
Reversibility of the Quad-Edge operations in the Voronoi data structure

Darka Mioc
Department of Geodesy and Geomatics Engineering

University of New Brunswick,
P.O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3

dmioc@unb.ca

François Anton
Informatics and Mathematical Modelling

Technical University of Denmark
Building 321, 2800 Kgs. Lyngby, Denmark

Christopher M. Gold
University of Glamorgan

Pontypridd, Wales, UK, CF37 1DL
ChristopherGold@Voronoi.Com

Bernard Moulin
Département d’Informatique, Université Laval,
Pavillon Pouliot, Ste Foy, QC G1K 7P4, Canada

moulin@ift.ulaval.ca

Abstract

In Geographic Information Systems the reversibility of
map update operations have not been explored yet. In
this paper we are using the Voronoi based Quad-edge data
structure to define reversible map update operations. The
reversibility of the map operations have been formalised at
the lowest level, as the basic algorithms for addition, dele-
tion and moving of spatial objects. Having developed re-
versible map operations on the lowest level, we were able
to maintain reversibility of the map updates at higher level
as well. The reversibility in GIS can be used for efficient
implementation of rollback mechanisms and dynamic map
visualisations.

1 Introduction

Reversible computing, in a general sense, means com-
puting using reversible operations, that is, operations that
can be easily and exactly reversed, or undone. Further-
more, when reversibility is maintained at the highest lev-
els, in computer architectures, programming languages, and
algorithms, it provides opportunities for interesting applica-
tions such as bi-directional debuggers, rollback mechanisms
for speculative executions in parallel and distributed sys-
tems, and error and intrusion detection techniques. The re-
versibility can be maintained at the lowest level, in the phys-

ical mechanisms of operation of bit-devices and it could be
maintained at higher levels as well. Finally, the two types
of reversibility (low-level and high-level) are deeply con-
nected, because, as it turns out, achieving the maximum
possible computational performance generally requires ex-
plicit reversibility not only at the lowest level, but at all
levels of computing–in devices, circuits, architectures,lan-
guages, and algorithms. In GIS, the reversibility has not
been explored sufficiently yet. The reversibility in GIS
can be used for efficient implementation of rollback mech-
anisms and dynamic animations needed in spatial analysis
[9].

2 Quad-Edge based Voronoi data structure

The Voronoi diagram for a set of map objects (points and
line segments) is the tessellation of space where each map
object is assigned an influence zone (or Voronoi region),
that is the set of points closer to that object than to any other
object (see [6] and Figure 1).

The algorithm used to construct the Voronoi vertices has
been described in [1]. The boundaries between the regions
of this tessellation form a net (the Voronoi diagram), whose
dual graph (the Delaunay triangulation) stores the spatial
adjacency (topology) relationships among objects. Within
such a dynamic Voronoi spatial data structure, as developed
by Gold [3], the map objects (points and/or line segments)
are stored as nodes of the dual spatial adjacency (topology)



Figure 1. A Voronoi diagram

graph: the Delaunay triangulation. The underlying data
structure used is the Quad-Edge data structure [7] (see Fig-
ure 2).

Figure 2. The Quad-Edge data structure for
the Voronoi diagram of Figure 1

The Quad-Edge data structure was used for computing
the line Voronoi diagram [6], which is the basis of the dy-
namic Voronoi data structure for points and line segments.
The Quad-Edge data structure was introduced by [7] as a
primitive topological structure for the representation ofany
subdivision on a two-dimensional manifold. The Quad-
Edge data structure is the implementation of an edge al-
gebra [7], which is the mathematical structure that defines
the topology of any pair of dual subdivisions on a two-
dimensional manifold. In the context of the application of
the Quad-Edge data structure to the computation of Voronoi
diagrams, both a primal planar graph (the Voronoi diagram)
and its dual graph (the Delaunay triangulation) are stored in
the Quad-Edge data structure - see [7].

Guibas and Stolfi [7] developed a convenient mathe-
matical structure for representing the topological relation-
ships among edges of a pair of dual subdivisions on a two-
dimensional manifold1. A subdivision of a manifold M is

1A two-dimensional manifold is a topological space with the property

[7] a partition S of M into three finite collections of disjoint
parts, the vertices (denoted byVS), the edges (denoted by
ES) and the faces (denoted byFS) with the following prop-
erties:

• Every vertex is a point of M,

• Every edge is a line of M,

• Every face is a disk of M,

• The boundary of every face is a closed path of edges
and vertices.

