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Abstract

This thesis describes a method used to construct a segmentation algorithm for
the Medial Temporal Lobe(MTL) in the human brain. The regions of interest
in the MTL consists of four closely connected cortical areas, hippocampus and
amygdala. A set consisting of 13 MRI scans of di�erent individuals with match-
ing manual expert annotations of the MTL were delivered, and the intensity
images was standardized across all 13 images to get corresponding intensity val-
ues for corresponding tissue types.
The regions of the MTL are located fairly deep in the brain where the contrast is
quite low, and region-boundaries can be di�cult to �nd. Many classical segmen-
tation approaches will fail to segment these regions of interest, and the key to a
more successful segmentation is incorporation of prior knowledge. The manual
annotations are represented as Level Set Functions, and a coupled statistical
shape model is trained to capture the spatial variation across the dataset. This
model is employed in a region-based energy formulation which maximizes the
mutual information between the region labels and the image voxel intensity val-
ues of the image. A rather signi�cant improvement is seen when the coupled
model is compared to individual segmentations of each region.
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Resumé

Denne afhandling beskriver en metode der er brugt til at lave en segmenter-
ings algoritme i den Medial Temporale Lob(MTL). Interesseområderne i MTL
består af �re tæt knyttede kortikal-områder samt hippocampus og amygdala i
hver af de to hjerne hemisfærer. Et sæt bestående af 13 MRI scanninger af
forskellige individer med tilhørende manuelle annoteringer af MTL blev udlev-
eret. Intensitets-billederne er alle blevet standardiseret for at opnå en korre-
sponderende intensitet for tilsvarende vævstyper i de enkelte scanninger.
Regionerne i MTL er lokaliseret dybt inde i hjernen hvor kontrasten på MRI
scanninger er meget lav, og de enkelte region-skel kan være svære at �nde. Der-
for vil mange af de klassiske segmenterings metoder fejle og nøglen til en mere
successfuld segmentering er inkorporering af forhåndsviden. De manuelle seg-
menteringer er blevet repræsenteret som Level Sets, og en koblet statistisk form
model er blevet trænet til at indfange den spatielle variation der er i data-sættet.
Denne model er anvendt i en regions baseret energi formulering som maksimerer
den gensidige information mellem de enkelte regionsmærkater og billede- voxel
intensiteten. Når den koblede model sammenlignes med enkeltvis segmentering
af de enkelte regioner ses en tydelig forbedring.
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2 Introduction

1.1 Motivation and Main Objectives

Are di�erent forms of memory in the human brain the result of distinct anatom-
ical regions and processing mechanisms?. The answer to this question is not an
easy one, and is an active area of ongoing research among neurologists and ex-
perts in brain anatomy.
A large number of people with di�erent professions are currently collaborating
to answer this and similar questions in a large project on the investigation of
The Medial Temporal Lobe(MTL), Section 3.3, at e.g. the Danish Research
Center for Magnetic Resonance(DRCMR), Section 3.1.1.

The MTL is the name of a brain region which spans a set of di�erent anatomi-
cal brain-regions. It is known that the MTL establishes functional connections
with widespread areas of the neocortex, Section 3.3, when the brain is process-
ing declarative memory1. However, the roles of the individual regions in the
MTL are manyfold, and their precise relative role in the processing of di�erent
kinds of memory content and their individual processing stages causes discus-
sion among neurologists. A study of the precise functional relations can be done
by observing the activity in the brain.
So how can these areas be investigated when the brain is active? The answer
to this is by using functional Magnetic Resonance Imaging(fMRI), Section 3.1,
which is a well developed method used to study neural activity in e.g. the brain,
in vivo.
Having well de�ned spatial areas, marking the locations for the study of the
full-brain fMRI recording, will make the �nal results of the study more evident
and robust. However, localizing these regions is not an easy task, even for brain-
anatomy experts. The process of a manual localization is a very time-demanding
and exhaustive job, which ideally should be performed automatically by an in-
telligent system. This is of course where this thesis �ts into the big puzzle,
having the objectives:

� Investigate the possibilities of making an intelligent system which is able
to localize the regions of interest.

� Elaborate and analyze a sensible approach to an automatic or semi-automatic
labeling of these regions

� Develop a prototype which demonstrates the approach and can carry out
a labeling of the regions of interest

Besides the neurological motivations described above, the task of building in-
telligent systems for brain image processing is a motivation in itself and has

1Part of the human memory which is responsible for storing facts
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many interesting aspects from an engineers point of view. In the research area
of intelligent imaging systems, segmentation, Chapter 2, is a vast topic that
concerns many people. Especially segmentation of brain regions covers a broad
range of literature because of the many challenges this type of imaging system
faces. To work with a daunting segmentation task as the one in this dissertation
involves many practical problems which will be presented throughout the thesis,
and thereby o�ers good opportunities to exploit many of the skills, achieved in
�eld of machine learning, pattern recognition and image processing.
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1.2 List Of Abbreviations

CSF Cerebro Spinal Fluid
FOV Field Of View
GM Gray Matter
LSF Level Set Function
MI Mutual Information
MPRAGE Magnetization Prepared Rapid Acquisition Gradient Echo
MTL Medial Temporal Lobe
PCA Principal Component Analysis
PDE Partial Di�erential Equation
SDM Signed Distance Map
SNR Signal to Noise Ratio
TR Repetition Time
TE Echo Time
TI Inversion Time
VOI Volume Of Interest
WM White Matter
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6 Segmentation Approaches

In the last decades, segmentation of images has been of great importance to
many di�erent industries. The process of segmenting an image is the process of
distinguishing objects in the image from the background. Of course, since this
is of such importance, a vast amount of di�erent techniques useful for di�erent
scenarios have been developed, ranging from simple thresholding approaches to
more sophisticated statistical approaches. A complete overview of di�erent seg-
mentation methods is obviously out of the scope of this thesis, but a brief listing
of di�erent methods will be appropriate, putting more emphasis on techniques
relevant for solving the problem faced in this project.

2.1 An overview

In Figure 2.1 a brief overview of di�erent segmentation techniques are grouped
after type. The region- and edge-based segmentation groups, contain some low-
level segmentation methods. The classi�cation methods use more advanced
techniques, although by itself only suited for certain problems. Finally the de-
formable models and atlas methods are very specialized techniques, interesting
for the segmentation of regions in the MTL. Issues such as spatial resolution,
poor contrast, ill-de�ned boundaries, noise or acquisition artifacts, make seg-
mentation a di�cult task and it is illusory to believe that it can be achieved by
using gray-level information alone ie. edge or region-based. A priori knowledge
has to be used in the process, and low-level processing algorithms have to co-
operate with higher level techniques such as deformable and active models or
atlas-based methods. These low- and high-level techniques will be listed and
described in the following in accordance with Figure 2.1.

2.2 Region-based and Morphology Approaches

Region based methods aim to distinguish and label di�erent objects with respect
to their regional intensity behaviors. Di�erent methods for doing this exist,
where a small subsection is listed in Figure 2.1.The region-based segmentation
approach has the following advantages:

� It is guaranteed (by de�nition) to produce coherent regions.

� Linking edges, gaps produced by missing edge pixels, etc. is not an issue.
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Figure 2.1: A brief overview of segmentation methods

� It works from the inside out, instead of the outside in. The question of
which object a pixel belongs to is therefore immediate.

However, the region-based segmentation approach also has drawbacks:

� Decisions about region membership are often more di�cult than applying
edge detectors.

� It cannot �nd objects that span multiple disconnected regions. (Whereas
edge-based methods can be designed to handle "gaps" produced by occlu-
sion.)
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The Basic Idea of Region Growing is to start with a single pixel p and expand
from that seed pixel to �ll a coherent region, based on some similarity measure
until a certain threshold have been reached.
Many di�erent Similarity Measures has been proposed in the literature, from
the most simple neighboring pixel comparison, to more sophisticated measures
using texture, gradient, or geometric information. Naturally the algorithm can
be improved by growing multiple seeds simultaneously.
The Split and Merge Algorithms is an improvement to the region grow-
ing algorithm due to the fact that pure merging methods are computationally
expensive because they start from such small initial regions. By recursively
splitting the image into smaller and smaller regions until all individual regions
are coherent, then recursively merging these to produce larger coherent regions
the same result is achieved with less computations.
A vast amount of algorithms improving the basic approach just outlined exists,
using di�erent merging and splitting approaches. One very famous is the Wa-
tershed algorithm which sees the input-image as a topographic surface, high
pixel intensities being peaks and low ones being grooves. The algorithm �lls the
holes in this topographic surface leaving only the barriers between the holes, also
called the watersheds. Di�erent approaches have been suggested to implement
this algorithm. In one approach a euclidean distance map is used to determine
the boundaries of the ponds. In another approach mathematical morphology is
applied to the image, �rst eroding the image, remembering positions of highest
peaks, whereafter a special dilation is performed to connect these peaks. In a
third approach called tobogganing neighboring top-peaks are connected by �nd-
ing common local minima in an iterative fashion. This algorithm is very good
for separating particles.

2.3 Edge-based Approaches

Edge-based segmentation represents a large group of methods based on infor-
mation about edges in the image. The goal of these segmentation methods is
to reach at least a partial segmentation, meaning to group local edges into an
image where only edge chains with a correspondence to existing objects or image
parts are present.
The edges are found using edge detecting operators, often realized as edge-
kernels which are convoluted with the image. Some famous edge �lters are the
Laplacian, the Canny, the Sobel and the Prewitt �lters. A simple gradient cal-
culation of the image also reveals edges. These edges mark image locations of
discontinuities in gray level, color, texture, etc.
However, the resulting edges can for obvious reasons not be used directly as
segmentation results. Therefore supplementary processing steps must follow to
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combine edges into edge chains that correspond better with borders in the im-
age. This can be quite di�cult due to image noise or the presence of unsuitable
information such as spurious borders and cusps.
As listed in Figure 2.1 the reconstruction of the edges after the use of an edge
operator can be done in various ways. A simple brute-force approach tracks
the edges in an iterative way starting from the �rst border pixel encountered,
in either a four or eight connection setting. Naturally, this can be further re-
�ned by incorporating a graph for edge searching. In this graph, the notes are
encoded with boundary candidate pixels, and the transition-cost between nodes
could be the euclidean distance in image space. Node-costs could be the edge-
probability returned by the edge operator. Now it is just a matter of �nding
the optimal minimum cost path in an e�cient manner, thus extracting the most
probable and continuous boundaries. Dynamic programming can be used in a
similar manner on a cost matrix expressing the same costs.
Finally, the well known Hough transformation, also listed in Figure 2.1 is ex-
cellent for �nding correct boundaries. The reader is referred to (Ballard; 1981)
for further information about this algorithm.

2.4 Classi�cation(Pure intensity based)

The task of classi�cation is the task of calculating a probability for each of a
number of prede�ned classes, for a number of observations and selecting the
most probable candidate. This can be done using super-, or unsupervised tech-
niques. An entire branch of science, Machine learning and pattern recognition,
deals with the classi�cation of n-dimensional signals which of course means that
only a very small subsection of existing techniques has been listed in Figure 2.1.
A common feature for most classi�cation techniques is that the probability calcu-
lation for each observation is based on a n-dimensional signal. Since MRI-scans
can be multi-modal, i.e. represented in T1-,T2 and Proton Density weighted
images, these classi�cation techniques are well suited to label certain regions
in these scans. As classi�cation is based purely on probability calculated from
pixel/voxel intensities, certain segmentation tasks such as white-matter, grey-
matter or CSF-�uids labeling in brain-scans are very well suited for classi�ca-
tion in contrast to eg. �nding speci�c areas such as the hippocampus or corpus
callosum. This would require spatial prior knowledge due to the fact that pix-
el/voxel intensities within these regions are similar to pixels outside. However,
in combination with other methods, classi�cation methods can yield powerful
segmentation techniques. This topic is dealt with in the next subsection. Due
to the fact that classi�cation is not used in this project, a further description of
methods will not be necessary, and the reader is referred to the literature such
as (Hastie et al.; 2001) for further information.



10 Segmentation Approaches

2.5 Deformable models

Deformable models are used in di�erent industries, and are very popular in the
medical imaging communities, which is relevant for this project.
The human brain can be classi�ed into a number of di�erent distinct anatomical
regions where a few is seen in Section 3.3. Each of these anatomical regions has a
shape, a spatial position and consists of certain tissues. Often it is the case that
these are di�cult to locate in medical image scans, which is why local search
methods have been developed, which are brie�y presented in this section.

2.5.1 The Classical Deformable Models

A deformable model is a contour moving in image space, investigating the prop-
erties of local regions. The �rst of its kind, which has drawn much attention, is
the active contour, popularly known as the Snake (Kass et al.; 1988). Snakes
are planar deformable contours that are useful in several image analysis tasks.
They are often used to approximate the locations and shapes of object bound-
aries in images, based on the reasonable assumption that boundaries are piece-
wise continuous or smooth. In its basic form, the mathematical formulation of
snakes draws from the theory of optimal approximation involving functionals.
Deformable models are curves or surfaces de�ned within an image domain that
can move under the in�uence of internal forces, which are de�ned within the
curve or surface itself, and external forces, which are computed from the image
data. So basically, classical deformable models build on edge-based segmen-
tation, but have restricted degrees of freedom due to the regularizing curve.
This is not a complete review of snakes, so for more information the reader is
referred to (Kass et al.; 1988), (Sonka and Fitzpatrick; 2000),(McInerney and
Terzopoulos; 1996). The basic form of the snake is seen in Equation 2.1.

