] Michael E. Fisher. A semiclosed-loop algorithm for the control of blood glucose
levels in diabetics. IEEE Transactions on biomedical engineering, 38(1):57–61,
January 1991.

[7] Andrea De Gaetoano and Ovide Arino. Mathematical modelling of the intra-
venous glucose tolerance test. Journal of Mathematical Biology, 40:136–168, Re-
vised version February 1999 2000.

[8] Bud Clark M.A Sami Kanderian M.S.E G.M Steil, Ph.D. and Ph.D K. Rebrin,
M.D. Modeling insulin action for development of a closed-loop artificial pancreas.
Diabetes technology and therapeutics, 7(1):94–108, 2005.

[9] S.B Jørgensen K.J Åstrøm, B.Wittenmark. Chapter 5 pid controller. Chemical
process control, notes published at department of chemical engineering, technical
university of Denmark., 1994.

[10] Sandra M. Lynch and B. Wayne Bequette. Model predictive control of blood
glucose in type 1 diabetics using subcutaneous glucose measurements. Proceeding
of the American Control Conference, Anchorage., pages 4039–4043, May 2002.

110 BIBLIOGRAPHY

[11] Giovanni Pacini and Richard N. Bergman. Minmod: a computer program to calcu-
late insulin sensitivity and pancreatic responsivity from the frequently sampled in-
travenous glucose tolerance test. Computer methods and programs in biomedicine,
(23):113–122, 1986.

[12] Andrea Caumo Paolo Vicini and Claudio Cobelli. The hot ivgtt two compartment
minimal model: indexes of glucose effectiveness and insulin sensitivity. American
Journal of Physiolology, 273:1024–1032, 1997.

[13] Charles R. Bowden Richard N. Bergman, Gianna Toffolo and Claudio Cobelli.
Minimal modeling, partition analysis, and identification of glucose disposal in
animals and man. IEEE Transactions on biomedical engineering, pages 129–135,
1980.

[14] Lawrence S. Phillips Richard N. Bergman and Claudio Cobelli. Physiologic eval-
uation of factors controlling glucose tolerance in man. The American society for
Clinical investigation, 68:1456–1467, December 1981.

[15] unknown. Glucose. Lab Tests online.

	Preface
	Summary
	Resumé
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Thesis Structure
	1.4 The Blood Glucose-Insulin System
	1.5 Diabetes
	1.6 Testing

	2 Bergman's Minimal Model
	2.1 Introduction to the Model
	2.2 The Model
	2.3 Open-loop,Closed-loop and Semiclosed-loop models

	3 U(t)-How it can be used
	3.1 The U(t) function
	3.2 The Open Loop Model
	3.3 The Closed Loop Model
	3.4 The Semi-Closed Loop Model

	4 Implementation in Matlab
	4.1 Introduction
	4.2 Choice of Solver
	4.3 Discrete events
	4.4 GLUSIM
	4.5 INSSIM
	4.6 BERSIMU
	4.7 ESIM

	5 Simulations and Discussion
	5.1 Introduction
	5.2 Simulations with the Glucose Minimal Model
	5.3 Simulations with the Insulin Minimal Model
	5.4 Simulations with The Original Model
	5.5 Simulations with The Modified Model
	5.6 Discussion about the coupled models

	6 Conclusion
	A Matlab Programs
	B ESIM - A SIMULATOR
	B.1 Introduction
	B.2 Using Esim