A directed edge of a subdivisionP is an edge ofP to-
gether with a direction along it (see page 80 in [7]). Since
directions and orientations can be chosen independently, for
every edge of a subdivision there are four directed, oriented
edges [7]. For any oriented directed edgee we can define
unambiguously its vertex oforigin e Org, its destination,
e Dest, its left face,e Left, and itsright face,e Right. The
flipped versione F lip of an edgee is the same unoriented
edge taken withopposite orientationand same direction.
Thesymmetricof e, e Sym corresponds to the same undi-
rected edge with theopposite directionbut the same orien-
tation ase.

Edge functions (see Figure 3) allow the traversal of the
pair of dual subdivisions. Thenext edge with the same ori-
gin, e Onext is defined as the one immediately followinge

(counterclockwise) in the ring of edges out of the origin of
e (see Figure 3). Thenext counterclockwise edge with the
same left face,denoted bye Lnext, is defined as the first
edge we encounter aftere when moving along the boundary
of the faceF = e Left in the counterclockwise sense as
determined by the orientation ofF .

As shown in the top part of Figure 4, each branch of
the Quad-Edge is part of a loop around a Delaunay ver-
tex/Voronoi face, or around a Delaunay triangle/Voronoi
vertex. The lower part of Figure 4 shows the corresponding
Delaunay/Voronoi structure, where (a,b,c) are Quad-Edges,
and (1,2,3) are Delaunay vertices.

2.1 Delaunay/Voronoi Quad edge equivalence

Two subdivisionsS andS∗ are said to be thedual [7] of
each other if for every directed and oriented edgee of either
subdivision there is another edgee Dual (that is defined as
the dual ofe and isolated by parenthesis in the following
expressions) of the other subdivision such that:

• the dual ofe Dual is e: (e Dual)Dual = e,

• the dual of the symmetric ofe is the symmetric of
e Dual: e Sym Dual = (e Dual)Sym,

that every point has an open neighbourhood which is a disk.



Figure 3. The edge functions (adapted from
Guibas and Stolfi [7])

• the dual of the flipped version ofe is the symmet-
ric of the flipped version ofe Dual: e F lip Dual =
(e Dual)Flip Sym,

• moving counterclockwise around the left face ofe

in one subdivision is the same as moving clockwise
around the origin ofe Dual in the other subdivision:
e Lnext Dual = (e Dual)Onext−1.

The dual of an edgee is the edge of the dual subdivi-
sion that goes from the (vertex corresponding to the) left
face ofe to the (vertex corresponding to the) right face of
e but taken with orientation opposite to that ofe. The defi-
nition of the dual of an edge allows to define the operation
Rot: the rotated version of an edgee is the dual ofe di-
rected frome Right to e Left and oriented so that moving
counterclockwise around the right face ofe corresponds to
moving counterclockwise around the origin ofe Rot. More
concisely,e Rot = e Dual F lipSym = e F lipDual.

2.2 Edge algebra

An Edge algebra is the mathematical structure used for
representing simultaneously a pair of dual subdivisions [7]
(in our use of the Quad-Edge data structure, the Delaunay
triangulation and the Voronoi diagram). It captures all the
topological properties of a subdivision [7]. The topology of
the subdivision is completely determined by its edge alge-
bra, and vice versa. This allows all the edge functions to
be expressed using three basic primitives,Flip, Rot, and
Onext described above [7]. An edge algebra is [7] an ab-
stract algebra(E, E∗, Onext, F lip, Rot) whereE andE∗

Figure 4. A simple Voronoi diagram and its
corresponding Quad-Edge

are arbitrary finite sets (of edges), andOnext, Rot, and
Flip are functions onE andE∗ satisfying the following
properties:

• e Rot4 = e;

• e Rot Onext Rot Onext = e;

• e Rot2 6= e;

• e ∈ ES ⇔ e Rot ∈ ES∗;

• e ∈ ES ⇔ e Onext ∈ ES;

• e F lip2 = e;

• e F lip Onext F lip Onext = e;

• e F lip Onextn 6= e for anyn;

• e F lip Rot F lip Rot = e;

• e ∈ ES ⇔ e F lip ∈ ES.