E(C) = S(C) + P (C) (2.1)

This can be rewritten into Equation 2.2

E(C) = α

∫ 1

0

|C ′(q)|2dq + β

∫ 1

0

|C ′′(q)|2dq − λ

∫ 1

0

|∇I(C(q))|dq (2.2)

The two �rst terms denote the inner force, S(C), where α damps the smoothness
of the deforming curve and β damps the rigidity of the curve. The third term
in Equation 2.2, P (C) denotes the external forces, which couples the deforming
contour to the image. Here λ controls the attraction strength of the boundary
attraction. As seen in Figure 2.1 there exists a series of external forces, which
can be concatenated in an additive way ie. P (C) = P1(C)+P2(C)+· · ·+PN (C).
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The balloon force is a rather vital force, and was suggested by (Cohen; 1991)
as an additional force given by P (C) = wN(C), ie. an addition of the inward
normal to the curve C to the external force, which makes the snake prevent
getting trapped by isolated spurious edges. A short description of these forces is
listed below. Again, for a more thorough overview of these the reader is referred
to (Sonka and Fitzpatrick; 2000) and (McInerney and Terzopoulos; 1996):

Multiscale gaussian a scalespace version of the normal gaussian attraction
force

Distance Calculating a distance map to edges, obtaining force �eld with large
attraction range

Intervention Makes the user able to interact with the contour while evolving.
Consists of e.g. a Spring and volcano which pulls and pushes the evolving
contour respectively towards the points speci�ed by the user.

In spite of the elegant design, snakes has some drawbacks.

� Topology - Cannot model bifurcations, splitting and merging of objects

� Problems with numerical implementations

� Non-intrinsic - Energy depends on parametrization of curve, not directly
related to the objects geometry

To overcome some of these problems, (Caselles et al.; 1993) and (Malladi et al.;
1995) have proposed the implicit active contour model, also known as the ge-
ometric active contour, which constitutes very interesting applications of level
set ideas within the active contour framework.

∂φ

∂t
= g(I)|∇φ|

(
div

( ∇φ

|∇φ|
)

+ k

)
(2.3)

In this setting, the model is motivated by a curve evolution approach and not
an energy minimizing one. The active contour is embedded as a level set in a
suitable image evolution that is determined by a partial di�erential equation.
On convergence the �nal contour is then extracted.
φ denotes the evolving level set, initially calculated as a signed distance map or
using the fast marching algorithm(Sethian; 1999). t is the time step. g is the
speed function, and is normally calculated as

g(I) =
1

1 + |∇I|2 , g : Rp → [ 0, 1 ] (2.4)
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I being the input-image. So g will make sure the evolution stops when a bound-
ary is reached, meaning that |∇I| will yield high values, dragging g to zero.
The term div

(
∇φ
|∇φ|

)
is responsible for the regularizing e�ect of the model and

plays the role of the internal energy term in the snake model Equation 2.2. The
constant k is a correction ensuring that the "internal force" remains positive, so
it can be interpreted as a force pushing the curve towards 0 when the curvature
becomes zero or negative.
The main advantages of an implicit active contour over the classical explicit
snake is the automatic handling of topological changes, high numerical stabil-
ity and independence of parametrization. However, a main drawback is the
additional computational complexity.

2.5.2 More Recent Deformable Models

(Caselles et al.; 1997) proposed the Geodesic Active Contours for improved
performance over the geometric contour model. The basic idea is to see the
boundary detection in a geometric model from another point of view. In Rie-
mannian space with a metric derived from the image content, the boundary de-
tection is equivalent to �nding the geodesic curve (ie. curve of minimal weighted
length). In Riemannian space, the contour model can thereby accurately track
boundaries with high variation in their gradient,including small gaps which was
di�cult in the previous model. (Caselles et al.; 1997) and (Leventon; 2000) give
a good derivation of the Geodesic Active Contour formulation given by Equation
2.5.

∂φ

∂t
= |∇φ|div

(
g(I)

∇φ

|∇φ|
)

+ cg(I)|∇φ| (2.5)

The term cg(I)|∇φ| is a constant motion term and may help to avoid certain
local minima, i.e. it works as the balloon force proposed in (Cohen; 1991).
To restrict the evolving curve (Leventon; 2000) introduces a shape regularization
term in the force calculation, thus creating what is also seen in Figure 2.1 as the
geodesic active contour with shape prior. In short terms, initial signed
distance maps, Section 4.1, of training shapes created by an expert are aligned,
Section 5.1 thus capturing the pose. A Principal Component Analysis, Section
3.4, is then performed on the aligned distance maps, extracting principal modes
of variation and corresponding principal components. The pose and modes of
variation are incorporated into Equation 2.5, thus yielding

∂φ

∂t
= λ1

(
|∇φ|div

(
g(I)

∇φ

|∇φ|
)

+ cg(I)|∇φ|
)

+ λ2 (u∗ − u) (2.6)

where u∗ is the maximum a posteriori �nal curve controlled by λ2, meaning this
term incorporates information about the shape of the object being segmented.
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So �nally, the entire formulation in Equation 2.6 can be seen as a concatenation
of the internal force regularizing the curve-smoothness, a balloon force which
protects the curve against collapsing and �nally the force that regularizes the
shape form and position.
The �nal implicit deformable shape model listed in Figure 2.1 is the region-
based shape model (Chan and Vese; 2001) (Tsai et al.; 2001) and (Tsai et al.;
2004). Inspired by (Mumford and Shah; 1989) and (Caselles et al.; 1997), a
region-based attraction force has been developed in (Chan and Vese; 2001) to
avoid some of the drawbacks of the edge-based attraction force. This is in
particular when edges contain singularities and the SNR is very low, causing
the speed function g(|∇I|) to have a value greater than zero when the contour
reaches an edge. A natural approach in this case would be to try and smooth the
image �rst with a gaussian kernel, maybe in a scale-space fashion to avoid noise.
This, however, might also fail, so a region-based approach has been developed
to create another speed function for the evolving contour. This means that the
evolving curve in (Chan and Vese; 2001) takes the form Equation 2.7.

∂φ

∂t
= δε(φ)

[
µ div

( ∇φ

|∇φ|
)
− ν − λ1 (u0 − c1)

2 + λ2 (u0 − c2)
2

]
(2.7)

Again the evolving curve given by φ is de�ned by a set of forces, internal and
external. As in the geometric snakes, the �rst term controls the smoothness of
the curve. ν can be seen as a force controlling the area, i.e. it prevents the
curve shrinking to a point, and �nally the two last terms are measures of the
variance of the inner and outer region of the contour. The last two terms will
make the contour dwell in an area where both the variance of the inside and
outside region is at a minimum, meaning one or two homogeneous areas.
(Tsai et al.; 2001) adopted this approach together with the shape prior ap-
proach created by (Leventon; 2000), and formulated an active contour driven
by a region-based force and regularized by a shape term describing the shape
of the desired object. Here the evolution of the curve embedded in a level set
function is however rede�ned in a way which drastically reduces its degrees of
freedom. The basic idea is to only allow the surface to deform in an a�ne and
very constrained non-rigid way, controlled by the modes of principal compo-
nents found in the shape model analysis. This means that the segmentation
task actually can be seen as a registration task where the goal is to minimize
the cost-function that describes the di�erence of the inner and outer region. In
2D the amount of parameters to optimize will then be four plus the amount of
signi�cant modes of variations found. This same approach was used in (Tsai
et al.; 2004) in a setting of multiple shapes and another di�erentiation between
regions. Based on the performance of this model, and the performance of the
same model implemented in (Hansen; 2005), this might be a suitable model for
segmentation of the MTL.
Tim Cootes has developed the Active Shape Model(ASM)(Cootes et al.;
1995) andActive Appearance Model(AAM)(T.F.Cootes et al.; 1998) which
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essentially is a moving contour as described previously, only propagated using
a di�erent technique. Active shape and appearance models are very high-level
techniques which use prior information based on the knowledge of expert land-
marks. Like Leventon and Tsai's approaches, Active Shape Models builds a
statistical model of a set of training data using PCA. A Procrustes algorithm
is used to remove linearities from the training set before the statistical analysis
is performed. However, the di�erence is that active shape models are based on
landmarks instead of level set functions. This is an immediate drawback since
it is often infeasible to manually annotate 3-dimensional shapes as described
in Section 4.1. Having a mean shape, estimated from the aligned training-set,
the pose parameters from the procrustes alignment and a set of modes of vari-
ation from the PCA, the shape model is set free in the image space to search
for a similar object. This is done by sampling in the image along the normal
of each point in the model, checking to see how well each sample �ts to the
model. When best samples have been found for each point, the parameters are
updated, and thereby the curve is moved closer to a minimum. The AAM is
an improvement of the active shape model, where the texture across the target
object is included as information for the model �tting.
ASM and AAM have proven to perform very well on a wide range of segmen-
tation tasks, not the least for MRIs of the human brain. An AAM algorithm
would also be an interesting model for the segmentation of the MTL. These
models are also referred to as deformable atlases.

2.6 Atlas Based Segmentation

Digital brain atlases are used very often for a multitude of tasks and have many
applications in medical image analysis. Atlases take on many forms, ranging
from an intensity image of the average subject to more detailed shape, intensity
and functional models of speci�c structures. Atlases are used in basic research
on population analysis, as guides in segmentation and seed point selection, as
context in navigation tasks, and as models to overcome signal limitations and
indistinct boundaries. Atlases may be based on a single individual or on a sam-
ple of a population. Atlases can be deterministic, where each region of space
is associated with a single structure, or atlases can be probabilistic, where each
region of space is assigned a likelihood of belonging to a variety of structures.
When atlases are constructed from a sample population, the imagery for the
subjects in the sample are transformed into a common coordinate frame prior
to consolidating their information. This step of rooting the atlas is common to
both deterministic and probabilistic atlas construction. Establishing this com-
mon coordinate frame is a critical step that impacts the quality of the resulting
atlas. A common practise is to select one subject from the sample on which to
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base the atlas. But if the selected subject is far from the population mean, the
resulting atlas will be biased towards this individual. This, in turn, can bias
any inferences made with the atlas. Certainly a number of publications dealing
with this problem have been published.
If a good atlas has been created, and it can be successfully matched to a novel
scan, then all information present in the atlas (such as the tissue labels) is then
known with respect to the image, achieving segmentation of the new scan. So
actually, this is more of a image registration task than a segmentation task due
to the fact that the di�cult part lies in registering the novel scan to the atlas.
A multitude of registration techniques exists for among other things warping
novel brains to atlases which is an individual scienti�c area. This process is also
known as Deformation-based morphometry
Boiled down to unfairly few words, the task of registering two brains starts
by removing linearities using an a�ne warp to account for patient movements,
brain size, scanner artifacts etc. leaving only biological di�erences. These dif-
ferences are usually of main interest and are described by a non-rigid warp.
Non-rigid registration is done using higher dimensional transformations, such
as polynomial mappings or displacement �elds. Other frequently used non-rigid
registration techniques based on PDEs are:

� Elastic Registration

� Fluid Registration

� Di�usion Registration

Often a scale-space approach is used to avoid local minima, where a very coarse
sub-sample of the image is �rst registered. When converged, a �ner edition of
the image is registered. This repeats until the top image converges to a mini-
mum, hopefully being a global one.

2.7 Discussion

Having presented an overview of di�erent segmentation methods this would
also be a natural place to clarify the reason for selecting the method used for
segmentation in this project. In order to do this, it should be noted that Section
3.3, Section 3.2 and Appendix B should be consulted for insight in the problem
at hand. Furthermore the method will be justi�ed in Section 4.3.
Due to the fact that the MTL resides deep within the brain the SNR is very low.
Furthermore the contrast of di�erent tissue-types is low and the boundaries of
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the regions are not very well de�ned. The most distinct region is hippocampus,
which is notorious for its di�culty of segmentation. Furthermore, these 12
regions are, in each of the hemispheres, very spatial closely located, in some
places even adjacent. Naturally this immediately leads to think of a local search
algorithm with a shape prior to regularize the evolution. (Tsai et al.; 2004)
solved a similar problem with medical images of the pelvic area. Here, three
indistinct regions where the goal of the segmentation, which is an inspiration
to the problem faced here. Due to the close spatial relationship an indistinct
properties, it is a natural thought to try and use the this spatial relationship as
prior knowledge. Therefore it has been chosen to test a coupled shape model
which will be described further in the next chapters. Furthermore it has been
chosen to represent the shapes as level sets, given their nice properties, Section
4.1. A utilization of the AAM would likely also do a good task of segmentation,
and the decision of the best of these methods should depend on a practical test
rather than theory. The AAM has not been implemented in this project though.
Normally a strong reason to use level sets is their ability to make topologic splits
and merges. This property is not a motivation in the case of the MTL, as the
regions neither split nor merge, but are closed surfaces.



