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Summary

A recent article written by Rasmussen and Clausen [I3] publishes interesting
results for mortgage loan portfolio optimization seen from the perspective of
an individual mortgagor, for the Danish mortgage market. The purpose of this
thesis is to develop a house price model to extend their results for multistage
stochastic programming, by adding the option of selling the real estate as well
as re-balancing the bond portfolio.

The purpose of this project is to get acquainted with the economic and econo-
metric methods used for house price modeling, apply the methods to a simple
benchmark relation and extend the results to a scenario tree structure. Secondly
a more elaborate and economically real model is dissected and reproduced to
give a relation able of forecasting house prices, with only a limited number of
input variables available. The error of the reduced model is simulated and the
resulting model applied to a scenario tree structure.

The final product should then be a scenario tree predicting the expected house
price with known variance, using only interest rates and previous house prices
as input.
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CHAPTER 1

Introduction

1.1 Background

Over the last half century or so there have been great strides in the advance of
optimization and financial theory. Portfolio diversification strategy, combining
the two fields, has been used for quite some time by investors in many parts of
the financial sector with great success.

Purchasing real estate is one of the biggest financial decision an individual will
make during his life. In Denmark there is an elaborate and diverse selection of
mortgage loans allowing great flexibility when it comes to the financing of real
estate investment.

In a recent article by Rasmussen and Clausen [I3] the portfolio optimization
technique is applied to the Danish mortgage loan system. The perspective is of
a person which is faced with financing a real estate investment and has a diverse
selection of mortgage loans available. They find that by creating a portfolio of
bonds, instead of the current practise of only one bond, the investor can benefit
by re-balance the portfolio at optimal points through to horizon.



2 Introduction

1.2 Aim of Thesis

Initially the aim of this thesis was divided into two main parts, that is

1. To get acquainted with both the economics and econometrics of house
price estimation and from a real model develop a simplified house price
model and apply it to a scenario tree format.

2. To apply the house price trees along with a mortgage loan diversification
optimization.

As the work on this thesis evolved part 1 took more time than expected and it
was decided to drop part 2. Instead, more care would be taken in explaining
and implementing the house price model as a prediction model and the theory
behind such models.

It can therefore be said that the aim of this thesis is to deliver a house price
scenario tree able to extend the Rasmussen and Clausen model by giving the
investor a new option of selling the house, as well as the option of continuing by
re-balancing the bond portfolio. This changes their problem since at horizon the
objective was to minimize the cost of financing, while when adding the house
price scenario tree the objective will be to maximize the profit from selling the
house and paying the loans. The integration of house prices in Rasmussen and
Clausen remains as further work.

1.3 Outline of Thesis

A flow diagram depicting the progression of the work done for the thesis is
shown in Figure[[Jl Two main models were inspected, i.e. the simple Nykredit
benchmark model and the MONA house price relation, taken from the Danish
National Banks macro model called MONA. The up-down flow in the diagram
represents the time line of the project work.

The structure of the thesis is as follows:
CHAPTER 1: INTRODUCTION. The background to the thesis is presented,

as well as listing what is to be achieved by the work done and giving an
overview of the material chapter by chapter.
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CHAPTER 2: HOUSE PRICE MODELS. A discussion of house price devel-
opment from the stand point of economics, showing a well known long
term relationship for the development of house prices, the role of demand
and supply in determining the price is also discussed. A short discussion
of market expectation and real house price development in Denmark is
also presented.

CHAPTER 3: HOUSE PRICE DyNAMICS I. THE NYKREDIT RELATION.
The simple house price relationship, i.e. the Nykredit relation, is presented
and formulated for a single time line. The definition of a scenario tree is
presented. The one dimensional results are extended to a scenario tree
structure and the results are investigated.

CHAPTER 4: TIME SERIES AND ECONOMETRIC THEORY. Before mov-
ing into more evolved and applied house price models a listing of the basic
time series and econometrical definitions and methods are presented. The
chapter gives a discussion on the relevant topics providing examples when
necessary to demonstrate usability.

CHAPTER 5: HOUSE PRICE DyNAMiIcS II. THE MONA MOoDEL. The
more complicate House price model, adapted from the MONA model, is
introduced. Numerous topics regarding the model are discussed such as
data handling, theoretical derivation, parameter estimation and prediction
capabilities. The chapter ends on a short discussion of the weaknesses of
the model and the problem with out-of-sample data.

CHAPTER 6: APPLYING THE MONA HOUSE PRICE RELATION. Matters
regarding aggregation of house price change, how to deal with missing ex-
planatory data in the out-of-sample prediction and the estimation of the
prediction error for out-of-sample forecasting.

CHAPTER 7: HOUSE PRICE DyNAMICS III STATISTICAL MODEL. A new
model is presented by modeling the data as is, i.e. dropping the long term
economic intuition embedded in the MONA presentation. The MONA
error-correction model, presented in Chapter 4, is used for the model.

CHAPTER 8: VALIDATION AND RESULTS. The models are compared, first
as single path models and later by inputting interest rate scenario trees.
Results are analyzed and discussed.

CHAPTER 9: CONCLUSION. The conclusion of the modeling is summarized
listing the pros and cons of the house price models, as well as a discussion
of usability and further work is presented.

APPENDIX: PROGRAMMING. The problem of implementing the scenario
trees in a programming language is discussed, presenting solutions both
in an object orientated language, i.e. C#, as well as a non objective
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orientated language, such as R and Matlab. Finally some examples of
scripts showing how to use the numerous R function written for analysis
of scenario trees and parameter estimation.

Part 1 MONA House

Price Data
A A
House Price Dynamic | i
MONA Fixed Model Error Correction Model
Benchmark Model i
Nykredit Report HPDI PRI
Interest Rate
Scenario Trees
v ) v
House Price Dynamic | § X
MONA Fixed Model Error Correction Model
Benchmark Model
Nykredit Report HPDI 721l HPDII
v ¥ v
House Price House Price House Price
Scenario Tree Scenario Tree Scenario Tree
Nykredit HPDI Fixed MONA HPDII HPDIII ECM
House Price House Price House Price
Scenario Tree Scenario Tree Scenario Tree
Nykredit HPDI Fixed MONA HPDII HPDIIl ECM
\ \ |
v

Mortgage Loan Portfolio
Optimization, Using Predicted
House Prices Trees

Figure 1.1: An abstract view of the work performed for this thesis.



CHAPTER 2

House Price Models

2.1 Introduction

The main objective of this chapter is to give an introduction to the theoretical
concepts used in economic house price models. As with most economic relation-
ships the house price model is controlled by the supply and demand equilibrium.
Both the demand and supply will be discussed in section ZZ along with showing
which variables are most relevant in each relationship. The equilibrium, created
by demand and supply, is also discussed in section where a visual example
of the house price relation is given. The effects market expectations can have
on the house price market are discussed briefly in section along with a short
description of real house price development in Denmark over the last 30 years.

2.2 House Price Economics Background

Most economic relationships depend on the equilibrium created between supply
and demand to determine the price of a product and house price models are no
exception. House price relations are usually formulated as stock-flow models,
where the term stock refers to the amount of real estates on the market. By
using supply and demand relationship for this stock the real estate price can
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be derived. The flow term refers to the flow or input of new assets added to
the stock. The rest of this section focuses on how the theoretical supply and
demand relation can be formulated for a stock-flow model.

2.2.1 Long Term Demand

A basic long term model for the housing demand can be seen e.g. in an article
by Barot and Yang [I] and also in a report from the National Bank of Iceland
] as

PH
HP —f( —» R YD, WA, D) (2.1)

where the terms on the right are the explanatory variables for the effect
or response vartable on the left. The response variable is housing demand
(HP). The explanatory variables are house price (PH), the long term interest
rate (R), disposable income (Y D), wealth other than real estate (W A), the
debt of individual or household (D) and the consumption deflator (P). In
economics inflation adjustment, or "deflation", is accomplished by dividing a
time series by a price index such as the consumption deflator. The deflator
is then representative of consumer prices at each time. In the MONA report
the consumption deflator is modeled especially. For further discussion see [[[ZIE
PH/P, or house price divided by the consumption deflator is therefore the real
house price.

In housing models it is usually assumed that tncome elasticity is one in the
long run. Income elasticity is defined as the ratio between the change in some
demand, housing demand in this case, and the change in income. If the income
elasticity is one, then the long run changes in income will result in proportional
changes in demand. The idea behind this correlation has a strong intuitive
nature since people will always need a place to live and what is more they must,
afford it, house price can therefore not increase more than proportional to wages
in the long run. Empirical grounds for this assumption can be seen in MONA
model from the Danish National Bank [IIZIE Making use of income elasticity
constraint, the house price formula from Eq.(2J) can be expressed as

HP ( PH WA D ) (2.2)

vypD "\ P’ " YD YD

where the income elasticity has been applied to both W A and D, since these
two variables also have a long term elastic relationship with disposable income.

1On page 96 the components that make up the consumption deflator are described in detail.
20n page 43, in the MONA model [I2], Chart 11.3.1 it is shown that Real disposable income
as a ratio of stock of houses has been approximately 1 the last 30 years in Denmark.
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Isolating the real house price term (PH/P) from Eq.[Z2) gives

rH <HD WA D)

P YD’
which is sometimes called the inverted demand function. Eq.[3) describes

the development of house prices in the long run, derived from the demand
relationship in Eq.( ).

2.2.2 Long Term Supply

The fundamental assumption made concerning the flow of new assets into the
housing market is by use of a concept called Tobin’s @, see Barot and Yang [I].
Tobin 's Q describes the ratio between the value of certain assets and the cost
of replacing those assets, or construction cost in the case of the housing market

PH asset prices
Q=755 = (2.4)

PB  construction cost

In the long run the Q should have an equilibrium of around one. If Q>1 there
is an incentive to build more houses, since market value of the assets is higher
than the cost to build new assets per stock of houses. If Q<1 residential invest-
ment, will decrease. According to Barot and Yang using Tobin’s QQ along with
incorporating interest R, also known as the cost of finance, gives the relationship

IH
—r = h(Q.R) (2.5)

which is called the Augmented Tobin "s model of housing investment. In
Eq.@3), IH and H represent housing investment and stock of house, respec-
tively. TH and H are measured in monetary value, price adjusted to some fixed
point. The assessment of IH and H differs between countries, the estimation
for Denmark can be seen in Lunde [R]H

If Q in Eq.([ Z3) increases, housing investment also increases. This can easily
be seen from the definition of Tobin’s Q given before, i.e. an incentive for
house builders is present since Q>1. If interest rates go up, on the supply side,
housing investment will decrease since house builders need funding and interest
rates influence their decision of construction.

The development of stock of houses, i.e. the supply of houses is given with the
following error correction form

HS =1H + (1 —6)H,_, (2.6)

3Box B on page 8.
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where the supplied stock of houses (H®) comprised of new houses , i.e. housing
investment (I H) together with last periods stock of houses (H;_1) after depre-
ciation (). More precisely, the supply of houses is the stock of houses from last
period adjusted for depreciation plus the housing investment.

2.2.3 Equilibrium

The fundamental equilibrium relationship in the housing market is created where
HP = H = H¥, i.e. when housing demand HP | also known as the wanted stock
of houses, is equal to the supply of houses H®. There is however a considerable
lag in the supply side since it takes some time to adjust from when there is a
surge in demand until the flow is delivered. In the interval when the supply is
working on increasing stock it is normal for house prices to go up, to maintain
the equilibrium. This can be best explained with an example.

ExAMPLE 2.1 (EXAMPLE OF EQUILIBRIUM)

Figures 2l and show two possible situations on a housing market. Figure
[Tl shows an equilibrium situation where the y-axis describes the price of houses
(PH) and the x-axis shows stock of houses (H). Equilibrium is at point A where
the price is PH = PH* = PB and the stock of house on the market is H = H*,
i.e. where the demand and supply lines intersect. To account for the lag in
supply there are three supply lines. The supply for the short term horizon is
completely vertical to represent that no flow is delivered in the short term. For
the medium term demand some of the flow initiated by the surge in demand has
been delivered and finally the long term demand when all the requested houses
have been delivered.

In Figure there has been a shift in demand. Demand line D has shifted
upward and the new demand is now described by the line D*. In the short
term the shift in demand causes an increase to the price PH**, to maintain the
equilibrium the prices rise since demand has increased while there is no supply
to meet the new demand. In this new equilibrium point B there is a strong
incentive to start building houses, i.e. Q >1.

Looking to the medium term supply curve the supply has managed to partially
satisfy the demand, resulting in a decline in prices to PH*** along with a
increase in stock of houses to H**, i.e. the delivered supply initiated by the
demand shift. At the new medium term, equilibrium point C, there is however
still an incentive to build houses since asset prices are higher than construction
cost, i.e. Q>1. Looking to the long term supply response, the supply has
serviced all of the demand, and the prices have returned to the initial value,
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PH
Medium Term Supply (MTS;
Short Term Supply (STS)
* Long Term Supply (LTS)
PH =PB
Al
H H

Figure 2.1: Shows a housing market in equilibrium at point A. The x-axis is the stock of
houses H while the y-axis show the house price PH. Equilibrium is at the point PH* = H*.

PH
MTS
STS
- B
PH™ | NG Y )
e R :
. LTS
PH = PB —
A N N
H* H** H*** H

Figure 2.2: Shows the effects of increased demand on the equilibrium, figure adopted from

.

PH = PB, resulting in Q=1 and new equilibrium point £ with stock of houses
at H***.
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The example above assumes that there is a sufficient supply of land for con-
struction. According to the Icelandic National Bank [4] if land for construction
is severely limited a permanent shift in the supply curve would take place and
the long term equilibrium should take place at a higher price, e.g. C' in Figure
2.2

The short term supply is said to be completely inelastic, i.e. vertical, since the
immediate supply of houses compared to the existing amount of houses on the
market is negligible. The long term supply is considered completely elastic,
i.e. horizontal, because Tobin’s Q controls the long term equilibrium, i.e. in
the long term an equilibrium will be achieved at Q=1. Recall that elasticity
measures the ratio of change between two elements.

Because of the steepness of the short term supply curve house prices are expected
to oscillate greatly, especially if the demand curve is also steep. The dynamic
nature of the system indicates that new changes in demand will usually have
occurred before the supply flow from the previous change have arrived. This
leads to an ever changing house price.

The power that interest rates have in this equilibrium is interesting. Interest
rates have a dissuasive effect on both sides of the relation. For example high
interest rates have a repelling effect on buyers on the demand side and also on
contractors who need capital for their constructions on the supply side. There-
fore it is obvious that the interest rate is an important factor in house price
modeling.

The theoretical model above provides the macro economic long term relation for
both the supply and demand side of the house price market. Applying the theory
to data to get a viable applied house price model is however more complicated
and requires the use of econometric methods, to capture the short term dynamics
of the data. A well known problem with economic data is that it is often non-
consistent with time and a limited amount of data is available, which causes
further difficulty when modeling. The road from theory to application can often
alter models drastically. However, the same main factors are always present in
one form or another. The process of moving from theory to application in house
price models is discussed further in section B4l
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2.3 Market Expectation

Market expectations deserve special attention. The influence of market expecta-
tions on house prices is very hard to model. Usually market expectations should
not present a problem in house price modeling since the market usually makes
use of the information at hand, the factors mentioned before, which describe the
market at each time. However, at times investors believe that the market has
some untapped potential, or they expect it to rise even more and try to "ride"
the rise to the end which is also known as herd behawvior. This can result
in price changes which are inconsistent with the values of the other variables.
This kind of behavior can in the long-run lead to the creation of a house price
bubble, which is a price increase not founded by the data believed to describe
the development of house prices.

Recently in Denmark there has been a long run of rising real house prices,
where before the market had behaved in cyclical periods, see Figure The
development of real house prices the last ten years or so has lead to an increase
in discussion whether a house price bubble exists in the Danish housing market,
or certain specific parts of it. Bubbles are quite hard to detect and the full
extent of them is often not known until after they burst. A burst is when the
prices return to "normal" behavior from their over inflated state usually with a
sharp decline. According to Lunde [§] the Danish housing market shows some
signs of a housing bubble in some specified field of the housing market, such as
urban flats and summer houses. This topic of herd behavior will be revisited
when forecasting for out of sample house prices in subsection 611
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Development of Real House Prices

100 110 120
1 1 |
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Figure 2.3: The development of real house prices the last 30 years in Denmark. Notice the

break from the cycle around ’97.



CHAPTER 3

House Price Dynamics |
Modeling the Nykredit
relationship

3.1 Introduction

In this chapter a simple benchmark relation for a house price dependant solely on
interest rates will be formulated. Along with modeling the interest relation, the
scenario tree structure which will be used through out this report is introduced.
In section a short account is given of the simple relation which will be
modeled in this chapter. In section the simple interest relation is applied
to a one path, i.e. a single time line scenario, to better realize the dynamics of
the relation. Section BAlintroduces the scenario tree concept along with a brief
comment on the application of such a model. In section B3 the one path case is
expanded to the scenario tree case. Finally in section B the model is compared
to a simpler model, as well as giving examples of house price trees.
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3.2 The Nykredit Relation

This first relationship between interest rates and house prices will be modeled
and implemented to a trinomial scenario tree. The relationship used here is
based on a very simple interest only relation, taken from a report published by
Nykredit in May 2006 [10], which states:

1% 7 in short rates, 5% | in house prices after one year;
11% | in house prices after two years;
Nykredit result:
1% | in short rates, 5% 7 in house prices after one year;
11% 7 in house prices after two years;

This is a very simplified model where the only cause of changes in house prices
is a change in interest rates, i.e. the only explanatory variable is change in
interest rates. Although the relation is simple it will give a good idea of how to
model more complex house price scenario trees and the programming done for
this model will easily be extended to more complex models.

3.3 Modeling for one Path

Initially the Nykredit house price relation was considered as a single path re-
lation, that is on a one dimensional time line. At each time on the time line
there is a node holding observed and predicted information. Each node has a
number, period, house price and interest rate. The modeling involves developing
a relation for house prices based on interest rates and house prices from past
periods, this sort of formulation is also known as a recursive relationship.

To calculate the effect of interest rate changes in the house price a few variables
are needed. Firstly the change in interests rate between years is defined as ASR;.
More precisely, the interest rate change between any two points at time=¢ and
time=t — 1 can be expressed as

ASR, = SR, — SR;_, (3.1)

The A operator is called a difference operator and will be discussed further in
section Two other variables are also defined to express the change in house
prices, i.e. the change after one year (OneYearEffect;) and the change after two
years (TwoYearEffect;). These two house price changes are expressed as follows

OneYearEffect; = —5HP,(SR; — SRy—1) = —5HP, - ASR; (3.2)
TWOYearEffectt = —].].H.Pt(SRt - SRtfl) = —].].H.Pt . ASRt (33)
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In Eq.2) and B3) it is assumed that interest rates are expressed as decimal
fractions. The minus is to account for the negative relationship between changes
in interest rates vs. changes in house prices. If there is a change in interest rates
between periods t and ¢+ 1 the effect of that change will not influence the house
prices until at time ¢t + 2. The base house price, i.e. the price the change is
applied to at each time, will be the house price from the previous period, e.g. at
period ¢ the base price is set to the result from period ¢ — 1. Eq.[82) and B3)
along with knowledge of how much start up time the house price vs. interest
rate lag needs, give the conditional formula for house prices, derived as

HP, ift <2
H.Pt - HPt_l —5HPt_1 'ASRt_l lft:2 (34)
HP,_1—5HP,_1-ASR;_1 —11HP,_5-ASR;_o ift>2

Eq.@&3) assumes that time indexing (t) starts from 0. H P, is the startup house
price, usually this would be set to 1 or 100. By using Eq.[B2) and B3)), Eq.B&3)
can be expressed as

HP, ift <2
HP, ={ HP;_1 + OneYearEffect;_1 ift=2 (3.5)
HP,_1 + OneYearEffect;_1 + TwoYearEffect,_o if ¢ > 2

The dynamic nature of Eq.([B3) can best be viewed by showing the first special
cases t € {0, 1,2} along with the first general case t = 3 on a node graph.

TwoYearEffect;

0

heYearEffect, QﬁéYearEffe

ASR, A SR,

Figure 3.1: Visual representation of the first 4 periods in the conditional relationship,
between interest rates and house prices, shown in Eq.(Z3).

Figure Blshows the development of house price for the first 4 periods, including
the special cases for ¢t < 3. At time 0 the only input is the initial house price
or HP,. Between period 0 and 1 there is a change in interest rate, this change
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will effect the house price both at time 2 and 3, the change in interest rates will
now be calculated at each period. At time 1 only H Py contributes to the new
house price HP;. The house price at time ¢ = 2 has the first interest rate effect
(OneYearEffect;) which is added to H Py.

HP, = HP, + OneYearEffect;

At time 3 the first general case occurs, which means that the lag for HP vs.
ASR is sufficient to give both the one and two year effects. At time 3 the
base, or input, house price is the one from the previous year or HP,. The
OneYearEffects from year two and the TwoYearEffect; from year one also affect
the house price at HP;3

HP; = HP, + OneYearEffecto + Two YearEffectq

which is an example of the general case, i.e. when t > 2.

3.4 The Scenario Tree

Extending the model, in Eq.[3), to a tree structure is relatively easy. The
relationship is still conditioned on the periods (¢) as it was in Eq.@3). To
account for the more complex recursive nature when dealing with the scenario
tree format a new index is added along with formulating the tree structure in this

section. The following notation for a scenario tree is borrowed from Rasmussen
and Clausen [I3].

A finite probability space (2, F, P) is defined where the outcomes are a sequence
of real-values (interest rates) over some discrete time period t =0,--- ,T. T is
also sometimes called horizon.

A scenario tree is generated by matching the probability outcomes w € Q to
the corresponding nodes n € N; at time t in the tree.

Each node in the scenario tree n € N for 1 <t < T has a unique parent node
denoted by a(n) € N;—1. Every node n € N; for 0 < ¢t < T — 1 also has a
non-empty set of child nodes denoted by C(n) C Nyy1.

The nodes at horizon, n € N, are called leaf nodes. The initial node n €
Ny is called the root mode. From each leaf node there is a unique recursive

relationship to the root node, each such relationship is called a path.

The recursive nature of the paths corresponds to the formula given in Eq.(&3),
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the parent-child relationship must therefore be included into the Eq.[@3) to
preserve the scenario tree dynamics.

3.4.1 Example and Implementation

A full scenario tree can be of different types, these types are decided by the
number of child nodes each parent node produces. For example if n = 1 is the
root node then |[C(1)| = 2 is a binomial tree while |C(1)| = 3 is a trinomial tree
and so on.

Using the tree type along with
t=0 =1 t=2 t=3=T the period t can tell how many

nodes are in an arbitrary set A}
by

A

Wil =lc)l" 0<t<T

The total number of nodes in
the tree N is therefore easily
found by summing over all pe-
riods.

N=> N (3.6)
t=0

Figure shows an example
of scenario tree with ¢ € {0, 1,2, 3}
and n € {1,--- ,15}. It can be
seen that the tree is binomial
since each node, except for the
leaf nodes, has two child nodes.
The set of leaf nodes is shown
Figure 3.2: Example of a |C(1)| = 2 tree or binomial as N7, the root node set, in-
tree. Here N =20 + 21 +22 423 =15 and T = 3. cluding only n = 1, is shown as

No.

S
/)

O
o ©
ONENG
ANA'
PO B OO

When programming the scenario tree structure, two different methods were
used. Originally an indexing method was applied in Matlab and R, which de-
pends highly on the parent relationship as well as The first version was
later expanded by using an object oriented approach. The programming part
of the scenario trees is given a thorough discussion in appendix [Al



House Price Dynamics |
18 Modeling the Nykredit relationship

3.5 Applying to a Scenario Tree

The path concept from the tree structure corresponds very well with the single
time line implementation given in Eq.(&3).

Nodes in the scenario tree structure inherit house prices from the node in the
previous period. This is the same as in the single path case, however since there
are now multiple nodes at each time the recursive nature is preserved through
the parent-child relationship as well as time. More precisely nodes inherit house
prices from the parent node in the scenario tree.