The Quad-Edge traversal opera-
tions are based on the edge algebra
(E, E∗, Onext, F lip, Rot), and their expression as
composition of the basic primitives [7].Onext, Flip, and
Rot will be presented in the following table. Equivalent
definitions separated by= signs have been presented some-
times for some operations (in the left column). Similarly,
equivalent decompositions separated by= signs have been
presented sometimes for some operations (in the right
column).

2.3 Basic topological operations in the Quad-edge
data structure

The main advantage of the Quad-Edge data structure is
that all the construction and modification of planar graphs



Quad-Edge Operation Decomposition using
Edge Algebra

e Dual e F lip Rot

e Dual−1 e F lip Rot = e Rot3 Flip

e Sym = e Sym−1 e Rot2

e F lip−1 e F lip

e Rot−1 e Rot3

e Onext−1 = e Oprev
e Rot Onext Rot =
e F lip Onext F lip

e Lnext
e Rot−1 Onext Rot =
e Rot3 Onext Rot

e Rnext
e Rot Onext Rot−1 =
e Rot Onext Rot3

e Dnext e Rot2 Onext Rot2

e Lprev = e Lnext−1 e Onext Rot2

e Rprev = e Rnext−1 e Rot2 Onext

e Dprev = e Dnext−1
e Rot−1 Onext Rot−1 =
e Rot3 Onext Rot3

Table 1. Quad-Edge traversal operations

can be done using two basic topological operators (see Ta-
ble 2), and the complex topological operations built from
these two basic topological operators. These complex topo-
logical operations are presented in the Table 3. The two
basic operators modify the graph locally. Locality of the
Quad-Edge operations will be studied in detail in the next
subsection.

2.4 Locality of the Quad-Edge data structure

In vector based GIS systems, the maintenance of topol-
ogy is performed through batch operations, that are global,
i.e. by alterating all the objects in the map. In con-
trast, within the Voronoi spatial data structure, the topol-
ogy is maintained locally when objects are added and
deleted. Indeed, only the neighbours of the object be-
ing added/removed may be altered by the topology main-
tenance. In this section, we will see why the operations on
the Quad-Edge data structure have a local scope. In order to

Operation Description

e := MakeEdge[]

Creates an edge e to a newly
created data structure repre-
senting an empty manifold

Splice[a,b]

Joins or separates the two
edge rings a Org and b Org,
and independently, the two
dual edge rings a Left and b
Left (see Figure 5)

Table 2. Basic Quad-Edge topological opera-
tors

Operation Description

e := Connect[a,b]

Adds a new edge e connecting the
destination of a to the origin of b,
in such a way that a Left = e Left =
b Left

DeleteEdge[e]
Disconnects the edge e from the
rest of the data structure

Swap[e]
Rectifies e in order to respect the
empty circumcircle criterion

Table 3. Complex Quad-Edge topological op-
erators

prove the locality of the Quad-Edge data structure, we need
to prove the locality of its topological operations. There is
only one topological operation within the Quad-Edge data
structure: the Splice operation. In the next paragraph, we
study the scope of the Splice operation.

Splice[a, b] constructs a new edge algebraÁ =
(E, E∗, Onext́, Rot, F lip) from an existing edge algebra
A = (E, E∗, Onext, Rot, F lip). The only difference be-
tweenA andA′ is theirOnext edge function.Onext́ dif-
fers fromOnext in the following ways:

• interchange the values of the next edge with the same
origin of a with the next edge with the same origin of
b:

– the edge immediately followinga with the same
origin in A′ is the edge immediately follow-
ing b with the same origin inA (see Figure 5):
a Onext́ = b Onext,

– the edge immediately followingb with the same
origin in A′ is the edge immediately follow-



Figure 5. The Splice topological operator

ing a with the same origin inA (see Figure 5):
b Onext́ = a Onext;

• interchange the values of the next edge with same ori-
gin of α = a Onext Rot (see Figure 5) with the next
edge with same origin ofβ = b Onext Rot (see Figure
5):

