
Intelligent Fault Diagnosis in
Computer Networks

Xin Hu

Kongens Lyngby 2007
IMM-THESIS-2007-49

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Abstract

As the computer networks become larger and more complicated, fault diagnosis
becomes a difficult task for network operators. Typically, one fault in the com-
munication system always produces large amount of alarm information, which
is called alarm burst. Because of the large volume of information, manually
identifying the root cause is time-consuming and error-prone. Therefore, auto-
mated fault diagnosis in computer networks is an open research problem.

The aim of this thesis is to develop a software system for Motorola Denmark,
which assists network operators to diagnose fault in an intelligent, highly accu-
rate and efficient way.

In this thesis, we shall analyze the current fault diagnosis techniques. Then
we shall propose a generic framework for constructing fault diagnosis systems
used in computer networks. Finally, we shall design and implement such a sys-
tem specifically for Motorola Denmark.

Keywords: Fault localization, Fault Diagnosis, Event Correlation, Rule-Based
Reasoning, Model-Based Reasoning

Preface

This thesis was prepared at Informatics Mathematical Modelling, the Technical
University of Denmark in partial fulfillment of the requirements for acquiring
the degree in Master of Science in Computer Systems Engineering.

The project, titled ”Intelligent Fault Diagnosis in Computer Networks”, has
been carried out by Mr. Xin Hu during the period between October 1st , 2006
and May 31st , 2007.

This thesis was supervised by Mr. Jørgen Fischer Nilsson, Professor within
the Department of Informatics and Mathematical Modelling at the Technical
University of Denmark, and was collaboration with Motorola, Denmark.

The thesis consists of a summary report and a prototype system SECTOR which
can automatically diagnose the faults in a computer network.

Lyngby, May 2007

Xin Hu

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Jørgen
Fischer Nilsson, for helping me throughout the whole period, for sharing his
brilliant ideas which always resulted in very interesting discussions.

Secondly, I would also like to thank Mr. Søren Sørensen from Motorola, Den-
mark. He really gave me great help and valuable first-hand information regard-
ing Dimetra system.

Thirdly, I will show my great acknowledgment to my dearest parents for their
love, support and encouragement every second.

Finally, thanks to all my friends in Denmark and in China who care about and
support me all the time!

iv

Contents

Abstract i

Preface ii

Acknowledgements iii

1 Introduction 1

1.1 Project Background . 1

1.2 Project Goals . 2

1.3 Project Scope . 2

1.4 Main Work . 2

1.5 Structure of the Report . 3

2 Fault Diagnosis 5

2.1 Concepts of Fault Diagnosis . 5

2.2 Graph-theoretic techniques . 7

CONTENTS vi

2.2.1 Codebook technique . 9

2.2.2 Context-free grammar . 10

2.3 AI techniques . 11

2.3.1 Rule-based Approach . 12

2.3.2 Model-based Approach . 13

2.3.3 Case-based Approach . 15

2.3.4 Neural Network Approach 16

2.3.5 Decision Tree Approach 16

2.4 Model traversing techniques . 16

2.5 Summary . 16

3 Analysis of Dimetra 18

3.1 System Introduction . 18

3.2 Mobile Station (MS) . 19

3.3 Radio Channels . 19

3.3.1 Control Channel (CC) 19

3.3.2 Traffic Channel (TCH) . 20

3.4 BTS Site . 20

3.4.1 Base Radio (BR) . 21

3.4.2 Site Controller (SC) . 21

3.5 Master Site . 22

3.5.1 Zone Controller (ZC) . 22

3.5.2 Network Management System - FullVision Server 22

CONTENTS vii

3.6 Site Link . 23

3.7 System Diagram . 23

3.8 Alarm Analysis . 23

3.8.1 Alarms of Base Radio . 26

3.8.2 Alarms of EBTS . 26

3.8.3 EBTS Site (ZC) . 28

3.8.4 Alarms of Zone Controller 28

3.8.5 Alarms of ZC Site Control Path 29

3.9 Fault Propagation Model . 29

3.10 Summary . 31

4 A Framework for Fault Diagnosis in Dimetra 32

4.1 Review of Related Solutions . 32

4.2 The Proposed Framework . 33

4.2.1 Network Element Class Hierarchy 35

4.2.2 Network Configuration Model 38

4.2.3 Predicate Layer . 41

4.2.4 Causal Model . 41

4.2.5 Event Definitions . 43

4.3 Summary . 45

5 Design of the SECTOR system 47

5.1 System Overview . 47

CONTENTS viii

5.2 System Architecture . 48

5.3 Summary . 50

6 Implementation 51

6.1 Modular design . 51

6.2 Design Patterns . 52

6.2.1 Strategy Pattern . 54

6.2.2 Observer Pattern . 54

6.3 Package Overview . 54

6.4 SECTOR Fundamental . 56

6.4.1 Model (interface) . 56

6.4.2 Modeler (interface) . 56

6.4.3 EventSpec (interface) . 56

6.4.4 EventRegistrator (interface) 57

6.4.5 EventSubscriber (interface) 57

6.4.6 EventAdpator (interface) 57

6.4.7 Predicater (class) . 58

6.4.8 Sector (class) . 58

6.5 Implementation of Network Element Class Hierarchy 58

6.5.1 Element (class) . 58

6.5.2 Manager (class) . 60

6.5.3 ManagedObject (class) . 60

6.5.4 Node (class) . 60

CONTENTS ix

6.5.5 Link (class) . 61

6.5.6 Dimetra classes . 61

6.6 Implementation of Model Construction 62

6.6.1 Model Description File . 62

6.6.2 A default Model Implementation 63

6.6.3 A default Modeler . 63

6.7 Implementation of Predicate Layer 64

6.8 Implementation of Event Registration 64

6.8.1 Event Specification File 64

6.8.2 A default Event Spec. Base 65

6.8.3 A default Event Registrator 65

6.9 Implementation of Event Adaptor 66

6.10 Implementation of Event Subscription 67

6.11 Summary . 67

7 Testing and Evaluation 68

7.1 Unit Testing . 68

7.1.1 Testing on Model Construction 69

7.1.2 Testing on Event Registration 69

7.2 Integration Testing . 71

7.2.1 Console Login Failed . 71

7.2.2 Base Radio is Locked . 73

7.2.3 EBTS is Disabled . 74

CONTENTS x

7.3 Performance Evaluation . 74

7.4 Summary . 76

8 Conclusion 77

8.1 Achieved Goals . 77

8.2 Future Work . 78

A Class Diagram 79

A.1 Class Diagrams for the sector Package 79

A.1.1 sector.Model interface 79

A.1.2 sector.Modeler interface 81

A.1.3 sector.EventSpec interface 82

A.1.4 sector.EventRegistrator interface 83

A.1.5 sector.EventSubscriber interface 84

A.1.6 sector.EventAdpator interface 85

A.2 Class diagrams for the network element class hierarchy 86

B Source Code 89

B.1 Package sector - SECTOR Fundmental 89

B.1.1 Sector.java . 89

B.1.2 Predicater.java . 96

B.1.3 Helper.java . 99

B.2 Package sector.model - Model Construction 101

B.2.1 MemModelImpl.java . 101

CONTENTS xi

B.2.2 XMLModeler.java . 114

B.3 Package sector.registrator - Event Registration 125

B.3.1 DefaultEventSpec.java . 125

B.3.2 DefaultEventRegistrator.java 134

B.4 Package sector.adaptor - Event Adaptation 136

B.4.1 CSVEventAdaptor.java 136

B.5 Package sector.test - Unit Test Classes 140

B.5.1 MemModelImplTest.java 140

B.5.2 DefaultEventSpecTest.java 154

B.6 Package sector.test.integration.suppression - Test Classes
for Console Login Failed scenario 164

B.6.1 LoginFailedTest.java . 164

B.6.2 LoginFailedAlert.java . 165

B.7 Package sector.test.integration.br - Test Classes for Base
Radio Locked scenario . 166

B.7.1 BaseRadioLockedAlert.java 166

B.8 Package sector.test.integration.ebts - Test Classes for EBTS
Disabled scenario . 166

B.8.1 BothSitePathDownAlert.java 166

B.8.2 EBTSDisabledAlert.java 167

C XML description files 170

C.1 The DTD of XML model description file 170

C.2 The DTD of XML event specification file 171

CONTENTS xii

D Testing 173

D.1 Console Login Failed Testing . 174

D.1.1 Event Definitions . 174

D.1.2 Results . 175

D.2 Base Radio is Locked Testing . 175

D.2.1 Event Definitions . 175

D.2.2 Results . 175

D.3 EBTS is Disabled Testing . 176

D.3.1 Event Definitions . 176

D.3.2 Results . 177

List of Figures

2.1 Classification of fault localization techniques [2] 7

2.2 Simple network and a corresponding dependency graph [2] 8

2.3 Codebook derived from an example causality graph 9

2.4 A sample network . 11

2.5 Network model class hierarchy [16] 14

2.6 Model of IMPACT [6] . 15

3.1 MTH500 Mobile Station [20] . 20

3.2 A BTS site with a mobile station [20] 21

3.3 A zone consisting of a master site and five BTS sites [20] 22

3.4 System Diagram for a basic Dimetra 24

3.5 Sample alarm log . 25

3.6 Dependency Graph of a sample system described in section 3.9.
See the interpretation in Table 3.6 31

LIST OF FIGURES xiv

4.1 The Proposed Framework . 34

4.2 Network Element Class Hierarchy (the description of Dimetra
classes is shown in table 4.1) . 36

4.3 Graphic model of the sample system 39

4.4 XML-formatted model of the sample system 40

4.5 Causal Model and Identified Events 42

5.1 The Architecture of SECTOR . 50

6.1 SECTOR system - Main modules 53

6.2 Packages Overview . 55

6.3 Class Diagram of package sector and its dependent classes 59

6.4 Class Diagram of package sector.model and dependent classes . . 63

6.5 Class Diagram of package sector.registrator and dependent classes 65

6.6 Class Diagram of sector.adaptor and dependent classes 66

7.1 The screenshot after running MemModelImplTest 70

7.2 The screen shot after running DefaultEventSpecTest 71

7.3 The screenshot after testing the ”console loging failed” 72

7.4 The screenshot after testing the ”base radio is locked” 73

7.5 The screenshot after testing the ”EBTS site disabled” 75

A.1 Diagram for sector.Model interface 80

A.2 Diagram for sector.Modeler interface 81

A.3 Diagram for sector.EventSpec interface 82

LIST OF FIGURES xv

A.4 Diagram for sector.EventRegistrator interface 83

A.5 Diagram for sector.EventSubscriber interface 84

A.6 Diagram for sector.EventAdpator interface 85

A.7 Simplified Class diagram for the Network Element Class Hierarchy 87

List of Tables

3.1 Alarms analysis of EBTS Base Radio 27

3.2 Alarms analysis of EBTS . 27

3.3 Alarms analysis of EBTS Site (ZC) 28

3.4 Alarms analysis of ZC . 28

3.5 Alarms analysis of ZC Site Control Path 29

3.6 Interprets of Dependency Graph in figure 3.6 30

4.1 Description of Dimetra classes . 37

Chapter 1

Introduction

1.1 Project Background

Today’s computer networks, for instance telecommunication networks, are be-
coming much larger and more complex. One single fault occurred in one network
component may cause considerably high volume of alarms to be reported to net-
work operators, which is called alarm burst. Alarm burst may be a result of
(1) fault re-occurrence, (2)multiple invocations of a service provided by a faulty
component, (3) generating multiple alarms by a device for a single fault, (4)
detection of and issuing a notification about the same network fault by many
devices simultaneously, and (5)error propagation to other network devices caus-
ing them to fail and, as a result, generate additional alarms [1]. Thus, it is a
challenge for network operators to quickly and correctly identify the root cause
by analyzing those large amount of alarms.

Dimetra [20] is a radio networking system provided by Motorola. The fault
diagnosis in Dimetra is currently handled manually. Operation staffs browse
alarms which are delivered to FullVision (FV) [20, 21] from all kinds of phys-
ical devices or logical objects, and then analyze those alarms to find possible
problems causing alarms. This manual process is not able to scale well when
the system gets larger and more complicated. Furthermore, customers can not
tolerate such an ad hoc, error-prone and labor-intensive approach. Last but not

1.2 Project Goals 2

the least, it will considerably increase the cost if customers buy fault diagno-
sis solution from the third parties. Therefore, developing an intelligent fault
diagnosis solution is a critical requirement for Motorola, Denmark.

1.2 Project Goals

This project was set up based upon the requirements mentioned above. The
main goal of this project is to develop a simple and flexible prototype system for
Motorola Denmark, which automates the process of fault diagnosis in Dimetra
system in an intelligent, highly accurate and efficient fashion. If possible, a
generic framework and model for constructing such a system workable for multi-
domain networking systems will be proposed.

1.3 Project Scope

Due to the limitation of time and the complexity of Dimetra system, a basic
and simplified Dimetra system was investigated, which consists of core elements
and supports voice only operation. Hence, the developed system only handles
fault diagnosis in such a basic Dimetra system at the moment.

On the other hand, as a prototype system, the evaluation was carried out in a
simulated environment rather than the real field. Furthermore, the evaluation
was only based on several fault scenarios (test cases), it is therefore not thorough
yet. Last but not the least, the developed system has no Graphic User Interface
and may contain some bugs since it is not a production system.

However, with more development, the author believes the developed system
could be used as a real world application in the future.

1.4 Main Work

In this thesis, a generic framework for fault diagnosis, which is based on alarm
(event) correlation technology, was proposed. It mainly follows the principles
of model-based reasoning but also combines idea from the rule-based reasoning.
With this framework, developers can model all kinds of networking system,

1.5 Structure of the Report 3

identify and model diagnostic knowledge, and finally build a fault diagnosis
system.

This framework was implemented by a system named SECTOR - Simple Event
CorrelaTOR. SECTOR relies on the alarm (event) correlation technology. The
evaluation shows that SECTOR can identify the right faults from alarm flood
with acceptable latency.

1.5 Structure of the Report

Eight chapters and four appendixes are included in this report.

Chapter 1 gives a brief introduction to the project including the background,
goals, scope and achievements.

Chapter 2 introduces the theory in the domain of fault diagnosis. Relevant
concepts are explained in this chapter. Furthermore, it describes several tech-
niques which can be applied in the fault diagnosis, as well as examines their
advantages and disadvantages.

Chapter 3 introduces and describes the Dimetra system. Basic components
are described with particular emphasis on the their functionalities as well as
the dependencies between them. Furthermore, alarms reported by those com-
ponents are analyzed. Finally, a fault propagation model is represented for a
sample Dimetra.

Chapter 4 presents the proposed framework, on which a fault diagnosis system
can be built based. This framework utilizes the idea of event correlation and
combines the rule-based and the model-based solutions. It is designed to be as
generic as possible in order to be used in other domains.

Chapter 5 concentrates on the design of a fault diagnosis system-SECTOR,
which is based on the proposed framework. The functionalities of the SECTOR
system are defined in this chapter. Furthermore, it describes the whole system
architecture together with the communication between the different parties in
the system.

Chapter 6 describes the implementation of the SECTOR system using Java
language. A description of all system modules, as well as the the class diagrams
have also been provided. In addition, important implementation details are
given.

1.5 Structure of the Report 4

Chapter 7 demonstrates how the SECTOR system has been tested and eval-
uated. The test strategies used in the test are described. The major test cases
and their results are provided. At the end of this chapter, the performance
evaluation based on the results is given.

Chapter 8 is the conclusion of this thesis. It concludes this project by analyzing
the achieved goals, and the limitations which identify the possible future work.

Appendix A presents the class diagrams of some important classes.

Appendix B lists the source code of all important classes.

Appendix C introduces the XML description files, including the one for model
description and the one for the event specification.

Appendix D introduces the test cases of the project as well as the results.

Chapter 2

Fault Diagnosis

Fault diagnosis, informally speaking, is a process of finding faults according to
the observed symptoms. Fault diagnosis referred in this thesis is the one in the
context of networking systems. Currently, fault diagnosis in computer networks
remains an open research problem [2]. It is because there is not one single
solution that can address all issues.

This chapter introduces the theory of fault diagnosis by illustrating related
concepts and techniques, and tries to give readers a basic understanding of the
fundamental ideas behind fault diagnosis. This chapter is mainly based on a
survey in [2] by following its way to describe the theory of fault diagnosis.

2.1 Concepts of Fault Diagnosis

Some basic concepts are introduced first.

Event, as an exceptional condition occurring in the operation of hardware or
software of a managed network, is considered as a central concept in the
context of fault diagnosis [2]. The hardware or software associated with
an event is named as managed object. Events can be classified as primi-

2.1 Concepts of Fault Diagnosis 6

tive or composite events [3, 4]. Primitive events, pre-defined in a system,
are usually directly generated in managed objects. Composite events are
conceptual events which are constructed from primitive events or low-level
composite events.

Faults (also referred to as problems) are network events that are causes for
malfunctioning [2, 5]. Thus, faults can cause other events. A class of
faults which are not themselves caused by other events are named root
causes. Faults may propagate across the entire network. It is because
that many network objects are dependent on each other, and a fault in
one object always causes faults in its depending objects. Fault propagation
is one cause of alarm burst.

Symptoms are defined as external manifestations of failures [2]. A symptom is
observed as an alarm, a notification of the occurrence of a specific event [5].
Event and Alarm are two interchangeable notions in some papers.

Fault diagnosis is a process of finding out the original cause for the received
symptoms (alarms) [5]. It usually involves three steps [2]:

• Fault detection, an on-line process which indicates that some network
objects are malfunctioning according to the alarms reported by those
objects.

• Fault localization (also referred to as fault isolation, alarm/event cor-
relation and root cause analysis), a process that proposes possible
hypotheses of faults by analyzing the observed alarms.

• Testing, a process that isolates the actual fault from a number of
possible hypotheses of faults.

This thesis concentrates on the second step of fault diagnosis since it is
the most essential step.

Alarm/Event correlation, is a technique that conceptually interprets multi-
ple alarms/events so that those having the same root cause are grouped [2,
4, 6]. After correlation, the number of alarms (event notifications) is re-
duced but the semantic contents are increased. Thus, Alarm/Event corre-
lation, as the most popular fault localization technique, dramatically helps
network operators find root cause from high volume of information. The
most important correlation types are listed as follows [4, 5, 7]:

• Compression: Reduction of alarms which are the notification of mul-
tiple occurrence of one event into a single alarm.

• Counting : Substituting a new alarm to a specified number of alarms
associated with a recurring event.

2.2 Graph-theoretic techniques 7

Figure 2.1: Classification of fault localization techniques [2]

• Causal Relationship: Correlating alarms when the events behind
them have causal-effect relationship.

• Temporal Relationship: Correlating alarms according to the order or
the time at which alarms are generated. It is because that alarms
caused by the same fault are likely to be observed in certain order or
within a short time after the fault occurrence. Note that the temporal
relationship between alarms may not exactly reflect the one between
events. Because some alarms will be generated earlier than those
with lower priority but whose corresponding events occurred earlier.

There are numerous fault localization techniques. A classification of the existing
solutions is presented in Fig. 2.1 [2]. These solutions include artificial intelligence
(AI) techniques, model traversing techniques and graph-theoretic techniques
(fault propagation models). Some interesting techniques will be described in
the following sections.

2.2 Graph-theoretic techniques

Graph-theoretic techniques are based on a fault propagation model (FPM),
which is a graphical model describing which symptoms may be observed when
a specific fault occurs [2, 8]. FPM models all faults, symptoms, and the causal
relationships between them. Hence, fault localization algorithms can identify
the most possible faults by analyzing the FRM. A FRM can be represented as
either a causality graph or a dependency graph.

2.2 Graph-theoretic techniques 8

Figure 2.2: Simple network and a corresponding dependency graph [2]

As a directed acyclic graph, a causality graph Gc(E,C) maps events into its
nodes E, and maps cause-effect relationships between events into edges C. An
edge (ei, ej) ∈ C, which is denoted as ei− > ej , shows that event ei causes event
ej [2, 4]. Moreover, a probability can be associated with an edge (ei , ej) to
indicate how possible event ej could occur provided that event ei has occurred.

A dependency graph is a directed graph Gd = (O,D), whose nodes O correspond
to a finite, non-empty set of objects in a system; and whose edges D represent
dependency relationships between objects. A directed edge (oi, oj) ∈ D denotes
a dependency that oi will get affected if its dependent object oj is faulty [2].
The uncertainty about dependencies can be modeled by assigning a conditional
probability to the edges D. [9]. Fig. 2.2 [2] shows an example network and its
dependency graph.

It is quite often to use a dependency graph as a system model due to the mapping
of network objects. On the other hand, causality graphs are more used with
fault localization algorithms to identify faults since they provide a more detailed
view of faults and events in a system [2].

In the following sub-sections, two graph-theoretic techniques will be presented.

2.2 Graph-theoretic techniques 9

Figure 2.3: Codebook derived from an example causality graph

2.2.1 Codebook technique

Codebook technique learns idea from the coding technique and proceeds in two
phases: codebook generation and decoding [10, 11].

A codebook, a matrix of codes identifying individual problem events, is firstly
constructed based on a causality graph. A code is a vector (s0, s1, ...sn). Each si

corresponds to a symptom event Si. In the deterministic context, si takes value
0 or 1. When si equals 1, the symptom event Si must occur as the consequence
of the problem event identified by that code. In the indeterministic context, it is
natural to assign si a value from 0 up to 1. The bigger the value of si is, the more
possible that event Si can be caused by the problem event identified by that
code. A sample codebook derived from a sample causality graph is presented in
figure 2.3. Note that not all symptoms are used to generate this codebook. It is
because that some symptoms do not contribute further information indicating
problems except the one which has already been provided by other symptoms.
Therefore, the elimination of those symptoms bring higher efficiency but without
loss of information. E.g. symptom S1 is eliminated in presence of symptom S2,
even though S1 is the effect of problem P1 as well.

Once the codebook is created, the process of finding problems can be considered
as a process of decoding of observed symptoms to a set of problems. Because
of the existence of spurious or lost symptoms in the real world, only problems
whose codes optimally match the observed symptoms are selected as the result
of fault diagnosis.

Distinction between problems is measured in terms of Hamming distance1 be-
1In information theory, the Hamming distance between two strings of equal length is the

number of positions for which the corresponding symbols are different. E.g. the Hamming
distance between 1011101 and 1001001 is 2.

2.2 Graph-theoretic techniques 10

tween their codes. [11] defines that the radius of a codebook is half the minimal
Hamming distance among codes. When the radius is 0.5, each code can distin-
guish problem from one another but the decoding is not resilient to noise. A
conclusion is given in [11]: ”Generally, we can correct observation errors in k−1
symptoms and detect k errors as long as k is less than or equal to the radius of
the codebook.”

Codebook technique is very efficient because the codebook is generated only
once at development time and decoding process is very fast by utilizing mini-
mal distance decoder at run time. The computational complexity is bounded
by (k + 1)log(p), where k is the number of errors that the decoding phase may
correct, and p is the number of problems [10]. However, the accuracy of the
codebook technique is unpredictable when more than one problem occur with
overlapping sets of symptoms [2]. In addition, codebook has to be regener-
ated whenever system configuration changes. As a result, this technique is not
suitable for frequently changed environments unless the codebook can be auto-
matically generated according to current system configuration [11].

2.2.2 Context-free grammar

Context-free grammars (CFGs) [43] is a natural candidate to represent a hier-
archically organized communication network [12]. In this model, the indivisible
network components can be represented as terminals, and compound network
components correspond to variables, which are built from the already defined
variables or terminals according to some production rules . An example net-
work is given in Fig. 2.4 to show how CFGs is used to model a communication
network. In this network, the basic units are four terminal points: A,B, C, D
and three channels: channel−AB, channel−BC, channel−CD. The network
can be represented by the following production rule:

NETWORK -> LINK-AB . LINK-BC . LINK-CD

Each link can be further represented by productions:

LINK-AB -> NODE-A . CHANNEL-AB . NODE-B
LINK-BC -> NODE-B . CHANNEL-BC . NODE-C
LINK-CD -> NODE-C . CHANNEL-CD . NODE-D

In some cases, CFGs can more effectively model complicated dependent relation-
ships than the dependence graph. Consider the case where a channel consists

2.3 AI techniques 11

Figure 2.4: A sample network

of two subchannels. The channel is operational if any of the subchannels is op-
erational. This is difficult to model using a dependence graph but it is easy to
model using a CFGs [12]. Because a CFGs is able to encode semantics, e.g., the
operation of one system is dependent on the operation of its subsystems which
are dependent on the operation of basic devices and components.

[12] proposed two fault identification algorithms based on CFGs. Both algo-
rithms try to find the best explanation. The first one chooses a minimum set of
faults that explains all observed alarms. If there are more than one such a set,
the one with least information cost is chosen. The information cost for one fault
is defined as the negative of the logarithm of the probability of that fault. On
the other hand, the second algorithm finds faults that explain parts of observed
alarms with the minimal information cost in order to handle the case of lost or
unreliable alarms which is not considered in the first algorithm.

Both algorithms rely heavily on a-priori information which is either guessed or
can be experimentally gained. Furthermore, they are rather complex and should
be considered as a guideline for designing fault localization algorithms [2]. Thus,
Fault diagnosis based on CFGs may be far away from a practical solution until a
more effective algorithm is proposed. However, CFGs provides a general model
to represent the network and algorithms applied with this model can solve the
fault identification problem in the presence of multiple faults, and lost and
spurious alarms.

2.3 AI techniques

Systems implemented in AI techniques are referred as expert systems. Various
solutions are derived from the field of AI. They are rule-, model-, and case-based
reasoning tools as well as decision trees, and neural networks. All these solutions
are examined in the following subsections.

2.3 AI techniques 12

2.3.1 Rule-based Approach

Rule-based approach is significantly used in many commercial fault diagnosis
products. In rule-based systems, the diagnostic knowledge of a human expert
is modeled as rules, which are saved in a knowledge-base. Formally, rules are
expressed in form of production rules, e.g. if A then B, where A is called
antecedent and B is called consequent. Antecedent is usually the assertion on the
frequency and the source of an alarm as well as the values of its properties [13].
In some cases, temporal relationships among several events are also tested [3].
Consequent is usually the action executed when a rule is fired (the corresponding
antecedent is true), e.g. alert the occurrence of a fault or suppress low-priority
alarms.

Once rules are defined, the fault localization process is driven by an inference
engine, the central controlling component in a rule-based system. The inference
engine usually uses a forward-chaining inferencing mechanism, which executes
in a sequence of rule-firing cycles to reach a conclusion explaining the situation
e.g. observed alarms.

A main goal of research on rule-based fault localization systems is the design
of the rule-definition language. Two rule-based diagnostic systems: ACE and
JECTOR, are given as examples.

ACE [13] defines a domain specific language to specify correlation, which matches
a group of alarms stemming from a common fault. Rule conditions (antecedents)
are expressed in terms of alarm type, arrival time, frequency as well as the num-
ber of alarm occurrences. Conditions are classified into: recognition condition,
collection condition and cancellation condition. The recognition and cancella-
tion conditions are used to recognize and cancel alarms respectively, which are
crucial to problem identification and resolution. Collection condition, on the
other hand, is able to compress alarms and reduce distraction. Each rule is
characterized by one or more recognition conditions and possibly a collection
and/or cancellation condition too. Actions in ACE can range from simple clear-
ing of alarms to network problem correction. The designers of ACE believe
that such a rule language representation can better lends itself to solving the
problem.

In JECTOR [3], correlation rules are represented as composite event definitions
which can precisely express complex timing constraints among correlated event
instances. Alarms generated by the managed network devices are defined as
primitive events. A composite event is composed of primitive and other com-
posite events, which are correlated due to the causal relationship or temporal
relationship between them. These relationships with other constraints are spec-

2.3 AI techniques 13

ified in the condition part of a composite event definition. A composite event
can be asserted when its condition part has been verified. Thus, the result of
correlation can be viewed as occurrences of the corresponding composite events.