The house price is now expressed as H P, ; where the n index indicates the node
number and ¢, as before, indicates the period. Using the new indexing the tree
can be expressed as |Nr|, i.e. the number of leaf nodes, cases of a single path
type. For example Figure gives 22 = 8 paths where the top path, in term
of node indexes, is 1 — 2 — 4 — 8 and the bottom path is 1 —3 — 7 — 15. The
interest rate change between nodes is defined for the scenario tree as

ASRn,t == SRn,t - SRa(n),tfl 1 S t S T (37)

Recall that a(n) gives the parent of node n. Eq. B2) and B3) also become
node dependant, shorten the names to One and Two

Onen,t = —5HPn,t(SRn,t — SRa(n),tfl)
= —5HP,, ASR,, (3.8)

TWOn,t = —11HPn,t(SRn,t - SRa(n),tfl)
= —11HP, ;- ASR,, (3.9)

Finally the model stated in Eq.([B3), extended to the scenario tree becomes

HPn:l,t:O ift <2
HP, =< HPyu) -1+ Onegny 1 ift=2  (3.10)
HPa(n),t—l + Onea(n),t_l + TWOa(a(n)),t—Q ift>2

Where n stands for the node number, a(n) is the parent node of node n, a(a(n))
is the parent of a(n) and the grandparent of n. Initially at HP,=1 ;=0 a initial
house price is set, e.g. HP = 100. Because of the lag between interest rates and
house prices, an interest rate tree of length 7" will result in a house price tree of
length T+ 1.
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3.6 Data

In this section a brief discussion will be given on implement Eq.(BI0) for optimal
memory usage and comparability to the interest tree. Comparison of Eq.(BI0)
to a simpler form of the relation is done and tests performed to see the difference
between the two. The distribution of the node mass at time 7T is also inspected
for both methods.

3.6.1 Lagged House Price Tree

When it comes to programming the relation in B0 it is a good idea to shift
the house price tree, i.e. lag it by one time unit. Lagging the HP tree results
in it being the same size as the interest rate tree, i.e having T periods instead
of T + 1. The one period lagged version of Eq.([BI0) for the house price tree is
therefore achieved by moving the house price as follows:

One*(n,t) = —5HPq(n),t—1) ASR(mt) (3.11)
TWO*(n’t) = _11HP(a(n),t71) . ASR(n’t) (3.12)

So the first node is cut of and the HP tree moved back one period. The resulting
updated version of Eq.&I0) is

HPn:l,t:O ift<1
HP, ;=4 HPym)—1+ One'n; ift=1 (3.13)
HP,(n) -1+ One*ny + Two*n) -1 if £ >1

This is possible because of the H P lagged dependance on ASR and because the
tree grows by ¢’ as time passes, where ¢ is the tree type |C(1)] = ¢. Because
of the lag ASR results in ¢ identical house price nodes when using Eq.(BI0),
i.e. each price is replicated to ¢ child nodes. This replication is not ideal as it
makes the house price trees different from the interest rate trees in size as well
as being a waste in memory, since there are only ¢” unique nodes and ¢7 ! —¢”
are therefore wasted.

By shifting the tree back one period ¢”+!—¢” nodes are saved which is important
when calculating for big trees. In Figure an example of a full tree and a
lagged tree is given for a n = 3 and T = 3 interest rate tree. Both trees are
identical in shape and information, except for the redundant first node which
has been cut out in the lagged tree. This method of lagging is the one that was
applied. The HP trees will however be displayed with their right time horizon
and be noted as T + 1 trees.
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Not lagged, Eq.(3.10) Lagged, Eq.(3.13)
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Figure 3.3: Here is an example of the original tree, trinomial and T' = 3, using Eq.([I0) to
the left while the augmented version Eq.([EI3) is to the right. Both of these house price trees
are so called non-recombining path trees.

3.6.2 Recombining Paths vs. Non-Recombining Paths

A recombining path scenario tree, also known as a lattice scenario tree, is
where an up-down move in the scenario tree will result in the same value as a
down-up move. This is best explained by a visual example see Figure B4l for
a lattice tree, while Figure shows an example of a non-recombining path
tree, i.e. where a up-down move does not have to end in the same value as an
up-down move. Recombining trees are often used in derivative pricing theory,
as well as in dynamic programming and as decision trees. The main benefit
that recombining trees have over non-recombining trees is that they are more
recursively tractable and for the same horizon T have far fewer nodes than a
non-combining tree.

In the next subsection, lattice as well as non-recombining, interest rate trees will
be used as input to see what effect that has on the house price development.

3.6.3 AHP method

For contrast another method of modeling is compared to the relation in Eq.(BI0).
The method used for comparison describes the percentage change in house price
at each time irrelevant to the current house price at that time. The comparison
method will be noted as AH P, while Eq.[(I0) will be noted as HP. To get
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Figure 3.4: An example of a lattice or recombining tree, left panel is a binomial tree while
the right show a trinomial tree. Notice that up-down and down-up result in the same house
price.

the change from start to a certain period ¢ where 0 <¢ < T+ 1 the relation can
be expressed as

Aln’t == —5A5Rn’t A2n,t == —].].ASRn’t

0 ift <2
AHPy =4 AHP,p) -1+ Al ift=2  (3.14)
AHPa(n)ﬂtfl + Ala(n),tfl + AQa(a(n)),t,g ift>2

Which can be viewed as change from some beginning index I by
HP,; =1-(1+AHP,;) (3.15)

The difference between these methods in essence is that the A H P method shows
the change in house price from ¢ = 0 to times t = 1,...,7 4+ 1 in one step, i.e.
without updating the base at each time. A short example for the two methods,
given a vector of house price changes called Akp = [0.1, —0.1,0.05] and an initial
price of kpy = 1. Using the AHP and H P methods gives

AHP : HP:
kpy = kpo(140.1) = 1.1 kpy = kpo(1+0.1) = 1.1
kpa = kpo(14+0.1—0.1) =1 kps = kp1(1—0.1) = 0.99
kps = kpo(1+ 0.1 — 0.1+ 0.05) = 1.05 kps = kpa(1 4+ 0.05) = 1.04

This small example shows that the AH P method should give linear transfor-
mation of lattice interest rate trees resulting in lattice house price trees, since
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up-down result in the same value as down-up moves. The H P method is how-
ever more complex and has a compound nature. In the next subsection these
two methods will be compared by using interest trees.

House Price by Eq.(3.13) House Price by Eq.(3.14)

140 160
160
|

120

100
Interest Rates

House Price

80

60

Period Period

Lattice Interest Rate Tree Lattice Interest Rate Tree

0.12
0.12

Interest Rate
0.08 0.10
0.10

Interest Rate
0.08

0.06
0.06

0.04
0.04

Period Period

Figure 3.5: The upper half shows the house price trees. Upper left is the House Price tree
where change is based on the house price at each time. Upper right is the AH P relation with
I =100. The lower graphs show the interest trees where each change is a = 0.0075, resulting
in range of 0.1175 — 0.0425 interest at time 7.
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Figure 3.6: The upper half shows the house price trees. Upper left is the House Price tree
where change is based on the house price at each time. Upper right is the AH P relation with
I =100. The lower graphs show interest rate trees .

3.6.4 Comparison

The two methods, HP and AH P, were tested together using identical trino-
mial interest rate trees. Both lattice trees as well as more diverse and real like
interest trees were used as input. For the lattice tree interest rates can at each
time rise by a, fall by a or stay the same. The range (2a) of each change for the
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case shown in Figure is fixed to 2a = 0.015. From Figure it can be seen
that using the H P method at each time introduces a certain nonlinearity to the
relation, while using the AH P conserves the interest tree proportion to the H P
tree, giving a lattice house price tree. The median, the red dot, which marks
the center of density for the distribution of the nodes at time T + 1 has slightly
moved down for the H P case which is to be expected since compounding makes
it harder to increase the house price once it has declined. The results maximum,
minimum and median values can be seen in Tables Bl and B2 for the H P and
AH P methods respectively, when using the lattice tree.

t 1 2 3 4 5 6
Max  100.00 103.75 115.89 128.80 143.19 159.18
Med  100.00 100.00 100.00 99.55 99.55 98.56
Min  100.00 96.25 84.39 73.29 63.57 55.14

Table 3.1: The maximum, median and minimum house price values for each period, using
the HP method corresponding to Figure upper left panel.

t 1 2 3 4 5 6
Max  100.00 103.75 115.75 127.75 139.75 151.75
Med 100.00 100.00 100.00 100.00 100.00 100.00
Min  100.00 96.25 84.25 72.25 60.25 48.25

Table 3.2: The maximum, median and minimum house price values for each period, using
the AHP method corresponding to Figure upper right panel.

In Figure Bflthe input interest tree is a so called Mean reversion interest rate
tree. Mean reversion is based on the mathematical premise that the initial price
is not the mean but with time the process will eventually move back towards
the mean or in this case some average interest rate.

The results for the house prices in Figure show the same effects as the
previous comparison, i.e. the H P method reduces (damps) the down turn and
rises higher than the AH P tree. The median, for the H P tree, as before shows
that the HP tree tends to bring the center of node density down, which is
to be expected with the compounding effect. The median for AH P however
represents the center of the interest rates tree. The corresponding maximum,
minimum and median values, for each period, can be seen in Tables and
B4 for the AHP and H P methods respectively, when using the mean reversion
interest rate tree. In Figure B a histogram for Figure i.e. the house
price when using mean reversion interest rates, is shown. It can be seen from
the histogram how the transformation of the AH P is a linear transformation
while the H P skews the the node distribution downward, giving an upward tail.
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t 1 2 3 4 5 6
Max  100.00 102.65 110.53 116.64 121.41 125.16
Med  100.00 98.30 93.21 89.24 86.24 83.88
Min  100.00 93.95 75.94 61.95 51.07 42.55

Table 3.3: The maximum, median and minimum house price values for each period, using
the AH P method corresponding to Figure B upper right panel.

t 1 2 3 4 5 6
Max  100.00 102.65 110.58 116.98 122.34  126.78
Med  100.00 98.30 93.23 89.38 84.58 82.18
Min  100.00 93.95 76.22 63.73 55.79 50.54

Table 3.4: The maximum, median and minimum house price values for each period, using
the HP method corresponding to Figure B upper left panel.

AH P conserves the form of the interest rate tree, shown on the lower half, much
better.

To summarize, three observation about the house price trees have been noticed
from the above comparison. Firstly a sequence of downward changes in interest
rates will give a higher house price with HP than AHP, i.e. the HP shows
exponential growth while A conserves the interest change. A sequence of rises
in interest rates will give a dampened decline in H P compared to the AH P one
which again conserves the interest rate tree. Lastly the density mass of nodes
will move downward at horizon T'+ 1 for HP, while AHP will conserve the
interest rate tree density. All of these differences between HP and AHP can
be explained by the compounding effect when using HP. For short periods,
e.g. (T'+ 1) < 4, the AHP relation proves a good estimation to the HP
compounding relation. However as T' + 1 increases the difference between the
two also increase. The long term change of the leafs, given a lattice tree with
2a = 0.015, is shown in Figure As a, i.e. the change in interest rates,
increases so does the difference between HP and AHP.

3.7 Summary

The conclusion of this analysis is that the Nykredit relation modeled in Eq.(BI0)
is a rather crude relation for modeling the house price to interest rate relation.
The relation is probably not meant to run over many years with compounding,
without yearly correction to actual data. It is a good idea to plot the H P with-
out compounding, i.e. AHP as expressed in Eq.([I3) to benchmark Eq.(&I0)
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Figure 3.7: A histogram showing the distribution of the house price nodes at time (T+1)
for the trees in Figure BBl in the upper half. The lower half shows the distribution of the
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Figure 3.8: Shows the long term development of the leafs for the two ways of computing

house prices, given a lattice tree with 2a = 0.015.

to a linear transformation of the interest rate tree, when using the Nykredit
relation. In subsequent chapters a more sophisticated relation for house price
to interest rate relation will be inspected.



CHAPTER 4

Time Series and
Econometric Theory

4.1 Introduction

Before moving into statistical analysis of the MONA house price model in the
next section a few important concepts used frequently in time series and econo-
metric analysis are listed and discussed. Most of the definitions and examples
listed in this chapter are influenced or adapted from three time series books, i.e.
Madsen [9], Tsay [15] and Hamilton [3].

In section an account of basic econometric and time series concepts, needed
to understand the models and terms used in empirical modeling of house prices
is presented. Section B introduces two important time series models frequently
encountered in econometric and financial analysis. Section EE4] shows three well
known methods for estimating parameters in time series models. Finally in
section LBl methods of checking the quality of the estimated parameters are
introduced.
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4.2 Time Series Analysis

Economic time series data, as was mentioned in Z2 often has some non ideal
features making it hard to model, e.g. long term trends, periodic trends or even
more general time varying behavior. Series exhibiting this sort of behavior are
called non-stationary series, forcing a series to be "stationary" is therefore
important for analysis and modeling of the data. So called Weak Stationarity
, which will be noted as stationarity from now on, is formally defined as;

DEFINITION 4.1 (WEAK STATIONARITY)

A series {r;} is said to be weakly stationary of order k if all first k moments
are invariant to changes in time. A weakly stationary process of order 2 is simply
called weakly stationary.

If the mean and variance, the first two moments, are time invariant the series is
stationary. Stationary series can be evaluated with classical time series methods
and used to predict for future values.

Another definition used frequently is that of white noise

DEFINITION 4.2 (WHITE NOISE)

A series {&;} is said to be completely random or white noise, if ¢; is a
sequence of mutual uncorrelated identically distributed stochastic variables with
mean value 0 and constant variance o2. This implies that

pe=Ele]  of =Ve] =02

Ye(k) = Covler, ee46) =0 for k#0

To illustrate the stationarity along with white noise a small example is dis-
played, largely adapted from Madsen [IQ], showing a special case of a lag one
autoregressive process (AR(1)) also known as random walk.

ExAMPLE 4.1 (AR(1) - RANDOM WALK SERIES)
Let {e;} be a normally distributed white noise sequence where Ee;] = 0 and

see page 101
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Vie:] = o2. Let {e:} also be the input to dynamic relationship defined by a
difference equation as
ry = (,ZSTt,l + &¢ (41)

which then defines a new stochastic series {r;}. By successively substituting
Ti—1 = @ri_o +€4-1, Ti—2 = ¢ri_3 + E4—2,... and so on, it is seen that Eq.( I
can be written as

re=eit g1+ e ot Ple i+ (4.2)
From Eq.([32) it can be seen that
pr = E[r] =0

and )
o

=V = (4G ok )t = g (49)
conditioned that |¢| < 1. If |¢| > 1 the variance is unbounded and the series is
non-stationary, e.g. see Figure EEIl A special case is when ¢ = 1 where Eq. (1)
is the so-called random walk series, which is non-stationary.

The bounded variance in Eq.[3) is achieved by using the well known geomet-
rical series

o0

1
7 = " =14zt a4+ for |z| < 1. (4.4)
-z

n=0

The coefficient ¢ acts as the memory of the process. For ¢ values close to 1 there
is a long memory, small values of ¢ result in a short memory. The memory of a
process is usually examined by the autocorrelation function (ACF), which
gives a indication of how correlated, dependant, a series is to previous, lagged,
values.

ExAMPLE 4.2 (ACF AND AR(1))

Consider the series shown in Figure Bl where four AR(1) series with ¢ €
{0,0.5,0.9, 1} have been simulated with white noise a; ~ N(0,1). The auto-
correlation functions for each of the four different series is displayed in Figure
T2 For ¢ = 0 the series becomes r, = a; i.e. only white noise. The ACF
for ¢ = 0, depicted in the upper left panel, shows that there is no dependency
on previous values of 7, i.e. this process is without memory. The upper right
and lower left panels show AR(1) with ¢ = 0.5 and ¢ = 0.9, respectively. The
increasing height of the stems with increasing lags, i.e. previous observations,
indicates that the two series are more dependant on previous values. The lower
right panel shows the random walk with ¢ = 1 which is non-stationary, notice
how dependant the value at time ¢ is to previous, lagged, values.
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Figure 4.1: A simulation of a AR(1) process as described in Example B with different
levels of the coefficient ¢. The sequence {a+} is white noise where a; ~ N(0,1)

The random walk model is listed in detail since it is considered as the model for
many financial and economic series. The random walk series is also a perfect ex-
ample of a special kind of non-stationarity called unit-root non-stationarity.
Given the unit-root non-stationary random walk series

Te=Ti—1 + ay

it is seen that the current value r; is based completely on the last value r;_1
plus the value of the equally likely plus/minus effect from the white noise (a¢).
See Tsay [T for a more detail description of unit-root non-stationarity.

An important operation used when analyzing unit-root non-stationary time se-
ries is called differencing. The difference operator A is defined as

A?"t =Tt —Tt-1
i.e. observing the change in level r; instead of the level.

ExAMPLE 4.3 (AR(1) DIFFERENCING)
Given the random walk process from Example Bl (¢ = 1) and taking the

2 See chapter 2.7
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Figure 4.2: Autocorrelation functions for a simulated AR(1) process with different values of

¢. Shows the different memory of a process.

difference of the left side of Eq.([ ) it becomes

Tt —Tt—1 =Tt—1+ A —Tt—1
Tt —Ti—1 = Q¢

AT’t = a¢

By differencing the unit-root non-stationary series {r;} it becomes a new series
pt = Ar, which is stationary. Removing the aggregation effect and giving the
random effect at each time.

In the example above the series became stationary after one level of differencing,
however this does not always apply.

DEFINITION 4.3 (INTEGRATION (d))
A series which is non-stationary but becomes stationary after d levels of differ-
encing is defined as being integrated of order d noted as I(d).
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The AR(1) series in Example B3 is therefore said to be I(1), or integrated of
order one.

The terms above are all fundamental definitions in basic time series analysis
and econometrics, needed to understand the rather complex nature of the ap-
plied house price model inspected in the following chapters. In the following
subsection the error correction model (ECM) which is used to model many
macro-economic relationships is presented.

4.3 Error-Correction Model (ECM)

For two stationary variables r; and z;, where z; is the response of r;, e.g. z; is
house prices and r; is interest rates. Then the following can be assumed:

2t =04 0z_1 + ¢ort + O174—1 + €4 (45)

If £, is assumed white noise independent of z;_1,z;o,... and r¢,74_1,... then
Eq.(&3) is sometimes known as an autoregressive distributed lag model
(ADL). To estimate the parameters in the model, (0,6, ¢o, ¢1), ordinary least
squares (OLS) can be used, see section LTl for OLS. What is however of more
interest is another form of ADL or the so called error-correction model
(ECM). Following is the deduction of the ECM along with a discussion of the
model properties, the deduction has been adopted largely from Verbeek M:Gﬂ

By looking at Eq.([3) it is seen that z, is described by lagged values z;_1 and
by the change in r;,. Taking the partial derivative of z;, 2441 and 2,12 with
regards to r; gives:

8zt/5‘rt == ¢0
82,}4.1/87} = 9 8Zt/87”t + ¢1: 9¢0 + (bl
82}4.2/87} =40 8Zt+1/87at = 9(9% + ¢1)

Continuing on like this and summing up over ¢,t+1,t+2, ... a long run multiplier

3See e.g. chapter 9.1.
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can be derived or:

(o]
athra
87"t

= ¢+ (0po + ¢1) +60(0do + 1) + - -

a=0
=do+ (14+0+60%+--)(0¢ + ¢1)

o + P1
1-40

where 0] <1 (4.6)

The long run multiplier described by Eq.(H) was gotten by using the geometri-
cal series in Eq.([3]). The relation in Eq.([ 8] therefore describes the long term
change in z; for a change in r;.

There is another way of writing the ADL model described in Eq.(3), by sub-
tracting z; from both sides in Eq.(3) it becomes

Az =0 — (1= 0)zi—1 + PoAri + (do + ¢1)ri—1 + €&

or as the error-correction model (ECM)

Az = ¢oAr; — (1= )21 — o — yre_1] + & (4.7)
where
= Po+ o1 and o= —6
1—6 1-0

Eq.[ D) has two main terms. The first term, i.e. the dynamic part is described
by ¢oArs. The second term, known as the error correction term, includes the
levels inside the brackets, i.e. the actual levels not the differenced values. The
terms inside the bracket maintain the long run equilibrium for z;. The ECM
implies that z; is decided by the change in 7, adjusted by the error correction
term in the bracket, which speed of correction is controlled by (1 — 6).

In subsection the long run multiplier is applied to the house price model
to derive what effect a small change in the variables, corresponding to r; here,
have on the response variable, z;, in the long run.

4.4 Parameter Estimation

Given data and having prepared a model for the data, the model coefficients,
or parameters, are estimated so the model describes, fits, the data as well as
possible. There are different ways of performing parameter estimation. In this
section two of the main methods, Ordinary Least Squares (OLS) and Maxi-
mum Likelihood Estimation (ML), are discussed in subsections EEZ] and

Y
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respectively. In subsection a special case of OLS is described where linear
constraints are implemented on the coefficients (ROLS). The derivation of the
estimator for ROLS is largely borrowed from Judge et. al. [6].

DEFINITION 4.4 (LINEAR REGRESSION MODEL)
The linear regression model, in matrix form, is expressed as

y=XB+e¢ (4.8)
where
[y ] [1 211 212 - Tk
Y2 1 xo1 ®2 -+ T2
y: s X:
L Yn | L 1 21 Tp2 o Tk
i Bo 1 [ €1
B €2
B = . and e = .
L ﬂk i L €n

where y is a (n x 1) vector of observations also sometimes noted as the re-
sponse variable, X is (n x p) matrix of levels of the independent variables
also noted as the design- or explanatory matrix, where p = k + 1 i.e. the
number of regressors k plus the intercept (5p). The (p x 1) vector B holds the
regression coefficients and € is an (n x 1) vector of random errors, white
noise.

4.4.1 Ordinary Least Squares (OLS)

Isolating the error term from Eq.([H) it can be rewritten as
e=y-XpB

A vector of least square estimators ,@ is sought so as it minimizes the following
function S(8)

S(B) =) ef =ce=(y—XB)(y— XP) (4.9)
i=1

Where prime (') indicates the transpose of a vector or matrix. By multiplying
the matrices in the brackets, keeping in mind the fundamental matrix rule of
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(AB)' = B'A’, Eq.E3) becomes

SB) =y'y-yXB-B'X'y+08'X'XP (4.10)
=y'y-20X'y+03X'Xp3 (4.11)

The step between Eq.(I0) and Eq.(II) is explained by
yXB =y (X)(B) =y (BX) = (BX'y)
and the fact that the term 8’ X’y is a scalar as can be seen by
Ixn-pxn-nxl=1xn-nx1=1

Taking the derivative of Eq.[II) with regards to 3 gives

aS a / ! ! ! !
%z%(yy—QﬁXy+ﬁXXﬁ)
8 / ! ! !
Z%(—QﬂXy+ﬂXXﬁ)

= 2X'y+2X'Xp3

Setting the derivative 05/93 equal to zero, inserting 3 = B and solveing for 8

5 = 2X'y+2X'XB=0
9B ls=p
X'XB=X'y
(X'X)'X'XB=(X'X)"'X"y
B=(X'X)"'X"y (4.12)

Eq.@XD) is the ordinary least square estimator (OLS) of 3, i.e. B holds the
estimated coefficients to each of the factors in the relationship between X and
y, minimizing the second norm of the estimated standard error. An example of
estimation of parameters by use of OLS in a economic relationship is shown in

Example 241

While the OLS method is easy to use and effective it is not as general as the
Maximum Likelihood method mentioned in subsection EZ3 Furthermore OLS
works only for problem that can be written on the regression model format.

ExAMPLE 4.4 (EXAMPLE OF OLS)
Imagine a typical economic relationship of the following form

Qi = ALYK) e
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where @, is output, L; is labor, K} is capital, A is some constant and &; is the
error term, independent of K; and L; over the time period ¢t € {1,...,n}. The
parameters that are to be estimated are v and «. Taking the logarithm (In) of
Q; gives
In(Q:) =In(A) + aln(Ls) + v In(Ky) + &
It is easy to see that this relation can be transformed to the regression format
as
Yt = Po + 1w + Baxeo + &

or in matrix form corresponding to Eq.([L8) as

y=XB+e
where
i ln(Ql) 1 ln(Ll) hl(Kl)
In(Q2) 1 In(L2) In(Kz)
Y= ) XZ[I, Tt1, wtz]z :
n(Qy) 1 (L) In(K,)
© In(A) i;
B = « and e =
L 7
En

and can be solved for 3 by using Eq.(ETZ).

4.4.2 Restricted Least Squares (ROLS)

In this subsection a special case of OLS is discussed. When a linear constraint,
one or more, has been imposed on the coefficients in the 3 vector the Restricted
Ordinary Least Squares (ROLS) method is used for estimating 3.

