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Summary
A re
ent arti
le written by Rasmussen and Clausen [13℄ publishes interestingresults for mortgage loan portfolio optimization seen from the perspe
tive ofan individual mortgagor, for the Danish mortgage market. The purpose of thisthesis is to develop a house pri
e model to extend their results for multistagesto
hasti
 programming, by adding the option of selling the real estate as wellas re-balan
ing the bond portfolio.The purpose of this proje
t is to get a
quainted with the e
onomi
 and e
ono-metri
 methods used for house pri
e modeling, apply the methods to a simpleben
hmark relation and extend the results to a s
enario tree stru
ture. Se
ondlya more elaborate and e
onomi
ally real model is disse
ted and reprodu
ed togive a relation able of fore
asting house pri
es, with only a limited number ofinput variables available. The error of the redu
ed model is simulated and theresulting model applied to a s
enario tree stru
ture.The �nal produ
t should then be a s
enario tree predi
ting the expe
ted housepri
e with known varian
e, using only interest rates and previous house pri
esas input.
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Chapter 1
Introdu
tion

1.1 Ba
kgroundOver the last half 
entury or so there have been great strides in the advan
e ofoptimization and �nan
ial theory. Portfolio diversi�
ation strategy, 
ombiningthe two �elds, has been used for quite some time by investors in many parts ofthe �nan
ial se
tor with great su

ess.Pur
hasing real estate is one of the biggest �nan
ial de
ision an individual willmake during his life. In Denmark there is an elaborate and diverse sele
tion ofmortgage loans allowing great �exibility when it 
omes to the �nan
ing of realestate investment.In a re
ent arti
le by Rasmussen and Clausen [13℄ the portfolio optimizationte
hnique is applied to the Danish mortgage loan system. The perspe
tive is ofa person whi
h is fa
ed with �nan
ing a real estate investment and has a diversesele
tion of mortgage loans available. They �nd that by 
reating a portfolio ofbonds, instead of the 
urrent pra
tise of only one bond, the investor 
an bene�tby re-balan
e the portfolio at optimal points through to horizon.



2 Introdu
tion1.2 Aim of ThesisInitially the aim of this thesis was divided into two main parts, that is1. To get a
quainted with both the e
onomi
s and e
onometri
s of housepri
e estimation and from a real model develop a simpli�ed house pri
emodel and apply it to a s
enario tree format.2. To apply the house pri
e trees along with a mortgage loan diversi�
ationoptimization.As the work on this thesis evolved part 1 took more time than expe
ted and itwas de
ided to drop part 2. Instead, more 
are would be taken in explainingand implementing the house pri
e model as a predi
tion model and the theorybehind su
h models.It 
an therefore be said that the aim of this thesis is to deliver a house pri
es
enario tree able to extend the Rasmussen and Clausen model by giving theinvestor a new option of selling the house, as well as the option of 
ontinuing byre-balan
ing the bond portfolio. This 
hanges their problem sin
e at horizon theobje
tive was to minimize the 
ost of �nan
ing, while when adding the housepri
e s
enario tree the obje
tive will be to maximize the pro�t from selling thehouse and paying the loans. The integration of house pri
es in Rasmussen andClausen remains as further work.1.3 Outline of ThesisA �ow diagram depi
ting the progression of the work done for the thesis isshown in Figure 1.1. Two main models were inspe
ted, i.e. the simple Nykreditben
hmark model and the MONA house pri
e relation, taken from the DanishNational Banks ma
ro model 
alled MONA. The up-down �ow in the diagramrepresents the time line of the proje
t work.The stru
ture of the thesis is as follows:Chapter 1: Introdu
tion. The ba
kground to the thesis is presented,as well as listing what is to be a
hieved by the work done and giving anoverview of the material 
hapter by 
hapter.



1.3 Outline of Thesis 3Chapter 2: House Pri
e Models. A dis
ussion of house pri
e devel-opment from the stand point of e
onomi
s, showing a well known longterm relationship for the development of house pri
es, the role of demandand supply in determining the pri
e is also dis
ussed. A short dis
ussionof market expe
tation and real house pri
e development in Denmark isalso presented.Chapter 3: House Pri
e Dynami
s I. The Nykredit Relation.The simple house pri
e relationship, i.e. the Nykredit relation, is presentedand formulated for a single time line. The de�nition of a s
enario tree ispresented. The one dimensional results are extended to a s
enario treestru
ture and the results are investigated.Chapter 4: Time Series and E
onometri
 Theory. Before mov-ing into more evolved and applied house pri
e models a listing of the basi
time series and e
onometri
al de�nitions and methods are presented. The
hapter gives a dis
ussion on the relevant topi
s providing examples whenne
essary to demonstrate usability.Chapter 5: House Pri
e Dynami
s II. The MONA Model. Themore 
ompli
ate House pri
e model, adapted from the MONA model, isintrodu
ed. Numerous topi
s regarding the model are dis
ussed su
h asdata handling, theoreti
al derivation, parameter estimation and predi
tion
apabilities. The 
hapter ends on a short dis
ussion of the weaknesses ofthe model and the problem with out-of-sample data.Chapter 6: Applying The MONA house pri
e relation. Mattersregarding aggregation of house pri
e 
hange, how to deal with missing ex-planatory data in the out-of-sample predi
tion and the estimation of thepredi
tion error for out-of-sample fore
asting.Chapter 7: House Pri
e Dynami
s III Statisti
al Model. A newmodel is presented by modeling the data as is, i.e. dropping the long terme
onomi
 intuition embedded in the MONA presentation. The MONAerror-
orre
tion model, presented in Chapter 4, is used for the model.Chapter 8: Validation and Results. The models are 
ompared, �rstas single path models and later by inputting interest rate s
enario trees.Results are analyzed and dis
ussed.Chapter 9: Con
lusion. The 
on
lusion of the modeling is summarizedlisting the pros and 
ons of the house pri
e models, as well as a dis
ussionof usability and further work is presented.Appendix: Programming. The problem of implementing the s
enariotrees in a programming language is dis
ussed, presenting solutions bothin an obje
t orientated language, i.e. C#, as well as a non obje
tive



4 Introdu
tionorientated language, su
h as R and Matlab. Finally some examples ofs
ripts showing how to use the numerous R fun
tion written for analysisof s
enario trees and parameter estimation.
House Price Dynamic I 

Benchmark Model

Nykredit Report  HPDI

MONA Fixed Model

HPDII
Error Correction Model 

HPDIII

Part 1

Part 2

Interest Rate

Scenario Trees

House Price

Scenario Tree

Nykredit HPDI

House Price

Scenario Tree

Fixed MONA HPDII

House Price

Scenario Tree

HPDIII  ECM

Mortgage Loan Portfolio

Optimization, Using Predicted 

House Prices Trees

MONA House

Price Data

Error Correction Model 

HPDIII

MONA Fixed Model

HPDII

House Price

Scenario Tree

HPDIII  ECM

House Price

Scenario Tree

Fixed MONA HPDII

House Price Dynamic I 

Benchmark Model

Nykredit Report  HPDI

House Price

Scenario Tree

Nykredit HPDI

Figure 1.1: An abstra
t view of the work performed for this thesis.



Chapter 2 House Pri
e Models
2.1 Introdu
tionThe main obje
tive of this 
hapter is to give an introdu
tion to the theoreti
al
on
epts used in e
onomi
 house pri
e models. As with most e
onomi
 relation-ships the house pri
e model is 
ontrolled by the supply and demand equilibrium.Both the demand and supply will be dis
ussed in se
tion 2.2 along with showingwhi
h variables are most relevant in ea
h relationship. The equilibrium, 
reatedby demand and supply, is also dis
ussed in se
tion 2.2 where a visual exampleof the house pri
e relation is given. The e�e
ts market expe
tations 
an haveon the house pri
e market are dis
ussed brie�y in se
tion 2.3 along with a shortdes
ription of real house pri
e development in Denmark over the last 30 years.2.2 House Pri
e E
onomi
s Ba
kgroundMost e
onomi
 relationships depend on the equilibrium 
reated between supplyand demand to determine the pri
e of a produ
t and house pri
e models are noex
eption. House pri
e relations are usually formulated as sto
k-�ow models,where the term sto
k refers to the amount of real estates on the market. Byusing supply and demand relationship for this sto
k the real estate pri
e 
an



6 House Pri
e Modelsbe derived. The �ow term refers to the �ow or input of new assets added tothe sto
k. The rest of this se
tion fo
uses on how the theoreti
al supply anddemand relation 
an be formulated for a sto
k-�ow model.2.2.1 Long Term DemandA basi
 long term model for the housing demand 
an be seen e.g. in an arti
leby Barot and Yang [1℄ and also in a report from the National Bank of I
eland[4℄ as
HD = f

(
PH

P
, R, Y D, WA, D

) (2.1)where the terms on the right are the explanatory variables for the e�e
tor response variable on the left. The response variable is housing demand(HD). The explanatory variables are house pri
e (PH), the long term interestrate (R), disposable in
ome (Y D), wealth other than real estate (WA), thedebt of individual or household (D) and the 
onsumption de�ator (P ). Ine
onomi
s in�ation adjustment, or "de�ation", is a

omplished by dividing atime series by a pri
e index su
h as the 
onsumption de�ator. The de�atoris then representative of 
onsumer pri
es at ea
h time. In the MONA reportthe 
onsumption de�ator is modeled espe
ially. For further dis
ussion see [12℄1.
PH/P , or house pri
e divided by the 
onsumption de�ator is therefore the realhouse pri
e.In housing models it is usually assumed that in
ome elasti
ity is one in thelong run. In
ome elasti
ity is de�ned as the ratio between the 
hange in somedemand, housing demand in this 
ase, and the 
hange in in
ome. If the in
omeelasti
ity is one, then the long run 
hanges in in
ome will result in proportional
hanges in demand. The idea behind this 
orrelation has a strong intuitivenature sin
e people will always need a pla
e to live and what is more they musta�ord it, house pri
e 
an therefore not in
rease more than proportional to wagesin the long run. Empiri
al grounds for this assumption 
an be seen in MONAmodel from the Danish National Bank [12℄2. Making use of in
ome elasti
ity
onstraint, the house pri
e formula from Eq.(2.1) 
an be expressed as

HD

Y D
= φ

(
PH

P
, R,

WA

Y D
,

D

Y D

) (2.2)where the in
ome elasti
ity has been applied to both WA and D, sin
e thesetwo variables also have a long term elasti
 relationship with disposable in
ome.1On page 96 the 
omponents that make up the 
onsumption de�ator are des
ribed in detail.2On page 43, in the MONA model [12℄, Chart II.3.1 it is shown that Real disposable in
omeas a ratio of sto
k of houses has been approximately 1 the last 30 years in Denmark.



2.2 House Pri
e E
onomi
s Ba
kground 7Isolating the real house pri
e term (PH/P ) from Eq.(2.2) gives
PH

P
= θ

(
HD

Y D
, R,

WA

Y D
,

D

Y D

) (2.3)whi
h is sometimes 
alled the inverted demand fun
tion. Eq.(2.3) des
ribesthe development of house pri
es in the long run, derived from the demandrelationship in Eq.(2.1).2.2.2 Long Term SupplyThe fundamental assumption made 
on
erning the �ow of new assets into thehousing market is by use of a 
on
ept 
alled Tobin's Q, see Barot and Yang [1℄.Tobin�s Q des
ribes the ratio between the value of 
ertain assets and the 
ostof repla
ing those assets, or 
onstru
tion 
ost in the 
ase of the housing marketQ =
PH

PB
=

asset pri
es
onstru
tion 
ost . (2.4)In the long run the Q should have an equilibrium of around one. If Q>1 thereis an in
entive to build more houses, sin
e market value of the assets is higherthan the 
ost to build new assets per sto
k of houses. If Q<1 residential invest-ment will de
rease. A

ording to Barot and Yang using Tobin's Q along within
orporating interest R, also known as the 
ost of �nan
e, gives the relationship
IH

H
= h(Q, R) (2.5)whi
h is 
alled the Augmented Tobin�s model of housing investment. InEq.(2.5), IH and H represent housing investment and sto
k of house, respe
-tively. IH and H are measured in monetary value, pri
e adjusted to some �xedpoint. The assessment of IH and H di�ers between 
ountries, the estimationfor Denmark 
an be seen in Lunde [8℄.3If Q in Eq.(2.5) in
reases, housing investment also in
reases. This 
an easilybe seen from the de�nition of Tobin�s Q given before, i.e. an in
entive forhouse builders is present sin
e Q>1. If interest rates go up, on the supply side,housing investment will de
rease sin
e house builders need funding and interestrates in�uen
e their de
ision of 
onstru
tion.The development of sto
k of houses, i.e. the supply of houses is given with thefollowing error 
orre
tion form

HS = IH + (1 − δ)Ht−1 (2.6)3Box B on page 8.



8 House Pri
e Modelswhere the supplied sto
k of houses (HS) 
omprised of new houses , i.e. housinginvestment (IH) together with last periods sto
k of houses (Ht−1) after depre-
iation (δ). More pre
isely, the supply of houses is the sto
k of houses from lastperiod adjusted for depre
iation plus the housing investment.2.2.3 EquilibriumThe fundamental equilibrium relationship in the housing market is 
reated where
HD = H = HS, i.e. when housing demand HD, also known as the wanted sto
kof houses, is equal to the supply of houses HS . There is however a 
onsiderablelag in the supply side sin
e it takes some time to adjust from when there is asurge in demand until the �ow is delivered. In the interval when the supply isworking on in
reasing sto
k it is normal for house pri
es to go up, to maintainthe equilibrium. This 
an be best explained with an example.Example 2.1 (Example of Equilibrium)Figures 2.1 and 2.2 show two possible situations on a housing market. Figure2.1 shows an equilibrium situation where the y-axis des
ribes the pri
e of houses(PH) and the x-axis shows sto
k of houses (H). Equilibrium is at point A wherethe pri
e is PH = PH∗ = PB and the sto
k of house on the market is H = H∗,i.e. where the demand and supply lines interse
t. To a

ount for the lag insupply there are three supply lines. The supply for the short term horizon is
ompletely verti
al to represent that no �ow is delivered in the short term. Forthe medium term demand some of the �ow initiated by the surge in demand hasbeen delivered and �nally the long term demand when all the requested houseshave been delivered.In Figure 2.2 there has been a shift in demand. Demand line D has shiftedupward and the new demand is now des
ribed by the line D∗. In the shortterm the shift in demand 
auses an in
rease to the pri
e PH∗∗, to maintain theequilibrium the pri
es rise sin
e demand has in
reased while there is no supplyto meet the new demand. In this new equilibrium point B there is a strongin
entive to start building houses, i.e. Q >1.Looking to the medium term supply 
urve the supply has managed to partiallysatisfy the demand, resulting in a de
line in pri
es to PH∗∗∗ along with ain
rease in sto
k of houses to H∗∗, i.e. the delivered supply initiated by thedemand shift. At the new medium term, equilibrium point C, there is howeverstill an in
entive to build houses sin
e asset pri
es are higher than 
onstru
tion
ost, i.e. Q>1. Looking to the long term supply response, the supply hasservi
ed all of the demand, and the pri
es have returned to the initial value,



2.2 House Pri
e E
onomi
s Ba
kground 9
Medium Term Supply (MTS)

Short Term Supply (STS)

Long Term Supply (LTS)

Demand (D)

H* H

A
PH* = PB

PH

Figure 2.1: Shows a housing market in equilibrium at point A. The x-axis is the sto
k ofhouses H while the y-axis show the house pri
e PH. Equilibrium is at the point PH∗ = H∗.
MTS

STS

LTS

D

H* H

A
PH* = PB

PH

B

C

E

H** H***

PH***

PH**

D*

Figure 2.2: Shows the e�e
ts of in
reased demand on the equilibrium, �gure adopted from[4℄.
PH = PB, resulting in Q=1 and new equilibrium point E with sto
k of housesat H∗∗∗.

2



10 House Pri
e ModelsThe example above assumes that there is a su�
ient supply of land for 
on-stru
tion. A

ording to the I
elandi
 National Bank [4℄ if land for 
onstru
tionis severely limited a permanent shift in the supply 
urve would take pla
e andthe long term equilibrium should take pla
e at a higher pri
e, e.g. C in Figure2.2.The short term supply is said to be 
ompletely inelasti
, i.e. verti
al, sin
e theimmediate supply of houses 
ompared to the existing amount of houses on themarket is negligible. The long term supply is 
onsidered 
ompletely elasti
,i.e. horizontal, be
ause Tobin�s Q 
ontrols the long term equilibrium, i.e. inthe long term an equilibrium will be a
hieved at Q=1. Re
all that elasti
itymeasures the ratio of 
hange between two elements.Be
ause of the steepness of the short term supply 
urve house pri
es are expe
tedto os
illate greatly, espe
ially if the demand 
urve is also steep. The dynami
nature of the system indi
ates that new 
hanges in demand will usually haveo

urred before the supply �ow from the previous 
hange have arrived. Thisleads to an ever 
hanging house pri
e.The power that interest rates have in this equilibrium is interesting. Interestrates have a dissuasive e�e
t on both sides of the relation. For example highinterest rates have a repelling e�e
t on buyers on the demand side and also on
ontra
tors who need 
apital for their 
onstru
tions on the supply side. There-fore it is obvious that the interest rate is an important fa
tor in house pri
emodeling.The theoreti
al model above provides the ma
ro e
onomi
 long term relation forboth the supply and demand side of the house pri
e market. Applying the theoryto data to get a viable applied house pri
e model is however more 
ompli
atedand requires the use of e
onometri
 methods, to 
apture the short term dynami
sof the data. A well known problem with e
onomi
 data is that it is often non-
onsistent with time and a limited amount of data is available, whi
h 
ausesfurther di�
ulty when modeling. The road from theory to appli
ation 
an oftenalter models drasti
ally. However, the same main fa
tors are always present inone form or another. The pro
ess of moving from theory to appli
ation in housepri
e models is dis
ussed further in se
tion 5.4.



2.3 Market Expe
tation 112.3 Market Expe
tationMarket expe
tations deserve spe
ial attention. The in�uen
e of market expe
ta-tions on house pri
es is very hard to model. Usually market expe
tations shouldnot present a problem in house pri
e modeling sin
e the market usually makesuse of the information at hand, the fa
tors mentioned before, whi
h des
ribe themarket at ea
h time. However, at times investors believe that the market hassome untapped potential, or they expe
t it to rise even more and try to "ride"the rise to the end whi
h is also known as herd behavior. This 
an resultin pri
e 
hanges whi
h are in
onsistent with the values of the other variables.This kind of behavior 
an in the long-run lead to the 
reation of a house pri
ebubble, whi
h is a pri
e in
rease not founded by the data believed to des
ribethe development of house pri
es.Re
ently in Denmark there has been a long run of rising real house pri
es,where before the market had behaved in 
y
li
al periods, see Figure 2.3. Thedevelopment of real house pri
es the last ten years or so has lead to an in
reasein dis
ussion whether a house pri
e bubble exists in the Danish housing market,or 
ertain spe
i�
 parts of it. Bubbles are quite hard to dete
t and the fullextent of them is often not known until after they burst. A burst is when thepri
es return to "normal" behavior from their over in�ated state usually with asharp de
line. A

ording to Lunde [8℄ the Danish housing market shows somesigns of a housing bubble in some spe
i�ed �eld of the housing market, su
h asurban �ats and summer houses. This topi
 of herd behavior will be revisitedwhen fore
asting for out of sample house pri
es in subse
tion 5.6.1.
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es the last 30 years in Denmark. Noti
e thebreak from the 
y
le around '97.



Chapter 3
House Pri
e Dynami
s IModeling the Nykreditrelationship

3.1 Introdu
tionIn this 
hapter a simple ben
hmark relation for a house pri
e dependant solely oninterest rates will be formulated. Along with modeling the interest relation, thes
enario tree stru
ture whi
h will be used through out this report is introdu
ed.In se
tion 3.2 a short a

ount is given of the simple relation whi
h will bemodeled in this 
hapter. In se
tion 3.3 the simple interest relation is appliedto a one path, i.e. a single time line s
enario, to better realize the dynami
s ofthe relation. Se
tion 3.4 introdu
es the s
enario tree 
on
ept along with a brief
omment on the appli
ation of su
h a model. In se
tion 3.5 the one path 
ase isexpanded to the s
enario tree 
ase. Finally in se
tion 3.6 the model is 
omparedto a simpler model, as well as giving examples of house pri
e trees.



14 House Pri
e Dynami
s IModeling the Nykredit relationship3.2 The Nykredit RelationThis �rst relationship between interest rates and house pri
es will be modeledand implemented to a trinomial s
enario tree. The relationship used here isbased on a very simple interest only relation, taken from a report published byNykredit in May 2006 [10℄, whi
h states:Nykredit result: 



1% ↑ in short rates, 5% ↓ in house pri
es after one year;
11% ↓ in house pri
es after two years;

1% ↓ in short rates, 5% ↑ in house pri
es after one year;
11% ↑ in house pri
es after two years;This is a very simpli�ed model where the only 
ause of 
hanges in house pri
esis a 
hange in interest rates, i.e. the only explanatory variable is 
hange ininterest rates. Although the relation is simple it will give a good idea of how tomodel more 
omplex house pri
e s
enario trees and the programming done forthis model will easily be extended to more 
omplex models.3.3 Modeling for one PathInitially the Nykredit house pri
e relation was 
onsidered as a single path re-lation, that is on a one dimensional time line. At ea
h time on the time linethere is a node holding observed and predi
ted information. Ea
h node has anumber, period, house pri
e and interest rate. The modeling involves developinga relation for house pri
es based on interest rates and house pri
es from pastperiods, this sort of formulation is also known as a re
ursive relationship.To 
al
ulate the e�e
t of interest rate 
hanges in the house pri
e a few variablesare needed. Firstly the 
hange in interests rate between years is de�ned as∆SRt.More pre
isely, the interest rate 
hange between any two points at time=t andtime=t − 1 
an be expressed as

∆SRt = SRt − SRt−1 (3.1)The ∆ operator is 
alled a di�eren
e operator and will be dis
ussed further inse
tion 4.2. Two other variables are also de�ned to express the 
hange in housepri
es, i.e. the 
hange after one year (OneYearEffectt) and the 
hange after twoyears (TwoYearEffectt). These two house pri
e 
hanges are expressed as follows
OneYearEffectt = −5HPt(SRt − SRt−1) = −5HPt · ∆SRt (3.2)
TwoYearEffectt = −11HPt(SRt − SRt−1) = −11HPt · ∆SRt (3.3)



3.3 Modeling for one Path 15In Eq.(3.2) and (3.3) it is assumed that interest rates are expressed as de
imalfra
tions. The minus is to a

ount for the negative relationship between 
hangesin interest rates vs. 
hanges in house pri
es. If there is a 
hange in interest ratesbetween periods t and t+1 the e�e
t of that 
hange will not in�uen
e the housepri
es until at time t + 2. The base house pri
e, i.e. the pri
e the 
hange isapplied to at ea
h time, will be the house pri
e from the previous period, e.g. atperiod t the base pri
e is set to the result from period t− 1. Eq.(3.2) and (3.3)along with knowledge of how mu
h start up time the house pri
e vs. interestrate lag needs, give the 
onditional formula for house pri
es, derived as
HPt =





HP0 if t < 2
HPt−1 − 5HPt−1 · ∆SRt−1 if t = 2
HPt−1 − 5HPt−1 · ∆SRt−1 − 11HPt−2 · ∆SRt−2 if t > 2

(3.4)Eq.(3.4) assumes that time indexing (t) starts from 0. HP0 is the startup housepri
e, usually this would be set to 1 or 100. By using Eq.(3.2) and (3.3), Eq.(3.4)
an be expressed as
HPt =





HP0 if t < 2
HPt−1 + OneYearEffectt−1 if t = 2
HPt−1 + OneYearEffectt−1 + TwoYearEffectt−2 if t > 2

(3.5)The dynami
 nature of Eq.(3.5) 
an best be viewed by showing the �rst spe
ial
ases t ∈ {0, 1, 2} along with the �rst general 
ase t = 3 on a node graph.
0 1 2 3

ΔSR�
HP�

ΔSR�
OneYearEffect�

HP�HP� OneYearEffect�TwoYearEffect�

Figure 3.1: Visual representation of the �rst 4 periods in the 
onditional relationship,between interest rates and house pri
es, shown in Eq.(3.5).Figure 3.1 shows the development of house pri
e for the �rst 4 periods, in
ludingthe spe
ial 
ases for t < 3. At time 0 the only input is the initial house pri
eor HP0. Between period 0 and 1 there is a 
hange in interest rate, this 
hange



16 House Pri
e Dynami
s IModeling the Nykredit relationshipwill e�e
t the house pri
e both at time 2 and 3, the 
hange in interest rates willnow be 
al
ulated at ea
h period. At time 1 only HP0 
ontributes to the newhouse pri
e HP1. The house pri
e at time t = 2 has the �rst interest rate e�e
t(OneYearE�e
t1) whi
h is added to HP0.
HP2 = HP0 + OneYearEffect1At time 3 the �rst general 
ase o

urs, whi
h means that the lag for HP vs.

∆SR is su�
ient to give both the one and two year e�e
ts. At time 3 thebase, or input, house pri
e is the one from the previous year or HP2. TheOneYearE�e
t2 from year two and the TwoYearE�e
t1 from year one also a�e
tthe house pri
e at HP3

HP3 = HP2 + OneYearEffect2 + TwoYearEffect1whi
h is an example of the general 
ase, i.e. when t > 2.3.4 The S
enario TreeExtending the model, in Eq.(3.5), to a tree stru
ture is relatively easy. Therelationship is still 
onditioned on the periods (t) as it was in Eq.(3.5). Toa

ount for the more 
omplex re
ursive nature when dealing with the s
enariotree format a new index is added along with formulating the tree stru
ture in thisse
tion. The following notation for a s
enario tree is borrowed from Rasmussenand Clausen [13℄.A �nite probability spa
e (Ω,F , P ) is de�ned where the out
omes are a sequen
eof real-values (interest rates) over some dis
rete time period t = 0, · · · , T . T isalso sometimes 
alled horizon.A s
enario tree is generated by mat
hing the probability out
omes ω ∈ Ω tothe 
orresponding nodes n ∈ Nt at time t in the tree.Ea
h node in the s
enario tree n ∈ Nt for 1 ≤ t ≤ T has a unique parent nodedenoted by a(n) ∈ Nt−1. Every node n ∈ Nt for 0 ≤ t ≤ T − 1 also has anon-empty set of 
hild nodes denoted by C(n) ⊂ Nt+1.The nodes at horizon, n ∈ NT , are 
alled leaf nodes. The initial node n ∈
N0 is 
alled the root node. From ea
h leaf node there is a unique re
ursiverelationship to the root node, ea
h su
h relationship is 
alled a path.The re
ursive nature of the paths 
orresponds to the formula given in Eq.(3.5),



3.4 The S
enario Tree 17the parent-
hild relationship must therefore be in
luded into the Eq.(3.5) topreserve the s
enario tree dynami
s.3.4.1 Example and ImplementationA full s
enario tree 
an be of di�erent types, these types are de
ided by thenumber of 
hild nodes ea
h parent node produ
es. For example if n = 1 is theroot node then |C(1)| = 2 is a binomial tree while |C(1)| = 3 is a trinomial treeand so on. Using the tree type along with
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Figure 3.2: Example of a |C(1)| = 2 tree or binomialtree. Here N = 20 + 21 + 22 + 23 = 15 and T = 3.

the period t 
an tell how manynodes are in an arbitrary setNtby
|Nt| = |C(1)|t 0 ≤ t ≤ TThe total number of nodes inthe tree N is therefore easilyfound by summing over all pe-riods.

N =

T∑

t=0

|Nt| (3.6)Figure 3.2 shows an exampleof s
enario tree with t ∈ {0, 1, 2, 3}and n ∈ {1, · · · , 15}. It 
an beseen that the tree is binomialsin
e ea
h node, ex
ept for theleaf nodes, has two 
hild nodes.The set of leaf nodes is shownas NT , the root node set, in-
luding only n = 1, is shown as
N0.When programming the s
enario tree stru
ture, two di�erent methods wereused. Originally an indexing method was applied in Matlab and R, whi
h de-pends highly on the parent relationship as well as 3.6. The �rst version waslater expanded by using an obje
t oriented approa
h. The programming partof the s
enario trees is given a thorough dis
ussion in appendix A.



18 House Pri
e Dynami
s IModeling the Nykredit relationship3.5 Applying to a S
enario TreeThe path 
on
ept from the tree stru
ture 
orresponds very well with the singletime line implementation given in Eq.(3.5).Nodes in the s
enario tree stru
ture inherit house pri
es from the node in theprevious period. This is the same as in the single path 
ase, however sin
e thereare now multiple nodes at ea
h time the re
ursive nature is preserved throughthe parent-
hild relationship as well as time. More pre
isely nodes inherit housepri
es from the parent node in the s
enario tree.The house pri
e is now expressed as HPn,t where the n index indi
ates the nodenumber and t, as before, indi
ates the period. Using the new indexing the tree
an be expressed as |NT |, i.e. the number of leaf nodes, 
ases of a single pathtype. For example Figure 3.2 gives 23 = 8 paths where the top path, in termof node indexes, is 1 − 2 − 4 − 8 and the bottom path is 1 − 3 − 7 − 15. Theinterest rate 
hange between nodes is de�ned for the s
enario tree as
∆SRn,t = SRn,t − SRa(n),t−1 1 ≤ t ≤ T (3.7)Re
all that a(n) gives the parent of node n. Eq. (3.2) and (3.3) also be
omenode dependant, shorten the names to One and Two

Onen,t = −5HPn,t(SRn,t − SRa(n),t−1)

= −5HPn,t · ∆SRn,t (3.8)
Twon,t = −11HPn,t(SRn,t − SRa(n),t−1)

= −11HPn,t · ∆SRn,t (3.9)Finally the model stated in Eq.(3.5), extended to the s
enario tree be
omes
HPn,t =





HPn=1,t=0 if t < 2
HPa(n),t−1 + Onea(n),t−1 if t = 2
HPa(n),t−1 + Onea(n),t−1 + Twoa(a(n)),t−2 if t > 2

(3.10)Where n stands for the node number, a(n) is the parent node of node n, a(a(n))is the parent of a(n) and the grandparent of n. Initially at HPn=1,t=0 a initialhouse pri
e is set, e.g. HP = 100. Be
ause of the lag between interest rates andhouse pri
es, an interest rate tree of length T will result in a house pri
e tree oflength T + 1.