Rule-based approach is widely used because human experts’ knowledge can be
intuitively defined as rules. Furthermore, it does not require profound under-
standing of the underlying system, which eases developers from domain learning.
However, rule-based approach has the following downsides:

• The procedure of knowledge acquisition, which is based upon interviews
with human experts, is always time-consuming, expensive and error-prone.
However, some approaches can automatically derive correlation rules based
on the statistical data, e.g. [14].

• It is unable to learn from experience, therefore the rule-based systems are
subject to repeating the same errors.

• It is difficult to maintain because rules frequently contain hard-coded net-
work configuration information.

• It is unable to deal with unseen problems [40].

• It is difficult to update system knowledge [40].

2.3.2 Model-based Approach

In contrast with the traditional rule-based approaches, model-based approaches
rely on some sorts of deep knowledge beside the surface knowledge (rules). This
deep knowledge is known as system model, which may describe system structures
(e.g. network elements and the topology) and its behaviors (e.g. the process of
alarm propagation and correlation) [6].

The system model usually uses an object-oriented paradigm [6, 11, 16, 17] to
represent network elements as well as the relationship between them. Netmate
model [16, 17] is a generic network element class hierarchy, which may be a
good basis for modelling other specific network systems. Netmate models some
generic network element classes, their attributes and relationships. A class
is a template for a set of real network elements. All network elements that
are instances of one class share the properties defined in that class. Netmate
classes are organized along an inheritance hierarchy. Each subclass inherits
properties from its superclass. Therefore, inheritance allows system components
to be treated generically regardless of their specific details when they are not
relevant. Fig. 2.5 [16] shows Netmate’s network class hierarchy. Network Object,

2.3 AI techniques 14

Figure 2.5: Network model class hierarchy [16]

the root of Netmate hierarchy, has two subtypes Element and Layer. Instances
of Element are in Layer instances, and may be members of Group instances.
The attribute Mappings of one Element instance keeps track of its functional
counterparts in another layer. Instances of Node and Link can be considered as
Simple instances, and additionally be components of other Simple instances, or
connected to other Simple instances. Netmate hierarchy can be reusable across
applications by simply adding specific classes into the hierarchy.

IMPACT [6] is a platform for alarm correlation, adopting model-based approach.
The proposed model contains a structural component and a behavioral compo-
nent (Fig. 2.6 drawn according to the figure in [6]). The structural component
contains a network configuration model, describing actual NEs (network ele-
ments) as well as the relationships among them; and a network element class
hierarchy, describing the NE types in an object-oriented way. The behavioral
component, by its turn, includes a message class hierarchy, a correlation class
hierarchy and several correlation rules. The message class hierarchy describes
the alarms generated by NEs and supports alarm generalization. Correlation
class along with rules are used to describe the network state based on inter-
pretation of network events. As shown in Fig. 2.6, NE classes, message classes,
correlation classes and rules are related by producer/consumer dependencies.
Such dependencies are illustrated as: NEs produce messages, messages produce
correlation, and rules consume all the above. These dependencies along with
other constraints could guarantee the consistency, correctness and completeness
of the knowledge base.

Due to the use of deep knowledge, model-based approaches are able to ad-
dress some issues in rule-based systems. The diagnostic knowledge (rule) is now
easy to maintain since its condition part associates system model instead of

2.3 AI techniques 15

Figure 2.6: Model of IMPACT [6]

hard-coded network configuration. The condition part asserts current network
configuration by utilizing predicates referring to the system model. Predicates
test the current relationships among system components. Additionally, knowl-
edge in model-based systems can be organized in an expandable, upgraded-
able and modular fashion by taking the advantage of object-oriented paradigm.
Moreover, model-based systems have the potential to solve novel problems [2].
Although model-based approaches are superior to rule-based approaches, they
have problems about obtaining models and keeping the models up-to-date.

2.3.3 Case-based Approach

Contrary to rule-based and model-based systems, case-based systems can learn
from past cases to propose solutions for new problems [40]. Here, the knowledge
is in terms of cases not rules or models. Besides their ability to learn case-based
systems are not subject to changes in network configuration [2]. However, it
is a complicated and domain-dependent process to adapt an old case to a new
situation. [40] proposes a technique named parameterized adaption to address
this issue. Additionally, the case-based approach may be not used in real-time
alarm correlation due to the time inefficiency [42].

2.4 Model traversing techniques 16

2.3.4 Neural Network Approach

A neural network consists of interconnected nodes called neurons to model the
neural network in the human brain. They have the ability of learning and there-
fore can be used to model complex relationships between inputs (observations)
and outputs (causes). They are claimed to be robust against noise or inconsis-
tencies in the input data. However, the neural network based systems require
long training periods and their behavior outside their area of training is difficult
to predict [13].

2.3.5 Decision Tree Approach

A decision tree models an expert’s decisions and their possible consequences
and can be used to guide a process of diagnosis to reach the root cause. Expert
knowledge can be simply and expressively resented by using decision trees [2].
Moreover they have crucial advantage of yielding human-interpretable results,
which is important for network operators [44]. However, their applicability are
limited due to the dependence on specific applications and the poor accuracy in
the presence of noise [2, 45]. A decision tree is usually constructed from data
by using the machine learning technique [44].

2.4 Model traversing techniques

Model traversing techniques model network objects especially the relationships
among them. Starting from the object that reported an alarm, the fault iden-
tification process is able to locate faulty network elements by exploring these
relationships [2]. Thus, they are natural candidates when relationships between
objects are graph-like. Model traversing techniques are resilient to frequent net-
work configuration changes [8]. However, they have a disadvantage that they
can not model the situations in which failure of an object may depend on a
logical combination of other object failures [1].

2.5 Summary

This chapter described some basic concepts in the fault diagnosis. Furthermore,
various techniques are presented as well as their advantages and disadvantages.

2.5 Summary 17

Alarm/Event correlation is considered to be the most popular idea behind most
of fault localization techniques due to its power of establishing relationships
between alarms/events.

The techniques presented in this chapter cover a large part of research. However,
there is not a single technique which is the best, in terms of precision, complexity,
performance and adaptation to changes, to solve the generic problems in fault
diagnosis. Consequently, some researchers try to combine different techniques
to devise a better solution [8, 18].

In general, rule-based approaches can be used for a simple system which is rarely
changed. Model-based systems present an additional system model in relation
to rules, which make they superior to the pure rule-based systems but does not
make them more attractive due to the difficulty of obtaining and update the
model. Although case-based systems are less sensitive to changes in network,
they are not suitable for handling real-time alarm correlation. In addition to
their own problems, neural networks and decision trees both rely on a long
training period and may not work outside the area of training.

Codebook technique is interesting due to its performance and robustness. How-
ever, it is required a way to handle the changes of networks. Moreover, it may
not work when more than one fault occur with overlapping sets of symptoms.

Context-free grammar is attractive for its ability to model hierarchically system.
However, all available algorithms applicable to model constructed by context-
free grammar are too complicated to be used in real systems.

Although model traversing techniques are resilient to frequent network configu-
ration changes, they can not model the situations in which failure of an object
may depend on a logical combination of other object failures.

After introducing the fundamentals of fault diagnosis, the next chapter aims at
describing the Dimetra, which is the subject network in this thesis.

Chapter 3

Analysis of Dimetra

A good understanding of domain is critical before starting to find solution. This
chapter introduces a basic and simplified Dimetra system and presents the whole
system diagram. Fundamental components as well as the dependencies between
them are described. Moreover, alarms of those components are analyzed in or-
der to identify the faults associated with those components. Finally, a fault
propagation model for a sample system is presented according to the dependen-
cies in that system and the alarm analysis for its components. This chapter is
primarily based on [20, 21, 22].

3.1 System Introduction

Dimetra [20] is the abbreviation for DIgital Motorola Enhanced Trunked
RAdio. Motorola Dimetra system is a sophisticated range of digital radio equip-
ments that deliver the full benefits of the TETRA standard 1. It is designed to
meet the needs of the users of both Private Mobile Radio networks and Pub-

1TETRA is a specialist Professional Mobile Radio and two-way transceiver (colloquially
known as a walkie talkie), the use of which is restricted to use by government agencies, and
specifically emergency services, such as police forces, fire departments, ambulance services and
the military. More information can be found at [19]

3.2 Mobile Station (MS) 19

lic Access Mobile Radio systems. The voice service that Dimetra offers allows
people to call each other within the same organization.

A Dimetra system can be organized in three levels. From the top down, they are
system-, zone-, and site-level. In the system-level, a Dimetra system consists of
one or multiple zones. Each zone comprises of multiple BTS sites2, and a master
site3 as a central control point for all intra-BTS sites. In the site-level, a BTS site
and a master site further contain their specific lower-level components. Refer to
the project scope introduced in section 1.3, only a basic and simplified Dimetra
is interesting to this project. More specifically, a basic and simplified system
could be the one consists of one single zone and only support voice operation.
The following sections will describe fundamental components in such a basic
and simplified system, including mobile station, radio channels, BTS site and
master site, as well as some important low-level components inside BTS site or
master site.

3.2 Mobile Station (MS)

The mobile station is a two-way voice communications device which provides
users the ability to make and receive calls. A mobile station is always registered
with one BTS site in order to communicate with other mobile stations. Mobile
stations communicate with BTS sites on some control channels, while a traffic
channel is used for communications between mobile stations. Figure 3.1 [20]
shows a sample mobile station in real life.

3.3 Radio Channels

There are two kinds of channels existing in Dimetra system. They are the control
channel and the traffic channel.

3.3.1 Control Channel (CC)

The control channel is for mobile stations to send call requests to and receive
traffic channel assignments from BTS sites. A mobile station always tunes to

2It will be introduced in section 3.4
3It will be introduced in section 3.5

3.4 BTS Site 20

Figure 3.1: MTH500 Mobile Station [20]

the control channel except when it is assigned to a call on a traffic channel.
When a call is completed, the mobile stations involved in the call switch back
to the active control channel.

3.3.2 Traffic Channel (TCH)

Opposed to the control channel, the traffic channel is used to transfer voice
traffic between mobile stations. It is considered as the resource to make a call
and managed by BTS site.

3.4 BTS Site

BTS is the acronym for Base Transceiver System. It is a remote segment within
the Dimetra IP system responsible for call processing and mobility services
within a local geographical area. BTS has three subtypes: EBTS, MBTS and
MTS. For instance, EBTS, an important type of BTS, stands for Enhanced
BTS.

In a multiple site Dimetra, a group of BTS sites are connected to a particular

3.4 BTS Site 21

Figure 3.2: A BTS site with a mobile station [20]

master site via individual site links. Equipments at such master site, mainly
the zone controller, coordinates the operation of those BTS sites so they can
cooperate with each other to work in a wide area trunking mode. When BTS
sites are in such mode, communication can be established between not only
mobile stations registered with the same site, but also those registered with
different BTS sites. Under certain conditions, e.g. zone controller is broken
or site link is down, a BTS site can operate independently in site trunking
mode, which means only services to mobile stations registered with that site are
provided. Thus, mobile stations registered with that site can not communicate
with those registered with other sites. Figure 3.2 [20] shows an example of BTS
site.

A BTS site consists of one or more base radios, a site controller, etc. The next
two subsections briefly describe base radio and site controller.

3.4.1 Base Radio (BR)

The base radio serves as a radio transmitter and receiver in a BTS site. Thus,
base radios provide the control channel as well as the traffic channels to the
BTS site containing them. A base radio is controlled by a site controller.

3.4.2 Site Controller (SC)

The site controller is an important component in BTS site. It controls resources
within a BTS site, including assigning traffic channels to mobile stations and
managing base radios.

3.5 Master Site 22

Figure 3.3: A zone consisting of a master site and five BTS sites [20]

3.5 Master Site

It is the central control point for the operation of a multiple site system (Zone).
It is the site within a radio system that performs control, call processing, and
network management functions. A master site connects to and manages multiple
BTS sites, which forms a zone. Figure 3.3 [20] shows a sample zone.

Equipments at master site coordinate call processing, assignment of system wide
area resources, and distribution of audio to all BTS sites in the system. It is
at this site that the zone controller and the network management system are
located. The following two sub-sections describe the core components at the
master site.

3.5.1 Zone Controller (ZC)

Zone controller directs and controls most of the components in a zone, including
coordinating the operation of the individual BTS sites; and is responsible for
zone-level resource (radio channels) allocation.

3.5.2 Network Management System - FullVision Server

Network management system is composed of tools, commonly known as FCAPS,
for fault, configuration, accounting performance and security management. The
fault management function is the most interesting part since it is directly related
to fault diagnosis.

3.6 Site Link 23

FullVision server is the tool for monitoring system health and managing faults.
Network operators can use it to monitor the status of components in the system,
such as zone controllers, or BTS sites. As the primary troubleshooting tool,
FullVision server allows network operators to view alarm information reported
by network devices. More details about the use of FullVision can be found
in [21, 22].

3.6 Site Link

Site Link is a wide area network (WAN) communication link that connects a
Dimetra master site to a remote BTS site. Site links must be operational to
support the control and audio traffic between the remote BTS sites and the
master site.

3.7 System Diagram

The components described in this chapter do not cover all components in a
Dimetra system. However, they are necessary and enough to give readers an
idea how a basic and simplified Dimetra system can be constructed from those
components. Such a Dimetra system can simply contains one single zone, which
in turn consists of one master site and multiple BTS sites. BTS sites connect to
the master site via individual site links. BTS sites and master sites are further
composed of their own low-level components.

The system diagram in figure 3.4 shows a sample basic Dimetra which consists
of one master site and two BTS sites. Components in low level are shown as
well as those in high level. As described in sub-section 3.4.1 and 3.4.2, a site
controller controls base radios. Accordingly this diagram uses a dashed line to
represent the control path between the site controller and the base radio.

3.8 Alarm Analysis

Refer to section 2.1, alarms are notifications of the occurrences of events, e.g
faults. An alarm displayed in FullVision provides valuable information, e.g.
current state of the source object and a meaningful message, to indicate the
problem behind that alarm. The format and content of one alarm log follows

3.8 Alarm Analysis 24

Figure 3.4: System Diagram for a basic Dimetra

3.8 Alarm Analysis 25

132a7b76-9590-71db-0ba2-0a0ce90a0000, 1167213196, 62,
EbtsBaseRadio_1.1:zone11, 0, EbtsBaseRadio_1.1:zone11:
(3) DISABLED (3004) LOCKED Wed Dec 27 10:55:07.210 CET 2006,
5, 1.3.6.1.4.1.11.2.17.1.0.58916872, 864, SNMPv1-event,
.1.3.6.1.4.1.11.2.17.1.0.58916872, 10.12.233.10, 0, OV_Message,
8175, 0.0.0.0, IP, 2006-12-27 10:53:16, 6

Figure 3.5: Sample alarm log

some pre-defined mechanisms. Hence, it is necessary to understand Dimetra-
specific alarms prior to using them during the process of diagnosis.

Each Dimetra alarm can be viewed as a 19-tuple, a = (attr1, attr2, ...attr19).
Every attri(0 < i < 20, i is interger) corresponds to a property. The most im-
portant properties are nodename and message, which show the source object of
this alarm and the indication of possible cause separately. Details about other
properties can be found in the chapter 2 of [21]. Each alarm log is comma sepa-
rated. A sample alarm log is given in Fig 3.5, where the fourth and sixth fields
correspond to nodename and message properties respectively. These two proper-
ties tell that this alarm was reported by a base radio EbtsBaseRadio 1.1:zone11
which was disabled due to a lock operation.

The value of the message property for a specific object is generated based on a
template, which is comprised of the general information as well as the specific in-
formation. The specific information is, e.g., the name of the source object, while
the general one is the information regarding the state and cause for a class of
Dimetra objects. Chapter 4 of [21] describes the templates for alarm messages4

associated with Dimetra objects. By analyzing those alarm message templates,
mappings between alarms and faults can be built and possible faults associated
with each object can also be identified. Furthermore, a fault propagation model
can be constructed based on the alarm analysis.

According to [21], an alarm message template for a particular class of objects
can be viewed as a 4-tuple (State Number , State Text, Cause Number, Cause
Text), when the specific information is not taken into consideration. Moreover,
templates associated with the same class of objects can be identified only by a
pair of (State Number, Cause Number). Thus, for the sake of simplicity, such
a pair is used to represent an alarm message template when it is only distin-
guished with other templates that associated with the same class of objects. For
instance, if only templates for base radio are considered:

4The alarm message refers to the message property of an alarm.

3.8 Alarm Analysis 26

(3, 3004) is equivalent to "(3) DISABLED (3004) LOCKED"

where state number is 3, cause number is 3004, state text is DISABLED and
cause text is LOCKED.

The following sub-sections interpret alarm message templates associated with
EBTS base radio, EBTS site5, EBTS (ZC)6, zone controller and ZC site control
path7. These interpertations reval that an object can report alarms due to some
internal or external problems. Internal problems are considered as faults which
originate within this object, while external problems occur in other objects and
cause this object to report certain alarms. Note that this alarm analysis is
primarily based on the description in the chapter 4 of [21]. Therefore, it may
be not completely applicable to a real Dimetra system due to possible
customized configuration.

3.8.1 Alarms of Base Radio

Table 3.1 lists the problems and their corresponding alarm message templates
associated with base radio. There are four internal problems i1, i2, i3 and i4 and
two external problems e1 and e2.

3.8.2 Alarms of EBTS

By analyzing alarms of EBTS, the author found that EBTS does not have any
internal problems which originate from EBTS and all alarms reported by EBTS
only indicate the problems of other objects. This can be explained by the the
fact that EBTS is considered as a logical container object and thereby does not
have any possible internal errors. It also illustrates how fault propagates along
related components. For instance, if there is any fault in base radio, which
provides radio channels to EBTS site, EBTS will get affected and report alarm
messages look like (31, 31002) or (31, 31003) or (31, 31004), or any two or three
of these alarm messages.

Table 3.2 lists alarm message templates of EBTS in the state/cause column as
well as the corresponding problems.

5Refer to section 3.4, EBTS site is a sub-type of BTS site
6ZC’s view of the EBTS Site, a logic object
7A part of site link

3.8 Alarm Analysis 27

Problem State/Cause

i1. Base Radio is not responding (1,1022)

i2. A Base Radio failure oc-
curred

(3,3005)
(3,3007)
(3,3008)

i3. Encryption subsystem has
been failed

(3,3021)
(13,13021)

i4. Base Radio 1 has been failed
Base Radio 2 has been failed
.
.
.
Base Radio 8 has been failed

(7,7014)
(8,8015)
.
.
.
(14,1423)

e1. The states of all other EBTS
components are abnormal

(3,3004)

e2. The Base Radio’s control link
to Site Controller has been failed

(3,3006)

Table 3.1: Alarms analysis of EBTS Base Radio

Problem State/Cause

e1. Base Radio(s) has been failed (31,31002), (31,31003), (31,31004)
e2. The voice link to the EBTS
has been failed

(31,31003)

e3. Link between this site and
the master site is down

(51,51003), (51,51005), (61,61005)

Table 3.2: Alarms analysis of EBTS

3.8 Alarm Analysis 28

Problem State/Cause

e1. EBTS site is not wide trunk-
ing due to no voice channel

(101,101004)

e2. EBTS site is not wide trunk-
ing due to no control channel

(101,101005)

e3. EBTS site is not wide trunk-
ing because site control path is
down

(101,101006)

Table 3.3: Alarms analysis of EBTS Site (ZC)

Problem State/Cause
Switch has been failed (3,3002), (5,5002)

Ethernet card has been failed (3,3004), (5,5004)
Hard disk has been failed (3,3006)

Power supply has been failed (3,3007)
Zone is mis-configured (5,5008)

Table 3.4: Alarms analysis of ZC

3.8.3 EBTS Site (ZC)

It is a logic object, which shows the zone controller’s view of EBTS site. It is
considered as the manager of EBTS site, which monitoring the state of EBTS
site.

Table 3.3 shows the analysis of alarm messages of EBTS site (ZC).

3.8.4 Alarms of Zone Controller

As EBTS, zone controller does not have any internal problems because it is
considered as a logical container. All alarms reported by Zone Controller can
be used to find problems of other components.

Table 3.4 shows the analysis of alarm messages of zone controller.

3.9 Fault Propagation Model 29

Problem State/Cause

Connection is down (1,1003)
The preferred link is down (3,3006)

Table 3.5: Alarms analysis of ZC Site Control Path

3.8.5 Alarms of ZC Site Control Path

ZC site control path is the control path from zone controller to EBTS site. It
can be viewed as a part of site link.

Table 3.5 lists alarms of this object and the problems which cause those alarms.

3.9 Fault Propagation Model

An important point drawn after the analysis of alarms is: faults can propagate
along related objects. A fault propagation model can be used to illustrate this
point. This model can be built based on the alarm analysis and dependencies
between objects described in previous sections. As noted in section 3.8, alarm
analysis may be not fully reflected things in a real Dimetra system. Hence, it
is possible that the corresponding fault propagation model is not completely
precise. However, this model could be refined with the help of domain experts.
This section will give a sample Dimetra system as well as its fault propagation
model.

For the sake of simplicity, this sample system contains one base radio, one
EBTS site, one EBTS site (ZC), one zone controller and one control path be-
tween EBTS and zone controller. A dependency graph depicted in figure 3.6
is used to represent the fault propagation model according to the introduction
in section 2.2. Table 3.6 interprets the meaning of each dependency edge in
Fig. 3.6.

3.9 Fault Propagation Model 30

Edge Meaning

Base Radio to EBTS

When base radio is faulty, EBTS
will get affected and report mes-
sage like (31,31002), (31,31003),
(31,31004)

EBTS to EBTS (ZC)

When EBTS is faulty, EBTS (ZC)
can detect its abnormal state.
Alarms (101,101004), (101,101005),
(101,101006) may be reproted ac-
cording to the actual state of EBTS

EBTS to ZC Site Control Path
When EBTS is disabled, ZC Site
Control Path is broken so alarms
(1,1003) or (3,3006) will be reported

ZC Site Control Path to EBTS

When Site Control Path is down,
EBTS can not work in wide area
trunking mode. Thus, alarms
(51,51005)or (61,61005) will be ob-
served

Zone Controller to EBTS

When Zone Controller is disabled,
EBTS can not work in wide area
trunking mode since the control
path is down. As a result, alarms
(51,51003), (51,51005), (61,61005)
may be observed

Zone Controller to ZC Site Control Path

When Zone Controller is disabled,
ZC Site Control Path is down as a
result. Hence, alarms (1,1003) or
(3,3006) may be reported

Table 3.6: Interprets of Dependency Graph in figure 3.6

3.10 Summary 31

Figure 3.6: Dependency Graph of a sample system described in section 3.9. See
the interpretation in Table 3.6

3.10 Summary

This chapter introduced a basic Dimetra system. Fundamental components
are described and a system diagram is presents to show how those components
cooperate to form a basic Dimetra system. The alarm analysis is very useful
and important. It tells the way to read the informant information contained in
an alarm. Moreover, it reveals the faults could occur in the Dimetra system and
contributes to build the fault propagation model.

Chapter 4

A Framework for Fault
Diagnosis in Dimetra

Recall in section 2.1, the event correlation is introduced as the most popular
technique used in fault diagnosis. This chapter proposes a framework which
is based on the idea of event correlation and combines the rule-based and the
model-based approaches. Although this framework is proposed for constructing
a fault diagnosis system for Motorola’s Dimetra system, it is generic enough for
other networking systems.

The former part of this chapter reviews some related solutions and gives a short
comparison among those solutions. This comparison is the basis for choosing
reasonable solutions that can be used in this thesis. Next, the proposed frame-
work is presented with its three components. Finally, some final considerations
are given in the section of summary.

4.1 Review of Related Solutions

Various solutions for fault diagnosis have been described in chapter 2. But no
one is the best to solve generic problems in fault diagnosis refer to the comparison
in section 2.5.

4.2 The Proposed Framework 33

Codebook solution is very interesting in terms of running time. However, the
precision is not predictable when more than one problem occur with overlapping
sets of symptoms. Furthermore, the codebook is not independent on actual
network configuration.

Context-free grammar solution can represented system model in a structured
way. Moreover, the fault localization algorithms that it applies are not subject
to lost and spurious alarms. However, these algorithms are too complicated to
be used in the real application.

Diagnostic knowledge is naturally represented as rules. But a pure rule-based
system has many disadvantages since it relies only on surface knowledge. Model-
based solution can address some of issues in rule-based solution due to the use
of a system model.

Case-based solution is resilient to system changes and has the ability to learn.
However, it is unable to be used in the real-time alarm correlation. In addition
to its own limitation, some practical things make it impossible to be a candidate
solution. Recall that this solution relies on a ”CaseBase” which can not be easily
accessed by the author due to some confidential reasons. On the other hand,
there is another team already working on this solution in Motorola. It is not
reasonable to choose the same solution.

Other solutions such as decision trees or neural networks are not considered
because they all require a large amount of training data which are difficult to
be generated.

Model traversing techniques are not thoroughly researched in this thesis due to
its limitation to model all failure situations as well as the limited time of this
thesis.

In all, the combination of the rule-based and model-based solutions may be the
best option for this thesis since the researched Dimetra system is quite small
and simple.

4.2 The Proposed Framework

The framework proposed in this thesis is based on the idea of event correlation.
It adapts from a similar framework proposed in [6] and utilizes the concept [3] of
using composite events in the event correlation. This framework combines both
the model-based solution and the rule-based solution. Although this frame-

4.2 The Proposed Framework 34

Figure 4.1: The Proposed Framework

work is proposed for Dimetra system, it is generic enough to be used for other
networking systems.

This framework as shown in Fig. 4.1 contains three components: structural and
behavioral models plus a predicate layer.

The structural model describes the managed network. It contains two parts:
the network element class hierarchy and the network configuration model. The
network element class hierarchy organizes classes of actual network elements
in an object-oriented fashion. The network configuration model stores the in-
formation about a specific network, including the relationships (management,
containment and connectivity) between network elements. Network elements
in the network configuration model are instances of classes in the network ele-
ment class hierarchy. Hence, a network configuration model is considered to be
instantiated from a network element class hierarchy.

In opposition to the structural model, the behavioral model describes the dy-
namics of event correlation. It includes a causal model and a number of event
definitions. The causal model represented as a causality graph models a set of
fault propagation scenarios by associating events occurring in the system. Ac-
cording to the causal model, developers can identify a list of events and create
their definitions which are used during the process of event correlation.

The predicate layer provides a number of predicates that associate the behavioral
model with the structural model. Predicates are used in event definitions to
retrieve configuration information from the structural model.

The following sub-sections will describe these three components in more details.

4.2 The Proposed Framework 35

4.2.1 Network Element Class Hierarchy

This network element class hierarchy is based on variations around the Netmate
model described in [11, 16, 17]. It uses an object-oriented paradigm to represent
classes. Classes in this hierarchy describe network element types, such as links,
servers, internetworking devices, etc. A class defines properties that owned by
all network elements which are instances of that class. For instance, every NE
(network element)1 has a name, which can be defined as a property in its corre-
sponding class. Moreover, a class can define a set of common properties whose
values are shared by all instances of that class. Those properties, like class
variable2 in object-oriented paradigm, are named class properties. This class
hierarchy emphasizes relationship properties, which represent the containment,
management and connectivity dependencies between NEs. Note that relation-
ships can be one-to-one, one-to-many, or many-to-many, and each relationship
has an inverse.

Classes are organized into an inheritance hierarchy. It allows subclasses to
inherit property definitions from their superclasses. In addition, inheritance
brings more flexibility since different NEs that have a common superclass can
be treated generically when their specific details can be ignored.

This class hierarchy is depicted in figure 4.2. The root of this hierarchy is the
most generic class Element. It has the name property, whose value represents
the name of a particular NE. There are two classes: Manager and ManagedOb-
ject in the next level. The dashed line between them represents a management
dependency. That is, instances of the Manager class manage instances of the
ManagedObject class, and vice versa, there is a managedBy relationship from in-
stances of ManagedObject class to instances of Manager class. A management
dependency can be recorded by two properties ManagedObject.managers and
Manager.managedObjects. The first one is used for a ManagedObject instance
MO to keep track of all Manager instances which are managing MO. The
other one is used for a Manager instance M to keep track of all ManagedObject
instances which are managed by M at the moment. Similar to the manage-
ment dependency, the containment dependency3 can be recorded by properties
ManagedObject.components and ManagedObject.containers, which store compo-
nent elements for a container element, and container elements for a component
element, respectively. Class ManagedObject can be further divided into class
Link and class Node. A connectivity dependency is represented as a dashed line

1For the sake of simplicity, NE(s) is used to replace network element(s) when there is no
misleading.