Chapter 3

Background Theory
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This chapter contains separate section describing di�erent theory used in this
thesis. Furthermore an introduction to the dataset is given here.

3.1 Basic Concepts of Magnetic Resonance Imag-
ing and DRCMR

Here follows a presentation of the data acquisition site, and a short introduction
to the concepts of Magnetic Resonance Imaging.

3.1.1 Danish Research Centre for Magnetic Resonance

The Danish Research centre for Magnetic Resonance(DRCMR)1 was founded in
1985 following a donation of Denmark's �rst MR scanner to the centre by the
Simon Spies Foundation.
The centre is responsible for providing a clinical diagnostic MR radiological ser-
vice and is based at the MR unit in Hvidovre Hospital. In 2005, 3411 patients
underwent MR investigations at the MR-centre. The centre is also involved in
education both via direct teaching, undergraduate and PhD programs.
The centre's research activities are concentrated mainly on studies of brain dis-
eases, such as stroke, dementia, epilepsy and multiple-sclerosis and has special
expertise in the �eld of neuroradiology. The centre currently controls four dif-
ferent scanners:

� Siemens Trio 3.0 Tesla

� Siemens Vision 1.5 Tesla

� Siemens Impact 1.0 Tesla

� Varian Inova 4.7 Tesla

in which the Siemens Trio 3.0 Tesla was used to obtain the dataset for this
thesis.

1http://www.drcmr.dk/
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3.1.2 MRI in short

For deeper discussions of MRI and further references the reader is referred to
(Hornak; 1996-2006).
Magnetic Resonance imaging(MRI) was �rst introduced in medical imaging in
1971 and was developed from knowledge gained in the study of nuclear magnetic
resonance. This technology was �rst described independently by Felix Bloch and
Edward Mills Purcell, in 1946, both of whom shared the Nobel Prize in physics
in 1952 for their discovery.
Since its introduction to medical imaging in the early 1980's, the use of MRI has
increased rapidly over the years. In 2003, there were approximately 10,000 MRI
units worldwide, and approximately 75 million scans performed per year(Hornak;
1996-2006).
This excellent non-invasive imaging technique allows the anatomical study of the
human brain, and together with techniques such as Single photon emission com-
puted tomography (SPECT) and Positron emission tomography(PET), a non-
invasive study of the activations within the brain, also known as functional-MRI
(fMRI), can be performed. These techniques are being used in a vast amount of
di�erent studies, and as a diagnostic tool for various diseases. Whereas struc-
tural MRI scanning have a large place in medicine, fMRI and its brethren tech-
niques are still largely devoted to neuroscience research, even though these tech-
niques are becoming more common in medicine. Even though fMRI is used for
the most part in the project surrounding this thesis, see Section 1.1, it is not
used in this thesis since only the anatomy of the brain is of interest here. There-
fore fMRI will no longer be mentioned.

3.1.3 The physics of MRI in short

Every proton, neutron and electron possess what is called a spin. This spin
can be thought of as a magnetic moment vector, causing the particle to behave
like a tiny magnet with a north and south pole. When the particle is placed
in an external magnetic �eld, the spin vector of the particle aligns itself with
the external �eld, just like a magnet would. When removed again from the
electric �eld, the spin vector will fall back to a steady state, while emitting a
small Radio Frequency(RF) signal. This natural behavior is exactly what the
MR-scanner utilizes to create intensity images.
In order for the scanner to be able to register these small emitted pulses, an
abundance of a certain type of atom must be present. Luckily such an atom is
abundant in all biological systems, as these consists mainly of water, where the
most frequent atom is hydrogen, which is also what the MR-scanner utilizes.
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So, when a biological system, in which the spin of the atoms are naturally un-
aligned, enters a scanner, the atoms are a�ected by a strong static magnetic
�eld(most current scanners operate at 1-3 Tesla 2). The atoms are now aligned
in parallel or anti-parallel direction, to the direction of the magnetic �eld. The
atoms are not strictly aligned parallel to the magnetic �eld but at a small �ip
angle in which they precess around the magnetic �eld at a frequency called the
Larmor frequency. As the atoms are kept in this state, another external fre-
quency is pulsed at the Larmor frequency, perpendicular to the original �eld.
This causes the atoms to precess away from the original �eld, and towards the
volatile pulsed �eld momentarily. As this pulse stops, the atoms precess back
to alignment of the original �eld, and pulses a small RF which is collected and
used to produce an image.
When receiving the transmitted RF pulses, measurements are taken at impor-
tant relaxation times called Time1 and Time2(T1 & T2). T1 is the time required
for a certain percentage of the tissue's nuclei to realign. T2 is the decay of the
RF signal after it has been created. These are also known as Longitudinal relax-
ation time and Transversal relaxation time respectively. Both these measures
are tissue dependent which gives the MRI its ability to distinguish between dif-
ferent tissues in the body.
The image contrast is created by using a selection of image acquisition param-
eters that weights signal by T1 or T2, or no relaxation time ("proton-density
images"). In the brain, T1-weighting causes the nerve connections of white mat-
ter(WM) to appear white, and the congregations of neurons of gray matter(GM)
to appear gray, while cerebrospinal �uid(CSF) appears dark. The contrast of
"white matter," "gray matter'" and "cerebrospinal �uid" is reversed using T2
imaging, whereas proton-weighted imaging provides little contrast in normal
subjects.

Figure 3.1: T1 weighed
image in sagittal aspect

2SI derived unit of magnetic �ux density (or magnetic inductivity), named after Nikola
Tesla. Earth's magnetic �eld on the equator at a latitude of 0◦ is 3.1 · 10−5T
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3.2 An overview of the provided data

A set of 13 MRI-image volumes(3D), Figure 3.2, were supplied together with
expert annotated masks, Figure 3.3, indicating 12 Volume Of Interests(VOI)
per image, see Appendix B for more detailed plots. Each image is identi�ed
by a unique key3 , and their Probability Density Functions(PDF) are found in
Appendix D. Furthermore, binary masks with value 1 indicating GM voxels and
value 0 indicating other tissue type was supplied.
The masks of the VOIs were drawn after a protocol developed by Thomas

Figure 3.2: Intensity images - Sagit-
tal view

Figure 3.3: Manual segmentation
masked by GM masks - Coronal
frontal view

Zoëga Ramsøy. The reader is also referred to (Pruessner et al.; 2000), (Pruess-
ner et al.; 2002) and (Insausti et al.; 1998) for some speci�cations of biological
landmarks used to draw the masks.
Due to the fact that the precise localization of each region is very troublesome,
the masks speci�es the area of the neighborhood of each region. These areas
should then be masked with the GM mask to get a precise indication of the
areas.
The intensity volumes were as previously mentioned acquired with a Siemens
Trio 3.0 Tesla, with the following parameters(See abbreviations in Section 1.2)
Each volume has been corrected for non-uniformity artifacts using the Non-
parametric Non-uniform intensity Normalization(N3) (Sled et al.; 17).
By investigating the intensity properties of the 13 MRI images it has become
clear that the Probability Density Functions(PDF) varies some between the 13
intensity images. In Figure 3.4 the normalized mean and variance are seen for
each of the 13 images. The �rst four images seem to di�er signi�cantly in both
mean and variance from the rest. The intensity distributions in Appendix D

3f1371,f1374,f1387,f1388,f1512,f1577,f1593,f1736,f1737,f1740,f1777,f1778,f1830
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Scanner Siemens Magnetom Trio 3T MR scanner
with an eight-channel head coil(Invivo, FL, USA)

Weighing MPRAGE, T1 weighed images
Voxel dimension 1× 1× 1 mm.
FOV 256 mm.
Dimensions 182× 218× 182
TR/TE/TI 1540/3, 93/800 ms
Flip-angle 9◦

Table 3.1: Scan speci�cations
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Figure 3.4: Normalized gray-scale statistics, mean(blue), standard devia-
tion(green), of the 13 images intensity images

reveals that the �rst four images with lower mean are less heavy tailed than
the rest, which is the reason for the low variance and mean. This di�erence in
intensity distribution could cause problems if a method such as Mutual Informa-
tion(MI), used in Section 5.3.4, is trained on probability distributions estimated
across all images.
Surely there can be di�erent causes for this di�erence, such as the size of the
head, and other anatomic di�erences. It is however quite suspicious that the
distributions seems to be grouped into two groups.
A way to make the distributions similar is to standardize the data i.e. Xs =
X−µ

σ . As the data will then be centered around the origin with unit variance,
this would make the more heavy tailed distributions such as image 9 (f1737)
more similar to image 1-4 as seen in Figure 3.5.
This, however, might be a bit dangerous because the precise cause of density
di�erence is not known, thus it could degrade information in the data. Never-
theless the data have been standardized.
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Figure 3.5: Probability Distribution for image one(red) and nine(blue) before
and after standardization
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3.3 The Medial Temporal Lobe

This section will mainly present the anatomic properties of the regions in the
Medial Temporal Lobe(MTL) which is of special importance to this project.
Furthermore it will give a short introduction to the anatomy of the human
brain in general, the functional responsibilities of the MTL and how it is con-
nected to the rest of the brain.
For a thorough description of the anatomy of the brain, the reader is referred
to (Moos and Møller; 2006).
Seen from a top-down point of view, the brain consists of the Prosencephalon4,
the Cerebellum5 and Truncus encephalicus6. The Prosencephalon is again split
up into Diencephalon7 and the Cerebrum8. The Cerebrum is subdivided into
two hemispheres, where each of these are separated into four di�erent lobes,
frontal, parietal, temporal and occipital as seen in Figure 3.6 coded as yellow,
green, purple and blue respectively. Each of these have areas of responsibilities
and can of course be further subdivided into smaller regions, which is out of
the scope of this thesis. However, the temporal lobe is of special interest here,
which is why this region will be stressed a bit further.
Within the Temporal lobes are the MTLs (near the Sagittal plane that di-
vides left and right cerebral hemispheres) which are thought to be involved
in episodic/declarative memory. Deep inside the MTL, the hippocampus is of
particular importance for the memory function - particularly transference from
short to long term memory and control of spatial memory and behavior. An-
other central region in the MTL is the Amygdala which has been shown in
research to perform a primary role in the processing and memory of emotional
reactions such as fear and pleasure. Both of these structures interact with the
cortical areas of the MTL, Temporopolar, Entorhinal, Perirhinal and Parahip-
pocampal Cortices while performing memory tasks, and are all part of the limbic
system9. The outermost surface of the Cerebrum is called the Neocortex and is
known to establish connections with the MTL during memory processing to bind
together the distributed storage sites in the neocortex that represent a whole
memory. The role of these connections are only temporary and as time passes
after learning, memory stored in neocortex gradually becomes independent of
MTL structures, consequently forgotten.
The temporal lobe is shown in Brodmann's map(Brodmann; 1909) of the hu-
man brain in Figure 3.6 as purple. An exterior outline (the convex hull) of the
regions of interest in the MTL can also be seen in Figure B.1 in Appendix B.

4Forhjernen
5Lillehjernen
6Hjernestammen
7Mellemhjernen
8Storhjernen
9Structures in the human brain involved in emotion, motivation, and emotional association

with memory
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The six before mentioned regions in the MTL are listed in table 3.2 together

Figure 3.6: Lateral(left) and Mid(right)-sagittal view of the human brain encoded
in Brodmann's map of cytoarchitectonics

with their abbreviation, corresponding location in the Brodmann model, color-
code and a reference to a �gure, located in Appendix B which shows a close-up
of the region in three orthogonal views. The color-codes and abbreviations ap-
plied here will be used in the remainder of this thesis.

Region Abb. Figure 3.6 Color Sample �gures
Temporopolar Cortex TPC 38 Red B.2,B.3
Entorhinal Cortex EC 28,34 Green B.4,B.5
Perirhinal Cortex PRC 35,36 Blue B.6,B.7
Parahippocampal Cortex PHC 27,36 Magenta B.8,B.9
Hippocampus HC - Cyan B.10,B.11
Amygdala AD - Yellow B.12,B.13

Table 3.2: Medial Temporal Lobe regions

Furthermore the regions are shown in Figure 3.7 in volumetric views. These are
screen-shots taken from an application developed for this project to explore the
regions interactively.
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Figure 3.7: A volumetric view of MTL. Top left: Axial view. Top right:
Sagittal view Bottom left: Frontal Coronal view. Bottom right: Slanted
view
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3.4 Principal Component Analysis

In high-dimensional data problems it can be di�cult to immediately understand
and visualize how the data behaves. To uncover the latent data structure, the
eigenvalue problem of the dispersion matrix can be solved and analyzed to �nd
the eigenvalues with the largest magnitude. By projecting the data linearly
onto the calculated eigenvectors, a linear orthogonal transformation of the data
is performed, which rotates the coordinate system in a way such that the axes
of the system will correspond to the eigenvectors. The variation along the axes
now represents the directions of most variation in the data in a descending or-
der, the 1st. axis being the one representing most variance.
This technique is called Principal Component Analysis(PCA) and is one of the
oldest and a very commonly used multivariate statistical technique, created ini-
tially by Karl Pearson in the beginning of the 19th. century and re�ned later
by Harold Hotelling in 1933.
In the following the method is stated in a more formal setting.
When dealing with large amounts of data, the central limit theorem (Pitman;
1993) often justi�es the use of the normal distribution to describe the density
of data. This assumption will be used in the remainder of this thesis in order
to use PCA.
Given a stochastic vector X Equation 3.1 consisting of n stochastic d -dimensional
observations,

X =




x1

x2

...
xn


 (3.1)

henceforth called the covariate matrix, and the data can be assumed gaussian,
a model describing the data can be set up using the multivariate normal distri-
bution. As the gaussian model is given by N (µ, σ2), it is necessary to estimate
the mean and variation from the data. Thus, the gaussian model of X is

X ∼ N
(
µ̂, Σ̂

)
= N







µ̂1

µ̂2

...
µ̂n


 ,




σ̂2
11 σ̂2

12 . . . σ̂2
1n

σ̂2
21 σ̂2

2 . . . σ̂2
2n

...
... . . . ...