3.6 Data 193.6 DataIn this se
tion a brief dis
ussion will be given on implement Eq.(3.10) for optimalmemory usage and 
omparability to the interest tree. Comparison of Eq.(3.10)to a simpler form of the relation is done and tests performed to see the di�eren
ebetween the two. The distribution of the node mass at time T is also inspe
tedfor both methods.3.6.1 Lagged House Pri
e TreeWhen it 
omes to programming the relation in 3.10 it is a good idea to shiftthe house pri
e tree, i.e. lag it by one time unit. Lagging the HP tree resultsin it being the same size as the interest rate tree, i.e having T periods insteadof T + 1. The one period lagged version of Eq.(3.10) for the house pri
e tree istherefore a
hieved by moving the house pri
e as follows:
One∗(n,t) = −5HP(a(n),t−1) · ∆SR(n,t) (3.11)
Two∗(n,t) = −11HP(a(n),t−1) · ∆SR(n,t) (3.12)So the �rst node is 
ut of and the HP tree moved ba
k one period. The resultingupdated version of Eq.(3.10) is

HPn,t =





HPn=1,t=0 if t < 1
HPa(n),t−1 + One∗N,t if t = 1
HPa(n),t−1 + One∗N,t + Two∗a(n),t−1 if t > 1

(3.13)This is possible be
ause of the HP lagged dependan
e on ∆SR and be
ause thetree grows by qt as time passes, where q is the tree type |C(1)| = q. Be
auseof the lag ∆SR results in q identi
al house pri
e nodes when using Eq.(3.10),i.e. ea
h pri
e is repli
ated to q 
hild nodes. This repli
ation is not ideal as itmakes the house pri
e trees di�erent from the interest rate trees in size as wellas being a waste in memory, sin
e there are only qT unique nodes and qT+1−qTare therefore wasted.By shifting the tree ba
k one period qT+1−qT nodes are saved whi
h is importantwhen 
al
ulating for big trees. In Figure 3.3 an example of a full tree and alagged tree is given for a n = 3 and T = 3 interest rate tree. Both trees areidenti
al in shape and information, ex
ept for the redundant �rst node whi
hhas been 
ut out in the lagged tree. This method of lagging is the one that wasapplied. The HP trees will however be displayed with their right time horizonand be noted as T + 1 trees.
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0 1 2 3Figure 3.3: Here is an example of the original tree, trinomial and T = 3, using Eq.(3.10) tothe left while the augmented version Eq.(3.13) is to the right. Both of these house pri
e treesare so 
alled non-re
ombining path trees.3.6.2 Re
ombining Paths vs. Non-Re
ombining PathsA re
ombining path s
enario tree, also known as a latti
e s
enario tree, iswhere an up-down move in the s
enario tree will result in the same value as adown-up move. This is best explained by a visual example see Figure 3.4 fora latti
e tree, while Figure 3.3 shows an example of a non-re
ombining pathtree, i.e. where a up-down move does not have to end in the same value as anup-down move. Re
ombining trees are often used in derivative pri
ing theory,as well as in dynami
 programming and as de
ision trees. The main bene�tthat re
ombining trees have over non-re
ombining trees is that they are morere
ursively tra
table and for the same horizon T have far fewer nodes than anon-
ombining tree.In the next subse
tion, latti
e as well as non-re
ombining, interest rate trees willbe used as input to see what e�e
t that has on the house pri
e development.3.6.3 ∆HP methodFor 
ontrast another method of modeling is 
ompared to the relation in Eq.(3.10).The method used for 
omparison des
ribes the per
entage 
hange in house pri
eat ea
h time irrelevant to the 
urrent house pri
e at that time. The 
omparisonmethod will be noted as ∆HP , while Eq.(3.10) will be noted as HP . To get
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Figure 3.4: An example of a latti
e or re
ombining tree, left panel is a binomial tree whilethe right show a trinomial tree. Noti
e that up-down and down-up result in the same housepri
e.the 
hange from start to a 
ertain period t where 0 ≤ t ≤ T +1 the relation 
anbe expressed as
∆1n,t = −5∆SRn,t ∆2n,t = −11∆SRn,t

∆HPn,t =





0 if t < 2
∆HPa(n),t−1 + ∆1a(n),t−1 if t = 2
∆HPa(n),t−1 + ∆1a(n),t−1 + ∆2a(a(n)),t−2 if t > 2

(3.14)Whi
h 
an be viewed as 
hange from some beginning index I by
HPn,t = I · (1 + ∆HPn,t) (3.15)The di�eren
e between these methods in essen
e is that the ∆HP method showsthe 
hange in house pri
e from t = 0 to times t = 1, ..., T + 1 in one step, i.e.without updating the base at ea
h time. A short example for the two methods,given a ve
tor of house pri
e 
hanges 
alled ∆kp = [0.1,−0.1, 0.05] and an initialpri
e of kp0 = 1. Using the ∆HP and HP methods gives

∆HP : HP :

kp1 = kp0(1 + 0.1) = 1.1 kp1 = kp0(1 + 0.1) = 1.1

kp2 = kp0(1 + 0.1 − 0.1) = 1 kp2 = kp1(1 − 0.1) = 0.99

kp3 = kp0(1 + 0.1 − 0.1 + 0.05) = 1.05 kp3 = kp2(1 + 0.05) = 1.04This small example shows that the ∆HP method should give linear transfor-mation of latti
e interest rate trees resulting in latti
e house pri
e trees, sin
e
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s IModeling the Nykredit relationshipup-down result in the same value as down-up moves. The HP method is how-ever more 
omplex and has a 
ompound nature. In the next subse
tion thesetwo methods will be 
ompared by using interest trees.
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e trees. Upper left is the House Pri
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hange is based on the house pri
e at ea
h time. Upper right is the ∆HP relation with
I = 100. The lower graphs show the interest trees where ea
h 
hange is a = 0.0075, resultingin range of 0.1175 − 0.0425 interest at time T .
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e trees. Upper left is the House Pri
e treewhere 
hange is based on the house pri
e at ea
h time. Upper right is the ∆HP relation with
I = 100. The lower graphs show interest rate trees .3.6.4 ComparisonThe two methods, HP and ∆HP , were tested together using identi
al trino-mial interest rate trees. Both latti
e trees as well as more diverse and real likeinterest trees were used as input. For the latti
e tree interest rates 
an at ea
htime rise by a, fall by a or stay the same. The range (2a) of ea
h 
hange for the
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ase shown in Figure 3.5 is �xed to 2a = 0.015. From Figure 3.5 it 
an be seenthat using the HP method at ea
h time introdu
es a 
ertain nonlinearity to therelation, while using the ∆HP 
onserves the interest tree proportion to the HPtree, giving a latti
e house pri
e tree. The median, the red dot, whi
h marksthe 
enter of density for the distribution of the nodes at time T + 1 has slightlymoved down for the HP 
ase whi
h is to be expe
ted sin
e 
ompounding makesit harder to in
rease the house pri
e on
e it has de
lined. The results maximum,minimum and median values 
an be seen in Tables 3.1 and 3.2 for the HP and
∆HP methods respe
tively, when using the latti
e tree.

t 1 2 3 4 5 6Max 100.00 103.75 115.89 128.80 143.19 159.18Med 100.00 100.00 100.00 99.55 99.55 98.56Min 100.00 96.25 84.39 73.29 63.57 55.14Table 3.1: The maximum, median and minimum house pri
e values for ea
h period, usingthe HP method 
orresponding to Figure 3.5, upper left panel.
t 1 2 3 4 5 6Max 100.00 103.75 115.75 127.75 139.75 151.75Med 100.00 100.00 100.00 100.00 100.00 100.00Min 100.00 96.25 84.25 72.25 60.25 48.25Table 3.2: The maximum, median and minimum house pri
e values for ea
h period, usingthe ∆HP method 
orresponding to Figure 3.5, upper right panel.In Figure 3.6 the input interest tree is a so 
alledMean reversion interest ratetree. Mean reversion is based on the mathemati
al premise that the initial pri
eis not the mean but with time the pro
ess will eventually move ba
k towardsthe mean or in this 
ase some average interest rate.The results for the house pri
es in Figure 3.6 show the same e�e
ts as theprevious 
omparison, i.e. the HP method redu
es (damps) the down turn andrises higher than the ∆HP tree. The median, for the HP tree, as before showsthat the HP tree tends to bring the 
enter of node density down, whi
h isto be expe
ted with the 
ompounding e�e
t. The median for ∆HP howeverrepresents the 
enter of the interest rates tree. The 
orresponding maximum,minimum and median values, for ea
h period, 
an be seen in Tables 3.3 and3.4 for the ∆HP and HP methods respe
tively, when using the mean reversioninterest rate tree. In Figure 3.7 a histogram for Figure 3.6, i.e. the housepri
e when using mean reversion interest rates, is shown. It 
an be seen fromthe histogram how the transformation of the ∆HP is a linear transformationwhile the HP skews the the node distribution downward, giving an upward tail.
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t 1 2 3 4 5 6Max 100.00 102.65 110.53 116.64 121.41 125.16Med 100.00 98.30 93.21 89.24 86.24 83.88Min 100.00 93.95 75.94 61.95 51.07 42.55Table 3.3: The maximum, median and minimum house pri
e values for ea
h period, usingthe ∆HP method 
orresponding to Figure 3.6, upper right panel.
t 1 2 3 4 5 6Max 100.00 102.65 110.58 116.98 122.34 126.78Med 100.00 98.30 93.23 89.38 84.58 82.18Min 100.00 93.95 76.22 63.73 55.79 50.54Table 3.4: The maximum, median and minimum house pri
e values for ea
h period, usingthe HP method 
orresponding to Figure 3.6, upper left panel.

∆HP 
onserves the form of the interest rate tree, shown on the lower half, mu
hbetter.To summarize, three observation about the house pri
e trees have been noti
edfrom the above 
omparison. Firstly a sequen
e of downward 
hanges in interestrates will give a higher house pri
e with HP than ∆HP , i.e. the HP showsexponential growth while ∆ 
onserves the interest 
hange. A sequen
e of risesin interest rates will give a dampened de
line in HP 
ompared to the ∆HP onewhi
h again 
onserves the interest rate tree. Lastly the density mass of nodeswill move downward at horizon T + 1 for HP , while ∆HP will 
onserve theinterest rate tree density. All of these di�eren
es between HP and ∆HP 
anbe explained by the 
ompounding e�e
t when using HP . For short periods,e.g. (T + 1) < 4, the ∆HP relation proves a good estimation to the HP
ompounding relation. However as T + 1 in
reases the di�eren
e between thetwo also in
rease. The long term 
hange of the leafs, given a latti
e tree with
2a = 0.015, is shown in Figure 3.8. As a, i.e. the 
hange in interest rates,in
reases so does the di�eren
e between HP and ∆HP .3.7 SummaryThe 
on
lusion of this analysis is that the Nykredit relation modeled in Eq.(3.10)is a rather 
rude relation for modeling the house pri
e to interest rate relation.The relation is probably not meant to run over many years with 
ompounding,without yearly 
orre
tion to a
tual data. It is a good idea to plot the HP with-out 
ompounding, i.e. ∆HP as expressed in Eq.(3.15) to ben
hmark Eq.(3.10)
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Figure 3.8: Shows the long term development of the leafs for the two ways of 
omputinghouse pri
es, given a latti
e tree with 2a = 0.015.to a linear transformation of the interest rate tree, when using the Nykreditrelation. In subsequent 
hapters a more sophisti
ated relation for house pri
eto interest rate relation will be inspe
ted.



Chapter 4
Time Series andE
onometri
 Theory

4.1 Introdu
tionBefore moving into statisti
al analysis of the MONA house pri
e model in thenext se
tion a few important 
on
epts used frequently in time series and e
ono-metri
 analysis are listed and dis
ussed. Most of the de�nitions and exampleslisted in this 
hapter are in�uen
ed or adapted from three time series books, i.e.Madsen [9℄, Tsay [15℄ and Hamilton [3℄.In se
tion 4.2 an a

ount of basi
 e
onometri
 and time series 
on
epts, neededto understand the models and terms used in empiri
al modeling of house pri
esis presented. Se
tion 4.3 introdu
es two important time series models frequentlyen
ountered in e
onometri
 and �nan
ial analysis. Se
tion 4.4 shows three wellknown methods for estimating parameters in time series models. Finally inse
tion 4.6, methods of 
he
king the quality of the estimated parameters areintrodu
ed.
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onometri
 Theory4.2 Time Series AnalysisE
onomi
 time series data, as was mentioned in 2.2, often has some non idealfeatures making it hard to model, e.g. long term trends, periodi
 trends or evenmore general time varying behavior. Series exhibiting this sort of behavior are
alled non-stationary series, for
ing a series to be "stationary" is thereforeimportant for analysis and modeling of the data. So 
alledWeak Stationarity, whi
h will be noted as stationarity from now on, is formally de�ned as;Definition 4.1 (Weak Stationarity)A series {rt} is said to be weakly stationary of order k if all �rst k momentsare invariant to 
hanges in time. A weakly stationary pro
ess of order 2 is simply
alled weakly stationary.
♦If the mean and varian
e, the �rst two moments, are time invariant the series isstationary. Stationary series 
an be evaluated with 
lassi
al time series methodsand used to predi
t for future values.Another de�nition used frequently is that of white noiseDefinition 4.2 (White Noise)A series {εt} is said to be 
ompletely random or white noise, if εt is asequen
e of mutual un
orrelated identi
ally distributed sto
hasti
 variables withmean value 0 and 
onstant varian
e σ2

ε . This implies that
µt = E[εt] σ2

t = V [εt] = σ2
ε

γǫ(k) = Cov[εt, ǫt+k] = 0 for k 6= 0

♦To illustrate the stationarity along with white noise a small example is dis-played, largely adapted from Madsen [9℄1, showing a spe
ial 
ase of a lag oneautoregressive pro
ess (AR(1)) also known as random walk.Example 4.1 (AR(1) - Random Walk Series)Let {εt} be a normally distributed white noise sequen
e where E[εt] = 0 and1see page 101
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V [εt] = σ2. Let {εt} also be the input to dynami
 relationship de�ned by adi�eren
e equation as

rt = φrt−1 + εt (4.1)whi
h then de�nes a new sto
hasti
 series {rt}. By su

essively substituting
rt−1 = φrt−2 + εt−1, rt−2 = φrt−3 + εt−2,... and so on, it is seen that Eq.(4.1)
an be written as

rt = εt + φεt−1 + φ2εt−2 + · · · + φiεt−i + · · · (4.2)From Eq.(4.2) it 
an be seen that
µr = E[rt] = 0and

σ2
r = V [rt] = (1 + φ2 + φ4 + · · · + φ2i + · · · )σ2 =

σ2

(1 − φ2)
(4.3)
onditioned that |φ| < 1. If |φ| ≥ 1 the varian
e is unbounded and the series isnon-stationary, e.g. see Figure 4.1. A spe
ial 
ase is when φ = 1 where Eq.(4.1)is the so-
alled random walk series, whi
h is non-stationary.The bounded varian
e in Eq.(4.3) is a
hieved by using the well known geomet-ri
al series

1

1 − x
=

∞∑

n=0

xn = 1 + x + x2 + x3 + · · · for |x| < 1. (4.4)
2The 
oe�
ient φ a
ts as the memory of the pro
ess. For φ values 
lose to 1 thereis a long memory, small values of φ result in a short memory. The memory of apro
ess is usually examined by the auto
orrelation fun
tion (ACF), whi
hgives a indi
ation of how 
orrelated, dependant, a series is to previous, lagged,values.Example 4.2 (ACF and AR(1))Consider the series shown in Figure 4.1, where four AR(1) series with φ ∈

{0, 0.5, 0.9, 1} have been simulated with white noise at ∼ N(0, 1). The auto-
orrelation fun
tions for ea
h of the four di�erent series is displayed in Figure4.2. For φ = 0 the series be
omes rt = at i.e. only white noise. The ACFfor φ = 0, depi
ted in the upper left panel, shows that there is no dependen
yon previous values of rt i.e. this pro
ess is without memory. The upper rightand lower left panels show AR(1) with φ = 0.5 and φ = 0.9, respe
tively. Thein
reasing height of the stems with in
reasing lags, i.e. previous observations,indi
ates that the two series are more dependant on previous values. The lowerright panel shows the random walk with φ = 1 whi
h is non-stationary, noti
ehow dependant the value at time t is to previous, lagged, values.
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Figure 4.1: A simulation of a AR(1) pro
ess as des
ribed in Example 4.1 with di�erentlevels of the 
oe�
ient φ. The sequen
e {at} is white noise where at ∼ N (0, 1)

2The random walk model is listed in detail sin
e it is 
onsidered as the model formany �nan
ial and e
onomi
 series. The random walk series is also a perfe
t ex-ample of a spe
ial kind of non-stationarity 
alled unit-root non-stationarity.Given the unit-root non-stationary random walk series
rt = rt−1 + atit is seen that the 
urrent value rt is based 
ompletely on the last value rt−1plus the value of the equally likely plus/minus e�e
t from the white noise (at).See Tsay [15℄2 for a more detail des
ription of unit-root non-stationarity.An important operation used when analyzing unit-root non-stationary time se-ries is 
alled di�eren
ing. The di�eren
e operator ∆ is de�ned as

∆rt = rt − rt−1i.e. observing the 
hange in level rt instead of the level.Example 4.3 (AR(1) Differen
ing)Given the random walk pro
ess from Example 4.1 (φ = 1) and taking the2 See 
hapter 2.7
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LagFigure 4.2: Auto
orrelation fun
tions for a simulated AR(1) pro
ess with di�erent values of
φ. Shows the di�erent memory of a pro
ess.di�eren
e of the left side of Eq.(4.1) it be
omes

rt − rt−1 = rt−1 + at − rt−1

rt − rt−1 = at

∆rt = atBy di�eren
ing the unit-root non-stationary series {rt} it be
omes a new series
pt = ∆rt whi
h is stationary. Removing the aggregation e�e
t and giving therandom e�e
t at ea
h time.

2In the example above the series be
ame stationary after one level of di�eren
ing,however this does not always apply.Definition 4.3 (Integration I(d))A series whi
h is non-stationary but be
omes stationary after d levels of di�er-en
ing is de�ned as being integrated of order d noted as I(d).
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♦The AR(1) series in Example 4.3 is therefore said to be I(1), or integrated oforder one.The terms above are all fundamental de�nitions in basi
 time series analysisand e
onometri
s, needed to understand the rather 
omplex nature of the ap-plied house pri
e model inspe
ted in the following 
hapters. In the followingsubse
tion the error 
orre
tion model (ECM) whi
h is used to model manyma
ro-e
onomi
 relationships is presented.4.3 Error-Corre
tion Model (ECM)For two stationary variables rt and zt, where zt is the response of rt, e.g. zt ishouse pri
es and rt is interest rates. Then the following 
an be assumed:

zt = δ + θzt−1 + φ0rt + φ1rt−1 + εt (4.5)If εt is assumed white noise independent of zt−1, zt−2, ... and rt, rt−1, ... thenEq.(4.5) is sometimes known as an autoregressive distributed lag model(ADL). To estimate the parameters in the model, (δ, θ, φ0, φ1), ordinary leastsquares (OLS) 
an be used, see se
tion 4.4.1 for OLS. What is however of moreinterest is another form of ADL or the so 
alled error-
orre
tion model(ECM). Following is the dedu
tion of the ECM along with a dis
ussion of themodel properties, the dedu
tion has been adopted largely from Verbeek [16℄3.By looking at Eq.(4.5) it is seen that zt is des
ribed by lagged values zt−1 andby the 
hange in rt. Taking the partial derivative of zt, zt+1 and zt+2 withregards to rt gives:
∂zt/∂rt = φ0

∂zt+1/∂rt = θ ∂zt/∂rt + φ1= θφ0 + φ1

∂zt+2/∂rt = θ ∂zt+1/∂rt = θ(θφ0 + φ1)Continuing on like this and summing up over t, t+1, t+2, ... a long run multiplier3See e.g. 
hapter 9.1.
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an be derived or:
∞∑

a=0

∂zt+a

∂rt
= φ0 + (θφ0 + φ1) + θ(θφ0 + φ1) + · · ·

= φ0 + (1 + θ + θ2 + · · · )(θφ0 + φ1)

=
φ0 + φ1

1 − θ
where |θ| < 1 (4.6)The long run multiplier des
ribed by Eq.(4.6) was gotten by using the geometri-
al series in Eq.(4.4). The relation in Eq.(4.6) therefore des
ribes the long term
hange in zt for a 
hange in rt.There is another way of writing the ADL model des
ribed in Eq.(4.5), by sub-tra
ting zt from both sides in Eq.(4.5) it be
omes

∆zt = δ − (1 − θ)zt−1 + φ0∆rt + (φ0 + φ1)rt−1 + ǫtor as the error-
orre
tion model (ECM)
∆zt = φ0∆rt − (1 − θ)[zt−1 − α − γrt−1] + εt (4.7)where

γ =
φ0 + φ1

1 − θ
and α =

δ

1 − θEq.(4.7) has two main terms. The �rst term, i.e. the dynami
 part is des
ribedby φ0∆rt. The se
ond term, known as the error 
orre
tion term, in
ludes thelevels inside the bra
kets, i.e. the a
tual levels not the di�eren
ed values. Theterms inside the bra
ket maintain the long run equilibrium for zt. The ECMimplies that zt is de
ided by the 
hange in rt adjusted by the error 
orre
tionterm in the bra
ket, whi
h speed of 
orre
tion is 
ontrolled by (1 − θ).In subse
tion 5.6.3 the long run multiplier is applied to the house pri
e modelto derive what e�e
t a small 
hange in the variables, 
orresponding to rt here,have on the response variable, zt, in the long run.4.4 Parameter EstimationGiven data and having prepared a model for the data, the model 
oe�
ients,or parameters, are estimated so the model des
ribes, �ts, the data as well aspossible. There are di�erent ways of performing parameter estimation. In thisse
tion two of the main methods, Ordinary Least Squares (OLS) and Maxi-mum Likelihood Estimation (ML), are dis
ussed in subse
tions 4.4.1 and 4.4.3
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onometri
 Theoryrespe
tively. In subse
tion 4.4.2 a spe
ial 
ase of OLS is des
ribed where linear
onstraints are implemented on the 
oe�
ients (ROLS). The derivation of theestimator for ROLS is largely borrowed from Judge et. al. [6℄.Definition 4.4 (Linear Regression Model)The linear regression model, in matrix form, is expressed as
y = Xβ + ε (4.8)where

y =




y1

y2...
yn


 , X =




1 x11 x12 · · · x1k

1 x21 x22 · · · x2k... ... ... ...
1 xn1 xn2 · · · xnk




β =




β0

β1...
βk


 and ε =




ε1

ε2...
εn


where y is a (n × 1) ve
tor of observations also sometimes noted as the re-sponse variable, X is (n × p) matrix of levels of the independent variablesalso noted as the design- or explanatory matrix, where p = k + 1 i.e. thenumber of regressors k plus the inter
ept (β0). The (p × 1) ve
tor β holds theregression 
oe�
ients and ε is an (n × 1) ve
tor of random errors, whitenoise.

♦4.4.1 Ordinary Least Squares (OLS)Isolating the error term from Eq.(4.8) it 
an be rewritten as
ε = y − XβA ve
tor of least square estimators β̂ is sought so as it minimizes the followingfun
tion S(β)

S(β) =

n∑

i=1

ε2
t = ε′ε = (y − Xβ)′(y − Xβ) (4.9)Where prime (′) indi
ates the transpose of a ve
tor or matrix. By multiplyingthe matri
es in the bra
kets, keeping in mind the fundamental matrix rule of
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(AB)′ = B′A′, Eq.(4.9) be
omes

S(β) = y′y − y′Xβ − β′X ′y + β′X ′Xβ (4.10)
= y′y − 2β′X ′y + β′X ′Xβ (4.11)The step between Eq.(4.10) and Eq.(4.11) is explained by

y′Xβ = y′(X ′)′(β′)′ = y′(β′X ′)′ = (β′X ′y)′and the fa
t that the term β′X ′y is a s
alar as 
an be seen by
1 × n · p × n · n × 1 = 1 × n · n × 1 = 1Taking the derivative of Eq.(4.11) with regards to β gives
∂S

∂β
=

∂

∂β
(y′y − 2β′X ′y + β′X ′Xβ)

=
∂

∂β
(−2β′X ′y + β′X ′Xβ)

= −2X ′y + 2X ′XβSetting the derivative ∂S/∂β equal to zero, inserting β = β̂ and solveing for β̂

∂S

∂β

∣∣∣∣
β=β̂

= −2X ′y + 2X ′Xβ̂ = 0

X ′Xβ̂ = X ′y

(X ′X)−1X ′Xβ̂ = (X ′X)−1X ′y

β̂ = (X ′X)−1X ′y (4.12)Eq.(4.12) is the ordinary least square estimator (OLS) of β, i.e. β̂ holds theestimated 
oe�
ients to ea
h of the fa
tors in the relationship between X and
y, minimizing the se
ond norm of the estimated standard error. An example ofestimation of parameters by use of OLS in a e
onomi
 relationship is shown inExample 4.4.While the OLS method is easy to use and e�e
tive it is not as general as theMaximum Likelihood method mentioned in subse
tion 4.4.3. Furthermore OLSworks only for problem that 
an be written on the regression model format.Example 4.4 (Example of OLS)Imagine a typi
al e
onomi
 relationship of the following form

Qt = ALα
t Kγ

t eεt
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onometri
 Theorywhere Qt is output, Lt is labor, Kt is 
apital, A is some 
onstant and εt is theerror term, independent of Kt and Lt over the time period t ∈ {1, ..., n}. Theparameters that are to be estimated are γ and α. Taking the logarithm (ln) of
Qt gives

ln(Qt) = ln(A) + α ln(Lt) + γ ln(Kt) + εtIt is easy to see that this relation 
an be transformed to the regression formatas
yt = β0 + β1xt1 + β2xt2 + εtor in matrix form 
orresponding to Eq.(4.8) as

y = Xβ + εwhere
y =




ln(Q1)
ln(Q2)...
ln(Qn)


 , X = [ I, xt1, xt2] =




1 ln(L1) ln(K1)
1 ln(L2) ln(K2)... ... ...
1 ln(Ln) ln(Kn)




β =




ln(A)
α
γ


 and ε =




ε1

ε2...
εn


and 
an be solved for β̂ by using Eq.(4.12).

24.4.2 Restri
ted Least Squares (ROLS)In this subse
tion a spe
ial 
ase of OLS is dis
ussed. When a linear 
onstraint,one or more, has been imposed on the 
oe�
ients in the β ve
tor theRestri
tedOrdinary Least Squares (ROLS) method is used for estimating β.The obje
tive fun
tion S(β) given in Eq.(4.9) is the same ex
ept now it mustbe solved subje
t to the 
onstraints presented as
Rβ = r (4.13)Where R is a (q×p) matrix, where p is the number of parameters, while q is thenumber of 
onstraints, r is a (q × 1) ve
tor of s
alars. A 
oe�
ient ve
tor β̂∗ issought so as to minimizes S(β), in Eq.(4.9), subje
t to the 
onstraints imposedon β expressed in Eq.(4.13).
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onstraints in Eq.(4.13) are linear a Lagrange optimization pro
ess maybe applied su
h that
L(β, λ) = e′e − λ′(r − Rβ)

= y′y − 2β′X ′y + β′X ′Xβ − λ′(r − Rβ) (4.14)Where the Lagrangianmultiplier λ is a (q×1) ve
tor. The derivative of Eq.(4.14)w.r.t. β and λ is taken, and set to 0, to �nd the optimal value of β

L′ =





∂L
∂β

∣∣∣∣
β=β̂∗,λ=λ∗

= −2X ′y + 2X ′Xβ̂∗ + R′λ∗ = 0 (i)

∂L
∂λ

∣∣∣∣
β=β̂∗,λ=λ∗

= −r + Rβ̂∗ = 0 (ii)

(4.15)Using (i) and (ii) to solve for λ∗ it 
an be seen that
λ∗ = −2(R(X ′X)−1R′)−1(r − R(X ′X)−1X ′y)or if using the OLS result β̂ = (X ′X)−1X ′y

λ∗ = −2(R(X ′X)−1R′)−1(r − Rβ̂) (4.16)Combining Eq.(4.15) (i) and Eq.(4.16) and solving for β̂∗ gives
β̂∗ = (X ′X)−1X ′y + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (4.17)Or �nally by using the OLS result again it be
omes

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (4.18)whi
h is the restri
ted ordinary least squares estimator giving the esti-mated values of β∗.Example 4.5 (Re-Parameterizations vs. ROLS)Re
all the regression model from Example 4.4, i.e.
ln(Qt) = ln(A) + α ln(Lt) + γ ln(Kt) + εtImagine now there exists a relationship between L and K, i.e. if both K and

L in
rease with e.g. 10% then so will Q, (this is known in e
onomi
s as aCobb-Douglas fun
tion). This relation is equivalent to the 
onstraint α+γ = 1.Sin
e this linear 
onstraint is not very 
omplex there is a re-parametrizationalternative to the ROLS method.



38 Time Series and E
onometri
 TheoryUsing re-parameterizations ξ: Using ξ instead of β. The 
onstraint 
an beexpressed as γ = 1 − α giving a new regression model as
ln(Qt) = ln(A) + α ln(Lt) + (1 − α) ln(Kt) + εt

ln(Qt) − ln(Kt) = ln(A) + α(ln(Lt) − ln(Kt)) + εtwhi
h 
an be expressed as
yt = ξ0 + ξ1xt1 + εtwhere

y =




ln(Q1) − ln(K1)
ln(Q2) − ln(K2)...
ln(Qn) − ln(Kn)


 , X = [ I, xt1] =




1 ln(L1) − ln(K1)
1 ln(L2) − ln(K2)... ...
1 ln(Ln) − ln(Kn)




ξ =

[
ln(A)

α

] and ε =




ε1

ε2...
εn


 .Solve ξ̂ = (X ′X)−1X ′y where E[ξ] = ξ̂.Using ROLS β∗: Sin
e there is only one 
onstraintR is a (1×p) ve
tor, p = 3,and r only a s
alar. The 
onstraint equation Eq.(4.13), Rβ = r, be
omes

[
0 1 1

]



ln(A)
α
γ


 = 1and 
an then be solved for β̂ by Eq.(4.18)

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂)

2In Example 4.5 it 
an be seen that the re-parametrization method is mu
h eas-ier to handle for one 
onstraint. However, for a higher number of 
onstraints(q), regression 
oe�
ients (p) or both, the re-paramiterization method qui
klybe
omes di�
ult to implement while the ROLS method with the matrix repre-sentation is 
onsistent in implementation.



4.5 Properties of the OLS and ROLS Estimators 394.4.3 Maximum Likelihood (ML)Maximum likelihood (ML) estimation is a more general method of parame-ter estimation than that of OLS. The downside to using ML is that it 
anbe 
ompli
ated to derive the so 
alled Likelihood fun
tion whi
h is optimizedfor the estimated parameters. ML 
an be used to solve for 
oe�
ient in very
ompli
ated relations, using numeri
al optimization methods.Maximum likelihood estimation was not used in this thesis but represent aninteresting alternative to the OLS and ROLS methods and therefore warrantsmentioning. For more information on ML estimation see Madsen [9℄4, for anintrodu
tion, and Hamilton [3℄5 for a more advan
ed treatment, in
luding opti-mization methods.4.5 Properties of the OLS and ROLS EstimatorsGiven an estimated β̂ 
oe�
ient, the �tted data (ŷ) 
an be expressed as
ŷ = Xβ̂ (4.19)The residual (e), i.e. the di�eren
e between the �tted data and the observeddata is denoted as

e = y − ŷ (4.20)it 
an be seen that if E[ε] = e then E[β] = β̂ so the 
ondition that the residualbehave like ε, i.e. white noise, is 
ru
ial if β̂ is to be a 
orre
t estimation of β.See subse
tion 5.5.1 for more on residual analysis.The varian
e of the residual is often 
alled the error or residual sum ofsquares (σ2), it has n−p number of degrees of freedom, where n represents thenumber of observations as before and p is the number of regression 
oe�
ientsplus the inter
ept, as before. The σ2 is estimated by
σ̂2 =

n∑

i=1

(yi − ŷi)

n − p
=

e′e

n − p
(4.21)The 
ovarian
e matrix is a symmetri
 matrix representing the varian
e be-tween di�erent regression 
oe�
ients β̂i and β̂j at the (ij) and (ji) elements in4se
tion 2.2.25Chapter 5
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onometri
 Theorythe matrix. The diagonal, of the 
ovarian
e represent the varian
e of estimatedregressor βii where 1 ≤ i ≤ p. The 
ovarian
e matrix for OLS is expressed as
Σβ = σ2(X ′X)−1 (4.22)The 
ovarian
e matrix for the restri
ted 
ase ROLS is

Σ
β̂∗ = σ2M∗(X ′X)−1M∗′ (4.23)where

M∗ = I − (X′X)−1R′(R(X ′X)−1R′)−1RThe proof for the OLS 
ovarian
e matrix 
an be seen in Madsen [9℄6. The ROLS
ovarian
e matrix, whi
h is more involved, 
an be found in Judge et. al [6℄7.4.6 Goodness of FitThe Goodness of �t is a measurement of how well the �tted data using theestimated 
oe�
ients β̂ manage to represent the data. One measurement ofgoodness of �t is R2 or R-squared 
al
ulated as follows
R2 =

n∑

i=1

(ŷi − ȳ)2

n∑

i=1

(yi − ȳ)2where ȳ, also know as the sample mean, is 
al
ulated as ȳ = (
∑n

i=1 yi)/n. Thegoodness of �t estimator R2 gives a value in the interval 0 ≤ R2 ≤ 1, where
0 and 1 represent no and perfe
t 
orrelation between the �tted data and theobserved data, respe
tively.The R2 statisti
 is however biased to the number of regressors, i.e. the �t willbe
ome better as the number of regressors is in
reased. therefore another wayof 
al
ulating the �t is R2

adj adjusted R square whi
h adjusts the statisti
 forthe number of regressors used by taking p the number of regressor into a

ount.
R2

adj = 1 −
(

n − 1

n − p

)
(1 − R2)The R2 is not without fault and must by used with 
are and is not to be used asthe only measure of goodness of �t or validation. For example R2 will 
onvergeto one for a �t of an unit-root non-stationary pro
esses, modeled dire
tly, givinga good �t but useless parameters for fore
asting.6See page 35.7See pages 238-239.