2It has a value that is shared by all instances of a class
3Containment dependency, as well as connectivity dependency are defined for managed

object only.

4.2 The Proposed Framework 36

Figure 4.2: Network Element Class Hierarchy (the description of Dimetra classes
is shown in table 4.1)

4.2 The Proposed Framework 37

Class Description Constraint

RFSiteControlPath Control path between
BTS and Zone Controller

Connects to BTS and
ZoneController

ZoneController Zone Controller device Connected via RFSiteCon-
trolPath

BTS Base Transceiver System Contains BaseRadio; con-
nected via RFSiteControl-
Path; managed by BTSMan-
ager

EBTS Enhanced Base
Transceiver System

Inherit constraints from BTS

MBTS Mini Base Transceiver
System

Inherit constraints from BTS

BaseRadio Base Radio device Contained in BTS
BTSManager A logical element reports

the status of BTS from
zone controller’s point of
view (see sec. 3.8.3)

Manages BTS

Table 4.1: Description of Dimetra classes

between these two classes. As management dependency, connectivity informa-
tion such as a particular node is connected via a particular link can be sepa-
rately stored in properties Node.connectedVia and Link.connectedTo. Classes
introduced so far are generic enough to be re-used in other network systems in
addition to Dimetra, so called generic classes.

The rest of classes are specific to Dimetra system, which are called Dime-
tra classes. Dimetra classes inherit property definitions from generic classes
and possess their specific values. Some inherited properties: managedObj-
Classes, managerClasses, containerClasses, componentClasses, linkClasses and
nodeClasses are class properties. They are used as relationship constraints for
Dimetra classes, which help developers construct a consistent and complete
structural model. For example, instances of BTS class represent BTS sites.
According to the fact that a BTS site consists of several base radios (see sec-
tion 3.4), the property componentClasses in the BTS class shall contain at least
one value, class BaseRadio. The value of this property is shared by all BTS
instances to guarantee each instance contains the right NEs as components.
Table 4.1 gives the description of each Dimetra class as well as its constraits.
Instead of having a single class BTS to represent all kinds of BTS sites, two
classes EBTS and MBTS are added as its subclasses. It is because more specific

4.2 The Proposed Framework 38

classes are required in some cases.

This class hierarchy is scalable. New classes may be easily added into by inher-
iting existing classes. Furthermore, it can be easily used to model NE classes
for other domains. The only modification is to remove the Dimetra classes and
add new specific classes which shall inherit the generic classes already defined
in the class hierarchy.

4.2.2 Network Configuration Model

The network configuration model describes a particular network system. It
stores network configuration information, which is information about all NEs in
the system as well as the relationship between them. NEs in this model are all
instances of classes defined in the network element class hierarchy. Furthermore,
the constraints of each class are enforced during the construction of this model.
For instance, developers can not build a model which specifies a base radio to
contain one particular EBTS site. The network configuration model is viewed
to be instantiated from the network element class hierarchy

It is very easy and intuitive to represent the configuration model as a graph,
whose nodes correspond to NEs and edges correspond to relationships. However,
this sort of model is only understanded by human beings. In order to make a
machine-understandable model, some sort of modelling languages can be used.
In this thesis, XML4 is selected to describe the model because:

• It is a standard language to describe machine-readable information.

• As a general-purpose language, the information described by XML can be
shared by different systems.

• It has a standard way and lots of utility to parse information from an
XML file.

• With XML, the author saved time from designing a new modelling lan-
guage and the algorithm for compiling it, which is beyond the scope of
this project.

A sample system is given to demonstrate how to construct a configuration model
based on XML. For simplicity, this system contains elements: a zone controller
(ZC), a EBTS site (ebts01) and its component: a base radio (ebts01 br01),

4eXtended Markup Language, a general-purpose markup language [23].

4.2 The Proposed Framework 39

Figure 4.3: Graphic model of the sample system

the site control path (CP01) between ZC and ebts01, and a logical element5

(ZCebts01) monitoring ebts01. The graphic model for such system is depicted
in Fig. 4.3. The corresponding XML representation is given in Fig. 4.4.

The first section of this XML document is called NE declaration section, in
which a list of NEs are listed as: <Element name = ’...’ class = ’...’/>.
The name attribute specifies the name of a NE and the class attribute specifies
the class of that NE. All classes in that XML document refer to the classes
defined in Fig. 4.2. The following sections specify the management, contain-
ment and connectivity dependencies respectively. The values of the name at-
tribute in these three sections all refer to the names defined in the first section.
Take the containment dependency section in Fig. 4.4 as an example. Only one
<Container> tag is specified, which means there is only one containment depen-
dency. It shows that there is an element named ebts01, which is an instance of
EBTS defined before. This element contains one component which is specified
in a <Component> tag. This tag tells that this component is called ebts01 br01,
which is an instance of BaseRadio defined before. Detailed description of each
element tag or attribute tag can be found in appendix C, the section C.1.

By constructing an XML document as above, a configuration model can be
parsed and saved into a knowledge base.

5It is the EBTS (ZC) object described in section 3.8.3

4.2 The Proposed Framework 40

<?xml version="1.0" encoding="UTF-8"?>
<NetworkConfig>
<!-- NE declaration section -->
<!-- specify a base radio -->
<Element name=’ebts01_br01’ class=’BaseRadio’/>

<!-- specify a EBTS instance-->
<Element name=’ebts01’ class=’EBTS’/>

<!-- specify a zone controller instance-->
<Element name=’ZC’ class=’ZoneController’/>

<!-- specify a EBTS (ZC) instance-->
<Element name=’ZCebts01’ class=’BTSManager’/>

<!-- specify a site control path instance-->
<Element name=’CP’ class=’RFSiteControlPath’/>

<!-- Containment dependency section-->
<Containment >
<Container name=’ebts01’>

<!-- ’ebts01’ contains ’ebts01_br01’-->
<Component name=’ebts01_br01’/>

</Container>
</Containment>

<!-- management dependency section-->
<Management>
<!-- ’ZCebts01’ is a manger of ’ebts01’-->
<Manager name=’ZCebts01’>
<Managed name=’ebts01’/>

</Manager>
</Management>

<!-- Connectivity dependency section-->
<Connectivity>
<Link name= ’CP’>
<!-- ’CP’ has two end-points -->
<Point name=’ebts01’/>
<Point name=’ZC’/>

</Link>
</Connectivity>

</NetworkConfig>

Figure 4.4: XML-formatted model of the sample system

4.2 The Proposed Framework 41

4.2.3 Predicate Layer

The predicate layer works as a bridge between the structural model and the
behavioral model. By using predicates, events defined in the behavioral model
can associate with current network configuration without hard-coding any infor-
mation. It helps developers define a more generic and flexible behavioral model.
Currently, the functionality of predicates can be grouped into the following cat-
egories:

1. Determining the type of one network element. E.g., isBaseRadio(name:String):
boolean returns true if the element identified by name parameter, is a base
radio; otherwise it returns false.

2. Evaluating the management relationship between two network elements.
E.g. isManagedBy(a:String,b:String):boolean evaluates if a is managed by
b or not.

3. Evaluating the containment relationship between two network elements.
E.g. isContainedIn(a:String,b:String):boolean evaluates if a is contained
in b or not.

4. Evaluating the connectivity relationship between two network elements.
E.g. isConnectedTo(a:String,b:String):boolean evaluates if a is connected
to b or not.

4.2.4 Causal Model

Causal model is the primary component in the behavioral model since it is
the basis for building event definitions. With the help of the causal model,
developers can easily identify events and specify them.

Causal model takes the form of causality graph. Refer to section 2.2, a causality
graph’s nodes correspond to events and its edges describe cause-effect relation-
ships between events. The nodes corresponding to observable events (alarms)
can be easily identified as primitive events. On the other hand, developers can
also identify composite events from the causal model. In this model, events that
have a common root cause are connected as a path or tree. Thus, those events
can be correlated and generalized into a high-level event by utilizing the concept
of composite event. For example, there is an edge (ei, ej) in the causal model,
which represents a very simple fault propagation scenario. Since event ei and
event ej are causally related, a conceptual composite event e can be identified
to correlate events ei and ej .

4.2 The Proposed Framework 42

Figure 4.5: Causal Model and Identified Events

In addition to help events identification, rough event definitions for composite
events can be derived from the causal model as well. Consider an edge (ei, ej) in
a causal model. It is high likely that the cause event ei occurred before the occur-
rence of the effect event ej . This derived temporal relationship is very important
since a temporal relationship can reveal important diagnostic information about
event relationships [3]. Hence, a higher level event e correlating events ei and
ej can be specified based on that temporal relationship as: event e is considered
to occur whenever event ei is followed by event ej . Refer to section 2.1, the real
temporal relationship may not as expected as the one derived from the causal
relationship. Therefore, the derived rough event definition should be reviewed
by experienced domain experts and refined during the evaluation phase.

Besides composite events, primitive events can be defined according to the prop-
erties of alarms, e.g. the nodename and message properties.

An example is given to illustrate the concepts described so far. Figure 4.5(a)
depicts a sample causal model, which describes a fault propagation scenario
existing in the sample system introduced in section 4.2.2. This scenario is de-
scribed as ”When the base radio (ebts01 br01) is locked, alarm (3,3004)6 will be
reported. The EBTS (ebts01) will then get affected and send alarm (31,31004)7

due to the containment relationship between these two elements. Consequently,
6See section 3.8.1 about alarm (3,3004)
7See section 3.8.2 about alarm (31,31004)

4.2 The Proposed Framework 43

the manager of that EBTS (ZCebts01) detects the error state of ebts01 and
sends alarm (101,101005)8.” All nodes in Fig. 4.5(a) correspond to observ-
able events, and therefore three primitive events: BRLocked, EBTSDown
and ZCEBTSDown are identified according to nodes, which capture alarms
(3,3004), (31,31004) and (101,101005) respectively. Furthermore, since these
three primitive events are causally related, a composite event BRLockedAlert
correlating these three primitive events can be identified. Identified events are
shown in Fig.4.5(b). The arrows in Fig.4.5(b) represent the possible temporal
relationships between these primitive events by mapping arrows in Fig.4.5(a)
representing causal relationships.

4.2.5 Event Definitions

After identifying all events in Fig. 4.5(b), an event specification language is
required to specify those events. Moreover, an event-detect engine is required
to detect occurrences of events based on their definitions. It would be a huge
workload to design such a language and an event-detect engine. Due to the
limited time, it is reasonable to use Esper [24], an open-source event stream
processing and event correlation engine, which enables applications process large
volumes of incoming messages or events in real-time. Esper allows developers
to use a SQL9-style event query language - EQL as well as a pattern language
to specify events. Besides, it offers an engine for detecting events.

The rest of this section will illustrate how to use EQL and Esper pattern to
specify events in Fig. 4.5(b). More details about EQL and Esper pattern, e.g
the syntax and built-in operators are not introduced this report but can be
found in [24].

As a primitive event, BRLocked which indicates alarm (3,3004) has been re-
ported from the base radio ebts01 br01, can be captured according to the node-
name property and the message property from alarm streams. Hence, it is
specified as below:

insert into BRLocked
select * from AlarmLog
where message like ’%(3)%DISABLED%(3004)%LOCKED%’

and nodename=’ebts01_br01’

8See section 3.8.3 about alarm (101,101005)
9Structured Query Language, a language to create, retrieve, update and delete data from

database systems [25].

4.2 The Proposed Framework 44

In the above event definition, AlarmLog is the alias of the underlying alarm
stream. This event definition is read as: Only alarms, which are reported by
ebts01 br01 and have the alarm message matching the common template for the
alarm message (3,3004), are considered as occurrences of the BRLocked event.
If readers are familiar with SQL, it is easier to understand this definition: select
alarms (3,3004) from an alarm stream, and insert them into an event stream
BRLocked which is a collection of BRLocked instances.

In order to make BRLocked event more general, not only associated with
base radio ebts01 br01, predicate isBaseRadio(name: String) can be used. This
predicate will check current configuration model to evaluate that if one alarm
is reported from a base radio or not. Hence, a more general BRLocked event
is defined as:

insert into BRLocked
select * from AlarmLog
where message like ’%(3)%DISABLED%(3004)%LOCKED%’
and isBaseRadio(nodename)

Similarly, event EBTSDown indicating alarm (31,31004) reported by EBTS
and ZCEBTSDown indicating alarm(101,101005) reported by EBTS (ZC) are
defined respectively as:

insert into EBTSDown
select * from AlarmLog
where isEBTS(nodename) and
message like ’%(31)%NO TRUNKING%(31004)%NO CONTROL CHANNEL%’

insert into ZCEBTSDown
select * from AlarmLog
where isBTSManager(nodename) and
message like ’%(101)%NOT WIDE TRUNKING%(101005)%NO CONTROL CHANNEL%’

Note that isBTSManager(name:String) and isEBTS(name:String) are two pred-
icates to evaluate if alarms are reported by EBTS(ZC) component or EBTS site,
respectively.

Events specified so far are all primitive events. A more complex event, com-
posite event, can be specified based on these three primitive events to cap-
ture a base-radio-locked scenario. According to Fig. 4.5(b), we can see that
BRLockedAlert event is considered to occur whenever event BRLocked is

4.3 Summary 45

followed by event EBTSDown, which is then followed by event ZCEBTS-
Down in turn. However, this expected temporal order is not preserved in the
real alarm trace. Due to its high priority, alarm (101,101005) corresponding to
event ZCEBTSDown is actually received earlier than alarm (31,31004) corre-
sponding to event EBTSDown. In order to capture that scenario, a composite
event BRLockedAlert is defined as:

insert into BRLockedAlert
select A.nodename, A.message, A.event_time from
pattern [every (A=BRLocked -> B=ZCEBTSDown -> C=EBTSDown

where timer:within(30 sec))]
where isContainedIn(A.nodename,C.nodename)
and isManagedBy(C.nodename, B.nodename)

Predicate isContainedIn(a:String,b:String) determines if base radio a is con-
tained in EBTS b or not. Similarly, isManagedBy(a:String,b:String) determines
if EBTS a is managed by EBTS(ZC) b or not.

The code segment A=BRLocked − > B=ZCEBTSDown − > C=EBTSDown
where timer:within(30 sec) is critical. It refers three primitive events defined
above and assigns alias for individual events for the sake of simplicity. EQL
operator ”− >” represents a followed-by relationship between operants, and
thus be used to specify the temporal relationship among these three events.
Additionally, these three events are correlated only if they occurred within 30
seconds since a base radio was locked according to some diagnostic experience.
Hence, the timing condition (30 sec) limits event detector only to match any 3
primitive events that happen 30 seconds within each other. As a result, wrong
correlation of independent alarms is eliminated.

4.3 Summary

This chapter presented a framework which is used to construct a fault diagno-
sis system for Motorola’s Dimetra system. However, this framework is generic
enough to be used in other network systems. It is because that the ideas includ-
ing the use of predicates and composite events as well as the derivation of event
definitions from a causal model are universal for all domains. In addition, the
only Dimetra specific associated with this framework (the Dimetra classes in
the network element class hierarchy) can be easily replaced since this hierarchy
is constructed in an object-oriented way.

4.3 Summary 46

This framework combines the rule-based and the model-based solutions. Thus,
the author believes that systems implementing this framework are superior to
pure rule-based systems. The next chapter will start to design a system imple-
menting this framework.

Chapter 5

Design of the SECTOR
system

This chapter designs a Simple Event CorrelaTOR (SECTOR) system, which
is based on the framework proposed in the previous chapter. Moreover, this
chapter describes the whole system architecture of SECTOR in great details, as
well as the communication between the different components in the system.

5.1 System Overview

The SECTOR system implementing the framework presented in the previous
chapter is specifically developed for Motorola, Denmark to handle the fault diag-
nosis in their Dimetra system. SECTOR is implemented in Java language [26].
More details regarding to its implementation is introduced in the next chapter.
This chapter will focus on its architecture.

Recall the proposed framework from the previous chapter, SECTOR should
have the following major functionalities:

1. Providing an environment for developing network element class hierarchy.

5.2 System Architecture 48

2. Constructing the network configuration model

3. Providing an environment for developing predicate layer.

4. Providing an environment for developing event definitions.

5. Performing event correlation.

The components in SECTOR could be divided into two major parts: the de-
velopment environment and the run-time environment. The development en-
vironment consists of components which perform functionalities 1, 2, 3 and 4
listed above. However, the event correlation is performed by components from
the run-time environment.

5.2 System Architecture

The architecture of the SECTOR system is illustrated in figure 5.1. This figure
presents the components in the system as well as how they interact with one
another. All components are described as follows:

• Network Element Class Editor: It is used for developers to build net-
work element class hierarchy. Thus, this editor is a development environ-
ment component. In order to provide a developer-friendly environment,
this editor is designed to support modelling class hierarchy by utilizing
UML1. Moreover, it is able to automatically generate source code for net-
work element classes from a UML-based class hierarchy. Due to the limited
time, this editor is not developed in this thesis. Currently, Poseidon [28],
a UML modeling tool is used. Any UML modeling tool such as IBM
Rational Rose [29] can be used as well.

• Network Config Editor: It is used for users to input the network config-
uration model in the form of XML. This editor belongs to the development
environment. This editor can be any text editor. The output of this com-
ponent is considered as a plain text version of the configuration model.

• Molder: This component parses configuration information from a XML
document, and uses network element classes to construct a binary version
of configuration model which can be stored in a knowledge base. It is a
development environment component as well.

1Unified Modeling Language [27]

5.2 System Architecture 49

• Configuration Base: It stores a configuration model and allows pred-
icates to query the configuration information that it stores. The stored
configuration model is created during development time, and required or
referenced during run time. Currently, all configuration models are stored
in the memory. In the future, they can be stored in database systems.

• Predicate Editor: As a part of development environment, it is used to
define predicates. The predicates in SECTOR are implemented as Java
classes. Currently, Eclipse [30] is used as the predicate editor.

• Predicate Base: It is a set of Java classes stores in the file system.
Predicates are created at development time. At run-time, each predicate
will refer to a configuration model to test the existence of a relationship
among network elements.

• Event Spec Editor: It is used for developers to input the event specifica-
tions and is a part of the development environment. Event specifications
created at development time specify the events, which will be monitored
by event correlation engine at runtime. Event definitions defined in EQL
and Esper pattern are included in the event specification. Some specifi-
cations may refer to predicates. Event specifications are written in XML
, more detail is given in appendix C.2. Thus, this editor can be any text
editor.

• Event Spec Base: This component parses event specifications from a
XML file and stores them in memory. In the future, database system can
be used to store event specifications.

• Event Registration Server: This component registers event specifica-
tions defined in Event Spec Base to event correlation engine at run-time.

• Event Adaptor: It gets alarms from different alarm sources (real net-
work or alarm log) and standardizes alarms into the format that event
correlation engine can understand. All standardized alarms are sent to
event correlation engine.

• Event Correlation Engine: This component performs the event cor-
relation. The result of event correlation is the occurrences of composite
events. Thus, it monitors the standardized alarms sent by Event Adaptor
in order to capture the registered events. The detected event can be sent
to relevant Event Subscriber or itself for further detecting of composite
events. During the monitoring, this engine may invoke predicates to as-
sert the occurrence of one event. Esper is used to work as event correlation
engine in this project.

5.3 Summary 50

Figure 5.1: The Architecture of SECTOR

• Event Subscriber: It could be any component that executes when its
subscribed event has occurred. For instance, Event Display which sub-
scribes all detected events can show network operator the result of cor-
relation. Furthermore, event subscriber could be another fault diagnosis
system. In that case, SECTOR may work as event (alarm) filters to concise
information which can be further used by other fault diagnosis system.

5.3 Summary

This chapter presented a design of a Simple Event CorrelaTOR (SECTOR)
system. SECTOR system implements the framework described in the previous
chapter. The whole system architecture of the SECTOR system was presented,
and each component has been thoroughly analyzed and described.

Chapter 6

Implementation

The architecture of SECTOR system has been elaborately introduced in Chap-
ter 5. This chapter will go into details with the implementation of SECTOR
system, such as the use of design patterns, the design of class diagrams, etc.
Furthermore, some interesting technical issues in the development of the system
will be described. The implementation of SECTOR system uses the Java [26]
language and relies on several third-party components.

6.1 Modular design

Due to the complexity of the whole SECTOR system, it is a good strategy to
subdivide the system in smaller parts (modules) that are easily implemented.
Moreover, one module can be easily replaced or updated without influencing the
running of SECTOR .

The implementation consists of implementing seven different modules (Fig. 6.1):

• network element classes module: This module consists of the editor to
specify the network element class hierarchy in UML as well as the Java

6.2 Design Patterns 52

classes generated from that UML class hierarchy. As introduced in previ-
ous chapter, Poseidon is used as such editor.

• modeler module: This module implements the model construction func-
tionality. Eclipse is used as the Network Config. Editor since it can edit
XML document.

• predicate module: It implements the predicate layer. Predicates are im-
plemented as Java classes, and therefore Eclipse is used as the Predicate
Editor.

• event registration module: The main functionality of this module is to
register the specified event into the event correlation engine. Eclipse is
used as the Event Spec. Editor

• event adaptation module: The main functionality of this module is to
translate alarms into a standard format and then send them to the event
correlation engine.

• event correlation module: This module contains an engine to perform event
correlation. Esper is used to as the event correlation engine. Hence, this
module is not discussed in this chapter.

• event subscription module This module is considered as the client ap-
plication of SECTOR. It consists of applications subscribing the events
monitored by event correlation module.

Each module is composed of Java classes. The following sections will show how
each module is implemented by Java classes.

6.2 Design Patterns

Design patterns are used during the implementation since they are general re-
peatable solutions to commonly occurring problems in software design [31]. Ba-
sically, design patterns are well tested and in a high abstract level. The use
of design patterns can help design a reliable, flexible and extendable SECTOR
system. On the other hand, much time can be saved by taking advantage the
existing design patterns.

The following subsections describe two design patterns mainly used in the im-
plementation.

6.2 Design Patterns 53

Figure 6.1: SECTOR system - Main modules

6.3 Package Overview 54

6.2.1 Strategy Pattern

This pattern is widely used in the classes design. The idea of Strategy Pat-
tern [32] is to encapsulate the concept that varies to an interface, not an im-
plementation. This pattern lets the algorithm vary independently from clients
that use it. By using the Strategy Pattern, SECTOR can be built as a loosely
coupled interchangeable parts. That loose coupling makes SECTOR much more
extensible, maintainable, and reusable.

Java interface1 is used to implement this pattern. Developers can create various
implementations for one interface and the actual implementation which clients
are accessing is transparent to clients. Thus, developers can freely change the
underlying implementation in the future.

6.2.2 Observer Pattern

This pattern [33] (sometimes known as Publish/Subscribe pattern) defines
a one-to-many dependency between objects so that when one object changes
state, all of its dependents (observers) are notified and updated automatically.
The Observer Pattern help loose coupling of observed objects and observers.
So observers can keep their states synchronized without necessarily needing
direct knowledge of their subjects (observed objects), facilitating system more
reusable.

In SECTOR, EventSubscriber interface implements this pattern. Hence, every
observer (called subscriber in SECTOR), which subscribes to a particular event
should implement that interface. Once such event is detected, all its subscribers
will get informed and actions defined in those subscribers will be executed.

6.3 Package Overview

In Java, all classes and interfaces can be grouped in packages. Each package [35]
can be viewed as a module in which classes and interfaces are organized accord-
ing to their functionality, usability as well as category they should belong to.
The whole SECTOR consists of several Java packages. The overview of all
packages is shown in Fig. 6.2. The core packages in SECTOR are:

1Java interface, an abstract type in Java [34]

6.3 Package Overview 55

Figure 6.2: Packages Overview

• sector − The root and fundamental package of SECTOR. It defines dif-
ferent interfaces which are implemented by different classes performing the
major functionalities of SECTOR. Additionally, a class implementing the
predicate module is defined in this package (see section 6.7). This pack-
age also provides an entry point class which integrates all modules and
provides the full functionality offered by SECTOR. A helper class which
provides the common utility for all classes is defined in this package as
well.

• sector.element − This package contains classes generated according to
a network element classes hierarchy defined in UML.

• sector.model − This package contains classes implementing the func-
tionality of constructing the configuration model.

• sector.registrator − This package contains classes implementing the
functionality of registerring event specification into the Esper Engine.

• sector.adaptor − This package contains classes implementing the func-
tionality of abstracting the actual alarms source and sending alarm to
Esper Engine.

Classes are described in the following sections.

6.4 SECTOR Fundamental 56

6.4 SECTOR Fundamental

As the fundamental package of SECTOR, package sector defines a list of inter-
faces whose implementations provide the main functionalities of SECTOR. The
class diagram of this package is shown in Fig. 6.3. Note that only important
fields and methods are shown for each class or interface. Detailed diagrams for
classes or interfaces in sector package are shown in appendix A.1. The classes
and interfaces in this package are described in more details below.

6.4.1 Model (interface)

Model interface (diagram in the appendix A, section A.1.1) defines a list of meth-
ods to manipulate a network configuration model. By invoking those methods,
the network configuration information can be added into or remove from or re-
trieved from a model. Furthermore, it defines a list of methods which evaluate
predicates regarding current information. The implementation of this interface
represents a network configuration model which provides current network con-
figuration information from its underlying knowledge base. The introduction of
this interface is based on the Strategy Pattern. Thus, the concrete model can
store its network configuration information in memory or a database system,
which is transparent to client components.

6.4.2 Modeler (interface)

Modeler interface defines a single method getModel() to build a model from
a model description file, e.g. an XML document. The introduction of this
interface follows the Strategy Pattern. Thus, the algorithm to build model
from a model description file is pluggable. The diagram of this interface refers
to Appendix A.1.2.

6.4.3 EventSpec (interface)

EventSpec interface defines a list of methods to create and manipulate an event
specification. Refer to chapter 4, an event specification specifies events that
required to be monitored. Besides it also specifies subscriber components which
will be informed when the events, to which they subscribe, are detected. The
implementation of this interface represents a concrete event specification which

6.4 SECTOR Fundamental 57

could be parsed from an XML document or a description file in other format.
The introduction of this interface is based on the Strategy Pattern. Thus, the
implementation of building an event specification is pluggable. The diagram of
this interface refers to Appendix A.1.3.

6.4.4 EventRegistrator (interface)

EventRegistrator interface defines a single method register() to register an
event specification into Esper Engine. This method accepts an implementation
of interface EventSpec as the only input parameter. The introduction of this
interface is based on the Strategy Pattern. Thus, the actual algorithm of the
registration of an event specification is pluggable. The diagram of this interface
refers to Appendix A.1.4.

6.4.5 EventSubscriber (interface)

It is a wrapper of UpdateListener interface defined in Esper component. This
interface simply extends UpdateListener, and therefore derives the only method
update(), which will be invoked when new events are available. Client applica-
tions of SECTOR shall implement this interface. This design follows Observer
Pattern. The diagram of this interface refers to Appendix A.1.5.

6.4.6 EventAdpator (interface)

The most important method defined in EventAdaptor interface is start(), which
gets alarms from its associated alarm source and sends them to Esper Engine.
Additionally, it exposes several methods revealing meta-information about the
alarms sent to Esper Engine. Due to the meta-information, Esper Engine can
know the alias of the coming alarm stream as well as the format of those alarms.
For any specific alarm source, there shall be a corresponding implementation of
EventAdaptor interface responsible for standardizing alarms into a format that
Esper engine can understand. The introduction of this interface is based on
the Strategy Pattern. Thus, the actual implementation is pluggable and
make SECTOR more reusable for other network systems. The diagram of this
interface refers to Appendix A.1.6.

6.5 Implementation of Network Element Class Hierarchy 58

6.4.7 Predicater (class)

Predicater class represents the Predicate Layer defined in the framework of
SECTOR. It provides a list of static2 methods which provide the predicates on
the configuration information of current network. More information is given in
section 6.7, which introduces the implementation of predicate module.