σ̂2
n1 . . . . . . σ̂2

n







(3.2)



3.4 Principal Component Analysis 29

µ̂ and Σ̂ are estimated using a maximum likelihood estimates seen in Equation
3.3 and Equation 3.4.

µ̂ML = E (X) =




E (x)1
E (x)2

...
E (x)n


 (3.3)

Σ̂ML = E
(
(X− E (X))(X− E (X))T

)

=
1
n

n∑

i=1

(xi − µ̂) (xi − µ̂)T

=
1
n
XcXc

T

(3.4)

Xc are the covariates X centered around the origin.
Both the covariance, also known as the dispersion, and the correlation matrix
can be used for the PCA and for the remainder of this thesis, the PCA will be
based on the covariance matrix.
There are di�erent ways of obtaining the principal components of the covariates.
Di�erent ways of obtaining the principal components and modes can be used
such as:

1. By solving the eigenvalue problem on the big covariance matrix Equation
3.4

2. By solving the eigenvalue of the smaller covariance matrix, Equation 3.5.

3. By doing a Singular Value Decomposition(SVD) on the centered data,
Equation 3.7

When the dimensionality greatly exceeds the number of observations, the prob-
lem is ill posed and a number of eigenvalues will be zero. Furthermore the
computational task of solving the eigensystem for huge matrices is infeasible.
Therefore as done by (Leventon; 2000), solving for the smaller covariance matrix
Equation 3.5 is faster and easier.

Σ̂sML = E
(
(X− E (X))T (X− E (X))

)

=
1
n
Xc

T Xc

(3.5)

If di is an eigenvector of Σ̂s with corresponding eigenvalue λi, it can be shown
that wi = Xcdi is an eigenvector of Equation 3.4 with eigenvalue λi. This is
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shown in (Leventon; 2000). Normalizing the length of the resulting components
is necessary

wi =
wi

‖wi‖ (3.6)

Another way of �nding the principal modes of variation is by using a Singular
Value Decomposition(SVD) (Hastie et al.; 2001).
The SVD is very general in the sense that it can be applied to any m×n matrix
as opposed to the eigenvalue decomposition stated above. The SVD factorizes
the covariate-matrix X, as shown in Equation 3.7,

UDVT = Xc (3.7)

into U and V, two orthogonal matrices of size n × n and p × p containing the
principal components of Xc, and D which is a diagonal matrix, with singular
values on the diagonal d1 ≥ d2 ≥ . . . ≥ dp ≥ 0. The principal components
contained in V are equal to those found in the eigenvalue-decomposition of Σ̂
as seen in Equation 3.8.

1
n
Xc

T Xc =
1
n
VDT UT UDVT =

1
n
V

(
DT D

)
VT

1
n
XcXc

T =
1
n
UDVT VDT UT =

1
n
U

(
DDT

)
UT

(3.8)

where the relationship between the empirical, centered covariance matrix and
the factorized matrices are shown. Furthermore the singular values of 1

nD cor-
responds to the square-roots of the �rst min(n, p) eigenvalues of Σ̂.
Finally when the principal modes has been calculated, a suitable amount of
components has to be selected to get a good dimensionality reduction. This is
done empirically in this thesis by setting a threshold for the amount of variance-
explanation needed. Each component gives a contribution, and the amount of
components, m, is chosen such that Equation 3.9 is ful�lled.

∑m
i=1 λi∑p
i=1 λi

≥ t (3.9)

t is an empirical threshold value.
As a short example, data sampled from a bivariate normal distribution with an
anisotropic dispersion structure is seen in Figure 3.8. It is obvious from this
simple example, in which direction the data has highest variation. The above
described PCA is performed on the data, and the two principal modes found
are seen in Figure 3.8 centered around the origin, the principal axes being the
principal modes of variation of the data. Figure 3.9 shows the data projected
down on the principal components, which yields an isotropic data-cloud as all
the variance was described by these principal components.
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Figure 3.8: Rotation of coordinate
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Figure 3.9: Projection of data on
principal axes
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3.5 Image Warping

Image Warping and image Registration are two closely connected terms. An
image registration uses a warp together with a similarity measure to �nd a
suitable spatial transformation such that one transformed image becomes as
similar as possible to another, which can limited by a regularization.
A deep discussion of registration and warping techniques is not within the scope
of this project, and the reader is referred to (Pluim et al.; 2003), (Gramkow;
1996) (Modersitzki; 2004) or (Glasbey and Mardia; 1998) for further discussion.
Usually, one of the images is viewed as the Image I and the other as a deformable
Template T. The warp operation

W(x;p) = T [p]x (3.10)

maps the pixel x residing in the coordinate frame of T, to a sub-pixel location
x̃ in the coordinate frame of I. This is done w.r.t. p, using a given transforma-
tion T [p] which also denotes the transformation type. In this thesis T [p] is a
composition of a set of linear transformations listed in Appendix E.
In practise, the warp is performed backwards, I(W(x;p)), so that I is warped
back into the coordinate frame of the template. This is due to the discrete na-
ture of the images which means that when performing a forward transformation,
it is not certain that an input pixel maps to an output pixel, thus causing holes
in the new image. Especially when the template is smaller than the image, this
is a very good way of moving the template around in the image. This is very
well explained in (Baker and Matthews; 2002).
The similarity measure can be done in di�erent ways, and is a part of a cost-
function which should be minimized using appropriate warps, which like the
warp-type should be chosen to suit the problem at hand.
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3.6 Estimation of Probability Distribution Func-
tions

This section brie�y presents a non-parametric method of estimating a PDF
based on a set of observations.
This is a well studied �eld, and many methods exists for estimating PDFs, both
parametric and non-parametric. A parametric approach requires an assumption
of the type of PDF the data is sampled from e.g. a gaussian distribution. The
PDF is then estimated by calculating maximum likelihood estimates of the pa-
rameters in the assumed distribution using e.g. the Expectation Maximization
algorithm.
Parametric density estimates are very precise and good if it is possible to make
assumptions of the underlying PDF. Although very good, it is sometimes not
possible to make this assumption and a non-parametric method is required in-
stead. In this area techniques such as histograms, splines, clustering, kernel
methods and other exists.
Kernel functions are widely used for PDF estimation, and these are essentially
"just" an interpolation of data with a speci�c kernel κ weighing each observa-
tion.

p̂(x) =
1

nω

n∑

i=1

κ
x− xi

ω
(3.11)

in this project a gaussian kernel is used and the bandwidth ω is chosen according
to (Silverman; 1986) as were done in (Tsai et al.; 2004).
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3.7 Validation and generalization methods

There are di�erent ways of estimating the generalization/prediction error of
a mathematical model. The generalization error is a quantity for how well a
model generalizes to novel input data. The Akaike's and Bayesian information
criteria are two methods. Another more simple, but widely used approach are
the K-fold- or Leave-One-Out Cross Validation(LOOCV) methods in which the
training set is split up into minor parts, and the model is trained without a
certain part. This part is then presented to the model as novel input, and the
error is calculated. (Hastie et al.; 2001) gives a good explanation of the LOOCV,
which is suitable for smaller training sets such as the one in this project. Each
entry in the data set is successive kept out of the training-phase, and used in
the test-phase, and thereby obtaining a generalization error for each sample.
The generalization error is then estimated normally as the squared sum of the
individual generalization errors

êLOOCV =
1
N

N∑

i=1

(yi − ŷi)
2 (3.12)

For calculating the correctness of a segmentation between the ground truth and
a given segmentation result, the DICE measure, (Dice; 1945), which is a common
measure is used. The DICE measure is merely a quantity describing the overlap
of two binary sets.

DICE =
2 (A

⋂
B)

|A|+ |B| (3.13)

where |.| denotes the area of a set.
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The concrete methods used for the segmentation of the regions in the MTL are
here described. Theory from previous chapter is used.

4.1 Medical Shapes

4.1.1 Representation of Medical Shapes

The representation of shapes in medical images has shown to be a important and
challenging problem. One may broadly categorize shape representations into two
categories; explicit and implicit which will be presented here with focus on a
implicit representation.

4.1.1.1 Explicit representation

In an explicit framework, the shape is represented by a set of, usually con-
nected, primitives(e.g. points, triangles etc.). To mention a couple of examples,
(Cootes et al.; 1995) uses landmarks which are points in cartesian space, often
created by an expert, and represents samples from a certain surface or contour.
(Shenten et al.; 2002) used a dense surface mesh for representing certain brain
regions. A drawback of the explicit representations is that there has to be cor-
respondence of the descriptors across a population of shapes. So while locating
these points in simple 2D structures can be done, but if the object of interest
is a complex 3-dimensional structure it is infeasible for a human interactor to
place the landmarks in a consistent manner. Methods have been developed to
solve this problem in an automatic way by creating corresponding landmarks for
the shape model using numerical optimization. Minimum Description Length
(MDL) is a such method, and has been developed for some years now, beginning
in 1998 with (Kotche� and Taylor; 1998).

4.1.1.2 Implicit representation

In the implicit category, binary masks and the elegant level set functions(LSF)
(Sethian; 1999) are used to describe anatomical structures. Often the signed
distance maps(SDM) (Danielsson; 1980) realizes the level set function, which
will be explained more thoroughly.
Discrete binary masks are normally created by an expert as were the case with
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the landmarks. The binary shape should be understood as a division of the
image domain Ω into two sets, the foreground S and the background S as
showed in Equation 4.1.

∀x ∈ Ω : {0, 1},
∀x ∈ S : {1}, Ω is the image domain

∀x ∈ S : {0}
(4.1)

In contrast to the landmarks, this representation does not require correspon-
dence across the set of shapes in the same manner, which makes it more feasible
to annotate for an expert, even on more complex objects.
As mentioned, the SDM is often used as a realization of the LSF which have
widespread use in di�erent areas of research and production. LSFs are especially
popular in the �eld of �uid simulation. The boundary of a binary shape can be
embedded as a closed curve −→C in a SDM, Ψ, de�ned through the transformation

L(x) = min
(
d

[
x,S])

,x ∈ S
L(x) = min (d [x,S]) ,x ∈ S (4.2)

so that there are negative distances inside the curve and positive distances out-
side the curve. This implicit shape representation is the realization of a PDE,
evolving from the shape boundary in all directions. Figure 4.1 shows a shape
boundary represented in both binary and LSF form on a small regular lattice.
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Figure 4.1: Two di�erent types of shape boundary representation, Binary(left)
and Level Set Function(middle). The shape boundary is marked as red. Both
images are 11 × 11 pixels. 3D view of LSF, zero Level Set is marked by the
slab(right)

Of course there are both advantages and disadvantages to this representation:
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Advantages and Disadvantages of the LSF shape repre-
sentation

+ Handles singularities in the boundary very well

+ Is able to track sharp corners and change in topology such as
breakage and merging

+ Point correspondence is not required as in a point model

+ Provides simple linearization of binary shapes

÷ Is computationally more heavy than parametric curves

÷ Is di�cult to adapt to new problems

When SDMs are used for shape representation this usually involves di�erent
computations on these, such as di�erence of SDMs, addition of SDMs etc. These
operations has some problems which will be outlined in the next section.