Chapter 5House Pri
e Dynami
s IIThe MONA model
5.1 Introdu
tionIn this 
hapter an a
tual house pri
e model will be inspe
ted, dupli
ated andused for predi
tion. The model under inspe
tion is the house pri
e relation fromMONA-a quarterly model of the Danish e
onomy [12℄, or the MONAmodel as it will be referred to here after. The MONA model was developedby Danmarks 
entral bank, the Nationalbank, as a ma
ro-e
onomi
 model tofore
ast numerous e
onomi
 relations and parameters. One of the many thingsthe MONA model looks at is the development of house pri
es in Denmark. Theidea behind ma
ro models like MONA is to get a 
omplete pi
ture of how thee
onomy works.In se
tion 5.2 a dis
ussion of how the model is 
on
eived is given, as well as listinga few of the well known elements and relationships that in�uen
e house pri
es.Se
tion 5.3 des
ribes the data used in the house pri
e model, as well as givingan example of how the non-stationarity of the data 
an be handled. Se
tion 5.4deals with the modeling aspe
ts of the relation from theory to appli
ation, the
onstraints in the model are also explained. In se
tion 5.5 the results for theparameter estimation are presented, as well as the residual analysis for the �t is
ondu
ted. Se
tion 5.6 fo
uses on how to use the model for predi
tion, as well



42 House Pri
e Dynami
s IIThe MONA modelas giving a short dis
ussion of how general the MONA house pri
e model resultsare and �nally estimating the long term 
oe�
ients in the error-
orre
tionmodelformat.5.2 The MONA Model Ba
kgroundOn pages 41 to 52, in the MONA model [12℄, a relation for the Danish housingmarket is presented. The MONA house pri
e relation is derived by using a the-oreti
al model as a basis, while adding more elements where deemed ne
essaryby the analysis of house pri
e data.Mu
h like the model presented in se
tion 2.2 the MONA house market model issplit up into two parts. The �rst part is a house pri
e relation whi
h is the sameas the demand side in se
tion 2.2. The se
ond part is a model of residentialinvestment, equivalent to the supply side in se
tion 2.2. As in the theoreti
almodel the supply �ow, in the MONA model, is 
ontrolled by the ratio betweenhouse pri
es and 
onstru
tion 
ost, also known as Tobin�s Q, or:"On a fall in interest rates both house pri
es and housing 
onstru
-tion go up, and the expanded supply of housing gradually for
eshouse pri
es ba
k towards equilibrium where they 
orrespond to 
on-stru
tion 
osts."1Mu
h like the theoreti
al relation given in se
tion 2.2 the main fa
tors for housepri
e development in the MONA model are 
onsidered to be interest rates,in
ome and sto
k of houses.Using data from the Danish e
onomy from 1971 to 2001 it 
an be seen howinterest rates, house pri
es, sto
k of houses and in
ome have progressed. Agraphi
al representation of the relationship between interest rates and housepri
es 
an be seen in Figure 5.1. The relationship between negative 
hange ininterest rates has been slowed down to show yearly 
hange instead of quarterly
hange, i.e. the pro
esses have been di�eren
ed 4 time periods to show 
orre-lation better graphi
ally. The one period di�eren
ed 
orrelation is ρ = 0.6334,where −1 ≤ ρ ≤ 1, one being 
ompletely positively 
orrelated, minus one be-ing 
ompletely negatively 
orrelated and 0 showing no 
orrelation. Anotherfundamental relationship between house pri
es, in
ome and sto
k of houses isdisplayed in Figure 5.2. A ratio between in
ome and sto
k of houses is 
al
u-1page 42, MONA-a quarterly model of the Danish e
onomy [12℄
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Figure 5.1: Shows the 
orrelation between negative 
hange in interest rates (red, right axis)and 
hange in house pri
es (bla
k). The data is di�eren
ed 4 periods to show the 
hangebetter visually.
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Figure 5.2: Shows the 
orrelation between real disposable in
ome over sto
k of house(red,right axis) against 
hange in house pri
es (bla
k).lated and plotted against 
hange in house pri
es. The 
orrelation between thesetwo time series is ρ = 0.4095.Figure 5.1 shows that there is 
learly a negative 
orrelation between 
hanges in



44 House Pri
e Dynami
s IIThe MONA modelinterest rates and 
hange in house pri
es. Figure 5.2 shows on the other handthat there is also a 
orrelation between 
hange in house pri
es and in
ome asa ratio of sto
k of houses. What is more, Figure 5.2 shows that a high in
omeratio is usually followed by in
reases in house pri
es.By inspe
ting the data as above, along with knowing in theory whi
h are themain fa
tors in house pri
e modeling, the National Bank of Denmark has 
reatedan applied house pri
e model whose derivation and assumptions are listed in thenext se
tions.5.3 The DataThis se
tion is divided into two parts, �rstly the data used is presented, givinga short des
ription for ea
h 
omponent. Se
ondly an example of how the seriesare analyzed from a time series point of view is shown.5.3.1 Des
ription of DataFollowing is a listing of the 
omponents used in the house pri
e model, for 
om-parison the theoreti
al house pri
e model, Eq.(2.3) from se
tion 2.1 is repeatedas
PH

P
= θ

(
HD

Y D
, R,

WA

Y D
,

D

Y D

)The data used in the MONA model is as follows
{kpt} : This term des
ribes the house pri
e at time t, in Eq.(2.3) this is equiv-alent to PH .
{rentet} : This is the interest rate term at time t, i.e. bond yield after tax.
{ssatst} : The 
orresponding tax term for the bond yield term rentet at time

t.
{pcpt} : This is the level of the 
onsumption de�ator at time t re
all the def-inition for 
onsumption de�ator in subse
tion 2.2.1, also the p
p term isthe same as P is in Eq.(2.3).
{ipvt} : This series represents the private investment at time t.
{ypdt} : Private disposable in
ome at time t.
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{fwht} : This is the sto
k of houses at t whi
h is noted as H = HD = HS inEq.(2.3).
{dkpet} : The expe
ted in
rease in house pri
e from t to t − 1.
{dpcpet} : The expe
ted in
rease in private de�ator from t to t − 1.The added terms rentet + ssatst, i.e. interest rate plus tax rate, are noted asuser 
ost and also referred to as {ibvt} in the MONA model. All these variablesare observed 
hanges ex
ept for the last two (dkpe, dpcpe) whi
h are internalvariables to the MONA model, i.e. they are estimated with other relations atanother pla
e in the model2.The data is available quarter-yearly from 1971-2002, however not all data isavailable in this period and be
ause of lagged data and di�eren
ing the so-
alled in-sample period, also known as training period and o�-line period,i.e. the period where the models parameters are estimated, is from 1974:q1 to
1997:q4. The out-of-sample period, also known as the on-line period, usedfor validation and predi
tion, is from 1997:q4 to 2001:q4.A qui
k inspe
tion of the level plots along with the auto
orrelation fun
tionsreveals that the pro
esses shows signs of unit-root non-stationarity, i.e. a high
orrelation to lagged values. The next se
tion shows an example of how toaddress the unit-root issue for the response series i.e. kpt (house pri
es).5.3.2 House Pri
e DataAs 
an be seen from e.g. Eq.(2.1) a detailed house pri
e model 
an in
lude manyelements. Although many series are also used in the MONA model only one willbe shown here in detail i.e. the house pri
e series {kpt} while similar methodswere applied to the other series when modeling the MONA model.The ln(kpt) series is depi
ted in Figure 5.3 (a), along with the 
orrespondingauto 
orrelation fun
tion in (
). From the two graphs it 
an be seen how highly
orrelated the present values are to lagged values. The two panels show that thepro
ess has a long memory, whi
h 
an indi
ate a unit-root behavior or trendstationarity, whi
h is when, using the AR(1) 
ase for example, a 
onstant hasbeen added giving

rt = µt + θrt−1 + atwhere at is white noise and µt is a 
onstant having a drift e�e
t on the model.The drift e�e
t 
an be estimated via OLS and removed to give the underlying2 see MONA [12℄ Page 196 and 197 for the estimation of dkpe and dpcpe.



46 House Pri
e Dynami
s IIThe MONA modelpro
ess. The MONA report however uses the method of di�eren
ing, therebyremoving the a

umulation of values and modeling the 
hange ∆ln(kpt) insteadof the level kpt.In Figure 5.3 (b) the one period 
hange in the ln(kp) series, i.e. ∆ln(kp), isdisplayed. Figure 5.3 (d) shows the auto
orrelation fun
tion for the di�eren
edseries. It is obvious how mu
h the memory of the pro
ess has been de
reasedby only one di�eren
ing.
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Figure 5.3: Log series of house pri
es (kp) from 1974:q1-2002:q1 : (a) log(kp), (b) time plotof the �rst di�eren
ed series log(kp) (
) sample auto 
orrelation fun
tion for the log(kp) series,and (d) the sample partial auto 
orrelation fun
tion for the di�eren
ed series.A more a

urate way of lo
ating unit-roots, other than di�eren
ing on
e andviewing ACF plots, is by use of so-
alled Augmented Di
ky Fuller3 tests(ADF) whi
h test whether a series is dependant on previous values with φ = 1,i.e. if it has a unit-root, for more details of ADF see Tsay [15℄4.Using the statisti
al software pa
kage R it 
an be seen that the test for unit-rootin ln(kp) by the ADF method gives a Di
key-Fuller value = 1.6864 and p-value3See e.g. the fun
tion adfTest() in pa
kage {fMultivar} in R.4see e.g. 
hapter 2.7.
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= 0.9768, the p-value indi
ates that the hypothesis presented, in this 
ase thatthere is a unit-root, 
an be reje
ted with approx 2.3% probability, i.e. it 
an notbe reje
ted. If the series is di�eren
ed on
e the Di
key-Fuller value is −2.3078with a p-value = 0.02214 indi
ating that the hypothesis of a unit-root 
an bereje
ted with aproximately 98% probability, therefore it 
an be said that ln(kpt)is I(1), i.e. integrated of level one. Sin
e there may be a unit-root in the levels(ln(kpt)) the �rst di�eren
ed levels (∆ln(kp)) are modeled, the transformationba
k to ln(kpt) is performed by

ln(kpt) = ∆ ln(kpt) + ln(kpt−1) (5.1)Further dis
ussion will be given on the aggregation of the modeled di�eren
esin se
tion 6.3.5.4 The ModelThis se
tion fo
uses on numerous pra
ti
al and theoreti
al items needed to un-derstand and use the MONA house pri
e relation. In subse
tion 5.4.1 the the-oreti
al model is stated and derived to an initial regression format, along withsome dis
ussion of the 
onstraints used in the model. The following subse
tionsummarizes the model 
omponents, or explanatory variables, used to evaluatethe models 
oe�
ients and presents the regression form of the model. Lastlythe applied form of the 
onstraint is presented in format suitable for solvingwith ROLS.5.4.1 The Theoreti
al ModelRe
all the house pri
e relation presented in subse
tion 2.2.1 where the sto
k ofhouses 
an be expressed as
HD = f

(
PH

P
, R, Y D, WA, D

) (5.2)Similar to this relation the theoreti
al relationship for long term house pri
edevelopment in the MONA5 model is derived from the knowledge that the mainfa
tors are in
ome, interest rates and sto
k of houses. A long term demandrelation for the sto
k of houses in MONA is presented as
ln(sto
k of houses) = ln(in
ome) − a · ln

( user 
ost
onsumer pri
e) (5.3)5See the MONA model page 43.



48 House Pri
e Dynami
s IIThe MONA modelIt 
an be seen that the two relations have 
ertain elements in 
ommon, althoughthis form of Eq.(5.3) has fewer terms than Eq.(5.2) and seems more simple. The�rst mutual fa
tor is wanted sto
k of houses (HD) whi
h is the same as theobserved fwh or H . Other mutual elements are in
ome (Y D), user 
ost (R)and a pri
e element (PH/P ).By rearranging the terms in Eq.(5.3) the relation be
omes
ln(in
ome) − ln(sto
k of houses) = a · ln

( user 
ost
onsumer pri
e) (5.4)On the left side the sto
k of houses and in
ome, using the MONA variablesdes
ribed in subse
tion 5.3.1, be
ome
= ln(in
ome) − ln(sto
k of houses)
= ln((ypd − ipv)/pcp)− ln(fwh) (5.5)where in
ome has been modeled as real in
ome, i.e. ydp the private disposablegross in
ome minus ipv the private investment will give the net in
ome, anddividing by the 
onsumption de�ator pcp adjusts the value to the 
urrent period,giving real in
ome.It 
an be seen on the right side of Eq.(5.4) that the terms user 
ost and 
onsumerpri
e 
an be approximately expanded as follows, using the variables des
ribedin subse
tion 5.3.1

= a · ln
( user
ost
onsumerpri
e)

≈ a0 + a1 ln

(
kp

pcp

)
+ a2 · (rente + ssats − infl)

= a0 + a1 ln

(
kp

pcp

)
+ a2 · (rente + ssats) − a2 · infl (5.6)In the �rst step an approximation is made so that the user 
ost divided by
onsumer pri
e be
omes real house pri
e and real user 
ost, real user 
ost isuser 
ost plus in�ation (infl). In Eq.(5.6) the in�ation term of the real user
ost rate has been isolated. Next a relation is derived to simulate the in�ationterm, it is 
omprised of the elements that re�e
t the pri
e in
rease

−a2 · infl ≈
[
a3∆ln(pcp) + a4dpcpe + a5dkpe + a6∆ln(kp)

] (5.7)In�ation is therefore represented by four pri
e 
hanges. The 
hange in 
on-sumption de�ator from the last period (∆ln(pcpt−1)), the expe
ted 
hange in
onsumption de�ator from the last period (dpcpet−1), expe
ted 
hange in house
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es from last period (dkpet−1) and the 
hange in house pri
es from last pe-riod (∆ln(kpt)). This 
onstraint is meant to ensure a real interest rate behavior,whi
h is a
hieved by 
onne
ting the user 
ost 
oe�
ient a2 to the weighing ofthe 
oe�
ients used in the estimation of the in�ation. The 
onstraint ensuresthat if there is a pri
e in
rease of one per
ent it will result in a one per
ent fallin interest rates after tax, in the long run. The pri
e 
oe�
ient 
onstraint willbe given more dis
ussion in se
tion 5.5.Combining Eq.(5.5), Eq.(5.6) and Eq.(5.7) and isolating the house pri
e termfrom the in�ation 
onstraint gives
a6∆ ln(kp) = −

�
a0 + a1 ln

�
kp

pcp

�
+ a2(rente + ssats)

− (a3∆ln(pcp) + a4dpcpe + a5dkpe)

�
+ ln((ydp − ipv)/pcp) − ln(fwh)whi
h when dividing through with a6 be
omes

∆ln(kp) = −
a0

a6

−
a1

a6

ln

�
kp

pcp

�
−

a2

a6

(rente + ssats) +
a3

a6

∆ln(pcp)

+
a4

a6

dpcpe +
a5

a6

dkpe +
1

a6

�
ln((ydp − ipv)/pcp) − ln(fwh)

� (5.8)This theoreti
al relation is then �tted to the available data by statisti
al analysis,i.e. using lagged values, in
luding di�eren
ed values and levels where signi�
ant,resulting in a spe
i�
 model whi
h is des
ribed in the next subse
tion.5.4.2 MONA Model ComponentsRe
all the regression model in De�nition 4.4 i.e.
y = Xβ + εThe response variable y and the 
olumn xi of the explanatory matrix X where

(n × p) and 1 ≤ i ≤ p are expressed as
y : ∆ ln(kp)The modeled relation is 
hanged from modeling house pri
es, or kp, to modelingthe one period 
hange in the log of house pri
es, or ∆ ln(kp) to see why this isdone see 5.3.2.
x1 : ∆ ln(pcp)Change in the 
onsumption de�ator.



50 House Pri
e Dynami
s IIThe MONA model
x2 : ∆(rente + ssats)First di�eren
ed series of interest plus tax, i.e. user-
ost 
hange.
x3 : ∆(rente−1 + ssats−1)Lagged �rst di�eren
ed series of interest plus tax, i.e. lagged user-
ost 
hange.
x4 : rente−1 + ssats−1 + 0.01Lagged user 
ost plus a logarithmi
 element (0.01). Interest rate plus tax ele-ment.
x5 : dpcpe−1Expe
ted 
hange in 
onsumption, from last period, i.e lagged.
x6 : dkpe−1Expe
ted 
hange in house pri
e, lagged.
x7 : ln(kp−1/pcp−1)Real house pri
e, i.e. house pri
es lagged adjusted with the lagged 
onsumptionde�ator.
x8 : ln((ydp−1 − ipv−1)/pcp−1) − ln(fwh−1)In
ome elasti
ity 
onstraint to sto
k of houses a
hieved by modeling togetherwith only one regressor.The new applied model 
an then be expressed as a regression model as follows
∆ ln(kpt) = β0 + β1∆ln(pcpt) + β2∆(rentet + ssatst) + β3∆(rentet−1 + ssatst−1)

+ β4(rentet−1 + ssatst−1 + 0.01) + β5dpcpet−1 + β6dkpet−1 (5.9)
+ β7 ln(kpt−1/pcpt−1) + β8(ln((ydpt−1 − ipvt−1)/pcpt−1) − ln(fwht−1)) + εtThe 
oe�
ients β have repla
ed the a 
oe�
ients and need to be estimatedby the restri
ted least squares method sin
e there is a 
onstri
tion on theirestimation.The ConstraintsIn the MONA house pri
e relation two 
onstraints are applied. Firstly there is a
onstraint implemented by re-parameterization by modeling sto
k of houses andreal in
ome together, i.e. their ratio has only one regressor and will thereforealways a�e
t the pri
e by the same weight.The se
ond 
onstraint is not as easily implemented and requires the use of therestri
ted ordinary least squares method for the parameter estimation. Re
all



5.5 The Results 51the in�ation 
onstraint modeled above to assure real interest rate behavior as
−a2 · infl ≈

[
a3∆ln(pcp) + a4dpcpe + a5dkpe + a6∆ln(kp)

]Now the theoreti
al a 
oe�
ients have been repla
ed by the β 
oe�
ient inthe applied model. Where the 
orresponding β 
oe�
ient to the previous a
oe�
ient 
an be found by 
omparing explanatory 
omponents x e.g. theprevious a2 
oe�
ient to (rente + ssats) is now β4 the applied 
oe�
ient to
(rentet−1 + ssatst−1 + 0.01). The 
onstraint represented with β 
oe�
ients istherefore

−β4 =
β1

4
+ β5 + β6 −

1

4Where the s
alar (1/4) represents the house pri
e in
rease quarter-yearly, nowhouse pri
e and 
onsumption de�ator 
hanges always go hand in hand therefor
β1, the 
hange in 
onsumption de�ator 
oe�
ient, is also divided by four to geta quarter-yearly 
hange. The 
onstraint 
an be used to 
al
ulate the expe
tedin�ation by dividing through with −a2 and −β4 in the theoreti
al and applied
ases, respe
tively.The 
onstraint on Rβ = r format for ROLS, is expressed asConst R1 R2 R3 R4 R5 R6 R7 R8 r[0 0.25 0 0 1 1 1 0 0℄ · β = [0.25℄The optimal 
oe�
ients 
an then be a
hieved by solving

β̂∗ = β̂ + (X ′X)−1R′(R(X ′X)−1R′)−1(r − Rβ̂) (5.10)where β̂ is the un
onstrained 
oe�
ients estimated by OLS. This relation wasderived in subse
tion 4.4.2.Degrees of freedom, whi
h are used for many statisti
al tests and estimators,must be handled with 
are when using ROLS. Degrees of freedom are usuallydes
ribed as n− p where n is number of observations used in the modeling and
p = k + 1 is the number of regressors in
luding the 
onstant. By de
iding β̂∗

4impli
itly from other 
oe�
ients it does not get a degree of freedom, this willhave to be kept in mind when 
al
ulating test statisti
s and goodness of �t forthe estimation.5.5 The ResultsSolving Eq.(5.10) with the 
onstraint des
ribed above results in estimates of the
oe�
ients displayed in Table 5.1. In the table there are three data 
olumns,



52 House Pri
e Dynami
s IIThe MONA modelthe �rst one shows the estimated value of the regression 
oe�
ient. The se
ond
olumn shows the estimated standard error for the 
oe�
ients, i.e. is the squareroot of the diagonal of the 
ovarian
e matrix Σ
β̂∗ , expressed in Eq.(4.23). Thethird 
olumn shows the t-values 
al
ulated from the standard error and indi
ateswhether the 
oe�
ient is signi�
antly di�erent from zero. For a 95% 
on�den
einterval |t| > 1.96. ROLS

X β̂∗ Estimate Std. Error t value
I β̂∗

0
0.0663 0.0192 3.463

x1 : ∆ln(pcp) β̂∗

1
0.3074 0.2122 1.449

x2 : ∆(rente + ssats) β̂∗

2
−3.7811 0.4358 −8.677

x3 : ∆(rente−1 + ssats−1) β̂∗

3
−0.7791 0.4468 −1.744

x4 : rente−1 + ssats−1 + 0.01 β̂∗

4
−0.7927 0.3187 −2.488

x5 : dpcpe−1 β̂∗

5
0.7709 0.3575 2.156

x6 : dkpe−1 β̂∗

6
0.1949 0.0671 2.905

x7 : ln(kp−1/pcp−1) β̂∗

7
−0.1026 0.0268 −3.827

x8 : ln((ydp−1 − ipv−1)/pcp−1) − ln(fwh−1) β̂∗

8
0.0554 0.0282 1.963Table 5.1: The 
oe�
ients in MONA house pri
e relation estimated with restri
ted ordinaryleast squares (ROLS). The period for whi
h this is estimated is 1974:q2 - 1997:q4 or 95 periods.
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Figure 5.4: The bla
k line is the a
tual y = ∆ ln(kp) while the broken red line shows the�tted ŷ = Xβ̂∗ using the estimates for β̂∗ 
al
ulated in Table 5.1.The F-test statisti
, whi
h is a test of signi�
an
e for all regression 
oe�
ients,indi
ates that the MONA model regression 
oe�
ients are very signi�
ant with
F (7, 87) = 27.9214 and a very small p-value < 1e-13.



5.5 The Results 53The R-square,adjusted R-square and error are shown in Table 5.2. The estimatedmodel seems to �t the data quite well with a R2 = 0.692. The adjusted R-square gives a lower value of R2
adj = 0.6672, sin
e it is adjusted to the numberof regressors. ROLS
R2 0.6920
R2

adj 0.6672
σ̂ 0.0169Table 5.2: The R2, R2

adj
and σ̂2 for the ROLS �t shown in Table 5.1.Example 5.1 (Cal
ulations of 
hange in house pri
e)Ea
h line in the in-sample explanatory matrix X 
an be expressed as ve
tor ofall explanatory variables at a 
ertain time t, where 1 ≤ t ≤ n. More pre
isely

x′

t,1...p =




1
∆ ln(pcpt)

∆(rentet + ssatst)
∆(rentet−1 + ssatst−1)

(rentet−1 + ssatst−1 + 0.01)
dpcpet−1

dkpet−1

ln(kpt−1/pcpt−1)
ln((ydpt−1 − ipvt−1)/pcpt−1) − ln(fwht−1)


for a 
ertain period or time the �tted 
hange in house pri
e 
an be 
al
ulatedas follows

ŷt = x(t,1...p)β̂
∗where β̂∗ is the estimated ROLS 
oe�
ients displayed in Table 5.1.For a spe
i�
 time e.g. if t = 1987:q4 �tted house pri
e 
hanges 
an be 
al
ulatedas follows

ŷ1987:q4 = x(1987:q4,1...p)β̂
∗where

x′

(1987:q4,1...p) =




1
0.00892
0.00148
0.00193
0.0848
0.0222
0.0622
0.125-0.492




, β̂∗ =




0.0663
0.3074-3.7811-0.7791-0.7927
0.7709
0.1949-0.1026
0.0554




.giving a �tted value of ŷ1987:q4 = −0.01602. The di�eren
e in �t and observed
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e Dynami
s IIThe MONA model
hange, i.e. the residual, is then 
al
ulated as
e1987:q4 = y1987:q4 − ŷ1987:q4

= −0.00826− (−0.01602)

= 0.00776By ex
hanging the X matrix for the ve
tor x a �t for the whole in-sample period
an be a
hieved, whi
h is depi
ted as the broken red line in Figure 5.4.
25.5.1 Residual AnalysisWhen analyzing the results from a regression model the residuals deserve at-tention sin
e they need to be randomly distributed with mean 0 and 
onstantvarian
e σ2

res. In the MONA report two well known e
onometri
 tests are usedfor analyzing the residuals. The �rst test is the so-
alledDurbin Watson6 testwhi
h tests for auto
orrelation in the residuals, the se
ond test is the Jarque-Bera7 test whi
h is intended to 
he
k whether the residuals are normally dis-tributed by using the third and fourth moments, skewness and kurtosis. Adetailed a

ount of these tests is outside the s
ope of this report but for moreinformation see Kyhl & Nielsen [7℄ on the DW-test and Verbeek [16℄8 for theJB-test. The ROLS model passes both of these tests. There is no signi�
antauto
orrelation in the residuals, DW = 1.6924 giving a p-value of 0.02, it 
an beasserted with 98% 
on�den
es that there does not exist auto
orrelation amongthe residuals. The Jarque-Bera test gives a statisti
 of JB = 0.8034 and thenull hypothesis, that the residuals are normally distributed, 
an not be reje
tedfor all reasonable levels of 
on�den
e with a p-value = 0.6692.Other ways of analyzing residuals, espe
ially in engineering statisti
s and timeseries analysis, is by visual inspe
tion of standardized residuals. Figure 5.5 showsfour plots often inspe
ted when analyzing residuals. In the upper left panel theresiduals are plotted against the 
orresponding �tted value. The panel doesnot indi
ate anything suspi
ious su
h as funnel forming, whi
h would indi
atean in
reased varian
e with in
reased �tted values. The fa
t that the 
lusteris not taking on any obvious form indi
ates that the model is su�
ient andno systemati
 e�e
t (more regressors) are needed. The upper right plot showthe so-
alled QQ-plot whi
h is a normal probability plot of the standardizedresiduals, de�ned by
di =

ei√
σ̂26See R, pa
kage lmtest, fun
tion dwtest() .7See R, pa
kage tseries, fun
tion jarque.bera.test() .8See e.g. page 174
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Figure 5.5: Visual residuals analysis from the e = y − ŷ.Using the standardized residuals also reveals whether the there are any outlierspresent, i.e. sin
e all di should be inside the interval −3 ≤ di ≤ 3, or else theymay be having an outlier e�e
t on the regression. The residuals on the QQ-plot should fall to a straight line from -3 to 3 if they are normally distributed,this seems to be the 
ase whi
h has also been indi
ated by the JB-test. Thebottom left plot shows the square root of the absolute value of the standardizedresiduals, whi
h makes it easier to see if there is any trend in the residual 
luster,same as for the for di no suspi
ious 
lustering 
an be seen in the bottom leftgraph. The bottom right plot shows the Cook distan
e for the residuals, Cooksdistan
e measures the e�e
t a single observation 
an have on the regression,i.e. it �nds the outliers. A

ording to Montgomery and Runger [11℄9 the Cookdistan
e with a value of Di > 1 indi
ates that a single outlier is in�uential in9See se
tion 12-5.1 Residual Analysis.



56 House Pri
e Dynami
s IIThe MONA modelthe regression. As the bottom right graph shows all Di < 0.25, the suggestionof 
ertain outliers a�e
ting the regression is dismissed.5.6 Predi
tionThe subje
t of using the regression models to fore
ast for new variables is oneof the main reasons the MONA house pri
e model has been listed and disse
tedin su
h detail. Sin
e there is data available from 1972:q2 to 2001:q3 the out-of-sample period, 1998:q1 to 2001:q3, will be used to show how a predi
tion ismade when new observations for the explanatory variables are available. Thefollowing is largely adopted from Montgomery and Runger [11℄10 and Madsen[9℄11.When predi
ting l-steps ahead, where 1 ≤ l ≤ k and k is the predi
tion horizon,given the estimated 
oe�
ients the predi
ted response value 
an be expressedas
ŷt+l = E[yt+l|Xt+l = xt+l] = xt+lβ̂ (5.11)where xt+l represent a ve
tor of new observed values for the explanatory vari-ables. Eq.(5.11) gives the so-
alled point estimates for the future response
orresponding to xt+l. The predi
tion error et+l = yt+l − ŷt+l has the vari-an
e

VOLS [et+l] = V [yt+l − ŷt+l] = σ2(1 + x′
t+l(X

′X)−1xt+l)for the OLS method, this 
an be seen from
V [yt+l − ŷt+l] = V [x′

t+lβ + εt+l − x′
t+lβ̂]

= V [x′
t+l(β − β̂) + εt+l]

= x′
t+lV [β̂]xt+l + σ2 + 2Cov[x′

t+l(β − β̂), εt+l]

= σ2 + x′
t+lV [β̂]xt+lwhere V [β̂] is the 
ovarian
e matrix Σ

β̂
= σ2(X′X)−1. This result 
an beextended to the ROLS method by inserting the ROLS 
ovarian
e matrix whi
hgives

VROLS [et+l] = σ2(1 + x′

t+lM
∗(X′X)−1M∗′

xt+l) (5.12)A 100(1 − α)% 
on�den
e interval for future values of ŷt+l is given by
ŷt+l ± t(α/2,n−p)

√
V [εt+l] (5.13)10Se
tion 12-4, Predi
tion of new observations.11Se
tion 2.3
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tion 57whi
h for ROLS be
omes
ŷt+l ± t(α/2,n−p+q)σ̂

√
(1 + x′

t+lM
∗(X′X)−1M∗′

xt+l) (5.14)when using the estimate σ̂ for the residual varian
e of error. The term tα/2,n−p+qis from the t-distribution with (n−p+q) degrees of freedom, where q is the num-ber of 
onstraints sin
e q regressors are linear 
ombinations of other regressorsand therefore q of the p regressors return their degrees of freedom.Using the out-of-sample period 1998:q1 to 2001:q3 the point estimate, alongwith a 95% predi
tion interval is 
al
ulated and plotted in Figure 5.6.
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Figure 5.6: The in-sample estimation is represented with a red whole line ŷ, the bla
k lineis the a
tual observed 
hange y, the red broken line is the point estimate for new observations
ŷnew along with a 95% predi
tion interval shown by the broken blue lines. The verti
al linemarks where the in-sample ends and the new observations (out-of-sample) begins.Figure 5.6 shows that the out-of-sample predi
tion seems to be performingpoorly, a measure often used for analyzing predi
tions is the Mean squareerror de�ned as

MSE(ŷt+k) =
1

k

k∑

l=1

(yt+l − ŷt+l)
2. (5.15)Cal
ulating the MSE for the predi
tion in the out-of-sample an estimate ofthe error σ̂ 
an be found. The error in the out-of-sample period gives an errorestimate of 0.0213, whi
h is higher than the in-sample error of σ̂ = 0.0169. Theout-of-sample performan
e is 
onsiderably worse than for the in-sample, su
h a



58 House Pri
e Dynami
s IIThe MONA modelbig shift in a

ura
y indi
ates that the out-of-sample data is di�erent from thein-sample data. This will be dis
ussed further in the next subse
tion.5.6.1 MONA Out-Of-Sample failureThe out-of-sample performan
e is not expe
ted to be as good as the in-sample,sin
e that is where the 
oe�
ients are estimated, however a large shift in errorsuggest that the out-of-sample data is signi�
antly di�erent from the in-sampleperiod. This seems to be the 
ase for the out-of-sample data, a large shift inerror and visual analysis of the out-of-sample data shows that the varian
e ofthe house pri
e 
hange has de
reased dramati
ally and the mean has in
reased,see Figure 5.7. All observed house pri
e 
hanges after 1994:q4 are in
rementsand the varian
e has 
hanged 
onsiderably from the in-sample varian
e, see
yan 
olored broken lines in Figure 5.7. The explanatory variables suggest thatthe pri
e of houses should drop while it does not, this 
ontinues for some time
reating a gap between the predi
ted pri
e and observed house pri
e, whi
h istypi
al of a housing bubble su
h as was mentioned in se
tion 2.3. The fa
t
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Figure 5.7: Shows the strange behavior of the house pri
e data after 1994:q4 the pro
essseems to slow down 
onsiderably resulting in less varian
e and higher mean. Only in
rementsafter 1994:q4.that the data seems to be non-homogenous between the in- and out-of-sampleperiods makes validation, of the parameter estimation, in the out-of-sampleperiod useless. In the theoreti
al e
onomi
 models the bubble-free 
ondition isassumed.