6.4.8 Sector (class)

Sector class is the main entry point of SECTOR system. It integrates all func-
tionalities provided by SECTOR, which are building a model(buildModel()),
setting up the predicate layer(setUpPredicater()), registering event specifica-
tion(registerEvent()), reading alarms from alarm source and detecting events(both
in start()). It wraps all subcomponents which are the underlying providers for
those functionalities. The source code is in Appendix B, section B.1.1.

6.5 Implementation of Network Element Class
Hierarchy

As mentioned in section 6.3, package sector.element defines all network ele-
ment classes which compose the network element class hierarchy. A simplified
class diagram for this package is shown in appendix A.2. Important classes in
this package are described below.

6.5.1 Element (class)

This class is the root of the Network Element Class Hierarchy. It represents the
most generic NE. It has one field name, which represents the identification of
a particular NE. This class defined a method getName() to return the value of
name.

2keyword in JAVA to create fields and methods that belong to the class [39].

6.5 Implementation of Network Element Class Hierarchy 59

Figure 6.3: Class Diagram of package sector and its dependent classes

6.5 Implementation of Network Element Class Hierarchy 60

6.5.2 Manager (class)

The Manager class extends the Element class to represent a logic element, which
manages or monitors other elements in the network. This class is defined as
abstract class so that it can be a super-class of more specific classes(e.g. ZConBTS
class) which represent concrete manager elements in Dimetra system.

This class has a field managedObjs declared as java.util.Map to keep track
of all NEs which are managed by an instance of that class. Manager class
implements methods to manipulate the set of currently managed NEs. It also
implements a method isManaging() to determine if it is managing a specified
NE or not. Each specific manager element may have the constraint about the
elements it can manage. Thus, getManagedObjectClasses() is defined as abstract
method, which returns the types of NEs that one actual manager can manage.

6.5.3 ManagedObject (class)

ManagedObject class extends the Element class to represent the managed NEs.
This class is defined as abstract class so that it can be a super-class of more
specific classes(e.g. Node class).

This class has three fields managers, containers and components which store
all NEs managing, containing and contained in an instance of ManagedObject
class, respectively. This class implements methods to add, remove or retrieve
NEs which are stored in its three fields. It also implements methods to eval-
uate the management or containment relationship between its instances and
other elements. Each specific ManagedObject element may have the constraint
about its management or containment relationship with other elements. Thus,
ManagedObject class has three unimplemented methods which return the types
of elements that can manage, contain or be contained in the ManagedObject
element.

6.5.4 Node (class)

Node class represents NEs which can be connected via links. It extends the
ManagedObject class so that instances of Node class may be managed by some
manager elements. This class is defined as abstract class. Classes (e.g. BaseRadio
class) which extend Node class are specific to Dimetra domain.

6.5 Implementation of Network Element Class Hierarchy 61

Node class has a field connViaLinks which stores all link elements connected
to the instance of this class. This class implements methods to manipulate or
retrieve those link elements. It also implements methods to evaluate the con-
nectivity relationship between its instances and other elements. Each specific
Node element may have the constraint about its management and containment
with other elements. Thus, Node class does not implement the abstract meth-
ods derived from ManagedObject class. Furthermore, it has another unimple-
mented method (getConnViaLinkClasses()) returning the types of link elements
via which the Node element can be connected.

6.5.5 Link (class)

Link class represents a network link which is connected to a list of nodes. It
extends the ManagedObject class so that instances of Link class may be man-
aged by some manager elements. This class is defined as abstract class. Classes
(e.g. RFSiteControlPath class) which extend Link class are specific to Dimetra
domain.

This class has a field endPoints which stores two Node elements as endpoints.
Link class implements a method to retrieve Node elements which are connected
via the instance of Link class. Link class also implements method to evaluate the
connectivity relationship between its instances and other elements. Each specific
Link element may have the constraint about its management or containment
relationship with other elements. Thus, Link class does not implement abstract
methods derived from ManagedObject class.

6.5.6 Dimetra classes

In addition to the classes introduced so far, the rest of classes in the hierarchy
are called Dimetra classes which represent NEs in Dimetra system and therefore
are non-abstract classes. These classes implement the abstract methods defined
in their super-classes.

As introduced in table 4.1, each Dimetra class has constraints regarding man-
agement, containment or connectivity relationships between its instances and
other NEs. There are two ways to implement these constraints. One way is to
use static field3. For example, BaseRadio class representing the base radio has
a static field containerClasses to keep all types of NEs that can contain base

3The value of a static field is shared by any instances of one class

6.6 Implementation of Model Construction 62

radios. According to the description in table 4.1, this field at least contains
a value: sector.element.BTS.class. The other way is to use constructor4.
This way is only used for sub-classes of Link class. A link element is con-
sidered to exist when its two endpoints are existing, therefore constructors of
Link class and its sub-classes all take two endpoints as input parameters. The
types of endpoints are specified in the constructors, which guarantees that a
link element is connected to the allowed NEs. For instance, constructors of
RFSiteControlPath class, which represents the link between a BTS site and
a zone controller, take two input parameters: an instance of BTS class and an
instance of ZoneController.

6.6 Implementation of Model Construction

Refer to section 6.1, a modeler module is responsible for building a model from
one configuration file. The constructed model is saved in some sort of knowl-
edge base. Interfaces regarding this functionality have already been defined in
package sector. SECTOR provides their default implementation in package
sector.model. A simplified class diagram of this package along with related
interfaces is shown in Fig. 6.4. Detailed diagrams and source code can be found
in appendix A and appendix B respectively. The implementation details are
described in the following sub-sections.

6.6.1 Model Description File

A model description file describes the network configuration information and is
able to be processed by computers. Refer to the section 4.2.2, an XML document
can be used as the model description file. Note that the XML used in SECTOR
implementation is slightly different from the one defined the in proposed frame-
work. Link elements are not specified in NE-declaration section but implicitly
specified in the definition of connectivity relationships. This modification can
prevent developers from declaring a link element but forgetting to specify its two
endpoints later in a connectivity specification. Detailed introduction regarding
the DTD5 and tags is given in appendix C, the section C.1.

4A special method to create an instance of a class
5Document Type Definition, which defines the legal building blocks of an XML document

6.6 Implementation of Model Construction 63

Figure 6.4: Class Diagram of package sector.model and dependent classes

6.6.2 A default Model Implementation

The default model in SECTOR keeps all network configuration information
in memory. It is represented by MemModelImpl class, which implements the
Model interface. All model information is stored in its field elements defined
as java.util.Map. This field is a collection of (key, value) pairs, where the
key is the name of one network element and the value corresponds to that
network element. Methods regarding editing or accessing a configuration model
are implemented by manipulating this field. Methods for editing a model will
be invoked by modeler classes to build a model. Furthermore, it implements
methods to evaluate predicates regarding configuration information. Predicate
Layer is build on the top of those methods.

6.6.3 A default Modeler

SECTOR offers a default modeler which builds the network configuration model
from an XML document. XMLModeler class represents the default modeler by
implementing the Modeler interface. This class has a field modelClass, which
determines the type of models can be generated by a modeler. Hence, a modeler

6.7 Implementation of Predicate Layer 64

can generate a model relying on either memory or database. The value of this
field is set according to a parameter in a configuration file.

Note that XMLModeler class focuses on extracting network configuration infor-
mation from the XML document. The actual work for adding the configuration
information into a model is done by invoking methods offered by underlying
Model implementation.

6.7 Implementation of Predicate Layer

The Predicate Layer is implemented by the predicate module, which only
consists of one class: Predicater. The implementation of this module does not
follow the way that an interface is separated from its implementations. It is
because that the predicate module is very simple. It relies on the associated
model to provide predicates (see section 6.6.2). Moreover, a predicater class
must declare its predicates as static methods so that they can be used in the
event definitions understandable for Esper. However, interfaces are not able
to declare static methods in Java. Source code of Predicater class refers to
Appendix B, section B.1.2.

6.8 Implementation of Event Registration

Refer to section 6.1, the event registration is performed by event registration
module. It consists of interfaces: EventSpec and EventRegistrator and their
default implementation classes defined in package sector.registrator. A sim-
plified class diagram of those classes and interfaces is shown in Fig. 6.5. Impor-
tant details are illustrated below.

6.8.1 Event Specification File

The event specification is specified in a file. As the model description file,
an XML document is used to describe the event specification. There are two
sections in such an XML description file. All events are listed with their names
and corresponding definitions in the first section. The order of listed events is
important. It follows the rule that an event e should be listed after all events
referenced in e’s definition. The next section specifies the event subscriptions so
Esper engine can know which subscribers it should inform when their subscribed

6.8 Implementation of Event Registration 65

Figure 6.5: Class Diagram of package sector.registrator and dependent classes

events occur. Refer to appendix C.2 to see more details regarding the XML
document.

6.8.2 A default Event Spec. Base

DefaultEventSpec class is the default implementation of EventSpec interface
and works as the event spec. base. It can parse an event specification from a
XML file. Furthermore, it offers APIs to allow developers to create an event
specification programmatically. The source code refers to Appendix B, sec-
tion B.3.1.

6.8.3 A default Event Registrator

DefaultEventRegistrator class is the default implementation of EventRegistrator
interface. It contains one field epAdmin, which is the administrative interface to
the Esper engine. Through that interface, event specifications defined in EQL
patterns and EQL statements can be registered into Esper Engine. The source

6.9 Implementation of Event Adaptor 66

Figure 6.6: Class Diagram of sector.adaptor and dependent classes

code refers to Appendix B, section B.3.2.

6.9 Implementation of Event Adaptor

The only component in the event adaptation module is the event adaptor.
This adaptor is represented by CSVEventAdaptor class, the default implemen-
tation of EventAdaptor interface. It reads alarms from a CSV file. This class
is a wrapper of Esper InputAdapter-classes because it simply calls methods
provided by Esper InputAdapter-classes to implement its functionality. Addi-
tionally, it implements several methods to show the metadata about the alarms
sent to Esper Engine, such as the properties of alarm. A simplified class dia-
gram of those classes and interfaces is shown in Fig. 6.6. The source code for
CSVEventAdaptor class can be found in Appendix B, section B.4.1.

6.10 Implementation of Event Subscription 67

6.10 Implementation of Event Subscription

As introduced in section 6.4.5, every event subscriber shall implement EventSubscriber
interface. The action invoked when the subscribed event occurs are defined in
update() method. SECTOR defines two simple event subscribers, which print
the meaningful notices to stdout as soon as their subscribed events are detected.
Refer to Appendix B, section ?? to view the source code of these two subscriber
classes.

6.11 Summary

This chapter presented an implementation of the SECTOR system. Before the
implementation, the seven modules of the system were presented, each consisting
of one or more components. Moreover, the design pattern used for class design
are introduced. Furthermore, the implemented system was described in details
with classes which are organized in individual packages.

Chapter 7

Testing and Evaluation

In general, software testing and evaluation make sure that the system runs as
expected without failures. Two test strategies are used in this project. One is
to test individual classes independently, which is known as Unit Testing. The
other is to test the whole system after it has been constructed, which is known
as Integration Testing. This chapter presents how these two test strategies are
carried out. More focus will be on the integration testing. The last part of this
chapter will discuss the performance of SECTOR system in terms of correlation
speed and correctness.

7.1 Unit Testing

This type of testing is carried out by performing a complete functional and
structural tests for every class. Different sets of test cases are devised to test
various methods in different situations. It is also called white box testing [36].

JUnit [37], an open source unit testing framework for the Java, is adopted for
achieving the automation of unit testing. Various test classes which consist of
different test cases are implemented for important classes in SECTOR. These
classes are organized in package sector.test. The source code of test classes
are shown in appendix B.5.

7.1 Unit Testing 69

Many test cases have been created, but only a small part of them (the most
important and most interesting ones) will be presented in the following sub-
sections, with particular emphasis on testing the model construction and event
registration modules.

7.1.1 Testing on Model Construction

The unit testing for the model construction focuses on two main classes: XMLModeler
and MemModelImpl. Because XMLModeler class counts on methods of MemModelImpl
class to construct a configuration model, only MemModelImplTest class, the test
class for MemModelImpl class, is presented here.

MemModelImplTest class defines lists of test cases (wrapped by methods) to test
the behavior of a MemModelImpl instance. The most important test cases are:

• Add a legal NE into a model : A network element is considered to be legal
if its name is not duplicated with names of NEs already in the model and
this NE complies with its constraints.

• Add an illegal NE into a model : Two methods are defined as test cases.
testAddBaseRadioWithSameNames tries to add two base radio elements
which have the same name (ID) into a model. testAddBadRFSiteControlPath
tries to add one illegal RFSiteControlPath element into the model. This
element is illegal because none of its endpoint elements are pre-existed.

• Add a legal relationship into a model : A legal relationship refers to the
management, containment, connectivity relationship that comply with
pre-defined constraints.

• Add an illegal relationship into a model : Three kinds of methods are de-
fined to add some illegal management, containment, connectivity relation-
ships. For instance, method testAddBadContainment tries to add one bad
containment relationship, in which a base radio contains a BTS site.

The Fig. 7.1 is the screenshot after running MemModelImplTest. It shows that
there are 21 test cases defined in that test class and all of them can pass.

7.1.2 Testing on Event Registration

The unit testing for the event registration is carried out on classes DefaultEventSpec
and DefaultEventRegistrator. However, only the test on DefaultEventSpec

7.1 Unit Testing 70

Figure 7.1: The screenshot after running MemModelImplTest

class is introduced here due to its complexity.

DefaultEventSpecTest is the test class for DefaultEventSpec class. The most
important test cases defined in that class are:

• Add a legal event into an event spec. base: An event is considered to be
legal if its name is not duplicated with names of events already in the
event specification.

• Add an illegal event into an event spec. base: Method testBadAddEvent
is defined to add an event whose name is the same as the name of another
event already in event spec. base.

• Add a legal subscription into an event spec. base: A legal subscription
means that a subscriber subscribes an event existing in the event specifi-
cation.

• Add an illegal subscription into an event spec. base: In method test-
BadAddSubscription, a subscriber tries to subscribe an event which has
not been defined.

Fig. 7.2 is the screenshot after running DefaultEventSpecTest. It shows that
there are 10 test cases defined in that test class and none of them fails.

7.2 Integration Testing 71

Figure 7.2: The screen shot after running DefaultEventSpecTest

7.2 Integration Testing

After all modules are tested independently, this type of testing is carried out to
verify the behavior of the SECTOR system as a whole.

The integration testing is also based on test cases and follows the mechanism of
black box testing [38]. There is one fault scenario per each test case. The fol-
lowing subsections will analyze the behavior of SECTOR in each fault scenario.

7.2.1 Console Login Failed

This scenario demonstrates how SECTOR can be used to compress or suppress
the repetitive non-important events (alarms) into a single event.

Due to some reasons (mis-configuration), a ”console login failed” alarm is repet-
itively reported every one minute though it is not a critical alarm. Hence, it
could generate lots of redundant information for a certain time. Obviously
it is desirable to suppress these alarms into one event message. A primitive
event LoginFailed is specified according to these alarms. One composite event
SuppressedLoginFailed is specified to correlate LoginFailed occurred in last 5
minutes1. This event is reported to operators only if a new LoginFailed event
is detected and no SuppressedLoginFailed event was reported within previous 5
minutes. Refer to appendix D.1 to see more details, e.g. event definitions.

Package sector.test.integration.suppression contains the classes which
test the behavior of SECTOR in this scenario. The source code regarding this

1This time could be adjusted according to specific policy of network management

7.2 Integration Testing 72

Figure 7.3: The screenshot after testing the ”console loging failed”

package is given in appendix B.6. The result of testing is shown in Fig. 7.3. It
clearly shows that first SuppressedLoginFailed event2 is reported immediately
after the occurrence of the first LoginFailed event3. The next SuppressedLogin-
Failed event is reported 6 minutes later though 6 LoginFailed event have been
detected during that time.

2The tag #########Detected a fault######### indicates the occurrence of a Suppressed-
LoginFailed event.

3The tag ---Detected an event--- indicates the occurrense of a LoginFailed event

7.2 Integration Testing 73

Figure 7.4: The screenshot after testing the ”base radio is locked”

7.2.2 Base Radio is Locked

This test case is to test the behavior of SECTOR in ”base radio locked” scenario
which has already been described in section 4.2.4. Recall that section three
alarms will be reported when a base radio is locked. Correspondingly, three
primitive events have been defined to capture these alarms in section 4.2.5.
Moreover, a composite event correlating these three primitive events has been
defined as well which leads to the root cause: a base radio is locked. More
details regarding this test can be found in appendix D.2.

Package sector.test.integration.br contains the related test classes. The
source code regarding this package is given in appendix B.7. The result after
running BaseRadioLockedTest class (the entry point of this test suite) is shown
in 7.4. It shows that the root cause is reported after the occurrences of three
primitive events.

7.3 Performance Evaluation 74

7.2.3 EBTS is Disabled

A EBTS site is disabled by the operator to produce this scenario. There are two
control paths between this EBTS site and a zone controller. One is the primary
path, the other is the backup path.

According to an elaborated alarm analysis and the fault propagation model
depicted in section 3.9, it can be derived that site control paths connected to
that EBTS site and the EBTS (ZC) managing that EBTS site will all get af-
fected if that EBTS site is disabled. Two primitive events SitePathDown and
ZCEBTSPathDown are defined to capture those alarms. In addition to these
two events, more events can be defined in order to make a more precise diag-
nosis. It is possible that these two events occurred when a site path is down
but the EBTS site is still functional. Based on the domain knowledge, when
a path is down, a backup path will be activated, which can be captured by a
primitive event ActiveBackupSitePath. If this EBTS site is indeed disabled, an
alarm will be reported to indicate that the backup path is down as well, which
is an instance of event SitePathDown. Hence, a composite event BothSitePath-
Down is defined to capture the scenario (both site paths are down). Moreover, a
primitive event EBTSUnreacherable is defined to capture the alarm generated by
SNMP4, which further indicates that this EBTS site is disabled. In all, the root
cause of this scenario can be diagnosed by a composite event EBTSDownAlert,
which correlates events BothSitePathDown, ZCEBTSPathDown and EBTSUn-
reacherable. More information regarding the test of this scenario is described in
appendix D.3.

Package sector.test.integration.ebts contains the classes which test the
behavior of SECTOR in the ”EBTS site disabled” scenario. The source code
regarding this package is given in appendix B.8. The result of testing is shown
in 7.5. It shows that the root fault is alert after detecting 5 primitive events
and 1 composite event (BothSitePathDown).

7.3 Performance Evaluation

This section gives the performance evaluation based on the test results shown
previously. The performance of SECTOR is evaluated in terms of precision and
latency.

All tests demonstrate that SECTOR can successfully diagnose the root cause
4Simple Network Management Protocol [41]

7.3 Performance Evaluation 75

Figure 7.5: The screenshot after testing the ”EBTS site disabled”

7.4 Summary 76

for each scenario based on the specified events. The number of false positive is
zero because no additional cause is incorrectly diagnose as the source of error.
Although the test results are impressive, it is still far away from the fully demon-
stration. Firstly, more test cases are required. Secondly, all event definitions
are tested in one single system. It is reasonable to test those event definitions
in more systems. Thirdly, the tests are carried out without considering the case
of lost or spurious alarms. It is quite interesting to see the precision when those
situation are taken in consideration. Last not the least, tests should be carried
out in the field when SECTOR is tested as a production system.

Refer to screenshots shown in Fig 7.3 to Fig. 7.5, each composite event is de-
tected as soon as the last primitive event, which is correlated by that composite
event, is detected. There is almost no latency. It is expected. Because Esper
is used as the event-detect engine and it is declared to detect complex patterns
among events in real-time. Although it shows that SECTOR can correlate
events with low latency, more tests with higher event occurrence rates should
be carried out to evaluate the performance of SECTOR.

7.4 Summary

The former part of this chapter described how to test SECTOR system with
two kinds of test strategies: unit testing and integration testing. Important test
classes are described to introduce the unit testing. Several fault scenarios are
devised in the integration testing. The results shown that SECTOR works well
in those fault scenarios.

The second part of the chapter focused on the performance evaluation. It con-
cluded that the evaluation of SECTOR is impressive but more tests are required.

Chapter 8

Conclusion

This chapter concludes the thesis work. The first part discusses how this thesis
achieved the goals defined in section 1.2 and summarizes the main contribution
of the project. The latter part of this chapter discusses some limitations and
identifies possible future work

8.1 Achieved Goals

The primary goal of this thesis is to develop a prototype system that can au-
tomatically diagnose faults in a basic Dimetra system. The SECTOR system
implemented in this thesis, as demonstrated in test cases, can work as a fault
diagnosis system. It provides a rich set of features including an environment
for developing event definitions and models, as well as an engine for correlating
events in real time. Furthermore, the SECTOR system is designed to be ex-
tensible attribute to the use of strategy pattern. Hence, Motorola can extend
SECTOR to add more features or enhance existing modules. Instead of running
as a standalone fault diagnosis system, the SECTOR system can co-operate
with other fault diagnosis systems. In that case, SECTOR filters out redundant
alarms and passes a concise alarm stream to some higher level fault diagnosis
systems.

8.2 Future Work 78

In addition to the SECTOR system, another important contribution of this
thesis is to propose a generic framework for constructing fault diagnosis systems.
The network element class hierarchy in this framework is defined in an object-
oriented way, which makes this class hierarchy more reusable. Moreover, ideas
including the use of predicates and composite events as well as the derivation of
event definitions from a causal model can all guide to construct fault diagnosis
system for other networks.

8.2 Future Work

During the designing and implementing, some issues are not addressed or ig-
nored due to the limitation of time. These issues introduce several limitations
to the work done in this thesis.

The first limitation is there is not a mechanism to automatically generated event
definitions from a causal model. Currently, all events are specified in EQL and
Esper pattern. It is only developer-friendly but not domain expert-friendly.
Hence, it could be an interesting subject to develop a method for automatically
conversion between domain knowledge and event definitions.

The fault diagnosis in SECTOR system is deterministic at the moment. It is a
big downside because alarms can be lost or spurious in a real system. Thus, to
support the indeterministic diagnosis is a primary requirement in the future.

Additionally, more GUIs should be developed. Moreover, instead of using so
many third party tools, more own components are required.

Appendix A

Class Diagram

A.1 Class Diagrams for the sector Package

Note that only the diagrams for the important classes or interfaces are depicted.

A.1.1 sector.Model interface

A.1 Class Diagrams for the sector Package 80

Figure A.1: Diagram for sector.Model interface

A.1 Class Diagrams for the sector Package 81

A.1.2 sector.Modeler interface

Figure A.2: Diagram for sector.Modeler interface

A.1 Class Diagrams for the sector Package 82

A.1.3 sector.EventSpec interface

Figure A.3: Diagram for sector.EventSpec interface

A.1 Class Diagrams for the sector Package 83

A.1.4 sector.EventRegistrator interface

Figure A.4: Diagram for sector.EventRegistrator interface

A.1 Class Diagrams for the sector Package 84

A.1.5 sector.EventSubscriber interface

Figure A.5: Diagram for sector.EventSubscriber interface

A.1 Class Diagrams for the sector Package 85

A.1.6 sector.EventAdpator interface

Figure A.6: Diagram for sector.EventAdpator interface

A.2 Class diagrams for the network element class hierarchy 86

A.2 Class diagrams for the network element class
hierarchy

Note that only important fields or methods (e.g. the abtract method) are shown
in diagrams.

A.2 Class diagrams for the network element class hierarchy 87

Figure A.7: Simplified Class diagram for the Network Element Class Hierarchy

88

Appendix B

Source Code

Note that only important classes or interfaces are listed here.

B.1 Package sector - SECTOR Fundmental

B.1.1 Sector.java

1 package sector;

2

3 import java.lang.reflect.Constructor;

4

5 import net.esper.client.Configuration;

6 import net.esper.client.EPServiceProvider;

7 import net.esper.client.EPServiceProviderManager;

8 import sector.test.TestHelper;

9

10 import com.topcoder.util.config.ConfigManager;

11 import com.topcoder.util.config.Property;

12

13

14 /**

B.1 Package sector - SECTOR Fundmental 90

15 * <p>Sector class is the main class of this component. It

provides the

16 * frameworkan implementation of EventAdaptor interface. It

gets alarms from a CSV file. It is

17 * a wrapper of Esper InputAdapter classes. Thus , this class

simply calles methods provided by Esper

18 * InputAdapter classes to offer funcationality defined in

its interface EventAdaptor.

19 * </p>

20 */

21 public class Sector {

22 private static final String MODELER = "Modeler";

23 private static final String NAMESPACE = "NameSpace";

24 private static final String CLASS = "Class";

25 private static final String EVENTSPEC = "

EventSpecification";

26 private static final String FILEPATH = "FilePath";

27 private static final String EVENTADAPTOR = "

EventAdaptor";

28 private static final String EVENTREGISTRATOR = "

EventRegistrator";

29 private static final String ESPERSERVICE = "

EsperService";

30 private static final String AUTOIMPORT = "AutoImport

";

31

32 private Modeler modeler;

33 private Model model;

34 private EventSpec eventSpec;

35 private EventAdaptor eventAdatpor;

36 private EPServiceProvider epService;

37 private EventRegistrator eventReg;

38

39 public Sector(String namespace) throws

SectorCreationException{

40 Helper.checkString(namespace , "namespace");

41

42 initModeler(namespace);

43 initEventSpec(namespace);

44

45

46 intiEventAdaptor(namespace);

47 initEsperService(namespace);

48 initEventRegistrator(namespace);

49

50 }

51

B.1 Package sector - SECTOR Fundmental 91

52 public void buildModel () throws

ModelDescriptionException {

53 model = modeler.getModel ();

54 }

55

56 public void setUpPredicater () {

57 Predicater.setModel(model);

58

59 }

60

61 public void registerEvent () throws

EventRegistrationException{

62 this.eventReg.register(eventSpec);

63 }

64

65 public void start () throws

EventAdatporRunTimeException{

66 this.eventAdatpor.start(epService);

67 }

68

69 private void initEsperService(String namespace)

throws SectorCreationException {

70 ConfigManager cm = ConfigManager.getInstance

();

71 Property serviceProp;

72 Configuration configuration;

73 try {

74 serviceProp = cm.getPropertyObject(

namespace , ESPERSERVICE);

75 String [] imports = serviceProp.

getValues(AUTOIMPORT);

76 configuration = new Configuration ();

77 for(String anImport : imports){

78 configuration.addImport(

anImport);

79 }

80 } catch (Exception e) {

81 throw new SectorCreationException("

Can not initiate Esper Service

due to "+e.getMessage (),e);

82 }

83

84 configuration.addEventTypeAlias(eventAdatpor.

getEventAlias (), eventAdatpor.

getEventProperties ());

85 epService = EPServiceProviderManager.

getDefaultProvider(configuration);

B.1 Package sector - SECTOR Fundmental 92

86

87 }

88

89 private void initEventRegistrator(String namespace)

throws SectorCreationException {

90 ConfigManager cm = ConfigManager.getInstance

();

91 Property eventRegistratorProp;

92 try {

93 eventRegistratorProp = cm.

getPropertyObject(namespace ,

EVENTREGISTRATOR);

94 String eventRegistratorClassNM =

eventRegistratorProp.getValue(

CLASS);

95

96 Class eventRegClass = Class.forName(

eventRegistratorClassNM);

97 Constructor con;

98 // System.out.println ("class !!!!"+

eventRegistratorClassNM);

99 con = eventRegClass.getConstructor(

new Class []{ EPServiceProvider.

class});

100 this.eventReg = (EventRegistrator)

con.newInstance(new Object []{

epService });

101 } catch (Exception e) {

102 throw new SectorCreationException("

Can not initiate Event

Registrator due to "+e.getMessage

(),e);

103 }

104

105 }

106

107 private void intiEventAdaptor(String namespace)

throws SectorCreationException {

108 ConfigManager cm = ConfigManager.getInstance

();

109 Property eventAdatporProp;

110 try {

111 eventAdatporProp = cm.

getPropertyObject(namespace ,

EVENTADAPTOR);

112 String eventAdaptorClassNM =

eventAdatporProp.getValue(CLASS);

B.1 Package sector - SECTOR Fundmental 93

113 String ns = eventAdatporProp.

getValue(NAMESPACE);

114

115 Class eventAdatporClass = Class.

forName(eventAdaptorClassNM);

116 Constructor con;

117

118 con = eventAdatporClass.

getConstructor(new Class []{ String

.class});

119 this.eventAdatpor = (EventAdaptor)

con.newInstance(new Object []{ns})

;

120 } catch (Exception e) {

121 throw new SectorCreationException("

Can not initiate Event Adaptor

due to "+e.getMessage (),e);

122 }

123

124 }

125

126 private void initEventSpec(String namespace) throws

SectorCreationException {

127 ConfigManager cm = ConfigManager.getInstance

();

128 Property eventSpecProp;

129 try {

130 eventSpecProp = cm.getPropertyObject

(namespace , EVENTSPEC);

131 String eventSpecClassNM =

eventSpecProp.getValue(CLASS);

132 String file = eventSpecProp.getValue

(FILEPATH);

133

134 Class eventSpecClass = Class.forName

(eventSpecClassNM);

135 Constructor con;

136 // System.out.println ("file :"+ file+"

class "+ eventSpecClassNM);

137 con = eventSpecClass.getConstructor(

new Class []{ String.class});

138 this.eventSpec = (EventSpec) con.

newInstance(new Object []{ file});

139 } catch (Exception e) {

140 throw new SectorCreationException("

Can not initiate Event

Specification due to "+e.