– the edge immediately followingα with same ori-
gin in A′ is the edge immediately followingβ
with same origin inA: α Onext́ = β Onext,

– the edge immediately followingβ with the same
origin in A′ is the edge immediately followingα
with the same origin inA: β Onext́ = α Onext;

• for each change of the value of the next edge with the
same origin of some edgee (i.e. e Onext′ = f ), re-
define the next edge with same origin of the flipped
version off (f F lip Onext′) to be the flipped version
of e:

– the edge immediately followingb Onext F lip

with same origin inA′ is the flipped version of
a in A: (b Onext F lip) Onext́ = a F lip,

– the edge immediately followinga Onext F lip

with the same origin inA′ is the flipped version
of b in A: (a Onext F lip) Onext́ = b F lip,

– the edge immediately followingβ Onext F lip

with the same origin inA′ is the flipped version
of α in A: (β Onext F lip) Onext́ = α Flip,

– the edge immediately followingα Onext F lip

with same origin inA′ is the flipped version of
β in A: (α Onext F lip) Onext́ = β F lip.

Figure 6. A modified Quad-edge

Now, we can conclude that the scope of the Splice op-
eration is limited to the edgesa, b, α, and β, and the
flipped version of the next edges with the same origin ofa,
b, α, andβ (a Onext F lip, b Onext F lip, α Onext F lip,
β Onext F lip). We conclude that the Splice operation has
a local scope, and therefore, that the Quad-Edge data struc-
ture has a local scope.

This property of the Quad-edge data structure imposes
the following definition of edge modifications due to the
operations on the data structure:

• newly created Quad-edges, when a new point is in-
serted into the structure (one Voronoi region is created
for the newly inserted point, and the neighbouring re-
gions are modified);

• deleted Quad-edges, where the edges belonging to the
deleted point are deleted (the deletion of the point or
line segment in the Voronoi diagram removes its be-
longing Voronoi cell, and consequently the deletion
and the modification of the edges occur);

• modified Quad-edges, under stolen area interpolation
(see [5]), and triangle switches. Modified edges are
edges with the same ID as before, only one or two ver-
tices are changed (see Figure 6).

2.5 Reversibility of the Quad-edge operations:

Within vector based GIS systems, the operations of
maintenance of topology are not reversible. The topology
of the entire map is computed by batch operations. The
only way to revert to a previous state of the entire map is
to store the map before and after each set of batch opera-
tion. There is no possibility to revert to a previous local
state (i.e. to reverse the topology operation on a region of
a map). In this section, we will see that the set of opera-
tions on the Quad-Edge data structure is equal to its closure



under inversion. This is what we mean by reversibility of
the Quad-Edge operations. From the reversibility of the op-
erations on the Quad-Edge data structure, we will prove in
a later section that the set of the operations on the Voronoi
data structure is also closed by inversion. In order to prove
the closure of the set of operations on the Quad-Edge data
structure, we need to prove that the inverse of each one of
the operations on the Quad-Edge data structure pertains to
the set of operations on the Quad-Edge data structure. Be-
fore doing this, we prove the reversibility of the operations
on the edge algebra, on which the Quad-Edge data structure
is based.

In order to prove the reversibility of the operations on
an edge algebraA = (E, E∗, Onext, Rot, F lip), we need
to prove the reversibility of the primitive edge functions
Onext, Rot, andFlip.

TheOnext edge function maps an edge of the primalE

to an edge of the primalE, or an edge of the dualE∗ to an
edge of the dualE∗:

Onext:
E −→ E

E∗ −→ E∗

e −→ e.Onext.
In both cases, the image ofe is the edge immediately

following e with same origin.

The reverse ofOnext is also an edge function: it is
Oprev, and its decomposition using edge algebra primitive
edge functions isRotOnextRot:

Onext−1 = RotOnextRot:
E −→ E

E∗ −→ E∗

e −→ e.RotOnextRot = e.Onext−1

The Flip edge function maps an edge of the primalE

to an edge of the primalE, or an edge of the dualE∗ to an
edge of the dualE∗:

Flip :

E −→ E

E∗ −→ E∗

e −→ e.F lip.
In both cases, the image ofe is the flipped version ofe

(i.e. the edge connecting the same vertices ase, with the
same direction ase, but with opposite orientation).