5.6 Predi
tion 59Ways of dealing with this dis
repan
y 
ould e.g. be to in
lude the abnormaldata period in the parameter estimation. The parameters will then be able todeal better with presen
e of su
h behavior. However, the goodness of �t willdrop and all the data is then used for estimation whi
h makes validation hard.Another way to deal with the bubble behavior is to move the time window, i.e.in
lude more of re
ent years and less of the previous years, however that wouldalso result in out-of-sample validation problems sin
e the out-of-sample datawould then most likely not resemble the in-sample data.Yet another method would be to use another parameter estimation method,i.e. so-
alled re
ursive least squares (RLS) where the parameter estimation is
onsistently being updated with a rolling time window, or a forgetting fa
torwhi
h redu
es the impa
t of old data has on the parameter estimation givingever 
hanging, but relatively a

urate estimations, see Madsen [9℄12.5.6.2 MONA model and 
ertain marketsSomething to keep in mind when looking at the results of the MONA modelis that the house pri
e data is an average of diverse house markets. For ex-ample the urban �ats markets in Copenhagen may behave di�erently than therural or summerhouse market. The di�eren
e in these two markets 
an e.g. betra
ed ba
k to the theoreti
al model des
ribed in 
hapter 2 where house pri
eis 
onsidered to a
hieve a higher equilibrium pri
e where 
onstru
tion land islimited. There are however many other things other than lo
ation that in�uen
ethe pri
e su
h as building age, building style, size, number of bathrooms and soon. If a predi
tion is sought for a 
ertain part of the market, that se
tion of themarket has to be modeled spe
i�
ally, with 
orresponding data a
quired fromsales pri
es in that region.The MONA is thought of as a general ma
ro model to indi
ate the long termdire
tion of the Danish house pri
e market as a whole, not to give dynami
 shortterm predi
tions for spe
i�
 parts of the Danish market.5.6.3 The ECM with the ROLS modelAs was mentioned before in se
tion 4.3, the ROLS 
oe�
ients are used in anerror-
orre
tion model format to give an idea of the long term e�e
ts in thehousing market. These long term trends are shown in the MONA report [12℄13.12e.g. page 278.13See top of page 45.



60 House Pri
e Dynami
s IIThe MONA modelRe
all the ECM format given in se
tion 4.3 as
∆zt = φ0∆rt − (1 − θ)[zt−1 − α − γrt−1] + ǫtwhere zt is some response variable and rt−1 is a explanatory 
omponent. TheECM relation is divided into a dynami
 part, i.e. the φ0∆rt part, and the error
orre
tion part, i.e. (1 − θ)[zt−1 − α − γrt−1].To use the error 
orre
tion form for the MONA house pri
e relation the 
ompo-nents of the explanatory matrix X needed to be sorted into dynami
 parts andthe error 
orre
tion or long term e�e
ts. The short term 
hanges are indi
atedby modeling the 
hange (di�eren
ed 
omponents) while the long term e�e
tsare taking into a

ount the level at ea
h time (nominal series).The i-th 
omponent of the explanatory matrix X and estimated 
oe�
ientve
tor β∗ are noted as xi and β∗

i respe
tively. The estimated 
hange in housepri
e is 
al
ulated as ŷ = Xβ̂∗. The ECM format of ŷ is therefore
ŷ =

�
β̂∗

1x1 + β̂∗

2x2 + β̂∗

3x3 + β̂∗

5x5 + β̂∗

6x6

�
− β̂∗

7

�
x7 −

β̂∗

4

β̂∗

7

x8 −

β̂∗

8

β̂∗

7

x4 −

β̂∗

0

β̂∗

7

� (5.16)In Eq.(5.16) the terms inside the [ ℄ bra
ket represent the dynami
 part of themodel i.e. pri
e and interest 
hanges. The se
ond part, or the () bra
ket, has theterms whi
h 
ause a deviation from ŷ in a long run equilibrium, i.e. the levelsand the part whi
h 
orresponds to the long run multiplier γ, derived in se
tion4.3. Re
all that β̂∗
7 is the 
oe�
ient for real house pri
e, while β̂∗

4 
orresponds touser 
ost and β̂∗
8 is for real in
ome over sto
k of houses. Inserting the estimated
oe�
ients from Table 5.1 gives the following long run multipliers for the levelsof x4 and x8:

−

β̂∗

4

β̂∗

7

= −

−0.7927

−0.1026
= −7.726, −

β̂∗

8

β̂∗

7

= −

0.0554

−0.1026
= 0.540.If either of the elements 
orresponding to β∗

4 or β∗
8 were to in
rease by somesmall dx element the house pri
e 
hange will in the long run 
hange by the dxtimes the ratios above, given that all other things stay �xed.The nature of the error-
orre
tion format is to in
lude levels and di�eren
edvalues, even though the level is non-stationary as long as the response variableis stationary.



Chapter 6
Applying The MONA housepri
e relation
6.1 Introdu
tionThe purpose of this 
hapter is to get an applied version of the MONA housepri
e relation. To get a robust predi
tion model from the MONA house pri
erelation some relaxations must be made, this 
hapter dis
usses the 
on
essionsmade and what results they have in regards to pre
ision in predi
tion.In se
tion 6.2 a regression model based only on the interest terms in the MONAmodel is formulated, whi
h will be used to ben
hmark other models. Se
tion6.3 dis
usses the aggregation of house pri
e 
hanges, using updating with orwithout observed house pri
es, to get house pri
e levels. Se
tion 6.4 addressesthe fa
t that when predi
ting, only interest rates are available, other explana-tory variables must therefore be �xed in some sensible way. In se
tion 6.5 theaggregate error is simulated and 
ompared for three di�erent models.



62 Applying The MONA house pri
e relation6.2 Interest Rate RegressionUsing only the interest rate terms from the MONA house pri
e model a smaller,simpler, ben
hmark model is developed. The main reason for performing thissimpler regression is to get a model where all the information is available, i.e.the model will only be dependent on interest rates, whi
h are available throughthe interest rate tree. Later when the MONA model as whole will be used, it 
anbe seen that all the missing data has to be �xed to some level whi
h in
reasesthe error of the house pri
e estimate. The fa
t that missing observations ofthe explanatory variables do not have to be �xed also allow for simpler error
al
ulations that 
an be 
al
ulated via analyti
al methods 
ompared to thesimulated error for the �xed model.The simpli�ed regression model based on the MONA house pri
e relation isexpressed as follows
̂∆ln(kpt)

I
= β̂I

0 + β̂I
1∆rentet + β̂I

2∆rentet−1 + β̂I
3rentet−1 (6.1)Where ∆rentet and rentet are the 
hange in interest rates and a
tual interestrate respe
tively. Noti
e that the tax rate ssats has also been removed from theinterest relation. From this redu
ed model two results 
an be expe
ted. Firstlya lower value for both goodness of �t estimators R2 and RR

adj, in 
omparisonto the MONA model. Se
ondly the residuals are more likely to show signs ofauto
orrelation sin
e it is known from the MONA house pri
e relation that thissmaller model is missing many proven systemati
 e�e
ts, e.g. in
ome over sto
kof houses (x8) and the 
onsumption de�ator (x1) to name only two.Using the in-sample period, 1974:q2-1997:q4, that was used in the MONA housepri
e relation, an ordinary least squares (OLS) regression is performed to esti-mate the 
oe�
ients βI′

= [βI
0 , βI

1 , βI
2 , βI

3 ] by solving
β̂I = (XI′

XI)−1XI′

ywhere the explanatory matrix XI is only 
omposed of interest terms as follows
XI =




1 ∆rente2 ∆rente1 rente1... ... ... ...
1 ∆renten ∆renten−1 renten−1


After having performed the regression the t-statisti
 shows that β̂I

3 is not sig-ni�
antly di�erent from zero, with p-value = 0.9965. When the regression isrepeated, leaving β̂I
3 out, it gives the estimated 
oe�
ients β̂I shown in Table6.1



6.2 Interest Rate Regression 63Estimate Std. Error t value Pr(>|t|)
β̂I

0 0.0125 0.0023 5.37 0.0000
β̂I

1 −3.6539 0.5885 −6.21 0.0000
β̂I

2 −1.6934 0.5767 −2.94 0.0042Table 6.1: The estimated 
oe�
ients in the redu
ed MONA house pri
e relation, using onlyinterest rates, estimated with ordinary leat squares (OLS). Estimated for the sample period1974:2 - 1997:4 or 95 periods. The �rst 
olumn is the estimate, se
ond is the standard errorof the estimate, third is the t-statisti
 and fourth is the p-value.All the 
oe�
ients estimate in Table 6.1 are highly signi�
ant, i.e. all p-valuesare less than one per
ent whi
h indi
ates that all 
oe�
ients are signi�
antwith a 
on�den
e of > 99%. The F-statisti
 also indi
ates that the model issigni�
ant with F (2, 92) = 32.72 whi
h gives a p-value = 1.854e − 11.ROLS OLSInt

R2 0.6920 0.4156
R2

adj 0.6672 0.4029√
σ̂2 0.0169 0.0226Table 6.2: Comparison of the the goodness of �t, R2 and R2

adj
, for the MONA house pri
erelation (ROLS) and the redu
ed interest rate only regression (OLSInt).The goodness of �t statisti
s 
an be seen in Table 6.2, the results from theMONA house pri
e �t is also displayed for 
omparison. As expe
ted there isa 
onsiderable fall in R2 sin
e many known explanatory variables are skippedin the redu
ed model. When 
omparing two regression models with di�erentnumber of 
oe�
ients the R2

adj is a better way of 
omparing the two �ts than
R2. The di�eren
e in R2

adj is not as mu
h as for R2 but is still 
onsiderable orapproximately 0.165.The Jarque-Bera and Durbin Watson tests indi
ate whether or not the residualspass the 
laim of being normally distributed and without any signi�
ant auto-
orrelation. The Jarque-Bera statisti
 is JB = 2.42, i.e. the hypothesis that theresiduals are normally distributed 
an not be reje
ted sin
e p-value= 0.2978.The Durbin Watson test is used to dete
t any auto
orrelation in the residuals,i.e. is the residual et dependant on previous residuals et−1,...,0. The DurbinWatson gives DW = 2.0274 and a p-value = 0.6098 whi
h means that thehypothesis of no-auto
orrelation in the residuals 
an not be dismissed. When
omparing Figure 6.1 to the residual plot in Figure 5.5, whi
h is for the fullmodel, it 
an be seen that the varian
e of the residuals seems to be bigger inthe redu
ed model. The left panels in Figure 6.1 also show less dispersion in the
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Figure 6.1: Visual residuals analysis from the e = y − ŷI.
luster than in 5.5, whi
h might indi
ate auto
orrelation. The normality 
urveis not visually di�erent from the full model. The Cook plot shows that thereare bigger outliers in the redu
ed model, but still nothing to be worried abouta

ording to the Di > 1 limit.As expe
ted there appearers to be some auto
orrelation in the residuals, for thisredu
ed regression, however judging by the QQ-plot and the JB it is safe to saythat the residuals 
an be viewed as approximately normal distributed.Sin
e no �xing of any explanatory variables is performed the point estimateand predi
tion interval for new observations 
an be a
hieved by using Eq.(5.14),although be
ause of the auto
orrelation the predi
tion will most likely not begood. The results for su
h a point estimate along with predi
tion intervals isshown in Figure 6.2.



6.3 Aggregated House Pri
es 65
Interest OLS Model Out−Of−Sample Prediction
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Figure 6.2: The sample period is the period 1974:q2-1997:q4 and is shown by the green wholeline. The bla
k whole line represents the a
tual 
hange at ea
h time. During 1997:q4-2001:q4,the out of sample period, the broken green line is the point estimation, while the red linesrepresent a 95% predi
tion interval for future observations.The redu
ed regression model is not as a

urate as the MONA house pri
erelation. It does not represent the data as well as the MONA model and alle
onomi
 intuition used in the MONA is dropped. Despite these short
omingsthe redu
ed model will be used to ben
hmark the �xed MONAmodel throughoutthis 
hapter.6.3 Aggregated House Pri
esThe estimated 
hange, a

ording to the MONA house pri
e model, at some time
t 
an be expressed as

ŷt = ̂∆ln(kpt) = β̂∗
0 +

k∑

i=1

β̂∗
i xti t = 1, 2, ..., nwhere ŷt is the estimated 
hange in house pri
es, from t − 1 to t, by usingthe regression 
oe�
ients β̂∗

i times the 
orresponding explanatory variable xti.The house pri
e s
enario tree, whi
h is to be produ
ed, is meant to hold thenominal value of house pri
es not the 
hange in house pri
es between periods.The MONA results must therefore be a

umulated over the predi
tion period.



66 Applying The MONA house pri
e relationThe transformation from house pri
e 
hange, to aggregated house pri
e 
hangewill be dis
ussed in this se
tion.As was mentioned in subse
tion 5.3.2 the di�eren
ed series must be a

umulatedto give the a
tual house pri
e. A

ording to MONA [12℄1 the observed housepri
e 
an be 
al
ulated from house pri
e 
hange by
ln(kpt) = ∆ ln(kpt) + ln(kpt−1) (6.2)i.e. by adding the house pri
e 
hange to last periods house pri
e.There are two ways of performing this transformation. The �rst method in-volves updating the estimate of aggregated house pri
es with a
tual observedhouse pri
es (kpt−1), this greatly redu
es the error and gives a very stable pre-di
tion, i.e. basi
ally a one step predi
tion with updating at ea
h step. These
ond way, whi
h will be of interest in this thesis, is 
omparable to a k steppredi
tion without updating, i.e. the predi
tion is updated not with observedvalues but last periods predi
ted values (k̃pt−1) . Both methods will be givensome dis
ussion, beginning with the one step updating.6.3.1 Updating with observed house pri
es, k=1Re
all that the di�eren
e between the a
tual 
hange and the estimated 
hangeis the residual, i.e.

et = yt − ŷt

= ∆ ln(kpt) − ̂∆ln(kpt)

= (ln(kpt) − ln(kpt−1)) − ̂∆ln(kpt)When rearranging the terms in the last relation and ln(kpt) is isolated on theleft side it be
omes
ln(kpt) = ∆ ̂ln(kpt) + ln(kpt−1) + et (6.3)Whi
h is the relation for one step updating for the house pri
e level using themodeled house pri
e 
hange. Sin
e the residuals should follow et ∼ N(0, σ̂2) it iseasy to see that the aggregation should give an expe
ted value, point estimate,of

ln(k̃pt) = ̂∆ln(kpt) + ln(kpt−1) (6.4)Where ln(k̃pt) represents the point estimate of ln(kpt) for one period and up-dating with last periods observed house pri
es. The a

umulation has no e�e
t1See page 196.
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es 67on the varian
e of ln(k̃pt), i.e. the only 
ontribution to the error is from the
urrent estimation of ̂∆ln(kpt). Predi
tion intervals for the one step aggregatehouse pri
e 
an be 
al
ulated in the same way as was done in se
tion 5.6 us-ing Eq.(5.14). Figure 6.3 shows how the one step method has very little e�e
twhen transforming to the aggregate house pri
e both for the MONA house pri
erelation and the relatively ina

urate interest rates only model.
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Figure 6.3: The graph shows how the 
umulative house pri
e develops when updating witha
tual observed house pri
e values at ea
h time. The bla
k line is the a
tual house pri
e, redline is the MONA ROLS model and the green line is the interest rate only regression fromse
tion 6.2.
6.3.2 Updating with estimated house pri
es, k>1If the observed house pri
e is not available at ea
h period, or only o

asionally,the 
hange in house pri
e must be 
ompounded and last periods estimated housepri
e level used for updating.Given some initial house pri
e, A = ln(kp0), and using the updating formula



68 Applying The MONA house pri
e relationgiven in Eq.(6.2), the following 
an be shown:
ln(k̃p0) = A

ln(k̃p1) = A

ln(k̃p2) = A + ̂∆ln(kp2)

ln(k̃p3) = ln(k̃p2) + ̂∆ln(kp3) = A + ̂∆ln(kp2) + ̂∆ln(kp3)

ln(k̃p4) = ln(k̃p3) + ̂∆ln(kp4) = A + ̂∆ln(kp2) + ̂∆ln(kp3) + ̂∆ln(kp4)... =
...

ln(k̃pt) = A +

t∑

i=2

̂∆ln(kpi) where t ≥ 2 (6.5)Eq.(6.5) shows the relation for house pri
e development when using last periodsestimated house pri
e as base for the 
hange for t > 2. Noti
e that 2 periodsare needed before the house pri
e 
an be evaluated. The reason for this startup time is that for the evaluation of ̂∆ln(kpt), the lagged 
hange in user 
ost(x3) is needed. More pre
isely
β̂3

∗
xt3 = β̂3

∗ · ∆(rentet−1 + ssatst−1)

= β̂3
∗ · (rentet−1 − rentet−2 + ssatst−1 − ssatst−2)The relation above shows the 
al
ulation of the third term, lagged user 
ost,the one whi
h requires the most start up time and therefore de
ides the startup for the evaluation of both ̂∆ln(kpt) and thereby k̃pt. The 
onditional formfor aggregate house pri
es, updating with predi
tions, is therefore

ln(k̃pt) =





A if t < 2

A +

t∑

i=2

̂∆ln(kpi) if t ≥ 2
(6.6)Eq.(6.6), is very important sin
e it des
ribes how to 
al
ulate the one path 
asefor house pri
es, given an initial index pri
e of A and using the MONA housepri
e relation. In Figure 6.4, upper panel, the development of aggregate housepri
es using the 
ompounding method in Eq.(6.6) 
an be seen for both Interestrate only regression, green line, and the MONA ROLS house pri
e relation,red line. Comparing the upper panel from Figure 6.4 to the development inFigure 6.3 it 
an be seen how the aggregation of error has a mu
h bigger e�e
t,espe
ially for the interest only regression whi
h has a 
onsiderably higher error,

σ̂, see Table 6.2.The main problem with using the relation shown in Eq.(6.6) is the estimationof the error. The relation shown in Eq.(6.6) is a
tually the point estimate, i.e.
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Figure 6.4: The lower panel shows the development of the modeled variable ∆ln(kpt). Theupper panel shows the aggregated 
hange without updating. The red line is the MONAROLS, green line is the interest only model des
ribed in se
tion 6.2 and bla
k is the observed
hange. The bla
k verti
al line represent the boundary between the in-sample and out-of-sample periods. The point estimates, for the out of sample period, are shown as brokenlines.
the expe
ted value of the estimation, sin
e E[et] = 0. If the residual element
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e relationfor ea
h estimation is in
luded, Eq.(6.6) has the following form
ln(kpt) = A +

t∑

i=2

[ ̂∆ln(kpi) + ei] where t ≥ 2The point estimate represents the expe
ted value of the fore
ast and is sim-ple to 
al
ulate as was shown above, however the varian
e of the predi
tion isnon-trivial. The e�e
t of aggregating the MONA house pri
e 
hange estimateswill lead to an ever growing varian
e of the predi
tion in a

umulated housepri
e estimates. Simulation was used to evaluate the aggregate varian
e for the
ompound method. A detailed dis
ussion of how the simulation is performed isgiven in se
tion 6.5.6.3.3 Analogy to interest 
ompoundingBefore 
ontinuing with the dis
ussion of applying the MONA house pri
e relationto a tree stru
ture, a short digression to give an intuitive analogy is presented.The method des
ribed in subse
tion 6.3.2 
an be 
ompared to an interest rate
ompounding relation i.e.
V = A · (1 + r)n (6.7)where A is the initial amount, r is the interest rate and V the total value after

n years. By taking the exponential of Eq.(6.5) it be
omes
k̃pt = A ·

t∏

i=2

e
̂∆ ln(kp

i
) where t ≥ 2The term e

̂∆ln(kp
t
) expresses all 
hanges based from one, sin
e e0 = 1, by
hanging this su
h that all 
hanges are base from zero

rt = e
̂∆ln(kp

t
) − 1where rt is the per
entage 
hange, or rate, from time t−1 to t. It 
an therefore beseen that the exponential form of Eq.(6.5) is the same as Eq.(6.7) with di�erentrates for ea
h period.̃

kpt = A ·
t∏

i=2

(1 + rt) where t ≥ 2 (6.8)6.3.4 Numeri
al ExampleTo demonstrate the aggregate house pri
e development, using the two methodsmentioned above, i.e. updating with observed values and updating with previous
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es 71predi
tions, a small numeri
al example has been prepared. All the data used inthe example is �
tional.An initial house pri
e of A = 100 is given at time t = 0. Interest rate time series
It start at t = 0 and ends at t = 6, so the di�eren
ed interest series starts at
t = 1, i.e.

[
I

∆I

∆I−1

]
=

[
I0 I1 I2 I3 I4 I5 I6

∆I1 ∆I2 ∆I3 ∆I4 ∆I5 ∆I6
∆I1 ∆I2 ∆I3 ∆I4 ∆I5 ∆I6

]As was mentioned before the MONA house pri
e relation needs the lagged
hange of interest rates, whi
h is available at time t = 2, to 
al
ulate the esti-mated 
hange in house pri
es.The house pri
e 
hanges have been 
al
ulated using the MONA house pri
emodel, with all explanatory variables available. The estimated 
hange 
an beseen as e
d∆ln (kp) based from one or as r based from zero

e
d∆ln (kp) =

�
1 1 1.03 0.99 1.01 0.97 0.98

�
r = [ 0 0 0.03 -0.01 0.01 -0.03 -0.02 ]Using the exponential form of the 
ompounding equation given in Eq.(6.8), i.e.using previous predi
tions as basis for future estimates (
ompounding method),gives an aggregate house pri
e as followsfkp0 = A = 100fkp1 = A = 100fkp2 = A · (1 + 0.03) = 103fkp3 = A · (1 + 0.03)(1 − 0.01) = 101.97fkp4 = A · (1 + 0.03)(1 − 0.01)(1 + 0.01) = 102.99fkp5 = A · (1 + 0.03)(1 − 0.01)(1 + 0.01)(1 − 0.03) = 99.9fkp

6
= A · (1 + 0.03)(1 − 0.01)(1 + 0.01)(1 − 0.03)(1 − 0.02) = 97.90Now imagine that the observed house pri
es from last period are available for

t = 0, ..., 5 su
h as
kp = [ 100 98 99 101 99.5 102 ]Using the one period updating given in Eq.(6.4), taking the exponential andinserting rt gives
k̃pt = e

̂∆ln(kp
t
) · kpt−1 = kpt−1(1 + rt) (6.9)whi
h when used with the data above gives the following, i.e. estimated housepri
es with one period updating.



72 Applying The MONA house pri
e relationfkp0 = 100fkp1 = kp0 · (1 + 0) = 100 · 1 = 100fkp2 = kp1 · (1 + 0.03) = 98 · 1.03 = 100.94fkp3 = kp2 · (1 − 0.01) = 99 · 0.99 = 98.01fkp4 = kp3 · (1 + 0.01) = 101 · 1.01 = 102.01fkp5 = kp4 · (1 − 0.03) = 99.5 · 0.97 = 96.52fkp6 = kp5 · (1 − 0.02) = 102 · 0.98 = 99.96It is apparent when looking at the results from this small example how de-pendant on the previous house pri
e value the estimates are when using the
ompounding method. The one step updating gives house pri
es that are inde-pendent of the last estimated house pri
e, sin
e the observed value is used forupdating. A visual demonstration of this independen
e is given in Figure 6.5and Figure 6.6 for Eq.(6.4) and Eq.(6.2) respe
tively.
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6.4 Unavailable Explanatory Variables 73To summarize the dis
ussion on aggregation, when aggregating estimated 
hange,it is better to have observed values for updating than previous estimates. Up-dating, with observed values, is equivalent to resetting the predi
tion error andthereby resetting the aggregate predi
tion varian
e. Using observed values there-fore results in a mu
h more a

urate predi
tion, where the 
hange is equivalentto that of the estimated 
hange.Compounding the 
hange without updating will result in di�
ulties when esti-mating the varian
e of the predi
ted, aggregated, variable. Further dis
ussionon the estimation of the aggregated varian
e is given in 6.5.6.4 Unavailable Explanatory VariablesTo apply the MONA house pri
e relation as a predi
tion model there are somepra
ti
al aspe
ts that need 
onsidering. The most important of these aspe
ts isthe la
k of information. When predi
ting with the MONA house pri
e relation,the only new explanatory variables available, during the predi
tion, are the onesin
luding interest rate. This se
tion deals with ways of 
ompensating for missinginformation and dis
usses what e�e
ts the la
k of new observations have on thepredi
tion.Re
all that the MONA house pri
e relation regression was performed with thedesign, or explanatory, matrix X whi
h is of size (n×p), where p is the number ofexplanatory variables and n the number of observations. Ea
h line t ∈ {1, ..., n}in X 
an be expressed as
Xt =

[
1 xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8

]When predi
ting for future observations of house pri
e 
hange, using the MONArelation, all eight variables must be available. However, as was mentioned beforeonly the interest rates are available in the house pri
e s
enario tree predi
tion.Out of the eight explanatory series in X three in
lude interest rates (rentet):
xt2 = ∆(rentet + ssatst)

xt3 = ∆(rentet−1 + ssatst−1)

xt4 = rentet−1 + ssatst−1 + 0.01The other �ve explanatory variables, [ xt1 xt5 xt6 xt7 xt8 ] , along with the taxterms (ssats) in [ xt2 xt3 xt4 ] are unavailable when predi
ting in a house pri
es
enario tree relation. Ways of 
ompensating for the la
k of new observations,when fore
asting, must therefore be devised.



74 Applying The MONA house pri
e relationDealing with Unavailable VariablesIn se
tion 5.6 the MONA house pri
e relation was used to predi
t for newobservations where all the explanatory variables are present for the fore
ast.When predi
ting for some response ŷ+
t , where + indi
ates out-of-sample period,a 
orresponding ve
tor of new explanatory variables 
an be expressed as

X+
t =

[
1 x+

t1 x+
t2 x+

t3 x+
t4 x+

t5 x+
t6 x+

t7 x+
t8

]for the Full MONA model, i.e. when all variables are available. In the housepri
e tree generation, where the MONA model is used as basis but only interestrates are available, the ve
tor of new explanatory variables is expressed as
A+

t =
[

0 0 ∆rente+
t ∆rente+

t−1 rente+
t−1 0 0 0 0

] (6.10)Subtra
ting the available A+
t from the full X+

t gives the missing variables, trans-posed to
Ft

′

= (X+
t − A+

t )
′

=




1
x+

t1

x+
t2

x+
t3

x+
t4

x+
t5

x+
t6

x+
t7

x+
t8




−




0
0

∆rente+
t

∆rente+
t−1

rente+
t−1

0
0
0
0




=




1
x+

t1

∆ssats+
t

∆ssats+
t−1

ssats+
t−1

x+
t5

x+
t6

x+
t7

x+
t8




(6.11)
The ve
tor Ft in
ludes all the variables not available when fore
asting. Thereare numerous ways of dealing with missing or unavailable observations in fore-
asting. The most simple and straight forward method is to �x the data toa 
ertain period. This method involves �xing all the missing variables to theobserved values at time T when predi
ting for T + k periods ahead, i.e �x allthe variables to their value at the predi
tion origin. This method is a bit 
um-bersome to apply, sin
e all variables must be aligned at the predi
tion origin.Fixing missing variables to their values at predi
tion origin will likely give agood approximation, to the 
ase where new data is available for all explanatoryvariables, but only for short predi
tion horizons k.Example of Fixing at Predi
tion OriginGiven an in-sample explanatory matrix X and a 
oe�
ient ve
tor β̂, an out-of-sample predi
tion is sought for �ve periods ahead, k = 5. All out-of-sample



6.4 Unavailable Explanatory Variables 75data, ex
ept for the interest rates, is not available and will be �xed to the lastin-sample observations at time t = n. The explanatory variables that are �xedat time t = n are therefore
Fn =

[
1 xn1 ∆ssatsn ∆ssatsn−1 ssatsn−1 xn5 xn6 xn7 xn8

]The available out-of-sample available variables are des
ribed, as before, by
A+

t =
[

0 0 ∆rente+
t ∆rente+

t−1 rente+
t−1 0 0 0 0

]Adding these two ve
tor, i.e. the available variables A+
t and the �xed variables

Fn, gives the full out-of-sample 
ovariate matrix XF
t

′ as
XF

t

′

= (A+
t + Fn)

′

=




1
xn1

∆rente+
t + ∆ssatsn

∆rente+
t−1 + ∆ssatsn−1

rente+
t−1 + ssatsn−1

xn5

xn6

xn7

xn8




(6.12)
where t = n + 1, ..., n + k. Using the �xed out-of-sample explanatory matrix tofore
ast will give predi
ted 
hange in house pri
e a

ording to

ŷ+ = XF β̂∗E�e
ts Of FixingBy �xing explanatory variables in predi
tions a 
ertain 
on
ession to the fullmodel is made. The �xed model, for short predi
tion horizons, should provea good approximation to the full model, however for long predi
tion horizonsthe �xed model should be used with mu
h 
are sin
e it is likely to diverge fromthe full model and thereby the observed response. Figure 6.7 show the pointestimate for out-of-sample predi
tions using the MONA house pri
e model �xingexplanatory variables at fore
ast origin, 1997:q4, for the blue line and using allavailable data for the red line. The out-of-sample period proves very bad forthe MONA model sin
e this is the period whi
h 
onsidered to have very "heardlike" behavior. The �xed model seems to be mu
h more 
onservative, whi
h isas expe
ted sin
e many of the variables are �xed and are therefore always givingthe same e�e
t, the interest rates 
ontrol the movement. Fixing will in
reasethe error estimates for the predi
tions. Fixing variables also makes it hard to
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Figure 6.7: Predi
tion using �xed variables is shown as the blue line. The full model with alldata available as red, bla
k is the observed 
hange. Left panel shows the development of pre-di
ted values for the 
hange in house pri
es. The right panel show the aggregate developmentof house pri
es.evaluate the predi
tion intervals with traditional analyti
al methods, su
h asthose used in se
tion 5.6. In se
tion 6.5 a thorough dis
ussion about the erroris given.The �xing method 
an be used to show the individual e�e
t interest rates havein the house pri
es model, sin
e when the other variables are �xed they a
t onlyas a 
onstant. This 
an be better realized by splitting Eq.(6.12) again up intothe �xed and time dependant ve
tors
ŷ+

t = A+
t β̂∗ + Fnβ̂∗ (6.13)Noti
e that the only time dependant e�e
t is the interest rates in X+

t
A while

Fn only 
ontributes 
onstant value throughout the predi
tion, i.e. for t = n +
1, ..., n + k.6.4.1 Modeling Explanatory VariablesAn alternative to �xing the variables is to model the explanatory variablesand use the predi
ted value, of those models, as the unavailable explanatoryvariables. The degree of sophisti
ation for modeling of the explanatory variables
an also vary greatly, 
are must however be taken sin
e not all of the pro
essesare stationary. Having to model the explanatory variables also in
reases the
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omplexity of the predi
tion model and thereby redu
es the usability of theapplied s
enario house pri
e tree.The main dissuasive fa
tor, for modeling all the explanatory variables, remainshowever that proper e
onomi
 models for these variables tend to have a 
hainrea
tion e�e
t, i.e. e
onomi
 models of the explanatory variables need othervariables that also need estimation, requiring new models for those variablesand so on. It is therefore essential to make a sensible 
ompromise betweenmodel pre
ision and usability. Simple models for the explanatory relationships
an be derived, however it is arguable whether they are bene�
ial or only in-
rease 
omplexity and even the un
ertainty. The explanatory, in-sample data isdepi
ted in Figure 6.8. As 
an be seen there is no simple general way of model-ing all these relationships. For example a very simple model 
ould be devised to
apture the the expe
ted 
hange in 
onsumption de�ator xt5 (dpcpe) as a timedependant drift model, i.e.
x̂t5 = θ̂0 + θ̂1thowever to stop the drift from going below zero more elaborate modeling wouldbe required.The de
ision of modeling explanatory variables was abandoned sin
e it would beto time 
onsuming and would have to be done with great 
are to avoid bad input.Involved modeling would also in
rease the 
omplexity and de
rease usability ofthe �nal s
enario tree fore
asting produ
t. The method of �xing variables atpredi
tion origin was therefore used.
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Figure 6.8: The eight series that are �xed. The bla
k line shows the development of theseries during the sample period. The broken blue line is the mean of the series, broken redlines are µ±σ or mean plus minus one standard deviation. To see what a
tual e
onomi
 seriesx represents, in the MONA model, see subse
tion5.4.2.



6.5 Estimating the Error 796.5 Estimating the ErrorIn this 
hapter topi
s regarding the extension of the MONA house pri
e modelto an aggregated house pri
e tree stru
ture have been dis
ussed. To a
hievethe s
enario tree stru
ture some 
on
ession have had to be made to the originalMONA house pri
e relation. These 
on
essions have raised question as to howthe error should be estimated. This se
tion dis
usses the 
omponents 
ontribut-ing to the error and use simulation methods to quantify the predi
tion intervalswhi
h will give the s
enario tree predi
tions more 
redibility.It should be obvious that the a
tions des
ribed in both se
tion 6.4, i.e �xingunavailable variables, as well as aggregating the estimated 
hange, dis
ussed insubse
tion 6.3.2, will 
ause an in
rease in error for the estimation of predi
tedvalues. To help quantify and ben
hmark the house pri
e predi
tions three mod-els have been devised.� Model 1: The ideal model. Model for aggregate house pri
e 
hange, usingthe MONA house pri
e model.� All observations available.� Model 2: The applied model. Model for aggregate house pri
e 
hange,using the MONA house pri
e model.� Only interest rates available, other fa
tor �xed at predi
tion origin,see Eq.(6.12).� Interest Only model: The interest only regression performed in se
tion6.2, i.e. the interest rates modelde with new 
oe�
ients.� Only interest rates explanatory variables needed and are available.Both the predi
ted estimated 
hange and the predi
ted aggregate house pri
ewill be investigated for all three models. The most interesting results should befrom Model 2 when aggregating the house pri
e, i.e. sin
e in that model boththe �xing and the aggregation is applied, also sin
e Model 2 with aggregatehouse pri
es is the format that 
an be applied to the s
enario tree.An expe
ted distribution of predi
ted 
hange and the predi
ted aggregate housepri
e for the three models is shown in Figure 6.9. For the predi
ted estimated
hange, in house pri
es, a �xed varian
e is expe
ted, sin
e no dire
t re
ursive orfeedba
k relationship is present in the estimation of the 
hange. The expe
tedout
ome for the predi
ted 
hange in house pri
es is depi
ted in Figure 6.9 (a).