4.1.2 Shape Modeling

Combining a set of the above mentioned shapes into a statistical shape model
is a well studied �eld of research. Although statistical shape models of various
representations can be built , this section will only concern shape modeling of
shapes represented by LSF.
The usual approach when building a statistical shape-model is by performing
PCA on a set of aligned LSFs,

{
Ψ1,Ψ2, . . . ,Ψn

}
. This can be done for mul-

tiple shapes as well, which will result in a coupled shape model as proposed
by (Tsai et al.; 2003). Considering a single shape �rst, the shape model or
deformable atlas is after PCA de�ned by the eigenvector modes of variation{
Φ1,Φ2, . . . ,Φn

}
, the eigenmodes Λ and the mean shape Φ. The q �rst modes

of variation are selected, thus reducing the description space while maintaining
the most signi�cant variance directions. This deformable atlas is now able to
encode novel shapes within that atlas space by varying the parameter w

Φnew[w] = Φ +
q∑

i=1

wiλiΦi (4.3)
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4.1.2.1 Issues with SDM-shapemodels

Although very elegant, the encoding of new shapes in Equation 4.7 has some
issues as noted by (Tsai et al.; 2003) and (Golland et al.; 2005), which one should
at least be aware of before using a deformable atlas. Linear operations are not
closed under the set set of SDMs. This means that for example that the addition
of two SDMs generally does not lead to an SDM. Therefore the shape model
produces incorrect LSFs, which means that the produced shapes might not be
real samples of the deformable atlas space. This issue leads to some concern
which can be dealt with by further approximation, necessitating an additional
computational step. (Golland et al.; 2005) deals with this by projecting novel
shapes back onto the manifold of valid SDMs. (Hansen; 2005) made a process
called Shape reinitialization to approximate the true SDM. At MICCAI 06 an
interesting approach to solve this problem called Logarithm Odds Maps (Pohl
et al.; 2006) was presented. This approach deals with the so-called Log-Odds
space L, which embeds embeds SDMs and relates them to probalistic atlases1
using a logistic2 function. This is in fact a new shape representation called a
Space Conditioned Probability map(SCP) which assigns a probability to each
voxel, describing its relationship to the shape. The foreground of the shape is
represented by probabilities greater than 0.5, while the background is repre-
sented by probabilities less than 0.5. Unfortunately due to the fact that it is
a probalistic atlas it has to be used together with a probalistic segmentation
method e.g. as proposed in (Pohl et al.; 2005).
The segmentation method chosen in this project is not based on probabilities,
but rather on the nature of LSFs, which means that the problem of inaccurate
SDMs has been dealt with by simply recalculating the SDM based on the ex-
tracted zero level set curve −→C encoded in a new shape. There is no doubt that
this is a very simple "solution" and it causes additional computational overhead
which should be avoided.

1shape de�ned by probabilities. The value of each node de�nes how probable it is that it
belongs to the foreground.

2P(t) = 1
1+e−t
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4.1.2.2 A strongly coupled model

Considering a set of multiple aligned shapes represented as SDMs as seen in
Equation 4.4 



Ψ1
1 Ψ2

1 · · · Ψm
1

Ψ1
2 Ψ2

2 · · · Ψm
2

...
... . . . ...

Ψ1
n Ψ2

n · · · Ψm
n


 (4.4)

together with the mean SDMs, Ψ
k for each shape class, a covariate matrix can

be created. The mean SDMs can be considered as shape classes (Turk and
Pentland; 1991), Φ

k which represents the common features across all subjects.
What is desired in this model is to capture the di�erences in and between shapes,
meaning each subjects di�erence from the mean class. Therefore a set of mean-
o�set functions are calculated as

Ψ̃k
i = Ψk

i −Φk (4.5)

which are used for the data analysis. Due to the fact that each shape is repre-
sented as a level set this gives some problems when creating the shape model.
As the boundary of the shape propagates as a function of time, variations on
surface of the shape may drown in the marching front as shown in Figure 4.2,
thus biasing the true variation in the shape model.

Figure 4.2: Propagation of a level set function for a given boundary. The black
contour is the zero iso-line, the green iso-line represents the ±5 level set curve
and the red represents the 30th level set curve.

It is seen that the kink in the lower part of the shape is present at t=5, but
at t=30 the kink is no longer present. Therefore it would be desirable to base
the shape model on a narrowband and thereby avoid "drowning" of important
information. Furthermore this gives less data which obviously will lead to less
computations.
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Narrowbands are extracted from the mean-o�set functions and arranged as col-
umn vectors ψ̃k

i , stacked so that a single column in the covariate matrix repre-
sents the narrowbands of all shapes in a single subject, and a single row repre-
sents a single observation across all subjects as illustrated in Equation 4.6. Of
course there has to be correspondence of the narrow bands across the subjects.

X =




ψ̃1
1 ψ̃1

2 · · · ψ̃1
n

ψ̃2
1 ψ̃2

2 · · · ψ̃2
n

...
... . . . ...

ψ̃m
1 ψ̃m

2 · · · ψ̃m
n




(4.6)

A PCA on the small n × n covariance matrix is performed as described in
Section 3.4. The most signi�cant principal components q are chosen so that
q < n according to Equation 3.9. As done in (Turk and Pentland; 1991), these
are reshaped back into volumes thus creating a set of eigenshapes Φk

i .
Combining these eigenshapes with the shape classes, Φi, renders us able to
generate m novel shapes simultaneously

Φ1[w] = Φ
1

+
q∑

i=1

wiλ
1
i Φ

1
i

Φ2[w] = Φ
2

+
q∑

i=1

wiλ
2
i Φ

2
i

...

Φm[w] = Φ
m

+
q∑

i=1

wiλ
m
i Φm

i

(4.7)

where w is a set of weights used to control the degree of in�uence each principal
component has on the �nal eigenshape.
Now being able to create a set of new shapes by varying the parameter w it is
also necessary to incorporate pose in the shape model to be able to handle a
larger dispersion of shapes. The incorporation of pose in a single shape class is
seen in Equation 4.8

Φ1[w,p](x) = Φ(W(x;p))1 +
q∑

i=1

wiλ
1
i Φ

1
i (4.8)

where W(x;p) denotes a usual warp as described in Section 3.5. This means
that for each shape a set of parameters w and p are used to describe the form
of a speci�c novel shape.
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4.1.3 Extraction of the shape boundary

Working with LSFs, requires a method to extract −→C from the LSF. This task
is very common in e.g. medical imaging, where iso-surfaces often are extracted
from various patient scans to make visualizations or the like. Algorithms has
been developed to �nd such iso-curve/surfaces, and a very popular method for
�nding these is the marching cubes algorithm, (Wyvill et al.; 1986), which is
used in this project to �nd curves and surfaces.
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4.2 Shape Alignment

The initial step of building a shape prior for a segmentation algorithm is the
spatial alignment of the training set to create a common coordinate frame for
all the shapes. This �ltering of linearities is performed to obtain the shapes as
given by David George Kendall(Dryden and Mardia; 1998):

Shape is the geometrical information that remains when location, scale and
rotational e�ects are �ltered out from an object.

Aligning shapes is essentially a registration task as described in Section 3.5,
which means that the warping theory will be used in this chapter. This also
means that the alignment can be performed in a number of ways using di�er-
ent transformation types and similarity measures depending on what the result
should be. For the purpose of shape alignment here, a rigid body transformation
is chosen. Since this means only �ltering out translational and rotational e�ects
it is not entirely coherent with the de�nition of shapes given by Kendall above,
which also states that the scale of the objects should be �ltered out. However,
it is the belief of the author that scaling could be a biological factor which the
shape model should be able to incorporate, and therefore a rigid body transfor-
mation has been chosen. Furthermore, leaving scale out of the warping process,
avoids the process of recomputing the distance map after each transformation
as mentioned in Section 4.1.

Aligning the shapes is here considered a two-fold objective. Because shapes
in theory could be quite dispersed, an initial crude alignment is necessary. The
crude alignment chosen here, registration by moments, is a nice and very compu-
tationally e�cient approach and is performed on binary masks. After the initial
alignment a more accurate alignment is necessary. This alignment is performed
using LSF representation of the shapes, Section 4.1, for improved matching and
speed. This step is a common registration task which will be presented in Sec-
tion 4.2.2.

4.2.1 Registration By Moments

A registration by moments of the shapes will be used to recover a rigid transfor-
mation and create a quali�ed �rst guess for all shapes, even if they have large
spatial dispersion.
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The moments of an image describes certain characteristics. Especially the �rst
two order moments, the center of mass and the spatial dispersion matrix respec-
tively describes the translational and rotational relationship, which is valuable
information when making spatial inference on a object. The �rst order moment
in 3D is de�ned in Equation 4.9

c =

N∑
x

I(x)x

N∑
x

I(x)
,x =




i
j
k


 (4.9)

and the second order moment is de�ned in Equation 4.10

S =

N∑
x

I(x)(x− c)(x− c)T

N∑
x

I(x)
(4.10)

As shown in (Gramkow; 1996), if two images T and I are characterized by their
�rst order moments ct and ci and second order moments ST and SI, the rigid
transformation

y = Rx + t (4.11)
which relates T to I by transforming the moments of T is given by

R = UIUT
−1

t = ci − ct

(4.12)

UT and UI denotes the eigenvectors of the spatial dispersion matrices ST and
SI, which can be factorized by

S = UΛ1/2
(
UΛ1/2

)T

(4.13)

where Λ is a diagonal matrix containing the eigenvalues sorted in a descending
order. The proof has been left out, and the reader is referred to (Gramkow;
1996) for further information. The eigenvalues, Λ are on purpose not used in
the transformation due to the fact that scaling is a variation that the shape
model should have possibility of incorporating, and therefore it is not desirable
to remove this linearity now. If scaling was a factor to be removed as well, the
calculation of the rigid transformation would be Equation 4.14

R = UIΛi
1/2ΛT

−1/2UT
−1

t = ci − ct

(4.14)

In Figure 4.3 two arti�cial shapes are shown together with their moments. The
gross alignment approximations seems to give a quali�ed start guess for a more
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Figure 4.3: Synthetic shapes rigidly aligned by moments up to order two

sensitive algorithm.

Since this method is a rather simple approach, and "only" aligns the principal
axes of the shapes, it can give "wrong" answers. Certainly the task of aligning
the principal axes of two shapes is an ill-posed problem, so if the shapes are
spatially di�erent enough as seen in Figure 4.4 there is a high possibility of a
"wrong" answer. Here the principal axes and center of mass have been aligned

Figure 4.4: A rather unlikely shape con�guration causing a wrong alignment
answer.

correct, but the initial guess found makes a correct alignment impossible for a
more �nely tuned algorithm since the shape is stuck in a local minimum, and
therefor the answer is wrong. Fortunately this is an extreme case which is rather
unlikely to happen.
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4.2.2 Fine tuning the shape alignment

The �ne-tuning of the shape alignment can be done in more or less complex ways.
Before setting up a registration framework it is necessary to de�ne what sort of
images must be registered. Figure 4.5, 4.6 and 4.7 shows a pro�le taken from
a square shaped 2D object. In the �gures, the shape is represented as a binary
shape, a binary shape smoothed by a gaussian kernel and a SDM. The blue
signal illustrates the deformable template T and the green illustrates the image
I. Since most fast optimization schemes uses gradient information, the binary
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shapes seems to pose a problem in this regard, as they lack gradient information.
(Tsai et al.; 2001) overcame this problem by calculating a maximum overlap
criterium of all the shapes jointly. Because he did this he also overcame the
problem of the small area of gradient information. Another way to help this
problem is by creating arti�cial gradient information. This could be done by
blurring the edges with a gaussian �lter, Figure 4.6, although this still has
limited gradient information. Finally it seems that LSFs have a lot of gradient
information everywhere. This could mean that a registration of two LSFs should
be able to converge rather fast if a good cost function was to be chosen.
A good and simple similarity measure is the Sum of Square Di�erence(SSD)
which has proved to be a robust measure, Equation 4.15.

ESSD(x,p) =
1
2

∑
x

(I(W(x;p))− T (x))2 =
1
2
(I(W(x;p))−T )T (I(W(x;p))−T )

(4.15)
This is commonly used for measuring di�erence in e.g. grayscale images, but
could also be used to measure di�erence between LSF's, enabling us to align
these.
As it was chosen in the beginning of this chapter to leave out scaling from the
alignment process, this poses a problem for binary shapes using a maximum
overlap criterion. When two objects are of di�erent size, and the smaller is
nested within the bigger, there will ostensibly be numerous optima, making
it an extremely ill-posed problem. An example of this is seen in Figure 4.8
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to 4.10. Here the template shown in red slides from right to left in intervals
of 1, calculating the energy at each step. When using binary representation,
Figure 4.9 it is seen that there is optimum everywhere the template is completely
encapsulated in the reference shape. When using the level set representation and
SSD similarity measure, it is obvious that it is a convex function with minimum
in the center of the shape as wanted. The optimization should optimize the

Figure 4.8: I is the
green shape, T is the
red.
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pose-parameters p which constitutes the rigid body transformation

p =
[

Rx Ry Rz Tx Ty Tz

]
(4.16)

The derivative of the SSD is calculated as a composition of the di�erence image,
the numerical gradient of the warped template and the euclidian jacobian for the
pose parameter,see also (Modersitzki; 2004), (Tsai et al.; 2003) or (Hansen; 2005)

∇i
pESSD = (I(W(x;p))−T)

[
∂T(x̃,ỹ,z̃)

∂x̃
∂T(x̃,ỹ,z̃)

∂ỹ
∂T(x̃,ỹ,z̃)

∂z̃ 0
] ∂T [p]

∂pi




x
y
z
1


 ,

x̃ = W(x;p)

(4.17)

where i is the i'th component of the rigid warp transformation matrices listed in
Appendix E. Together, these form the Jacobian which should be used in the op-
timization scheme. An e�cient optimization schemes such as the Gauss-Newton
is often utilized in image registration when using SSD similarity. The Gauss-
Newton scheme is a nonlinear least squares numerical optimization method
based on implemented �rst order derivatives of the components of a vector func-
tion r(x) and can achieve quadratic convergence in special cases. The Gauss-
Newton method is looking for a local minimizer p∗ for the cost-function de�ned
in Equation 4.15,

r(x;p) = (I(W(x;p))−T) (4.18)
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where the images has been arranged as vectors. So the approximation for
r(p + ∆p) is given as

r(x;p + ∆p) = r(p) + J ∆p (4.19)

where J is the Jacobian of r(p). Inserting Equation 4.19 into Equation 4.15
yields

ESSD(x;p+∆p) ' L(∆p) = ESSD(x;p)+∆p JT r(x;p)+
1
2
∆p JT Jp (4.20)

Finding the increment ∆p is done by minimizing L(∆p), where

∇L(∆p) = JT r(x;p) + JT J∆p (4.21)

where ∇2L(∆p) = JT J ie. the Hessian, a positive de�nite matrix. The gradient
is zero at a minimizer for L, so the Gauss-Newton step can be found as

∆gn = −∇2L(∆p)−1JT r(x;p) (4.22)

and the parameters can be updated accordingly with a damping coe�cient α
determining the step-length

p = p + α∆p (4.23)
α can be determined with a linesearch algorithm.
As a working example in R2, two circle formed shapes are registered in Figure
4.11.