The objective function S(8) given in Eq.[3) is the same except now it must
be solved subject to the constraints presented as

R3=r (4.13)

Where R is a (¢ x p) matrix, where p is the number of parameters, while ¢ is the
number of constraints, 7 is a (¢ x 1) vector of scalars. A coefficient vector 3* is
sought so as to minimizes S(3), in Eq.([@3), subject to the constraints imposed

on 3 expressed in Eq.[EI3).
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If the constraints in Eq.([I3) are linear a Lagrange optimization process may
be applied such that

L(B,A\)=€e'e—XN(r— Rp3)
=y'y—-28X'y+08X'X3-N(r—- Rp) (4.14)

Where the Lagrangian multiplier A is a (¢x 1) vector. The derivative of Eq. (T4
w.r.t. 3 and A is taken, and set to 0, to find the optimal value of 3

a_g‘ ; = 2X'y+2X'XB*+ RA" =0 (i)
B=B* A=A~
o (4.15)
8L‘ — RB* =0 i
gL =-r+RB* = (42)
B=B* A=A~

Using (i) and (ii) to solve for A* it can be seen that
A= 2RX'X)'R) }r - RIX'X) ' X'y)
or if using the OLS result 8 = (X'X) ' X'y
A= 2(R(X'X)"'R)"'(r — RB) (4.16)
Combining Eq.([@IH) (i) and Eq.@IH) and solving for 3* gives
B* = (X'X)"'X'y+ (X'X) 'R(R(X'X)"'R')"}(r — RB) (4.17)
Or finally by using the OLS result again it becomes
B* =B+ (X'X)'R'(R(X'X)"'R)"(r — RB) (4.18)

which is the restricted ordinary least squares estimator giving the esti-
mated values of 3*.

ExAMPLE 4.5 (RE-PARAMETERIZATIONS VS. ROLS)
Recall the regression model from Example B4 i.e.

In(Q:) =In(A) + aln(Ls) + vIn(Ky) + &

Imagine now there exists a relationship between L and K, i.e. if both K and
L increase with e.g. 10% then so will Q, (this is known in economics as a
Cobb-Douglas function). This relation is equivalent to the constraint a4~ = 1.
Since this linear constraint is not very complex there is a re-parametrization
alternative to the ROLS method.
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Using re-parameterizations : Using £ instead of 5. The constraint can be
expressed as v = 1 — « giving a new regression model as

In(Q:) =In(A)+aln(L) + (1 — o) In(K) + &4
In(Q:) — In(Ky) = In(A) + a(In(L) — In(Ky)) + &4

which can be expressed as

Yo =& +&1wn + &

where
[ In(Q1) — In(K;) 1 In(Ly) —In(K7)
hl(QQ) — hl(KQ) 1 hl(LQ) — h’l(KQ)
Y= . ) X=[1I zu]= . .

| In(Q,) — In(K,) 1 In(L,) —In(K,)

€1

&= _ ln(aA) and e = 6,2

L N

Solve £ = (X'X)~' X'y where E[¢] = €.

Using ROLS 3*: Since there is only one constraint R is a (1xp) vector, p = 3,
and r only a scalar. The constraint equation Eq.([I3), R3 = r, becomes

In(A)
[0 1 1]] a |=1
Y

and can then be solved for 3 by Eq.[@IR)

~

B =B+ (X'X) 'R (RX'X)'R)"\(r - RB)

In Example EEQlit can be seen that the re-parametrization method is much eas-
ier to handle for one constraint. However, for a higher number of constraints
(q), regression coefficients (p) or both, the re-paramiterization method quickly
becomes difficult to implement while the ROLS method with the matrix repre-
sentation is consistent in implementation.
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4.4.3 Maximum Likelihood (ML)

Mazximum likelihood (ML) estimation is a more general method of parame-
ter estimation than that of OLS. The downside to using ML is that it can
be complicated to derive the so called Likelihood function which is optimized
for the estimated parameters. ML can be used to solve for coefficient in very
complicated relations, using numerical optimization methods.

Maximum likelihood estimation was not used in this thesis but represent an
interesting alternative to the OLS and ROLS methods and therefore warrants
mentioning. For more information on ML estimation see Madsen m, for an
introduction, and Hamilton m for a more advanced treatment, including opti-
mization methods.

4.5 Properties of the OLS and ROLS Estimators

Given an estimated B coefficient, the fitted data (g) can be expressed as
§=Xp (4.19)

The residual (e), i.e. the difference between the fitted data and the observed
data is denoted as
e=y—79 (4.20)

it can be seen that if Ee] = e then E[3] = B3 so the condition that the residual
behave like €, i.e. white noise, is crucial if 3 is to be a correct estimation of 3.
See subsection 0] for more on residual analysis.

The variance of the residual is often called the error or residual sum of
squares (0?), it has n— p number of degrees of freedom, where n represents the
number of observations as before and p is the number of regression coefficients
plus the intercept, as before. The o2 is estimated by

n
Z(?ﬁ —9i) )
52 — =l - &€ (4.21)
n—p n—p

The covariance matrix is a symmetric matrix representing the variance be-
tween different regression coefficients 5; and §; at the (ij) and (ji) elements in

4section 2.2.2
5Chapter 5
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the matrix. The diagonal, of the covariance represent the variance of estimated
regressor 3; where 1 <14 < p. The covariance matrix for OLS is expressed as

Y5=0%(X'X)"! (4.22)
The covariance matrix for the restricted case ROLS is
5 =0’ MH(X'X) M (4.23)

where

M =T-X'X)"'R(RX'X)"'R)'R
The proof for the OLS covariance matrix can be seen in Madsen |E|ﬁ The ROLS
covariance matrix, which is more involved, can be found in Judge et. al ||Eﬂ

4.6 Goodness of Fit

The Goodness of fit is a measurement of how well the fitted data using the
estimated coefficients 3 manage to represent the data. One measurement of
goodness of fit is R? or R-squared calculated as follows

R? — i=1
Z(yi -9)°

=1

where ¥, also know as the sample mean, is calculated as §y = (3°1", y;)/n. The
goodness of fit estimator R? gives a value in the interval 0 < R? < 1, where
0 and 1 represent no and perfect correlation between the fitted data and the
observed data, respectively.

The R? statistic is however biased to the number of regressors, i.e. the fit will
become better as the number of regressors is increased. therefore another way
of calculating the fit is R(Qldj adjusted R square which adjusts the statistic for
the number of regressors used by taking p the number of regressor into account.

-1
2 _q_ (I 1—R2
Ragi (n—p (1-R?)

The R? is not without fault and must by used with care and is not to be used as
the only measure of goodness of fit or validation. For example R? will converge
to one for a fit of an unit-root non-stationary processes, modeled directly, giving
a good fit but useless parameters for forecasting.

6See page 35.
7See pages 238-239.



CHAPTER 5

House Price Dynamics ||
The MONA model

5.1 Introduction

In this chapter an actual house price model will be inspected, duplicated and
used for prediction. The model under inspection is the house price relation from
MONA-a quarterly model of the Danish economy [12], or the MONA
model as it will be referred to here after. The MONA model was developed
by Danmarks central bank, the Nationalbank, as a macro-economic model to
forecast numerous economic relations and parameters. One of the many things
the MONA model looks at is the development of house prices in Denmark. The
idea behind macro models like MONA is to get a complete picture of how the
economy works.

In section X2 a discussion of how the model is conceived is given, as well as listing
a few of the well known elements and relationships that influence house prices.
Section describes the data used in the house price model, as well as giving
an example of how the non-stationarity of the data can be handled. Section 4]
deals with the modeling aspects of the relation from theory to application, the
constraints in the model are also explained. In section the results for the
parameter estimation are presented, as well as the residual analysis for the fit is
conducted. Section 8l focuses on how to use the model for prediction, as well
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as giving a short discussion of how general the MONA house price model results
are and finally estimating the long term coefficients in the error-correction model
format.

5.2 The MONA Model Background

On pages 41 to 52, in the MONA model [1Z], a relation for the Danish housing
market is presented. The MONA house price relation is derived by using a the-
oretical model as a basis, while adding more elements where deemed necessary
by the analysis of house price data.

Much like the model presented in section EZ21the MONA house market model is
split up into two parts. The first part is a house price relation which is the same
as the demand side in section The second part is a model of residential
investment, equivalent to the supply side in section As in the theoretical
model the supply flow, in the MONA model, is controlled by the ratio between
house prices and construction cost, also known as Tobin"s Q, or:

"On a fall in interest rates both house prices and housing construc-
tion go up, and the expanded supply of housing gradually forces
house prices back towards equilibrium where they correspond to con-
struction costs.'fl

Much like the theoretical relation given in section 2 the main factors for house
price development in the MONA model are considered to be interest rates,
income and stock of houses.

Using data from the Danish economy from 1971 to 2001 it can be seen how
interest rates, house prices, stock of houses and income have progressed. A
graphical representation of the relationship between interest rates and house
prices can be seen in Figure BZIl The relationship between negative change in
interest rates has been slowed down to show yearly change instead of quarterly
change, i.e. the processes have been differenced 4 time periods to show corre-
lation better graphically. The one period differenced correlation is p = 0.6334,
where —1 < p < 1, one being completely positively correlated, minus one be-
ing completely negatively correlated and 0 showing no correlation.  Another
fundamental relationship between house prices, income and stock of houses is
displayed in Figure A ratio between income and stock of houses is calcu-

'page 42, MONA-a quarterly model of the Danish economy (1w
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Figure 5.1: Shows the correlation between negative change in interest rates (red, right axis)
and change in house prices (black). The data is differenced 4 periods to show the change
better visually.
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Figure 5.2: Shows the correlation between real disposable income over stock of house(red,
right axis) against change in house prices (black).

lated and plotted against change in house prices. The correlation between these
two time series is p = 0.4095.

Figure Bl shows that there is clearly a negative correlation between changes in
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interest rates and change in house prices. Figure shows on the other hand
that there is also a correlation between change in house prices and income as
a ratio of stock of houses. What is more, Figure shows that a high income
ratio is usually followed by increases in house prices.

By inspecting the data as above, along with knowing in theory which are the
main factors in house price modeling, the National Bank of Denmark has created
an applied house price model whose derivation and assumptions are listed in the
next sections.

5.3 The Data

This section is divided into two parts, firstly the data used is presented, giving
a short description for each component. Secondly an example of how the series
are analyzed from a time series point of view is shown.

5.3.1 Description of Data

Following is a listing of the components used in the house price model, for com-
parison the theoretical house price model, Eq.[Z3)) from section Xl is repeated
as

- N vyo® vp vD

The data used in the MONA model is as follows

PH (HD WA D)

{kp;} : This term describes the house price at time ¢, in Eq.(Z3)) this is equiv-
alent to PH.

{rente;} : This is the interest rate term at time ¢, i.e. bond yield after tax.

{ssats;} : The corresponding tax term for the bond yield term rente; at time
t.

{pcp:} : This is the level of the consumption deflator at time ¢ recall the def-
inition for consumption deflator in subsection EZZ1l also the pcp term is
the same as P is in Eq.[Z3).

{ipv:} : This series represents the private investment at time ¢.

{ypd;} : Private disposable income at time ¢.
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{fwh;} : This is the stock of houses at ¢ which is noted as H = HP = H® in

Eq.@&3).
{dEkpe;} : The expected increase in house price from ¢ to t — 1.

{dpcpes} : The expected increase in private deflator from ¢ to t — 1.

The added terms rente; + ssats;, i.e. interest rate plus tax rate, are noted as
user cost and also referred to as {ibv, } in the MONA model. All these variables
are observed changes except for the last two (dkpe, dpcpe) which are internal
variables to the MONA model, i.e. they are estimated with other relations at
another place in the modef.

The data is available quarter-yearly from 1971-2002, however not all data is
available in this period and because of lagged data and differencing the so-
called tn-sample period, also known as training period and off-line period,
i.e. the period where the models parameters are estimated, is from 1974:¢1 to
1997:q4. The out-of-sample period, also known as the on-line period, used
for validation and prediction, is from 1997:¢4 to 2001:¢4.

A quick inspection of the level plots along with the autocorrelation functions
reveals that the processes shows signs of unit-root non-stationarity, i.e. a high
correlation to lagged values. The next section shows an example of how to
address the unit-root issue for the response series i.e. kp; (house prices).

5.3.2 House Price Data

As can be seen from e.g. Eq.([21l) a detailed house price model can include many
elements. Although many series are also used in the MONA model only one will
be shown here in detail i.e. the house price series {kp,} while similar methods
were applied to the other series when modeling the MONA model.

The In(kp;) series is depicted in Figure (a), along with the corresponding
auto correlation function in (¢). From the two graphs it can be seen how highly
correlated the present values are to lagged values. The two panels show that the
process has a long memory, which can indicate a unit-root behavior or trend
stationarity, which is when, using the AR(1) case for example, a constant has
been added giving
re = put + 0ry_1 + ay

where a; is white noise and pt is a constant having a drift effect on the model.
The drift effect can be estimated via OLS and removed to give the underlying

2 see MONA |[Z] Page 196 and 197 for the estimation of dkpe and dpcpe.
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process. The MONA report however uses the method of differencing, thereby
removing the accumulation of values and modeling the change A In(kp;) instead
of the level kp;.

In Figure (b) the one period change in the In(kp) series, i.e. Aln(kp), is
displayed. Figure (d) shows the autocorrelation function for the differenced
series. It is obvious how much the memory of the process has been decreased
by only one differencing.
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Figure 5.3: Log series of house prices (kp) from 1974:q1-2002:q1 : (a) log(kp), (b) time plot
of the first differenced series log(kp) (¢) sample auto correlation function for the log(kp) series,

and (d) the sample partial auto correlation function for the differenced series.

A more accurate way of locating unit-roots, other than differencing once and
viewing ACF plots, is by use of so-called Augmented Dicky Fullerf] tests
(ADF) which test whether a series is dependant on previous values with ¢ = 1,
i.e. if it has a unit-root, for more details of ADF see Tsay [[E5]H

Using the statistical software package R it can be seen that the test for unit-root
in In(kp) by the ADF method gives a Dickey-Fuller value = 1.6864 and p-value

3See e.g. the function adfTest () in package {fMultivar} in R.
4see e.g. chapter 2.7.
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= 0.9768, the p-value indicates that the hypothesis presented, in this case that
there is a unit-root, can be rejected with approx 2.3% probability, i.e. it can not
be rejected. If the series is differenced once the Dickey-Fuller value is —2.3078
with a p-value = 0.02214 indicating that the hypothesis of a unit-root can be
rejected with aproximately 98% probability, therefore it can be said that In(kp;)
is I(1), i.e. integrated of level one. Since there may be a unit-root in the levels
(In(kp:)) the first differenced levels (Aln(kp)) are modeled, the transformation
back to In(kp;) is performed by

n(kpe) = Aln(kpe) +In(kpe_1) (5.1)

Further discussion will be given on the aggregation of the modeled differences
in section

5.4 The Model

This section focuses on numerous practical and theoretical items needed to un-
derstand and use the MONA house price relation. In subsection B2l the the-
oretical model is stated and derived to an initial regression format, along with
some discussion of the constraints used in the model. The following subsection
summarizes the model components, or explanatory variables, used to evaluate
the models coefficients and presents the regression form of the model. Lastly
the applied form of the constraint is presented in format suitable for solving
with ROLS.

5.4.1 The Theoretical Model

Recall the house price relation presented in subsection EZZT] where the stock of
houses can be expressed as

HP = f< %, R, YD, WA, D> (5.2)

Similar to this relation the theoretical relationship for long term house price
development in the MONAH model is derived from the knowledge that the main
factors are income, interest rates and stock of houses. A long term demand
relation for the stock of houses in MONA is presented as

(5.3)

t
In(stock of houses) = In(income) — a - In ( USer cos >

consumer price

5See the MONA model page 43.
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It can be seen that the two relations have certain elements in common, although
this form of Eq.([3) has fewer terms than Eq.([22) and seems more simple. The
first mutual factor is wanted stock of houses (H?) which is the same as the
observed fwh or H. Other mutual elements are income (Y D), user cost (R)
and a price element (PH /P).

By rearranging the terms in Eq.(23) the relation becomes

(5.4)

. user cost
In(income) — In(stock of houses) = a - In (—)
consumer price

On the left side the stock of houses and income, using the MONA variables
described in subsection B3l become

= In(income) — In(stock of houses)
= In((ypd — ipv)/pep) — In(fwh) (5.5)

where income has been modeled as real income, i.e. ydp the private disposable
gross income minus ¢pv the private investment will give the net income, and
dividing by the consumption deflator pcp adjusts the value to the current period,
giving real income.

It can be seen on the right side of Eq.([&4) that the terms user cost and consumer

price can be approximately expanded as follows, using the variables described
in subsection B3I

usercost
a-In| —
consumerprice

k
ap +apln <_p) + ag - (rente + ssats — infl)
pcp

Q

k
ao + a1 In (}ﬁ) + as - (rente + ssats) — ag - infl (5.6)

In the first step an approximation is made so that the user cost divided by
consumer price becomes real house price and real user cost, real user cost is
user cost plus inflation (infl). In Eq.(B8) the inflation term of the real user
cost rate has been isolated. Next a relation is derived to simulate the inflation
term, it is comprised of the elements that reflect the price increase

—ag - infl~ |azAln(pcp) + asdpepe + asdkpe + agAIn(kp) (5.7)

Inflation is therefore represented by four price changes. The change in con-
sumption deflator from the last period (Aln(pepi—1)), the expected change in
consumption deflator from the last period (dpcpe;_1), expected change in house
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prices from last period (dkpe;—1) and the change in house prices from last pe-
riod (Aln(kp;)). This constraint is meant to ensure a real interest rate behavior,
which is achieved by connecting the user cost coefficient as to the weighing of
the coefficients used in the estimation of the inflation. The constraint ensures
that if there is a price increase of one percent it will result in a one percent fall
in interest rates after tax, in the long run. The price coefficient constraint will
be given more discussion in section

Combining Eq.(BH), Eq.(@0) and Eq.@@2) and isolating the house price term
from the inflation constraint gives

agAln(kp) = — (ao +a1ln (ﬁ) + az(rente + ssats)
pcp
— (a3 Aln(pep) + asdpepe + a5dkpe))
+ In((ydp — ipv)/pep) — In(fwh)
which when dividing through with ag becomes

k
Aln(kp) = — @ My <—p) — aj(rent@ + ssats) + a—?’AIn(pcp)
ag

ag ag pcp ae
a4 as 1 .

+ —dpcpe + —dkpe + — (1n((ydp — ipv)/pcp) — ln(fwh)) (5.8)
ag ag ag

This theoretical relation is then fitted to the available data by statistical analysis,
i.e. using lagged values, including differenced values and levels where significant,
resulting in a specific model which is described in the next subsection.

5.4.2 MONA Model Components

Recall the regression model in Definition B4l i.e.
y=XB+e

The response variable y and the column x; of the explanatory matrix X where
(n x p)and 1 < ¢ < p are expressed as

vy : Aln(kp)
The modeled relation is changed from modeling house prices, or kp, to modeling
the one period change in the log of house prices, or Aln(kp) to see why this is
done see

x1 : Aln(pcp)
Change in the consumption deflator.
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x2 : A(rente + ssats)
First differenced series of interest plus tax, i.e. user-cost change.

x3 : A(rente_1 + ssats—_1)
Lagged first differenced series of interest plus tax, i.e. lagged user-cost change.

x4t rente_1 + ssats—1 + 0.01
Lagged user cost plus a logarithmic element (0.01). Interest rate plus tax ele-
ment.

x5 ¢ dpcpe_1
Expected change in consumption, from last period, i.e lagged.

xs : dkpe_1
Expected change in house price, lagged.

x7 : In(kp_1/pcp—1)
Real house price, i.e. house prices lagged adjusted with the lagged consumption
deflator.

xg : In((ydp—1 — ipv—1)/pep—1) — In(fwh—1)
Income elasticity constraint to stock of houses achieved by modeling together
with only one regressor.

The new applied model can then be expressed as a regression model as follows

Aln(kp:) = Bo + B1Aln(pep:) + B2 A(rentes + ssats:) + BsA(renter—1 + ssatsi—1)
+ Ba(rentes—1 + ssatsi—1 + 0.01) + Bsdpeper—1 + Bedkper—1 (5.9)
+ Br In(kpi—1/pepe—1) + Bs(In((ydpe—1 — ipve—1)/pepe—1) — In(fwhi—1)) + &

The coefficients 8 have replaced the a coefficients and need to be estimated
by the restricted least squares method since there is a constriction on their
estimation.

The Constraints

In the MONA house price relation two constraints are applied. Firstly there is a
constraint implemented by re-parameterization by modeling stock of houses and
real income together, i.e. their ratio has only one regressor and will therefore
always affect the price by the same weight.

The second constraint is not as easily implemented and requires the use of the
restricted ordinary least squares method for the parameter estimation. Recall
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the inflation constraint modeled above to assure real interest rate behavior as
—ag - infl~ |azAln(pcp) + asdpepe + asdkpe + agAIn(kp)

Now the theoretical a coefficients have been replaced by the [ coefficient in
the applied model. Where the corresponding 3 coefficient to the previous a
coefficient can be found by comparing explanatory components x e.g. the
previous as coefficient to (rente + ssats) is now (4 the applied coefficient to
(rentet—1 + ssats;—1 + 0.01). The constraint represented with 3 coefficients is
therefore

b1 1

—ﬁ4=Z+ﬁ5+56—1

Where the scalar (1/4) represents the house price increase quarter-yearly, now
house price and consumption deflator changes always go hand in hand therefor
(1, the change in consumption deflator coefficient, is also divided by four to get
a quarter-yearly change. The constraint can be used to calculate the expected
inflation by dividing through with —as and —f4 in the theoretical and applied
cases, respectively.

The constraint on RG = r format for ROLS, is expressed as

Const R Ry Rs Ry Rs Rs R7r Rs T
[0 025 0 0 1 1 1 0 0] - B = [0.25]

The optimal coefficients can then be achieved by solving
B* =B+ (X'X)'R(R(X'X)*R)"'(r - RB) (5.10)

where B is the unconstrained coefficients estimated by OLS. This relation was
derived in subsection

Degrees of freedom, which are used for many statistical tests and estimators,
must be handled with care when using ROLS. Degrees of freedom are usually
described as n — p where n is number of observations used in the modeling and
p =k + 1 is the number of regressors including the constant. By deciding BZ
implicitly from other coefficients it does not get a degree of freedom, this will
have to be kept in mind when calculating test statistics and goodness of fit for
the estimation.

5.5 The Results

Solving Eq.([I0) with the constraint described above results in estimates of the
coefficients displayed in Table EJl In the table there are three data columns,
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the first one shows the estimated value of the regression coefficient. The second
column shows the estimated standard error for the coefficients, i.e. is the square
root of the diagonal of the covariance matrix Zé*, expressed in Eq.[@Z3). The
third column shows the t-values calculated from the standard error and indicates
whether the coefficient is significantly different from zero. For a 95% confidence
interval [¢| > 1.96.

ROLS
X B* | Estimate Std. Error  t value
I G 0.0663 0.0192 3.463
x1  : Aln(pep) 3r 0.3074 0.2122 1.449
T2 A(rente + ssats) 35 | —3.7811 0.4358 —8.677
T3  : A(rente_y + ssats_1) G5 | —0.7791 0.4468 —1.744
@4 @ rente_; + ssats_; + 0.01 35 | —0.7927 0.3187  —2.488
@5 ¢ dpepe_, 3 0.7709 0.3575  2.156
x6  : dkpe_, G 0.1949 0.0671 2.905
@7 ¢ In(kp_1/pep_1) 5% | —0.1026 0.0268 —3.827
s t In((ydp—1 — tpv—1)/pcp—1) — In(fwh_1) Ag 0.0554 0.0282 1.963

Table 5.1: The coefficients in MONA house price relation estimated with restricted ordinary
least squares (ROLS). The period for which this is estimated is 1974:¢2 - 1997:¢4 or 95 periods.

MONA ROLS Model In-Sample Fit

0.05
|
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Figure 5.4: The black line is the actual y = Aln(kp) while the broken red line shows the
fitted § = XB* using the estimates for B* calculated in Table B

The F-test statistic, which is a test of significance for all regression coefficients,
indicates that the MONA model regression coefficients are very significant with
F(7,87) = 27.9214 and a very small p-value < 1e-13.
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The R-square,adjusted R-square and error are shown in Table[2l The estimated
model seems to fit the data quite well with a R?> = 0.692. The adjusted R-
square gives a lower value of Ridj = 0.6672, since it is adjusted to the number

of regressors.

ROLS
RZ | 0.6920
R2, | 0.6672
& 0.0169

Table 5.2: The R2, Ridj and &2 for the ROLS fit shown in Table B21l

ExAMPLE 5.1 (CALCULATIONS OF CHANGE IN HOUSE PRICE)
Each line in the in-sample explanatory matrix X can be expressed as vector of
all explanatory variables at a certain time ¢, where 1 <t < n. More precisely

1

Aln(pepe)
A(rente + ssatst)
A(rente;—1 + ssats;—1)

Tit.p= (rentet—1 + ssats; 1 4 0.01)

for a certain period or time the fitted change in house price can be calculated

as follows

dpcpet—1

dkpet—1
In(kpe—1/pepe—1)
L In((ydpt—1 — ipve—1)/pepe—1) — In(fwhe—1)

e = w(t,l...p)/é*

where 3* is the estimated ROLS coefficients displayed in Table B

For a specific time e.g. if ¢ = 1987:¢4 fitted house price changes can be calculated

as follows
~ A%
Y1987:q4 = 515(1987:q4,1...p),3
where
1 0.0663
0.00892 0.3074
0.00148 -3.7811
, 0.00193 A -0.7791
= | o0.0848 = | -0.7927
T(1987:q4,1...p) 0.0222 |’ P 0.7709
0.0622 0.1949
0.125 -0.1026
-0.492 0.0554

giving a fitted value of §1987.q4 = —0.01602.