80 Applying The MONA house pri
e relationIn Figure 6.9 (b) the expe
ted development for aggregate house pri
e is shown,where the varian
e is expe
ted to in
rease, mainly be
ause of the feedba
k ef-fe
t of previous predi
ted values without updating, see subse
tion 6.3.2. Thisaggregation will be di�erent for the three models sin
e di�erent assumptions aremade in ea
h model, e.g. the �xing of explanatory variables in Model 2 shoulda
t to in
rease the varian
e even more.�
ˆ ln( )ty kp= ∆

T 1T+

ŷµ

2T+ 3T+

�ln( )kp

T 1T+

�
ln( )kp

µ

2T+ 3T+(a) (b)Figure 6.9: Expe
ted error behavior for aggregated house pri
e 
hanges without updating(b). Panel (a) shows the error given by the estimated 
hange at ea
h time.6.5.1 BootstrappingLinear regression models are often used to predi
t future values. The produ
tof su
h a predi
tion is a point estimate and often a predi
tion interval, su
has was dis
ussed in se
tion 5.6. The method des
ribed in se
tion 5.6 is ananalyti
al method that uses the varian
e of the regression to give predi
tionintervals. When deviation are made to the traditional regression framework,su
h as �xing variables as is done in Model 2, the analyti
al methods des
ribedin 5.6 no longer apply. Cal
ulations for deriving a formula for the predi
tioninterval 
an be made, however the more 
hanges that are made from the originalframework, the harder and more error prone will its estimation be.The ideal tool for estimating predi
tion intervals, when 
onsiderable adjustmentsto the original model have been made, is to use so 
alled bootstrapping methods.The idea behind bootstrapping is to sample from the original data sets to 
reaterepli
ated data sets. From the repli
ated data sets the variability of the variablesof interest 
an then be estimated without having to dedu
t long error proneanalyti
al formulas for the varian
e. For more information about bootstrapping



6.5 Estimating the Error 81methods in linear regression models see Davidson and Hinkley [2℄2.As was mentioned before the varian
e analysis will be split into two main s
e-narios. Firstly the varian
e for the predi
ted house pri
e 
hange, for all threemodels will be estimated. Se
ondly the 
hanges will be aggregated by samplingthe in-sample data, i.e. bootstrapping.Predi
tion Interval EstimationThe varian
e in regression models 
omes from two terms, i.e. the regression
oe�
ients and the residual
σ2

T = σ2
R + σ2

E (6.14)Where σ2
T , σ2

R and σ2
E are the total, regression and error or residual varian
es,respe
tively. The estimate of σ2

E is 
al
ulated as σ̂2
E see Eq.(4.21) for the 
al
u-lation in the MONA restri
ted ordinary least squares (ROLS) 
ase.Sin
e the ROLS estimator β̂∗ is a linear 
ombination of the observations, it 
anbe seen that β̂∗ is normally distributed with mean β∗ and 
ovarian
e matrix

Σβ∗ , whi
h for ROLS is given as
Σβ∗ = σ2M∗(X ′X)−1M∗′where

M∗ = I − (X′X)−1R′(R(X′X)−1R′)−1RThe diagonal of Σβ∗ gives the varian
e of the regressors, σ2
R. The square rootof the diagonal of Σβ∗ gives the standard error of the regressors, expressedas se(β∗). Re
all that the ROLS 
oe�
ients, β∗, were estimated as β̂∗ anddisplayed in Table 5.5, giving the point estimate and standard error displayedas Estimate and Std.Error respe
tively. The results are repeated in Table 6.3 .Estimate Std.Error

Int 0.0663 0.0192
β̂1

∗ 0.3074 0.2122
β̂2

∗

−3.7811 0.4358
β̂3

∗

−0.7791 0.4468
β̂4

∗

−0.7927 0.3187
β̂5

∗ 0.7709 0.3575
β̂6

∗ 0.1949 0.0671
β̂7

∗

−0.1026 0.0268
β̂8

∗ 0.0554 0.0282Table 6.3: The 
oe�
ient part of Table 5.1 repeated.2See e.g. 
hapter 6.
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e relationThe estimated varian
e, σ̂2
R and σ̂2

E therefore represent the varian
e in the dataor the 
oe�
ients and the residual error for the model, respe
tively. Whenbootstrapping these estimated varian
e are used to 
reate empiri
al distributionthat repli
ate the behavior of the in-sample data and the model. The empiri
aldistributions 
an then be sampled to simulate results of the regression model,what is more spe
ial 
onditions 
an be applied and their e�e
ts observed bysimulation, e.g. how the �xing of some of the explanatory variables e�e
ts thedevelopment of the predi
tion intervals when fore
asting.
6.5.2 Simulating Change In House Pri
esThe �rst simulation was done without aggregating the estimated house pri
e
hange. The main obje
tive of this simulation is to a
hieve predi
tion intervalsfor Model 2, i.e. estimated predi
ted house pri
e 
hange when �xing unavailableexplanatory variables. Simulations were also performed for the predi
ted housepri
e 
hange for Model 1 and the Interest rate only regression. The Model 1and Interest only simulation 
an validate the simulation method by 
omparingthe results to the ones already 
al
ulated by analyti
al methods in se
tions 5.6and 6.2. The method used to perform the estimates is presented in Algorithm1.Algorithm 1 estimates the predi
tion for the three models by bootstrapping. Forthe predi
tions where all explanatory variables are available α and γ, i.e. Model1 and Int Only respe
tively, no varian
e of the data needs to be introdu
ed, theresidual varian
e is however added. Model 2 is estimated by

δr,n+l = A+
n+lβ̂

∗ + Fnβ̂s
r + eδ

rHere 
ertain data is available A+
t and does therefore not need to added varian
e.The �xed 
omponent Fnβ̂s

r is however altered a

ording to empiri
al distribu-tion, 
reated by the observed dispersion of the in-sample data. More pre
iselyby sampling β̂s
r ∼ N(β̂∗, se(β̂∗)2). The model is then expe
ted to behave likemodel 1 and the same residual error term 
an be applied. The simulation startsat the predi
tion origin n where Fn is �xed, k des
ribes the predi
tion horizon.Ea
h predi
tion at time t = n+ l is simulated R times. The results for the threepredi
tions, (α, δ, γ), are then summarized by taking the mean and standard



6.5 Estimating the Error 83Algorithm 1 Re-sampling and bootstrapping of predi
tion for 
hange in housepri
es.
X+

t des
ribes all explanatory variables at time t.
A+

t des
ribes available variables at time t, see Eq.(6.10).
Fn des
ribes the explanatory variables �xed at time n, see Eq.(6.11).
αr,t predi
ted full model response, Model 1, at time t and simulation r.
δr,t predi
ted �xed response, Model 2, at time t and simulation r.
γr,t predi
ted Interest rate only response, Model 3, at t and simulation r.
n Predi
tion origin.
k Predi
tion horizon.
R Number of simulations done.for l = 1 to k dofor r = 1 to R doSample the MONA residual error as eα

r ∼ N(0, σ̂2
E)Sample the MONA residual error as eδ

r ∼ N(0, σ̂2
E)Sample the Interest rate only residual error as eI
r ∼ N(0, σ̂2

EI)Sample the 
oe�
ients as β̂s
r ∼ N(β̂∗, σ̂2

R)

αr,n+l = X+
n+lβ̂

∗ + eα
r

δr,n+l = A+
n+lβ̂

∗ + Fnβ̂s
r + eδ

r

γr,n+l = A+
n+lβ̂

I + eI
rend forend fordeviation for ea
h predi
ted period l, e.g. these 
al
ulations for δ are

E[δn+l] = δ̄n+l =
1

R

R∑

i=1

δi,n+l

V ar(δn+l) =
1

R

R∑

i=0

(δi,n+l − δ̄n+l)
2

se(δn+l) =
√

V ar(δn+l)ResultsSimulations were performed using Algorithm 1, where the 
omponent of Ft are�xed at n = 1997:q4, i.e. the last in-sample period and then F1997:q4. Thepredi
tion horizon was set to k = 10 giving the predi
tion horizon date at n + k
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e relation= 2000:q2. Ea
h predi
tion was performed R = 10.000 times. The results forthe three models is displayed in Table 6.4.The most interesting result from Table 6.4 is the 
omparison of varian
es for thethree methods. From Table 6.4 it 
an be seen, as was spe
ulated in Figure 6.9(a), that the varian
e of the predi
tion of the estimated 
hange in house pri
e isa 
onstant. The estimated varian
e for Model 1 is E[se(α)] = 0.0169, for Model2 using �xing E[se(δ)] = 0.0332 and for Interest Only model E[se(γ)] = 0.0226.Whi
h for Model 1 and Interest Only are the same as the σ̂MONA and σ̂INTthat were estimated earlier, see Table 6.2.The results are displayed in Figure 6.10 were the larger predi
tion varian
e, forthe same 
on�den
e interval, 
an be 
learly seen for Model 2. The analyti
ally
al
ulated point estimate and 
on�den
e intervals are also shown in Figure 6.10and it 
an be seen that the simulated intervals and point estimates of Model 1and Int Only �t them perfe
tly.Mean Standard Deviationi E[αi] E[δi] E[γi] se(αi) se(δi) se(γi)1998 Q1 0.0194 0.0193 0.0153 0.0167 0.0333 0.02261998 Q2 0.0175 0.0204 0.0151 0.0169 0.0333 0.02271998 Q3 0.0141 0.0212 0.0164 0.0169 0.0330 0.02261998 Q4 0.0134 0.0219 0.0168 0.0168 0.0329 0.02241999 Q1 0.0058 0.0138 0.0083 0.0170 0.0329 0.02271999 Q2 0.0073 0.0185 0.0121 0.0170 0.0331 0.02271999 Q3 −0.0066 0.0063 0.0011 0.0170 0.0329 0.02271999 Q4 −0.0067 0.0078 0.0018 0.0168 0.0336 0.02252000 Q1 −0.0227 0.0013 −0.0008 0.0168 0.0333 0.02262000 Q2 −0.0159 0.0056 0.0037 0.0168 0.0342 0.0226Table 6.4: Results for the simulation a

ording to Algorithm 1, α ,δ and γ des
ribe Model1, Model 2 and Int Only respe
tively. Predi
tion horizon k = 10 .6.5.3 Simulating The Aggregate Change In House Pri
esThe main 
on
lusion taken from the previous simulation is that the varian
efrom a predi
tion of house pri
e 
hanges with �xing a

ording to Model 2 willresult in normally distributed value with standard deviation se(δ) = 0.0332 andthat the varian
e is �xed for all predi
tion horizons (k).Using the results from the previous simulation the e�e
ts the aggregation ofpredi
ted values has on the varian
e 
an now be inspe
ted.
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Figure 6.10: Left panel shows the simulated �xed Model 2 (blue dots) and MONA Model 1(red dots) with 95% 
on�den
e of the predi
tion interval, the broken blue line is for Model 2while the broken red line is for Model 1. Right panel show the simulated Interest Only (greendots) model with 95% 
on�den
e of the predi
tion interval. Bla
k whole line is the observed
hange.As was dis
ussed in se
tion 6.3, fore
asting house pri
es without updating, i.e.using previous fore
ast as bases will lead to an in
rease in predi
tion varian
e.Here the in
reasing predi
tion varian
e will be estimated by way of bootstrap-ping. By using the aggregation formulas for house pri
es derived in Eq.(6.5) thehouse pri
e will be given at ea
h time from the estimated house pri
e 
hange.An empiri
al distribution will then be generated from the house pri
e at thattime and a sample from that distribution used as basis for next periods housepri
e, see Algorithm 2 for more detail.
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Algorithm 2 Estimating varian
e in aggregate house pri
e predi
tions.
yrt Aggregate house pri
e at time t simulation r.
urt is any one of three models from Algorithm 1 at time t and rep r.
µ̂yt

mean value of house pri
e at time t over R.
σ̂yt

standard error of house pri
e at time t over R.
A initial ln(house pri
e) at time n, i.e. ln(kpn)
n Predi
tion origin.
k Predi
tion horizon.
R Number of simulations done.for l = 0 to k dofor r = 1 to R doif l = 0 then

yrn = AelseSample last house pri
e yr,n+l−1 as p∗r ∼ N(µ̂yl
, σ̂2

yl
)

yr,n+l = ur,n+l + p∗rend ifend for
µ̂yn+l

= E[y·,n+l]
σ̂yn+l

= se(y·,n+l)end for



6.5 Estimating the Error 87ResultsAlgorithm 2 was used to investigate the development of house pri
e predi
tionintervals. The output from Algorithm 1 was used as input to the simulationperformed listed below. The simulation repli
ation was set to R = 10.000 forAlgorithm 2 and the initial house pri
e A = ln(kpn) or A = ln(kp1997:4).Programming was performed with the statisti
al pa
kage R, the sour
e 
ode 
anbe seen in Appendix C.2. The results for the three models is displayed in Table6.5. Mean Standard Deviation
t Model 1 Model 2 Int Only Model 1 Model 2 Int Onlyn+0 1997 Q4 0.2370 0.2370 0.2370 0.0000 0.0000 0.0000n+1 1998 Q1 0.2562 0.2566 0.2523 0.0167 0.0331 0.0228n+2 1998 Q2 0.2736 0.2769 0.2669 0.0236 0.0471 0.0322n+3 1998 Q3 0.2872 0.2975 0.2829 0.0291 0.0566 0.0394n+4 1998 Q4 0.3009 0.3206 0.2998 0.0337 0.0658 0.0455n+5 1999 Q1 0.3067 0.3351 0.3084 0.0378 0.0737 0.0507n+6 1999 Q2 0.3139 0.3547 0.3209 0.0415 0.0811 0.0559n+7 1999 Q3 0.3070 0.3594 0.3224 0.0446 0.0877 0.0604n+8 1999 Q4 0.3004 0.3650 0.3238 0.0473 0.0940 0.0639n+9 2000 Q1 0.2771 0.3664 0.3220 0.0498 0.0996 0.0674n+k 2000 Q2 0.2604 0.3710 0.3247 0.0528 0.1053 0.0716Table 6.5: Results for the simulation a

ording to Algorithm 2 using Model 1, Model 2 andInt Only. Predi
tion horizon k = 10 . First observation 1997 Q4 is not a fore
ast, initial valueof house pri
es.The data in Table 6.5 show the mean and standard deviation for the predi
tedaggregate log(house pri
e), i.e. ln(k̃pt). Comparing the estimated 
hange ofhouse pri
e ̂∆ln(kpt) , i.e. dlog(house pri
e), in Table 6.4 to those in Table6.5 it 
an be seen that the varian
e in
reases with predi
tion horizon k, as wasexpe
ted see e.g. Figure 6.9.The right panel of Figure 6.11 shows how the predi
tions progress from fore-
asting k = 1 period ahead up to k = 10 periods ahead. Although the pointestimate varies greatly the varian
e of the predi
tions are only dependant onthe predi
tion horizon or k. The dependan
e on k is as expe
ted sin
e it is anaggregation of the �xed varian
e of the estimated 
hange in house pri
es, shownin se
tion 6.4.The right panel of Figure 6.11 shows the, k = 1 and k = 10, predi
tion distri-butions for all three models, 
entered around zero at k = 1 and k = 10. Ea
h



88 Applying The MONA house pri
e relationpredi
tion horizon in the out-of-sample data from k = 1, ..., 10 has distributionas is shown in Figure 6.12, for Model 2, 
entered around zero, i.e. the point esti-mate at any time. Finally the predi
tions and the predi
tion intervals are givenfor k = 10 �xing n = 1997:q4 in Figure 6.13 with a 95% 
on�den
e intervals forthe predi
tion.
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Figure 6.11: The left panel shows distribution of the fore
asted house pri
e for all threemodels, for one period ahead k = 1 and se
ondly for ten periods ahead k = 10. The rightpanel show the same distributions as the left only 
entered around zero.
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Figure 6.13: The left panels show the estimated 
hange in house pri
es with ±1.98σ whi
h
orresponds to about 95% 
on�den
e predi
tion intervals. The right panels show the estimatedaggregate house pri
e development also with 95% 
on�den
e predi
tion intervals.



90 Applying The MONA house pri
e relation6.5.4 Summary of ResultsThe result from this error estimation is that in the 
ase of predi
ting for the
hange in house pri
e a �xed varian
e 
an be expe
ted, irrelevant of the pre-di
tion horizon k. The predi
tion 
an therefore be expe
ted to have an normaldistribution around it�s point estimate with a varian
e listed in Table 6.6. WhenseMONA no �xing of explanatory variables, Model 1 0.0169MONA with �xing 
ertain variables to predi
tion origin n, Model 2 0.0332Interest rate only Regression 0.0226Table 6.6: The expe
ted varian
e for the predi
tion of 
hange in house pri
es, ŷt = ∆̂ lnkpt.aggregating the estimate 
hange, i.e. 
al
ulating the a
tual house pri
e withoutupdating the predi
tion is also normally distributed around the point estimate,sin
e the point estimate is essentially the a

umulation of the 
hange in thehouse pri
e point estimate. The varian
e however in
reases with an in
reasein predi
tion horizon k. For any out-of-sample predi
tion of aggregate housepri
es, the predi
tion varian
e 
an be expe
ted to be a fun
tion of k as listedin Table 6.4. The results for the Fixed MONA model are summarized in Figure6.14, for k = 1, ..., 20.When 
omparing the three models the �xed model will give the highest un
er-tainty of the three models when fore
asting. The interest rate model is se
ondand the MONA model with all explanatory variables is likely to give the mostse
ure predi
tion.
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Chapter 7House Pri
e Dynami
s IIIStatisti
al Model
7.1 Introdu
tionIn this 
hapter a new redu
ed statisti
al model is devised, using the error-
orre
tion model format and the data from MONA. This new model will benoted as HPDIII, the new model fo
uses more on modeling the house pri
e tointerest rate relationship than attempting to develop a model whi
h 
ompletelyen
apsulates the e
onomi
 long term relationship.In se
tion 7.2 the outline of the Box-Jenkins statisti
al modeling pro
ess ispresented, the se
tion also gives a brief dis
ussion of whi
h steps in the Box-Jenkins framework have been investigate previously in this thesis. Se
tion 7.3introdu
es the data and uses 
orrelation plots to de
ide the level of di�eren
ingand beginning level of lags to in
lude in the model. Se
tion 7.4 dis
usses howthe model is redu
ed from the initial guess, in se
tion 7.3, to a usable modelin
luding only the relevant terms, the parameters of the �nal model are alsoestimated, the �t plotted and goodness of �t investigated. In se
tion 7.5 theresiduals are investigated as in previous 
hapters to assert the model quality. Fi-nally in se
tion 7.6 a short summary is presented on what bene�ts the HPDIIIposes over pervious models.
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e Dynami
s III Statisti
al Model7.2 Statisti
al ModelingA method of modeling based on the Box-Jenkins modeling approa
h is ap-plied to systemati
ally identify, estimate and validate a statisti
al model forhouse pri
e development. A �ow diagram, illustrating the Box-Jenkins model-ing pro
edure, is shown in Figure 7.1. The Box-Jenkins method is des
ribed bythe following main ideas:1. Identi�
ation of the data whi
h involves asking question su
h as, what arethe main fa
tors, does the data need to be transformed, is the stationarityassumption a reasonable one.2. Chose a suitable model type, to �t the data.3. Estimate Parameters in the sele
ted model.4. Validate model, residual analysis and out of sample �tting.If validation of the model fails something has gone wrong and the model mustbe reevaluated.Throughout this thesis some of these rules have been applied already withoutmentioning the Box-Jenkins framework dire
tly. For example the identi�
a-tion of the fa
tors in the MONA house pri
e relation, as well as theoreti
almodel des
ribing house pri
e development were dis
ussed in se
tions 5.3.1 and5.4, respe
tively. These a
tions are equivalent to the �rst step in Box-Jenkins.Estimation of parameters and residual validation has also been performed forprevious models.The goal of this 
hapter is to develop a model based solely on previous levels, anddi�eren
ed levels, of house pri
es and interest rates. In doing so the theoreti
alframework mentioned in se
tion 5.4 is largely dropped. The statisti
al modelof 
hoi
e for this 
hapter is 
hosen as the error-
orre
tion model, inspired bythe use in MONA. The ECM allows for the in
lusion of the levels as well as thestationary di�eren
es, whi
h ensures the long term trend is 
aptured as well asshort term dynami
s.The HPDIII model is meant to improve on the short
omings of the redu
edMONA models, i.e. the interest only regression model and the MONA �xedmodel, from 
hapter 6. All the house pri
e models will be 
ompared in the next
hapter, �rst for single bran
h and later for a s
enario trees.
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1. Identification

  (Specifying the model order)

2. Estimation

  (of the model parameters)

Theory 

physical insight

Data

Applications using model

(prediction, simulations, etc.)

3. Model Checking

   Is the model OK?

Yes

No

Figure 7.1: Box-Jenkins framework for statisti
al model building. Adopted from Madsen[9℄, page 148.7.3 Data and Identi�
ationIn 
hapter 5 it was shown that there exists a negative relationship between housepri
es and interest rates. This se
tion investigates the relationship betweeninterest rates and house pri
e further, with the intention of 
onstru
ting anerror 
orre
tion model for the 
hange in house pri
es.In Figure 7.2 the level and �rst di�eren
e of the series House Pri
e: ln(kpt) andinterest rates: rentet are shown. Both series are I(1), i.e stationary after onelevel of di�eren
ing. The 
orrelation between the levels and di�eren
ed values
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Figure 7.2: Upper left panel shows the ln(kp) i.e. log house pri
es. Lower left panel showsthe interest rates rentet, the right panels show the 
hange in the levels on the left or thedi�eren
ed series. The data spans 1974:q3-2001:q1.is shown in Table 7.1, there it 
an be seen that the respond variable ∆ln(kpt)shows some 
orrelation to all of the three series.
∆ln(kpt) −∆rentet ln(kpt) −rentet

∆ln(kpt) 1.000
−∆rentet 0.500 1.000

ln(kpt) 0.251 −0.115 1.000
−rentet 0.356 0.050 0.835 1.000Table 7.1: Correlation matrix for the four series used.Investigating the 
orrelation further, the auto
orrelation and 
ross-
orrelationfun
tions are shown in Figure 7.3. The graph diagonal in Figure 7.3 representsthe auto
orrelation of the four series, while the o�-diagonal represents the 
or-relation between the row and 
olumn series, 
alled 
ross 
orrelation. It 
an beseen from from the top line in Figure 7.3 that some signi�
ant 
orrelation be-tween ∆ln(kpt) and all three other series is present. There also seems to besome auto
orrelation as 
an be seen in the top left panel.



7.3 Data and Identi�
ation 95From Figure 7.3 an initial guess to the level of the model 
an be made asin
luding 3 lags from ∆ln(kpt), 2 lags from ∆(rentet), 1 lag of ln(kpt) and 1lag of rentet.
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Figure 7.3: Cross Correlations between the lags of the four series, diagonal is the auto 
or-relation fun
tions. KP : {ln(kpt)}, DKP : {∆ ln(kpt)} , RE : {rentet} and DRE : {∆rentet}.



96 House Pri
e Dynami
s III Statisti
al Model7.4 The ModelUsing the information from Figure 7.3 the initial model 
an be expressed as
∆ln(kpt) = θ0 + θ1∆ln(kpt−1) + θ2∆ln(kpt−2) + θ3∆ln(kpt−3) + θ4∆(rentet)

+ θ5∆(rentet−1) + θ6∆(rentet−2) + θ7 ln(kpt−1) + θ8rentet−1 + εtWhere the parameter of interest is θ estimated by OLS to give E[θ] = θ̂.Some of the parameters in the initial model may be unne
essary, by estimatingthe parameters and removing those whi
h are not signi�
ant, reevaluating themodel, and removing the parameters again, a model in
luding only relevantterms 
an be derived, the pro
ess is des
ribed in Example 7.1.Example 7.1 (Estimation of initial model)Coeffi
ients:Estimate Std. Error t value Pr(>|t|)(Inter
ept) 0.031454 0.014811 2.124 0.03660 *Off$DKP.1 0.260881 0.104628 2.493 0.01459 *Off$DKP.2 0.242424 0.105489 2.298 0.02401 *Off$DKP.3 -0.009673 0.084247 -0.115 0.90886Off$DRE -4.115852 0.502050 -8.198 2.26e-12 ***Off$DRE.1 -0.332784 0.661691 -0.503 0.61631Off$DRE.2 0.879325 0.629211 1.398 0.16590Off$KP.1 -0.029084 0.010857 -2.679 0.00887 **Off$RE.1 -0.532613 0.255111 -2.088 0.03981 *---Signif. 
odes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1Residual standard error: 0.01872 on 85 degrees of freedomMultiple R-Squared: 0.6294, Adjusted R-squared: 0.5945F-statisti
: 18.05 on 8 and 85 DF, p-value: 1.813e-15The R output above is for the estimation of the 
oe�
ients in the initial model,the stars show the level of signi�
an
e 
al
ulated from the p − value. Theparameter that seems to be 
ontributing the least to the model is Off$DKP.3or θ3 ln(kpt−3). The next step would be to remove Off$DKP.3, re-estimate theparameters, and removing the "worst" parameter if there are still non-signi�
antparameters, until all the parameters left are signi�
ant.
2



7.4 The Model 97Using the pro
ess of eliminating non-signi�
ant parameters as des
ribed in Ex-ample 7.1, the following �nal model was derived
∆ln(kpt) = θ0 + θ1∆ln(kpt−1) + θ4∆(rentet)

+ θ7 ln(kpt−1) + θ8rentet−1 + εt (7.1)Estimation for the parameters in the �nal version of the HPDIII model,Eq.(7.1), are displayed in Table 7.2. The 
omparison of goodness of �t sta-Estimate Std. Error t value Pr(>|t|)(Inter
ept) θ̂0 0.0384 0.0140 2.75 0.0073
∆ln(kpt−1) θ̂1 −0.0343 0.0106 −3.25 0.0017

∆(rentet) θ̂4 −4.0416 0.4799 −8.42 0.0000
ln(kpt−1) θ̂7 0.3421 0.0753 4.54 0.0000
rentet−1 θ̂8 −0.6326 0.2434 −2.60 0.0109Table 7.2: The estimated 
oe�
ients for the HPDIII model based on ECM for 
hange inhouse pri
e, estimated with ordinary leat squares (OLS). For the in-sample period 1974:q2- 1997:q4 or 95 periods. First 
olumn is the estimate, se
ond is the standard error of theestimate, thirdly is the t-statisti
 and fourthly is the p-value.tisti
s is displayed in Table 7.3. From the goodness of �t it 
an be seen thatthe HPDIII model �ts the data mu
h better than the naive interest rate onlyregression, see se
tion 6.2, and not far from the intri
ate MONA model, see
hapter 5. The three models are 
ompared graphi
ally in Figure 7.4, where itROLS OLSInt HPDIII

R2 0.6920 0.4156 0.6028
R2

adj 0.6672 0.4029 0.5849
σ̂ 0.0169 0.0226 0.0189Table 7.3: Comparison of the the goodness of �t, R2 and R2

adj
, for the MONA house pri
erelation (ROLS) and the redu
ed interest rate only regression (OLSInt) as well as the HPDIIImodel estimated above.
an be seen that HPDIII 
learly manages to adapt better to the data thanthe interest only regression model. The HPDIII also seems to adapt better tothe out of sample data anomaly, whi
h 
an be explained by the autoregressivenature of the HPDIII model.
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Development Of Aggregated Change In House Price
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Figure 7.4: The bottom graph shows the development of the modeled variable ∆ln(kpt).The upper graph shows the aggregated 
hange without updating. The red line is the MONAROLS, green line is the interest only model des
ribed in 6.2, blue is the HPDIII model andbla
k is the observed 
hange. The bla
k verti
al line represent the boundary between thein-sample and out-of-sample periods.



7.5 Residual Analysis 997.5 Residual AnalysisSame as in se
tions 5.5.1 and 6.2 the residuals are investigated to assert themodel dependability. The residual graph 
an be seen in Figure 7.5. From theresidual plot there appears to be no apparent auto 
orrelation from examiningthe left panels. The 
ook plot shows that no outliers are 
ausing trouble andthe QQ-plot, indi
ates normality.
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Figure 7.5: Visual residuals analysis from the e = y − ŷECM.The two test performed in previous 
hapters i.e. DW-test and JB-test, seesubse
tion 5.5.1, are also 
ondu
ted to investigate the behavior of the residuals.The Durbin Watson gives DW = 1.8017 and a p-value = 0.1603 whi
h meansthat the hypothesis of no-auto
orrelation in the residuals 
annot be dismissed.The fa
t that there may be auto
orrelation in the residuals 
an be explainedby the fa
t that important systemati
 e�e
t su
h as in
ome and sto
k of housesare omitted. The Jarque Bera test gives a value JB = 0.1075 with a p-value =
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0.9477 whi
h indi
ates the hypothesis that the residuals are normally distributed
an not be dismissed for any reasonable level of 
on�den
e. The JB along withthe QQ-plot indi
ates that the residuals 
an be 
onsidered normal.The residual for the HPDIII and interest only regression is shown in Figure7.6, upper panels. There appears to be quite a bit of auto
orrelation in thenaive Interest rate only regression model, see lower left panel. The HPDIIIresidual shows signs of small signi�
ant auto
orrelation on lags 2 and 5. Theauto
orrelation 
an be remedied by modeling the residual, that sort of modelingis 
alled moving average (MA). However, sin
e there is very little auto
orrela-tion, in HPDIII and adding a MA term in
reases 
omplexity 
onsiderably thesmall auto
orrelation is disregarded. In the 
ase of the interest only regressionmodel, MA terms would have to be added to given a sensible predi
tion. Formore information about MA see Madsen [9℄.
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orresponding auto
orrelation plots for the interest onlyregression, se
tion 6.2, and HPDIII.7.6 SummaryThe HPDIII model estimated in this 
hapter is a more easily manageablemodel than the alternative i.e. MONA �xed model. The HPDIII model has



7.6 Summary 101a lower estimated error, HPDIII = 0.0189, than the Fixed MONA, Fixed =0.033. The HPDIII model also has some pra
ti
al advantages to the FixedMONA model, su
h as it is not dependant on as many variables. The downfallsof the HPDIII are that is seems to show some signs of auto
orrelation and itneeds 
alibration to the predi
tion origin, same as the Fixed MONA.The next 
hapter 
ompares all the models and applies the best ones to a s
enariotree stru
ture.
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Chapter 8
Validation and Results

8.1 Introdu
tionIn previous 
hapters numerous house pri
e models, most based on the MONAhouse pri
e relation have been devised. So far model 
he
king has mainly beenperformed by residual analysis. Another important aspe
t of model 
he
king is
alled validation, i.e. 
he
king the predi
tion performan
e of the models. Themain purpose of this 
hapter is to remove the ben
hmark models by 
ompar-ing the models through validation and then apply the models whi
h pass thevalidation to a house pri
e s
enario tree.In se
tion 8.2 the models are 
ompared with di�erent predi
tion horizons for asingle path or time line, the predi
tion 
apabilities of the di�erent models aredis
ussed and the pros and 
ons of the models listed. Se
tion 8.3 extends theone path results by implementing the models whi
h 
apture house pri
e behaviorfrom interest rates. Using interest rate s
enario trees, house pri
e s
enario treesare produ
ed. The house pri
e trees are validated using observed interest ratesand house pri
es. Finally in se
tion 8.4 the results of the 
hapter are summarizedfor both 
ases.