4.2.3 Aligning all shapes

Having the basic steps of how to align two shapes , a setup for the entire align-
ment process can be set up. To align a set of shapes to create a common
coordinate-frame, a good way is by using a procrustes approach. The steps in
the procrustes approach is outlined below, (Cootes and Taylor; 2004):

1. Choose one example as an initial estimate of the mean shape.

2. Record the �rst estimate as x0 to de�ne the default reference frame.

3. Align all the shapes with the current estimate of the mean shape

4. Re-estimate mean from aligned shapes.

5. Apply constraints on the current estimate of the mean by aligning it with
x0
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Figure 4.11: The process of aligning two LSFs. The contour-lines is the template
image and the underlying LSF is the image which the template is registered to.
From left up to bottom right the process is seen in its state after 0, 12, 28 and
65 iterations respectively.

6. If not converged, return to 3. Convergence is declared when the the mean
does not change signi�cantly, and is set empirically

The Procrustes algorithm has been developed for aligning instances of a single
shape. A joint alignment of LSF could also be performed instead, like performed
on binary shapes in (Tsai et al.; 2004). This would undoubtedly yield a di�erent
result since the di�erence of all shapes would here be taken into consideration.
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Finally this chapter concerns the concrete segmentation of the MTL.

4.3 An Active Implicit Parametric Shape Model

This section describes the theory behind a region-based segmentation technique
which will be used in a later section. The shapes spawned by the deformable
atlas described in Section 4.1 de�nes a segmenting surface which spans multiple
regions. This segmenting surface should be �tted in image space by minimizing
some energy functional with respect to the pose and deformation parameters
presented in Section 4.1.2.2.

4.3.1 Why not an edge-driven model?

As presented in Chapter 2 there are di�erent ways of driving a contour in the
image space towards certain interesting areas such as speci�c boundaries or
regions. Here a region based approach is explored and utilized due to the nature
of the regions having near to no boundaries, and intensities only slightly di�ering
from its surroundings, i.e. very low contrast.
This is however an easy allegation to make, and to justify this, the driving term
in Equation 2.4 should be analyzed.

g(I) =
1

1 + |∇I|2 , g : Rp → [ 0, 1 ] (4.24)

∇I denotes the gradient of the image, and is a force pulling the contour towards
boundaries. This means that the gradient of the image space is extremely de-
cisive for the performance of the segmentation. Figure 4.12 shows a sagittal
slice of the scan of test person f1512, together with the corresponding gradient
image - (∇I). The contour of the regions of interests are color-coded according
to Table 3.2.
It should be noticed that even though this is merely a sub-sample of a single
slice in the entire volume, it generally represents the boundaries of the regions
quite well in all three dimensions.
The direction of the arrows in the gradient image shows in which direction the
contour would be pulled, and the length of the arrows shows the strength of
the pull. There is no signi�cant attraction capabilities seen near either of the
region boundaries, witnessing that an edge-based approach would yield lesser
results. However, in the adjacent corresponding intensity image, a di�erence in
the texture is relatively clear when comparing the inside of the regions with the
outside. It is seen that the inside of the regions consists of GM and the outside
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Figure 4.12: Sagittal zoom of MTL. Left: Intensity image. Right: ∇I, the
gradient image

of among other things WM. The boundary between each region is however a
bit unclear, which might cause some trouble. We will return to the properties
of these regions in a short while. A region-based driving force might be able to
detect this di�erence in the texture by comparing the intensity distribution of
the inside and outside of the shape as done in (Kim et al.; 2002).

4.3.2 Exploring a Region-Based model

Having decided upon using a region-based model, a couple of de�nitions needs
to be made before proceeding.
As described in Section 4.1, the closed segmenting or active surface, denoted −→C
is embedded in a LSF as the zero-level set, Equation 4.25

−→
C =

{
(x) ∈ RN : Φ[w,p](x) = 0

}
(4.25)

The region encapsulated by this closed surface is denoted as the inner region
Ri, while the surrounding region is denoted as the outer region Ro, Equation
4.26

Ri =
{
(x) ∈ RN : Φ[w,p](x) ≤ 0

}

Ro = {(x) ∈ RN : Φ[w,p](x) > 0 ∧ Φ[w,p](x) < r} (4.26)

The width of the outer region r is chosen empirically to optimize the performance
of the segmenter. To get a more intuitive idea of the regions, they have been
plotted in Figure 4.13. To recapitulate the properties of the above-mentioned
regions in image-space Figure 4.14, 4.15 and 4.16 shows the right-side regions
of subject f1512 with an outer region of r = 10.
The regions have been plotted in three di�erent images for the sake of clarity.
The reader should notice how indistinguishable the regions are, and their prox-
imity to each other. As described in Figure 4.14, and seen in all three �gures,
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Figure 4.13: Simple illustration of the inner and outer region of a shape and the
shape boundary as de�ned in Equation 4.25 and Equation 4.26

1

2

3

4
5

6
7

Figure 4.14: Hippocampus and parahippocampal cortex shown with inner and
outer regions, r = 10. The outer regions are seen to contain several brain tissue
types, while the inner regions only contains GM. 1. Parahippocampal outer -
CSF 2. Parahippocampal outer - WM 3. Parahippocampal outer - GM and
Hippocampus outer -GM 4. Hippocampus outer -GM/CSF 5. Hippocampus
outer -WM 6. Hippocampus inner -GM 7. Parahippocampal inner -GM

all the inner regions consists mainly of GM tissue. The outer regions on the
other hand consists of a variety of di�erent tissues as indicated in Figure 4.14,
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Figure 4.15: Temporolar(red) and Perirhinal(blue) cortices shown with inner
and outer, r = 10, regions.

WM, GM and CSF. Of course the radius of the outer region could be altered to
cover a smaller area, and thereby reducing the probability of it containing all
tissue types. The width of the outer region should be adjusted empirically to
improve the performance of the segmentation.

4.3.3 Utilizing an information theoretic approach

Having looked at the regions in practise rises a new question - How should
an initial LSF be �tted to �nd these regions in novel images. (Tsai et al.;
2003) proposes as previously mentioned to optimize the LSF in terms of the
parameters p and w, - i.e. by warping and deforming each LSF with respect
to a well de�ned cost function. A such cost function should be based on a
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Figure 4.16: Enthorinal(green) cortex and Amygdalar(yellow) shown with inner
and outer, r = 10, regions.

relationship between the inner and the outer region just outlined. This can of
course be done in many ways, and di�erent approaches has been proposed in
the literature. (Chan and Vese; 2001) proposed a region-based segmentation
algorithm based on the di�erence of variance in the inner and outer region.

ECV = Ri
σ2 + Ro

σ2 (4.27)

(Fisker; 2000) used the di�erence in mean

ECV = Ri
µ −Ro

µ (4.28)

to detect nanoparticles with a deformable template model. However, for either
of these cost functions to work, both regions needs to be rather homogeneous
which does not really seem to be the case for the outer regions. We saw in
Figure 4.14, 4.15 and 4.16 that all outer regions consisted of various intensities,
making it highly inhomogeneous.



4.3 An Active Implicit Parametric Shape Model 55

An extremely powerful similarity measure often used in connection with image
registration is the Mutual Information(MI) similarity measure. For a thorough
examination of MI and its properties, the user is referred to (Pluim et al.; 2003).
(Kim et al.; 2002) proposed a region-based active contour which is evolved using
a Mutual Information criterion between a binary region label and the intensity
values of an image, written in Equation 4.29.

I(I(x); L(x)) = ĥ(I(x))− ĥ(I(x)|L(x))

= ĥ(I(x))− πiĥ(I(x)|L(x) = Ri)

− πoĥ(I(x)|L(x) = Ro)

(4.29)

Here x is a stochastic variable uniformly distributed over the VOI(i.e. inner
and outer region). L(x) assigns a label to x being either in the inner or outer
region according to Equation 4.26. πi denotes the prior probability of a voxel
belonging to the inner region e.g.

πi =
|Ri|

|Ri|+ |Ro| , (4.30)

|.| is the cardinality of a set, and is calculated as the area.
ĥ is the estimated di�erential or Shannon entropy which is a good way of measur-
ing similarity between probability density functions, when dealing with Mutual
Information methods. ĥ is calculated for the inner and outer regions as:

ĥ(I(x)|L(x) = Ri) = − 1
|Ri|

∑

Ri

log(P
(
I(x) = Ri

)
)

ĥ(I(x)|L(x) = Ro) = − 1
|Ro|

∑

Ro

log(P (I(x) = Ro))
(4.31)

P
(
I(x) = Ri

)
is the probability of I(x), belongs to the inner region.

If L(·) is not the correct segmentation, then knowing L(X) is not enough to
determine which distribution I(X) came from, inner or outer, and thus I(X) is
not independent of X. Therefore the mutual information between the label and
the image as a function of X is maximized if L(·) gives the correct segmentation.
To sum up, the goal is to maximize the mutual information between the region
labels and the image pixel intensity values of the image, based on two probability
distributions. Since ĥ(I(x)) in Equation 4.29 is independent of L(x) it is also
independent from −→

C and will have no in�uence on the evolution of the curve
and can therefore be removed. Furthermore it would be desirable to change the
problem from a maximization to a minimization problem. So we end up with
the following cost-function

EMI = −MI(I(x); L(x))

= πiĥ(I|L = Ri) + πoĥ(I|L = Ro),
(4.32)
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Before the cost function can be used e�ciently a few more de�nitions needs to
be made. The goal is to be able to drive the optimization of the parameters
w and p using a gradient method. Thus the derivative of the energy function
needs to be de�ned.

∇wEMI =πi∇wĥ(I(x)|L = Ri) + πo∇wĥ(I(x)|L = Ro)

∇pEMI =πi∇pĥ(I(x)|L = Ri) + πo∇pĥ(I(x)|L = Ro)
(4.33)

∇wĥ(I|L = Ri) =
1
|Ri|

(∮
−→
C

∇wΦ log(P
(
I(x) = Ri

)
)ds

)

∇pĥ(I|L = Ri) =
1
|Ri|

(∮
−→
C

∇pΦ log(P
(
I(x) = Ri

)
)ds

)

∇wĥ(I|L = Ro) =
1
|Ro|

(∮
−→
C

∇wΦ log(P (I(x) = Ro))ds

)

∇pĥ(I|L = Ro) =
1
|Ro|

(∮
−→
C

∇pΦ log(P (I(x) = Ro))ds

)

(4.34)

∇pΦ is the gradient of the LSF and is given in Equation 4.17 with parameters
to be optimized shown in Equation 4.16. ∇wΦ is the deformation of the LSF,
and is given as Equation 4.35

∇wΦ = Φ (4.35)
The PDFs for the calculation of EMI should be based on already known seg-
mentations i.e. the manually annotated images which has been supplied.
A problem arises when the evolving LSFs starts to overlap. This means that
a voxel is assigned multiple labels, which of course not should be possible. To
deal with this a heuristic method of checking prior to the update of w if this
causes an overlap. If so, the update of w is not performed, leaving only the
update of p. Having a new spatial position, a new update of w might not cause
an overlap.
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5.1 Shape Alignment

The alignment procedure described in Section 4.2 will here be carried out in
practice and demonstrated on the structures of the MTL. Initially the shapes
are roughly aligned by their �rst and second order moments. In practice the
displacements are not of a very big magnitude, but the registration does how-
ever yield a better o�set for the gradient method. To avoid bias the center of
mass is initially calculated for all shapes, and the one which is centered the most
serves as the shape to which the rest of the shapes are registered. Figure 5.1

Figure 5.1: Registration by moments(top row) and gradient method(bottom row):
Hippocampus is shown prior to after alignment

shows hippocampus before and after the initial crude alignment. Only a smaller
misalignment is seen, which is corrected e�ciently. Furthermore it shows the
result of the gradient method described in Section 4.2. The plot of the gradient
method depicts the estimated mean shape with the variance of the distances
from the mean to all other shapes as the surface color, red being high variance.
The distances have been calculated in a set of surface samples. The rest of the
aligned regions are found in Appendix F. In Table 5.1 the sum the distances is
seen before and after the gradient alignment. Shapes such as region 2 have had
a very successful alignment, whereas region 5 and 6 were less successful, - it has
however improved in alignment. The worse alignment results of region 5 and 6
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has an obvious reason. If these �gures are compared to the sizes of the volumes
in Appendix C, and especially the standard deviation of the sizes, it is seen that
region 5 and 6 varies greatly in scale. As the alignment procedure does not deal
with shape, this variance will obviously still be high. So now, the variation that
remains in the dataset is the scaling and the biological di�erences, which was
the endpoint of the alignment procedure.