The difference in fit and observed



House Price Dynamics Il
54 The MONA model

change, i.e. the residual, is then calculated as

€1987:q4 = Y1987:q4 — g1987:q4
= —0.00826 — (—0.01602)
= 0.00776

By exchanging the X matrix for the vector x a fit for the whole in-sample period
can be achieved, which is depicted as the broken red line in Figure B2l

5.5.1 Residual Analysis

When analyzing the results from a regression model the residuals deserve at-
tention since they need to be randomly distributed with mean 0 and constant
variance oZ,,. In the MONA report two well known econometric tests are used
for analyzing the residuals. The first test is the so-called Durbin Watsonfl test
which tests for autocorrelation in the residuals, the second test is the Jarque-
Berall test which is intended to check whether the residuals are normally dis-
tributed by using the third and fourth moments, skewness and kurtosis. A
detailed account of these tests is outside the scope of this report but for more
information see Kyhl & Nielsen [7] on the DW-test and Verbeek [T6H for the
JB-test. The ROLS model passes both of these tests. There is no significant
autocorrelation in the residuals, DW = 1.6924 giving a p-value of 0.02, it can be
asserted with 98% confidences that there does not exist autocorrelation among
the residuals. The Jarque-Bera test gives a statistic of JB = 0.8034 and the
null hypothesis, that the residuals are normally distributed, can not be rejected
for all reasonable levels of confidence with a p-value = 0.6692.

Other ways of analyzing residuals, especially in engineering statistics and time
series analysis, is by visual inspection of standardized residuals. Figure[BEAlshows
four plots often inspected when analyzing residuals. In the upper left panel the
residuals are plotted against the corresponding fitted value. The panel does
not indicate anything suspicious such as funnel forming, which would indicate
an increased variance with increased fitted values. The fact that the cluster
is not taking on any obvious form indicates that the model is sufficient and
no systematic effect (more regressors) are needed. The upper right plot show
the so-called QQ-plot which is a normal probability plot of the standardized
residuals, defined by

6See R, package lmtest, function dwtest() .
"See R, package tseries, function jarque.bera.test() .
8See e.g. page 174
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Residuals vs Fitted Normal Q-Q plot
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Figure 5.5: Visual residuals analysis from the e =y — ¥.

Using the standardized residuals also reveals whether the there are any outliers
present, i.e. since all d; should be inside the interval —3 < d; < 3, or else they
may be having an outlier effect on the regression. The residuals on the QQ-
plot should fall to a straight line from -3 to 3 if they are normally distributed,
this seems to be the case which has also been indicated by the JB-test. The
bottom left plot shows the square root of the absolute value of the standardized
residuals, which makes it easier to see if there is any trend in the residual cluster,
same as for the for d; no suspicious clustering can be seen in the bottom left
graph. The bottom right plot shows the Cook distance for the residuals, Cooks
distance measures the effect a single observation can have on the regression,
i.e. it finds the outliers. According to Montgomery and Runger M:[ﬂ the Cook
distance with a value of D; > 1 indicates that a single outlier is influential in

9See section 12-5.1 Residual Analysis.
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the regression. As the bottom right graph shows all D; < 0.25, the suggestion
of certain outliers affecting the regression is dismissed.

5.6 Prediction

The subject of using the regression models to forecast for new variables is one
of the main reasons the MONA house price model has been listed and dissected
in such detail. Since there is data available from 1972:¢2 to 2001:¢3 the out-
of-sample period, 1998:¢1 to 2001:¢3, will be used to show how a prediction is
made when new observations for the explanatory variables are available. The

following is largely adopted from Montgomery and Runger M:Iﬂ and Madsen
A,

When predicting [-steps ahead, where 1 <[ < k and k is the prediction horizon,
given the estimated coefficients the predicted response value can be expressed
as

Ji1 = Elyei| Xes1 = Tet] = 2B (5.11)

where x,y; represent a vector of new observed values for the explanatory vari-
ables. Eq.([II) gives the so-called point estimates for the future response
corresponding to x¢y;. The prediction error e:;; = yiy; — Jr+1 has the vari-
ance

Vorslerst] = Viyer — Gept] = 0 (1+ @ (X' X))
for the OLS method, this can be seen from

V{yerr — et = VIz, 18 + e — @, 6]
= Viz, (B~ B) + e141]
= 5’32+1V[B]wt+z +o0?+ QCO’U["DQH(ﬁ - B)a Et41)
=0+ wQHV[B]th
where V[8] is the covariance matrix ¥, = o?(X’X)~'. This result can be
extended to the ROLS method by inserting the ROLS covariance matrix which

gives
Vrorslew] = o> (1 +z), M*(X'X) 'M* z4)) (5.12)

A 100(1 — @)% confidence interval for future values of §;4; is given by

:l)t_H + t(a/Q,nfp) V[Et—i-l] (513)

10Gection 12-4, Prediction of new observations.
TSection 2.3
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which for ROLS becomes

Y1 £ t(a/2,nfp+q)6\/(1 oy M (X' X) M @y y) (5.14)

when using the estimate & for the residual variance of error. The term ¢, /3 ;4
is from the t-distribution with (n—p+¢) degrees of freedom, where ¢ is the num-
ber of constraints since ¢ regressors are linear combinations of other regressors
and therefore ¢ of the p regressors return their degrees of freedom.

Using the out-of-sample period 1998:¢1 to 2001:¢3 the point estimate, along
with a 95% prediction interval is calculated and plotted in Figure

MONA ROLS Model Out-Of-Sample Prediction
95% prediction intervals, 1997:4 marks Out-Of-Sample

0.05
|

dlog(House Price)
0.00
1

-0.05

1975 1980 1985 1990 1995 2000

Time

Figure 5.6: The in-sample estimation is represented with a red whole line 4, the black line
is the actual observed change y, the red broken line is the point estimate for new observations
Unew along with a 95% prediction interval shown by the broken blue lines. The vertical line

marks where the in-sample ends and the new observations (out-of-sample) begins.

Figure shows that the out-of-sample prediction seems to be performing
poorly, a measure often used for analyzing predictions is the Mean square
error defined as

MSE(§+x)

wIH

k
Z (Yerr — Ger1)”. (5.15)

Calculating the MSE for the prediction in the out-of-sample an estimate of
the error 6 can be found. The error in the out-of-sample period gives an error
estimate of 0.0213, which is higher than the in-sample error of 6 = 0.0169. The
out-of-sample performance is considerably worse than for the in-sample, such a
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big shift in accuracy indicates that the out-of-sample data is different from the
in-sample data. This will be discussed further in the next subsection.

5.6.1 MONA Out-Of-Sample failure

The out-of-sample performance is not expected to be as good as the in-sample,
since that is where the coefficients are estimated, however a large shift in error
suggest that the out-of-sample data is significantly different from the in-sample
period. This seems to be the case for the out-of-sample data, a large shift in
error and visual analysis of the out-of-sample data shows that the variance of
the house price change has decreased dramatically and the mean has increased,
see Figure R0 All observed house price changes after 1994:¢4 are increments
and the variance has changed considerably from the in-sample variance, see
cyan colored broken lines in Figure Bl The explanatory variables suggest that
the price of houses should drop while it does not, this continues for some time
creating a gap between the predicted price and observed house price, which is
typical of a housing bubble such as was mentioned in section The fact

Abnormal out of sampel behavior
Constant increase from ca. 1994.75 to 2002

0.02 0.04

dlog(House Price)

-0.04 -0.02 0.00

T T T T T T T
1990 1992 1994 1996 1998 2000 2002

Time

Figure 5.7: Shows the strange behavior of the house price data after 1994:g4 the process
seems to slow down considerably resulting in less variance and higher mean. Only increments
after 1994:q4.

that the data seems to be non-homogenous between the in- and out-of-sample
periods makes validation, of the parameter estimation, in the out-of-sample
period useless. In the theoretical economic models the bubble-free condition is
assumed.
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Ways of dealing with this discrepancy could e.g. be to include the abnormal
data period in the parameter estimation. The parameters will then be able to
deal better with presence of such behavior. However, the goodness of fit will
drop and all the data is then used for estimation which makes validation hard.
Another way to deal with the bubble behavior is to move the time window, i.e.
include more of recent years and less of the previous years, however that would
also result in out-of-sample validation problems since the out-of-sample data
would then most likely not resemble the in-sample data.

Yet another method would be to use another parameter estimation method,
i.e. so-called recursive least squares (RLS) where the parameter estimation is
consistently being updated with a rolling time window, or a forgetting factor
which reduces the impact of old data has on the parameter estimation giving
ever changing, but relatively accurate estimations, see Madsen M

5.6.2 MONA model and certain markets

Something to keep in mind when looking at the results of the MONA model
is that the house price data is an average of diverse house markets. For ex-
ample the urban flats markets in Copenhagen may behave differently than the
rural or summerhouse market. The difference in these two markets can e.g. be
traced back to the theoretical model described in chapter ] where house price
is considered to achieve a higher equilibrium price where construction land is
limited. There are however many other things other than location that influence
the price such as building age, building style, size, number of bathrooms and so
on. If a prediction is sought for a certain part of the market, that section of the
market has to be modeled specifically, with corresponding data acquired from
sales prices in that region.

The MONA is thought of as a general macro model to indicate the long term
direction of the Danish house price market as a whole, not to give dynamic short
term predictions for specific parts of the Danish market.

5.6.3 The ECM with the ROLS model

As was mentioned before in section the ROLS coefficients are used in an
error-correction model format to give an idea of the long term effects in the
housing market. These long term trends are shown in the MONA report [[[Zﬂ

12e.g. page 278.
13See top of page 45.
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Recall the ECM format given in section as
Azy = poAry — (1 = 0)[zi—1 —a —yri1] + &

where z; is some response variable and 7r;_1 is a explanatory component. The
ECM relation is divided into a dynamic part, i.e. the ¢gAr; part, and the error
correction part, i.e. (1 —0)[z;—1 — a —y74_1].

To use the error correction form for the MONA house price relation the compo-
nents of the explanatory matrix X needed to be sorted into dynamic parts and
the error correction or long term effects. The short term changes are indicated
by modeling the change (differenced components) while the long term effects
are taking into account the level at each time (nominal series).

The i-th component of the explanatory matrix X and estimated coefficient
vector B* are noted as x; and (3] respectively. The estimated change in house
price is calculated as g = X 3*. The ECM format of ¢ is therefore

9= |Biz + Brzo +B§w3+[§§w5+[§§l’6] fﬁ?(w7f%wsf = xy— 2) (5.16)
B B3 B

In Eq.(&T6) the terms inside the | | bracket represent the dynamic part of the
model i.e. price and interest changes. The second part, or the () bracket, has the
terms which cause a deviation from ¢ in a long run equilibrium, i.e. the levels
and the part which corresponds to the long run multiplier ~y, derived in section
Recall that [3? is the coefficient for real house price, while B;’; corresponds to
user cost and 33 is for real income over stock of houses. Inserting the estimated
coefficients from Table Bl gives the following long run multipliers for the levels
of x4 and xg:

B: —0.7927 Bz 0.0554
g, ) —B8 - —.540.
e ~0.1026 ~ %6 e “0.1026 ~ 040

If either of the elements corresponding to [(; or (3§ were to increase by some
small dx element the house price change will in the long run change by the dx
times the ratios above, given that all other things stay fixed.

The nature of the error-correction format is to include levels and differenced
values, even though the level is non-stationary as long as the response variable
is stationary.



CHAPTER 6

Applying The MONA house
price relation

6.1 Introduction

The purpose of this chapter is to get an applied version of the MONA house
price relation. To get a robust prediction model from the MONA house price
relation some relaxations must be made, this chapter discusses the concessions
made and what results they have in regards to precision in prediction.

In section 2 a regression model based only on the interest terms in the MONA
model is formulated, which will be used to benchmark other models. Section
discusses the aggregation of house price changes, using updating with or
without observed house prices, to get house price levels. Section B4 addresses
the fact that when predicting, only interest rates are available, other explana-
tory variables must therefore be fixed in some sensible way. In section the
aggregate error is simulated and compared for three different models.
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6.2 Interest Rate Regression

Using only the interest rate terms from the MONA house price model a smaller,
simpler, benchmark model is developed. The main reason for performing this
simpler regression is to get a model where all the information is available, i.e.
the model will only be dependent on interest rates, which are available through
the interest rate tree. Later when the MONA model as whole will be used, it can
be seen that all the missing data has to be fixed to some level which increases
the error of the house price estimate. The fact that missing observations of
the explanatory variables do not have to be fixed also allow for simpler error
calculations that can be calculated via analytical methods compared to the
simulated error for the fixed model.

The simplified regression model based on the MONA house price relation is
expressed as follows

S . .
Aln(kpy) = B} + Bl Arente; + 3 Arente, 1 + Birente; 4 (6.1)

Where Arente; and rente; are the change in interest rates and actual interest
rate respectively. Notice that the tax rate ssats has also been removed from the
interest relation. From this reduced model two results can be expected. Firstly
a lower value for both goodness of fit estimators R? and Rfdj, in comparison
to the MONA model. Secondly the residuals are more likely to show signs of
autocorrelation since it is known from the MONA house price relation that this
smaller model is missing many proven systematic effects, e.g. income over stock
of houses (xg) and the consumption deflator (1) to name only two.

Using the in-sample period, 1974:¢2-1997:¢4, that was used in the MONA house
price relation, an ordinary least squares (OLS) regression is performed to esti-
mate the coefficients 31 = [3L, B, 5, BE] by solving

BI _ (XI'XI)leI',y
where the explanatory matrix X is only composed of interest terms as follows

1 Arentes Arente; rentey
X! =

1 Arente, Arente,_1 rente,—1

After having performed the regression the t-statistic shows that Bg is not sig-
nificantly different from zero, with p-value = 0.9965. When the regression is
repeated, leaving (1 out, it gives the estimated coefficients 3/ shown in Table
0. 1]
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Estimate Std. Error t value Pr(>[t])

At 0.0125 0.0023 5.37  0.0000
gt —3.6539 0.5885 —6.21  0.0000
pE o —1.6934 0.5767  —2.94  0.0042

Table 6.1: The estimated coefficients in the reduced MONA house price relation, using only
interest rates, estimated with ordinary leat squares (OLS). Estimated for the sample period
1974:2 - 1997:4 or 95 periods. The first column is the estimate, second is the standard error
of the estimate, third is the t-statistic and fourth is the p-value.

All the coefficients estimate in Table Bl are highly significant, i.e. all p-values
are less than one percent which indicates that all coefficients are significant
with a confidence of > 99%. The F-statistic also indicates that the model is
significant with F(2,92) = 32.72 which gives a p-value = 1.854e — 11.

ROLS | OLS;.s
R? 10.6920 | 0.4156
R2, | 0.6672 | 0.4029

62 | 0.0169 | 0.0226

Table 6.2: Comparison of the the goodness of fit, R? and Ridj, for the MONA house price

relation (ROLS) and the reduced interest rate only regression (OLSy,;).

The goodness of fit statistics can be seen in Table B2 the results from the
MONA house price fit is also displayed for comparison. As expected there is
a considerable fall in R? since many known explanatory variables are skipped
in the reduced model. When comparing two regression models with different
number of coefficients the Ridj is a better way of comparing the two fits than
R?. The difference in R?,; is not as much as for R? but is still considerable or
approximately 0.165.

The Jarque-Bera and Durbin Watson tests indicate whether or not the residuals
pass the claim of being normally distributed and without any significant auto-
correlation. The Jarque-Bera statistic is JB = 2.42, i.e. the hypothesis that the
residuals are normally distributed can not be rejected since p-value= 0.2978.
The Durbin Watson test is used to detect any autocorrelation in the residuals,
i.e. is the residual e; dependant on previous residuals e;—1,.. 0. The Durbin
Watson gives DW = 2.0274 and a p-value — 0.6098 which means that the
hypothesis of no-autocorrelation in the residuals can not be dismissed. When
comparing Figure to the residual plot in Figure A which is for the full
model, it can be seen that the variance of the residuals seems to be bigger in
the reduced model. The left panels in Figure B also show less dispersion in the
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Residuals vs Fitted Normal Q-Q plot
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Figure 6.1: Visual residuals analysis from the e = y — y7.

cluster than in which might indicate autocorrelation. The normality curve
is not visually different from the full model. The Cook plot shows that there
are bigger outliers in the reduced model, but still nothing to be worried about
according to the D; > 1 limit.

As expected there appearers to be some autocorrelation in the residuals, for this
reduced regression, however judging by the QQ-plot and the JB it is safe to say
that the residuals can be viewed as approximately normal distributed.

Since no fixing of any explanatory variables is performed the point estimate
and prediction interval for new observations can be achieved by using Eq.(&T4),
although because of the autocorrelation the prediction will most likely not be
good. The results for such a point estimate along with prediction intervals is
shown in Figure
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Interest OLS Model Out-Of-Sample Prediction
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Figure 6.2: The sample period is the period 1974:¢2-1997:¢4 and is shown by the green whole
line. The black whole line represents the actual change at each time. During 1997:¢4-2001:¢4,
the out of sample period, the broken green line is the point estimation, while the red lines

represent a 95% prediction interval for future observations.

The reduced regression model is not as accurate as the MONA house price
relation. Tt does not represent the data as well as the MONA model and all
economic intuition used in the MONA is dropped. Despite these shortcomings
the reduced model will be used to benchmark the fixed MONA model throughout
this chapter.

6.3 Aggregated House Prices

The estimated change, according to the MONA house price model, at some time
t can be expressed as

k
gjtzAln(k:pt):Bg—l—Zﬁi*xti t=1,2,....,n

i=1

where ¢; is the estimated change in house prices, from ¢ — 1 to ¢, by using
the regression coefficients @* times the corresponding explanatory variable xy;.
The house price scenario tree, which is to be produced, is meant to hold the
nominal value of house prices not the change in house prices between periods.
The MONA results must therefore be accumulated over the prediction period.
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The transformation from house price change, to aggregated house price change
will be discussed in this section.

As was mentioned in subsection L3 the differenced series must be accumulated
to give the actual house price. According to MONA [IZf] the observed house
price can be calculated from house price change by

In(kp,) = Aln(kp;) + In(kp,_;) (6.2)

i.e. by adding the house price change to last periods house price.

There are two ways of performing this transformation. The first method in-
volves updating the estimate of aggregated house prices with actual observed
house prices (kp;—1), this greatly reduces the error and gives a very stable pre-
diction, i.e. basically a one step prediction with updating at each step. The
second way, which will be of interest in this thesis, is comparable to a k step
prediction without updating, i.e. the prediction is updated not with observed
values but last periods predicted values (kp,_;) . Both methods will be given
some discussion, beginning with the one step updating.

6.3.1 Updating with observed house prices, k=1

Recall that the difference between the actual change and the estimated change
is the residual, i.e.

et =Yyt — Ut
= Aln(kp) — Aln(kp,)
= (In(kp:) — In(kpi—1)) — Aln(kp,)

When rearranging the terms in the last relation and In(kp;) is isolated on the
left side it becomes

—

In(kpe) = Aln(kp,) + In(kpe—1) + e (6.3)

Which is the relation for one step updating for the house price level using the
modeled house price change. Since the residuals should follow e; ~ N (0, 5?) it is
easy to see that the aggregation should give an expected value, point estimate,
of

In(kp,) = Aln(kp,) + In(kpi—1) (6.4)

Where 1n(k\1/7t) represents the point estimate of In(kp;) for one period and up-
dating with last periods observed house prices. The accumulation has no effect

'See page 196.



6.3 Aggregated House Prices 67

on the variance of ln(k\};t), i.e. the only contribution to the error is from the

current estimation of Aln(kp,). Prediction intervals for the one step aggregate
house price can be calculated in the same way as was done in section us-
ing Eq.(BTd). Figure shows how the one step method has very little effect
when transforming to the aggregate house price both for the MONA house price
relation and the relatively inaccurate interest rates only model.

Development of aggregated change in HP
One step updating with observed values

' P

0.5

0.0

log(House Price)

-1.0

T T T T T T
1975 1980 1985 1990 1995 2000

Time

Figure 6.3: The graph shows how the cumulative house price develops when updating with
actual observed house price values at each time. The black line is the actual house price, red
line is the MONA ROLS model and the green line is the interest rate only regression from
section

6.3.2 Updating with estimated house prices, k>1

If the observed house price is not available at each period, or only occasionally,
the change in house price must be compounded and last periods estimated house
price level used for updating.

Given some initial house price, A = In(kpg), and using the updating formula
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given in Eq.([@2), the following can be shown:
ln(kpo)
ln(kp1>
1n(/<:p2) =A+A 1n(/<:p2)
In(kps) = In(kpy) + Aln(kps) = A + Aln(kpy) + Aln(kps)
(kps)

lnk:p4 = ( )—l—Aln(k 1) = A-l—Aln(k )—i—Aln(k: )+A1n(kp4)

¢
ln(k\};t) =A+ Z Aln(kp;) where t>2 (6.5)
=2

Eq.([3) shows the relation for house price development when using last periods
estimated house price as base for the change for ¢ > 2. Notice that 2 periods
are needed before the house price can I{Ee\valuated. The reason for this start
up time is that for the evaluation of Aln(kp,), the lagged change in user cost
(x3) is needed. More precisely

33 T3 = [?3 - A(rente;—q1 + ssatsy_1)
= Bg* - (rentes—1 — rentei_o + ssats;_1 — ssatsi—a)

The relation above shows the calculation of the third term, lagged user cost,
the one which requires the most start up time and therefore decides the start

up for the evaluation of both AE-(k\pt) and thereby l’c\];t. The conditional form
for aggregate house prices, updating with predictions, is therefore

A ift <2

— t
WkP) =9 43 ATy it >2 (6.6)

=2

Eq.(3), is very important since it describes how to calculate the one path case
for house prices, given an initial index price of A and using the MONA house
price relation. In Figure B4l upper panel, the development of aggregate house
prices using the compounding method in Eq.([8) can be seen for both Interest
rate only regression, green line, and the MONA ROLS house price relation,
red line. Comparing the upper panel from Figure £l to the development in
Figure B3t can be seen how the aggregation of error has a much bigger effect,
especially for the interest only regression which has a considerably higher error,
o, see Table

The main problem with using the relation shown in Eq.([5H) is the estimation
of the error. The relation shown in Eq.([fH) is actually the point estimate, i.e.
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Figure 6.4:
upper panel

Development Of Aggregated Change In House Price
No updating with observed values, last prediction used as base
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Development Of Change In House Price
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The lower panel shows the development of the modeled variable Aln(kp¢). The
shows the aggregated change without updating. The red line is the MONA

ROLS, green line is the interest only model described in section 22 and black is the observed

change. The black vertical line represent the boundary between the in-sample and out-of-

sample periods. The point estimates, for the out of sample period, are shown as broken

lines.

the expected value of the estimation, since F[e;] = 0. If the residual element
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for each estimation is included, Eq.([8) has the following form

t
In(kp,) = A+ Z[Aﬁ-(k\pl) + e where t>2
i=2

The point estimate represents the expected value of the forecast and is sim-
ple to calculate as was shown above, however the variance of the prediction is
non-trivial. The effect of aggregating the MONA house price change estimates
will lead to an ever growing variance of the prediction in accumulated house
price estimates. Simulation was used to evaluate the aggregate variance for the
compound method. A detailed discussion of how the simulation is performed is
given in section

6.3.3 Analogy to interest compounding

Before continuing with the discussion of applying the MONA house price relation
to a tree structure, a short digression to give an intuitive analogy is presented.
The method described in subsection can be compared to an interest rate
compounding relation i.e.

V=A-1+r)" (6.7)
where A is the initial amount, r is the interest rate and V' the total value after
n years. By taking the exponential of Eq.[@3) it becomes

t
kp,=A- H A nlkp,) where t>2
i=2

The term e®™™(*Pt) expresses all changes based from one, since e = 1, hy
changing this such that all changes are base from zero

re = eA In(kp,) _ 1

where r; is the percentage change, or rate, from time t—1 to ¢. It can therefore be
seen that the exponential form of Eq.([E3) is the same as Eq.([@X) with different
rates for each period.

t
kp, = A- H(l + 1) where t>2 (6.8)
i=2

6.3.4 Numerical Example

To demonstrate the aggregate house price development, using the two methods
mentioned above, i.e. updating with observed values and updating with previous
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predictions, a small numerical example has been prepared. All the data used in
the example is fictional.