The reverse ofFlip is also an edge function: it isFlip

itself: Flip is an involution(Flip2 = id):
Flip−1 = Flip

E −→ E

E∗ −→ E∗

e −→ e.F lip−1 = e.F lip

TheRot edge function maps an edge of the primalE to
an edge of the dualE∗, or an edge of the dualE∗ to an edge
of the primalE∗:

Rot:

E −→ E∗

E∗ −→ E

e −→ e.Rot

The reverse ofRot is also an edge function: it isRot3,
and its decomposition using edge algebra primitive edge
functions isRotRotRot:

Rot−1 = Rot3:

E∗ −→ E

E −→ E∗

e −→ e.Rot3 = eRotRotRot

The reversibility of the other edge functions results
from application of the reversion of the composition of
applications. Letf and g denote two edge functions,
then (g ◦ f)−1 = f−1 ◦ g−1. Let us apply it to some
edge function: the reverse of theLprev edge function
whose decomposition into primitive edge functions
is Onext Rot2, is Lprev−1 =

(

Onext Rot2
)

−1
=

(

Rot2
)

−1
(Onext)−1 = Rot2 Rot Onext Rot

= Rot3 Onext Rot, which is an edge function that
can be also written as composition of the primitive edge
functions Onext, Rot, and Flip. The same reasoning
can be applied to any edge functions in order to prove its
reversibility.

Let us examine now the reversibility of the quad-edge
topological operations. The quad-edge topological opera-
tions are:

e:=MakeEdge[] creates a new data structure representing
a subdivision of the sphere, where apart from orientation
and direction, e is the only edge of the subdivision, and e
is not a loop [7]. Its reverse would be DestroyEdge[e], de-
stroying a data structure representing a subdivision of the
sphere, where apart from orientation and direction, e is the
only edge of the subdivision, and e is not a loop. Therefore,
the edge e must have been disconnected from all the edges
connected to it before calling the DestroyEdge operation.

Splice[a,b] is self reversible: (Splice[a, b])−1 =
(Splice[a, b]). These operations can be written in the terms
of edge algebra2.

In the next section the further formalization of the oper-
ations within the Voronoi diagram will be presented.

2In section 3.1 of [7], it is shown that the topology of a subdivision is
completely determined by its edge algebra.



3 The atomic actions on the dynamic Voronoi
data structure

These map state changes are produced by map com-
mands [3], that are composed of atomic actions. Each
atomic action in the map command executes the geometric
algorithm for addition, deletion or change of map objects
and corresponding Voronoi cells.

Theatomic actionsare:

• the Split action inserts a new point into the structure
by splitting the nearest point from the pointed location
into two points.

• theMergeaction deletes the selected point by merging
it with its nearest neighbour.

• theSwitchaction is performed when a point moves and
a topological event occurs (i.e. the moving point enters
or exits a circle circumscribed to a Delaunay triangle,
switching3 the common boundary of two adjacent tri-
angles.

In the following tables the Quad-edge implementations
of the atomic actionsSwitch in the Voronoi spatial data
structure are given.

• theLink action adds a line segment4 between the points
obtained after a Split action. The Link action must oc-
cur after a Split action, and adds a line segment be-
tween the point selected for splitting and the newly
created point.

• the Unlink action removes the selected line segment.
The Unlink action must occur before a Merge action,
and removes the line segment between the selected
point and its nearest object.

These actions compose the set of atomic actions of the
dynamic spatial Voronoi data structure [8].

3.1 The Quad-edge implementation of the atomic
actions

The Quad-edge implementations of the atomic actions
Split and Merge in the Voronoi spatial data structure are
given in Tables 4 and 5.

The Quad-edge implementation of the atomic action
Switch is shown in Table 6. On Figure 7 we can see the
topological event caused by ”swap” atomic operation.

3The Switchaction will be used in the construction of theMove ac-
tion. TheMove(topological event) action moves the selected point from
its current position to a new position or until the next topological event.

4A line segment is composed of two half-line segments, whose Voronoi
regions are on each side of the line segment, having the line segment as a
common boundary.