104 Validation and Results8.2 One Path ValidationIn this se
tion the four models, inspe
ted in previous 
hapters, i.e. the fullMONA, the Fixed MONA, interest only regression and HPDIII (ECM) are
ompared for one path, or time line, validation. The purpose of the validationis to see how the predi
tion 
hanges with in
reased predi
tion horizon and to
ompare the model together. The models that pass the validation will then beimplemented to a s
enario tree stru
ture in the next se
tion.Validation involves seeing how the model performs, given new explanatory vari-ables, i.e. how well the model predi
ts for new explanatory observation. Thissort of validation was performed in se
tion 5.6 where, be
ause of dis
repan
ybetween the in-sample and out-of-sample data, the model was shown to deliverpoor results.Sin
e the out-of-sample data is not suited for validation, see subse
tion 5.6.1,the in-sample period is used. In-sample validation has some disadvantages andnumeri
al results should be taken with reserve. The main downfalls of using thein-sample period is that it is the same period as used for parameter estimation,whi
h will give a very good �t for validation, in fa
t a too good or misleading�t.Although the in-sample numeri
al results of the validation should not be takenat fa
e value, the validation 
an still give indi
ations to the quality of the models.More pre
isely the validation 
an be used to 
ompare the models to ea
h other,the in-sample validation will also show whi
h models are truly 
apturing thehouse pri
e by 
hanging the initial point of the validations.8.2.1 The ValidationThe validation is performed as follows, all the models have all explanatory infor-mation available. Instead of using the whole period from 1974:q2-1997:q4, thedata is in
remented in small periods and a new predi
tion is performed, this wayit 
an be seen whether the model 
aptures the house pri
e or diverges, whi
hwould be a 
ause of model inadequa
y. The error between the observed housepri
e and the predi
ted value is measured by the mean square error (MSE), seeEq.(5.15). Two ways of measuring the error are used, �rst the MSE is 
al
u-lated as fun
tion of di�erent predi
tion horizon k, i.e. how mu
h error 
an beexpe
ted when predi
ting 1, ..., k periods ahead. Se
ondly the sum of the meansquare error or the total error of the k predi
tion is 
al
ulated.



8.2 One Path Validation 105Two di�erent predi
tion horizons are 
onsidered for the in-sample validation,�rst a k = 5 period ahead predi
tion. The predi
tion origin is also in
rementedby one period through the in-sample period, also known as a rolling time window.The se
ond predi
tion is a long term or k = 20 predi
tion, also in
remented byone period through the in-sample period.The results for the �ve steps ahead in-sample predi
tion, or validation, 
an beseen in Figure 8.1. Noti
e how the rolling window progresses through the in-sample data, predi
ting k = 5 periods ahead, then in
rementing the predi
tionorigin and performing a new predi
tion. From 8.2 it 
an be seen that the greenline or interest only regression seem not be 
apturing the dynami
s of the housepri
e, but only the upward trend of the model. The red and 
yan, full MONAand HPDIII respe
tively, seem to 
apture the drift and the dynami
s relativelywell throughout the in-sample predi
tion. The blue line or the Fixed MONAmodel also seems to 
apture the house pri
e well, for su
h a short horizon. TheFixed MONA however shows that it does not 
ope well with dynami
 
hanges,whi
h 
an be expe
ted sin
e 5 of 8 explanatory variables are �xed. The results
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Figure 8.1: The in-sample fore
ast or validation for a horizon k = 5. The red line is the FullMONA model, the blue line is the Fixed MONA model, the green line is the interest Onlyregression and the 
yan line is the HPDIII or ECM model.from Figure 8.1 are summarized graphi
ally in Figure 8.2. The left panel shows as
atter plot where ea
h dot represent the aggregate squared error for a predi
tioninitiated at time t, the lines show the mean error that 
an be expe
ted for a
k = 5 predi
tion. The green line, interest only regression, gives the highest error
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Figure 8.2: Left panel shows the aggregate sum of squares for ea
h fore
ast, the linesshow the mean of those fore
asts. The right panel show the estimated mean square error forpredi
tion horizon l=1,...,k.followed by HPDIII and Fixed MONA shown as 
yan and blue, respe
tively. Thered line, whi
h represent the Full MONA model, has the lowest error.The right panel of Figure 8.2 shows the mean square error, from the predi
tionsin Figure 8.2, expressed as a fun
tion of predi
tion horizon. The error in
reaseswith predi
tion horizon, for all the methods, as 
an be expe
ted. The interestonly method however seems to be giving the highest error for the k = 5 horizons,the HPDIII and Fixed MONA giving very similar results and the full MONA
apturing the house pri
e the best.Performing the predi
tion again using a horizon of k = 20 as a long term pre-di
tion, i.e. 20 ∗ 0.25 = 5 years ahead. The results for k = 20 are shown inFigure 8.3, 
omparing the k = 20 and k = 5, in Figure 8.1 it is obvious that forlonger predi
tions some of the methods seem to be diverging quite a bit fromthe observed value, whi
h 
an be expe
ted for methods where no updating isused.The results from the k = 20 in-sample predi
tion are summarized in Figure 8.4.The left panel shows that the interest only regression method give the worstaggregate error for the k = 20 predi
tion. The right panel however shows thatthe Fixed MONA model has ex
eeded the interest only regression model after
k = 17.The Interest rate only method obviously only 
aptures the drift, as 
an be seen
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Point Estimate Validation, Aggregate.
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Figure 8.3: The in-sample fore
ast or validation for a horizon k = 20. The red line is theFull MONA model, the blue line is the Fixed MONA model, the green line is the interest Onlyregression and the 
yan line is the HPDIII or ECM model.
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Figure 8.4: Left panel shows the aggregate sum of squares for ea
h fore
ast, the linesshow the mean of those fore
asts. The right panel show the estimated mean square error forpredi
tion horizon l=1,...,k.by the 
onstant upward trend. The reason for the poor performan
e of theinterest only regression 
an be explained by the fa
t that the levels, both house



108 Validation and Resultspri
e and interest rates, are not in
luded leaving only the 
onstant to 
apture thetrend, the 
onstant seems however not versatile enough to 
apture the dynami
sof the trend and over �ts the house pri
e.The full MONA model gives the best performan
e and the smallest error. How-ever, as has been mentioned before not all data is available for the MONAmodel. The 
losest mat
h is the Fixed MONA model whi
h seems to performwell for short predi
tion horizons k = 5 but diverges away with in
reased pre-di
tion horizon. The �xing of the explanatory variables, is equivalent of addinga �xed amount to the 
onstant, i.e. �xing the 
ourse of the pro
ess. The al-ternating explanatory variables, interest rates, then os
illate around the 
ourseset by the �xed variables or new 
onstant. This explains why for long periods,the Fixed MONA house pri
e model may diverge from the observed house pri
e.The model does not have the 
apability to respond to large dynami
 
hanges.However, by estimating the predi
tion interval as was done in se
tion 6.5.2, theFixed MONA model 
an be applied.The HPDIII or error-
orre
tion method, also seems to 
apture both the trendand the short term e�e
ts relatively well. It does not only represent the trend,as the Interest rate only regression method does for example.8.2.2 Nykredit RelationThe Nykredit relation from 
hapter 3 was also 
ompared to the house pri
edata from the MONA model. Two extreme s
enarios were 
onsidered for theNykredit relation, �rst a one period fore
ast with updating, i.e. k = 1, andse
ondly a predi
tion for the whole period without updating or k = 120. Theresults for these two validations 
an be seen in Figure 8.5.From Figure 8.5 it 
an be seen that for the k = 1 the Nykredit relation per-forms well with a very high level R-square of around R2 ≈ 0.99. However, inthis model the unit-root non-stationarity has been overlooked, whi
h deems themodel useless for predi
tions without updating. The long term predi
tion showsthat when the model does not get observed values for updating it performs verypoorly, see red line in Figure 8.5.The 
on
lusion from the validation of the Nykredit relation is that non-stationarityof house pri
es is not 
onsidered, resulting in a useless predi
tion model ex
eptfor very short horizons, e.g. k = 1, 2. This 
on
lusion for the Nykredit model isthe same as dis
ussed in se
tion 3.7.Despite the downfalls of the Nykredit model it was useful for developing and
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Nykredit relation, Aggregate.
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Figure 8.5: Using the MONA house pri
e data to validate the Nykredit relation. Blue lineshows the one step predi
tion with updating, the red line shows the Nykredit relation usingprevious predi
tion as bases for new predi
tions.understanding the more 
omplex relations, it was espe
ially useful as a startingpoint for the programming 
ondu
ted, whi
h later was extended to the moreelaborate models quite easily.
8.2.3 Cross ValidationAn alternative to the in-sample validation 
ould be to use 
ross validation. Crossvalidation in this 
ase 
ould be a
hieved by dividing the in-sample period intotwo smaller periods, then estimate the parameters on one part of the data andvalidate on the other. Cross validation for this data set however, like the in-sample validation, has some drawba
ks. The main of whi
h is that the number ofobservations are rather low for estimation and validation, if the 
ross validationmethod would be applied.The idea behind 
ross validation is to validate the model stru
ture irrelevant ofpla
ement in data, i.e. validating the terms in the model and not fo
using somu
h on spe
i�
 estimation of the parameters. Obviously for this to work thedata has to be quite homogenous, whi
h is not the 
ase for the house pri
es.
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enario Tree ValidationIn this se
tion house pri
e s
enario trees are developed from the one path ver-sions of the Fixed MONA and HPDIII models. Sin
e it was shown that theNykredit and interest only relations do not 
apture the house pri
e for one path,ex
ept for very short predi
tions they are not applied to the tree stru
ture.The se
tion is stru
tured as follows. First a short des
ription of how to extendthe two models to the s
enario tree stru
ture. Se
ondly a short dis
ussion of theinput interest rate s
enario trees and a dis
repan
y in time steps. Thirdly theinterest rate trees are applied to give house pri
e trees, and the results inspe
tedand dis
ussed.8.3.1 House Pri
e Formulas For S
enario TreesGiven a s
enario tree of interest rates, and applying ea
h path from that tree assingle path in the house pri
e models, a house pri
e s
enario tree 
an be derived.As was dis
ussed in se
tion 6.3.2 the response of interest is the house pri
e level,not the 
hange, the models results must be a

umulated.
ln(k̃pt,n) = A +

t∑

i=1

̂∆ln(kpt,n) (8.1)where ln(k̃pt,n) is the aggregate estimated house pri
e at time t and node n. Ais the initial house pri
e index at predi
tion start, set to some intuitive value e.g.
A = ln(100). The term ̂∆ln(kpt,n) represents the estimated 
hange in housepri
e, whi
h is represented by the two modelsFixed MONA model Fixed 5 of 8 at time t = T

̂∆ln(kpt,n) = β̂∗
0 + β̂∗

1∆ln(pcpT ) + β̂∗
2∆(rentet,n + ssatsT )

+ β̂∗
3∆(rentet−1,a(n) + ssatsT−1)

+ β̂∗
4(rentet−1,a(n) + ssatsT−1 + 0.01) + β̂∗

5dpcpeT−1

+ β̂∗
6dkpeT−1 + β̂∗

7 ln(kpT−1/pcpT−1)

+ β̂∗
8(ln((ydpT−1 − ipvT−1)/pcpT−1) − ln(fwhT−1))
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∆ln(kpt,n) = θ̂0 + θ̂1∆ln(kpt−1,a(n)) + θ̂4(∆rentet,n)

+ θ̂7 ln(kpt−1,a(n)) + θ̂8rentet−1,a(n)Noti
e that for the models above there are only two variables i.e. house pri
e
(kp) and interest rate (rente), whi
h are node dependant, all other variables are�xed for all nodes Nt to their value at time t = T .The assumption is made that all data is available before t = 0, i.e. before thepredi
tion start, and 
an be used as 
orre
t input for the �rst node. There afterthe estimates are used, so there is no updating with observed values.8.3.2 Interest Rate S
enario TreesThe input variables to the house pri
e trees are interest rate trees generatedwith a variation of the Vasi
ek interest rate model, generation of interest rates
enario trees is out side the s
ope of this thesis, for more detail see Jensen andPoulsen [5℄.The input data used for validation are s
enario trees of interest rates, where thebonds have a maturity of 0-10, 15, 20, 25 and 30 years. The interest s
enariotrees are in yearly in
rements, while the house pri
e models use quarter yearlysteps, so to use the estimated models an interpolation is applied to the pathsof the interest rates, to get quarterly rates usable in the models. An explana-tory diagram of the interpolation is shown in Figure 8.6. To the left of t = 0the observed MONA data is available for model initialization, after t = 0 theinterest rates are provided yearly and must be estimated quarter yearly withinterpolation, giving the small nodes on ea
h path. The horizon on the inputinterest rate trees is 5 years whi
h is equivalent to 5 · 4 = 20 in the quarterlymodel, i.e. the interest rate s
enario trees are 
orrespond to a k = 20 predi
tiontree for the house pri
e tree.Having many bonds with di�erent rates is di�erent to the MONA model whereonly one rate is used. The stru
ture of the interest term rente, used in theestimation of the MONA model, 
ompared to the rates used for input here isnot exa
tly known. The rente term will be plotted together with the bonds
enario trees to see a 
omparison between the rate modeled as the "true" ratein house pri
es, and the input generated rates.
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Figure 8.6: Example of a linear interpolation from a yearly data to get quarter yearly data,for a binomial.8.3.3 ResultsThe validation performed here is a way of seeing if the house pri
e s
enariotrees 
apture the house pri
e, given the house pri
e models and a s
enario treeof estimated interest rates.Three models were initially applied to the s
enario tree stru
ture for validation,i.e. Fixed MONA, HPDIII and interest Only regression. However, both theone path and preliminary s
enario tree show the interest only model to performpoorly. The results for the Int only regression are omitted here, but shown inAppendix B.1.The next three pages show the s
enario trees for the 1995 − 2005 interest ratesand the 
orresponding estimated house pri
es.
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Figure 8.7: Interest rate s
enario trees estimated from 1995 − 2000, z
byXX where XX
orresponds to the time to maturity on the bonds, 0-10,15,20,25 and 30 years. The blue lineis the development of the MONA interest term rente.
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Figure 8.8: Estimate house pri
e using the FIXED MONA method, ea
h panel 
orrespondsto the interest s
enario tree in with same header from Figure 8.7. The blue line des
ribes theobserved house pri
e. The broken bla
k lines are the predi
tion error bars for the extremepaths, with 95% 
on�den
e interval.
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Figure 8.9: Estimate house pri
e using the HPDIII (ECM) method, ea
h panel 
orrespondsto the interest s
enario tree in with same header from Figure 8.7. The blue line des
ribes theobserved house pri
e. The broken bla
k lines are the predi
tion error bars for the extremepaths, with 95% 
on�den
e interval.



116 Validation and ResultsFigure 8.7 shows the estimated s
enario trees with the observed MONA interestrate for 
omparison. From the �gure it 
an be seen that with in
reasing bondmaturity the mean level of interest rates in
reases while the varian
e or volatilityde
reases. For zcby30, i.e. the 30 year bond, the rate has a relatively lowvolatility and a high mean of 
a. 8% whi
h is 
onsiderably higher than theMONA rate. The MONA rate seems to be de
reasing in this period 1995−2000and the rate trees do not seem to represent the rate parti
ularly, the MONArate might be a downward path in the zcby0 − 5 bond s
enario trees, i.e. theshort term bonds. For the other s
enario trees the MONA rate seems representa substantiality lower rate than shown by the trees.Figure 8.8 shows the response from the Fixed MONA model given the 
orre-sponding s
enario trees in Figure 8.7 as input, the broken bla
k lines show theerror bars as 
al
ulated in se
tion 6.5, with k = 1, ..., 20. The Fixed MONAmodel 
aptures the house pri
e well for the short term bonds, where the MONArate was also 
aptured. However, the volatility of the house pri
e at horizon isquite high, the most extreme being a rise from 100 to 250 in �ve years, witha range from 
a. 300-80, with 95% predi
tion horizon. This high volatility
an however be expe
ted from the Fixed MONA model for long predi
tions, aswas dis
ussed in the one path validation in se
tion 8.2. What is more, if thepredi
ation origin were to be shifted slightly it might have a 
onsiderable e�e
tsin
e the variables would be �xed to new levels. Obviously the long term bondtrees are not expe
ted to yield good house pri
e results, sin
e the 
orrespondinginterest rate trees do not 
apture the MONA rate whi
h the models uses todes
ribe the interest rate to house pri
e relation.Figure 8.9 gives the results from the HPDIII model given the interest rates
enario trees in Figure 8.7. The HPDIII does not seem to be 
apturing thehouse pri
e as well as the Fixed MONA. The house pri
e at horizon howeverhas a mu
h smaller volatility. In the 
ases where the HPDIII model 
apturesthe house pri
e is on the extreme paths, more pre
isely the maximum housepri
e path. The house pri
e response is not so strange sin
e the MONA rateis non-in
reasing throughout, and usually 
lose to the lowest interest rate path,whi
h in turn should give the max house pri
e path in the house pri
e model.The period 1995 − 2000, whi
h is inspe
ted in Figure 8.7, is not well suitedfor validation be
ause of the 
onstantly in
reasing house pri
e. Re
all fromsubse
tion 5.6.1 that during this period the data shows abnormal behavior andthe response breaks away from the information of the explanatory variables.Even though the data is not ideal there are two main results that 
an be dedu
edfrom this validation1. The house pri
e model respond dire
tly to the volatility of the interest



8.3 S
enario Tree Validation 117rate trees, i.e. if there is a large varian
e of rates at horizon there is alsoa large varian
e of house pri
es at horizon.2. A se
ond interesting observation is how the house pri
e trees respond tothe level of interest rate, if the rate is on average high su
h as for 30 yearbond (zcby30) the house pri
es will yield a downward house pri
e, whi
his in a

ordan
e with the e
onomi
al theory of high interest will show ade
line in house pri
es. This 
ru
ial relationship between the interest leveland and the trend of house pri
es is 
aptured by both the Fixed MONAmodel as well as the HPDIII model, the interest only regression howeverdoes not 
apture this behavior, see Figure B.1.Another experiment is 
ondu
ted by approximating the interest rate trees toanother time. That is, instead of being from 1995-2000, the s
enario trees arenoted as 1989-1994, with 
orresponding MONA interest rate and observed housepri
e.As 
an be seen in Figure 8.10 during the 1989-1994 period there seem to bemore variation in the MONA rate, than the downward 1995-2000 rate, what ismore the �xing of the MONA model does not give an extreme addition fromthe �xed variables resulting in the �xed model 
apturing the house pri
e verywell, see Figure 8.11. The HPDIII form is the same as before sin
e it is onlydependant on the input interest rate tree. However, where the interest rate trees
apture the MONA rate, the house pri
e trees seems to 
apture the house pri
e.8.3.4 Predi
tion ErrorsThe errors or estimated predi
tion intervals were estimated a

ording to Algo-rithm 2, in subse
tion 6.5.3, for k = 20 and the results for all three methods arelisted in Appendix B.2, Table B.1.
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Figure 8.10: Interest rate s
enario trees estimated from 1989 − 1994, z
byXX where XX
orresponds to the time to maturity on the bonds, 0-10,15,20,25 and 30 years. The blue lineis the development of the MONA interest term rente.
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Figure 8.11: Estimate house pri
e using the FIXED MONAmethod, ea
h panel 
orrespondsto the interest s
enario tree in with same header from Figure 8.10. The blue line des
ribesthe observed house pri
e. The broken bla
k lines are the predi
tion error bars for the extremepaths, with 95% 
on�den
e interval.
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Figure 8.12: Estimate house pri
e using the HPDIII (ECM) method, ea
h panel 
orrespondsto the interest s
enario tree in with same header from Figure 8.10. The blue line des
ribesthe observed house pri
e. The broken bla
k lines are the predi
tion error bars for the extremepaths, with 95% 
on�den
e interval.



8.4 Summary 1218.4 SummaryThis 
hapter has listed the validation of the models �rst as single path models,or normal time series models, and later as s
enario trees. Response relationshipsbetween the interest rates and house pri
es are developed for the one path andthen applied to a s
enario tree of interest rate paths. This se
tion summariesthe main results for the two validations.Single path The validation for the single path reveals the Nykredit and Inter-est Rate only regression models as not suitable for predi
ting house pri
es. Thenon-stationary nature of the Nykredit relation results in unreliable results. TheInterest Only regression is missing terms and only 
aptures the upward trend ofhouse pri
es. The Fixed MONA model appears to approximate the ideal FullMONA model for short to medium term predi
tions, see Figure 8.4. Howeverfor longer predi
tions k > 15 the pre
ision de
reases rapidly sin
e the model isnot well equipped to respond to dynami
 
hange over a long period with manyexplanatory variables �xed. The HPDIII model seems to be performing wella

ording to the single path validation. Only the HPDIII and Fixed MONAmodel are applied to the s
enario tree stru
ture.S
enario tree In short if the input interest rate s
enario trees 
apture theMONA rate, whi
h 
an be modeled from data, the house pri
e models 
apturethe house pri
e. However, this is dependant on the data not being signi�
antlydi�erent from the in-sample period, where the models parameters are estimated.A sudden 
hange in house pri
es not explained by the model fa
tors, su
h as abubble, will likely 
ause a dis
repan
y between the rates and house pri
es.Both the Fixed MONA and HPDIII models 
aptured the house pri
e well inthe absen
e of bubble behavior, �xing the MONA and predi
ting for k = 20 
angive very volatile house pri
es at horizon if the �xed explanatory variables wereindi
ating a strong 
hange at the time of �xing, predi
tion horizon.
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Chapter 9 Con
lusion"All models are wrong, some are usefull."1In this thesis the problem of modeling house pri
es to a degree was 
onsidered.House pri
e is a non-stationary pro
ess, dependant on many e
onomi
 variables.The three main fa
tors a�e
ting house pri
e are interest rates, in
ome and theamount of houses available.Throughout this thesis the pro
ess of house pri
e modeling is des
ribed frombasi
 e
onomi
 theory to applied house pri
e s
enario model, with estimatedpredi
tion interval.Initially a basi
 theoreti
al e
onomi
 model was devised. The 
omplexity of themodel was in
reased by repli
ating and analyzing the house pri
e relation froma 
omplex ma
ro model (MONA). The theory and intuition from the MONAmodel was then applied to derive a MONA-like model whi
h is more suited tothe data available in the mortgagor problem, namely only interest rates. Twosingle path models are devised from the intuition a
quired from the MONAmodel. The Fixed MONA model and the HPDIII model.1. The Fixed MONA model, used all the information in the Full MONAhouse pri
e relation, while �xing many of the explanatory variables usedand using only the interest rate variables as input. This �xing in
reasedthe error of the MONA predi
tion, the �xing also maked it hard to estimatethe error with analyti
al methods. Bootstrapping was used to estimatethe predi
tion error when using the Fixed model.1George Box, one of the most in�uential statisti
ians of the 20th 
entury.



124 Con
lusion2. The HPDIII model was based on the same time series model as wasused in the MONA house pri
e relation, i.e. the error 
orre
tion model,mixing together both levels and di�eren
es to 
apture both the short termdynami
s and the long term trend. The HPDIII model was modeledfrom data and did not use the MONA relation dire
tly, unlike the �xedmodel.Although these were the only models that were �nally applied to a s
enario treestru
ture, other ben
hmark models were also 
reated. The ben
hmark models,The Nykredit relation and the Interest only regression, both served a 
ertainpurpose but in the end did not 
apture the house pri
e well enough su
h thatthey 
ould be used for predi
tion.Validation was espe
ially hard sin
e the data was both s
ar
e as well as very non-
onsistent. This lead to an in-sample validation whi
h showed that the FixedMONA and HPDIII model were the ones that 
aptured the house pri
e best.However both methods have down sides. The Fixed MONA is non-respondentto dynami
s 
hanges, for long predi
tion horizons, and is therefore not very af-fe
tive for long predi
tion horizons k > 10. This feature was in
orporated intothe evaluation of the predi
tion intervals for the Fixed MONA. The HPDIIIshowed small signs of auto
orrelation whi
h did not seem to redu
e the predi
-tion performan
e signi�
antly, e.g. as in the 
ase of the interest only regression.Both models showed the ability of 
apturing the two main elements in housepri
e movements. Firstly both models 
aptured the trend, whi
h is relatedto the interest level at ea
h time. Se
ondly and more importantly both modelsshow signs of 
apturing the dynami
s, with estimated predi
tion error. Howevermodeling the short term dynami
s with great pre
ision is impossible.Initially all models were treated as one path models or univariate time series.However, to be able to use the results in the Mortgagor problem a house pri
es
enario tree must be devised from the single path model.The house pri
e trees were tested against interest rates with di�erent maturities.There it 
ould be seen that the two house pri
e models 
apture the house pri
edevelopment, i.e. if the interest rate tree 
aptures the interest rate. Morepre
isely the output is only as good as the input, where the quality of theinterest rate trees is fundamental in the quality of the house pri
e trees.The house pri
e and interest elements in the MONA model are both very ab-stra
t. More spe
i�ed models, e.g. for spe
i�ed se
tor of the real estate marketand 
ertain bonds, 
an however be a
hieved quite easily using the same ideasapplied in this thesis. The models developed in this thesis are 
onsidered as
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orre
t models", i.e. they in
lude the right terms, giving new parameter esti-mations for di�erent data.The thesis ful�lls the aim that was set out with in the beginning, i.e. to developa house pri
e s
enario tree(s), with known predi
tion intervals, that 
an beapplied to the Danish Mortgagor problem [13℄.9.1 Further WorkThere are numerous aspe
ts that 
an be investigated further, 
ontinuing fromthe results given in this thesis. The most interesting of these is to apply thehouse pri
e trees to the Mortgagor problem and see what a�e
t the possibilityof adding house pri
e will have on the results.Another interesting issue is to investigate the 
omposition of the interest term(rente) used by the National Bank in the estimation of the MONA model.There is obviously no, one, true interest rate and the MONA rate is somesort of weighted average of the rates of the bonds available. Given histori
aldata of rates, an approximation to the rente term 
an be made from availablerates. Giving the weights ea
h bond has in the 
omposition of the rente term.The weights 
ould then be used to 
ombine estimted house pri
e trees to givea interest rate rente tree, resulting in a more 
orre
t s
enario tree for housepri
es.
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Appendix A
Programming

A.1 Introdu
tionThe main topi
 of this 
hapter is the implementation of the s
enario tree and ades
ription of the reusable programs written for modeling and analysis.In se
tion A.2 the s
enario tree from se
tion 3.4 is revisited, des
ribing theproblem less formally as well as the di�erent methods of implementation forsu
h a tree. Se
tions A.3 and A.5 des
ribe the two di�erent ways the s
enariotree was implemented. Firstly the indexing method, implemented initially inMatlab, later moved to R, and des
ribed in se
tion A.3. A short introdu
tion toobje
t oriented programming (OOP) is given in A.4. The se
ond implementationof the s
enario tree uses OOP for the more robust method, 
alled the obje
toriented approa
h, implemented in C# and des
ribed in se
tion A.5.The analysis, parameter estimation and simulations performed in this thesis wasperformed in the statisti
al pa
kage R. Se
tion A.3 dis
usses the programs writ-ten for modeling and analysis. Many of the fun
tions written in R are highlyreusable and therefore deserve some dis
ussion. Se
tion A.3 also provides ex-ample s
ripts, illustrating how to use the numerous fun
tions written espe
iallyfor this thesis.



128 ProgrammingA.2 S
enario Tree RevisitedFrom the start of the proje
t the obje
tive was to implement the tree stru
ture inan obje
t oriented language, i.e. C# , see A.4 for further details. However, sin
ehaving more experien
e with Matlab a more brute for
e method was attemptedinitially. The initial method is based on applying a tra
table indexing s
heme tothe s
enario tree. The purpose of the �rst implementation 
alled the indexingmethod was initially intended to give insight into the tree stru
ture and meantas a draft for the 
reation of the C# program.There are two main elements to a s
enario tree, i.e the shape (q) and numberof periods (T ). For example a binomial tree or trinomial tree would be q = 2and q = 3, respe
tively. Re
all from se
tion 3.4 that the set of nodes in thetree at any time 0 ≤ t ≤ T 
an be des
ribed by the set Nt. Corresponding tothe formal de�nition of the tree the shape 
an be found from q = C(1). Thetwo fundamental equations for implementing the indexing method 
an then bede�ned as the number of nodes at ea
h time
|Nt| = qt (A.1)and the total number of nodes in the tree

N =
T∑

i=0

qi (A.2)whi
h e.g. for a q = 2, binomial tree, and T = 8 gives
{qt} = {1, 2, 4, 8, 16, 32, 64, 128, 256} N = 511These two equations, i.e. Eq.(A.1) and Eq.(A.2), allow for the formulation ofthe indexing method des
ribed in the next se
tion.Although the indexing method was only intended to give an intuition towardsthe s
enario tree, it be
ame very useful for validating the C# results, analyzingoutput from plotting the trees. Eventually both methods worked for generatings
enario trees.A.3 The Index MethodMatlab and S, the language used in R, are non obje
t oriented programminglanguages whi
h, when used 
orre
tly, 
an be very e�e
tive. The key to e�e
-tive fun
tion programming is to write small, robust and spe
ialized fun
tions.
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tions 
an then be applied inside more 
omplex fun
tions to a

omplishmore involved tasks. This programming pro
edure also makes the 
ode quitetransparent and intuitive.The �nal versions of the indexing method were very valuable in validating theresults from the C# program, sin
e by then they had 
aptured most of the C#programs fun
tionality.The index method was initially implemented in Matlab, however sin
e all sta-tisti
al analysis, predi
ting and simulation was performed in R the indexingprograms were moved to R for 
onsisten
y, sin
e the syntax of R and Matlab isvery similar the transformation was easy.In this se
tion a short dis
ussion will be given on the fun
tionality of the mostimportant indexing fun
tions. The 
ode for the following fun
tions is availablein C.1 in the Appendix.
seq = GeoSequence(q, T) : The �rst fun
tion that was 
reated, 
al
ulates andreturns a sequen
e {qi} where i=0,...,T. This sequen
e shows at time ihow many nodes are at that time. If q=3 and T=5 for example, it wouldgive:

35 = [1, 3, 9, 27, 81, 243]So this is Eq.(A.1) and is used in all of the following indexing fun
tions.
Sum = GeoSum(n, T) : This is Eq.(A.2) and sums up the results of the sequen
egiven by GeoSequen
e, i.e. gives the total number of nodes in a tree. Forexample if n=3 and T=5 the fun
tion returns

5∑

i=0

3i = 1 + 3 + 9 + 27 + 81 + 243 = 364

t = WhatPeriod(q, T, i) : This fun
tion uses GeoSequen
e and GeoSum to �ndin whi
h period, i.e. 0 ≤ t ≤ T, node i is positioned. For example givenn=3, T=5 and i=6, the program delivers an output of t=2.
p = Parent(n, T, i) : This fun
tion is probably the most important program ofthe indexing fun
tions. The fun
tion �nds the parent index number p ofa 
ertain node i given the tree type q and length T. The algorithm usesGeoSequen
e, GeoSum and WhatPeriod. An example of output from thisfun
tion isParent(n=3,T=10,i=3400)=1133Parent(n=3,T=10,i=3401)=1134



130 ProgrammingParent(n=3,T=10,i=3402)=1134Parent(n=3,T=10,i=3403)=1134Parent(n=3,T=10,i=3404)=1135
num = NumBranches(q, T) : This fun
tion takes the usual tree type q and treelength T as input. It returns a stru
tured array in Matlab and list in Rwith two variables. The �rst one des
ribes the number of leafs and these
ond the index number of the top leaf. An example of output for thefun
tion, 
all NumBran
hes(n=3,T=10), isNBran
h: 59049FBran
h: 29524i.e. there are 59049 leafs on this tree and i=29524 is the node index ofthe top leaf.
mat = BranchParents(q, T, i) : This fun
tion uses Parent and NumBran
hesand returns index numbers for whole bran
hes. An example of outputgiven the following fun
tion 
all Bran
hParents(n=3,T=8,i=1), i.e. thei = 1 is the �rst leaf at T, givesmat =Columns 1 through 51 2 5 14 41Columns 6 through 9122 365 1094 3281i.e. the output ve
tor holds all the node indi
es of index=1, or the topleafs bran
h.These are the main sub-fun
tions used in making a s
enario tree with the in-dexing method. Initially intended to be a exer
ise, for the more evolved C#programs, the indexing method evolved into a full �edged s
enario tree genera-tion method able of validating the results from the C# program. In the end, allhouse pri
e models had working implementations both in R as well as C#. InR the house pri
e dynami
s are 
alled HPDI, Nykredit model, HPDINT, Interestonly and HPDFIX, Fixed MONA. An example of using the TreeFun
tions.Rbundle of fun
tions is given below. The TreeFun
tions.R 
ode 
an be viewedin Appendix C.1.