Region Sum of distances Sum of distances Improvement
before alignment after alignment

1 2416 794.60 67.11%
2 5150 371.30 92.79%
3 4180 1365.00 67.34%
4 3273 992.10 69.69%
5 4886 4038.00 17.36%
6 5235 3993.00 23.70%
7 7628 175.80 97.70%
8 6404 577.30 90.99%
9 6331 342.70 94.59%
10 8307 751.00 90.96%
11 3813 279.50 92.67%
12 3864 174.30 95.49%

Table 5.1: Alignment results of the twelve shapes. The total distance between
mean-shape and the actual shapes have decreased.
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5.2 Implicit Parametric Shape Model of the MTL

Previous section considered the de�nition and handling of external shape param-
eters. This section will consider the intra-shape variation and the co-variation
between shapes in a strongly coupled shape model. It was seen in last chap-
ter that there still were di�erences in the shapes after alignment, meaning that
some latent data variation is present. These are the biological variations which
should be incorporated in a statistical shape model as described in Section 4.1.
Certainly larger dataset gives better statistical properties of the shape model, so
a dataset of only 13 patients makes it rather di�cult to build a good statistical
model.

5.2.1 Capturing variations in the coupled model

Due to the fact that the shapes already exists as SDMs, the building of a cou-
pled shape model is straight forward. The aligned SDMs of the 12 di�erent
shapes and 13 patients from Section 5.1 are combined and built into the sta-
tistical shape model outlined in Section 4.1.2.2. As seen in Figure 5.2, ∼ 95%

Figure 5.2: Decay of eigenmodes in the coupled shape model

of the shape variations can be modeled using 10 parameters. Considering the
fact that we wish to model the elements of a SDM, the dimensionality exceeds
the number of training elements by far n >> p. This means the system is un-
derconstrained, and a great number of eigenvalues will be zero, indicating the
Gaussian has collapsed into the number of dimensions spanned by the training
set. This is why the small covariance matrix was used for the eigen analysis
in the �rst place. Seen in the light of this many parameters, a model of only
10 parameters describing most of the variance is rather good. The matter of
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the fact is however that it is 10 out of 13 possible parameters, which is not a
very substantial reduction. Figure 5.3 displays all thirteen principal components
plotted as functions of each other. In the diagonal each principal component
is seen individually. No clear structure is observed in either of principal com-
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Figure 5.3: Scatter plot of all principal components

ponents, thus concluding that the variation of the MTL can be meaningfully
described by the linear PCA transformation. Would there have been some sort
of non-linear tendency, a PCA would have problems describing the variance.
Looking back at Figure 5.2, the �rst mode is very dominating. To �nd the rea-
son for this, the attention should be drawn to the �rst row of Figure 5.4. This
row displays the meanshapes and their variation by the �rst principal compo-
nent with ±1σ. This mode clearly describes the overall scaling of the model,
and is apparently a very dominating in�uence. This is a direct consequence of
leaving out scaling in the alignment process. Going back to the discussion of
leaving out scaling from the alignment model, one might of course argue that
a simple anisotropic or even isotropic scaling might be able to compensate for
this sort of variation when the shape model is put to use in the segmentation
algorithm. It is however the belief of the author that the scaling of the MTL is
more speci�c than such i.e. scales in more than three directions, and therefore
have to be described by a principal component. In the second principal mode an
asymmetrical variation of the left, right amygdala(yellow) and left, right tem-
poropolar(red) cortex seems to be dominant. The Enthorinal cortices are also
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seen to vary some. In total it is rather di�cult to see distinct deformations in
the remaining modes, and in some modes similar deformations are seen, such as
the two hippocampus(cyan) regions in mode three and four, which shows a sort
of contraction.
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Figure 5.4: Mean shape deformation. in�uence From top to bottom: Mode 1 to
6. From left to right: µ−√σ,µ,µ +

√
σ
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5.3 Segmentation with the Implicit Parametric
Shape

Recalling Section 4.3, a method for using the implicit parametric shape model
was de�ned. A region based segmentation approach was described, which will
be utilized in the MTL in this section. In order to make sure that the model
will work as expected, some conditions for the segmentation will be set up. Fur-
thermore the validity of the model will be tested on a set of synthetic examples.
As the model generalizes in both 2D and 3D, these exercises will be performed
in 2D for clarity. After this, the model is tested in 3 dimensions on each region
separately, and the generalization error calculated according to the methods in
Section 3.7. This will give some insight to which regions might be harder to lo-
cate. Finally the coupled shape model is tested on all 12 shapes simultaneously
and the results are validated.

5.3.1 The region-based model in a practical setting

In order to get acquainted with the segmentation problem, the formulated energy
description in Section 4.3 will be reviewed in a practical setting. This means
that the necessary conditions this method here will be summed up, illustrated
and described in practise.

5.3.1.1 Initial Grids

For most numerical optimization methods, the initial guess of the optimal pa-
rameter is crucial for the entire optimization sequence. This case is of course
not any di�erent, which means that a well suited initial spatial location and
deformation is required. For this purpose the mean shapes Φi

k speci�ed in Sec-
tion 4.2 is utilized. For the exact spatial initial guess the center of mass of
each meanshape is used, as shown in Figure 5.5 for a single shape. The crucial
importance of this initial guess will be demonstrated during the next sections,
especially in the �nal model validation.

5.3.1.2 Estimation of region-PDFs in the MTL

As the model is driven on a probability machine, i.e. the di�erential entropy of
the inner Ri and outer Ro region, the PDFs of the ground truth regions needs
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Figure 5.5: Initial grid conditions for a shape. The white region is ground truth
of a slice of PHC. The blue region is the meanshape of PHC. The red circle is
the center of mass for the blue shape. The cyan grid is the template space which
is warped into image space.

to be evaluated. This is done using the parzen window, Section 3.6, and the
estimated PDFs can be found in Appendix G. In Figure 5.6 two characteristic
PDFs are shown.
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Figure 5.6: Left: Region 3 - Enthorinal Cortex Left Right: Region 8 - Parahip-
pocampal Cortex Right

Figure 5.7:

Here it is seen that the inner regions are quite similar and rather homogenous
which was expected as the �gures in Section 4.3 hinted. The outer regions are
characterized by three peaks which is expected as the di�erent tissue types in
the surroundings of the regions. This looks rather good, but the problem is
that these distributions are not unique in the area of the MTL, and many local
minima exists which makes the segmentation very challenging. To visualize this
problem, a good way is to �x all parameters except for two, and plot so-called
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energy maps based on the ground truth.
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Figure 5.8: Energy maps for ground truth shape in grid around true position.
Scaling and Rotation parameters are �xed. Translation parameters X, Y and Z
moves. From left to right the moving parameters are XY,YZ,XZ

The energy maps are created by changing two parameters at the time. The
present Figure 5.8 is of hippocampus in test-person f1377 where the translational
parameters are moved and the rest are �xed. The function is clearly far from
convex, thus making it a di�cult optimization problem and prone to descend
into a spurious minimum. The peak in the middle of all maps is the correct
position, which we are searching for. Armed with this knowledge the model is
validated in the next section.

5.3.2 Validity of the model-theory

To verify that the theory actually works as it is supposed to, a simple 2D
synthetic dataset is created consisting of 20 shapes, Figure 5.9. The shape
model is created as described in Section 4.1, after the shapes have been aligned.
Naturally this shape-model can only be used to locate nove elliptical shapes
such as Figure 5.11 since all training data are of such character. Two cases are
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Figure 5.9: Training set of shapes
used to verify the model
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Figure 5.10: Estimated PDFs of the
synthetic regions

demonstrated;
The �rst presents the segmentation model with a shape from the training set,
perturbed with gaussian noise in the inner region, and noise created as a mixture
of three gaussians in the remaining outside region. The PDF's for the model is
estimated using a parzen window, Section 3.6. The PDF's are seen in Figure
5.10, together with a histogram of the samples and the real distributions, used
to create the perturbations. It is seen that the Parzen window is biased some,
especially in the outside region. This error is unavoidable when using a non-
parametric method for PDF-estimation, and will of course have in�uence on
the accuracy of the segmentation. The reason for perturbing the outside region
with a mixture of gaussians is to make the example more like the regions in the
MTL, Section 4.3. Certainly this does far from represent the real optimization
problem, but it makes for demonstration.
The second case is a novel shape, in the sense that it is not part of set of
shapes that were used to train the shape model, i.e. Figure 5.9. This shape was
perturbed in the same manner. In both cases the diameter of the outer region,
r was set to 10, and the model seems to �t the perturbed shapes fairly well. It
is seen that the shape from the training set is �tted better than the novel shape,
which was expected. Especially the deformable contour has problems imitating
the small dent in the top of the novel shape for obvious reasons.
As already mentioned, the initial guess has tremendous impact on the result
of segmentation, as this may cause the snake to go towards some unwanted
local minima. Furthermore the radius of the outer region also plays a very
signi�cant role in the segmentation performance. In the current implementation
this parameter should be chosen empirically, which is a rather big drawback.
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Figure 5.11: Synthetic segmentation example of ellipse. Top row shows the
segmentation of a shape known from the training-set. Bottom row shows the
segmentation of a novel shape. The columns show initial, midway and �nal �t.
The white contour in the �nal plots is the ground truth shape

5.3.3 Individual Segmentations

Moving on to a more challenging segmentation problem, each region of the MTL
is segmented separately, i.e. no coupling between the regions. Furthermore a
generalization-error calculated using the DICE-measure and LOOCV will be
calculated. Naturally the diameter of the outer region will be �xed to make for
a more fair comparison. To perform this test it is clear that individual shape
models should be created for each region, in order to make a meaningful segmen-
tation. However, as the region-based model generalizes from single to multiple
regions, this is straightforward.
In Figure 5.12 plots of the generalization error is seen for the initial guess(the
mean shapes) and the segmentation results. It is seen that the model performs
di�erent on each of the regions, which is of course natural. In region 9 and
10, the hippocampal areas show good overlaps with up to 85%. Unfortunately
some results such as regions 1 and 11, the temporopolar cortex and amygdala
are seen to fail completely with an overlap of 0%. This is due to the initial guess,
which as mentioned have high impact; generally it is seen from the plot that
bad initial overlaps also often causes bad segmentation results. The variance
of many of the shapes is high, which shows that the model is not so robust.
To illustrate some scenarios from the above experiment, Figure 5.15 shows two
di�erent examples.
It is clear from these �gures how the initial guess has a�ected the result. Further-
more the region of the hippocampus is more distinct than that of the temporopo-
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Figure 5.12: Boxplot of the generalization error of each shape in each of the 13
test-persons. Left box-plot shows the error of the initial guess compared to the
ground truth, while the right shows the error of the segmentation result compared
to the ground truth.

Figure 5.13: Two opposite segmentation scenarios: The red shapes are the initial
guesses, and the blue are the �nal results. In the top is a segmentation gone
wrong. In the bottom is a more successful segmentation. From top-left to bottom-
right the DICE score is 0.05, 0, 0.25 and 0.84.

lar areas, as can be seen in Appendix B, which makes it an easier segmentation
challenge. So to sum up, based on this experiment, regions such as 1,11 and
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12 are di�cult to �nd with this method in this setting. The two hippocampal
areas, region 9 and 10 shows pretty good results however, so it might be a good
idea to guide the segmentation after these regions. There are of course di�erent
ways of doing this, and the method explored here, is the strongly coupled model,
Section 4.1.2.2.