Atomic operation Quad-Edge implementation

Split

e:=Locate[X];
base:=MakeEdge[];
base.Dest:=X;
Splice[base,e];
base:=Con.[e,base.Sym];
e:=base.Oprev;
base:=Con.[e,base.Sym]

Table 4. Split operation

Atomic operation Quad-Edge implementation

Merge

e:=Locate[X];
e.org=X;
e:=e.Sym;
DeleteE.[e.Onext.Onext];
DeleteE.[e.Onext];
DeleteE.[e]

Table 5. Merge operation

Figure 7. The topological event caused by
“swap” atomic operation



Atomic operation Quad-Edge implementation

Topological event
(Move)

Swap[e] where e is the ”sus-
pect” edge (see Figure 7). A
suspect edge is an edge that
is no longer valid, because
the Delaunay triangulation
does not obey the empty
circumcircle criterion

Table 6. Topological event operation

The Quad-edge implementations of the atomic actions
Link and Unlink in the Voronoi spatial data structure are
given in Tables 7 and 8.

4 The map update commands

Theatomic actionsare the basis upon whichmap com-
mandshave been built. All the map update commands [3],
[10] of this dynamic Voronoi data structure are complex
operations composed of atomic actions. The composition
of atomic actions into map commands is provided by
syntactic rules.

The map commandsare composed of atomic opera-
tions, and the exact decomposition of map commands into
sequences of atomic actions is given in Table 9. The atomic
operations are denoted by the symbols (N, S, M, LandU).

For example, the map command“Move a Point”
corresponds to the sequence of movements of the point
from its initial position to its destination through all the
intersections of its trajectory with circumcircles, and the
corresponding triangles switches (“N” ) in the Voronoi data
structure. The map command“Move a Point” is possible
in this Voronoi data structure because the Voronoi data
structure is kinematic : one point may move at a time, and
this point is called the“moving point” [4, 11]. In fact, all
the operations on this kinematic Voronoi data structure use
this concept of the moving point.

For example, when a point is to be created at some
location, the nearest point from that location is split
into two (S term in the decomposition of “Add a Point”
operationSN t), and then the newly created point is moved
as far as its final destination (N t term in the decomposition
of “Add a Point” operation SN t). In fact, the triangle
switch operation incorporates the movement of the moving
point to the intersection of the trajectory of the moving
point with the circumcircle that induced the triangle
switch. In Table 9, the exponents denote how many times

Atomic operation Quad-Edge implementation

Link

e:=Locate[X];
e.Org;
e:=e.Sym;
While e.Dest:
e:=e.Onext;
a:=e.Onext;
b:=e.Oprev;
c:=b.Lnext;
d:=a.Rprev;
DeleteE.[e];
f:=MakeE.[];
f.dest :=(X+Y)/2;
Splice[b,f];
e:=MakeE.[];
e.org:=f.dest;
Splice[f,e.Sym];
g:=Con.[e.sym,a.Sym];
i:=Con.[d.sym,g.Sym];
h:=Con.[b,f.Sym];
j:=Con.[c,h.Sym];
k:=Con.[f,e]

Table 7. Link operation

Atomic operation Quad-Edge implementation

Unlink

e:=Locate[X];
e.Org;
e:=e.Sym;
While e.Onext.Dest e.Dest:
e:=e.Onext;
f:=e.Onext;
g:=e.Lnext;
h:=g.Oprev;
i:=g.Rprev;
j:=f.Lnext;
k:=e.Rprev;
a:=e.Sym.Lnext;
b:=k.Lnext;
DeleteE.[e];
DeleteE.[f];
DeleteE.[g];
DeleteE.[h];
DeleteE.[i];
DeleteE.[j];
DeleteE.[k];
Connect[b,a]

Table 8. Unlink operation



the operation is executed repeatedly, e.g.Nt denotes N
executed t times, where t denotes the number of topological
events. Whenever more than one connected sequence of
topological events is executed in a map command, such
as in “Add a Line” command(SNt1 SLNt2 (SLNt2i+1

MSLNt2i+2 )), the total number of topological events is
broken down into the number of topological events in the
first connected sequence (Nt1 ), the number of topological
events in the second connected sequence(Nt2 ), and so
on. The parameteri denotes the number of times the line
segment being added intersects existing line segments.
This type of intersection with an existing line segment is
called collision. The terms in parentheses are repeated for
each intersection with an existing line (i.e. each collision).