A.3 The Index Method 131Example of using the Tree Fun
tion library#################################################################################### ## Example of using the fun
tions in the TreeFun
tions.R file in the Appendix. ## ##################################################################################### Pla
e the file TreeFun
tions.R in dire
tory or a

sses via path and sour
e:sour
e('TreeFun
tions.R')# Now all the fun
tions in the TreeFun
tions.R file are available for use.# Initiatingq = 3 # Tree of type q = 3, i.e. trinomial.T = 5 # Time T = 5, i.e. 0 <= t <= 5.Indexes = Indexer(q,T) # Matrix holding the indexes of a s
enario tree.# Generate Latti
e Tree of test ratesStart.Rate = 0.04; # Begining Rate.Range = 0.014; # Range of 
hange at ea
h time.LattTreeV = GenerateRates(q, T, Start.Rate, Range) # Latti
e Tree Ve
tor Format.LattTreeM = TreeForm(Indexes,LattTreeV) # Latti
e Tree Matrix Format.# House Pri
e Tree Generation. Using the latti
e tree above.NykreditTree = HPDI(q,T,LattTreeV) # HPDI, the Nykredit House Pri
es model.MONAFixed = HPDFIX(q,T,LattTreeV) # HPDFIX, MONA fixed.# Fixed model uses 1997:75 values as default, other values 
an be used for fixing# by adding HPDFIX(...., FIX = new.ve
tor).InterestOnlyReg = HPDINT(q,T,LattTreeV) # HPDINT, The Interest Only regression.# Simple Plot of house pri
e.INT.H = InterestOnlyReg$H # The house pri
e from InterestOnlyReg list obje
t.INT.H.MAT = TreeForm(Indexes,INT.H) # Get ve
tor to matrix format.PlotTree(INT.H.MAT) # Plot INT.H.MAT.Data.INT.H.MAT = MMM(INT.H.MAT) # Matrix showing min,max and median at ea
h time# 0...T in the tree.
The example above handles the s
enario tree in two formats, i.e. the ve
torform (1 × N) and the matrix form (qT × (T + 1)). All 
al
ulations use theve
tor form whi
h allows for mu
h bigger 
al
ulations than the heavy matrixform. The matrix form is derived from the ve
tor format through the fun
tionTreeFormat. The matrix form is mainly used for plotting the trees, it is notre
ommended to manipulate big trees in matrix form or plot very big trees.
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t Oriented ProgrammingAnother more sophisti
ated approa
h of programming the house pri
e s
enariotrees is by use of so-
alled Obje
t oriented programming (OOP). Obje
tedorientation is an approa
h to build programs that mimi
 how a
tual obje
tsare assembled in the real world. OOP pro
edure is often used along with TheUni�ed Modeling Language (UML) whi
h is a 
olle
tion of su

essfullyproven pra
tises when it 
omes to programming large and 
ompli
ated systems.The idea behind using OOP and UML is to 
reate more reusable, reliable andunderstandable programs. More pre
isely obje
t oriented programming portionsbig problems into more easily understandable parts. OOP�s standardized wayof redu
ing problems through the use of UML makes it also possible for di�erentpeople to maintain or extend already existing 
ode with relative ease.Here only a brief dis
ussion will be given to a few OOP terms relative to theprogramming done in the thesis. For further dis
ussion see Bennett, M
Robband Farmer [14℄1. These relative 
on
epts here areClass, Obje
t, Inheritan
eand Abstra
tion.Class : is the abstra
t de�nition of a "thing", in
luding the "things" 
hara
-teristi
s and what the "thing" 
an do. An example of this will be given inthe obje
t de�nition.Obje
t : is a parti
ular instan
e of a 
lass. An example of a 
lass obje
t relationis e.g. if a dog is a 
lass then Lassie is an obje
t of that 
lass, i.e. theLassie is a dog.Inheritan
e : Often it is 
onvenient to spe
ify 
lasses in more detail, whi
h
an be done by 
reating sub-
lasses. The sub 
lasses then inherit the
hara
teristi
s and attributes of the super 
lass. An example of inheritan
eis that Lassie is a Collie. Collie 
an therefore be a sub 
lass of dog. Sin
eall Collies have the attributes of dogs, Lassie is therefore a obje
t of the
lass Collie whi
h inherits from the 
lass Dog.Abstra
tion : When programming 
omplex relationship Abstra
tion is agood quality to have. Abstra
tion 
an be a
hieved by working at the ap-propriate level of inheritan
e, e.g. Lassie is a Animal - Mammal - Dog -Collie, ea
h 
lass be
omes more spe
i�
 when moving down in the hierar-
hy, i.e. adding more spe
i�
 attributes and fun
tions.The next se
tion uses the 
on
epts expressed above when explaining the obje
toriented version of the house pri
e s
enario tree.1See e.g. 
hapter 4 
alled What Is Obje
t-Orientation



A.5 C# programming 133A.5 C# programmingAs was mentioned in the previous se
tions, initial formulations for the s
enariotrees were drafted using Matlab. From the start the goal was however to builda program in an obje
tive oriented language. Using the Matlab ideas of howa s
enario tree stru
ture works, along with the OOP framework a house pri
etree was programmed in the OOP language C#. There were two versions of thehouse pri
e tree in C#, the 
lass diagram for the �rst one 
an be seen in FigureA.1. The �rst version did not use 
on
epts su
h as inheritan
e and abstra
tionthere were only two 
lasses, i.e. Tree and Node. The �rst version begins byinitializing a Tree obje
t, e.g. HouseTree, next it 
alls a fun
tion to import thedata from a XML �le. For ea
h new input supplied by the XML �le an obje
tis instantiated from the Node 
lass, until all the data has been read from theXML �le. Fun
tions were then used on the HouseTree obje
t, now holding all theXML data, to 
al
ulate 
orresponding house pri
es. Comparing to the Matlabversion, whi
h uses an elaborate indexing s
heme to 
al
ulate the house pri
esthe C# is a mu
h more elegant solution with a mu
h lower level of involvementrequired before it 
an be used by someone other than the author. The �rst
TreeNode

Figure A.1: An abstra
t 
lass diagram of the initial version of the s
enario tree program,performed in C#.implementation had room for improvement, sin
e the level of abstra
tion was tohigh and there was a possibility of delegating the responsibility of the two 
lassesfurther. Version one was also quite involved, though not as mu
h as the Matlabversion, i.e. if some one other than the author would want to edit or extend theprogram, that same person would have to a
quire a full understanding of thewhole system �rst.The se
ond model was developed mainly by re-thinking the responsibilities ofea
h 
lass baring the OOP 
on
epts in mind. As with the simple example givenwith the dog 
lass above, a re�ned 
lass for node and tree are derived wherethey only 
ontain the most abstra
t terms 
ommon to s
enario trees and nodes.



134 ProgrammingAn example of this is that all nodes in a tree have a number while not all nodesshould have an interest rate attribute. In the se
ond version a new node andtree type are formulated as IR Tree and IR Node or interest rate tree, sin
einterest rates are not 
ommon to node and tree but needed for 
al
ulating housepri
es. IR Tree and IR Node inherit the basi
 attributes of a Tree and Noderespe
tively, same as for the Collie 
lass does from the Dog 
lass in the exampleabove. A house pri
e tree and node are formulated in the same way inheritingfrom the interest tree and node. The se
ond version 
lass diagram and the�nal version is displayed in Figure A.2, the arrows in the diagram represent aninheritan
e relationship. The bene�ts of the se
ond model should be obvious,
TreeNode

IR TreeIR Node

HP TreeHP Node

Figure A.2: An abstra
t 
lass diagram of the se
ond, and �nal, version of the s
enario treeprogram, performed in C#.e.g. if an individual would want to add a new tree say a pension tree, the pensionnode and tree 
ould inherit from anywhere in the 
lass hierar
hy allowing thedeveloper to a
hieve a 
ertain level of abstra
tion. The developer would nothave to know everything about the programm, only how the super 
lass works.The full 
lass diagram is given in Appendix D, for C# 
ode see also AppendixD.



A.6 R Fun
tions and S
ripts 135A.6 R Fun
tions and S
riptsR is a language and environment for statisti
al 
omputing and graphi
s. It ispart of the GNU Proje
t and therefore free2. R strengths lie mainly in thestatisti
al and time series analysis, where it supersedes Matlab. R is also a fully�edged programming language and o�ers a �exible syntax for programmingspe
ialized fun
tions. The main power of R 
omes from the open sour
e naturewhi
h leads to very powerful dis
ussion forums for problem solving. R is today
onsidered the de-fa
to language when dealing with statisti
s.The R pa
kage was used for repli
ating the MONA house pri
e relation results,as well as for all tests, predi
tions and error estimation. Following is a s
riptdemonstrating the use of the numerous fun
tions written for R. The 
ode forthe fun
tions used 
an be seen in the Appendix se
tion C.2.

2For more information see the R home page at http://wwww.r-proje
t.org/



136 ProgrammingExample of using Modeling Fun
tions#################################################################################### ## Example of using the fun
tions in the Fun
tions.R file in the Appendix. ## ####################################################################################sour
e('Fun
tions1.R')zz = read.
sv("New.
sv",sep = ";") # Importing data from file New.
sv.atta
h(zz)zz = ts(zz,frequen
y=4,start=
(1971,1)) # Make time series obje
t.zz = zz[,-1℄# Setting up data.data =list('KP'=ts(KP,frequen
y=4,start=
(1971,1)),'RENTE'=ts(RENTE,frequen
y=4,start=
(1971,1)),'PCP'=ts(PCP,frequen
y=4,start=
(1971,1)),'IPV'=ts(IPV,frequen
y=4,start=
(1971,1)),'FWH'=ts(FWH,frequen
y=4,start=
(1971,1)),'SSATS'=ts(SSATS,frequen
y=4,start=
(1971,1)),'DPCPE'=ts(DPCPE,frequen
y=4,start=
(1971,1)),'DKPE' =ts(DKPE,frequen
y=4,start=
(1971,1)),'YDP' =ts(YDP,frequen
y=4,start=
(1971,1)),'RENTE.SSATS' = ts(RENTE+SSATS+0.01,frequen
y=4,start=
(1971,1)))time = list( 'Sta' = 1974.25,'End' = 1997.75,'Clo' = 2001.75)# Ordinary Least Squares And ROLS, formulate data.i.m = Int.Only(data,time) # Interest Only model estimated.pi.m = Pred.OLS(i.m,alpha=0.05) # Interest Only model predi
ted.r.m = MONA.Model(data,time) # MONA model estimated.pr.m = Pred.ROLS(r.m,alpha=0.05) # MONA model predi
ted.e
m = ECM.Model(data,time) # ECM model estimated.pe
m = Pred.OLS(e
m,alpha=0.05) # ECM model predi
ted.# Aggregation, moving from differen
es to levels.Fit.all = i.m$All$YFit.off = 
bind(i.m$Hat$Off,r.m$Hat$Off,i.m$Off$Y,e
m$Hat$Off)Fit.on = 
bind(i.m$Hat$On,r.m$Hat$On,i.m$On$Y,e
m$Hat$On)Nom.all = Nominal.Dev(data$KP,Fit.all) # All data.Nom.off = Nominal.Dev(data$KP,Fit.off) # In Sample, Offline.Nom.on = Nominal.Dev(data$KP,Fit.on,time$End) # Out Of Sample, Online.



Appendix BTables and Graphs forResults
B.1 S
enario Trees For Interest OnlyThe interest only regression model, did not 
apture the house pri
e development,it only seemed to 
apture the upward trend as 
an be seen in se
tion 8.2.The interest only regression on s
enario tree format is expressed asInterest Only Regression

̂∆ln(kpt,n) = β̂I
0 + β̂I

1∆rentet,n + β̂I
2∆rentet−1,a(n) + β̂I

3rentet−1,a(n)an example of the development of interest only regression house pri
e s
enariotrees for the interest rate s
enario trees in Figure 8.7, 
an be seen in Figure B.1.The s
enario trees show how the model does not respond to di�erent levels ininterest rates resulting in a upward trend, from the inter
ept.
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Figure B.1: Interest Only regression model 
orresponding to the interest rate s
enario treesin Figure 8.7.



B.2 Error Bars 139B.2 Error BarsThe error bars in the House Pri
e �gures are simulated a

ording to Algorthm2 in subse
tion 6.5.3. For a �ve year horizon using quarterly data 
orrespondsto k = 20 periods. The numeri
al values for the four methods 
an be seen inTable B.1.t: years k Full MONA Fix MONA Int Only HPDIII0 0 0.0000 0.0000 0.0000 0.00000.25 1 0.0172 0.0351 0.0231 0.01870.5 2 0.0240 0.0492 0.0324 0.02660.75 3 0.0295 0.0608 0.0395 0.03281 4 0.0342 0.0694 0.0454 0.03761.25 5 0.0380 0.0769 0.0505 0.04201.5 6 0.0416 0.0840 0.0560 0.04641.75 7 0.0452 0.0901 0.0612 0.05002 8 0.0477 0.0950 0.0655 0.05362.25 9 0.0508 0.1003 0.0685 0.05762.5 10 0.0536 0.1076 0.0734 0.06042.75 11 0.0562 0.1120 0.0767 0.06283 12 0.0592 0.1163 0.0805 0.06533.25 13 0.0614 0.1218 0.0839 0.06803.5 14 0.0634 0.1269 0.0854 0.06943.75 15 0.0661 0.1322 0.0882 0.07164 16 0.0684 0.1375 0.0921 0.07384.25 17 0.0706 0.1424 0.0950 0.07574.5 18 0.0727 0.1450 0.0973 0.07754.75 19 0.0751 0.1498 0.0997 0.08045 20 0.0763 0.1519 0.1026 0.0823Table B.1: The estimated standard deviations, for aggregate house pri
es, estimating up to
k = 20. The data is 
al
ulated a

ording to Algorithm 2, in subse
tion 6.5.3.
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Appendix C R Code
C.1 Tree Fun
tions.R################################################################################ Fun
tions for plotting and analysis of s
enario trees.# In the following order:## GeoSequen
e, GeoSum, GenerateProb, Parent, Mod, WhatPeriod,# NumBran
hes, Bran
hParents, Indexer, TreeForm and GenerateRates.###############################################################################GeoSequen
e = fun
tion(type,years){# Generates a sequen
e of numbers i.e. [type^0,...,type^years℄, i.e. the number# of nodes at any time i in the s
enario tree.u = numeri
(years+1)for(i in 0:years){u[i+1℄=type^i; # q^t where 0 <= t <= T}return(u) #Return seq.}GeoSum = fun
tion(type,years){# Sums up the geometri
al sequen
e [type^0,...,type^years℄. i.e. sum up the seq# from GeoSequen
e giving the total number of nodes in the tree.



142 R Codereturn(sum(GeoSequen
e(type,years))); # Use GeoSequen
e and sum elements.}GenerateProb = fun
tion(type,years){# Returns a array with probabilities that fit a tree of type type and of length# su
h that a any time t the probabities sum to one and for any node the 1/q^t# for t.twos = GeoSequen
e(type,years); # Get the sequen
e of the tree.Sum = GeoSum(type,years); # Get total number of nodes.Prob = rep(0,Sum);b = 1; # 
ounter.a = 0; # 
ounter.for(i in 1:length(Prob)){ # Loop over all nodes.if(a == twos[b℄){ # If a has been looped through allb = b+1; # nodes in periods. Move period upa = 0; # and set a to zero.}Prob[i℄ = 1/(twos[b℄); # Add a probability to 
urrent node.a = a + 1; # In
rement a.}return(Prob) # Return the array Prob.}Parent = fun
tion(type,years,index){# Return the index of parent to node index. Needs tree type, number of years as# input.Seq = GeoSequen
e(type,years); # Get the sequen
e of the tree.Sum = GeoSum(type,years); # Get total number of nodes.Ve
 = 1:Sum; # A indexing ve
tor.TotalIndex = index; # Node number.mat = WhatPeriod(type,years,index); # Returns in whi
h period.if(mat == 0){ # Periods are 0,1,.. so if first Periodparent = 
(); # the node has no parent.}else{IndexToPrevYear = sum(Seq[0:(mat-1)℄); # Number of nodes to the year before.IndexToYear = sum(Seq[0:mat℄); # Number of nodes to year.IndexOnYear = TotalIndex - IndexToYear; # Nodes index on year.if(Mod(IndexOnYear,type)==0){ # If modulus of type and IndexOnYear is 0.num = IndexOnYear/type; # Parent number in the period before.}else{num = floor(IndexOnYear/type)+1; # parent number in the period before.}parent = IndexToPrevYear + num; # Find total index of parent.}return(parent) # Return index number of parent.}



C.1 Tree Fun
tions.R 143Mod = fun
tion(x,m){# Cal
ulates the modulus for x and m.t1<-floor(x/m)return(x-t1*m)}WhatPeriod = fun
tion(type,years,index){# Returns the period number of whi
h node number index is in. Also takes type# of tree and number of years as input.Seq = GeoSequen
e(type,years); # Get the sequen
e of the tree.Sum = GeoSum(type,years); # Get total number of nodes.
ounter = 0; # Counter.for(i in 0:length(Seq)){ # Loop over number of periods.
ounter = 
ounter + Seq[i+1℄; # Add number of nodes for period i+1.if(
ounter >= index){ # If 
ounter is bigger then node num.mat = i; # Return that period and break.break}}return(mat) # Return period.}NumBran
hes = fun
tion(type,years){# NumBran
hes returns the index of the top leaf and the number of leafs in a# list obje
t. Input is type of tree (q) and years (T).num = list(); # Empty list.tmp = GeoSequen
e(type,years); # Tree sequen
e.n = length(tmp);num$N = tmp[n℄;num$F = sum(tmp[1:(n-1)℄); # Sum up the number of nodes pervious to T.return(num) # Return list obje
t.}Bran
hParents = fun
tion(type,years,index){# NumBran
hes returns the indexes of the bran
h from leaf of number index. The# input variables are type of tree (q), years (T) and the leaf number, index.num = NumBran
hes(type,years); # Find number of leafs and first leaf index.NumberBran
hes = num$N;FirstBran
h = num$F;mat = rep(0,years+1); # Empty index ve
tor.index = index + FirstBran
h; # Setting 
orre
t node index to the leaf index.for(i in (years+1):1){ # Loop ba
kwards over years.mat[i℄ = index; # Set the index into the bran
h index ve
tor.parent = Parent(type,i-1,index); # Find parent of index.index = parent; # Set parent as index.}



144 R Codereturn(mat); # Return the ve
tor of indexes from leaf index to root note.}Indexer = fun
tion(type,years){# NumBran
hes returns the indexes of the bran
h from leaf of number index. The# input variables are type of tree (q), years (T) and the leaf number, index.num = NumBran
hes(type,years);indexer = matrix(0,nrow=(num$N),n
ol=years+1);index = (1:(num$N));for(i in 1:length(index)){indexer[i,℄=Bran
hParents(type,years,index[i℄);}return(indexer)}TreeForm = fun
tion(Ind,Tree){# Use the output of Indexer to return a indexed matrix form of the Tree ve
tor.# The input is Ind a matrix of indexes and Tree a s
enario tree on the ve
tor# format.n=nrow(Ind)Out = Ind;for(i in 1:n){Out[i,℄=Tree[Ind[i,℄℄;}return(Out) # Return Matrix Out.}GenerateRates = fun
tion(type,years,first,rang){# This fun
tion is used to generate latti
e interest rate trees for testing.# The input variables are# type : the type of tree, q.# years : the numer of periods, T.# first : from what interst value is the tree to start.# rang : the range of a up to down 
hange for one node from t-1 to t.Sum = GeoSum(type,years); # Number of nodes.Rates = rep(0,Sum); # Create Rates as 0 ve
tor.Rates[1℄ = first; # Set first value in Rates.# Generate a ve
tor from range/2 to -range/2 in type many parts.in
 = seq(rang/2,-rang/2,length=type);# Repeate a sequen
e of ve
tor 1:type in matrix tmp.tmp=rep(seq(1,type),(Sum-1)/2)In
s = 
(0,in
[tmp℄); # Index in
 by tmp.for(i in 2:length(Rates)){ # Loop over tree.parent = Parent(type,years,i); # Find parent node.# Cal
ulate 
urrent rate by use of parent rate and 
hange.Rates[i℄ = Rates[parent℄+In
s[i℄;}



C.1 Tree Fun
tions.R 145return(Rates) # Return latti
e s
enario tree of interest rates.}################################################################################ Fun
tions for plotting and analysis of s
enario trees.# In the following order:## PlotTree, MMM and Pretty.###############################################################################PlotTree = fun
tion(Tree,lag=1,ylab="",xlab="Period",
ex=0.5,lty=3,main="",ylim=
(0,0),point=TRUE,year=0){# Plots a matrix of the form from TreeForm.# Input : Tree - a matrix from TreeForm.# lag - the number of lag on the x-axis.# point - swit
h whether the median point is plotted.# ylab,xlab,
ex,lty,main,ylim same as in plot().# All inputs have a default value so only the Tree matrix is needed to plot.n=nrow(Tree);m=n
ol(Tree);if(ylim[1℄==0 & ylim[2℄ ==0){ # If ylim not spe
ified.ylim = range(Tree); # Set to range of matrix.}xlim = 
(lag,m-1+lag) # lag x-axis by lag.plot(Tree,xlim=xlim,ylim=ylim,type="n",ylab=ylab,xlab=xlab,main=main,
ex=
ex,xaxt="n") # Set up empty grahpi
 devi
e.axis(1,
(0:10),
(0:10)+year)Pret = Pretty(Tree) # Removes repetition in Tree for better graphs.n = nrow(Pret)for(i in 1:n){ # For ea
h line in Pret plot line and point.lines(Pret[i,1:2℄+lag,Pret[i,3:4℄,
ol=2,lty=lty,
ex=
ex*0.7)points(Pret[i,1:2℄+lag,Pret[i,3:4℄,
ol=1,p
h=19,
ex=
ex*0.7)}abline(h=Tree[1℄,
ol=4,lty=2); # Ad a horizontal line marking the first value.if(point){ # If point=T plot median of leafs.points(m-1+lag,MMM(Tree)[2,m℄,p
h=21,
ol=1,bg="red",
ex=
ex*2)}# Returns nothing.}MMM = fun
tion(Mat){# Simple fun
tion used for 
al
ulating the Min,Max and Median at ea
h time in the# tree. The input is a tree matrix.Min = apply(Mat,2,min) # apply(Mat,2,operation) mean the opertion is usedMax = apply(Mat,2,max) # on the 2 dimension (
olumn) of the Mat obje
t.Med = apply(Mat,2,median)return(rbind(Max,Med,Min)) # Return matrix (3 x T+1)}



146 R CodePretty = fun
tion(Ind){# A fun
tion used to simplify the a Tree matrix for plotting, input is a Tree matrix.# Output is a matrix with four 
olumns [line1.start line1.end line2.start line2.end℄.# Used to remove repetition in the Tree matrix, making plotting faster and easier.# Possible by inspe
ting the Ind tree matrix and redu
ing the Ind matrix to a matrix se
# where ea
h unique line segment only appears on
e.n = nrow(Ind)m = n
ol(Ind)tmp = Ind[,1:2℄; # Set tmp as fist two 
olumns of Ind.tmp1 = Ind[1,1:2℄ # Set tmp1 as the first line segment of# Ind i.e. O to 1se
 = matrix(0,nrow=1,n
ol=4) # The redu
ed matrix 
reated and set to 0.se
[1,1℄ = 0; se
[1,2℄ = 1; se
[1,3:4℄=tmp1;for(i in 1:(m-1)){ # Loop over all 
olumns ex
ept last.for(j in 1:n){ # Loop over all lines.tmp2 = Ind[j,i:(i+1)℄ # tmp2 the line segment Ind(j,i) to Ind(j,i+1).if(!all(tmp1==tmp2)){ # If tmp1 and tmp2 are not identi
al then.se
=rbind(" "=se
,
(i-1,i,tmp2)) # Ad tmp2 to se
.}tmp1 = tmp2; # Update tmp1 as tmp2.}}return(se
) # Return the se
 matrix.}################################################################################ S
enario Tree House Pri
e Dynami
 Fun
ions# In the following order:## HPDFIX, HPDI, HDINT and HPDE
m###############################################################################HPDFIX = fun
tion(n,T,Rates,bbb=0,FIX=
(1, 0.002713868,0.000111711,8.054e-06,0.01102516,0.01013059, 0.1011561, 0.1757178, -0.3041972),Ti=4){# This fun
tion is very similar to the fu
tion used in C#.# Cal
ulating the Fixed MONA Relationship for House pri
es.# n : Type of tree n aka q.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.# FIX : The fixed explanatory matrix F.# bbb : Initial value of laged interest rates.## Mat : List in
luding H the house pri
e tree, DH 
hanges in house pri
e and# DSR Delta Rates.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri
(NodePlusOnePeriod)DH= numeri
(NodePlusOnePeriod)D = numeri
(NodePlusOnePeriod)



C.1 Tree Fun
tions.R 147Dtemp.Old = numeri
(NodePlusOnePeriod)H[1℄ = 0;DH[1℄ = 0;
 = 
(0.06632852,0.30744099,-3.78106433,-0.77908085,-0.79271964,0.77091843,0.19494096,-0.10257190,0.05538029)Ti = Ti +1 ;Dtemp = numeri
(Ti)SRtemp = numeri
(5)DHtemp = numeri
(5)Htemp = numeri
(5)Comp = list();HH = numeri
(Ti);DHH = numeri
(Ti);tt = numeri
(Ti);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).D[i℄ = SR[i℄ - SR[P℄; # Differen
e in Current Rate and# Parent rate.DD = 
(0,rep(D[i℄/4,Ti-1))SS = 
umsum(DD)+SR[P℄tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:length(Dtemp)){if(tt == 0.25){int = 
(0,0,DD[j℄,bbb,SS[j-1℄,0,0,0,0);DHH[j℄ = 
%*%(FIX+int);}if(t > 0.25){int = 
(0,0,DD[j℄,DD[j-1℄,SS[j-1℄,0,0,0,0);DHH[j℄ = 
%*%(FIX+int);}HH[j℄ = DHH[j℄+HH[j-1℄;}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = 
bind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)}Mat = list();Mat$DSR = D;Mat$DH = DH;Mat$H = H;return(Mat); # Return list Mat.}HPDI = fun
tion(n,T,Rates,I=100)



148 R Code{# This fun
tion is very similar to the fu
tion used in C#.# Cal
ulating the NyKredit Relationship for House pri
es.# n : Number indi
ating bran
h number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : List in
luding HP the house pri
e tree, DH 
hanges in house pri
e,# DSR Delta Rates and H house pri
es without 
ompounding.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.H = numeri
(NodePlusOnePeriod)HP = numeri
(NodePlusOnePeriod)D1= numeri
(NodePlusOnePeriod)D2= numeri
(NodePlusOnePeriod)DH= numeri
(NodePlusOnePeriod)D = numeri
(NodePlusOnePeriod)DeltaRates = numeri
(NodePlusOnePeriod)H[1℄ = I;HP[1℄= I;Ti = 5;Comp = list();HH = numeri
(Ti);DHH = numeri
(Ti);tt = numeri
(Ti);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).DeltaRates[i℄ = SR[i℄ - SR[P℄; # Differen
e in Current Rate and# Parent rate.D1[i℄ = -5*DeltaRates[i℄; # One year 
hange at i.D2[i℄ = -11*DeltaRates[i℄; # Two year 
hange at i.DD = 
(0,rep(D[i℄/4,Ti-1))tt[1℄ = t-1;DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){tt[j℄ = t - 1 + 1/(Ti-1)*(j-1)if(t == 1){DH[i℄ = DH[P℄ + D1[i℄;HP[i℄ = HP[P℄*(1 + D1[i℄);}if(t > 1){HP[i℄ = HP[P℄ * (1 + D1[i℄) + HP[GP℄* D2[P℄;DH[i℄ = DH[P℄+ D1[i℄ + D2[P℄;}H[i℄ = I*(1 + DH[i℄);}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = 
bind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)}



C.1 Tree Fun
tions.R 149Mat = list();Mat$DSR = DeltaRates; # Delta Short Rates.Mat$H = H;Mat$HP = HP;Mat$DH = DH;return(Mat) # Return list Mat.}HPDINT = fun
tion(n,T,Rates,Ti=4){# This fun
tion is very similar to the fu
tion used in C#.# Cal
ulating the Interest Only Regression for House pri
es.# n : Number indi
ating bran
h number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : Stru
 in
luding HP the house pri
e tree, HP_1 house pri
e tree# lagged one period and DSR the Delta Rates.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri
(NodePlusOnePeriod)DH= numeri
(NodePlusOnePeriod)D = numeri
(NodePlusOnePeriod)Dtemp.Old = numeri
(NodePlusOnePeriod)H[1℄ = 0;DH[1℄ = 0;Comp = list();Ti = Ti + 1;HH = numeri
(Ti);DHH = numeri
(Ti);tt = numeri
(Ti);CC=
(0.01254567,-3.65385018,-1.69341039);for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).D[i℄ = SR[i℄ - SR[P℄; # Differen
e in Current Rate and.# Parent rate.DD = 
(0,rep(D[i℄/4,Ti-1))tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){int = 
(1,DD[j℄,DD[j-1℄);DHH[j℄ = CC%*%(int);HH[j℄ = DHH[j℄+HH[j-1℄}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = 
bind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)}



150 R CodeMat = list();Mat$L = Comp;Mat$DSR = D;Mat$DH = DH;Mat$H = H;return(Mat); # Return list Mat.}HPDE
m = fun
tion(n,T,Rates,I=100,H1=0,DH1=0,Ti=4){# This fun
tion is very similar to the fu
tion used in C#.# Cal
ulating the NyKredit Relationship for House pri
es.# n : Number indi
ating bran
h number, n type of tree.# T : Number of periods in the tree, T.# Rates : Tree of interest rates.## Mat : List in
luding HP the house pri
e tree, DH 
hanges in house pri
e,# DSR Delta Rates and H house pri
es without 
ompounding.SR = Rates; # Interest Rates are SR.NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.I = 100;H = numeri
(NodePlusOnePeriod)DH = numeri
(NodePlusOnePeriod)D = numeri
(NodePlusOnePeriod)H[1℄ = H1DH[1℄ = DH1;Comp = list();Ti = Ti + 1HH = numeri
(Ti);DHH = numeri
(Ti);tt = numeri
(Ti);CC = 
(0.03837,-4.04156,0.34215,-0.03431,-0.63258)for(i in 2:NodePlusOnePeriod){ # Loop over 2:n^(T+1) nodes.t = WhatPeriod(n,T,i); # Returns the period t of node i.P = Parent(n,T,i); # P is the index of the parent node.GP = Parent(n,T,P); # GP index of the Parent(Parent).# As long as t < (T+1).D[i℄ = SR[i℄ - SR[P℄; # Differen
e in Current Rate and# Parent rate.DD = 
(0,rep(D[i℄/4,Ti-1))SS = 
umsum(DD)+SR[P℄tt = seq(t-1,t,length.out=Ti);DD[1℄ = D[P℄/4HH[1℄ = H[P℄DHH[1℄ = DH[P℄for(j in 2:Ti){int = 
(1,DD[j℄,DHH[j-1℄,HH[j-1℄,SS[j-1℄);DHH[j℄ = CC%*%(int);HH[j℄ = DHH[j℄+HH[j-1℄}H[i℄ = HH[Ti℄;DH[i℄ = DHH[Ti℄;Comp[[i℄℄ = 
bind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)



C.2 Modeling Fun
tions.R 151}Mat = list(); # Delta Short Rates.Mat$H = H;Mat$DH = DH;Mat$L = Comp;return(Mat) # Return list Mat.}Error.Cal = fun
tion(Tree,EB,I=1){ H = MMM(Tree)p1 = Int.Pol(H[1,℄)p2 = Int.Pol(H[3,℄)U = 
bind('d' = I*100*(1-exp(EB))+p2, 'u' = I*-100*(1-exp(EB))+p1)return(U)}Int.Pol = fun
tion(X,leng=3){ le = length(X)T2 =
()for(i in 1:(le-1)){temp = seq(X[i℄,X[i+1℄,length.out=leng+2)T2 = 
(T2,temp[1:(leng+1)℄)}T2 = 
(T2,X[le℄)return(T2)}Read.IntTree = fun
tion(STRING){# A fun
tion to import interest rate trees.# header = s
an(STRING,nlines=1,what=
hara
ter(), quiet = TRUE)SS = read.table(STRING,skip=1)names(SS) = 
("Year","Node",header)return(SS)}C.2 Modeling Fun
tions.R################################################################################ Fun
tions for modeling, estimation and data handeling for time series# models. In the following order:## R.square, R.adj.sqr, Nominal.Dev, Int.Only, ECM.Model, ECM.Model,# MONA.Model, TimePeriod, ECM.4.lag, MONA.ROLS, Pred.ROLS, Pred.OLS###############################################################################R.square = fun
tion(Y,Y.hat)