B.1 Package sector - SECTOR Fundmental 94

getMessage (),e);

141 }

142

143

144

145 }

146

147 private void initModeler(String namespace) throws

SectorCreationException {

148 ConfigManager cm = ConfigManager.getInstance

();

149

150 try {

151 Property modelerProp = cm.

getPropertyObject(namespace ,

MODELER);

152

153 String modelerClassNM = modelerProp.

getValue(CLASS);

154 String modelerNS = modelerProp.

getValue(NAMESPACE);

155

156 Class modelerClass = Class.forName(

modelerClassNM);

157 Constructor con;

158

159 //since namespace is not set , try to

invoke the constructor without

160 //any parameter to instantiate that

Modeler implementation

161 if(modelerNS ==null|| modelerNS.trim()

.length ()==0){

162 con = modelerClass.

getConstructor(new Class

[0]);

163 this.modeler = (Modeler) con

.newInstance(new Object

[0]);

164 }

165

166 //try to invoke the constructor

taking one string parameter to

167 // instantiate that Modeler

implementation

168 else{

169 con = modelerClass.

getConstructor(new Class

B.1 Package sector - SECTOR Fundmental 95

[]{ String.class});

170 this.modeler = (Modeler) con

.newInstance(new Object

[]{ modelerNS });

171 }

172 } catch (Exception e) {

173 throw new SectorCreationException("

Can not initiate Modeler due to "

+e.getMessage (),e);

174 }

175

176 }

177

178

179 public static void main(String [] args){

180 try {

181 // System.out.println ("class: "+Long.

class.getName ()+long.class.

getName ());

182

183 TestHelper.loadMultipleXMLConfig("

sector.Sector", "config.xml");

184 TestHelper.loadMultipleXMLConfig("

sector.model.XMLModeler", "config

.xml");

185 TestHelper.loadMultipleXMLConfig("

sector.adaptor.CSVEventAdaptor",

"config.xml");

186

187 Sector sector = new Sector("sector.

Sector");

188 sector.buildModel ();

189 System.out.println("finish the model

");

190 sector.setUpPredicater ();

191 sector.registerEvent ();

192 sector.start ();

193 } catch (SectorCreationException e) {

194 // TODO Auto -generated catch block

195 e.printStackTrace ();

196 } catch (Exception e) {

197 // TODO Auto -generated catch block

198 e.printStackTrace ();

199 }

200 }

201

202 }

B.1 Package sector - SECTOR Fundmental 96

B.1.2 Predicater.java

1 package sector;

2

3 import sector.element.BTS;

4 import sector.element.BaseRadio;

5 import sector.element.EBTS;

6 import sector.element.MBTS;

7 import sector.element.RFSiteControlPath;

8 import sector.element.BTSManager;

9 import sector.element.ZoneController;

10 /**

11 * <p>Predicater class represents the Predicate Layer in the

framwork of SECTOR.

12 * It provides a list of static methods which evaluate the

configurtion information

13 * of current network.

14 *

15 * It contains a member variable which associates with the

current network configuration model. </p>

16 */

17 public class Predicater {

18 private static Model model ;

19 public static void setModel(Model newModel){

20 Helper.checkNull(newModel ,"newModel");

21 model = newModel;

22 }

23

24

25 /**

26 * The first group of predicates determine the type of a

particular network element ,

27 * whose name is specified by parameter name

28 */

29 public static boolean isBaseRadio(String name){

30 if(model == null){

31 return false;

32 }

33 return model.isTypeOf(name ,BaseRadio.class.

getName ());

34 }

35

36 public static boolean isEBTS(String name){

37 if(model == null){

38 return false;

39 }

B.1 Package sector - SECTOR Fundmental 97

40 return model.isTypeOf(name ,EBTS.class.

getName ());

41 }

42

43 public static boolean isZoneController(String name){

44 if(model == null){

45 return false;

46 }

47 return model.isTypeOf(name ,ZoneController.

class.getName ());

48 }

49

50 public static boolean isRFSiteControlPath(String

name){

51 if(model == null){

52 return false;

53 }

54 return model.isTypeOf(name ,RFSiteControlPath

.class.getName ());

55 }

56

57 public static boolean isBTS(String name){

58 if(model == null){

59 return false;

60 }

61

62 return model.isTypeOf(name ,BTS.class.getName

());

63 }

64

65 public static boolean isMBTS(String name){

66 if(model == null){

67 return false;

68 }

69

70 return model.isTypeOf(name ,MBTS.class.

getName ());

71 }

72

73 public static boolean isBTSManager(String name){

74 if(model == null){

75 return false;

76 }

77

78 return model.isTypeOf(name ,BTSManager.class.

getName ());

79 }

B.1 Package sector - SECTOR Fundmental 98

80

81

82

83 /**

84 * The second group of predicates evaluate the management

relationship between two network elements ,

85 * whose names are specified by parameters manager and

managedObj

86 */

87

88 public static boolean isManagedBy(String managedObj ,

String manager){

89 if(model == null){

90 return false;

91 }

92

93 return model.isManagedBy(managedObj , manager

);

94 }

95

96

97 /**

98 * The 3rd group of predicates evaluate the containment

relationship between two network elements ,

99 * whose names are specified by parameters component and

container

100 */

101 public static boolean isContainedIn(String component

,String container){

102 if(model == null){

103 return false;

104 }

105

106 return model.isContainedIn(component ,

container);

107 }

108

109 /**

110 * The 4th group of predicates evaluate the containment

relationship between two network elements ,

111 * whose names are specified by parameters component and

container

112 */

113 public static boolean isConnectedVia(String

node ,String link){

114 if(model == null){

115 return false;

B.1 Package sector - SECTOR Fundmental 99

116 }

117

118 return model.isConnectedVia(node ,

link);

119 }

120

121 public static boolean isConnectedTo(String

link ,String node){

122 if(model == null){

123 return false;

124 }

125

126 return model.isConnectedTo(link ,

node);

127 }

128

129

130

131 }

B.1.3 Helper.java

1 package sector;

2

3 import org.w3c.dom.Document;

4 import org.w3c.dom.Element;

5 import org.w3c.dom.Node;

6 import org.w3c.dom.NodeList;

7

8 import sector.model.ModelerConfigException;

9

10 import java.io.File;

11 import java.util.ArrayList;

12 import java.util.List;

13

14 import javax.xml.parsers.DocumentBuilder;

15 import javax.xml.parsers.DocumentBuilderFactory;

16

17 final public class Helper {

18

19 private Helper (){

20

21 }

22

23 /**

24 * Checks whether the given Object is null.

25 *

B.1 Package sector - SECTOR Fundmental 100

26 * @param arg the argument to check

27 * @param name the name of the argument to check

28 *

29 * @throws IllegalArgumentException if the given Object

is null

30 */

31 public static void checkNull(Object arg , String name) {

32 if (arg == null) {

33 throw new IllegalArgumentException(name + "

should not be null.");

34 }

35 }

36

37 /**

38 * Checks whether the given String is null or empty.

39 *

40 * @param arg the String to check

41 * @param name the name of the String argument to check

42 *

43 * @throws IllegalArgumentException if the given string

is empty or null

44 */

45 public static void checkString(String arg , String name)

{

46 checkNull(arg , name);

47

48 if (arg.trim().length () == 0) {

49 throw new IllegalArgumentException(name + "

should not be empty.");

50 }

51 }

52

53 public static String getTextContents (Node node)

54 {

55 checkNull(node ,"node");

56 NodeList childNodes;

57 StringBuffer contents = new StringBuffer ();

58

59 childNodes = node.getChildNodes ();

60 for(int i=0; i < childNodes.getLength (); i++){

61 if(childNodes.item(i).getNodeType () == Node.

TEXT_NODE){

62 contents.append(childNodes.item(i).

getNodeValue ());

63 }

64 }

65 return contents.toString ();

B.2 Package sector.model - Model Construction 101

66 }

67

68 public static Element [] getDirectElementsByTagName(Node

node , String name){

69 checkNull(node ,"node");

70 checkString(name ,"name");

71 NodeList childNodes = node.getChildNodes ();

72 List <Element > list = new ArrayList <Element >();

73 for(int i=0; i < childNodes.getLength (); i++){

74 if(childNodes.item(i).getNodeType () == Node.

ELEMENT_NODE){

75 Element element = (Element)childNodes.item(i

);

76 if(element.getTagName ().equals(name)){

77 list.add(element);

78 }

79 }

80 }

81

82 Element [] elements = new Element[list.size()];

83 int i= 0;

84 for(Element element : list){

85 elements[i] = element;

86 i++;

87 }

88

89 return elements;

90

91 }

92

93 }

B.2 Package sector.model - Model Construction

B.2.1 MemModelImpl.java

1 package sector.model;

2

3 import java.util.HashMap;

4 import java.util.Map;

5 import sector.Helper;

6 import sector.ModelDescriptionException;

7 import sector.element.Element;

8 import sector.element.IllegalComponentException;

9 import sector.element.IllegalLinkException;

B.2 Package sector.model - Model Construction 102

10 import sector.element.IllegalManagedObjException;

11 import sector.element.IllegalManagerException;

12 import sector.element.IllegalOwnerException;

13 import sector.element.Link;

14 import sector.element.ManagedObject;

15 import sector.element.Manager;

16 import sector.element.Node;

17

18

19

20 /**

21 * <p>This class represents the only implementation of the

interface Modle provided in SECTOR at the moment.

22 * All model information is keeped in MemModelImpl.elements

member field , which is defined as java.util.Map.

23 *

24 * This class has only one constructor having no input

parameter.

25 * </p>

26 */

27 public class MemModelImpl implements sector.Model {

28

29 /**

30 * <p>The data structure contains all model information </p>

31 */

32 final private Map <String ,Element > elements = new HashMap

<String ,Element >();

33

34

35 public MemModelImpl (){

36 //do nothing in current version

37 }

38

39 /**

40 * <p>Add one network element into this model </p>

41 * @param element

42 * @throws ModelDescriptionException If there is already an

element which has the same name as the added one ,

43 * or the endpoints of added link are not pre -

existed , then this exception is thrown

44 */

45 public void addElement(sector.element.Element element)

throws ModelDescriptionException {

46 Helper.checkNull(element ,"element");

47 if(this.getElement(element.getName ())!=null){

48 throw new ModelDescriptionException("There

is already one element called "+element.

B.2 Package sector.model - Model Construction 103

getName ());

49

50 }

51

52 // special check for Link element

53 if(element instanceof Link){

54 Link link = (Link) element;

55 Node[] endpoints = link.getEndPoints ();

56 for(Node endpoint : endpoints){

57 if(getElement(endpoint.getName ())==

null){

58 throw new

ModelDescriptionException

("Failed to add Link "+

element.getName ()+

59 "due to one

or both

of its

endpoints

do not

exist in

the model

");

60 }

61 }

62

63 }

64

65 // System.out.println ("add "+ element.getName ()+" "+

element.getClass ().getName ());

66 this.elements.put(element.getName (), element);

67 }

68

69 /**

70 * <p>Add one management relationship into this model </p>

71 * @param manager

72 * @param managedObj

73 * @throws ModelDescriptionException

74 */

75 public void addManagement(String manager , String

managedObj) throws ModelDescriptionException {

76

77 Element managerElement = this.getElement(manager);

78 Element managedElement = this.getElement(managedObj)

;

79

80 if(managerElement ==null || managedElement ==null){

B.2 Package sector.model - Model Construction 104

81 throw new ModelDescriptionException("Illegal

Management description. Can not find the

Manager element "

82 +manager+" or ManagedObject

element "+managedObj);

83 }

84

85 if(!(managerElement instanceof Manager)){

86 throw new ModelDescriptionException(manager+

" is not a Manager");

87 }

88

89 if(!(managedElement instanceof ManagedObject)){

90 throw new ModelDescriptionException(

managedObj+" is not a ManagedObject");

91 }

92

93 try {

94 ((Manager)managerElement).

addManagedObject ((ManagedObject)

managedElement);

95 ((ManagedObject)managedElement).

addManager ((Manager)

managerElement);

96 } catch (IllegalManagedObjException e) {

97 throw new ModelDescriptionException(

"Failed to create management

relationship due to "+e.

getMessage (),e);

98 } catch (IllegalManagerException e) {

99 throw new ModelDescriptionException(

"Failed to create management

relationship due to "+e.

getMessage (),e);

100 }

101

102

103

104 }

105

106 /**

107 * <p>Does ...</p>

108

109 * @param container

110 * @param contained

111 * @throws ModelDescriptionException

112 */

B.2 Package sector.model - Model Construction 105

113 public void addContainment(String container , String

component) throws ModelDescriptionException {

114 Element containerElement = this.getElement(container

);

115 Element componentElement = this.getElement(component

);

116

117 if(containerElement ==null || componentElement ==null)

{

118 throw new ModelDescriptionException("Illegal

Containment description. Can not find

the Container element "

119 +container+" or component

element "+component);

120 }

121

122 if(!(containerElement instanceof ManagedObject)){

123 throw new ModelDescriptionException(

container+" is not a ManagedObject");

124 }

125

126 if(!(componentElement instanceof ManagedObject)){

127 throw new ModelDescriptionException(

component+" is not a ManagedObject");

128 }

129

130 try {

131 ((ManagedObject)containerElement).

addComponent ((ManagedObject)

componentElement);

132 ((ManagedObject)componentElement).

addContainer ((ManagedObject)

containerElement);

133 } catch (IllegalComponentException e) {

134 throw new ModelDescriptionException(

"Failed to create containment

relationship due to "+e.

getMessage (),e);

135 } catch (IllegalOwnerException e) {

136 throw new ModelDescriptionException(

"Failed to create containment

relationship due to "+e.

getMessage (),e);

137 }

138 }

139

140 /**

B.2 Package sector.model - Model Construction 106

141 * <p>Does ...</p>

142 *

143 * @poseidon -object -id [Imb633c4fm1107ed02682mm6d0e]

144 * @param link

145 * @param point1

146 * @throws ModelDescriptionException

147 */

148 public void addConnectivity(String link , String point1 ,

String point2) throws ModelDescriptionException {

149 Element linkElement = this.getElement(link);

150 Element point1Element = this.getElement(point1);

151 Element point2Element = this.getElement(point2);

152

153 if(linkElement ==null|| point1Element ==null ||

point2Element ==null){

154 throw new ModelDescriptionException("Illegal

Connectivity description. Can not find

the Link element "

155 +link+" or one point element

"+point1+" or the other

point element "+point2);

156 }

157

158 if(!(linkElement instanceof Link)){

159 throw new ModelDescriptionException(link+"

is not a Link");

160 }

161 if(!(point1Element instanceof Node)){

162 throw new ModelDescriptionException(point1+"

is not a Node");

163 }

164

165 if(!(point2Element instanceof Node)){

166 throw new ModelDescriptionException(point2+"

is not a Node");

167 }

168

169 try {

170 ((Node)point1Element).addLink ((Link)

linkElement);

171 ((Node)point2Element).addLink ((Link)

linkElement);

172 } catch (IllegalLinkException e) {

173 throw new ModelDescriptionException(

"Failed to create connectivity

relationship due to "+e.

getMessage (),e);

B.2 Package sector.model - Model Construction 107

174 }

175 }

176

177 /**

178 * <p>Does ...</p>

179 * @param name

180 * @return

181 */

182 public sector.element.Element getElement(String name) {

183

184 Helper.checkString(name , "name");

185

186 return this.elements.get(name);

187 }

188

189 /**

190 * <p>Does ...</p>

191 * @param name

192 */

193 public void removeElement(String name) {

194 Helper.checkString(name , "name");

195

196 Element element = getElement(name);

197

198 //if this element is in model

199 if(element !=null){

200

201 // it is a Manager element

202 if(element instanceof Manager){

203 removeManagerRef ((Manager)element);

204 }

205

206 //it is not Manager element

207 else{

208

209 //clear out contaiment and

management relationship

210 removeContainerRef ((ManagedObject)

element);

211 removeComponentRef ((ManagedObject)

element);

212 removeManagedRef ((ManagedObject)

element);

213

214 //clear out connectivity

relationshiop

215

B.2 Package sector.model - Model Construction 108

216 //if it is Node

217 if(element instanceof Node){

218 Node node = (Node) element;

219 Link[] links = node.getLinks

();

220

221 //all links which are

connected to this node

should be removed

222 //since this node is their

endpoints

223 for(Link link:links){

224 removeElement(link.

getName ());

225 }

226

227 }

228 // or if it is a link

229 else if(element instanceof Link){

230 Link link = (Link) element;

231 Node[] nodes = link.getNodes

();

232

233 for(Node node:nodes){

234 node.removeLink(link

.getName ());

235 }

236 }

237

238 }

239 elements.remove(name);

240 element = null;

241 }

242

243 }

244

245

246 /**

247 * Remove this component element from elements which are

containing it

248 * @param mobj

249 */

250 private void removeComponentRef(ManagedObject object) {

251 // Helper.checkNull(object , "object ");

252 ManagedObject [] containers = object.getContainers ();

253 for(ManagedObject container:containers){

254 container.removeComponent(object.getName ());

B.2 Package sector.model - Model Construction 109

255 }

256

257 }

258

259 /**

260 * Remove this managed element from elements which are

managing it

261 * @param mobj

262 */

263 private void removeManagedRef(ManagedObject mobj) {

264 // Helper.checkNull(mobj , "mobj");

265 Manager [] managers = mobj.getManagers ();

266 for(Manager manager:managers){

267 manager.removeManagedObject(mobj.getName ());

268 }

269

270 }

271

272 /**

273 * Remove this container from elements which are referring

to it

274 * @param mobj

275 */

276 private void removeContainerRef(ManagedObject mobj) {

277 // Helper.checkNull(mobj , "mobj");

278 ManagedObject [] components = mobj.getComponents ();

279 for(ManagedObject component:components){

280 component.removeContainer(mobj.getName ());

281 }

282

283 }

284

285 /**

286 * Remove this manager from the Managed elements which are

referring to it

287 * @param manager

288 */

289 private void removeManagerRef(Manager manager) {

290 // Helper.checkNull(manager , "manager ");

291 ManagedObject [] managedObjs = manager.

getManagedObjects ();

292 for(ManagedObject managedObj:managedObjs){

293 managedObj.removeManager(manager.getName ());

294 }

295

296 }

297

B.2 Package sector.model - Model Construction 110

298 /**

299 * <p>Remove the management relationship between two

elements. If there is not such a relationship , do

nothing </p>

300 * @param manager

301 * @param managedObj

302 */

303 public void removeManagement(String manager , String

managedObj) {

304 Helper.checkString(manager , "manager");

305 Helper.checkString(managedObj , "managedObj");

306

307 Manager managerEle = (Manager) this.getElement(

manager);

308 ManagedObject managedObjEle = (ManagedObject) this.

getElement(managedObj);

309

310 // either the manger elment or the manged element

does not exist

311 //which means there is no such a relationship. Thus

, simply return

312 if(managerEle == null || managedObjEle == null){

313 return;

314 }

315

316 else{

317 managerEle.removeManagedObject(managedObj);

318 managedObjEle.removeManager(manager);

319 }

320 }

321

322 /**

323 * <p>Remove the containment relationship between two

elements. If there is not such a relationship , do

nothing </p>

324 * @param container

325 * @param containedObj

326 */

327 public void removeContainment(String container , String

containedObj) {

328 Helper.checkString(container , "container");

329 Helper.checkString(containedObj , "containedObj");

330

331 ManagedObject containerEle = (ManagedObject) this.

getElement(container);

332 ManagedObject containedObjEle = (ManagedObject) this

.getElement(containedObj);

B.2 Package sector.model - Model Construction 111

333

334 // either the container elment or the contained

element does not exist

335 //which means there is no such a relationship. Thus ,

simply return

336 if(containerEle == null || containedObjEle ==null){

337 return;

338 }

339

340 else{

341 containerEle.removeComponent(containedObj);

342 containedObjEle.removeContainer(container);

343 }

344

345 }

346

347 /**

348 * <p>Remove the connectivity relationshiop among two nodes

and the link via which they are connected </p>

349 * @param link

350 * @param point1

351 * @param point2

352 */

353 public void removeConnectivity(String link , String

point1 , String point2) {

354 Helper.checkString(link , "link");

355 Helper.checkString(point1 , "point1");

356 Helper.checkString(point2 , "point2");

357

358 //if this two points are connected via this link

359 //then this link should be removed from model

360 if(isConnectedTo(link ,point1)&& isConnectedTo(link ,

point2)){

361 removeElement(link);

362 }

363

364 }

365

366

367

368 public boolean isContainedIn(String component , String

container) {

369 Element componentElement = this.getElement(component

);

370 if(componentElement !=null &&(componentElement

instanceof ManagedObject)){

B.2 Package sector.model - Model Construction 112

371 return ((ManagedObject)componentElement).

isContainedIn(container);

372 }

373 return false;

374 }

375 public boolean isManagedBy(String managedObj , String

manager) {

376 Element managedObjElement = this.getElement(

managedObj);

377 if(managedObjElement !=null &&(managedObjElement

instanceof ManagedObject)){

378 return ((ManagedObject)managedObjElement).

isManagedBy(manager);

379 }

380 return false;

381 }

382

383 public boolean isTypeOf(String name , String type) {

384 Element element = getElement(name);

385 try {

386 Class classObj = Class.forName(type)

;

387 return classObj.isInstance(element);

388 } catch (ClassNotFoundException e) {

389 return false;

390 }

391 }

392

393 public boolean isConnectedVia(String node , String

link) {

394 Element nodeElement = this.getElement(node);

395 if(nodeElement !=null &&(nodeElement instanceof Node))

{

396 return ((Node)nodeElement).isConnectedVia(

link);

397 }

398 return false;

399 }

400

401 public boolean isConnectedTo(String ele1 , String

ele2) {

402 Element element = this.getElement(ele1);

403 if(element !=null){

404 if(element instanceof Link){

405 return ((Link)element).isConnectedTo

(ele2);

406 }

B.2 Package sector.model - Model Construction 113

407

408 else if(element instanceof Node){

409 return ((Node)element).isConnectedTo

(ele2);

410 }

411 }

412 return false;

413 }

414

415 public Element [] getElements () {

416 Element [] copyElements = new Element[

elements.size()];

417 System.out.println(this.elements.size());

418 int i = 0;

419 for(Element element :elements.values ()){

420 copyElements[i] = element;

421 i++;

422 }

423

424 return copyElements;

425 }

426

427 public String modelInfo () {

428 StringBuffer sb = new StringBuffer ();

429 sb.append("Model Info:\n");

430 for(Element element : getElements ()){

431 if(element !=null)

432 sb.append("Name:"+element.getName ()+

"\nType:"+element.getClass ().

getName ()

433 +"\

n@@

\n");

434 }

435 return sb.toString ();

436 }

437

438 public String toString (){

439 return modelInfo ();

440 }

441

442

443 /**

444 * A simple way to test if two MemModelImpl

instances are equal or not.

445 */

446 public boolean equals(Object obj){

B.2 Package sector.model - Model Construction 114

447 if(obj==null)

448 return false;

449 if(!(obj instanceof sector.model.

MemModelImpl))

450 return false;

451

452 if (this == obj)

453 return true;

454

455 // simply test the equality by comparing the

info

456 //it may be imporved in the future

457 return this.toString ().equals(obj.toString ()

);

458 }

459

460 /**

461 * Clear this model

462 */

463 public void clear () {

464 elements.clear ();

465

466 }

467

468

469 }

B.2.2 XMLModeler.java

1

2 package sector.model;

3 import java.io.File;

4 import java.lang.reflect.Constructor;

5

6 import javax.xml.parsers.DocumentBuilder;

7 import javax.xml.parsers.DocumentBuilderFactory;

8

9 import org.w3c.dom.Document;

10 import org.w3c.dom.NodeList;

11

12 import sector.Helper;

13 import sector.Model;

14 import sector.ModelDescriptionException;

15 import sector.element.Link;

16

17 import com.topcoder.util.config.ConfigManager;

18 import com.topcoder.util.config.Property;

B.2 Package sector.model - Model Construction 115

19 import com.topcoder.util.config.UnknownNamespaceException;

20

21 /**

22 * <p> This class represents the default implementation of

the interface Modler in SECTOR. It extracts the model

23 * information from a XML file and build the corresponding

model according to the specific implementation of the

24 * interface Model , which is specified in the configuration

file. </p>

25 */

26 public class XMLModeler implements sector.Modeler {

27

28 /**

29 * <p> Represents the XML document from where model

information is extracted. It is initialized in the

constructor.

30 * It is used the first time when getModel () method is

invoked and the model information is parsed. After

succesfully

31 * constructing the model , it will be set to null. </p>

32 */

33 private org.w3c.dom.Document xmlDocument;

34

35 /**

36 * <p> The class of the actual implementation of interface

Model. It is used to generated the actual model

implementation </p>

37 */

38 private Class <Model > modelClass;

39

40 /**

41 * <p> Represents the actual implementation of interface

Model associated with current instance.</p>

42 */

43 private Model model = null;

44

45 /**

46 * <p> The namespace to load configuration properties to

construct the actual Model implementation.

47 * If it is not null , it will be used as a input parameter

for the contructors of Model implementation classes.

48 * If it is null , then contructors without any input

parameters will be invoked.

49 * </p>

50 */

51 private String modelNameSpace;

52

B.2 Package sector.model - Model Construction 116

53 /**

54 * <p>

55 * A flag to indict if the configuration info has been

extracted or not

56 * </p>

57 */

58 private boolean extracted = false;

59

60

61 /**

62 * <p>

63 * The Keys will be in the configuration file for generating

XMLModeler

64 * </p>

65 */

66 private static final String MODEL_FILE = "ModelFile"

;

67 private static final String MODEL = "Model";

68 private static final String CLASS = "Class";

69 private static final String NAMESPACE = "NameSpace";

70

71

72 /**

73 * <p>

74 * The names of Element Tags will be in the xml file which

is parsed by XMLModeler

75 * </p>

76 */

77 private static final String ELE_ELEMENT = "Element";

78

79 //the names related to connectivity relationshiop

80 private static final String ELE_CONNECTIVITY = "

Connectivity";

81 private static final String ELE_LINK = "Link";

82 private static final String ELE_POINT = "Point";

83

84 //the names related to management relationshiop

85 private static final String ELE_MANAGEMENT = "

Management";

86 private static final String ELE_MANAGER = "Manager";

87 private static final String ELE_MANAGED = "Managed";

88

89 //the names related to containment relationshiop

90 private static final String ELE_CONTAINMENT = "

Containment";

91 private static final String ELE_CONTAINER = "

Container";

B.2 Package sector.model - Model Construction 117

92 private static final String ELE_COMPONENT = "

Component";

93

94 private static final String ATTR_NAME = "name";

95 private static final String ATTR_CLASS = "class";

96

97 /**

98 * <p>The constructor accepting a namespace string as

parameter. </p>

99 *

100 * @param nameSpace: the namespace helps ConfigManager

identify the configuration properites related to

XMLModeler

101 * @throws ModelerConfigException

102 */

103 public XMLModeler(String nameSpace) throws

ModelerConfigException {

104 Helper.checkString(nameSpace ,"nameSpace");

105 ConfigManager cm = ConfigManager.getInstance

();

106 String modelClassNM = null;

107 try {

108 //get the name of the configuration

model file

109 String file = cm.getString(nameSpace

, MODEL_FILE);

110 xmlDocument = getXMLDocument(file);

111

112 //start to get info for the model

associated with this modeler

113 Property property = cm.

getPropertyObject(nameSpace ,

MODEL);

114

115 //1. get the actual Model

implementation

116 modelClassNM = property.getValue(

CLASS);

117 modelClass = (Class <Model >) Class.

forName(modelClassNM);

118

119 //check if the class is an

implementation of Model interface

120 modelClass.asSubclass(Model.class);

121

122 //2. get the namespace , which is

used during the construction of

B.2 Package sector.model - Model Construction 118

that model , if it is specified.