5.3.4 Simultaneous Segmentation of all regions

Like in the previous section the model is presented with novel images, by using
LOOCV. This is can be seen if the coupling of the model actually enhances
the performance. Similar to Figure 5.15, Figure 5.14 shows a boxplot, where
each box represents a region. This model certainly outperforms the approach of
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Figure 5.14: Generalization errors of the coupled segmentation model. In the
left plot the diameter of the outer region was set to 5 in all shapes. In the right,
the diameter was set to 10.

segmenting each region separately. The overlaps of each shape is in general much
higher, and the variance is lower as well. The initializations are the same as when
shapes were segmented individually, so this gives a good basis for comparison.
The model has been tested with two di�erent values of R, 5 and 10. For optimal
performance it should be tested systematically, and the model with the lowest
generalization error should be chosen. An empirically set R = 5 seems however
to show that this model seems to be working as intended. Figure 5.15 shows
the energy as a function of the iterations. The energy descents in a natural
manner, and converges at some point after 100 iterations because the change
in function value falls below an empirical set threshold. Figure 5.15 shows the
volumetric view of the segmentation result, while a 2D axial slice view can be
seen in Figure 5.16 showing �ve out of the six regions.
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Figure 5.15: Left: Result of the segmentation with R=5, Right: The decay of
energy as a function of time

Figure 5.16: Axial view of segmentation results for f1778 in slice 50 and 60. -
Regions: HC(cyan), PHC(magenta), AD(yellow), EC(green), PRC(blue) Left:
Ground Truth, Right: Segmentation results
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6.1 Discussion and Future Work

This section provides a discussion of the implemented model, what is good, what
is bad and what can be done in other ways. It is clear from the results that
the coupled shape model works, and is able to locate the regions in the MTL.
The results however, are not convincing, and this needs to be investigated. So
what are the reasons for this lack of performance? This is a di�cult question to
answer, but the following sums up ideas to be improved in the di�erent phases
of the model. In the alignment phase the shapes were aligned individually.
This of course is a bit inconsistent with the fact that a coupled model is built.
When the shapes are aligned individually in each shape class, some spatial
information might be lost. (Tsai et al.; 2003) makes a joined binary registration
by minimizing a common overlap measure for all shapes in all shape classes.
This seems reasonable, and it might be a good idea to formulate a similar
energy functional working on the LSF' registration scheme presented in Section
4.2. A such energy-functional could be calculated as

n∑

i,j=1
i 6=j

m∑

k=1

(
Φk

i (x)− Φk
j (W(x;p))

)2 (6.1)

There is no doubt that this would be a rather heavy registration procedure de-
pending on the size and dimensionality of the images. A narrowband technique
would help to solve this, and in combination with the inverse compositional al-
gorithm (Baker and Matthews; 2002) it should be feasible.
It would also be interesting to investigate whether the removal of scale in the
alignment procedure would allow for other features to come forward in the shape
model. As we saw in Section 5.2, the �rst mode of variation was very much dom-
inated by the scaling of the volumes. If this factor disappeared it might allow
the shape model to deform in other more speci�c directions. This was however
not chosen in this work.
Another problem with scaling is that when an SDM is scaled, it is no longer
an SDM, see Section 4.1. So a reinitialization of a shape would have to be per-
formed after each warp, which would be very costly.
As for the shape model, and how this is coupled, there might also be di�erent
approaches than the one used here. Certainly a coupling is necessary, which is
seen by the results of the individual segmentations in Section 5.3.4. But the
problem with this strongly coupled shape model is that it might be to strong
coupled. In this model, the degree of freedom is seven plus the number of modes
in the shape model. This means that all shapes moves as a single unit. It would
be a good idea to incorporate the possibility to let each shape move individually
to a certain limit. A sequential coupling is used in (Hansen; 2005), where an ini-
tial shape is found using a single shape model. When this shape has been found
the pose parameters of the remaining shapes are updated by sampling from an
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estimated gauss distribution. Although this is a nice approach, each shape in
the MTL is very hard to locate individually, as demonstrated in Section 5.3.4.
Therefore it might be di�cult to get good initializations using this procedure.
Finally, the heuristic method of avoiding overlap performed here should be done
in a more clever and elegant way, such as a preventive approach where a con-
straint is put on w so that an overlap will never occur.
Looking at di�erent approaches, the log odds framework was mentioned in Sec-
tion 4.1. This is a method that utilizes probabilistic atlases, and a completely
novel approach called Active Mean Fields(AMF)(Pohl et al.; 2007) is being pre-
sented at the IPMI1 conference. The AMF is a further development of the
log-odds framework previously mentioned in Section 4.1. This means that the
shape model is viewed as a probabilistic atlas, which might be di�cult to utilize
in the setting used in this project, so an implementation of an algorithm similar
to might yield rather interesting results. Using the Logodds framework in the
AMF model implicitly avoids the problem of overlapping regions due to the fact
that the region-ownership of each voxel is handled by a maximum aposteriori
probability.

Finally, another example of a method to do the segmentation would be by using
deformation-based morphometry. This was shortly mentioned in the end of the
introductory Chapter 2. A speci�c method is by utilizing di�usion registration,
in a demon-based registration. Thirion

6.2 Conclusion

The objectives set forth in the beginning of this project was the following:

� Investigate the possibilities of making an intelligent system which is able
to localize the regions of interest.

� Elaborate and analyze a sensible approach to an automatic or semi-automatic
labeling of these regions

� Develop a prototype which demonstrates the approach and can carry out
a labeling of the regions of interest

These objectives have been achieved to an extent as now discussed.

The investigation of the possibilities of making a system capable of helping
Thomas Zöega Ramsøy ended up with the choice of using a level set method

1Information Processing in Medical Imaging 2007 in the Netherlands
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with a shape prior, which has been used to solve similar problems earlier in
(Tsai et al.; 2004) and (Hansen; 2005) with good results. An extensive amount
of literature have been studied to investigate this method which covers a broad
range of di�erent theory. In the �nal period of the thesis it has come to the at-
tention of the author that a recent di�erent approach, (Pohl et al.; 2007), would
be very interesting to investigate as an alternative to the method explored here.
However, the LSF method with a shape based prior have been investigated to a
great extent here, and found adequate to suit the needs for segmenting regions
in the Medial Temporal Lobe. Improvements to the model should however be
made. An alternative method, deformation-based morphometry, speci�cally dif-
fusion registration, has also been investigated to an extent but with unsuccessful
results.
Finding and testing a suiting energy function to drive the region-based segmen-
tation model in the MTL have been a challenge and took a good portion of time.
The coupling of the shape model might have been done in a di�erent manner,
although the one used is an elegant way of capturing intra variation among the
regions in the MTL.
Finally, the developed prototype have been tested and generalization errors have
been visually inspected, which showed relatively promising results. The coupled
model was compared to segmentation of the shapes individually and showed
improvement. However, the model is not perfect, and more work can be per-
formed.
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Volumetric view of all

shapes in the 13 patients

Figure A.1: MTL of test person
f1371

Figure A.2: MTL of test person
f1374
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Figure A.3: MTL of test person
f1387

Figure A.4: MTL of test person
f1388

Figure A.5: MTL of test person
f1512

Figure A.6: MTL of test person
f1577

Figure A.7: MTL of test person
f1593

Figure A.8: MTL of test person
f1736
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Figure A.9: MTL of test person
f1737

Figure A.10: MTL of test person
f1740

Figure A.11: MTL of test person
f1777

Figure A.12: MTL of test person
f1778

Figure A.13: MTL of test person
f1830
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Appendix B
Overview of all regions in

the MTL
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Figure B.1: Convex hull of all the supplied regions seen in Axial, Coronal and
Sagittal view
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Figure B.2: Region 1 - Temporopolar cortex left
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Figure B.3: Region 2 - Temporopolar cortex right
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Figure B.4: Region 3 - Entorhinal cortex left
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Figure B.5: Region 4 - Entorhinal cortex right
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Figure B.6: Region 5 - Perirhinal cortex left
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Figure B.7: Region 6 - Perirhinal cortex right
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Figure B.8: Region 7 - Parahippocampal Cortex left
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Figure B.9: Region 8 - Parahippocampal Cortex right
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Figure B.10: Region 9 - Hippocampus left
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Figure B.11: Region 10 - Hippocampus right
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Figure B.12: Region 11 - Amygdalar left
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Figure B.13: Region 12 - Amygdalar left
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Appendix C
Volume sizes of the 12

shapes
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Person Reg. 1 Reg. 2 Reg. 3 Reg. 4 Reg. 5 Reg. 6 Reg. 7 Reg.8
1 624 1261 1200 1355 5595 4401 3396 3663
2 599 1567 1417 2004 5314 2922 3361 3009
3 1915 1732 696 1110 2651 2613 3857 3018
4 2380 2685 1884 1721 4240 4296 3441 3570
5 1114 2014 1720 1329 5312 4724 3339 2918
6 2793 1413 2268 1449 4447 6294 2490 3123
7 1439 1970 1800 1402 4161 4539 3199 3130
8 2474 583 1534 1438 3539 6315 2630 3055
9 2303 2615 2272 1888 4691 4622 3271 3843
10 2172 2477 1552 1441 4992 4943 3449 3134
11 1891 2884 1417 1206 3750 2069 2868 2677
12 1626 2085 1688 1741 6358 5323 2597 3566
13 2247 1559 1914 1298 3618 3279 3152 3190
Mean 1813.62 1911.15 1643.23 1490.92 4512.92 4333.85 3157.69 3897.92
Std 697.83 652.85 424.83 267.64 1004.89 1310.11 400.24 352.35

Person Reg. 9 Reg. 10 Reg. 11 Reg. 12
1 4563 4602 2934 2460
2 5185 4853 2669 2650
3 4501 4307 2720 2957
4 5336 5444 3318 2434
5 4920 4503 3412 2545
6 4661 4584 2648 2378
7 4988 4788 2888 2751
8 4450 4311 2412 2155
9 4711 4601 3134 2829
10 4455 5063 2602 2667
11 4380 4445 2346 2249
12 4932 5521 2584 1995
13 3944 3632 2345 2236
Mean 4694.31 4665.69 2770.15 2485.08
Std 374.27 496.51 349.37 282.43



Appendix D
Probability Distribution
Functions for 13 images

Figure D.1: From top to bottom, PDF for:
f1371,f1374,f1387,f1388
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Figure D.2: From top to bottom, PDF for:
f1512,f1577,f1593,f1736

Figure D.3: From top to bottom, PDF for:
f1737,f1740,f1777,f1778
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Figure D.4: PDF for: f1830
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Appendix E

Transformation matrices

T =




1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1




RΩ =




0 0 0 0
0 cos(Ω) sin(Ω) 0
0 − sin(Ω) cos(Ω) 0
0 0 0 0




RΦ =




cos(Φ) 0 − sin(Φ) 0
0 0 0 0

sin(Φ) 0 cos(Φ) 0
0 0 0 0




Rκ =




cos(κ) sin(κ) 0 0
− sin(κ) cos(κ) 0 0

0 0 0 0
0 0 0 0




T [P ] = Rκ ·RΦ ·RΩ · T

(E.1)
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∂T

∂tx
=




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




∂T

∂ty
=




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0




∂T

∂tz
=




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0




∂RΩ

∂Ω
=




1 0 0 0
0 − sin(Ω) cos(Ω) 0
0 − cos(Ω) − sin(Ω) 0
0 0 0 1




∂RΦ

∂Φ
=




− sin(Φ) 0 − cos(Φ) 0
0 1 0 0

cos(Φ) 0 − sin(Φ) 0
0 0 0 1




∂Rκ

∂κ
=




− sin(κ) cos(κ) 0 0
− cos(κ) − sin(κ) 0 0

0 0 1 0
0 0 0 1




(E.2)
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Aligned Shapes

Figure F.1: Region 1 Unaligned Figure F.2: Region 1 Aligned
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Figure F.3: Region 2 Unaligned Figure F.4: Region 2 Aligned

Figure F.5: Region 3 Unaligned Figure F.6: Region 3 Aligned

Figure F.7: Region 4 Unaligned Figure F.8: Region 4 Aligned
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Figure F.9: Region 5 Unaligned Figure F.10: Region 5 Aligned

Figure F.11: Region 6 Unaligned Figure F.12: Region 6 Aligned

Figure F.13: Region 7 Unaligned Figure F.14: Region 7 Aligned
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Figure F.15: Region 8 Unaligned Figure F.16: Region 8 Aligned

Figure F.17: Region 9 Unaligned Figure F.18: Region 9 Aligned

Figure F.19: Region 10 Unaligned Figure F.20: Region 10 Aligned
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Figure F.21: Region 11 Unaligned Figure F.22: Region 11 Aligned

Figure F.23: Region 12 Unaligned Figure F.24: Region 12 Aligned
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Appendix G
Probability Distribution

Functions
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Figure G.1: Region 1 - Temporopo-
lar Cortex Left
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Figure G.2: Region 2 - Temporopo-
lar Cortex Right
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Figure G.3: Region 3 - Entorhinal
Cortex Left
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Figure G.4: Region 4 - Entorhinal
Cortex Right
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Figure G.5: Region 5 - Perirhinal
Cortex Left
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Figure G.6: Region 6 - Perirhinal
Cortex Right
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Figure G.7: Region 7 - Parahip-
pocampal Cortex Left
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Figure G.8: Region 8 - Parahip-
pocampal Cortex Right
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Figure G.9: Region 9 - Hippocampus
Left
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Figure G.10: Region 10 - Hippocam-
pus Right

0.5 1 1.5 2
0

0.5

1

1.5

2
Inner

−2 0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8
Outer

Figure G.11: Region 11 - Amygdalar
Left
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Appendix H

Implementation

On the included CD is the matlab implementation of the di�erent processes in
the theses. For reasons of size only two test persons are included on the CD,
together with the calculated distance maps. Furthermore is the spm2 toolbox
included, to read to ANALYZE images. The code is separated into folders
concerning each their area of responsibility. The main-�les are

� alignShapes.m - Aligns a set of shapes

� Step1.m - Standardizes data and creates LSFs

� Step2.m - Estimates PDFs

� Step3.m - Aligns all shapes

� make3DModesNB.m - Creates a coupled shape model

� fullscaleRun.m - Runs the segmentation algorithm

� Viewers - Cpp source code for developed viewers - requires VTK
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