We will now briefly explain the decomposition of each
map command. We have already seen the description
of “Move a Point” and “Add a Point” map commands.
Map command “Delete a Point” is exactly the reverse of
“Add a Point” map command: the point to be deleted is
moved to the location of the nearest point (N t), and then
it is merged with this nearest point (M ). The remaining
map commands involve the addition or removal of one or
more new line segments. For all these map commands, the
decomposition includes a fixed sequence of atomic actions
that is executed only once (the sequence outside the paren-
thesis), and a sequence that is executed at each collision
(replicating sequence). In the case of case“Add a Line”
and all the join map commands, the replicating sequence
has always the same pattern in terms of atomic operations
((SLN t2i+1MSLN t2i+2), although the actual indices may
vary). This corresponds to the splitting of the existing line
(SLN t2i+1), the merging of the newly created point (by the
S atomic action in this last sequence) with the extremity
of the line segment being added (M ), and the continuation
of the new line segment after collision (SLN t2i+2). In the
case of “Delete a Line” and all the unjoin map commands,
the replicating sequence has always the same pattern in
terms of atomic operations ((N t2i+2UMSN t2i+1UM),
although the actual indices may vary). This is exactly the
reverse of the previous replicating sequence (the replication
sequence for “Add a Line” and all the join map commands).

Now, we will explain the fixed sequence for all these
map commands. In order to add a line with “Add a Line”
map command, the nearest point from the starting extrem-
ity location has to be split into two (S), then it has to be
moved to the starting extremity location (N t1). Then, the
ending extremity has to be created by splitting the starting
extremity into two (S). At this point the two extremities
must be linked (L) in order to form a line segment. Fi-
nally, the ending extremity has to be moved (N t2) to its
expected location. The fixed sequence for “Delete a Line”

Map Decomposition (the terms in paren-
construction theses appear at each line-line colli-
command sion, indexi = collision, 1≤ i ≤ c,

c=#collisions;
t, tx denote of topological events)

Move a Point N t

Add a Point SN t

Delete a Point N tM

Add a Line SN t1SLN t2 (SLN t2i+1)M

(SLN t2i+2)N t2UMN t1M

Delete a Line (N t2i+2UMSN t2i+1UM)
N t2UMN t1M

Join 2 Points SLN t1 (SLN t2iMSLN t2i+1)M

Unjoin 2 Points (N t2i+1UMSN t2iUM)N t1UM

Join pt Line SLN t1 (SLN t2i+1MSLN t2i+2)
SLN t2M

Unjoin Pt Line SN t2UM (N t2i+2UMSN t2i+1UM)
N t1UM

Join 2 Lines SLN t1SLN t2 (SLN t2i+2)M

(SLN t2i+3)SLN t3M

Unjoin 2 Lines SN t3UM (N t2i+3UMSN t2i+2UM)
N t2UMN t1UM

Table 9. The map commands and their decom-
position into atomic actions

is exactly the reverse of the preceding sequence. In order to
join two points with “Join two points” map command, the
first point must be split into two (S) in order to create the
ending extremity of the line segment that starts at the first
point. Then, these two points must be linked (L) in order
to form a line segment. Then, the ending extremity must be
moved (N t1) to the location of the second point (including
eventually the replicating sequence in case of collisions).
Finally, the ending extremity must be merged with the sec-
ond point (M ). The fixed sequence for “Unjoin two points”
map command is exactly the reverse of the fixed sequence
for “Join two points” map command. The fixed sequences
of the remaining map commands follow immediately from
the fixed sequence of “Join two points” map command. In-
deed, the other join map commands fixed sequence involve
several sequences corresponding to the same atomic actions
as theSLN t1 sequence already encountered in the fixed se-
quence of “Join two points” map command. The unjoin map
commands are the exact reverse of their join counterpart.