An initial house price of A = 100 is given at time ¢ = 0. Interest rate time series
I; start at t = 0 and ends at ¢ = 6, so the differenced interest series starts at
t=1,1i.e.

I IO 11 Ig 13 I4 I5 16
AT = Al Al Az Al Als Alg
AT 4 AT Al Alz Aly Als Alg
As was mentioned before the MONA house price relation needs the lagged

change of interest rates, which is available at time ¢ = 2, to calculate the esti-
mated change in house prices.

The house price changes have been calculated using the MONA house price
model, with all explanatory variables available. The estimated change can be

seen as e (kP) haged from one or as r based from zero
AP — 1 1 1.03 099 1.01 097 0.98 ]

r=[0 0 003 -001L 001 -0.03 -0.02 ]

Using the exponential form of the compounding equation given in Eq.([@3H), i.e.
using previous predictions as basis for future estimates (compounding method),
gives an aggregate house price as follows

kpy = A =100

kp, = A = 100

kpy = A - (1+0.03) = 103
kps = A-(1+0.03)(1 — 0.01)

kpy = A-(1+0.03)(1 — 0.01)(1 4 0.01) = 102.99

kps = A (1+0.03)(1 — 0.01)(1 + 0.01)(1 — 0.03) = 99.9

kpg = A - (1+0.03)(1 — 0.01)(1 4 0.01)(1 — 0.03)(1 — 0.02) = 97.90

Now imagine that the observed house prices from last period are available for
t=0,...,5 such as

)
) =101.97
)
)

kp=]100 98 99 101 995 102 ]

Using the one period updating given in Eq.([@d), taking the exponential and
inserting 7, gives

—

kp, = AP k= kp, (14 1) (6.9)

which when used with the data above gives the following, i.e. estimated house
prices with one period updating.
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kpo = 100

kpy = kpy - (14 0) = 100-1 = 100

kps = kpy - (14 0.03) = 98- 1.03 = 100.94

kps = kpo - (1 —0.01) = 99 - 0.99 = 98.01
(
(

kpy = kps - (14 0.01) = 101 - 1.01 = 102.01

kps = kp, - (1 — 0.03) = 99.5 - 0.97 = 96.52

kpg = kps - (1 — 0.02) = 102 - 0.98 = 99.96
It is apparent when looking at the results from this small example how de-
pendant on the previous house price value the estimates are when using the
compounding method. The one step updating gives house prices that are inde-
pendent of the last estimated house price, since the observed value is used for
updating. A visual demonstration of this independence is given in Figure
and Figure [0l for Eq.([@3) and Eq.(&2) respectively.

Al Al, Al Al
// N // \\ // ~ -~ ~
/ N s / \/ \

\
@ A D08 o 6B N In) N

ST T T

Aln(ko,)  Ainkp;)  Aln(kp,)

N\

Figure 6.5: A visual representation of the first four house prices when using the compounding
method without updating.

In(kp,) In(kp,)  In(kp,) In(kp,)
A Al Al

Ain(kp,)  Aln(kp)  Aln(kp,)

Figure 6.6: A visual representation of the first four house prices when using the one period
updating.
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To summarize the discussion on aggregation, when aggregating estimated change,
it is better to have observed values for updating than previous estimates. Up-
dating, with observed values, is equivalent to resetting the prediction error and
thereby resetting the aggregate prediction variance. Using observed values there-
fore results in a much more accurate prediction, where the change is equivalent
to that of the estimated change.

Compounding the change without updating will result in difficulties when esti-
mating the variance of the predicted, aggregated, variable. Further discussion
on the estimation of the aggregated variance is given in

6.4 Unavailable Explanatory Variables

To apply the MONA house price relation as a prediction model there are some
practical aspects that need considering. The most important of these aspects is
the lack of information. When predicting with the MONA house price relation,
the only new explanatory variables available, during the prediction, are the ones
including interest rate. This section deals with ways of compensating for missing
information and discusses what effects the lack of new observations have on the
prediction.

Recall that the MONA house price relation regression was performed with the
design, or explanatory, matrix X which is of size (nxp), where p is the number of
explanatory variables and n the number of observations. Each line t € {1,...,n}
in X can be expressed as

th[l Tl T2 T3 T4 Tes L6 L7 xts]

When predicting for future observations of house price change, using the MONA
relation, all eight variables must be available. However, as was mentioned before
only the interest rates are available in the house price scenario tree prediction.
Out of the eight explanatory series in X three include interest rates (rente;):

xpa = A(rente; + ssatsy)
a3 = A(rente,_1 + ssatsi_1)

Tya = rentes_1 + ssatsy_1 + 0.01

The other five explanatory variables, [ 241 x5 T @47 245 | , along with the tax
terms (ssats) in [ 242 @3 x4 | are unavailable when predicting in a house price
scenario tree relation. Ways of compensating for the lack of new observations,
when forecasting, must therefore be devised.
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Dealing with Unavailable Variables

In section the MONA house price relation was used to predict for new
observations where all the explanatory variables are present for the forecast.
When predicting for some response gjj', where + indicates out-of-sample period,
a corresponding vector of new explanatory variables can be expressed as

+ _ + + + + + + + +
X —[1 Ty Ty Tyz Ty Ty Ty Lyy xtS]

for the Full MONA model, i.e. when all variables are available. In the house
price tree generation, where the MONA model is used as basis but only interest
rates are available, the vector of new explanatory variables is expressed as

Af=[0 0 Arentef Arente/, rente/; 0 0 0 0] (6.10)

Subtracting the available A;" from the full X, gives the missing variables, trans-
posed to

1 0 1
a:jl 0 :le
sz Arente;|r Assats;r

) . T Arente; | Assats;

F = (X, - A} = CUZZ — rentezr_1 = ssats?'_l (6.11)
x;% 0 x;%
x;% 0 x;%
:C:} 0 ac:;
Las ] L0 1 L a ]

The vector F; includes all the variables not available when forecasting. There
are numerous ways of dealing with missing or unavailable observations in fore-
casting. The most simple and straight forward method is to fix the data to
a certain period. This method involves fixing all the missing variables to the
observed values at time 7" when predicting for T+ k periods ahead, i.e fix all
the variables to their value at the prediction origin. This method is a bit cum-
bersome to apply, since all variables must be aligned at the prediction origin.
Fixing missing variables to their values at prediction origin will likely give a
good approximation, to the case where new data is available for all explanatory
variables, but only for short prediction horizons k.

Example of Fixing at Prediction Origin

Given an in-sample explanatory matrix X and a coefficient vector ,é', an out-
of-sample prediction is sought for five periods ahead, k = 5. All out-of-sample
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data, except for the interest rates, is not available and will be fixed to the last
in-sample observations at time ¢ = n. The explanatory variables that are fixed
at time ¢t = n are therefore

F, = [ 1 z,1 Assats, Assats,_1 ssatSp,—1 Tns Tng TnT Tns ]
The available out-of-sample available variables are described, as before, by
Af=[0 0 Arentef Arente/ , rente/;, 0 0 0 0]

Adding these two vector, i.e. the available variables A;” and the fixed variables

F,, gives the full out-of-sample covariate matrix X}~ as

1
Tni
Arentef + Assats,,
, Arentezr_l + Assats,_1
XF =Af + Fn)' = rente;” | + ssats,_1 (6.12)
Tns
Tne
Tn7
Tng

where t =n +1,...,n + k. Using the fixed out-of-sample explanatory matrix to
forecast will give predicted change in house price according to

:g—',- _ XFB*

Effects Of Fixing

By fixing explanatory variables in predictions a certain concession to the full
model is made. The fixed model, for short prediction horizons, should prove
a good approximation to the full model, however for long prediction horizons
the fixed model should be used with much care since it is likely to diverge from
the full model and thereby the observed response. Figure BEX show the point
estimate for out-of-sample predictions using the MONA house price model fixing
explanatory variables at forecast origin, 1997:¢4, for the blue line and using all
available data for the red line. The out-of-sample period proves very bad for
the MONA model since this is the period which considered to have very "heard
like" behavior. The fixed model seems to be much more conservative, which is
as expected since many of the variables are fixed and are therefore always giving
the same effect, the interest rates control the movement. Fixing will increase
the error estimates for the predictions. Fixing variables also makes it hard to
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Figure 6.7: Prediction using fixed variables is shown as the blue line. The full model with all
data available as red, black is the observed change. Left panel shows the development of pre-
dicted values for the change in house prices. The right panel show the aggregate development
of house prices.

evaluate the prediction intervals with traditional analytical methods, such as
those used in section In section a thorough discussion about the error
is given.

The fixing method can be used to show the individual effect interest rates have
in the house prices model, since when the other variables are fixed they act only
as a constant. This can be better realized by splitting Eq.([EI2) again up into
the fixed and time dependant vectors

?Q;r = AJB* + Fn,é* (613)

. . . . . A .
Notice that the only time dependant effect is the interest rates in Xt+ while
F,, only contributes constant value throughout the prediction, i.e. for t = n +
1,...n+k.

6.4.1 Modeling Explanatory Variables

An alternative to fixing the variables is to model the explanatory variables
and use the predicted value, of those models, as the unavailable explanatory
variables. The degree of sophistication for modeling of the explanatory variables
can also vary greatly, care must however be taken since not all of the processes
are stationary. Having to model the explanatory variables also increases the
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complexity of the prediction model and thereby reduces the usability of the
applied scenario house price tree.

The main dissuasive factor, for modeling all the explanatory variables, remains
however that proper economic models for these variables tend to have a chain
reaction effect, i.e. economic models of the explanatory variables need other
variables that also need estimation, requiring new models for those variables
and so on. It is therefore essential to make a sensible compromise between
model precision and usability. Simple models for the explanatory relationships
can be derived, however it is arguable whether they are beneficial or only in-
crease complexity and even the uncertainty. The explanatory, in-sample data is
depicted in Figure As can be seen there is no simple general way of model-
ing all these relationships. For example a very simple model could be devised to
capture the the expected change in consumption deflator x5 (dpcpe) as a time
dependant drift model, i.e. o
Tys = 0o + 01t

however to stop the drift from going below zero more elaborate modeling would
be required.

The decision of modeling explanatory variables was abandoned since it would be
to time consuming and would have to be done with great care to avoid bad input.
Involved modeling would also increase the complexity and decrease usability of
the final scenario tree forecasting product. The method of fixing variables at
prediction origin was therefore used.
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Figure 6.8: The eight series that are fixed. The black line shows the development of the
series during the sample period. The broken blue line is the mean of the series, broken red
lines are £ o or mean plus minus one standard deviation. To see what actual economic series
x represents, in the MONA model, see subsectionZA
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6.5 Estimating the Error

In this chapter topics regarding the extension of the MONA house price model
to an aggregated house price tree structure have been discussed. To achieve
the scenario tree structure some concession have had to be made to the original
MONA house price relation. These concessions have raised question as to how
the error should be estimated. This section discusses the components contribut-
ing to the error and use simulation methods to quantify the prediction intervals
which will give the scenario tree predictions more credibility.

It should be obvious that the actions described in both section £ i.e fixing
unavailable variables, as well as aggregating the estimated change, discussed in
subsection will cause an increase in error for the estimation of predicted
values. To help quantify and benchmark the house price predictions three mod-
els have been devised.

e Model 1: The ideal model. Model for aggregate house price change, using
the MONA house price model.

— All observations available.

e Model 2: The applied model. Model for aggregate house price change,
using the MONA house price model.

— Only interest rates available, other factor fixed at prediction origin,

see Eq.(@&12).

e Interest Only model: The interest only regression performed in section
i.e. the interest rates modelde with new coefficients.

— Only interest rates explanatory variables needed and are available.

Both the predicted estimated change and the predicted aggregate house price
will be investigated for all three models. The most interesting results should be
from Model 2 when aggregating the house price, i.e. since in that model both
the fixing and the aggregation is applied, also since Model 2 with aggregate
house prices is the format that can be applied to the scenario tree.

An expected distribution of predicted change and the predicted aggregate house
price for the three models is shown in Figure For the predicted estimated
change, in house prices, a fixed variance is expected, since no direct recursive or
feedback relationship is present in the estimation of the change. The expected
outcome for the predicted change in house prices is depicted in Figure (a).
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In Figure (b) the expected development for aggregate house price is shown,
where the variance is expected to increase, mainly because of the feedback ef-
fect of previous predicted values without updating, see subsection This
aggregation will be different for the three models since different assumptions are
made in each model, e.g. the fixing of explanatory variables in Model 2 should
act to increase the variance even more.

§=An(kp,) In(kp)

AN

Y S S S B
T T

T TH T2 T43 T TH T2 T+3
(a) (b)

Figure 6.9: Expected error behavior for aggregated house price changes without updating
(b). Panel (a) shows the error given by the estimated change at each time.

6.5.1 Bootstrapping

Linear regression models are often used to predict future values. The product
of such a prediction is a point estimate and often a prediction interval, such
as was discussed in section The method described in section is an
analytical method that uses the variance of the regression to give prediction
intervals. When deviation are made to the traditional regression framework,
such as fixing variables as is done in Model 2, the analytical methods described
in no longer apply. Calculations for deriving a formula for the prediction
interval can be made, however the more changes that are made from the original
framework, the harder and more error prone will its estimation be.

The ideal tool for estimating prediction intervals, when considerable adjustments
to the original model have been made, is to use so called bootstrapping methods.
The idea behind bootstrapping is to sample from the original data sets to create
replicated data sets. From the replicated data sets the variability of the variables
of interest can then be estimated without having to deduct long error prone
analytical formulas for the variance. For more information about bootstrapping
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methods in linear regression models see Davidson and Hinkley ME

As was mentioned before the variance analysis will be split into two main sce-
narios. Firstly the variance for the predicted house price change, for all three
models will be estimated. Secondly the changes will be aggregated by sampling
the in-sample data, i.e. bootstrapping.

Prediction Interval Estimation

The variance in regression models comes from two terms, i.e. the regression
coefficients and the residual

0% =0% + 0% (6.14)
Where o2., 012% and o2, are the total, regression and error or residual variances,
respectively. The estimate of 02 is calculated as 6% see Eq.([EZI) for the calcu-

lation in the MONA restricted ordinary least squares (ROLS) case.

Since the ROLS estimator B* is a linear combination of the observations, it can
be seen that B* is normally distributed with mean 3* and covariance matrix
Y=, which for ROLS is given as

Sg =0’ M* (X' X) ' M
where
M*=1-XX)"'RI(RX'X)"'R)'R
The diagonal of ¥ g- gives the variance of the regressors, 0%. The square root

of the diagonal of ¥« gives the standard error of the regressors, expressed

as se(8*). Recall that the ROLS coefficients, 8%, were estimated as 3* and
displayed in Table giving the point estimate and standard error displayed
as Estimate and Std.Error respectively. The results are repeated in Table B3

Estimate  Std.Error

Int 0.0663 0.0192
6" 0.3074 0.2122
G —3.7811 0.4358
85" —0.7791 0.4468
8.5 —0.7927 0.3187
35: 0.7709 0.3575
Bo’ 0.1949 0.0671
Gr ~0.1026 0.0268
Gs” 0.0554 0.0282

Table 6.3: The coefficient part of Table [i1] repeated.

’See e.g. chapter 6.
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The estimated variance, 6% and 6% therefore represent the variance in the data
or the coefficients and the residual error for the model, respectively. When
bootstrapping these estimated variance are used to create empirical distribution
that replicate the behavior of the in-sample data and the model. The empirical
distributions can then be sampled to simulate results of the regression model,
what is more special conditions can be applied and their effects observed by
simulation, e.g. how the fixing of some of the explanatory variables effects the
development of the prediction intervals when forecasting.

6.5.2 Simulating Change In House Prices

The first simulation was done without aggregating the estimated house price
change. The main objective of this simulation is to achieve prediction intervals
for Model 2, i.e. estimated predicted house price change when fixing unavailable
explanatory variables. Simulations were also performed for the predicted house
price change for Model 1 and the Interest rate only regression. The Model 1
and Interest only simulation can validate the simulation method by comparing
the results to the ones already calculated by analytical methods in sections
and The method used to perform the estimates is presented in Algorithm
m

Algorithm [Mestimates the prediction for the three models by bootstrapping. For
the predictions where all explanatory variables are available « and ~, i.e. Model
1 and Int Only respectively, no variance of the data needs to be introduced, the
residual variance is however added. Model 2 is estimated by

5r,n+l = A:Jrllé* + Fn/é; + ei

Here certain data is available A;” and does therefore not need to added variance.
The fixed component Fn,é'ﬁ is however altered according to empirical distribu-
tion, created by the observed dispersion of the in-sample data. More precisely
by sampling ,5';? ~ N(B*, se(ﬁ'*)Q). The model is then expected to behave like
model 1 and the same residual error term can be applied. The simulation starts
at the prediction origin n where F,, is fixed, k describes the prediction horizon.
Each prediction at time ¢t = n+1 is simulated R times. The results for the three
predictions, («,d,7), are then summarized by taking the mean and standard
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Algorithm 1 Re-sampling and bootstrapping of prediction for change in house
prices.

Xt+ describes all explanatory variables at time ¢.
A} describes available variables at time ¢, see Eq.(@10).
F,, describes the explanatory variables fixed at time n, see Eq.([EITl).
oy predicted full model response, Model 1, at time ¢ and simulation 7.
0y predicted fixed response, Model 2, at time ¢ and simulation 7.
vr,t Predicted Interest rate only response, Model 3, at ¢ and simulation r.
n Prediction origin.
k Prediction horizon.
R Number of simulations done.
for | =1to k do
for r=1to R do

Sample the MONA residual error as e ~ N(0,5%)

Sample the MONA residual error as el ~ N(0,5%)

Sample the Interest rate only residual error as el ~ N(0,6%;)
Sample the coefficients as Bf ~ N(B*, 6%)

Oy ptl = X:Lr_i_lﬁ* + 6;}
_ A+ A 3 §
Srmpt = AL B + Fufs + €2
_ A+ Al I
Yrn+l = An+l/8 + e

end for
end for

deviation for each predicted period [, e.g. these calculations for § are

R
- 1

E[6n+l] = 6n+l = E Zéi,n—i-l

i=1
1 & .
Var(dn41) = R Z(5i,n+l - 5n+l)2

i=0

se(0pt1) = /Var(dnir)

Results

Simulations were performed using Algorithm [l where the component of F; are
fixed at n = 1997:¢4, i.e. the last in-sample period and then Figg7.qa. The
prediction horizon was set to k = 10 giving the prediction horizon date at n+ k
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— 2000:¢q2. Each prediction was performed R = 10.000 times. The results for
the three models is displayed in Table

The most interesting result from Table Edlis the comparison of variances for the
three methods. From Table it can be seen, as was speculated in Figure
(a), that the variance of the prediction of the estimated change in house price is
a constant. The estimated variance for Model 1 is E[se(«)] = 0.0169, for Model
2 using fixing F[se(d)] = 0.0332 and for Interest Only model E[se(7)] = 0.0226.
Which for Model 1 and Interest Only are the same as the 6yp;onva and 67 nT
that were estimated earlier, see Table

The results are displayed in Figure ET0 were the larger prediction variance, for
the same confidence interval, can be clearly seen for Model 2. The analytically
calculated point estimate and confidence intervals are also shown in Figure
and it can be seen that the simulated intervals and point estimates of Model 1
and Int Only fit them perfectly.

Mean Standard Deviation

i Eloy) E[0;] Elvi] se(a)  se(d;)  se(vq)
1998 Q1 0.0194 0.0193 0.0153 | 0.0167 0.0333  0.0226
1998 Q2 0.0175  0.0204 0.0151 | 0.0169 0.0333  0.0227
1998 Q3 0.0141  0.0212 0.0164 | 0.0169 0.0330 0.0226
1998 Q4 0.0134 0.0219 0.0168 | 0.0168 0.0329 0.0224
1999 Q1 0.0058  0.0138 0.0083 | 0.0170 0.0329 0.0227
1999 Q2 0.0073  0.0185 0.0121 | 0.0170 0.0331  0.0227
1999 Q3 | —0.0066 0.0063 0.0011 | 0.0170 0.0329 0.0227
1999 Q4 | —0.0067 0.0078 0.0018 | 0.0168 0.0336 0.0225
2000 Q1 | —0.0227 0.0013 —0.0008 | 0.0168 0.0333 0.0226
2000 Q2 | —0.0159 0.0056 0.0037 | 0.0168 0.0342 0.0226

Table 6.4: Results for the simulation according to Algorithm [ « ,§ and ~ describe Model
1, Model 2 and Int Only respectively. Prediction horizon k = 10 .

6.5.3 Simulating The Aggregate Change In House Prices

The main conclusion taken from the previous simulation is that the variance
from a prediction of house price changes with fixing according to Model 2 will
result in normally distributed value with standard deviation se(d) = 0.0332 and
that the variance is fixed for all prediction horizons (k).

Using the results from the previous simulation the effects the aggregation of
predicted values has on the variance can now be inspected.
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Simulation vs. Analytical. HP Change Simulation vs. Analytical. HP Change
MONA and Fixed Prediction from 1997:4. k=10 Int Only Reg., Prediction from 1997:4. k=10
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Figure 6.10: Left panel shows the simulated fixed Model 2 (blue dots) and MONA Model 1
(red dots) with 95% confidence of the prediction interval, the broken blue line is for Model 2
while the broken red line is for Model 1. Right panel show the simulated Interest Only (green
dots) model with 95% confidence of the prediction interval. Black whole line is the observed

change.

As was discussed in section B3] forecasting house prices without updating, i.e.
using previous forecast as bases will lead to an increase in prediction variance.
Here the increasing prediction variance will be estimated by way of bootstrap-
ping. By using the aggregation formulas for house prices derived in Eq.(E3) the
house price will be given at each time from the estimated house price change.
An empirical distribution will then be generated from the house price at that
time and a sample from that distribution used as basis for next periods house
price, see Algorithm B for more detail.
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Algorithm 2 Estimating variance in aggregate house price predictions.
yrt Aggregate house price at time ¢ simulation r.
ur¢ 18 any one of three models from Algorithm [ at time ¢ and rep r.
fly, mean value of house price at time ¢ over R.
0y, standard error of house price at time ¢ over R.
A initial In(house price) at time n, i.e. In(kp,,)
n Prediction origin.
k Prediction horizon.
R Number of simulations done.
for [ =0to k do

for r =1 to R do

if [ =0 then
Yrn = A
else

Sample last house price y, pyi—1 as pj ~ N(ﬂyl,ﬁgl)

Yrn4+l = Urn+l +p:
end if

end for

/}ywz - E[y~7n+l]
Oypir — Se(ynnJrl)

end for
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Results

Algorithm Bl was used to investigate the development of house price prediction
intervals. The output from Algorithm [ was used as input to the simulation
performed listed below. The simulation replication was set to R = 10.000 for
Algorithm Pl and the initial house price A = In(kp,,) or A = In(kp19o7:.4)-

Programming was performed with the statistical package R, the source code can
be seen in Appendix The results for the three models is displayed in Table

Mean Standard Deviation

t Model 1 Model 2 Int Only | Model 1 Model 2 Int Only

n+0 | 1997 Q4 0.2370 0.2370 0.2370 0.0000 0.0000 0.0000

n+1 | 1998 Q1 0.2562 0.2566 0.2523 0.0167 0.0331 0.0228
n+2 | 1998 Q2 0.2736 0.2769 0.2669 0.0236 0.0471 0.0322
n+3 | 1998 Q3 0.2872 0.2975 0.2829 0.0291 0.0566 0.0394
n+4 | 1998 Q4 0.3009 0.3206 0.2998 0.0337 0.0658 0.0455
n+5 | 1999 Q1 0.3067 0.3351 0.3084 0.0378 0.0737 0.0507
n+6 | 1999 Q2 0.3139 0.3547 0.3209 0.0415 0.0811 0.0559
n+7 | 1999 Q3 0.3070 0.3594 0.3224 0.0446 0.0877 0.0604
n+8 | 1999 Q4 0.3004 0.3650 0.3238 0.0473 0.0940 0.0639
n+9 | 2000 Q1 0.2771 0.3664 0.3220 0.0498 0.0996 0.0674
n+k | 2000 Q2 0.2604 0.3710 0.3247 0.0528 0.1053 0.0716

Table 6.5: Results for the simulation according to Algorithm Bl using Model 1, Model 2 and
Int Only. Prediction horizon k = 10 . First observation 1997 Q4 is not a forecast, initial value
of house prices.