123 // otherwise null will be setted

to field modelNameSpace

124 modelNameSpace = property.getValue(

NAMESPACE);

125

126 //3. generate the associated model.

127 //Note that the model generated at

this stage contains nothing

configuration info

128 model = initModel ();

129 } catch (UnknownNamespaceException e) {

130 throw new ModelerConfigException("

Unknown name space "+nameSpace ,e)

;

131 } catch (ClassNotFoundException e) {

132 throw new ModelerConfigException("

Can not find the specified class

"+modelClassNM ,e);

133 }catch(ClassCastException e){

134 throw new ModelerConfigException("

The specified class "+

modelClassNM+" is not an

implementation of interface Model

",e);

135 }

136

137

138 }

139

140 /**

141 * Initialize the associated Model. The initial Model does

not contain any networking configuration info. Those

info will be

142 * added into this Model during the parsing of configuration

file.

143 * @return the initial Model

144 * @throws ModelerConfigException

145 */

146 private Model initModel () throws

ModelerConfigException {

147 Constructor constructor;

148 try{

149 // namespace is not specified , try to invoke

the contructor without any input

parameter

B.2 Package sector.model - Model Construction 119

150 if(modelNameSpace ==null|| modelNameSpace.trim

().length ()==0){

151 constructor = this.modelClass.

getConstructor(new Class [0]);

152 return (Model) constructor.

newInstance(new Object [0]);

153 }

154

155 // namespace is specified , try to invoke the

contructor(string) to generate Model

instance

156 else{

157 constructor = this.modelClass.

getConstructor(new Class []{ String

.class});

158 return (Model) constructor.

newInstance(new Object []{

modelNameSpace });

159 }

160 }catch (Exception e) {

161 throw new ModelerConfigException("

Failed to initiate the specified

model due to "+e.getMessage (),e);

162 }

163 }

164

165

166 /**

167 * <p>Extracts from the XML document the configuration model

details and builds the corresponding model , which is an

implementation

168 * of interface Model. The returned model will contain valid

network configuration information. A null model will

never be returned.

169 * otherwise , exception will be thrown. After the first

succesfull invocation of this method , the XMLModeler.

model member variable

170 * will cache the model , and XMLModeler.xmlDocument will be

set to null. Next calls to the method will return the

cached model.

171 * Details about the algorithm to be applied , structure of

the XML document and building the model can be found in

the

172 * desgin specification. </p>

173 *

174 * @return the retrieved model

175 * @throws ModelDescriptionException

B.2 Package sector.model - Model Construction 120

176 */

177 public sector.Model getModel () throws

ModelDescriptionException {

178 if(! extracted){

179 org.w3c.dom.Element root = xmlDocument.

getDocumentElement ();

180

181 // retrieve all networking elements except

Link elements

182 NodeList nodes = root.getElementsByTagName(

ELE_ELEMENT);

183 for(int i= 0; i<nodes.getLength ();i++){

184 parseNetworkElement ((org.w3c.dom.

Element)nodes.item(i));

185 }

186 // retrieve Link elements and the

connectivity relationship among Node

elements are constructed as well

187 nodes = root.getElementsByTagName(

ELE_CONNECTIVITY);

188 parseConnectivity ((org.w3c.dom.

Element)nodes.item (0));

189

190 // construct management relationship

191 nodes = root.getElementsByTagName(

ELE_MANAGEMENT);

192 parseManagement ((org.w3c.dom.Element

)nodes.item (0));

193

194 // construct containment relationship

195 nodes = root.getElementsByTagName(

ELE_CONTAINMENT);

196 parseContainment ((org.w3c.dom.

Element)nodes.item (0));

197

198 xmlDocument = null;

199 extracted = true;

200

201 }

202 return model;

203

204 }

205

206 private void parseContainment(org.w3c.dom.Element

element) throws ModelDescriptionException {

207 NodeList containers = element.getElementsByTagName(

ELE_CONTAINER);

B.2 Package sector.model - Model Construction 121

208 for(int i= 0; i<containers.getLength ();i++){

209 org.w3c.dom.Element containerElement

= (org.w3c.dom.Element)

containers.item(i);

210 String container = containerElement.

getAttribute(ATTR_NAME);

211

212 NodeList components =

containerElement.

getElementsByTagName(

ELE_COMPONENT);

213 for(int l= 0; l<components.getLength

();l++){

214 org.w3c.dom.Element

component = (org.w3c.dom.

Element)components.item(i

);

215 model.addContainment(

container , component.

getAttribute(ATTR_NAME));

216 }

217 }

218

219 }

220

221 private void parseManagement(org.w3c.dom.Element

element) throws ModelDescriptionException {

222 NodeList managers = element.getElementsByTagName(

ELE_MANAGER);

223 for(int i= 0; i<managers.getLength ();i++){

224 org.w3c.dom.Element managerElement =

(org.w3c.dom.Element)managers.

item(i);

225 String manager = managerElement.

getAttribute(ATTR_NAME);

226

227 NodeList managedElements =

managerElement.

getElementsByTagName(ELE_MANAGED)

;

228 for(int l= 0; l<managedElements.

getLength ();l++){

229 org.w3c.dom.Element

managedElement = (org.w3c

.dom.Element)

managedElements.item(i);

B.2 Package sector.model - Model Construction 122

230 model.addManagement(manager ,

managedElement.

getAttribute(ATTR_NAME));

231 }

232

233 }

234 }

235

236 private void parseConnectivity(org.w3c.dom.Element

element) throws ModelDescriptionException {

237 NodeList links = element.getElementsByTagName(

ELE_LINK);

238 for(int i= 0; i<links.getLength ();i++){

239 org.w3c.dom.Element link = (org.w3c.

dom.Element)links.item(i);

240 parseLink(link);

241 }

242

243 }

244

245 private void parseLink(org.w3c.dom.Element linkNode)

throws ModelDescriptionException {

246 String name = linkNode.getAttribute(

ATTR_NAME);

247 String className = linkNode.getAttribute(

ATTR_CLASS);

248 sector.element.Element [] points = new sector

.element.Element [2];

249 Class elementClass = null;

250 NodeList nodes = linkNode.

getElementsByTagName(ELE_POINT);

251 if(nodes.getLength ()!=2){

252 throw new ModelDescriptionException(

"Link "+name+" should have two

endpoints!");

253 }

254

255 for(int i= 0; i<nodes.getLength ();i++){

256 String pointName = ((org.w3c.dom.

Element)nodes.item(i)).

getAttribute(ATTR_NAME);

257 points[i] = model.getElement(

pointName);

258 if(points[i]== null){

259 throw new

ModelDescriptionException

("Endpoint "+pointName+"

B.2 Package sector.model - Model Construction 123

does not exist!");

260 }

261 }

262

263 try {

264 elementClass = Class.forName(

className);

265 } catch (ClassNotFoundException e) {

266 throw new ModelDescriptionException(

"Can not parse link "+name+" due

to "+e.getMessage ());

267 }

268 Constructor [] constructors = elementClass.

getConstructors ();

269 Link link = null;

270

271 //find the right constructor to instantiate

a link instance

272 for(Constructor constructor:constructors){

273 try {

274 link = (Link)constructor.

newInstance(new Object []{

name ,points [0], points

[1]});

275

276 } catch (Exception e) {

277 ;

278 }

279 }

280

281 // failed to instantiate a link instance

282 if(link==null){

283 throw new ModelDescriptionException(

"Can not parse link "+name+" due

to no right constructor for link

class "+className);

284 }

285 model.addElement(link);

286 model.addConnectivity(link.getName (), points

[0]. getName (), points [1]. getName ());

287

288 }

289

290 private void parseNetworkElement(org.w3c.dom.Element

node) throws ModelDescriptionException {

291 String name = node.getAttribute(ATTR_NAME);

B.2 Package sector.model - Model Construction 124

292 String className = node.getAttribute(

ATTR_CLASS);

293 Class elementClass;

294 try {

295 elementClass = Class.forName(

className);

296 Constructor constructor =

elementClass.getConstructor(new

Class []{ String.class});

297 Object obj = constructor.newInstance

(new Object []{ name});

298 model.addElement ((sector.element.

Element) obj);

299 } catch (Exception e) {

300 throw new ModelDescriptionException(

"Can not parse network element

due to "+e.getMessage (),e);

301 }

302 }

303

304

305

306 private Document getXMLDocument(String file) throws

ModelerConfigException {

307 Helper.checkString(file , "file");

308 DocumentBuilderFactory docFactory =

DocumentBuilderFactory.newInstance ();

309 try {

310 DocumentBuilder builder = docFactory

.newDocumentBuilder ();

311 return builder.parse(new File(file))

;

312 }catch(Exception e){

313 throw new ModelerConfigException("

Can not get the specified XML

document from "+file ,e);

314 }

315 }

316

317

318 }

B.3 Package sector.registrator - Event Registration 125

B.3 Package sector.registrator - Event Regis-
tration

B.3.1 DefaultEventSpec.java

1

2 package sector.registrator;

3

4 import java.io.File;

5 import java.lang.reflect.Constructor;

6 import java.util.HashMap;

7 import java.util.HashSet;

8 import java.util.LinkedHashMap;

9 import java.util.Map;

10 import java.util.Set;

11

12 import javax.xml.parsers.DocumentBuilder;

13 import javax.xml.parsers.DocumentBuilderFactory;

14

15 import org.w3c.dom.Document;

16 import org.w3c.dom.Element;

17 import org.w3c.dom.NodeList;

18

19 import sector.EventSpecException;

20 import sector.EventSubscriber;

21 import sector.Helper;

22

23 /**

24 * <p>DefaultEventSpec class is the implementation of

EventSpec interface. It can either parse

25 * the event specification from a XML file or

programatically create an event specification .</p>

26 *

27 */

28 public class DefaultEventSpec implements sector.EventSpec {

29

30

31 private static final String NAME = "name";

32 private static final String CLASS = "class";

33 private static final String EVENT = "Event";

34

35 private static final String DEFINITION = "Definition";

36 private static final String SUBSCRIBER = "Subscriber";

37

38 private static final String NAMESPACE = "namespace";

39

B.3 Package sector.registrator - Event Registration 126

40

41 /**

42 * <p>Represents the xml document which contains the event

specification </p>

43 */

44 private Document xmlDoc = null;

45

46 // private String alarmName = null;

47 // private Map <String , Class > alarmProperties = new

HashMap <String , Class >();

48

49 /** The variable events contains all information related

to events defined in the specification.

50 * It includes their names and definitions. It is a

LinkedHashMap in order to preserve the order.

51 * Note that the event definition order is important to

determine the validity of one event specification

52 */

53 private Map <String , String > events = new LinkedHashMap <

String , String >();

54 // private Map <String , EventSubscriber > subscribers = new

HashMap <String , EventSubscriber >();

55

56 // contains subscription information: event with its

associated subscribers

57 private Map <String , Set <EventSubscriber >> subscription =

new HashMap <String , Set <EventSubscriber >>();

58

59

60 /**

61 * <p>Construct an instance which parses event specification

from a xml document and stores it </p>

62 *

63 * @param file The name of that XML document

64 * @throws EventSpecException It will be thrown when the

sytax or semantic of evnet specification is invalid

65 * @throws EventSpecConfigException It is thrown when the

provided XML document can not be found

66 */

67 public DefaultEventSpec(String file) throws

EventSpecConfigException , EventSpecException {

68 Helper.checkString(file , "file");

69 xmlDoc = getXMLDocument(file);

70 parseSpecification(xmlDoc);

71 xmlDoc = null;

72 }

73

B.3 Package sector.registrator - Event Registration 127

74 /**

75 * <p>Construct an instance to represent an event

specification , the info about event specification can be

76 * programmaticlly added into this instance </p>

77 */

78 public DefaultEventSpec () {

79 //do nothing

80 }

81

82

83 public Map <String ,String > getEvents () {

84

85 return this.events;

86 }

87

88

89 public Map <String , Set <EventSubscriber > >

getSubscriptions () {

90

91 return this.subscription;

92 }

93

94

95

96 /**

97 *

98 */

99 public void addEvent(String name , String def)throws

EventSpecException {

100 Helper.checkString(name ,"name");

101 Helper.checkString(def ,"def");

102 //fixme if the event name is already there

103 if(this.events.containsKey(name)){

104 // System.out.println (" Warning: an event "+

name+" is already defined and its

definition is overwritten" +

105 // " now .");

106 throw new EventSpecException("Warning: an

event "+name+" is already defined");

107 }

108 this.events.put(name , def);

109

110 }

111

112 /**

113 * Add a subscription to that specification.

114 * @param eventName

B.3 Package sector.registrator - Event Registration 128

115 * @param subscriber

116 * @throws EventSpecException

117 */

118 public void addSubscription(String eventName ,

EventSubscriber subscriber) throws EventSpecException

{

119 Helper.checkString(eventName ,"eventName");

120 Helper.checkNull(subscriber ,"subscriber");

121

122 //if there is that event

123 if(containsEvent(eventName)){

124 Set <EventSubscriber > subscribers = (Set <

EventSubscriber >) getSubscription(

eventName);

125 //If it is the first subscriber of that

event

126 if(subscribers == null){

127 subscribers = new HashSet <

EventSubscriber >();

128 }

129

130 subscribers.add(subscriber);

131 this.subscription.put(eventName , subscribers

);

132 // System.out.println (" addSubscription one");

133 }

134

135 else{

136 throw new EventSpecException("Subscription

is not correct since event "+eventName+"

does not exist!");

137 }

138

139 }

140

141

142 public boolean containsEvent(String eventName) {

143 Helper.checkString(eventName , "eventName");

144 return this.events.containsKey(eventName);

145 }

146

147 /**

148 * Get an event’s subscription information by listing

all its subscribers

149 * @param event

150 * @return

151 */

B.3 Package sector.registrator - Event Registration 129

152 public Set <EventSubscriber > getSubscription(String event

) {

153 Helper.checkString(event , "event");

154 return this.subscription.get(event);

155 }

156

157 public String getEventDef(String eventName) {

158 Helper.checkString(eventName , "eventName");

159 return this.events.get(eventName);

160 }

161

162 public void removeEvent(String eventName) {

163 Helper.checkString(eventName , "eventName");

164

165 //if there is that event

166 if(containsEvent(eventName)){

167 //first remove that event definition

168 this.events.remove(eventName);

169

170 //then remove the subscription of that event

171 removeSubscription(eventName);

172 }

173

174 }

175

176 /**

177 * Remove all current subscribers from that event

178 * @param eventName

179 */

180 public void removeSubscription(String eventName) {

181 Helper.checkString(eventName , "eventName");

182 Set <EventSubscriber > subscribers = this.

getSubscription(eventName);

183

184 if(subscribers !=null){

185 subscribers.clear ();

186 subscribers = null;

187 this.subscription.remove(eventName);

188 }

189

190 }

191

192 public void removeSubscription(String eventName ,

EventSubscriber subscriber) {

193 Helper.checkString(eventName , "eventName");

194 Helper.checkNull(subscriber , "subscriber");

B.3 Package sector.registrator - Event Registration 130

195 Set <EventSubscriber > subscribers = this.

getSubscription(eventName);

196

197 if(subscribers !=null){

198 subscribers.remove(subscriber);

199 }

200

201 }

202

203 public boolean isSubscribledBy(String event ,

EventSubscriber subscriber) {

204 Set <EventSubscriber > subscribers = getSubscription(

event);

205 if(subscribers != null){

206 for(EventSubscriber sub:subscribers){

207 if(sub== subscriber){

208 return true;

209 }

210 }

211 }

212 return false;

213 }

214

215

216 /**

217 * <p>Parse the XML file </p>

218 * @param xmlDoc

219 * @throws EventSpecException

220 */

221

222 private void parseSpecification(Document xmlDoc)

throws EventSpecException {

223 org.w3c.dom.Element root = xmlDoc.getDocumentElement

();

224 // NodeList nodes = root.getElementsByTagName

(EVENT);

225

226 Element [] elements = Helper.

getDirectElementsByTagName(root , EVENT);

227 // System.out.println (" length "+ elements.

length);

228 for(Element element : elements){

229 parseEvent(element);

230 }

231

232 //parse subscribers

B.3 Package sector.registrator - Event Registration 131

233 //nodes = root.getElementsByTagName(

SUBSCRIBER);

234 elements = Helper.getDirectElementsByTagName

(root , SUBSCRIBER);

235 for(Element element : elements){

236 parseSubscriber(element);

237 }

238

239 /*nodes = root.getElementsByTagName(

SUBSCRIPTION);

240 for(int i= 0; i<nodes.getLength ();i++){

241 parseSubscription ((org.w3c.dom.

Element)nodes.item(i));

242 }*/

243

244 }

245

246

247

248 /**

249 * Parse subscription information according subscriber

definition defined in xml file

250 * @param element

251 * @throws EventSpecException If the subscriber is

specified incorrectly or in a unexpected format

252 */

253 private void parseSubscriber(org.w3c.dom.Element

element) throws EventSpecException {

254 // String subscriberName = element.

getAttribute(NAME);

255 String className = element.getAttribute(

CLASS);

256 String namespace = element.getAttribute(

NAMESPACE);

257

258 EventSubscriber subscriber;

259 try {

260 Class classInstance = Class.forName(

className);

261 //check if the class is an

implementation of Model interface

262 classInstance.asSubclass(

EventSubscriber.class);

263 Constructor con;

264

265 //no namespace is specified , thus

the constructor without any

B.3 Package sector.registrator - Event Registration 132

parameters is invoked

266 if(namespace == null|| namespace.trim

().length ()==0){

267 con = classInstance.

getConstructor(new Class

[0]);

268 subscriber = (

EventSubscriber) con.

newInstance(new Object

[0]);

269 //fixme

270 // System.out.println ("

parseSubscriber "+

className);

271 }

272 // invoke the constructor with a

String input parameter

273 else{

274 con = classInstance.

getConstructor(new Class

[]{ String.class});

275 subscriber = (

EventSubscriber) con.

newInstance(new Object []{

NAMESPACE });

276 }

277

278 } catch(ClassCastException e){

279 throw new EventSpecException("The

specified class "+className+" is

not an implementation of

interface sector.EventSubscriber"

,e);

280 }catch (Exception e) {

281 throw new EventSpecException("Can

not instantiate a new subscriber

due to "+e.getMessage (),e);

282 }

283

284 //get all events that subscriber subscribes

285 NodeList eventNodes = element.

getElementsByTagName(EVENT);

286 for(int i = 0; i<eventNodes.getLength (); i

++){

287 String eventName = ((Element)

eventNodes.item(i)).getAttribute(

NAME);

B.3 Package sector.registrator - Event Registration 133

288 try{

289 addSubscription(eventName ,

subscriber);

290 }catch(Exception e){

291 throw new EventSpecException

("This new subscriber can

not subscribe to event "

+eventName+

292 " due to "+e

.

getMessage

(),e);

293 }

294

295 }

296

297 }

298

299 /**

300 * Parse event information from xml file

301 * @param element

302 * @throws EventSpecException If the event is specified

incorrectly or in a unexpected format

303 */

304 private void parseEvent(org.w3c.dom.Element element)

throws EventSpecException {

305 //get event name

306 String eventName = element.getAttribute(NAME

);

307 //get event definition

308 NodeList nodes = element.

getElementsByTagName(DEFINITION);

309

310 //can not find event definition

311 if(nodes.getLength ()==0){

312 throw new EventSpecException("

Without definition for event "+

eventName);

313 }

314

315 org.w3c.dom.Node defNode = nodes.item (0);

316 String def = Helper.getTextContents(defNode)

;

317

318 addEvent(eventName ,def);

319 }

320

B.3 Package sector.registrator - Event Registration 134

321 /**

322 * Parse the content of the given file as an XML

document and return a new DOM Document object

323 * @param file The name of xml document

324 * @return the DOM Document object

325 * @throws EventSpecConfigException if the specified

xml document does not exist

326 */

327 private Document getXMLDocument(String file) throws

EventSpecConfigException {

328 Helper.checkString(file , "file");

329 DocumentBuilderFactory docFactory =

DocumentBuilderFactory.newInstance ();

330 try {

331 DocumentBuilder builder = docFactory

.newDocumentBuilder ();

332 return builder.parse(new File(file))

;

333 }catch(Exception e){

334 throw new EventSpecConfigException("

Can not get the specified XML

document from "+file ,e);

335 }

336 }

337

338

339 }

B.3.2 DefaultEventRegistrator.java

1

2 package sector.registrator;

3

4 import java.util.Map;

5 import java.util.Set;

6

7 import sector.EventRegistrationException;

8 import sector.EventRegistrator;

9 import sector.EventSubscriber;

10 import sector.Helper;

11 import net.esper.client.EPAdministrator;

12 import net.esper.client.EPServiceProvider;

13 import net.esper.client.EPStatement;

14

15 /**

16 * <p>DefaultEventRegistrator class is the default

implementation of EventRegistrator provided in this

B.3 Package sector.registrator - Event Registration 135

sector component.

17 *

18 * It contains one member variable ’epAdmin ’, which is the

Administrative interface to the Esper engine. Through

that interface ,

19 *

20 * event definition defined in EQL patterns and EQL

statements can be registered into Esper engine. The

subscriber components which will be

21 *

22 * informed when certain events occur will be registered

into Esper engine through that interface .</p>

23 */

24 public class DefaultEventRegistrator implements

EventRegistrator {

25

26 // private EPServiceProvider epService;

27 private EPAdministrator epAdmin;

28

29 /**

30 * <p></p>

31 *

32 * @param spec

33 */

34 public void register(sector.EventSpec spec) throws

EventRegistrationException{

35 Map <String ,String > events = spec.getEvents ();

36

37 for(String name: events.keySet ()){

38 String eventDef = events.get(name);

39 EPStatement statement = null;

40 try{

41 statement = (EPStatement) epAdmin.

createEQL(eventDef);

42 }catch(Exception e){

43 throw new EventRegistrationException

("Failed to register event "+name

+" due to "+e.getMessage (),e);

44 }

45

46 // System.out.println ("name: "+name);

47 Set <EventSubscriber > subscribers = spec.

getSubscription(name);

48 if(subscribers !=null){

49 for(EventSubscriber subscriber:

subscribers){

50 statement.addListener(subscriber);

B.4 Package sector.adaptor - Event Adaptation 136

51 }

52

53 }

54

55 }

56 }

57

58 /**

59 * <p>Constructor </p>

60 */

61 public DefaultEventRegistrator(EPServiceProvider

epService) {

62 Helper.checkNull(epService ,"epService");

63 //this.epService = epService;

64 this.epAdmin = epService.getEPAdministrator ();

65 }

66 }

B.4 Package sector.adaptor - Event Adaptation

B.4.1 CSVEventAdaptor.java

1

2 package sector.adaptor;

3

4 import java.util.HashMap;

5 import java.util.Map;

6

7 import net.esper.adapter.AdapterInputSource;

8 import net.esper.adapter.InputAdapter;

9 import net.esper.adapter.csv.CSVInputAdapter;

10 import net.esper.adapter.csv.CSVInputAdapterSpec;

11 import net.esper.client.EPServiceProvider;

12 import sector.EventAdatporRunTimeException;

13 import sector.Helper;

14

15 import com.topcoder.util.config.ConfigManager;

16 import com.topcoder.util.config.Property;

17

18 /**

19 * <p>CSVEventAdaptor class is the implementation of

EventAdaptor interface. It gets alarms from a CSV file.

20 *

21 * It is a wrapper of Esper InputAdapter instance. Thus ,

this class simply calles methods provided by Esper

B.4 Package sector.adaptor - Event Adaptation 137

22 * InputAdapter instance to offer funcationality defined in

interface EventAdaptor.

23 * </p>

24 */

25 public class CSVEventAdaptor implements sector.EventAdaptor

{

26

27 /*<p>The Esper InputAdapter instance which provide

the actual service </p>*/

28 private CSVInputAdapterSpec spec;

29

30 /* The alias of alarm stream generating from the CSV

file. This alias is registered in Esper Engine

*/

31 private String alias;

32

33 /* This map variable stores all attributes of one

alarm log*/

34 private Map <String , Class > eventProperties = new

HashMap <String , Class >();

35

36

37 /* The strings in the configuration file */

38 private static final String SOURCE = "Source";

39 private static final String EVENTALIAS = "EventAlias

";

40 private static final String TIMESTAMPCOLUMN = "

TimestampColumn";

41 private static final String ALARM = "Alarm";

42

43

44

45 /**

46 * <p>Constructor </p>

47 * @param nameSpace

48 * @throws CSVEventAdaptorCreationException

49 */

50 public CSVEventAdaptor(String nameSpace) throws

CSVEventAdaptorCreationException {

51 Helper.checkString(nameSpace ,"nameSpace");

52 ConfigManager cm = ConfigManager.getInstance ();

53 String file = null;

54 try {

55 file = cm.getString(nameSpace ,

SOURCE);

56

B.4 Package sector.adaptor - Event Adaptation 138

57 Property alarmFormat = cm.

getPropertyObject(nameSpace ,

ALARM);

58 if(alarmFormat == null){

59 throw new

CSVEventAdaptorCreationException

("Do not define the

format of alarms!");

60 }

61 parseEventProperties(alarmFormat);

62 alias = cm.getString(nameSpace ,

EVENTALIAS);

63

64

65 spec = new CSVInputAdapterSpec(new

AdapterInputSource(file), alias);

66

67 String timeStampColumn = cm.

getString(nameSpace ,

TIMESTAMPCOLUMN);

68 if(timeStampColumn !=null&&

timeStampColumn.trim().length ()

>0){

69 spec.setTimestampColumn(

timeStampColumn);

70 }

71

72 } catch(CSVEventAdaptorCreationException e){

73 throw e;

74

75 }catch (Exception e) {

76 throw new

CSVEventAdaptorCreationException(

"Faild to create CSVEventAdaptor

instance due to "+e.getMessage (),

e);

77 }

78

79

80 }

81

82 /**

83 * <p>Start the sending of events into the Esper egine.

</p>

84 * @param epService The reference to Esper Egnie

85 * @throws EventAdatporRunTimeException

86 */

B.4 Package sector.adaptor - Event Adaptation 139

87 public void start(EPServiceProvider epService) throws

EventAdatporRunTimeException {

88 Helper.checkNull(epService , "epService");

89 try{

90 InputAdapter inputAdapter = new

CSVInputAdapter(epService , spec);

91 inputAdapter.start();

92 }catch(Exception e){

93 throw new sector.