5 Reversibility of the map commands in the
dynamic Voronoi data structure

For each map command, the reverse map command is
composed of reverse atomic actions in exactly the reverse



Atomic action Reverse atomic action
Split Merge
Switch Switch is self-reversible
Link Unlink

Table 10. The reversibility of the atomic ac-
tions

Map construction command Reverse map
construction command

Move a Point Self-reversible
Add a Point Delete a Point
Add a Line Delete a Line
Join 2 Points Unjoin 2 Points
Join Pt & Line Unjoin Pt & Line
Join 2 Lines Unjoin 2 Lines

Table 11. The reversibility of the map com-
mands

order. Due to the local scope of its spatio-temporal topol-
ogy, all the atomic actions of the dynamic Voronoi spatio-
temporal model are reversible. Indeed, each atomic action
has its reverse atomic action shown in the Table 10.

The consequence of the property of reversibility of the
atomic actions inside the Voronoi dynamic data structure is
that a sequence of atomic actions applied in a map update
command can be reconstructed from the predecessor and
successor map states. This proves in another way that the
atomic actions are reversible: the input can be deduced from
the output; or, in other words, computation happens without
any loss of information [2].

The resulting complex operations (map commands) are
reversible and Table 11), as long as their decomposition into
atomic actions is exactly known (including the numbers of
topological events and the number of line-line collisions).

6 Conclusions

In this paper we presented formalisation of the reversible
operations needed for constructing a Voronoi diagram for
points and line segments using the Quad-Edge data struc-
ture. These reversible operations are formalized at the low-
est level, as the basic algorithms for addition, deletion and
moving of spatial objects in the Quad-Edge data structure;
defined as the atomic actions. Furthermore, we managed
to preserve the reversibility of the map commands that are
composed of these atomic actions.

The applications of reversible computations in GIS could
significantly improve transaction management and rollback
functionality.

References

[1] Anton, F. and Gold, C. M., 1997, An iterative al-
gorithm for the determination of Voronoi vertices in
polygonal and non-polygonal domains,Proceedings
of the 9th Canadian Conference on Computational
Geometry (CCCG’97), Kingston, Canada, pp. 257-
262.

[2] Frank, M., Knight, T., Margolus, N., 1998, Re-
versibility in optimally scalable computer architec-
tures,The First International Conference on Uncon-
ventional Models of Computation, January 1998.

[3] Gold, C. M., 1992, An object-based dynamic spatial
data model, and its applications in the development of
a user-friendly digitizing system,Proceedings of the
Fifth International Symposium on Spatial Data Han-
dling, Charleston, pp. 495-504.

[4] Gold., C. M., 1994, Three approaches to automated
topology, and how computational geometry helps,
Proceedings of the Sixth International Seminar on
Spatial Data Handling, Edinburgh, Scotland, pp. 145-
158.

[5] Gold, C. M., Remmele, P. R., Roos, T., 1995 Voronoi
Diagrams of Line Segments Made Easy,Proceedings
of the Seventh Canadian Conference in Computational
Geometry, (CCCG’95), Québec, Canada, pp. 223-228.

[6] Gold C. M, and Dakowicz M., 2006, Kinetic
Voronoi/Delaunay Drawing Tools,ISVD, pp. 76-84.

[7] Guibas, L., and Stolfi, J., 1985, Primitives for the
Manipulation of General Subdivisions and the Com-
putation of Voronoi Diagrams,ACM Transactions on
Graphics, Vol. 4, No. 2, pp. 74-123.

[8] Mioc, D., Anton, F., Gold, C. and Moulin, B., 1998,
Spatio-temporal change representation and map up-
dates in a dynamic Voronoi data structure,Proceed-
ings of the Eight International Symposium on Spatial
Data Handling, Vancouver, Canada, pp. 441-452.

[9] Mioc, D., Anton F., Gold C. M. and Moulin B., 1999,
Time-travel visualization of changes in a dynamic
Voronoi data structure,Cartography and GIS, Vol. 26,
No. 2, pp. 99-108.

[10] Mioc, D., Anton F., Gold C. M. and Moulin B., 2006,
Map updates in a dynamic Voronoi data structure,
ISVD, pp. 264-269.

[11] Roos, T., 1991, Dynamic Voronoi diagrams,Ph.D.
Thesis, University of Ẅurzburg, Germany.