The data in Table show the mean and standard deviation for the predicted
aggregate log(house price), i.e. In(kp,). Comparing the estimated change of
house price Aln(kp,) , i.e. dlog(house price), in Table 2l to those in Table
it can be seen that the variance increases with prediction horizon k, as was

expected see e.g. Figure

The right panel of Figure 1Tl shows how the predictions progress from fore-
casting k = 1 period ahead up to k = 10 periods ahead. Although the point
estimate varies greatly the variance of the predictions are only dependant on
the prediction horizon or k. The dependance on k is as expected since it is an
aggregation of the fixed variance of the estimated change in house prices, shown
in section 41

The right panel of Figure shows the, £k = 1 and k = 10, prediction distri-
butions for all three models, centered around zero at £ = 1 and £ = 10. Each
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prediction horizon in the out-of-sample data from k = 1,..., 10 has distribution
as is shown in Figure BT2, for Model 2, centered around zero, i.e. the point esti-
mate at any time. Finally the predictions and the prediction intervals are given
for k = 10 fixing n = 1997:¢4 in Figure EI3 with a 95% confidence intervals for
the prediction.

Distribution Of Predicted House Price Centered Around Zero
Comparsion between k =1 and k = 10. Comparsion between k =1 and k = 10.
— MONA — MONA
— Fixed — Fixed
g — —— Int Only g - —— Int Only
o _] o0 _]
> - > -
3 3
3 3
a S - a S -
TN
0 - 0 - AN
o o
T T T T T T
0.0 0.2 0.4 0.6 -0.4 -0.2 0.0 0.2
log(House Price) log(House Price)

Figure 6.11: The left panel shows distribution of the forecasted house price for all three
models, for one period ahead & = 1 and secondly for ten periods ahead k = 10. The right
panel show the same distributions as the left only centered around zero.

Model 2, Fixed MONA
Prediction Distributions from k = 1...10

12

Density

-0.4 -0.2 0.0 0.2

log(House Price)

Figure 6.12: Shows the prediction distributions for k = 1,...,10 for any prediction in the
out-of-sample data.
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Figure 6.13: The left panels show the estimated change in house prices with 4-1.980 which
corresponds to about 95% confidence prediction intervals. The right panels show the estimated
aggregate house price development also with 95% confidence prediction intervals.
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6.5.4 Summary of Results

The result from this error estimation is that in the case of predicting for the
change in house price a fixed variance can be expected, irrelevant of the pre-
diction horizon k. The prediction can therefore be expected to have an normal
distribution around it “s point estimate with a variance listed in Table[@fl When

se
MONA no fixing of explanatory variables, Model 1 0.0169
MONA with fixing certain variables to prediction origin n, Model 2 | 0.0332
Interest rate only Regression 0.0226

Table 6.6: The expected variance for the prediction of change in house prices, ; = Amt

aggregating the estimate change, i.e. calculating the actual house price without
updating the prediction is also normally distributed around the point estimate,
since the point estimate is essentially the accumulation of the change in the
house price point estimate. The variance however increases with an increase
in prediction horizon k. For any out-of-sample prediction of aggregate house
prices, the prediction variance can be expected to be a function of k as listed
in Table[E4l The results for the Fixed MONA model are summarized in Figure

ET4 for k=1, ..., 20.

When comparing the three models the fixed model will give the highest uncer-
tainty of the three models when forecasting. The interest rate model is second
and the MONA model with all explanatory variables is likely to give the most
secure prediction.

Expected Prediction Intervals
MONA Out-Of-Sample fixing at prediction origin
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Figure 6.14: The expected variance for the Fixed MONA model as a function of prediction
horizon.



CHAPTER 7

House Price Dynamics Il
Statistical Model

7.1 Introduction

In this chapter a new reduced statistical model is devised, using the error-
correction model format and the data from MONA. This new model will be
noted as HPDIII the new model focuses more on modeling the house price to
interest rate relationship than attempting to develop a model which completely
encapsulates the economic long term relationship.

In section the outline of the Boz-Jenkins statistical modeling process is
presented, the section also gives a brief discussion of which steps in the Box-
Jenkins framework have been investigate previously in this thesis. Section
introduces the data and uses correlation plots to decide the level of differencing
and beginning level of lags to include in the model. Section [Z] discusses how
the model is reduced from the initial guess, in section to a usable model
including only the relevant terms, the parameters of the final model are also
estimated, the fit plotted and goodness of fit investigated. In section the
residuals are investigated as in previous chapters to assert the model quality. Fi-
nally in section [ZHBla short summary is presented on what benefits the HPDIIT
poses over pervious models.
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7.2 Statistical Modeling

A method of modeling based on the Boz-Jenkins modeling approach is ap-
plied to systematically identify, estimate and validate a statistical model for
house price development. A flow diagram, illustrating the Box-Jenkins model-
ing procedure, is shown in Figure [1l The Box-Jenkins method is described by
the following main ideas:

1. Identification of the data which involves asking question such as, what are
the main factors, does the data need to be transformed, is the stationarity
assumption a reasonable one.

2. Chose a suitable model type, to fit the data.
3. Estimate Parameters in the selected model.

4. Validate model, residual analysis and out of sample fitting.

If validation of the model fails something has gone wrong and the model must
be reevaluated.

Throughout this thesis some of these rules have been applied already without
mentioning the Box-Jenkins framework directly. For example the identifica-
tion of the factors in the MONA house price relation, as well as theoretical
model describing house price development were discussed in sections B3] and
B4 respectively. These actions are equivalent to the first step in Box-Jenkins.
Estimation of parameters and residual validation has also been performed for
previous models.

The goal of this chapter is to develop a model based solely on previous levels, and
differenced levels, of house prices and interest rates. In doing so the theoretical
framework mentioned in section |4 is largely dropped. The statistical model
of choice for this chapter is chosen as the error-correction model, inspired by
the use in MONA. The ECM allows for the inclusion of the levels as well as the
stationary differences, which ensures the long term trend is captured as well as
short term dynamics.

The HPDIII model is meant to improve on the shortcomings of the reduced
MONA models, i.e. the interest only regression model and the MONA fixed
model, from chapter @l All the house price models will be compared in the next
chapter, first for single branch and later for a scenario trees.



7.3 Data and ldentification 93

J Data
1.ldentification
(Specifying the model order)
| Theory
physical insight

A 4

2.Estimation
(of the model parameters)

3.Model Checking
Is the model OK?

Applications using model
(prediction, simulations, etc.)

Figure 7.1: Box-Jenkins framework for statistical model building. Adopted from Madsen
9, page 148.

7.3 Data and Identification

In chapterBlit was shown that there exists a negative relationship between house
prices and interest rates. This section investigates the relationship between
interest rates and house price further, with the intention of constructing an
error correction model for the change in house prices.

In Figure [[2A the level and first difference of the series House Price: In(kp;) and
interest rates: rente; are shown. Both series are I(1), i.e stationary after one
level of differencing. The correlation between the levels and differenced values
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Figure 7.2: Upper left panel shows the In(kp) i.e. log house prices. Lower left panel shows
the interest rates rente¢, the right panels show the change in the levels on the left or the
differenced series. The data spans 1974:¢3-2001:¢1.

is shown in Table [Tl there it can be seen that the respond variable Aln(kp;)
shows some correlation to all of the three series.

Aln(kp;) —Arente; In(kpy) —rente;

Aln(kpy) 1.000
—Arente; 0.500 1.000
In(kp;) 0.251 —0.115 1.000
—rente; 0.356 0.050 0.835 1.000

Table 7.1: Correlation matrix for the four series used.

Investigating the correlation further, the autocorrelation and cross-correlation
functions are shown in Figure The graph diagonal in Figure represents
the autocorrelation of the four series, while the off-diagonal represents the cor-
relation between the row and column series, called cross correlation. It can be
seen from from the top line in Figure that some significant correlation be-
tween Aln(kp;) and all three other series is present. There also seems to be
some autocorrelation as can be seen in the top left panel.
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From Figure an initial guess to the level of the model can be made as
including 3 lags from Aln(kp:), 2 lags from A(rente;), 1 lag of In(kpy) and 1
lag of rente;.
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Figure 7.3: Cross Correlations between the lags of the four series, diagonal is the auto cor-
relation functions. KP : {In(kpt)}, DKP : {Aln(kp:)} , RE : {rente:} and DRE : {Arente:}.
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7.4 The Model

Using the information from Figure [[3] the initial model can be expressed as

Aln(kpy) = 0p + 01 AIn(kpi—1) + O2AIn(kpi—2) + 03AIn(kpi—3) + 04 A(rentey)
+ 05A(rentes—1) + OgA(renter_2) + 07 In(kpi—1) + Osrente,_1 + &4

Where the parameter of interest is @ estimated by OLS to give E[0] = 6.
Some of the parameters in the initial model may be unnecessary, by estimating
the parameters and removing those which are not significant, reevaluating the
model, and removing the parameters again, a model including only relevant
terms can be derived, the process is described in Example [Tl

EXAMPLE 7.1 (ESTIMATION OF INITIAL MODEL)

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.031454 0.014811 2.124 0.03660 *

Off$DKP. 1 0.260881  0.104628 2.493 0.01459 *

Of£$DKP.2 0.242424  0.105489  2.298 0.02401 *

Off$DKP.3  -0.009673  0.084247 -0.115 0.90886

Off$DRE -4.115852  0.502050 -8.198 2.26e-12 *xx
Off$DRE.1  -0.332784 0.661691 -0.503 0.61631

Off$DRE. 2 0.879325 0.629211  1.398 0.16590

Off$KP.1 -0.029084  0.010857 -2.679 0.00887 *x

Off$RE.1 -0.532613  0.255111 -2.088 0.03981 *

Signif. codes: O ’#x*x’ (0.001 ’*x’ 0.01 °’%’ 0.056 >.” 0.1’ > 1

Residual standard error: 0.01872 on 85 degrees of freedom
Multiple R-Squared: 0.6294, Adjusted R-squared: 0.5945
F-statistic: 18.05 on 8 and 85 DF, p-value: 1.813e-15

The R output above is for the estimation of the coefficients in the initial model,
the stars show the level of significance calculated from the p — value. The
parameter that seems to be contributing the least to the model is 0f£$DKP.3
or 5In(kp;—3). The next step would be to remove 0ff$DKP. 3, re-estimate the
parameters, and removing the "worst" parameter if there are still non-significant
parameters, until all the parameters left are significant.
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Using the process of eliminating non-significant parameters as described in Ex-
ample [Tl the following final model was derived

Aln(kp) = 0p + 01 A In(kpi—1) + 04A(rentey)
+ 07 In(kpi—1) + Osrente;—1 + €4 (7.1)

Estimation for the parameters in the final version of the HPDIII model,
Eq.([), are displayed in Table The comparison of goodness of fit sta-

Estimate Std. Error t value Pr(>[t])

(Intercept) 0, 0.0384 00140 275  0.0073
Aln(kpe_1) 6, —0.0343 00106 —3.25  0.0017
A(rente;) 6,  —4.0416 04799 —842  0.0000
In(kpe—1) 6;  0.3421 0.0753 454  0.0000
rentei_y 0y —0.6326 02434  —2.60  0.0109

Table 7.2: The estimated coefficients for the HPDIIT model based on ECM for change in
house price, estimated with ordinary leat squares (OLS). For the in-sample period 1974:¢q2
- 1997:¢4 or 95 periods. First column is the estimate, second is the standard error of the
estimate, thirdly is the t-statistic and fourthly is the p-value.

tistics is displayed in Table [[3l From the goodness of fit it can be seen that
the HPDIII model fits the data much better than the naive interest rate only
regression, see section B2 and not far from the intricate MONA model, see
chapter Bl The three models are compared graphically in Figure [[4 where it

ROLS | OLS;,; | HPDIIT
R [0.6920 | 0.4156 | 0.6028
Ry, | 0.6672 | 04029 | 05849
& |00169| 00226| 0.0189

Table 7.3: Comparison of the the goodness of fit, R? and Ridj’ for the MONA house price

relation (ROLS) and the reduced interest rate only regression (OI.Sy,,) as well as the HPDIII
model estimated above.

can be seen that HPDIII clearly manages to adapt better to the data than
the interest only regression model. The HPDIII also seems to adapt better to

the out of sample data anomaly, which can be explained by the autoregressive
nature of the HPDIIT model.
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Development Of Aggregated Change In House Price
No updating with observed values, last prediction used as base
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Figure 7.4: The bottom graph shows the development of the modeled variable Aln(kp:).
The upper graph shows the aggregated change without updating. The red line is the MONA
ROLS, green line is the interest only model described in B2 blue is the HPDIIT model and
black is the observed change. The black vertical line represent the boundary between the
in-sample and out-of-sample periods.
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7.5 Residual Analysis

Same as in sections B2l and the residuals are investigated to assert the
model dependability. The residual graph can be seen in Figure From the
residual plot there appears to be no apparent auto correlation from examining
the left panels. The cook plot shows that no outliers are causing trouble and
the QQ-plot, indicates normality.
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Figure 7.5: Visual residuals analysis from the e = y — yEcM-

The two test performed in previous chapters i.e. DW-test and JB-test, see
subsection B3], are also conducted to investigate the behavior of the residuals.
The Durbin Watson gives DW = 1.8017 and a p-value — 0.1603 which means
that the hypothesis of no-autocorrelation in the residuals cannot be dismissed.
The fact that there may be autocorrelation in the residuals can be explained
by the fact that important systematic effect such as income and stock of houses
are omitted. The Jarque Bera test gives a value JB = 0.1075 with a p-value =
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0.9477 which indicates the hypothesis that the residuals are normally distributed
can not be dismissed for any reasonable level of confidence. The JB along with
the QQ-plot indicates that the residuals can be considered normal.

The residual for the HPDIII and interest only regression is shown in Figure
[C8 upper panels. There appears to be quite a bit of autocorrelation in the
naive Interest rate only regression model, see lower left panel. The HPDIII
residual shows signs of small significant autocorrelation on lags 2 and 5. The
autocorrelation can be remedied by modeling the residual, that sort of modeling
is called moving average (MA). However, since there is very little autocorrela-
tion, in HPDIII and adding a MA term increases complexity considerably the
small autocorrelation is disregarded. In the case of the interest only regression
model, MA terms would have to be added to given a sensible prediction. For
more information about MA see Madsen [9].

INT ONLY, Residuals. HPDIII, Residuals.
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Figure 7.6: Residual time plot and corresponding autocorrelation plots for the interest only
regression, section &2 and HPDIII.

7.6 Summary

The HPDIII model estimated in this chapter is a more easily manageable
model than the alternative i.e. MONA fixed model. The HPDIII model has
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a lower estimated error, HPDIII = 0.0189, than the Fixed MONA, Fixed —
0.033. The HPDIII model also has some practical advantages to the Fixed
MONA model, such as it is not dependant on as many variables. The downfalls
of the HPDIII are that is seems to show some signs of autocorrelation and it
needs calibration to the prediction origin, same as the Fixed MONA.

The next chapter compares all the models and applies the best ones to a scenario
tree structure.
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CHAPTER 8

Validation and Results

8.1 Introduction

In previous chapters numerous house price models, most based on the MONA
house price relation have been devised. So far model checking has mainly been
performed by residual analysis. Another important aspect of model checking is
called validation, i.e. checking the prediction performance of the models. The
main purpose of this chapter is to remove the benchmark models by compar-
ing the models through validation and then apply the models which pass the
validation to a house price scenario tree.

In section the models are compared with different prediction horizons for a
single path or time line, the prediction capabilities of the different models are
discussed and the pros and cons of the models listed. Section extends the
one path results by implementing the models which capture house price behavior
from interest rates. Using interest rate scenario trees, house price scenario trees
are produced. The house price trees are validated using observed interest rates
and house prices. Finally in section Bdlthe results of the chapter are summarized
for both cases.
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8.2 One Path Validation

In this section the four models, inspected in previous chapters, i.e. the full
MONA, the Fixed MONA, interest only regression and HPDIII (ECM) are
compared for one path, or time line, validation. The purpose of the validation
is to see how the prediction changes with increased prediction horizon and to
compare the model together. The models that pass the validation will then be
implemented to a scenario tree structure in the next section.

Validation involves seeing how the model performs, given new explanatory vari-
ables, i.e. how well the model predicts for new explanatory observation. This
sort of validation was performed in section where, because of discrepancy
between the in-sample and out-of-sample data, the model was shown to deliver
poor results.

Since the out-of-sample data is not suited for validation, see subsection BTl
the in-sample period is used. In-sample validation has some disadvantages and
numerical results should be taken with reserve. The main downfalls of using the
in-sample period is that it is the same period as used for parameter estimation,
which will give a very good fit for validation, in fact a too good or misleading
fit.

Although the in-sample numerical results of the validation should not be taken
at face value, the validation can still give indications to the quality of the models.
More precisely the validation can be used to compare the models to each other,
the in-sample validation will also show which models are truly capturing the
house price by changing the initial point of the validations.

8.2.1 The Validation

The validation is performed as follows, all the models have all explanatory infor-
mation available. Instead of using the whole period from 1974:¢2-1997:¢4, the
data is incremented in small periods and a new prediction is performed, this way
it can be seen whether the model captures the house price or diverges, which
would be a cause of model inadequacy. The error between the observed house
price and the predicted value is measured by the mean square error (MSE), see
Eq.(ET3). Two ways of measuring the error are used, first the MSE is calcu-
lated as function of different prediction horizon k, i.e. how much error can be
expected when predicting 1, ..., k periods ahead. Secondly the sum of the mean
square error or the total error of the k prediction is calculated.
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Two different prediction horizons are considered for the in-sample validation,
first a k = 5 period ahead prediction. The prediction origin is also incremented
by one period through the in-sample period, also known as a rolling time window.
The second prediction is a long term or k& = 20 prediction, also incremented by
one period through the in-sample period.

The results for the five steps ahead in-sample prediction, or validation, can be
seen in Figure Notice how the rolling window progresses through the in-
sample data, predicting & = 5 periods ahead, then incrementing the prediction
origin and performing a new prediction. From B2 it can be seen that the green
line or interest only regression seem not be capturing the dynamics of the house
price, but only the upward trend of the model. The red and cyan, full MONA
and HPDIII respectively, seem to capture the drift and the dynamics relatively
well throughout the in-sample prediction. The blue line or the Fixed MONA
model also seems to capture the house price well, for such a short horizon. The
Fixed MONA however shows that it does not cope well with dynamic changes,
which can be expected since 5 of 8 explanatory variables are fixed. The results

Point Estimate Validation, Aggregate.
Predict with horizon k = 5, then update. From 1974.5 to 1996.5 every 0.25 years.
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Figure 8.1: The in-sample forecast or validation for a horizon k = 5. The red line is the Full
MONA model, the blue line is the Fixed MONA model, the green line is the interest Only
regression and the cyan line is the HPDIII or ECM model.

from FigureBIlare summarized graphically in Figure B2 The left panel shows a
scatter plot where each dot represent the aggregate squared error for a prediction
initiated at time ¢, the lines show the mean error that can be expected for a
k = 5 prediction. The green line, interest only regression, gives the highest error
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Figure 8.2: TLeft panel shows the aggregate sum of squares for each forecast, the lines
show the mean of those forecasts. The right panel show the estimated mean square error for
prediction horizon I=1,...,k.

followed by HPDIII and Fixed MONA shown as cyan and blue, respectively. The
red line, which represent the Full MONA model, has the lowest error.

The right panel of Figure R2shows the mean square error, from the predictions
in Figure expressed as a function of prediction horizon. The error increases
with prediction horizon, for all the methods, as can be expected. The interest
only method however seems to be giving the highest error for the & = 5 horizons,
the HPDIII and Fixed MONA giving very similar results and the full MONA
capturing the house price the best.

Performing the prediction again using a horizon of k£ = 20 as a long term pre-
diction, i.e. 20 % 0.25 = 5 years ahead. The results for £ = 20 are shown in
Figure comparing the £ = 20 and k& = 5, in Figure Bl it is obvious that for
longer predictions some of the methods seem to be diverging quite a bit from
the observed value, which can be expected for methods where no updating is
used.

The results from the & = 20 in-sample prediction are summarized in Figure B2l
The left panel shows that the interest only regression method give the worst
aggregate error for the £ = 20 prediction. The right panel however shows that
the Fixed MONA model has exceeded the interest only regression model after
k=1T7.

The Interest rate only method obviously only captures the drift, as can be seen
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Figure 8.3: The in-sample forecast or validation for a horizon k = 20. The red line is the
Full MONA model, the blue line is the Fixed MONA model, the green line is the interest Only
regression and the cyan line is the HPDIII or ECM model.
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Figure 8.4: Left panel shows the aggregate sum of squares for each forecast, the lines
show the mean of those forecasts. The right panel show the estimated mean square error for

prediction horizon [=1,...,k.

by the constant upward trend. The reason for the poor performance of the
interest only regression can be explained by the fact that the levels, both house
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price and interest rates, are not included leaving only the constant to capture the
trend, the constant seems however not versatile enough to capture the dynamics
of the trend and over fits the house price.

The full MONA model gives the best performance and the smallest error. How-
ever, as has been mentioned before not all data is available for the MONA
model. The closest match is the Fixed MONA model which seems to perform
well for short prediction horizons k = 5 but diverges away with increased pre-
diction horizon. The fixing of the explanatory variables, is equivalent of adding
a fixed amount to the constant, i.e. fixing the course of the process. The al-
ternating explanatory variables, interest rates, then oscillate around the course
set by the fixed variables or new constant. This explains why for long periods,
the Fixed MONA house price model may diverge from the observed house price.
The model does not have the capability to respond to large dynamic changes.
However, by estimating the prediction interval as was done in section the
Fixed MONA model can be applied.

The HPDIII or error-correction method, also seems to capture both the trend
and the short term effects relatively well. It does not only represent the trend,
as the Interest rate only regression method does for example.

8.2.2 Nykredit Relation

The Nykredit relation from chapter Bl was also compared to the house price
data from the MONA model. Two extreme scenarios were considered for the
Nykredit relation, first a one period forecast with updating, i.e. k = 1, and
secondly a prediction for the whole period without updating or £ = 120. The
results for these two validations can be seen in Figure

From Figure it can be seen that for the & = 1 the Nykredit relation per-
forms well with a very high level R-square of around R? ~ 0.99. However, in
this model the unit-root non-stationarity has been overlooked, which deems the
model useless for predictions without updating. The long term prediction shows
that when the model does not get observed values for updating it performs very
poorly, see red line in Figure

The conclusion from the validation of the Nykredit relation is that non-stationarity
of house prices is not considered, resulting in a useless prediction model except
for very short horizons, e.g. k = 1,2. This conclusion for the Nykredit model is
the same as discussed in section B

Despite the downfalls of the Nykredit model it was useful for developing and
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Nykredit relation, Aggregate.
Validation using MONA data

~| = Observed HP
— One Step Update, k=1
— No Update, k=120

0.5

0.0
|

log(House Price)
-0.5
1

-1.0

_ \/\

T T T T T T
1975 1980 1985 1990 1995 2000

-15

Time

Figure 8.5: Using the MONA house price data to validate the Nykredit relation. Blue line
shows the one step prediction with updating, the red line shows the Nykredit relation using
previous prediction as bases for new predictions.

understanding the more complex relations, it was especially useful as a starting
point for the programming conducted, which later was extended to the more
elaborate models quite easily.

8.2.3 Cross Validation

An alternative to the in-sample validation could be to use cross validation. Cross
validation in this case could be achieved by dividing the in-sample period into
two smaller periods, then estimate the parameters on one part of the data and
validate on the other. Cross validation for this data set however, like the in-
sample validation, has some drawbacks. The main of which is that the number of
observations are rather low for estimation and validation, if the cross validation
method would be applied.

The idea behind cross validation is to validate the model structure irrelevant of
placement in data, i.e. validating the terms in the model and not focusing so
much on specific estimation of the parameters. Obviously for this to work the
data has to be quite homogenous, which is not the case for the house prices.
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8.3 Scenario Tree Validation

In this section house price scenario trees are developed from the one path ver-
sions of the Fixed MONA and HPDIII models. Since it was shown that the
Nykredit and interest only relations do not capture the house price for one path,
except for very short predictions they are not applied to the tree structure.

The section is structured as follows. First a short description of how to extend
the two models to the scenario tree structure. Secondly a short discussion of the
input interest rate scenario trees and a discrepancy in time steps. Thirdly the
interest rate trees are applied to give house price trees, and the results inspected
and discussed.

8.3.1 House Price Formulas For Scenario Trees

Given a scenario tree of interest rates, and applying each path from that tree as
single path in the house price models, a house price scenario tree can be derived.

As was discussed in section B3 2 the response of interest is the house price level,
not the change, the models results must be accumulated.

(kp,,) = A+ Aln(kp,,) (8.1)

i=1

where 1n(k\1/)t’n) is the aggregate estimated house price at time ¢ and node n. A
is the initial house price index at prediction start, set to some intuitive value e.g.