152 R Code{# Cal
ulates the R square or Goodness of fit statisti
 between to series Y# and the fitted serise Y.hat.N = length(Y);R.above.1 = (t((Y.hat-Y)^2)%*%matrix(1,nrow=N)) # Matrix %*% operation.R.below.1 = sum((Y-mean(Y))^2)R.2 =1 - (R.above.1/R.below.1)# Return Goodness Of Fit.return(R.2)}R.adj.sqr = fun
tion(Y,Y.hat,p){# Cal
ulates the adjusted R square or Goodness of fit statisti
 between two# series Y and the fitted serise Y.hat.N = length(Y);R = R.square(Y,Y.hat)R.adj = 1 - ((N-1)/(N-p))%*%(1-R)# Return Adjusted Goodness Of Fit.return(R.adj)}Nominal.Dev = fun
tion(KP,Y.hat,st=1974.25){# Cal
ulates the aggregate house pri
e for a multivariate series element# Y.hat whi
h are 
hanges. KP is the house pri
e time series obje
t, st is# the start of a
umulation for the house pri
e. There are two versions of# this fun
tion Nominal.Dev2 is used for the valdiation of point estimates.temp = dim(Y.hat)if (is.null(temp)){ # If ve
tor.N = length(Y.hat);M = 1;}else{ # If not ve
tor, i.e. if Y.hat is matrix.N = temp[1℄;M = temp[2℄;}Y.0 = window(log(KP),st-0.25,st-0.25) # Set KP to the 
orre
t houseY.tilde.R = matrix(0,nrow=N,n
ol=M) # pri
e at time st to use in# update.if (!is.null(temp)){ # If Y.hat matrix.for(j in 1:M){Y.tilde.R[1,j℄ = Y.hat[1,j℄ + Y.0for(i in 2:N){Y.tilde.R[i,j℄ = Y.hat[i,j℄ + Y.tilde.R[i-1,j℄}}Y.tilde.R = ts(as.data.frame(Y.tilde.R),frequen
y=4,start=st)}else{ # If Y.hat ve
tor.Y.tilde.R[1℄ = Y.hat[1℄ + Y.0for(i in 2:N){Y.tilde.R[i℄ = Y.hat[i℄ + Y.tilde.R[i-1℄}Y.tilde.R = ts(Y.tilde.R,frequen
y=4,start=st) # Set as ts obje
t.}



C.2 Modeling Fun
tions.R 153# Returns a aggregate timeseries obje
t from st.return(Y.tilde.R)}Int.Only = fun
tion(Data,Times){# Cal
ulates the Interest Only Regression Model. Input is Data a list with# all time series data and Times also a list with the start of in-sample# period end of in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =
(Sta,End)diff.on =
(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)HouseP.Int <- lm(Off$Y ~ Off$I2 + Off$I3) # OLS performed.Y.hat.off = ts(fitted(HouseP.Int),frequen
y=4,start=diff.off[1℄)Off$X = as.matrix(data.frame(rep(1,length(Off$I2)),Off$I2,Off$I3))Beta = matrix(
oef(HouseP.Int)) # Coeffi
ients.# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄) # Fun
tion below.On$X = as.matrix(data.frame(rep(1,length(On$I2)),On$I2,On$I3))Y.hat.on = ts(On$X%*%Beta,frequen
y=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄) # Fun
tion below.All$X = as.matrix(data.frame(rep(1,length(All$I2)),All$I2,All$I3))Y.hat.all = ts(All$X%*%Beta,frequen
y=4,start=diff.off[1℄)# Fitssig = (t(resid(HouseP.Int))%*%resid(HouseP.Int))/(dim(Off$X)[1℄-dim(Off$X)[2℄)Hat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq'=sig)# Returns four sublist in the output list obje
t.return(list('OLS'=HouseP.Int,'Off'=Off,'On'=On,'All'=All,'Hat'=Hat))}ECM.Model = fun
tion(Data,Times){# Cal
ulates the Error-Corre
tion Model using only lagged kp and rente, levels# and differen
ed series. Input is Data a list with# all time series data and Times also a list with the start of in-sample# period end of in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =
(Sta,End)diff.on =
(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)MODEL.ECM = lm(Off$ECM$DKP ~ Off$ECM$DRE + Off$ECM$DKP.1 + Off$ECM$KP.1 + Off$ECM$RE.1)Y.hat.off = ts(fitted(MODEL.ECM),frequen
y=4,start=diff.off[1℄)Off$X = ts.union('I'=rep(1,length(Off$ECM$DRE)),'DRE'=Off$ECM$DRE,'DKP.1'=Off$ECM$DKP.1, 'KP.1'=Off$ECM$KP.1,'RE.1'=Off$ECM$RE.1)



154 R CodeBeta = matrix(
oef(MODEL.ECM)) # Coeffi
ients.# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄) # Fun
tion below.On$X = ts.union('I'=rep(1,length(On$ECM$DRE)),'DRE'=On$ECM$DRE,'DKP.1'=On$ECM$DKP.1,'KP.1'=On$ECM$KP.1,'RE.1'=On$ECM$RE.1)Y.hat.on = ts(On$X%*%Beta,frequen
y=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄) # Fun
tion below.All$X = ts.union('I'=rep(1,length(All$ECM$DRE)),'DRE'=All$ECM$DRE,'DKP.1'=All$ECM$DKP.1, 'KP.1'=All$ECM$KP.1,'RE.1'=All$ECM$RE.1)Y.hat.all = ts(All$X%*%Beta,frequen
y=4,start=diff.off[1℄)# Fitssig = (t(resid(MODEL.ECM))%*%resid(MODEL.ECM))/(dim(Off$X)[1℄-dim(Off$X)[2℄)Hat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq'=sig)# Returns four sublist in the output list obje
t.return(list('OLS'=MODEL.ECM,'Off'=Off,'On'=On,'All'=All,'Hat'=Hat))}MONA.Model = fun
tion(Data,Times){# Cal
ulates Restri
ted Ordinary Least Squares (ROLS). Input as before Data# with time series obje
ts and Times with start of in-sample, end of# in-sample and end of all data.Sta = Times$Sta; # Start of in-sample or Offline.End = Times$End; # End of in-sample or start of Online.Clo = Times$Clo; # End of all or Offline.diff.off =
(Sta,End)diff.on =
(diff.off[2℄,Clo)# OfflineOff = TimePeriod(Data,diff.off[1℄,diff.off[2℄)# OLSHouseP.lm = lm(Off$Y~Off$X1+Off$X2+Off$X3+Off$X4+Off$X5+Off$X6+Off$X7+Off$X8)# ROLSR = MONA.ROLS(Off) # The ROLS fun
tion see below.Beta_R = R$Beta_RY.hat.off = ts(Off$X%*%Beta_R,frequen
y=4,start=diff.off[1℄)# OnlineOn = TimePeriod(Data,diff.on[1℄,diff.on[2℄)Y.hat.on = ts(On$X%*%Beta_R,frequen
y=4,start=diff.on[1℄)# AllAll = TimePeriod(Data,diff.off[1℄,diff.on[2℄)Y.hat.all = ts(All$X%*%Beta_R,frequen
y=4,start=diff.off[1℄)# FitsHat = list('Off'=Y.hat.off,'On'=Y.hat.on,'All'=Y.hat.all,'sigma.hat.sq' = R$sigma.hat.sq)# Returns five sublists 'ROLS' has the ROLS 
oeffi
ients.return(list('OLS'=HouseP.lm,'ROLS'=R,'Off' = Off,'On'=On, 'All' = All,'Hat'=Hat))}



C.2 Modeling Fun
tions.R 155TimePeriod = fun
tion(Data,From,To){# A data 
utting fun
tion. Input is Data obje
t with time series obje
ts# From and To mark the time window whi
h is sought. Uses the ts fun
tion# window.# Model Variables.Y = window(diff(log(Data$KP)),From,To)X1 = window(diff(log(Data$PCP)),From,To)X2 = window(diff(Data$RENTE.SSATS),From,To)X3 = window(diff(Data$RENTE.SSATS),From-0.25,To-0.25)X4 = window(Data$RENTE.SSATS,From-0.25,To-0.25)X5 = window(Data$DPCPE,From-0.25,To-0.25)X6 = window(Data$DKPE,From-0.25,To-0.25)X7 = window(log(Data$KP/Data$PCP),From-0.25,To-0.25)X8 = window(log((Data$YDP-Data$IPV)/Data$PCP)-log(Data$FWH),From-0.25,To-0.25)KP = Data$KP;# Time ve
tor.ts = time(Y);# Tax with out Interest.SSATS.X2 = window(diff(Data$SSATS),From,To)SSATS.X3 = window(diff(Data$SSATS),From-0.25,To-0.25)SSATS.X4 = window(Data$SSATS,From-0.25,To-0.25)# Interest with out Tax.INT.X2 = window(diff(Data$RENTE+0.01),From,To)INT.X3 = window(diff(Data$RENTE+0.01),From-0.25,To-0.25)INT.X4 = window(Data$RENTE+0.01,From-0.25,To-0.25)X0 = ts(rep(1,length(Y)),frequen
y=4,start=From);Zip = ts(rep(0,length(Y)),frequen
y=4,start=From);# The Fixed ve
tor.FA = ts.union(X0,X1,"S2"=SSATS.X2,"S3"=lag(SSATS.X3,-1),"S3"=lag(SSATS.X4,-1),"X5"=lag(X5,-1),"X6"=lag(X6,-1),"X7"=lag(X7,-1),"X8"=lag(X8,-1))FA = window(FA,From,To);# Interest Only Ve
tor.AA = ts.union(Zip,Zip,"I2"=INT.X2,"I3"=lag(INT.X3,-1),"I4"=lag(INT.X4,-1),Zip,Zip,Zip,Zip)AA = window(AA,From,To);ECM = ECM.4.lag(Data,From,To);# Design or Explanatory Matrix.X = as.matrix(data.frame("X0"=rep(1,length(Y)),X1,X2,X3,X4,X5,X6,X7,X8))# Returns a list with numerous sublist in
luding all the data needed for# analysis and fore
asting.return(list('Y' = Y,'X'=X, 'X1'=X1,'X2'=X2,'X3'=X3,'X4'=X4,'X5'=X5,'X6'=X6,'X7'=X7,'X8'=X8,'S2'=SSATS.X2,'S3'=SSATS.X3,'S4'=SSATS.X4,'I2'=INT.X2,'I3'=INT.X3,'I4'=INT.X4,'t'=ts,'KP'=KP,'FA'=FA,'AA'=AA,'ECM'=ECM) )}ECM.4.lag = fun
tion(Data,st,en){# A data 
utting fun
tion. Input is Data obje
t with time series obje
ts



156 R Code# From and To mark the time window whi
h is sought. Uses the ts fun
tion# window.RE = Data$RENTE+0.01KP = log(Data$KP)DKP = diff(KP)DRE = diff(RE)DRE.1 = window(lag(DRE,-1),st,en);DRE.2 = window(lag(DRE,-2),st,en);DRE.3 = window(lag(DRE,-3),st,en);DRE.4 = window(lag(DRE,-4),st,en);DKP.1 = window(lag(DKP,-1),st,en);DKP.2 = window(lag(DKP,-2),st,en);DKP.3 = window(lag(DKP,-3),st,en);DKP.4 = window(lag(DKP,-4),st,en);KP.1 = window(lag(KP,-1),st,en)RE.1 = window(lag(RE,-1),st,en)DKP = window(DKP,st,en)DRE = window(DRE,st,en);RE = window(RE,st,en)# Design or Explanatory Matrix.#X = as.matrix(data.frame("X0"=rep(1,length(DKP)),DRE,DKP.1,KP.1,RE.1))# Returns a list with numerous sublist in
luding all the data needed for# analysis and fore
asting.return(list('DKP' = DKP, 'DRE' = DRE, 'DRE.1'=DRE.1,'DRE.2'=DRE.2,'DRE.3'=DRE.3,'DRE.4'=DRE.4, 'DKP.1'=DKP.1, 'DKP.2'=DKP.2, 'DKP.3'=DKP.3, 'DKP.4'=DKP.4,'KP.1'=KP.1, 'RE'=RE, 'RE.1' = RE.1,'KP' = KP, 'DRE' = DRE))#, 'X' = X))}MONA.ROLS = fun
tion(Data){# The a
tual Resti
ted Oridnary Least Squares is 
al
ulated for the MONA house# pri
e model. Returning all the same values as OLS with lm does. Input is Data# list of the format as TimePeriod outputs.Y = Data$Yn = length(Y)# OLSX = Data$XXX.1 = solve(t(X) %*% X)Beta = XX.1%*%t(X)%*%Y# Constraint R%*%Beta_R = ra = 
(Int=0,X1=0.25,X2=0,X3=0,X4=1,X5=1,X6=1,X7=0,X8=0);R = t(as.matrix(a));r = 0.25# Coeffi
ient for ROLS, Beta_R.b = t(R)%*%solve(R%*%XX.1%*%t(R))
 = (r-R%*%Beta);Beta_R = Beta + XX.1%*%b%*%
;# Y.hat, fit with Beta_R.Y.hat <- X %*% Beta_R



C.2 Modeling Fun
tions.R 157# Estimated varian
e of residuals.sigma.hat.sq <- sum((Y - Y.hat)^2) / (n - n
ol(X)+1)# Covarian
e matrix, V, for Beta_R.M = diag(1,9) - XX.1%*%b%*%RC = M %*% XX.1 %*% t(M)V = sigma.hat.sq * Cse = sqrt(diag(V))# t - valuest = Beta_R/se# p - valuep.value = 2*pt(-abs(t),df=n-n
ol(X)+1)All=data.frame('Estimate'=round(Beta_R,5),'Std.Error'=round(as.matrix(se),5),'t.value'=round(t,3),'p.value'=p.value)# Returns many values in a list 'Summary' returns a 
omprihensive des
ription# similar to a summary(lm-obje
t).return(list('Beta_R'=Beta_R, 'Beta'=Beta, 'XX.1'=XX.1, 'Cov.ROLS'=V,'sigma.hat.sq'= sigma.hat.sq, 'Std.Error.Beta_R' = se,'t.value.R' = t, 'p.value.R' = p.value, 'Y.hat' = Y.hat, 'M'=M,'Summary'=All))}Pred.ROLS = fun
tion(List,alpha=0.05){# Cal
ulates predi
tion intervals for the MONA ROLS model. The 
ovarian
e matrix is# different and the predi
tion therefor also. alpha sets the predi
tion intervals# 
onfiden
e interval by 
onf.int = 1-(alpha/2). alpha is set to 0.05 by default.yOFF=List$Hat$OffyON =List$Hat$On #Out of sample, or Online Point Estimate.xOFF=List$Off$XxON =List$On$Xsigma = List$Hat$sigma.hat.sqM = List$ROLS$MXX = solve(t(xOFF)%*%xOFF);n = length(yOFF);p = dim(XX)[1℄ - 1;tt = qt(1-alpha/2,n-p)tmp=
();# For ea
h out of sampe point 
al
ulate the predi
tion interval.for(i in 1:length(yON)){TEM = sqrt( sigma * (1 + xON[i,℄%*%M%*%XX%*%t(M)%*%as.matrix(t(xON)[,i℄)));tmp[i℄ = tt * TEM}predi
t = 
bind(yON-tmp,yON,yON+tmp,tmp)# Returns a time series obje
t with four series, point estimat - varian
e, point# estimate, point estimate + varian
e, varian
e.return(predi
t)}Pred.OLS = fun
tion(List,alpha=0.05){



158 R Code# Cal
ulates predi
tion intervals for the OLS model. alpha sets the predi
tion intervals# 
onfiden
e interval by 
onf.int = 1-(alpha/2). alpha is set to 0.05 by default. List is# a list of type as output from TimePeriod.yOFF=List$Hat$OffyON =List$Hat$On #Out of sample, or Online Point Estimate.xOFF=List$Off$XxON =List$On$Xsigma = List$Hat$sigma.hat.sqXX = solve(t(xOFF)%*%xOFF);n = length(yOFF);p = dim(XX)[1℄;tt = qt(1-alpha/2,n-p)tmp=
();# For ea
h out of sampe point 
al
ulate the predi
tion interval.for(i in 1:length(yON)){tmp[i℄ = tt * sqrt( sigma * (1 + xON[i,℄%*%XX%*%as.matrix(t(xON)[,i℄)));}predi
t = 
bind(yON-tmp,yON,yON+tmp,tmp)# Returns a time series obje
t with four series, point estimat - varian
e, point# estimate, point estimate + varian
e, varian
e.return(predi
t)}################################################################################ Fun
tions for simulating error in 
hange and levels for time series, along# with many sub fun
tions. In the following order:## BOOT, GenerateCoeffi
ients, GenerateEstimatChange, Erro.Cal, AggHPsim, MS,# Print.Boot, Plot.C, Lines.Boot, Predi
tInt, YLIM###############################################################################BOOT = fun
tion(ROLS,INT,ECM,k,N=10000,t.st=1997.75,Coeff=F){# BOOT is a simulation of the error when bootstrapping three different models, it# estimates the 
hange in house pri
es error for MONA full, MONA fixed and INT only.# The inputs are: ROLS obje
t whi
h is the output from MONA.Model.# INT obeje
t whi
h is the output from Int.Only.# k the predi
tion horizon.# N repetitions for ea
h simulation, default set to N=10000.# t.st the start of predi
tion. Default set to last Offline, 1997.75.# Coeff a logi
al variable, see below default set to FALSE.# DataAll = ROLS$AllX = All$X; S2 = All$S2; S3 = All$S3; S4 = All$S4Y = All$Y; I2 = All$I2; I3 = All$I3; I4 = All$I4# Setting up for the ROLS.V.R = ROLS$ROLS$Cov.ROLSBeta.R = ROLS$ROLS$Beta_Rsig.R = ROLS$ROLS$sigma.hat.sqB.A = Beta.RB.F = Beta.R# Setting up for the Interest Only Regression.X.In = INT$All$X
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tions.R 159sig.I = as.numeri
(INT$Hat$sigma.hat.sq)Beta.I = as.matrix(
oeffi
ients(INT$OLS))V.I = sig.I*solve(t(INT$Off$X)%*%INT$Off$X)B.I = Beta.I# Setting up for the Error-
orre
tion Model.X.E
m = ECM$All$Xsig.E = as.numeri
(ECM$Hat$sigma.hat.sq)Beta.E = as.numeri
(
oeffi
ients(ECM$OLS))V.E = sig.E * solve(t(ECM$Off$X)%*%ECM$Off$X)B.E = Beta.E# Initializing variables.k = k + 1; # Add one to k to add last In-sample point.Y.tF = matrix(0,n
ol=k,nrow=N);Y.tA = matrix(0,n
ol=k,nrow=N);Y.tI = matrix(0,n
ol=k,nrow=N);Y.tE = matrix(0,n
ol=k,nrow=N);ind.F = whi
h(time(Y)==t.st); # Index of Fixing.ind = ind.F; # Index without fixing. Initially set to fixed index.# For t=0,...,k, sin
e now k = k+1.for(p in 1:k){tp = t.st + (p-1)*0.25; # Time period in
rement.ind = ind.F + (p-1); # Index in
rement.X.A = X[ind,℄; # X.A set to 
orrespoding explt.X.F = X[ind.F,℄; # X.F set to fixed explt.X.F[3℄=S2[ind.F℄+I2[ind℄ # Interest elemtents set.X.F[4℄=S3[ind.F℄+I3[ind℄ # eplanitory variables.X.F[5℄=S4[ind.F℄+I4[ind℄X.I = X.In[ind,℄;X.E = X.E
m[ind,℄;# Repeat the following pro
ess N times.for(i in 1:N){# Add error to 
oeffi
ients. If Coeff=T.if(Coeff){B.F = GenerateCoeffi
ients(B=Beta.R,CVar=V.R); # Subfun
tion see below.#B.I = GenerateCoeffi
ients(B=Beta.I,CVar=V.I);#B.A = GenerateCoeffi
ients(B=Beta.R,CVar=V.R);#B.F[3℄=B.A[3℄; B.F[4℄=B.A[4℄; B.F[5℄=B.A[5℄;}# Error estimate of Fixed and All explanitory ve
tors.Y.tF[i,p℄=GenerateEstimatChange(X=X.F,te=B.F,sdt=sig.R) # Subfun
tion.Y.tA[i,p℄=GenerateEstimatChange(X=X.A,te=B.A,sdt=sig.R)Y.tI[i,p℄=GenerateEstimatChange(X=X.I,te=B.I,sdt=sig.I)Y.tE[i,p℄=GenerateEstimatChange(X=X.E,te=B.E,sdt=sig.E)}}Y.F = list('Y'=Y.tF,'MS'=MS(Y.tF,t.st)) # lists with value, mean and sd.Y.I = list('Y'=Y.tI,'MS'=MS(Y.tI,t.st)) # MS subfun
tion.Y.A = list('Y'=Y.tA,'MS'=MS(Y.tA,t.st))Y.E = list('Y'=Y.tE,'MS'=MS(Y.tE,t.st))E.F = Erro.Cal(Y,Y.F,t.st,k) # Error.Cal subfun
tion.E.I = Erro.Cal(Y,Y.I,t.st,k)E.A = Erro.Cal(Y,Y.A,t.st,k)E.E = Erro.Cal(Y,Y.E,t.st,k)Mis
 = list('KP'=All$KP,'Y' = Y,'k'=k-1,'t.st'=t.st);Ret = list('Y.F'=Y.F,'E.F'=E.F,'Y.I'=Y.I,'E.I'=E.I,



160 R Code'Y.A'=Y.A,'E.A'=E.A,'Y.E'=Y.E,'E.E'=E.E,'Mis
'=Mis
);# Return a list with many sublist, e.g. one for ea
h model.return(Ret)}GenerateCoeffi
ients = fun
tion(Beta,CVar){# Sub fun
tion of BOOT, generates a sample from a normal distribution# where N(Beta,CVar).p = length(Beta);B = numeri
(p);for(i in 1:p){B[i℄ = rnorm(1,mean=Beta[i℄,sd=sqrt(CVar[i,i℄));}# Returns a ve
tor with a sample from the 
oeffi
ient distribution.return(B)}GenerateEstimatChange = fun
tion(X,te,sdt,mean=0){# Sub fun
tion of BOOT, 
al
ulates a sample from a normal distribution# using the residual varian
e and adding to the model part.Model = X%*%teResid = rnorm(1,mean=mean,sd=sqrt(sdt))Y = Model+Resid;# Return a sample value of Y with a residual and regression error.return(Y)}Erro.Cal = fun
tion(Y,Y.S,t,k){# A simple fun
tion for moving the point estimate to zero, i.e. basing the# 
hange from 0. YY.S=Y.S$Yp = min(dim(Y.S))N = max(dim(Y.S))temp = matrix(0,nrow=N,n
ol=p)D = matrix(0,nrow=N,n
ol=p)Y.obs = window(Y,t,t+(k-1)*0.25)for(i in 1:p){temp[,i℄=rep(Y.obs[i℄,N)}D = temp-Y.S;A = list('Y'=D,'MS'=MS(D,t));# Returns the Y.S matrix 
entered around 0.return(A)}AggHPsim = fun
tion(Ret,N=10000){# A simulation for the aggregate effe
t of the house pri
e model. Three models are# simulated MONA full, MONA fixed and INT only. The input is a list obje
t from the
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tions.R 161# BOOT fun
tion above.Mis
 = Ret$Mis
;Y.A=Ret$Y.A; k = Mis
$k;Y.F=Ret$Y.F; t.st = Mis
$t.st;Y.I=Ret$Y.I; KP = Mis
$KP;Y.E=Ret$Y.E;Y = Mis
$Y;# Observed Nominal House Pri
e.#Y.OBS = Nominal.Dev(KP,Y);ln.kp = log(KP);A = window(ln.kp,t.st,t.st) # Start Value of House Pri
e.A.on = window(ln.kp,t.st)Y.
A = matrix(0,n
ol=k+1,nrow=N);Y.
I = matrix(0,n
ol=k+1,nrow=N);Y.
F = matrix(0,n
ol=k+1,nrow=N);Y.
E = matrix(0,n
ol=k+1,nrow=N);# For t=0,...,k, sin
e now k = k+1.for(p in 1:(k+1)){# Repeate ea
h for
ast N times.for(i in 1:N){if(p==1){# First t is known.Y.
A[i,p℄ = A;Y.
I[i,p℄ = A;Y.
F[i,p℄ = A;Y.
E[i,p℄ = A;}else{# t>0 sample 
hange for from distibutions gotten from the# BOOT output.RCA = rnorm(1,mean=Y.A$MS[p,1℄,sd=Y.A$MS[p,2℄)RCI = rnorm(1,mean=Y.I$MS[p,1℄,sd=Y.I$MS[p,2℄)RCF = rnorm(1,mean=Y.F$MS[p,1℄,sd=Y.F$MS[p,2℄)RCE = rnorm(1,mean=Y.E$MS[p,1℄,sd=Y.E$MS[p,2℄)# t>0 aggregate effe
t by adding the sample 
hange to a# sample from a distribution of previous aggregate pri
e.Y.
A[i,p℄ = RCA + rnorm(1,mean=tMA,sd=tSA);Y.
I[i,p℄ = RCI + rnorm(1,mean=tMI,sd=tSI);Y.
F[i,p℄ = RCF + rnorm(1,mean=tMF,sd=tSF);Y.
E[i,p℄ = RCE + rnorm(1,mean=tME,sd=tSE);}} tMA = mean(Y.
A[,p℄); tSA = sd(Y.
A[,p℄);tMI = mean(Y.
I[,p℄); tSI = sd(Y.
I[,p℄);tMF = mean(Y.
F[,p℄); tSF = sd(Y.
F[,p℄);tME = mean(Y.
E[,p℄); tSE = sd(Y.
E[,p℄);}Y.F = list('Y'=Y.
F,'MS'=MS(Y.
F,t.st)) # lists with value, mean and sd.Y.I = list('Y'=Y.
I,'MS'=MS(Y.
I,t.st))Y.A = list('Y'=Y.
A,'MS'=MS(Y.
A,t.st))Y.E = list('Y'=Y.
E,'MS'=MS(Y.
E,t.st))Ret = list('Y.F'=Y.F,'Y.I'=Y.I,'Y.A'=Y.A,'Y.E'=Y.E);# Return a list with a hiera
hy of lists.return(Ret)}MS = fun
tion(Y,t=F){



162 R Code# Cal
ulates the mean and standar deviation of matrix Y returns as time series# if is.numeri
(t). Subfun
tion of BOOT and AggHPsim.p = n
ol(Y)N = nrow(Y)mean = numeri
(p)sd = numeri
(p)# Simpler way for this is the fun
tion apply. See ?apply.for(i in 1:p){mean[i℄ = mean(Y[,i℄)sd[i℄ = sd(Y[,i℄)}if(is.numeri
(t)){temp = ts(
bind('Mean'=mean,'Sd'=sd),frequen
y=4,start=t);}else{temp = 
bind('Mean'=mean,'Sd'=sd)}# Return a ve
tor with mean and sd of ea
h 
olumn in Y.return(temp);}Print.Boot = fun
tion(List){# A fun
tion whi
h prints out the result for the simulation of BOOT, input is list# of the same format as BOOT or AggHPsim export.MS=List$MSk=nrow(MS)
at(" k \t Mean \t\t Stand Deviation \t\n")
at("--------------------------------------------\n")for(p in 1:k){
at(" ",p-1,"\t",MS[p,1℄,"\t",MS[p,2℄,"\t\n")}# No Value is Returned.}Plot.C = fun
tion(List,br=20,main="",
ol=2,add=F,lty=2,lwd=1,type='l',xlab="",mu=F){# A home made fun
tion for plotting the normal disributions denerated by the data# from BOOT and AggHPsim. List is a list obje
t from the simulation fun
tions BOOT or# AggHPsim.if(is.list(List)){ # If List is a list obje
t.Y=List$YA=List$MS}else{ # If List is numeri
.Y = List;A = MS(Y);}p = min(dim(Y))ylim = numeri
(p)xlim = range(Y)tmp = 0;mu.tmp = 0;# Used to find a 
ommon ylim that has all distributions.for(i in 1:p){tmp = hist(Y[,i℄,freq=F,plot=F,br=br)mu.tmp = range(mu.tmp,range(Y[,i℄-A[i,1℄))ylim[i℄=max(tmp$density)



C.2 Modeling Fun
tions.R 163}# Swit
h used to get all graphs on one graph.if(mu){xlim = mu.tmp;A[,1℄=0;}else{xlim = range(Y)}ylim = 
(0,max(ylim))nd=seq(xlim[1℄,xlim[2℄,0.001)# If add=F then the plot is set up.if(!add){plot(Y,type='n',ylim=ylim,xlim=xlim,xlab=xlab,ylab='Density',main=main)}for(i in 1:p){y=dnorm(nd,mean=A[i,1℄,sd=A[i,2℄)lines(nd,y,type=type,
ol=
ol,lwd=lwd,lty=lty)}abline(h=0)abline(v=0)# No return value.}Lines.Boot = fun
tion(List,
ol=1,lwd=1,lty=2,prod=1,on=T,pp=T){# Plots the simulated predi
tion intervals and point estimates, prod is the# t-value of the predi
tion interval.A=Predi
tInt(List,prod=prod) # Small sub fun
tion see below.lines(A[,2℄,
ol=
ol,lwd=lwd,lty=lty-1)if(pp){points(A[,2℄,
ol=
ol,p
h=19,
ex=0.8)}if(on){lines(A[,1℄,
ol=
ol,lwd=lwd,lty=lty)lines(A[,3℄,
ol=
ol,lwd=lwd,lty=lty)}# No return Value.}Predi
tInt = fun
tion(Y,prod=1){# Sub fun
tion of Lines.Boot. Y is a matrix with mean values and standard# deviations (MS list obje
t). prod is the t-value used for the width of# the predi
tion intervals.me = Y$MS[,1℄; sd = Y$MS[,2℄;# Return a mean-(varian
e*t-value), mean, mean+(varian
e*t-value)return(
bind('SD.m'=me-prod*sd,'MU'=me,'SD.p'=me+prod*sd))}YLIM = fun
tion(List,TSer,prod=1){# Small help fun
tion for plotting. Finds the range for ylim when setting up plots.# List is a MS list obje
t. TSer is the observed house pri
e value.



164 R Codea=range(
(List$MS[,1℄ + prod * List$MS[,2℄, List$MS[,1℄ - prod * List$MS[,2℄))tt=range(range(TSer),a)# Return the ve
tor with range tt.return(tt)}



Appendix D C# Code and ClassDiagram
For C# 
ode 
onta
t me at snorri.pall.sigurdsson�gmail.
om.



166 C# Code and Class DiagramD.1 C# Class Diagram � � � �� � � � �� � 	 
 � � 
� � � � � 	 � � � 
 � � � � � �� � � � � 	 � � � � 	 � � �� � � 
 � � � � � � � � � 	 � � � �� �  ! � " #  $� � � � �� � 	 
 � � 
� � % &� � % & ' � (

) * + # , -. / 0 1 2 3� � � � �4 � � � � 
� � �	 � � � � 
 � � � � � � 5� � �	 � � � � 
 � � � � � � 6
 � � 
 � � � � � �� � � � � � 	 � � 
% � �	 � � � � 
 � � � � � � 5% � �	 � � � � 
 � � � � � � 6� � � 
 � � � � � �� � 	 
 � � 
� � � � 	 7 � � �
) * 8 9 - -. / : ; 3 3� � � � �� � 	 
 � � 
� � � � � 	 � � � 
 � � � � � �� � � � � 	 � � � � 	 � � �< � � � � � 	 � � � � �� � � � � � = > 5 � ? � � @A � 	 � � � � � � 
 � � � � � �

B C + # , -0 1 2 3� � � � �4 � � � � 
� � �	 � � 
 � � 	 A
 
 � � 	 A � 	 �� � � � � � 	 � � 
% � �	 � � 
 � � 	 A� 
 � � 	 A � 	 �� � 	 
 � � 
� � � � 	 7 � � �
B C 8 9 - -: ; 3 3� � � � �� � 	 
 � � 
< � � � � � 	 � � � � �& A � � � � = > 5 � ? � � � @A � 	 � � � % � �	 � � 
 � � 	 AA � 	 � � � � 
 � � 	 A � 	 � 


+ # , -� � � � �4 � � � � 
� 
 � � � � � �� � � � �� � � � � 	� � � � � �� � � � � � � � �	 D� � � � � � 	 � � 
E � � � �� � � � � 	� � � � � �� � � � � � � � �	 D� � 	 
 � � 
� � 	 7 � F � � � ( G H 
 � � @� � � � 	 7 � � �
 � 	 H 
 � � �
8 9 - -� � � � �4 � � � � 
� � � � E � 
 	 E � � � �� � � � � � � � � 	 E � � � �� � � � H � � � 	� � 	 	 � � �A � � 		 � � � 7 � � � 
� � � � � � 	 � � 
� � 	 	 � � �� � � � 7 � � � 
� � 	 
 � � 
� � � 7 � � � 
< � � � � � 	 � � � � �� � 	 7 � � � I D E � � � �� � � � 	 � � � �� � � � = > 5 � ? � � � � � @

8 9 - - 8 - $ � - 9� � � � �� � 	 
 � � 
� � � �

Figure D.1: The 
lass diagram for the s
enario tree implementation in C#.
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