EventAdatporRunTimeException ("Errors

occur during processing the events: "+e.

getMessage (),e);

94 }

95 }

96

97 public String getEventAlias (){

98 return this.alias;

99 }

100

101 public Map <String ,Class > getEventProperties (){

102 return eventProperties;

103 }

104

105 private void parseEventProperties(Property

alarmProperties) throws ClassNotFoundException {

106 java.util.Enumeration names = alarmProperties.

propertyNames ();

107

108 while(names.hasMoreElements ()){

109 String name = (String) names.nextElement ();

110 // String name = ((Property)property).

getValue(NAME);

111 String classNM = alarmProperties.getValue(

name);

112 Class type = getType(classNM);

113 // System.out.println ("name "+name+" class "+

classNM);

114 this.eventProperties.put(name , type);

115 }

116

117 }

118

119 private Class getType(String classNM) throws

ClassNotFoundException {

120 if(classNM ==null){

121 throw new ClassNotFoundException("

The type of property should be

B.5 Package sector.test - Unit Test Classes 140

specified");

122 }

123

124 if(classNM.equals("int")){

125 return int.class;

126 }

127 else if(classNM.equals("double")){

128 return double.class;

129 }

130

131 else if(classNM.equals("float")){

132 return float.class;

133 }

134 else if(classNM.equals("boolean")){

135 return boolean.class;

136 }

137 else if(classNM.equals("char")){

138 return char.class;

139 }

140 else if(classNM.equals("byte")){

141 return byte.class;

142 }

143 else if(classNM.equals("short")){

144 return short.class;

145 }else if(classNM.equals("long")){

146 return long.class;

147 }

148

149 return Class.forName(classNM);

150 }

151

152 }

B.5 Package sector.test - Unit Test Classes

B.5.1 MemModelImplTest.java

1 package sector.test;

2

3 import sector.ModelDescriptionException;

4 import sector.element.BTS;

5 import sector.element.BaseRadio;

6 import sector.element.EBTS;

7 import sector.element.Element;

8 import sector.element.IllegalComponentException;

B.5 Package sector.test - Unit Test Classes 141

9 import sector.element.IllegalLinkException;

10 import sector.element.IllegalManagedObjException;

11 import sector.element.RFSiteControlPath;

12 import sector.element.BTSManager;

13 import sector.element.ZoneController;

14 import sector.model.MemModelImpl;

15 import junit.framework.Test;

16 import junit.framework.TestCase;

17 import junit.framework.TestSuite;

18 /**

19 * Tests the behavior of MemModelImpl class

20 *

21 * @author Xin Hu

22 * @version 1.0

23 */

24 public class MemModelImplTest extends TestCase {

25

26 //the MemModelImpl instance to test on

27 private MemModelImpl model;

28

29 protected void setUp() throws Exception {

30 model = new MemModelImpl ();

31 }

32

33 protected void tearDown () throws Exception {

34 model.clear();

35 model = null;

36 }

37

38 /**

39 * <p>

40 * Creates a test suite of the tests contained in this

class.

41 * </p>

42 * @return a test suite of the tests contained in this

class.

43 */

44 public static Test suite () {

45 return new TestSuite(MemModelImplTest.class);

46 }

47 public void testConstructor (){

48 assertNotNull(model);

49 }

50

51 /*

52 * Test to add one BaseRadio element into the model.

After the add , this element can be retrieved by

B.5 Package sector.test - Unit Test Classes 142

53 * getElement method provide that its name (ID)

54 */

55 public void testAddBaseRadio () throws Exception{

56 Element element = new BaseRadio("br");

57 model.addElement(element);

58

59 assertEquals(element , model.getElement(

element.getName ()));

60 }

61

62 /*

63 * Test to add two BaseRadio elements with the same

name(ID) into the model.

64 *

65 * The 2nd add will fail

66 */

67 public void testAddBaseRadioWithSameNames () throws

Exception{

68 Element element = new BaseRadio("br");

69 model.addElement(element);

70

71 assertEquals(element , model.getElement(

element.getName ()));

72

73 Element duplicate = new BaseRadio("br");

74 try{

75 model.addElement(duplicate);

76 fail("Should throw

ModelDescriptionException");

77 }catch(ModelDescriptionException e){

78

79 }

80

81 }

82

83 /*

84 * Test to add one BTS element into the model. After

the add , this element can be retrieved by

85 * getElement method provide that its name (ID)

86 */

87 public void testAddBTS () throws Exception{

88 Element element = new BTS("bts");

89 model.addElement(element);

90

91 assertEquals(element , model.getElement(

element.getName ()));

92 }

B.5 Package sector.test - Unit Test Classes 143

93

94

95 /*

96 * Test to add one good RFSiteControlPath element

into the model. After the add , this element can

be retrieved by

97 * getElement method provide that its name (ID)

98 */

99 public void testAddRFSiteControlPath () throws

Exception{

100 //one link is considered to be in the model

only its two endpoints are in the model

101 //Thus , construct two endpoints first

102 BTS endpoint1 = new BTS("bts");

103 ZoneController endpoint2 = new

ZoneController("zc");

104 model.addElement(endpoint1);

105 model.addElement(endpoint2);

106

107 //then construct the RFSiteControlPath

108 Element path = new RFSiteControlPath("RFPath

",endpoint1 ,endpoint2);

109 model.addElement(path);

110

111 assertEquals(path , model.getElement(path.

getName ()));

112 }

113

114 /*

115 * Test to add one bad RFSiteControlPath element

into the model.

116 * This RFSiteControlPath is bad because none of its

endpoints are pre -existed

117 */

118 public void testAddBadRFSiteControlPath () throws

Exception{

119 //one link is considered to be in the model

only its two endpoints are in the model

120 BTS endpoint1 = new BTS("bts");

121 ZoneController endpoint2 = new

ZoneController("zc");

122 //the construction is ok

123 Element path = new RFSiteControlPath("RFPath

",endpoint1 ,endpoint2);

124

125 //but the two endpoints are not in model

since they have not been added by calling

B.5 Package sector.test - Unit Test Classes 144

model.addElement ()

126 // exception will be thrown

127 try{

128 model.addElement(path);

129 fail("Should be

ModelDescriptionException");

130 }catch(ModelDescriptionException e){

131

132 }

133 }

134

135 /**

136 * Test to add one legal management relationship

137 */

138 public void testAddManagement () throws Exception{

139 Element zconBTS = new BTSManager("zconbts");

140 Element bts = new BTS("bts");

141 model.addElement(zconBTS);

142 model.addElement(bts);

143

144 model.addManagement(zconBTS.getName (), bts.

getName ());

145

146 assertTrue(model.isManagedBy(bts.getName (),

zconBTS.getName ()));

147 }

148

149 /**

150 * Test to add one bad management relationship: a

base radio manages a bts

151 */

152 public void testAddBadlManagement1 () throws

Exception{

153 Element br = new BaseRadio("br");

154 Element bts = new BTS("bts");

155 model.addElement(br);

156 model.addElement(bts);

157

158 try{

159 model.addManagement(br.getName (),

bts.getName ());

160 fail("should throw

ModelDescriptionException");

161 }catch(ModelDescriptionException e){

162 }

163 }

164

B.5 Package sector.test - Unit Test Classes 145

165 /**

166 * Test to add one bad management relationship: a

ZConBTS manages a base radio

167 */

168 public void testAddBadManagement2 () throws Exception

{

169 Element br = new BaseRadio("br");

170 Element zconBTS = new BTSManager("zconbts");

171 model.addElement(br);

172 model.addElement(zconBTS);

173

174 try{

175 model.addManagement(zconBTS.getName

(),br.getName ());

176 fail("should throw

ModelDescriptionException");

177 }catch(ModelDescriptionException e){

178 assertTrue(e.getCause () instanceof

IllegalManagedObjException);

179 }

180 }

181

182 /**

183 * Test to add one bad management relationship: a

ZConBTS manages a non -existing BTS

184 */

185 public void testAddBadManagement3 () throws Exception

{

186 Element zconBTS = new BTSManager("zconbts");

187 model.addElement(zconBTS);

188

189 try{

190 model.addManagement(zconBTS.getName

(),"non -existing bts");

191 fail("should throw

ModelDescriptionException");

192 }catch(ModelDescriptionException e){

193 }

194 }

195

196 /**

197 * Test to add one good management relationship: a

BTS contains a base radio

198 */

199 public void testAddGoodContainment () throws

Exception{

200 Element bts = new BTS("zconbts");

B.5 Package sector.test - Unit Test Classes 146

201 model.addElement(bts);

202

203 Element br = new BaseRadio("br");

204 model.addElement(br);

205

206 model.addContainment(bts.getName (), br.

getName ());

207

208 assertTrue(model.isContainedIn(br.getName (),

bts.getName ()));

209 }

210

211 /**

212 * Test to add one bad management relationship: a

base radio contains a BTS

213 */

214 public void testAddBadContainment () throws Exception

{

215

216 Element br = new BaseRadio("br");

217 model.addElement(br);

218

219 Element bts = new BTS("zconbts");

220 model.addElement(bts);

221

222 // illegal management relationship: a base

radio contains a BTS

223 try{

224 model.addContainment(br.getName (),

bts.getName ());

225 fail("Should be

ModelDescriptionException");

226 }catch(ModelDescriptionException e){

227 assertTrue(e.getCause () instanceof

IllegalComponentException);

228 }

229

230 }

231

232 /**

233 * Test to add one good connectivity relationship: a

Zone Controller connects to

234 * a ebts via the RF control path

235 */

236 public void testAddGoodConnectivity () throws

Exception{

237 // create a BTS element and add it into model

B.5 Package sector.test - Unit Test Classes 147

238 BTS bts = new BTS("bts");

239 model.addElement(bts);

240

241 // create a ZoneController element and add it

into model

242 ZoneController zc = new ZoneController("zc")

;

243 model.addElement(zc);

244

245 // create a RFSiteControlPath element and add

it into model

246 Element link = new RFSiteControlPath("RFPath

",bts ,zc);

247 model.addElement(link);

248

249 //add good connectivity relationship among

the link , bts , zc elements created before

250 model.addConnectivity(link.getName (), bts.

getName (), zc.getName ());

251

252

253 //test after adding the connectivity

relationship

254 //a. link is connected to bts and zc

255 assertTrue(model.isConnectedTo(link.getName

(), bts.getName ()));

256 assertTrue(model.isConnectedTo(link.getName

(), zc.getName ()));

257 //b. bts and zc are connected via link

258 assertTrue(model.isConnectedVia(bts.getName

(),link.getName ()));

259 assertTrue(model.isConnectedVia(zc.getName ()

,link.getName ()));

260 //c. bts and zc are connected

261 assertTrue(model.isConnectedTo(bts.getName ()

, zc.getName ()));

262 assertTrue(model.isConnectedTo(zc.getName (),

bts.getName ()));

263 }

264

265 /**

266 * Test to add one bad connectivity relationship: a

Zone Controller tries to connect to a base radio

267 * via the RF control path

268 */

269 public void testAddBadConnectivity1 () throws

Exception{

B.5 Package sector.test - Unit Test Classes 148

270 // create a BTS element and add it into model

271 BTS bts = new BTS("bts");

272 model.addElement(bts);

273

274 // create a ZoneController element and add it

into model

275 ZoneController zc = new ZoneController("zc")

;

276 model.addElement(zc);

277

278 // create a RFSiteControlPath element and add

it into model

279 Element link = new RFSiteControlPath("RFPath

",bts ,zc);

280 model.addElement(link);

281

282 // create a Base Radio element and add it

into the model

283 Element br = new BaseRadio("br");

284 model.addElement(br);

285

286 //add a bad relationship: a Zone Controller

tries to connect to a base radio via the

RF site control path

287 try{

288 model.addConnectivity(link.getName ()

, br.getName (), zc.getName ());

289 fail("Should throw

ModelDescriptionException");

290 }catch(ModelDescriptionException e){

291 assertTrue(e.getCause () instanceof

IllegalLinkException);

292 }

293

294 }

295

296 /**

297 * Test to add one bad connectivity relationship: a

Zone Controller tries to connect to a EBTS

298 * via a base radio , which is not a link element

299 */

300 public void testAddBadConnectivity2 () throws

Exception{

301 // create a BTS element and add it into model

302 BTS bts = new BTS("bts");

303 model.addElement(bts);

304

B.5 Package sector.test - Unit Test Classes 149

305 // create a ZoneController element and add it

into model

306 ZoneController zc = new ZoneController("zc")

;

307 model.addElement(zc);

308

309 // create a Base Radio element and add it

into the model

310 Element br = new BaseRadio("br");

311 model.addElement(br);

312

313 //add a bad relationship: a Zone Controller

tries to connect to a base radio via the

RF site control path

314 try{

315 model.addConnectivity(br.getName (),

zc.getName (), bts.getName ());

316 fail("Should throw

ModelDescriptionException");

317 }catch(ModelDescriptionException e){

318 }

319

320 }

321

322 /**

323 * Test to add one bad connectivity relationship: a

Zone Controller tries to connect to a RF site

control path , which is not a node element

324 * via another RF site control path

325 */

326 public void testAddBadConnectivity3 () throws

Exception{

327 // create a BTS element and add it into model

328 BTS bts = new BTS("bts");

329 model.addElement(bts);

330

331 // create a ZoneController element and add it

into model

332 ZoneController zc = new ZoneController("zc")

;

333 model.addElement(zc);

334

335 Element path = new RFSiteControlPath("path",

bts ,zc);

336 model.addElement(path);

337

B.5 Package sector.test - Unit Test Classes 150

338 //add a bad relationship: a Zone Controller

tries to connect to a RF site control

path , which is not a node element

339 //via another RF site control path

340 try{

341 model.addConnectivity(path.getName ()

, zc.getName (), path.getName ());

342 fail("Should throw

ModelDescriptionException");

343 }catch(ModelDescriptionException e){

344 }

345

346 }

347

348 /**

349 * Test get an element from the model by providing

its name

350 */

351 public void testGetElement () throws Exception{

352 // create a BTS element and add it into model

353 BTS bts = new BTS("bts");

354 model.addElement(bts);

355

356 assertEquals(model.getElement(bts.getName ())

,bts);

357

358 }

359

360 /**

361 * Test get an element from the model by providing

its name

362 */

363 /* public void testRemoveElement () throws Exception{

364 // create a BTS element and add it into model

365 BTS bts = new BTS("bts");

366 model.addElement(bts);

367

368 assertEquals(model.getElement(bts.getName ())

,bts);

369

370 }*/

371

372

373 /**

374 * Test to remove a containment relationship from

model

375 */

B.5 Package sector.test - Unit Test Classes 151

376 public void testRemoveContainment () throws Exception

{

377 // create a Base Radio and add it into model

378 BaseRadio br = new BaseRadio("br");

379 model.addElement(br);

380

381 // create a EBTS and add it into model

382 EBTS ebts = new EBTS("ebts");

383 model.addElement(ebts);

384 //add the contaimnet relationship

385 model.addContainment(ebts.getName (), br.

getName ());

386 //so the isContainedIn should return true

387 assertTrue(model.isContainedIn(br.getName (),

ebts.getName ()));

388

389 //call removeContaiment ()

390 model.removeContainment(ebts.getName (), br.

getName ());

391 //now the inContainedIn should return false

392 assertFalse(model.isContainedIn(br.getName ()

, ebts.getName ()));

393

394 }

395

396 /**

397 * Test to remove a management relationship from

model

398 */

399 public void testRemoveManagement () throws Exception{

400 // create a EBTS and add it into model

401 EBTS ebts = new EBTS("ebts");

402 model.addElement(ebts);

403

404 // create a ZConEBTS and add it into model

405 BTSManager zconebts = new BTSManager("

zconebts");

406 model.addElement(zconebts);

407

408 //add the management relationship

409 model.addManagement(zconebts.getName (), ebts

.getName ());

410 //so the isManagedBy should return true

411 assertTrue(model.isManagedBy(ebts.getName (),

zconebts.getName ()));

412

413 //call removeManagment ()

B.5 Package sector.test - Unit Test Classes 152

414 model.removeManagement(zconebts.getName (),

ebts.getName ());

415 //now the isManagedBy should return false

416 assertFalse(model.isManagedBy(ebts.getName ()

,zconebts.getName ()));

417

418 }

419

420 /**

421 * Test to remove a connectivity relationship from

model

422 */

423 public void testRemoveConnectivity () throws

Exception{

424 // create a EBTS and add it into model

425 EBTS ebts = new EBTS("ebts");

426 model.addElement(ebts);

427

428 // create a Zone Controller and add it into

model

429 ZoneController zc = new ZoneController("zc")

;

430 model.addElement(zc);

431

432 // create a link which is from zc to ebts and

add it into model

433 String linkName = "link";

434 RFSiteControlPath link = new

RFSiteControlPath(linkName ,ebts ,zc);

435 model.addElement(link);

436

437 //add the connectivity relationship

438 model.addConnectivity(link.getName (), ebts.

getName (), zc.getName ());

439

440 //so the isConnectedTo should return true

441 assertTrue(model.isConnectedTo(ebts.getName

(),zc.getName ()));

442 assertTrue(model.isConnectedTo(link.getName

(),zc.getName ()));

443 assertTrue(model.isConnectedTo(link.getName

(),ebts.getName ()));

444

445 //so the isConnectedVia should return true

446 assertTrue(model.isConnectedVia(zc.getName ()

, link.getName ()));

B.5 Package sector.test - Unit Test Classes 153

447 assertTrue(model.isConnectedVia(ebts.getName

(), link.getName ()));

448

449 //call removeConnectivity

450 model.removeConnectivity(link.getName (),zc.

getName (), ebts.getName ());

451 //now the isConnectedTo should return false

452 assertFalse(model.isConnectedTo(ebts.getName

(),zc.getName ()));

453 assertFalse(model.isConnectedTo(linkName ,zc.

getName ()));

454 assertFalse(model.isConnectedTo(linkName ,

ebts.getName ()));

455 assertFalse(model.isConnectedVia(zc.getName

(), linkName));

456 assertFalse(model.isConnectedVia(ebts.

getName (),linkName));

457 assertNull(model.getElement(linkName));

458

459 }

460

461 /**

462 * Test a if the model can know a component ’s type

acoording to the component ’s name

463 */

464 public void testIsTypeOf () throws Exception{

465 // create a Base Radio and add it into model

466 BaseRadio br = new BaseRadio("br");

467 model.addElement(br);

468

469 //The isTypeOf should return true since the

component is a base radio

470 assertTrue(model.isTypeOf(br.getName (),

BaseRadio.class.getName ()));

471

472 assertFalse(model.isTypeOf("no this

component",BaseRadio.class.getName ()));

473 assertFalse(model.isTypeOf(br.getName (),EBTS

.class.getName ()));

474

475 // create a EBTS and add it into model

476 EBTS ebts = new EBTS("ebts");

477 model.addElement(ebts);

478

479 //The isTypeOf should return true since the

component is a base radio

B.5 Package sector.test - Unit Test Classes 154

480 assertTrue(model.isTypeOf(ebts.getName (),

EBTS.class.getName ()));

481

482 // create a Zone Controller and add it into

model

483 ZoneController zc = new ZoneController("zc")

;

484 model.addElement(zc);

485

486 //The isTypeOf should return true since the

component is a base radio

487 assertTrue(model.isTypeOf(zc.getName (),

ZoneController.class.getName ()));

488

489 // create a Zone Controller and add it into

model

490 RFSiteControlPath link = new

RFSiteControlPath("link",zc,ebts);

491 model.addElement(link);

492

493 //The isTypeOf should return true since the

component is a base radio

494 assertTrue(model.isTypeOf(link.getName (),

RFSiteControlPath.class.getName ()));

495

496

497 }

498

499 //fixme miss test onremoveElement

500

501

502 }

B.5.2 DefaultEventSpecTest.java

1 package sector.test;

2

3 import java.io.File;

4 import java.util.Set;

5

6 import junit.framework.Test;

7 import junit.framework.TestCase;

8 import junit.framework.TestSuite;

9 import sector.EventSpecException;

10 import sector.EventSubscriber;

11 import sector.client.BRAlert;

12 import sector.registrator.DefaultEventSpec;

B.5 Package sector.test - Unit Test Classes 155

13

14 /**

15 * Tests the behavior of DefaultEventSpec class

16 *

17 * @author Xin Hu

18 * @version 1.0

19 */

20 public class DefaultEventSpecTest extends TestCase {

21

22 /**

23 * The xml config file storing event specification.

24 */

25 private File file = null;

26

27 /**

28 * The DefaultEventSpec to test on.

29 */

30 private DefaultEventSpec eventSpec = null;

31

32 /**

33 * Set up testing environment.

34 *

35 * @throws Exception to JUnit.

36 */

37 protected void setUp() throws Exception {

38 eventSpec = new DefaultEventSpec ();

39

40 }

41

42 /**

43 * Tear down testing environment.

44 *

45 * @throws Exception to JUnit.

46 */

47 protected void tearDown () throws Exception {

48 eventSpec = null;

49 if(file!=null){

50 file.delete ();

51 file = null;

52 }

53 }

54

55 /**

56 * <p>

57 * Creates a test suite of the tests contained in this

class.

58 * </p>

B.5 Package sector.test - Unit Test Classes 156

59 * @return a test suite of the tests contained in this

class.

60 */

61 public static Test suite () {

62 return new TestSuite(DefaultEventSpecTest.class);

63 }

64

65 /**

66 * Test create DefaultEventSpec by calling

DefaultEventSpec(String)

67 */

68 public void testGoodConstructor () throws Exception {

69 String eventName1 = "BRLocked";

70 String def1 = "insert into BRLocked select * from

AlarmLog" +

71 "where message like ’%(3)%DISABLED

%(3004)%LOCKED%’ and Predicater.

isBaseRadio(nodename)";

72

73 String eventName2 = "EBTSDown";

74 String def2 = "insert into EBTSDown select * from

AlarmLog "+

75 " where Predicater.

isEBTS(nodename) and message like

’%(31)%NO TRUNKING %(31004)%NO

CONTROL CHANNEL%’ ";

76

77 String eventName3 = "ZCEBTSDown";

78 String def3 = " insert into ZCEBTSDown

select * from AlarmLog "+

79 " where Predicater.isZConBTS(

nodename) and message like ’%(101)%NOT

WIDE TRUNKING %(101005)%NO CONTROL CHANNEL

%’ ";

80

81 String eventName4 = "BRLockedAlert";

82 String def4 = " insert into BRLockedAlert(

nodename ,message ,event_time) select A.nodename , A

.message , A.event_time " +

83 " from pattern [every (A=

BRLocked -> B=ZCEBTSDown -> C=

EBTSDown where timer:within (30

sec))] where " +

84 " Predicater.isContainedIn(A.

nodename ,C.nodename) and

Predicater.isManagedBy(C.nodename

, B.nodename) ";

B.5 Package sector.test - Unit Test Classes 157

85

86 String content = " <?xml version =\"1.0\" encoding =\"

UTF -8\"?>" +

87 "<EventSpecification > "+

88 " <Event name=’"+eventName1+"’> "+

89 " <Definition > "+ def1

+

90 " </Definition >"+

91 " </Event >"+

92 " <Event name=’"+eventName2+"’>"+

93 " <Definition >"+ def2+

94 " </Definition > "+

95 " </Event > "+

96 " <Event name=’"+eventName3+"’> "+

97 " <Definition > "+ def3

+

98 " </Definition > " +

99 "</Event > "+

100

101 "<Event name=’BRLockedAlert ’> " +

102 " <Definition > " + def4+

103 " </Definition > " +

104 "</Event > " +

105

106 "<Subscriber class =’sector.client.

BRDown ’> " +

107 " <Event name =’"+eventName1+"

’ /> " +

108 " <Event name =’"+eventName2+"

’ /> " +

109 " <Event name =’"+eventName3+"

’ /> " +

110 "</Subscriber >" +

111

112 "<Subscriber class =’sector.client.BRAlert ’> " +

113 " <Event name =’"+eventName4+"’ /> " +

114 "</Subscriber > " +

115 "</EventSpecification >";

116 file = TestHelper.createTestXMLFile(this.getName (),

content);

117 this.eventSpec = new DefaultEventSpec(file.

getAbsolutePath ());

118

119 assertNotNull(this.eventSpec);

120

121 assertTrue(eventSpec.containsEvent(eventName1));

122 assertTrue(eventSpec.containsEvent(eventName2));

B.5 Package sector.test - Unit Test Classes 158

123 assertTrue(eventSpec.containsEvent(eventName3));

124 assertTrue(eventSpec.containsEvent(eventName4));

125

126 assertTrue(eventSpec.getEventDef(eventName1).indexOf

(def1) >=0);

127 assertTrue(eventSpec.getEventDef(eventName2).indexOf

(def2) >=0);

128 assertTrue(eventSpec.getEventDef(eventName3).indexOf

(def3) >=0);

129 assertTrue(eventSpec.getEventDef(eventName4).indexOf

(def4) >=0);

130

131 Set <EventSubscriber > subscribers = eventSpec.

getSubscription(eventName1);

132 assertTrue(subscribers.iterator ().next() instanceof

sector.client.BRDown);

133

134 subscribers = eventSpec.getSubscription(eventName2);

135 assertTrue(subscribers.iterator ().next() instanceof

sector.client.BRDown);

136

137 subscribers = eventSpec.getSubscription(eventName3);

138 assertTrue(subscribers.iterator ().next() instanceof

sector.client.BRDown);

139

140 subscribers = eventSpec.getSubscription(eventName4);

141 assertTrue(subscribers.iterator ().next() instanceof

sector.client.BRAlert);

142 }

143

144 /**

145 * Test create DefaultEventSpec by calling

DefaultEventSpec(String) with wrong config file:

subscriber

146 * try to subscribe to the non -existing events

147 */

148 public void testBadConstructor1 () throws Exception {

149

150 String content = " <?xml version =\"1.0\" encoding =\"

UTF -8\"?>" +

151 "<EventSpecification > "+

152

153 "<Subscriber class =’sector.client.