A = In(100). The term Aln(kp;,) represents the estimated change in house
price, which is represented by the two models

Fixed MONA model Fixed 5 of & at time ¢t =T

A 1n/(k\ptn) = 3% + 0f Aln(pepr) + (5 A(rente; ,, + ssatst)
+ Bg"A(rentet_La(n) + ssatsp_1)
+ B (rente; 1 a(n) + ssatsy_1 + 0.01) + Bidpeper_y
+ Bgdkper—1 + B5 n(kpr—1 /pepr—1)
+ 35 (n((ydpr—1 — ipvr—1)/pepr—1) — In(fwhr_1))
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HPDIII (ECM)

Aln(kpy ) = 0o + élAln(kpt,La(n)) + é4(Arentet,n)
+ é7 1n(kpt—1,a(n)) + éBTentet—l,a(n)

Notice that for the models above there are only two variables i.e. house price
(kp) and interest rate (rente), which are node dependant, all other variables are
fixed for all nodes N; to their value at time ¢t = 7.

The assumption is made that all data is available before ¢ = 0, i.e. before the
prediction start, and can be used as correct input for the first node. There after
the estimates are used, so there is no updating with observed values.

8.3.2 Interest Rate Scenario Trees

The input variables to the house price trees are interest rate trees generated
with a variation of the Vasicek interest rate model, generation of interest rate
scenario trees is out side the scope of this thesis, for more detail see Jensen and
Poulsen [5].

The input data used for validation are scenario trees of interest rates, where the
bonds have a maturity of 0-10, 15, 20, 25 and 30 years. The interest scenario
trees are in yearly increments, while the house price models use quarter yearly
steps, so to use the estimated models an interpolation is applied to the paths
of the interest rates, to get quarterly rates usable in the models. An explana-
tory diagram of the interpolation is shown in Figure To the left of t =0
the observed MONA data is available for model initialization, after ¢ = 0 the
interest rates are provided yearly and must be estimated quarter yearly with
interpolation, giving the small nodes on each path. The horizon on the input
interest rate trees is 5 years which is equivalent to 5 -4 = 20 in the quarterly
model, i.e. the interest rate scenario trees are correspond to a k = 20 prediction
tree for the house price tree.

Having many bonds with different rates is different to the MONA model where
only one rate is used. The structure of the interest term rente, used in the
estimation of the MONA model, compared to the rates used for input here is
not exactly known. The rente term will be plotted together with the bond
scenario trees to see a comparison between the rate modeled as the "true" rate
in house prices, and the input generated rates.
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Figure 8.6: Example of a linear interpolation from a yearly data to get quarter yearly data,
for a binomial.

8.3.3 Results

The validation performed here is a way of seeing if the house price scenario
trees capture the house price, given the house price models and a scenario tree
of estimated interest rates.

Three models were initially applied to the scenario tree structure for validation,
i.e. Fixed MONA, HPDIII and interest Only regression. However, both the
one path and preliminary scenario tree show the interest only model to perform
poorly. The results for the Int only regression are omitted here, but shown in

Appendix [B1]

The next three pages show the scenario trees for the 1995 — 2005 interest rates
and the corresponding estimated house prices.
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to the interest scenario tree in with same header from Figure The blue line describes the
observed house price. The broken black lines are the prediction error bars for the extreme
paths, with 95% confidence interval.
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Figure B shows the estimated scenario trees with the observed MONA interest
rate for comparison. From the figure it can be seen that with increasing bond
maturity the mean level of interest rates increases while the variance or volatility
decreases. For zcby30, i.e. the 30 year bond, the rate has a relatively low
volatility and a high mean of ca. 8% which is considerably higher than the
MONA rate. The MONA rate seems to be decreasing in this period 1995 — 2000
and the rate trees do not seem to represent the rate particularly, the MONA
rate might be a downward path in the zcby0O — 5 bond scenario trees, i.e. the
short term bonds. For the other scenario trees the MONA rate seems represent
a substantiality lower rate than shown by the trees.

Figure shows the response from the Fixed MONA model given the corre-
sponding scenario trees in Figure as input, the broken black lines show the
error bars as calculated in section with £ = 1,...,20. The Fixed MONA
model captures the house price well for the short term bonds, where the MONA
rate was also captured. However, the volatility of the house price at horizon is
quite high, the most extreme being a rise from 100 to 250 in five years, with
a range from ca. 300-80, with 95% prediction horizon. This high volatility
can however be expected from the Fixed MONA model for long predictions, as
was discussed in the one path validation in section What is more, if the
predication origin were to be shifted slightly it might have a considerable effect
since the variables would be fixed to new levels. Obviously the long term bond
trees are not expected to yield good house price results, since the corresponding
interest rate trees do not capture the MONA rate which the models uses to
describe the interest rate to house price relation.

Figure gives the results from the HPDIII model given the interest rate
scenario trees in Figure The HPDIII does not seem to be capturing the
house price as well as the Fixed MONA. The house price at horizon however
has a much smaller volatility. In the cases where the HPDIII model captures
the house price is on the extreme paths, more precisely the maximum house
price path. The house price response is not so strange since the MONA rate
is non-increasing throughout, and usually close to the lowest interest rate path,
which in turn should give the max house price path in the house price model.

The period 1995 — 2000, which is inspected in Figure is not well suited
for validation because of the constantly increasing house price. Recall from
subsection BEE6.Tl that during this period the data shows abnormal behavior and
the response breaks away from the information of the explanatory variables.
Even though the data is not ideal there are two main results that can be deduced
from this validation

1. The house price model respond directly to the volatility of the interest
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rate trees, i.e. if there is a large variance of rates at horizon there is also
a large variance of house prices at horizon.

2. A second interesting observation is how the house price trees respond to
the level of interest rate, if the rate is on average high such as for 30 year
bond (zcby30) the house prices will yield a downward house price, which
is in accordance with the economical theory of high interest will show a
decline in house prices. This crucial relationship between the interest level
and and the trend of house prices is captured by both the Fixed MONA
model as well as the H PDIII model, the interest only regression however
does not capture this behavior, see Figure [B11

Another experiment is conducted by approximating the interest rate trees to
another time. That is, instead of being from 1995-2000, the scenario trees are
noted as 1989-1994, with corresponding MONA interest rate and observed house
price.

As can be seen in Figure during the 1989-1994 period there seem to be
more variation in the MONA rate, than the downward 1995-2000 rate, what is
more the fixing of the MONA model does not give an extreme addition from
the fixed variables resulting in the fixed model capturing the house price very
well, see Figure The HPDIII form is the same as before since it is only
dependant on the input interest rate tree. However, where the interest rate trees
capture the MONA rate, the house price trees seems to capture the house price.

8.3.4 Prediction Errors

The errors or estimated prediction intervals were estimated according to Algo-
rithm B, in subsection for k = 20 and the results for all three methods are
listed in Appendix Table [B1
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8.4 Summary

This chapter has listed the validation of the models first as single path models,
or normal time series models, and later as scenario trees. Response relationships
between the interest rates and house prices are developed for the one path and
then applied to a scenario tree of interest rate paths. This section summaries
the main results for the two validations.

Single path The validation for the single path reveals the Nykredit and Inter-
est Rate only regression models as not suitable for predicting house prices. The
non-stationary nature of the Nykredit relation results in unreliable results. The
Interest Only regression is missing terms and only captures the upward trend of
house prices. The Fixed MONA model appears to approximate the ideal Full
MONA model for short to medium term predictions, see Figure However
for longer predictions k > 15 the precision decreases rapidly since the model is
not well equipped to respond to dynamic change over a long period with many
explanatory variables fixed. The HPDIII model seems to be performing well
according to the single path validation. Only the HPDIII and Fixed MONA
model are applied to the scenario tree structure.

Scenario tree In short if the input interest rate scenario trees capture the
MONA rate, which can be modeled from data, the house price models capture
the house price. However, this is dependant on the data not being significantly
different from the in-sample period, where the models parameters are estimated.
A sudden change in house prices not explained by the model factors, such as a
bubble, will likely cause a discrepancy between the rates and house prices.

Both the Fixed MONA and HPDIII models captured the house price well in
the absence of bubble behavior, fixing the MONA and predicting for & = 20 can
give very volatile house prices at horizon if the fixed explanatory variables were
indicating a strong change at the time of fixing, prediction horizon.
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CHAPTER 9

Conclusion

"All models are wrong, some are usefull. A

In this thesis the problem of modeling house prices to a degree was considered.
House price is a non-stationary process, dependant on many economic variables.
The three main factors affecting house price are interest rates, income and the
amount of houses available.

Throughout this thesis the process of house price modeling is described from
basic economic theory to applied house price scenario model, with estimated
prediction interval.

Initially a basic theoretical economic model was devised. The complexity of the
model was increased by replicating and analyzing the house price relation from
a complex macro model (MONA). The theory and intuition from the MONA
model was then applied to derive a MONA-like model which is more suited to
the data available in the mortgagor problem, namely only interest rates. Two
single path models are devised from the intuition acquired from the MONA
model. The Fixed MONA model and the HPDIII model.

1. The Fixed MONA model, used all the information in the Full MONA
house price relation, while fixing many of the explanatory variables used
and using only the interest rate variables as input. This fixing increased
the error of the MONA prediction, the fixing also maked it hard to estimate
the error with analytical methods. Bootstrapping was used to estimate
the prediction error when using the Fixed model.

"George Box, one of the most influential statisticians of the 20th century.
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2. The HPDIII model was based on the same time series model as was
used in the MONA house price relation, i.e. the error correction model,
mixing together both levels and differences to capture both the short term
dynamics and the long term trend. The HPDIII model was modeled
from data and did not use the MONA relation directly, unlike the fixed
model.

Although these were the only models that were finally applied to a scenario tree
structure, other benchmark models were also created. The benchmark models,
The Nykredit relation and the Interest only regression, both served a certain
purpose but in the end did not capture the house price well enough such that
they could be used for prediction.

Validation was especially hard since the data was both scarce as well as very non-
consistent. This lead to an in-sample validation which showed that the Fixed
MONA and HPDIII model were the ones that captured the house price best.
However both methods have down sides. The Fixed MONA is non-respondent
to dynamics changes, for long prediction horizons, and is therefore not very af-
fective for long prediction horizons k£ > 10. This feature was incorporated into
the evaluation of the prediction intervals for the Fixed MONA. The HPDIII
showed small signs of autocorrelation which did not seem to reduce the predic-
tion performance significantly, e.g. as in the case of the interest only regression.

Both models showed the ability of capturing the two main elements in house
price movements. Firstly both models captured the trend, which is related
to the interest level at each time. Secondly and more importantly both models
show signs of capturing the dynamics, with estimated prediction error. However
modeling the short term dynamics with great precision is impossible.

Initially all models were treated as one path models or univariate time series.
However, to be able to use the results in the Mortgagor problem a house price
scenario tree must be devised from the single path model.

The house price trees were tested against interest rates with different maturities.
There it could be seen that the two house price models capture the house price
development, i.e. if the interest rate tree captures the interest rate. More
precisely the output is only as good as the input, where the quality of the
interest rate trees is fundamental in the quality of the house price trees.

The house price and interest elements in the MONA model are both very ab-
stract. More specified models, e.g. for specified sector of the real estate market
and certain bonds, can however be achieved quite easily using the same ideas
applied in this thesis. The models developed in this thesis are considered as
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"correct models", i.e. they include the right terms, giving new parameter esti-
mations for different data.

The thesis fulfills the aim that was set out with in the beginning, i.e. to develop
a house price scenario tree(s), with known prediction intervals, that can be
applied to the Danish Mortgagor problem [T3].

9.1 Further Work

There are numerous aspects that can be investigated further, continuing from
the results given in this thesis. The most interesting of these is to apply the
house price trees to the Mortgagor problem and see what affect the possibility
of adding house price will have on the results.

Another interesting issue is to investigate the composition of the interest term
(rente) used by the National Bank in the estimation of the MONA model.
There is obviously no, one, true interest rate and the MONA rate is some
sort of weighted average of the rates of the bonds available. Given historical
data of rates, an approximation to the rente term can be made from available
rates. Giving the weights each bond has in the composition of the rente term.
The weights could then be used to combine estimted house price trees to give
a interest rate rente tree, resulting in a more correct scenario tree for house
prices.
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APPENDIX A

Programming

A.1 Introduction

The main topic of this chapter is the implementation of the scenario tree and a
description of the reusable programs written for modeling and analysis.

In section the scenario tree from section Bl is revisited, describing the
problem less formally as well as the different methods of implementation for
such a tree. Sections and describe the two different ways the scenario
tree was implemented. Firstly the indexing method, implemented initially in
Matlab, later moved to R, and described in section[AZ3l A short introduction to
object oriented programming (OOP) is given in[A4l The second implementation
of the scenario tree uses OOP for the more robust method, called the object
oriented approach, implemented in C# and described in section

The analysis, parameter estimation and simulations performed in this thesis was
performed in the statistical package R. Section discusses the programs writ-
ten for modeling and analysis. Many of the functions written in R are highly
reusable and therefore deserve some discussion. Section also provides ex-
ample scripts, illustrating how to use the numerous functions written especially
for this thesis.
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A.2 Scenario Tree Revisited

From the start of the project the objective was to implement the tree structure in
an object oriented language, i.e. C# , see[Adlfor further details. However, since
having more experience with Matlab a more brute force method was attempted
initially. The initial method is based on applying a tractable indexing scheme to
the scenario tree. The purpose of the first implementation called the indexing
method was initially intended to give insight into the tree structure and meant
as a draft for the creation of the C'# program.

There are two main elements to a scenario tree, i.e the shape (¢) and number
of periods (T"). For example a binomial tree or trinomial tree would be ¢ = 2
and ¢ = 3, respectively. Recall from section B4 that the set of nodes in the
tree at any time 0 < ¢ < T can be described by the set ;. Corresponding to
the formal definition of the tree the shape can be found from ¢ = C(1). The
two fundamental equations for implementing the indexing method can then be
defined as the number of nodes at each time

N =" (A1)

and the total number of nodes in the tree
T

N=>¢ (A.2)
i=0

which e.g. for a ¢ = 2, binomial tree, and T = 8 gives
{q"}y = {1,2,4,8,16, 32,64, 128,256} N =511

These two equations, i.e. Eq.[AJl) and Eq.[AZ2), allow for the formulation of
the indexing method described in the next section.

Although the indexing method was only intended to give an intuition towards
the scenario tree, it became very useful for validating the C'# results, analyzing
output from plotting the trees. Eventually both methods worked for generating
scenario trees.

A.3 The Index Method

Matlab and S, the language used in R, are non object oriented programming
languages which, when used correctly, can be very effective. The key to effec-
tive function programming is to write small, robust and specialized functions.
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The functions can then be applied inside more complex functions to accomplish
more involved tasks. This programming procedure also makes the code quite
transparent and intuitive.

The final versions of the indexing method were very valuable in validating the
results from the C# program, since by then they had captured most of the C'#
programs functionality.

The index method was initially implemented in Matlab, however since all sta-
tistical analysis, predicting and simulation was performed in R the indexing
programs were moved to R for consistency, since the syntax of R and Matlab is
very similar the transformation was easy.

In this section a short discussion will be given on the functionality of the most
important indexing functions. The code for the following functions is available
in in the Appendix.

seq = GeoSequence(q, T) : The first function that was created, calculates and
returns a sequence {q¢'} where i=0,...,T. This sequence shows at time i
how many nodes are at that time. If =3 and T=5 for example, it would
give:
3% =11, 3, 9, 27, 81, 243]

So this is Eq.[(AJ) and is used in all of the following indexing functions.

Sum = GeoSum(n, T) : This is Eq.(A2) and sums up the results of the sequence
given by GeoSequence, i.e. gives the total number of nodes in a tree. For
example if n=3 and T=5 the function returns

5

Z3i:1+3+9+27+81+243:364
1=0

t = WhatPeriod(q,T,i) : This function uses GeoSequence and GeoSum to find
in which period, i.e. 0 < t < T, node i is positioned. For example given
n=3, T=>5 and 1=6, the program delivers an output of t=2.

p = Parent(n,T,i) : This function is probably the most important program of
the indexing functions. The function finds the parent index number p of
a certain node i given the tree type q and length T. The algorithm uses
GeoSequence, GeoSum and WhatPeriod. An example of output from this
function is

Parent (n=3,T=10,i=3400)=1133
Parent (n=3,T=10,1=3401)=1134
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Parent (n=3,T=10,i=3402)=1134
Parent (n=3,T=10,1=3403)=1134
Parent (n=3,T=10,1=3404)=1135

num = NumBranches(q,T) : This function takes the usual tree type q and tree
length T as input. It returns a structured array in Matlab and list in R
with two variables. The first one describes the number of leafs and the
second the index number of the top leaf. An example of output for the
function, call NumBranches (n=3,T=10), is

NBranch: 59049
FBranch: 29524

i.e. there are 59049 leafs on this tree and 1—29524 is the node index of
the top leaf.

mat = BranchParents(q,T,i) : This function uses Parent and NumBranches
and returns index numbers for whole branches. An example of output
given the following function call BranchParents(n=3,T=8,1i=1), i.e. the
i = 1 is the first leaf at T, gives

mat =
Columns 1 through 5
1 2 5 14 41
Columns 6 through 9
122 365 1094 3281

i.e. the output vector holds all the node indices of index=1, or the top
leafs branch.

These are the main sub-functions used in making a scenario tree with the in-
dexing method. Initially intended to be a exercise, for the more evolved C'#
programs, the indexing method evolved into a full fledged scenario tree genera-
tion method able of validating the results from the C'# program. In the end, all
house price models had working implementations both in R as well as C#. In
R the house price dynamics are called HPDI, Nykredit model, HPDINT, Interest
only and HPDFIX, Fixed MONA. An example of using the TreeFunctions.R
bundle of functions is given below. The TreeFunctions.R code can be viewed
in Appendix
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Example of using the Tree Function library

# #
#  Example of using the functions in the TreeFunctions.R file in the Appendix. #
#

# Place the file TreeFunctions.R in directory or accsses via path and source:
source (’TreeFunctions.R?)
# Now all the functions in the TreeFunctions.R file are available for use.

# Initiating
q=3 # Tree of type q = 3, i.e. trinomial.

T=25 # Time T 5, i.e. 0 <= t <= 5.
Indexes = Indexer(q,T) # Matrix holding the indexes of a scenario tree.

# Generate Lattice Tree of test rates

Start.Rate = 0.04; # Begining Rate.
Range = 0.014; # Range of change at each time.
LattTreeV = GenerateRates(q, T, Start.Rate, Range) # Lattice Tree Vector Format.
LattTreeM = TreeForm(Indexes,LattTreeV) # Lattice Tree Matrix Format.

# House Price Tree Generation. Using the lattice tree above.

NykreditTree = HPDI(q,T,LattTreeV) # HPDI, the Nykredit House Prices model.
MONAFixed = HPDFIX(q,T,LattTreeV) # HPDFIX, MONA fixed.
# Fixed model uses 1997:75 values as default, other values can be used for fixing

# by adding HPDFIX(...., FIX = new.vector).

InterestOnlyReg = HPDINT(q,T,LattTreeV) # HPDINT, The Interest Only regression.

# Simple Plot of house price.

INT.H = InterestOnlyReg$H # The house price from InterestOnlyReg list object.
INT.H.MAT = TreeForm(Indexes,INT.H) # Get vector to matrix format.
PlotTree (INT.H.MAT) # Plot INT.H.MAT.

Data.INT.H.MAT = MMM(INT.H.MAT) atrix showing min,max and median at each time

# M
# 0...T in the tree.

The example above handles the scenario tree in two formats, i.e. the vector
form (1 x N) and the matrix form (¢ x (T + 1)). All calculations use the
vector form which allows for much bigger calculations than the heavy matrix
form. The matrix form is derived from the vector format through the function
TreeFormat. The matrix form is mainly used for plotting the trees, it is not
recommended to manipulate big trees in matrix form or plot very big trees.
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A.4 Object Oriented Programming

Another more sophisticated approach of programming the house price scenario
trees is by use of so-called Object oriented programming (OOP). Objected
orientation is an approach to build programs that mimic how actual objects
are assembled in the real world. OOP procedure is often used along with The
Unified Modeling Language (UML) which is a collection of successfully
proven practises when it comes to programming large and complicated systems.
The idea behind using OOP and UML is to create more reusable, reliable and
understandable programs. More precisely object oriented programming portions
big problems into more easily understandable parts. OOP “s standardized way
of reducing problems through the use of UML makes it also possible for different
people to maintain or extend already existing code with relative ease.

Here only a brief discussion will be given to a few OOP terms relative to the
programming done in the thesis. For further discussion see Bennett, McRobb
and Farmer [I]EEI These relative concepts here are Class, Object, Inheritance
and Abstraction.

Class: is the abstract definition of a "thing", including the "things" charac-
teristics and what the "thing" can do. An example of this will be given in
the object definition.

Object: is a particular instance of a class. An example of a class object relation
is e.g. if a dog is a class then Lassie is an object of that class, i.e. the
Lassie is a dog.

Inheritance: Often it is convenient to specify classes in more detail, which
can be done by creating sub-classes. The sub classes then inherit the
characteristics and attributes of the super class. An example of inheritance
is that Lassie is a Collie. Collie can therefore be a sub class of dog. Since
all Collies have the attributes of dogs, Lassie is therefore a object of the
class Collie which inherits from the class Dog.

Abstraction: When programming complex relationship Abstraction is a
good quality to have. Abstraction can be achieved by working at the ap-
propriate level of inheritance, e.g. Lassie is a Animal - Mammal - Dog -
Collie, each class becomes more specific when moving down in the hierar-
chy, i.e. adding more specific attributes and functions.

The next section uses the concepts expressed above when explaining the object
oriented version of the house price scenario tree.

'See e.g. chapter 4 called What Ts Object-Orientation
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A.5 C# programming

As was mentioned in the previous sections, initial formulations for the scenario
trees were drafted using Matlab. From the start the goal was however to build
a program in an objective oriented language. Using the Matlab ideas of how
a scenario tree structure works, along with the OOP framework a house price
tree was programmed in the OOP language C#. There were two versions of the
house price tree in C#, the class diagram for the first one can be seen in Figure
[0l The first version did not use concepts such as inheritance and abstraction
there were only two classes, i.e. Tree and Node. The first version begins by
initializing a Tree object, e.g. HouseTree, next it calls a function to import the
data from a XML file. For each new input supplied by the XML file an object
is instantiated from the Node class, until all the data has been read from the
XML file. Functions were then used on the HouseTree object, now holding all the
XML data, to calculate corresponding house prices. Comparing to the Matlab
version, which uses an elaborate indexing scheme to calculate the house prices
the C# is a much more elegant solution with a much lower level of involvement
required before it can be used by someone other than the author. The first

Node Tree

Figure A.1: An abstract class diagram of the initial version of the scenario tree program,

performed in C#.

implementation had room for improvement, since the level of abstraction was to
high and there was a possibility of delegating the responsibility of the two classes
further. Version one was also quite involved, though not as much as the Matlah
version, i.e. if some one other than the author would want to edit or extend the
program, that same person would have to acquire a full understanding of the
whole system first.

The second model was developed mainly by re-thinking the responsibilities of
each class baring the OOP concepts in mind. As with the simple example given
with the dog class above, a refined class for node and tree are derived where
they only contain the most abstract terms common to scenario trees and nodes.
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An example of this is that all nodes in a tree have a number while not all nodes
should have an interest rate attribute. In the second version a new node and
tree type are formulated as IR Tree and IR Node or interest rate tree, since
interest rates are not common to node and tree but needed for calculating house
prices. IR Tree and IR Node inherit the basic attributes of a Tree and Node
respectively, same as for the Collie class does from the Dog class in the example
above. A house price tree and node are formulated in the same way inheriting
from the interest tree and node. The second version class diagram and the
final version is displayed in Figure A2 the arrows in the diagram represent an
inheritance relationship. The benefits of the second model should be obvious,

Node Tree
IR Node IR Tree
HP Node HP Tree

Figure A.2: An abstract class diagram of the second, and final, version of the scenario tree

program, performed in C#.

e.g. if an individual would want to add a new tree say a pension tree, the pension
node and tree could inherit from anywhere in the class hierarchy allowing the
developer to achieve a certain level of abstraction. The developer would not
have to know everything about the programm, only how the super class works.
The full class diagram is given in Appendix [0l for C# code see also Appendix
D)}
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A.6 R Functions and Scripts

R is a language and environment for statistical computing and graphics. It is
part of the GNU Project and therefore fred]. R strengths lie mainly in the
statistical and time series analysis, where it supersedes Matlab. R is also a fully
fledged programming language and offers a flexible syntax for programming
specialized functions. The main power of R comes from the open source nature
which leads to very powerful discussion forums for problem solving. R is today
considered the de-facto language when dealing with statistics.