BRDown ’> " +

154 " <Event name =’non -existing ’

/> " +

155 "</Subscriber >" +

B.5 Package sector.test - Unit Test Classes 159

156

157 " </EventSpecification >";

158 file = TestHelper.createTestXMLFile(this.getName (),

content);

159

160 try{

161 this.eventSpec = new DefaultEventSpec(file.

getAbsolutePath ());

162 fail("Should EventSpecException");

163 }catch(EventSpecException e){

164

165 }

166

167 }

168

169 /**

170 * Test create DefaultEventSpec by calling

DefaultEventSpec(String) with wrong config file: the

specified subscriber

171 * is not a tyep of sector.EventSubscriber

172 */

173 public void testBadConstructor2 () throws Exception {

174 String eventName1 = "BRLocked";

175 String def1 = "insert into BRLocked select * from

AlarmLog" +

176 "where message like ’%(3)%DISABLED

%(3004)%LOCKED%’ and Predicater.

isBaseRadio(nodename)";

177

178 String content = " <?xml version =\"1.0\" encoding =\"

UTF -8\"?>" +

179 "<EventSpecification > "+

180 " <Event name=’"+eventName1+"’> "+

181 " <Definition > "+ def1+

182 " </Definition >"+

183 " </Event >"+

184

185 "<Subscriber class =’wrongclass ’> "

+

186 " <Event name =’"+eventName1+"

’ /> " +

187 "</Subscriber >" +

188

189 "</EventSpecification >";

190 file = TestHelper.createTestXMLFile(this.getName (),

content);

191

B.5 Package sector.test - Unit Test Classes 160

192 try{

193 this.eventSpec = new DefaultEventSpec(file.

getAbsolutePath ());

194 fail("Should EventSpecException");

195 }catch(EventSpecException e){

196

197 }

198

199 }

200

201 /**

202 * Test create DefaultEventSpec by calling

DefaultEventSpec(String) with wrong config file: the

event definition is missing

203 */

204 public void testBadConstructor3 () throws Exception {

205 String eventName1 = "BRLocked";

206

207 String content = " <?xml version =\"1.0\" encoding =\"

UTF -8\"?>" +

208 "<EventSpecification > "+

209 " <Event name=’"+eventName1+"’> "+

210 " </Event >"+

211

212 "<Subscriber class =’wrongclass ’> "

+

213 " <Event name =’"+eventName1+"

’ /> " +

214 "</Subscriber >" +

215

216 "</EventSpecification >";

217 file = TestHelper.createTestXMLFile(this.getName (),

content);

218

219 try{

220 this.eventSpec = new DefaultEventSpec(file.

getAbsolutePath ());

221 fail("Should EventSpecException");

222 }catch(EventSpecException e){

223

224 }

225

226 }

227

228 /**

229 * Test addEvent by providing valid parameter

230 */

B.5 Package sector.test - Unit Test Classes 161

231 public void testGoodAddEvent () throws Exception {

232 String eventName = "test";

233 String definition = "insert into test select * from

AlarmLog";

234

235 //call addEvent ()

236 eventSpec.addEvent(eventName , definition);

237

238 //test after calling addEvent ()

239 assertEquals(definition ,eventSpec.getEventDef(

eventName));

240 assertTrue(eventSpec.containsEvent(eventName));

241

242 }

243

244 /**

245 * Test addEvent by providing invalid parameter: the

added event has the same name as a particular event

246 * which is already in event specification

247 */

248 public void testBadAddEvent () throws Exception {

249

250 // create one event and add it into event

specification

251 String eventName = "test";

252 String definition = "insert into test select * from

AlarmLog";

253 eventSpec.addEvent(eventName , definition);

254

255 // create another event with the same name as the

first one’s and add it into event specification

256 String eventName2 = "test";

257 String definition2 = "insert into test select * from

AlarmLog where name = ’baseradio ’ ";

258 try{

259 eventSpec.addEvent(eventName2 , definition2);

260 fail("should be EventSpecException");

261 }catch(EventSpecException e){

262

263 }

264

265 }

266

267 /**

268 * Test addSubscription by providing valid parameter

269 */

270 public void testGoodAddSubscription () throws Exception {

B.5 Package sector.test - Unit Test Classes 162

271

272 // create one event and add it into event

specification

273 String eventName = "test";

274 String definition = "insert into test select * from

AlarmLog";

275 eventSpec.addEvent(eventName , definition);

276

277 // create one event subcriber

278 EventSubscriber subscriber = new BRAlert () ;

279

280 //call addSubscription

281 eventSpec.addSubscription(eventName , subscriber);

282 assertTrue(eventSpec.isSubscribledBy(eventName ,

subscriber));

283

284 //try to add one more event subscriber

285 EventSubscriber subscriber2 = new BRAlert () ;

286 eventSpec.addSubscription(eventName , subscriber2);

287 assertTrue(eventSpec.isSubscribledBy(eventName ,

subscriber2));

288

289

290 }

291

292 /**

293 * Test addSubscription by providing invalid parameter:

the event that one subscriber wants to

294 * subscribe does not exist

295 */

296 public void testBadAddSubscription () throws Exception {

297

298 // create one event subcriber

299 EventSubscriber subscriber = new BRAlert () ;

300

301 try{

302 //try to bind this subscriber with a non -

exist event

303 eventSpec.addSubscription("non -exist",

subscriber);

304 fail("should be EventSpecException");

305 }catch(EventSpecException e){

306

307 }

308 }

309

310 /**

B.5 Package sector.test - Unit Test Classes 163

311 * Test removeEvent

312 */

313 public void testRemoveEvent () throws Exception {

314 String eventName = "test";

315 String definition = "insert into test select * from

AlarmLog";

316

317 //call addEvent ()

318 eventSpec.addEvent(eventName , definition);

319

320 //test after calling addEvent ()

321 assertTrue(eventSpec.containsEvent(eventName));

322

323 eventSpec.removeEvent(eventName);

324 //now the event specification does not contain that

event

325 assertFalse(eventSpec.containsEvent(eventName));

326 //and there should no subscribers subscribing that

event

327 assertNull(eventSpec.getSubscription(eventName));

328

329 }

330

331 /**

332 * Test removeSubscription

333 */

334 public void testRemoveSubscription () throws Exception {

335

336 // create the event definition and add it into event

specification

337 String eventName = "test";

338 String definition = "insert into test select * from

AlarmLog";

339 //call addEvent ()

340 eventSpec.addEvent(eventName , definition);

341

342 // create the subscriber which is subscribing that

event

343 EventSubscriber subscriber = new BRAlert ();

344 eventSpec.addSubscription(eventName , subscriber);

345

346 //test prior to calling removeSubscription ()

347 assertNotNull(eventSpec.getSubscription(eventName));

348

349

350 eventSpec.removeSubscription(eventName);

351 //after calling removeSubscription ()

B.6 Package sector.test.integration.suppression - Test Classes for
Console Login Failed scenario 164

352 assertNull(eventSpec.getSubscription(eventName));

353 assertFalse(eventSpec.isSubscribledBy(eventName ,

subscriber));

354

355 }

356

357

358

359 }

B.6 Package sector.test.integration.suppression

- Test Classes for Console Login Failed sce-
nario

B.6.1 LoginFailedTest.java

1 package sector.test.integration.suppression;

2

3 import java.util.Date;

4

5 import sector.Sector;

6 import sector.SectorCreationException;

7 import sector.test.TestHelper;

8

9 public class LoginFailedTest {

10

11 public LoginFailedTest (){

12

13 }

14

15 public static void main(String [] args){

16 try {

17

18 TestHelper.loadMultipleXMLConfig("

sector.Sector", "test_files/

LoginFailedConfig.xml");

19 TestHelper.loadMultipleXMLConfig("

sector.model.XMLModeler", "

test_files/LoginFailedConfig.xml"

);

20 TestHelper.loadMultipleXMLConfig("

sector.adaptor.CSVEventAdaptor",

"test_files/LoginFailedConfig.xml

");

B.6 Package sector.test.integration.suppression - Test Classes for
Console Login Failed scenario 165

21

22 Sector sector = new Sector("sector.

Sector");

23 sector.buildModel ();

24

25 sector.setUpPredicater ();

26 sector.registerEvent ();

27 System.out.println(new Date()+"-----

Start test -----");

28 sector.start ();

29 } catch (SectorCreationException e) {

30 e.printStackTrace ();

31 } catch (Exception e) {

32 e.printStackTrace ();

33 }

34 }

35

36 }

B.6.2 LoginFailedAlert.java

1 package sector.test.integration.suppression;

2

3 import java.util.Date;

4

5 import net.esper.event.EventBean;

6 import sector.EventSubscriber;

7

8 public class LoginFailedAlert implements EventSubscriber {

9 public void update(EventBean [] newEvents , EventBean

[] oldEvents) {

10 if(newEvents == null){

11 return;

12 }

13

14 EventBean event = newEvents [0];

15 System.out.println(new Date()+"#########

Detected a fault #########:\ nConsole("

16 + event.get("nodename").toString ()

+") login failed at "+event.get(

"event_time"));

17

18 }

19

20 }

B.7 Package sector.test.integration.br - Test Classes for Base Radio
Locked scenario 166

B.7 Package sector.test.integration.br - Test
Classes for Base Radio Locked scenario

Note that only important class is listed

B.7.1 BaseRadioLockedAlert.java

1 package sector.test.integration.br;

2

3 import java.util.Date;

4

5 import net.esper.event.EventBean;

6 import sector.EventSubscriber;

7

8 public class BaseRadioLockedAlert implements EventSubscriber

{

9 public void update(EventBean [] newEvents , EventBean

[] oldEvents) {

10 if(newEvents == null){

11 return;

12 }

13

14 EventBean event = newEvents [0];

15 System.out.println(new Date()+"#########

Detected a fault #########:\ nBase Radio " +

event.get("nodename").toString () +

16 " is disabled");

17

18 }

19

20 }

B.8 Package sector.test.integration.ebts - Test
Classes for EBTS Disabled scenario

Note that only important classes are listed

B.8.1 BothSitePathDownAlert.java

B.8 Package sector.test.integration.ebts - Test Classes for EBTS
Disabled scenario 167

1 package sector.test.integration.ebts;

2

3 import java.util.Date;

4

5 import net.esper.event.EventBean;

6 import sector.EventSubscriber;

7

8 public class BothSitePathDownAlert implements

EventSubscriber {

9 public void update(EventBean [] newEvents , EventBean

[] oldEvents) {

10 if(newEvents == null){

11 return;

12 }

13

14 EventBean event = newEvents [0];

15 System.out.println(new Date()+"---Detected an

event ---:\nBoth RFSiteControlPaths (" +

event.get("path1").toString () +

16 " and "+event.get("path2").

toString ()+") are down" +

17 "\nevent_time="+

event.get("time2"

));

18

19 }

20

21 }

B.8.2 EBTSDisabledAlert.java

1 package sector.test.integration.ebts;

2

3 import java.util.Date;

4

5 import net.esper.event.EventBean;

6 import sector.EventSubscriber;

7

8 public class EBTSDisabledAlert implements EventSubscriber {

9 public void update(EventBean [] newEvents , EventBean

[] oldEvents) {

10 if(newEvents == null){

11 return;

12 }

13

14 EventBean event = newEvents [0];

B.8 Package sector.test.integration.ebts - Test Classes for EBTS
Disabled scenario 168

15 System.out.println(new Date()+"#########

Detected a fault #########:\ nEBTS " + event.

get("nodename").toString () +

16 " is disabled");

17

18 }

19

20 }

169

Appendix C

XML description files

C.1 The DTD of XML model description file

<!DOCTYPE NetworkConfig [

<!ELEMENT NetworkConfig (Element+, Connectivity, Containment, Management)>

<!-- NE declaration section-->
<!ELEMENT Element >
<!ATTLIST Element name CDATA #REQUIRED>
<!ATTLIST Element class CDATA #REQUIRED>

<!-- connectivity dependency section-->
<!ELEMENT Connectivity (Link*)>
<!ELEMENT Link (Point+)>
<!ATTLIST Link name CDATA #REQUIRED>
<!ATTLIST Link class CDATA #REQUIRED>
<!ELEMENT Point >
<!ATTLIST Point name CDATA #REQUIRED>

<!-- Containment dependency section-->
<!ELEMENT Containment (Container*)>

C.2 The DTD of XML event specification file 171

<!ELEMENT Container (Component+)>
<!ATTLIST Container name CDATA #REQUIRED>
<!ELEMENT Component >
<!ATTLIST Component name CDATA #REQUIRED>

<!-- Management dependency section-->
<!ELEMENT Management (Manager*)>
<!ELEMENT Manager (Managed+)>
<!ATTLIST Manager name CDATA #REQUIRED>
<!ELEMENT Managed >
<!ATTLIST Managed name CDATA #REQUIRED>

C.2 The DTD of XML event specification file

<!DOCTYPE EventSpecification [

<!ELEMENT EventSpecification (Event+, Subscriber+)>

<!-- event definition section-->
<!ELEMENT Event (Definition) >
<!ATTLIST Event name CDATA #REQUIRED>
<!ELEMENT Definition (#PCDATA) >

<!-- event subscription section-->
<!ELEMENT Subscriber (Event+)>
<!ATTLIST Subscriber class CDATA #REQUIRED>

172

Appendix D

Testing

All the tests are based on a basic Dimetra system. This system contains a
zone controller and a EBTS site which are connected via two site control links.
Furhermore, that EBTS site contains a base radio and has a manager. This
system can be modeled in an XML document as the follows:

<?xml version="1.0" encoding="UTF-8"?>
<NetworkConfig>
<Element name=’EbtsBaseRadio_1.1:zone11’
class=’sector.element.BaseRadio’/>

<Element name=’ZC1:zone11’
class=’sector.element.ZoneController’/>

<Element name=’Zcz11ebts01:zone11’
class=’sector.element.BTSManager’/>

<Element name=’z11ebts01:zone11’
class=’sector.element.EBTS’/>

<Connectivity>
<Link name=’RFSiteControlPath_0.1.1:zone11’

class=’sector.element.RFSiteControlPath’>

D.1 Console Login Failed Testing 174

<Point name=’z11ebts01:zone11’/>
<Point name=’ZC1:zone11’/>
</Link>
<Link name=’RFSiteControlPath_0.1.2:zone11’

class=’sector.element.RFSiteControlPath’>
<Point name=’z11ebts01:zone11’/>
<Point name=’ZC1:zone11’/>

</Link>
</Connectivity>

<Containment>
<Container name=’z11ebts01:zone11’>

<Component name=’EbtsBaseRadio_1.1:zone11’/>
</Container>

</Containment>

<Management>
<Manager name=’Zcz11ebts01:zone11’>

<Managed name=’z11ebts01:zone11’/>
</Manager>

</Management>

</NetworkConfig>

D.1 Console Login Failed Testing

D.1.1 Event Definitions

• LoginFailed

insert into LoginFailed select * from AlarmLog
where
message like ’%Audit: User Login Failed:%The last opera-
tion was CONSOLE Login Failed.’
and nodename = ’ccgw01.vortex1.zone11’

• SuppressedLoginFailed

insert into SuppressedLoginFailed
select * from LoginFailed output first every 300 seconds

D.2 Base Radio is Locked Testing 175

D.1.2 Results

Refer to Fig. 7.3.

D.2 Base Radio is Locked Testing

D.2.1 Event Definitions

• BRLocked

insert into BRLocked select * from AlarmLog
where message like ’%(3)%DISABLED%(3004)%LOCKED%’
and Predicater.isBaseRadio(nodename)

• EBTSDown

insert into EBTSDown select * from AlarmLog
where Predicater.isEBTS(nodename) and
message like ’%(31)%NO TRUNKING%(31004)%NO CONTROL CHANNEL%’

• ZCEBTSDown

insert into ZCEBTSDown select * from AlarmLog
where Predicater.isBTSManager(nodename) and
message like ’%(101)%NOT WIDE TRUNKING%(101005)%NO CONTROL CHANNEL%’

• BRLockedAlert

insert into BRLockedAlert(nodename,message,event_time)
select A.nodename, A.message, A.event_time from
pattern [every (A=BRLocked -> B=ZCEBTSDown -> C=EBTSDown
where timer:within(30 sec))]
where Predicater.isContainedIn(A.nodename,C.nodename)
and Predicater.isManagedBy(C.nodename, B.nodename)

D.2.2 Results

Refer to Fig. 7.4.

D.3 EBTS is Disabled Testing 176

D.3 EBTS is Disabled Testing

D.3.1 Event Definitions

• SitePathDown

insert into SitePathDown select * from AlarmLog
where message like ’%(1)%CONFIGURING%(1003)%CONNECTION DOWN%’
and Predicater.isRFSiteControlPath(nodename)

• ActiveBackupSitePath

insert into ActiveBackupSitePath select * from AlarmLog
where message like ’%(3)%ACTIVE%(3006)%PREFERRED N/A%’ and
Predicater.isRFSiteControlPath(nodename)

• BothSitePathDown

insert into BothSitePathDown(path1,message1,time1,path2,message2,
time2)
select A.nodename, A.message, A.event_time, C.nodename, C.message,
C.event_time
from pattern [every (A=SitePathDown -> B=ActiveBackupSitePath ->
C=SitePathDown where timer:within(5 sec))]
where A.nodename != B.nodename and B.nodename = C.nodename

• ZCEBTSPathDown

insert into ZCEBTSPathDown select * from AlarmLog
where Predicater.isBTSManager(nodename) and
message
like ’%(101)%NOT WIDE TRUNKING%(101006)%SITE CONTROL PATH DOWN%’

• EBTSUnreacherable

insert into EBTSUnreacherable select * from AlarmLog
where Predicater.isEBTS(nodename) and message
like ’%(9994)%UNKNOWN%(9994)%UNREACHABLE FROM MANAGER (SNMP TIMEOUT)%’

• EBTSDownAlert

insert into EBTSDownAlert(nodename,message,event_time)
select C.nodename, C.message, C.event_time from

D.3 EBTS is Disabled Testing 177

pattern [every (A=BothSitePathDown -> B=ZCEBTSPathDown ->
C=EBTSUnreacherable where timer:within(75 sec))]
where Predicater.isConnectedTo(A.path1,C.nodename) and
Predicater.isConnectedTo(A.path2,C.nodename) and
Predicater.isManagedBy(C.nodename, B.nodename)

D.3.2 Results

Refer to Fig. 7.5.

178

Bibliography

[1] K. Houck, S. Calo, A. Finkel, Towards a practical alarm correlation system,
in: A.S. Sethi, F. Faure-Vincent, Y. Raynaud (Eds.), Integrated Network
Management IV, Chapman and Hall, London, 1995, pp. 226-237 [86].

[2] M. Steinder and A. S. Sethi, A Survey of Fault Localization Techniques in
Computer Networks. [Elsevier] Science of Computer Programming, S.I. on
Network and System Administration, 2004.

[3] G. Liu, A.K. Mok, E.J. Yang, Composite events for network event corre-
lation, in: M. Sloman, S. Mazumdar, E. Lupu (Eds.), Integrated Network
Management VI, IEEE, 1999, pp. 247-260 [89].

[4] M. Hasan, B. Sugla, and Viswanathan R., A Conceptual Framework for
Network Management Event Correlation and Filtering Systems, IEEE/IFIP
Symposium on Integrated Network Management, 1999, 233-246.

[5] Dilmar Malheiros Meira, A Model For Alarm Correlation in Telecommuni-
cations Networks, Ph.D. Thesis, Federal University of Minas Gerais, 1997.

[6] Gabriel Jakobson, Mark D.Weissman, Alam Correlation, IEEE Network,
1993.

[7] G. Jakobson, M.D. Weissman, Real-time telecommunication network man-
agement: Extending event correlation with temporal constraints, in: A.S.
Sethi, F. Faure-Vincent, Y. Raynaud (Eds.), Integrated Network Manage-
ment IV, Chapman and Hall, London, 1995, pp. 290-302 [86].

[8] S. Kätker, M. Paterok, Fault isolation and event correlation for integrated
fault management, in: A. Lazar, R. Sarauo, R. Stadler (Eds.), Integrated
Network Management V, Chapman and Hall, London, 1997,pp. 583-596 [60].

BIBLIOGRAPHY 180

[9] M. Steinder, A.S. Sethi, End-to-end service failure diagnosis using belief
networks, in: R. Stadler, M. Ulema (Eds.), Proc. Network Operation and
Management Symposium, Florence, Italy, April 2002, pp. 375-390 [91].

[10] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, S. Stolfo, A coding approach
to event correlation, in: A.S. Sethi, F. Faure-Vincent, Y. Raynaud (Eds.),
Integrated Network Management IV, Chapman and Hall, London, 1995, pp.
266-277 [86].

[11] S.A. Yemini, S. Kliger, E. Mozes, Y. Yemini, D. Ohsie, High speed and
robust event correlation, IEEE Communications Magazine 34 (5) (1996) 82-
90.

[12] A.T. Bouloutas, S. Calo, A. Finkel, Alarm correlation and fault identifica-
tion in communication networks, IEEE Transactions on Communications 42
(2-4) (1994) 523-533.

[13] P. Wu, R. Bhatnagar, L. Epshtein, M. Bhandaru, Z. Shi, Alarm correlation
engine (ACE). In Proc. Network Operation and Management Symposium,
NOMS’98, New Orleans, LA, 1998, pp. 733-742 [77].

[14] M. Klemettinen, H. Mannila, H. Toivonen, Rule discovery in telecommu-
nication alarm data, Journal of Network and Systems Management 7 (4)
(1999) 395-423.

[15] L. Lewis, A case-based reasoning approach to the resolution of faults in
communications networks, in: H.G. Hegering, Y. Yemini (Eds.), Integrated
Network Management III, North-Holland, Amsterdam, 1993, pp. 671-681
[36]

[16] S. Sengupta, A. Dupuy, J. Schwartz, O. Wolfson, Y. Yemini, The Net-
mate Model for Network Management, in: IEEE Network Operations and
Management Symposium (NOMS), San Diego, CA, 1990, pp. 11-14.

[17] A. Dupuy, S. Sengupta, O. Wolfson, Y. Yemini, Design of the Netmate
network management system, in: I. Krishnan, W. Zimmer (Eds.), Integrated
Network Management II, North-Holland, Amsterdam, 1991, pp. 639-650 [59].

[18] Denise W. Gurer, Irfan Khan, Richard Ogier, An Arti-
ficial Intelligence Approach to Network Fault Management,
http://citeseer.ist.psu.edu/105695.html

[19] Terrestrial Trunked Radio,
http://en.wikipedia.org/wiki/Terrestrial Trunked Radio

[20] Motorola System Documentation, Dimetra IP Compact/ Scalable Dimetra
IP - Understanding Your System (6802800U76-A), September 2006

BIBLIOGRAPHY 181

[21] Motorola System Documentation, Dimetra IP Compact/ Scalable Dimetra
IP - Fault Management (6802800U77-A), September 2006

[22] Motorola System Documentation, Dimetra IP Compact/ Scalable Dimetra
IP - Diagnostics and Troubleshooting (6802800U81-A), September 2006

[23] Extensible Markup Language (XML), http://en.wikipedia.org/wiki/XML

[24] Esper, http://esper.codehaus.org/

[25] SQL, http://en.wikipedia.org/wiki/SQL

[26] Java Technology, http://java.sun.com/

[27] Unified Modeling Language, http://www.uml.org/

[28] Poseidon for UML, http://www.gentleware.com/

[29] Rational Rose, http://www-306.ibm.com/software/awdtools/developer/rose/

[30] Eclipse, http://www.eclipse.org/

[31] Design pattern (computer science), http://en.wikipedia.org/wiki/
Design pattern (computer science)

[32] Strategy pattern, http://en.wikipedia.org/wiki/Strategy pattern

[33] Observer pattern, http://en.wikipedia.org/wiki/Observer pattern

[34] Java Interface, http://en.wikipedia.org/wiki/Interface (Java)

[35] Java package, http://en.wikipedia.org/wiki/Java package

[36] White box testing, http://en.wikipedia.org/wiki/White box testing

[37] JUnit, http://www.junit.org/index.htm

[38] Black box testing, http://en.wikipedia.org/wiki/Black box testing

[39] Java keyword: static, http://java.sun.com/docs/books/tutorial/
java/javaOO/classvars.html

[40] L. Lewis, A case-based reasoning approach to the resolution of faults in
communications networks, in: H.G. Hegering, Y. Yemini (Eds.), Integrated
Network Management III, North-Holland, Amsterdam, 1993, pp. 671-681
[36].

[41] Simple Network Management Protocol, http://en.wikipedia.org/wiki/
Simple Network Management Protocol

[42] R.D. Gardner, D.A. Harle, Methods and systems for alarm correlation, in:
Proc. of GLOBECOM, London, UK, November 1996, pp. 136-140.

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://en.wikipedia.org/wiki/Interface_(Java)
http://java.sun.com/docs/books/tutorial/java/javaOO/classvars.html
http://java.sun.com/docs/books/tutorial/java/javaOO/classvars.html
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
http://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

BIBLIOGRAPHY 182

[43] Context-free grammar,
http://en.wikipedia.org/wiki/Context-free grammar

[44] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer. Failure diagnosis
using decision trees. In Proc. Intl. Conference on Autonomic Computing,
New York, NY, 2004

[45] S. Russell, Machine learning, in: M.A. Boden (Ed.), Artificial Intelligence,
second ed., Handbook of Perception and Cognition, Academic Press, New
York, 1996, pp. 89-133 (Chapter 4)

	Abstract
	Preface
	Acknowledgements
	1 Introduction
	1.1 Project Background
	1.2 Project Goals
	1.3 Project Scope
	1.4 Main Work
	1.5 Structure of the Report

	2 Fault Diagnosis
	2.1 Concepts of Fault Diagnosis
	2.2 Graph-theoretic techniques
	2.2.1 Codebook technique
	2.2.2 Context-free grammar

	2.3 AI techniques
	2.3.1 Rule-based Approach
	2.3.2 Model-based Approach
	2.3.3 Case-based Approach
	2.3.4 Neural Network Approach
	2.3.5 Decision Tree Approach

	2.4 Model traversing techniques
	2.5 Summary

	3 Analysis of Dimetra
	3.1 System Introduction
	3.2 Mobile Station (MS)
	3.3 Radio Channels
	3.3.1 Control Channel (CC)
	3.3.2 Traffic Channel (TCH)

	3.4 BTS Site
	3.4.1 Base Radio (BR)
	3.4.2 Site Controller (SC)

	3.5 Master Site
	3.5.1 Zone Controller (ZC)
	3.5.2 Network Management System - FullVision Server

	3.6 Site Link
	3.7 System Diagram
	3.8 Alarm Analysis
	3.8.1 Alarms of Base Radio
	3.8.2 Alarms of EBTS
	3.8.3 EBTS Site (ZC)
	3.8.4 Alarms of Zone Controller
	3.8.5 Alarms of ZC Site Control Path

	3.9 Fault Propagation Model
	3.10 Summary

	4 A Framework for Fault Diagnosis in Dimetra
	4.1 Review of Related Solutions
	4.2 The Proposed Framework
	4.2.1 Network Element Class Hierarchy
	4.2.2 Network Configuration Model
	4.2.3 Predicate Layer
	4.2.4 Causal Model
	4.2.5 Event Definitions

	4.3 Summary

	5 Design of the SECTOR system
	5.1 System Overview
	5.2 System Architecture
	5.3 Summary

	6 Implementation
	6.1 Modular design
	6.2 Design Patterns
	6.2.1 Strategy Pattern
	6.2.2 Observer Pattern

	6.3 Package Overview
	6.4 SECTOR Fundamental
	6.4.1 Model (interface)
	6.4.2 Modeler (interface)
	6.4.3 EventSpec (interface)
	6.4.4 EventRegistrator (interface)
	6.4.5 EventSubscriber (interface)
	6.4.6 EventAdpator (interface)
	6.4.7 Predicater (class)
	6.4.8 Sector (class)

	6.5 Implementation of Network Element Class Hierarchy
	6.5.1 Element (class)
	6.5.2 Manager (class)
	6.5.3 ManagedObject (class)
	6.5.4 Node (class)
	6.5.5 Link (class)
	6.5.6 Dimetra classes

	6.6 Implementation of Model Construction
	6.6.1 Model Description File
	6.6.2 A default Model Implementation
	6.6.3 A default Modeler

	6.7 Implementation of Predicate Layer
	6.8 Implementation of Event Registration
	6.8.1 Event Specification File
	6.8.2 A default Event Spec. Base
	6.8.3 A default Event Registrator

	6.9 Implementation of Event Adaptor
	6.10 Implementation of Event Subscription
	6.11 Summary

	7 Testing and Evaluation
	7.1 Unit Testing
	7.1.1 Testing on Model Construction
	7.1.2 Testing on Event Registration

	7.2 Integration Testing
	7.2.1 Console Login Failed
	7.2.2 Base Radio is Locked
	7.2.3 EBTS is Disabled

	7.3 Performance Evaluation
	7.4 Summary

	8 Conclusion
	8.1 Achieved Goals
	8.2 Future Work

	A Class Diagram
	A.1 Class Diagrams for the sector Package
	A.1.1 sector.Model interface
	A.1.2 sector.Modeler interface
	A.1.3 sector.EventSpec interface
	A.1.4 sector.EventRegistrator interface
	A.1.5 sector.EventSubscriber interface
	A.1.6 sector.EventAdpator interface

	A.2 Class diagrams for the network element class hierarchy

	B Source Code
	B.1 Package sector - SECTOR Fundmental
	B.1.1 Sector.java
	B.1.2 Predicater.java
	B.1.3 Helper.java

	B.2 Package sector.model - Model Construction
	B.2.1 MemModelImpl.java
	B.2.2 XMLModeler.java

	B.3 Package sector.registrator - Event Registration
	B.3.1 DefaultEventSpec.java
	B.3.2 DefaultEventRegistrator.java

	B.4 Package sector.adaptor - Event Adaptation
	B.4.1 CSVEventAdaptor.java

	B.5 Package sector.test - Unit Test Classes
	B.5.1 MemModelImplTest.java
	B.5.2 DefaultEventSpecTest.java

	B.6 Package sector.test.integration.suppression - Test Classes for Console Login Failed scenario
	B.6.1 LoginFailedTest.java
	B.6.2 LoginFailedAlert.java

	B.7 Package sector.test.integration.br - Test Classes for Base Radio Locked scenario
	B.7.1 BaseRadioLockedAlert.java

	B.8 Package sector.test.integration.ebts - Test Classes for EBTS Disabled scenario
	B.8.1 BothSitePathDownAlert.java
	B.8.2 EBTSDisabledAlert.java

	C XML description files
	C.1 The DTD of XML model description file
	C.2 The DTD of XML event specification file

	D Testing
	D.1 Console Login Failed Testing
	D.1.1 Event Definitions
	D.1.2 Results

	D.2 Base Radio is Locked Testing
	D.2.1 Event Definitions
	D.2.2 Results

	D.3 EBTS is Disabled Testing
	D.3.1 Event Definitions
	D.3.2 Results