The R package was used for replicating the MONA house price relation results,
as well as for all tests, predictions and error estimation. Following is a script
demonstrating the use of the numerous functions written for R. The code for
the functions used can be seen in the Appendix section

2For more information see the R home page at http://wwww.r-project.org/
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Example of using Modeling Functions

# #
#  Example of using the functions in the Functions.R file in the Appendix. #
#

source (’Functions1.R?)

zz = read.csv("New.csv",sep = ";") # Importing data from file New.csv.
attach(zz)
zz = ts(zz,frequency=4,start=c(1971,1)) # Make time series object.

zz = zz[,-1]

# Setting up data.

data =list(’KP’=ts(KP,frequency=4,start=c(1971,1)),
*RENTE’=ts (RENTE, frequency=4,start=c(1971,1)),
’PCP’=ts (PCP,frequency=4,start=c(1971,1)),
*IPV’=ts(IPV,frequency=4,start=c(1971,1)),
’FWH’=ts (FWH, frequency=4,start=c(1971,1)),
’SSATS’=ts (SSATS, frequency=4,start=c(1971,1)),
*DPCPE’=ts (DPCPE, frequency=4,start=c(1971,1)),
’DKPE’ =ts(DKPE,frequency=4,start=c(1971,1)),
’YDP’ =ts(YDP,frequency=4,start=c(1971,1)),
’RENTE.SSATS’ = ts(RENTE+SSATS+0.01,frequency=4,start=c(1971,1)))

time = list( ’Sta’ = 1974.25,
’End’ 1997.75,
’Clo’ = 2001.75)

# Ordinary Least Squares And ROLS, formulate data.

i.m = Int.Only(data,time) # Interest Only model estimated.
pi.m = Pred.0LS(i.m,alpha=0.05) # Interest Only model predicted.
r.m = MONA.Model(data,time) # MONA model estimated.

pr.m = Pred.ROLS(r.m,alpha=0.05) # MONA model predicted.
ecm = ECM.Model(data,time) # ECM model estimated.
pecm = Pred.0LS(ecm,alpha=0.05) # ECM model predicted.

# Aggregation, moving from differences to levels.

Fit.all = i.m$A11$Y

Fit.off = cbind(i.m$Hat$0ff,r . m$Hat$0ff,i . m$0ff$Y, ecm$Hat$0ff)
Fit.on = cbind(i.m$Hat$0n,r.m$Hat$0n,i.m$0n$Y,ecm$Hat$0n)

Nom.all = Nominal.Dev(data$KP,Fit.all) # All data.
Nom.off = Nominal.Dev(data$KP,Fit.off) # In Sample, Offline.
Nom.on = Nominal.Dev(data$KP,Fit.on,time$End) # Out 0f Sample, Online.



APPENDIX B

Tables and Graphs for
Results

B.1 Scenario Trees For Interest Only
The interest only regression model, did not capture the house price development,
it only seemed to capture the upward trend as can be seen in section

The interest only regression on scenario tree format is expressed as

Interest Only Regression

Aln(kp ) = Bé + B{Ar@ntetm + BAQIArentet,La(n) + Bér@ntet,l’a(n)

an example of the development of interest only regression house price scenario
trees for the interest rate scenario trees in Figure B, can be seen in Figure [B11
The scenario trees show how the model does not respond to different levels in
interest rates resulting in a upward trend, from the intercept.
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Tables and Graphs for Results
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Figure B.1: Tnterest Only regression model corresponding to the interest rate scenario trees
in Figure
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B.2 Error Bars

The error bars in the House Price figures are simulated according to Algorthm
in subsection For a five year horizon using quarterly data corresponds
to k = 20 periods. The numerical values for the four methods can be seen in

Table [B11
t: years k | Full MONA Fix MONA Int Only HPDIII
0 0 0.0000 0.0000 0.0000 0.0000
0.25 1 0.0172 0.0351 0.0231 0.0187
0.5 2 0.0240 0.0492 0.0324 0.0266
0.75 3 0.0295 0.0608 0.0395 0.0328
1 4 0.0342 0.0694 0.0454 0.0376
1.25 5 0.0380 0.0769 0.0505 0.0420
1.5 6 0.0416 0.0840 0.0560 0.0464
1.75 7 0.0452 0.0901 0.0612 0.0500
2 8 0.0477 0.0950 0.0655 0.0536
2.25 9 0.0508 0.1003 0.0685 0.0576
2.5 ] 10 0.0536 0.1076 0.0734 0.0604
2.75 | 11 0.0562 0.1120 0.0767 0.0628
3|12 0.0592 0.1163 0.0805 0.0653
3.25 | 13 0.0614 0.1218 0.0839 0.0680
3.5 | 14 0.0634 0.1269 0.0854 0.0694
3.75 | 15 0.0661 0.1322 0.0882 0.0716
4116 0.0684 0.1375 0.0921 0.0738
4.25 | 17 0.0706 0.1424 0.0950 0.0757
4.5 | 18 0.0727 0.1450 0.0973 0.0775
4.75 | 19 0.0751 0.1498 0.0997 0.0804
5| 20 0.0763 0.1519 0.1026 0.0823

Table B.1: The estimated standard deviations, for aggregate house prices, estimating up to

k = 20. The data is calculated according to Algorithm B in subsection
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APPENDIX C

R Code

C.1 Tree Functions.R

In the following order:

H H O H H R

NumBranches, BranchParents,

Functions for plotting and analysis of scenario trees.

GeoSequence, GeoSum, GenerateProb, Parent, Mod, WhatPeriod,
Indexer, TreeForm and GenerateRates.

GeoSequence = function(type,years)

{

# Generates a sequence of numbers i.e. [type~0,...,type"years], i.e. the number

# of nodes at any time i in the scenario tree.

u = numeric(years+1)

for(i in 0O:years){
ul[i+1]=type~i;

}

return(u)

GeoSum = function(type,years)

{

# q°t where 0 <= t <= T

#Return seq.

# Sums up the geometrical sequence [type~0,...,type"years]. i.e. sum up the seq
# from GeoSequence giving the total number of nodes in the tree.
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return(sum(GeoSequence (type,years))); # Use GeoSequence and sum elements.

GenerateProb = function(type,years)

{

# Returns a array with probabilities that fit a tree of type type and of length
# such that a any time t the probabities sum to one and for any node the 1/q°t
# for t.

twos = GeoSequence(type,years); # Get the sequence of the tree.
Sum = GeoSum(type,years); # Get total number of nodes.
Prob = rep(0,Sum);

b=1 # counter.

a=0 # counter.
for(i in 1:length(Prob)){ # Loop over all nodes.
if(a == twos[bl){ # If a has been looped through all
b = b+1; # nodes in periods. Move period up
a=0; # and set a to zero.
}
Prob[i] = 1/(twos[bl); # Add a probability to current node.
a=a+ 1; # Increment a.
}
return(Prob) # Return the array Prob.

Parent = function(type,years,index)

{

# Return the index of parent to node index. Needs tree type, number of years as
# input.

Seq = GeoSequence(type,years); # Get the sequence of the tree.
Sum = GeoSum(type,years); # Get total number of nodes.
Vec = 1:Sum; # A indexing vector.
TotalIndex = index; # Node number.
mat = WhatPeriod(type,years,index); # Returns in which period.
if(mat == 0){ # Periods are 0,1,.. so if first Period
parent = c(); # the node has no parent.
Yelse{
IndexToPrevYear = sum(Seq[0:(mat-1)]); # Number of nodes to the year before.
IndexToYear = sum(Seq[0:mat]); # Number of nodes to year.
IndexOnYear = TotalIndex - IndexToYear; # Nodes index on year.
if (Mod (Index0OnYear,type)==0){ # If modulus of type and IndexOnYear is 0.
num = IndexOnYear/type; # Parent number in the period before.
Yelseq{
num = floor(IndexOnYear/type)+1; # parent number in the period before.
}
parent = IndexToPrevYear + num; # Find total index of parent.
}
return(parent) # Return index number of parent.
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Mod = function(x,m)

{

# Calculates the modulus for x and m.
t1<-floor(x/m)

return(x-t1*m)

WhatPeriod = function(type,years,index)

{

# Returns the period number of which node number index is in. Also takes type
# of tree and number of years as input.

Seq = GeoSequence(type,years); # Get the sequence of the tree.
Sum = GeoSum(type,years); # Get total number of nodes.
counter = 0; # Counter.
for(i in 0:length(Seq)){ # Loop over number of periods.
counter = counter + Seq[i+1]; # Add number of nodes for period i+l.
if (counter >= index){ # If counter is bigger then node num.
mat = i; # Return that period and break.
break
}
}
return(mat) # Return period.

NumBranches = function(type,years)

{

# NumBranches returns the index of the top leaf and the number of leafs in a
# list object. Input is type of tree (q) and years (T).

num = list(); # Empty list.
tmp = GeoSequence(type,years); # Tree sequence.
n = length(tmp);

num$N = tmp[n];

num$F = sum(tmp[1:(n-1)]1); # Sum up the number of nodes pervious to T.

return (num) # Return list object.

BranchParents = function(type,years,index)

{

# NumBranches returns the indexes of the branch from leaf of number index. The
# input variables are type of tree (q), years (T) and the leaf number, index.

num = NumBranches(type,years); # Find number of leafs and first leaf index.
NumberBranches = num$N;

FirstBranch = num$F;

mat = rep(0,years+1); # Empty index vector.
index = index + FirstBranch; # Setting correct node index to the leaf index.

for(i in (years+1):1){ # Loop backwards over years.
mat[i] = index; # Set the index into the branch index vector.
parent = Parent(type,i-1,index); # Find parent of index.
index = parent; # Set parent as index.
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return(mat) ; # Return the vector of indexes from leaf index to root note.

Indexer = function(type,years)

{

# NumBranches returns the indexes of the branch from leaf of number index. The
# input variables are type of tree (q), years (T) and the leaf number, index.

num = NumBranches(type,years);

indexer = matrix(0,nrow=(num$N) ,ncol=years+1);

index = (1:(num$l));

for(i in 1:length(index)){
indexer[i,]=BranchParents(type,years,index[i]);

}

return(indexer)

TreeForm = function(Ind,Tree)

{

# Use the output of Indexer to return a indexed matrix form of the Tree vector.
# The input is Ind a matrix of indexes and Tree a scenario tree on the vector
# format.

n=nrow(Ind)

Out = Ind;

for(i in 1:n){
Out[i,]=Tree[Ind[i,]];
}

return(Out) # Return Matrix Out.

GenerateRates = function(type,years,first,rang)

{

# This function is used to generate lattice interest rate trees for testing.

# The input variables are

# type : the type of tree, q.

# years : the numer of periods, T.

# first : from what interst value is the tree to start.

# rang : the range of a up to down change for one node from t-1 to t.
Sum = GeoSum(type,years); # Number of nodes.
Rates = rep(0,Sum); # Create Rates as 0 vector.
Rates[1] = first; # Set first value in Rates.

# Generate a vector from range/2 to -range/2 in type many parts.
inc = seq(rang/2,-rang/2,length=type);

# Repeate a sequence of vector 1:type in matrix tmp.
tmp=rep (seq(1,type), (Sum-1)/2)

Incs = c(0,inc[tmpl); # Index inc by tmp.
for(i in 2:length(Rates)){ # Loop over tree.
parent = Parent(type,years,i); # Find parent node.

# Calculate current rate by use of parent rate and change.
Rates[i] = Rates[parent]l+Incs[i];
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return(Rates) # Return lattice scenario tree of interest rates.
}
#
# Functions for plotting and analysis of scenario trees.
# In the following order:
#
# PlotTree, MMM and Pretty.
#

PlotTree = function(Tree,lag=1,ylab="",xlab="Period",cex=0.5,

{
#
#
#
#
#
#

1ty=3,main="",ylim=c(0,0),point=TRUE,year=0)

Plots a matrix of the form from TreeForm.
Input : Tree - a matrix from TreeForm.

lag - the number of lag on the x-axis.
point - switch whether the median point is plotted.
ylab,xlab,cex,lty,main,ylim same as in plot().

A1l inputs have a default value so only the Tree matrix is needed to plot.

n=nrow (Tree) ;
m=ncol (Tree);

if (y1lim[1]==0 & ylim[2] ==0){ # If ylim not specified.
ylim = range(Tree); # Set to range of matrix.
}

xlim = c(lag,m-1+lag) # lag x-axis by lag.

plot(Tree,xlim=x1lim,ylim=ylim,type="n",ylab=ylab,
xlab=xlab,main=main,cex=cex,xaxt="n") # Set up empty grahpic device.
axis(1,c(0:10),c(0:10)+year)

Pret = Pretty(Tree) # Removes repetition in Tree for better graphs.
n = nrow(Pret)

for(i in 1:n){ # For each line in Pret plot line and point.
lines(Pret[i,1:2]+lag,Pret[i,3:4],c0l=2,1ty=1ty,cex=cex*0.7)
points(Pret[i,1:2]+lag,Pret[i,3:4],col=1,pch=19,cex=cex*0.7)

}

abline (h=Tree[1],col=4,1ty=2); # Ad a horizontal line marking the first value.
if (point){ # If point=T plot median of leafs.
points(m-1+lag,MMM(Tree) [2,m],pch=21,col=1,bg="red", cex=cex*2)

}

# Returns nothing.

MMM = function(Mat)

{

# Simple function used for calculating the Min,Max and Median at each time in the
# tree. The input is a tree matrix.

Min = apply(Mat,2,min) # apply(Mat,2,operation) mean the opertion is used
Max apply (Mat,2,max) # on the 2 dimension (column) of the Mat object.
Med = apply(Mat,2,median)

return(rbind(Max,Med,Min)) # Return matrix (3 x T+1)
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Pretty = function(Ind)

{
# A function used to simplify the a Tree matrix for plotting, input is a Tree matrix.
# Output is a matrix with four columns [linel.start linel.end line2.start line2.end].
# Used to remove repetition in the Tree matrix, making plotting faster and easier.

# Possible by inspecting the Ind tree matrix and reducing the Ind matrix to a matrix sec
# where each unique line segment only appears once.

n = nrow(Ind)

m = ncol(Ind)

tmp = Ind[,1:2]; # Set tmp as fist two columns of Ind.

tmpl = Ind[1,1:2] # Set tmpl as the first line segment of
# Ind i.e. 0 to 1

sec = matrix(0,nrow=1,ncol=4) # The reduced matrix created and set to 0.
sec[1,1] = 0; sec[1,2] = 1; sec[1,3:4]=tmpl;

for(i in 1:(m-1)){ # Loop over all columns except last.
for(j in 1:n){ # Loop over all lines.
tmp2 = Ind[j,i:(i+1)] # tmp2 the line segment Ind(j,i) to Ind(j,i+1).
if ('all(tmpl==tmp2)){ # If tmpl and tmp2 are not identical then.
sec=rbind(" "=sec,c(i-1,i,tmp2)) # Ad tmp2 to sec.
}
tmpl = tmp2; # Update tmpl as tmp2.
}
return(sec) # Return the sec matrix.
}
#
#  Scenario Tree House Price Dynamic Funcions
# In the following order:
#
# HPDFIX, HPDI, HDINT and HPDEcm
#

HPDFIX = function(n,T,Rates,bbb=0,FIX=c(1, 0.002713868,0.000111711,8.054e-06,
0.01102516,0.01013059, 0.1011561, 0.1757178, -0.3041972),Ti=4)

{

# This function is very similar to the fuction used in C#.

# Calculating the Fixed MONA Relationship for House prices.

# n : Type of tree n aka q.

# T : Number of periods in the tree, T.

# Rates : Tree of interest rates.

# FIX : The fixed explanatory matrix F.

# bbb : Initial value of laged interest rates.

#

# Mat : List including H the house price tree, DH changes in house price and

# DSR Delta Rates.
SR = Rates; # Interest Rates are SR.
NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.
I =100;

H = numeric(NodePlusOnePeriod)
DH= numeric(NodePlusOnePeriod)
D = numeric(NodePlusOnePeriod)
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Dtemp.0ld = numeric(NodePlusOnePeriod)
H[1] = 0;
DH[1] = 0;

c = c(0.06632852,0.30744099,-3.78106433,
-0.77908085,-0.79271964,0.77091843,
0.19494096,-0.10257190,0.05538029)
Ti = Ti +1 ;

Dtemp = numeric(Ti)
SRtemp = numeric(5)
DHtemp = numeric(5)
Htemp = numeric(5)

Comp = list();

HH = numeric(Ti);

DHH = numeric(Ti);

tt = numeric(Ti);

for(i in 2:NodePlusOnePeriod){ # Loop over 2:n~(T+1) nodes.
t = WhatPeriod(n,T,i);

P = Parent(n,T,i);
GP = Parent(n,T,P);

Returns the period t of node i.

P is the index of the parent node.
GP index of the Parent(Parent).

As long as t < (T+1).

Difference in Current Rate and
Parent rate.

D[i] = SR[i]l - SR[P];

H H HE H HH

DD = c(0,rep(D[i]/4,Ti-1))

SS cumsum (DD) +SR [P]

tt = seq(t-1,t,length.out=Ti);
DD[1] = D[P1/4

HH[1] = H[P]

DHH[1] = DH[P]

for(j in 2:length(Dtemp)){

if(tt == 0.25){
int = c(0,0,DD[],bbb,SS[j-11,0,0,0,0);
DHH[j] = c%*%(FIX+int);

}

if(t > 0.25)9{
int = ¢(0,0,DD[31,DD[§-11,88[j-11,0,0,0,0);
DHH[j] = c%*%(FIX+int);

}
HH[j] = DHH[j]+HH[j-11;
H[il = HH[Til;

DH[i] = DHH[Til;
Comp[[il] = cbind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)

}

Mat = list();

Mat$DSR = D;

Mat $DH = DH;

Mat$H = H;

return(Mat) ; # Return list Mat.

HPDI = function(n,T,Rates,I=100)
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{

# This function is very similar to the fuction used in C#.

# Calculating the NyKredit Relationship for House prices.

# n : Number indicating branch number, n type of tree.

# T : Number of periods in the tree, T.

# Rates : Tree of interest rates.

#

# Mat : List including HP the house price tree, DH changes in house price,

# DSR Delta Rates and H house prices without compounding.
SR = Rates; # Interest Rates are SR.
NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.

H = numeric(NodePlusOnePeriod)
HP = numeric(NodePlusOnePeriod)
D1= numeric(NodePlusOnePeriod)
D2= numeric(NodePlusOnePeriod)
DH= numeric(NodePlusOnePeriod)
D = numeric(NodePlusOnePeriod)
DeltaRates = numeric(NodePlusOnePeriod)

H[1] = I;
HP[1]= I;
Ti = 5;

Comp = list();

HH = numeric(Ti);
DHH = numeric(Ti);
tt = numeric(Ti);

for(i in 2:NodePlusOnePeriod){ # Loop over 2:n"(T+1) nodes.
t = WhatPeriod(n,T,i); # Returns the period t of node i.
P = Parent(n,T,i); # P is the index of the parent node.

=+

GP = Parent(n,T,P); GP index of the Parent(Parent).
As long as t < (T+1).
Difference in Current Rate and
Parent rate.

One year change at i.

Two year change at i.

DeltaRates[i] = SR[i] - SR[P];

Di1[i] = -5*DeltaRates[i];
D2[i] = -11x*DeltaRates[i];

H O O O R

DD = c(0,rep(D[il/4,Ti-1))

tt[1] = t-1;
DD[1] = D[P]/4
HH[1] = HI[P]

DHH[1] = DH[P]

for(j in 2:Ti){
tt[jl =t - 1 + 1/(Ti-1)*(j-1)
if(t == 1){
DH[i] = DH[P] + D1[i];
HP[i] = HP[PI*(1 + D1[il]);

}

if(t > 1){
HP[i] = HP[P] * (1 + D1[il) + HP[GP]* D2[P];
DH[i] = DH[P]+ D1[i] + D2[P];

}

H[i] = I*(1 + DH[il);

}

H[i]l = HH[Til;

DH[i] = DHH[Til;

Comp[[i]] = cbind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)
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Mat = list();

Mat$DSR = DeltaRates; # Delta Short Rates.

Mat$H = H;

Mat $HP = HP;

Mat$DH = DH;

return(Mat) # Return list Mat.

HPDINT = function(n,T,Rates,Ti=4)

{

# This function is very similar to the fuction used in C#.

# Calculating the Interest Only Regression for House prices.

# n : Number indicating branch number, n type of tree.

# T : Number of periods in the tree, T.

# Rates : Tree of interest rates.

#

# Mat : Struc including HP the house price tree, HP_1 house price tree

# lagged one period and DSR the Delta Rates.
SR = Rates; # Interest Rates are SR.
NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.
I =100;

H = numeric(NodePlusOnePeriod)
DH= numeric(NodePlusOnePeriod)
D = numeric(NodePlusOnePeriod)
Dtemp.0ld = numeric(NodePlusOnePeriod)

H[1] = 0;
DH[1] = 0;
Comp = list();
Ti = Ti + 1;

HH = numeric(Ti);
DHH = numeric(Ti);
tt = numeric(Ti);

CC=c(0.01254567,-3.65385018,-1.69341039) ;

for(i in 2:NodePlusOnePeriod){ # Loop over 2:n~(T+1) nodes.
t = WhatPeriod(n,T,i); # Returns the period t of node i.
P = Parent(n,T,i); # P is the index of the parent node.
GP = Parent(n,T,P); # GP index of the Parent(Parent).
D[i] = SR[i] - SR[P]; # Difference in Current Rate and.

# Parent rate.

DD = c(0,rep(D[i]/4,Ti-1))

tt = seq(t-1,t,length.out=Ti);
DD[1] = D[P1/4

HH[1] = H[P]

DHH[1] = DH[P]

for(j in 2:Ti){
int = ¢(1,DD[j1,DD[j-11);
DHH[j] = CCY%*%(int);

HH[j] = DHH[j]+HH[j-1]
}
H[i]l = HH[Til;

DH[i] = DHH[Til;
Comp[[i]] = cbind("Ti"=tt,"DH"=DHH,"H"=HH,"DD"=DD)
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Mat = list();

Mat$L = Comp;

Mat$DSR =D;

Mat$DH = DH;

Mat$H = H;

return(Mat) ; # Return list Mat.

HPDEcm = function(n,T,Rates,I=100,H1=0,DH1=0,Ti=4)

HOoH oH H H H O H A

This function is very similar to the fuction used in C#.

Calculating the NyKredit Relationship for House prices.
n : Number indicating branch number, n type of tree.
T : Number of periods in the tree, T.

Rates : Tree of interest rates.

Mat : List including HP the house price tree, DH changes in house price,
DSR Delta Rates and H house prices without compounding.

SR = Rates; # Interest Rates are SR.
NodePlusOnePeriod = GeoSum(n,T); # Number of nodes. T+1.
I = 100;

H = numeric(NodePlusOnePeriod)
DH = numeric(NodePlusOnePeriod)
D = numeric(NodePlusOnePeriod)

H[1] = H1
DH[1] = DH1;
Comp = list();
Ti =Ti + 1

HH = numeric(Ti);

DHH = numeric(Ti);

tt = numeric(Ti);

CC = ¢(0.03837,-4.04156,0.34215,-0.03431,-0.63258)

for(i in 2:NodePlusOnePeriod){ # Loop over 2:n"(T+1) nodes.
t = WhatPeriod(n,T,i);

P = Parent(n,T,i);
GP = Parent(n,T,P);

Returns the period t of node i.

P is the index of the parent node.
GP index of the Parent(Parent).

As long as t < (T+1).

Difference in Current Rate and
Parent rate.

#
#
#
#
D[il = SR[il - SR[PI; #
#
DD = c(0,rep(D[i]/4,Ti-1))
SS = cumsum(DD)+SR[P]
tt = seq(t-1,t,length.out=Ti);
DD[1] = D[P]/4
HH[1] = H[P]
DHH[1] = DH[P]

for(j in 2:Ti){
int = c(1,DD[j],DHH[j-1],HH[j-11,8S[j-11);
DHH[j] = CC/#*%(int);
HH[j] = DHH[j1+HH[j-1]

}

H[i] = HH[Ti];

DH[i] = DHH[Ti];

Comp[[i]] = cbind("Ti"=tt,"DH"=DHH,"H"=HH,"SS"=SS,"DD"=DD)
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}

}

Mat = list(); # Delta Short Rates.

Mat$H = H;

Mat $DH = DH;

Mat$L = Comp;

return(Mat) # Return list Mat.

Error.Cal = function(Tree,EB,I=1)

{

Int.

}

H = MMM(Tree)

pl = Int.Pol(HI[1,1)

p2 = Int.Pol(HI3,1)

U = cbind(’d’ = I*100*(1-exp(EB))+p2, ’u’ = I*-100%(1-exp(EB))+p1l)
return (U)

Pol = function(X,leng=3)

le = length(X)
T2 =c()

for(i in 1:(le-1)){
temp = seq(X[il,X[i+1],length.out=1leng+2)
T2 = c(T2,temp[1: (leng+1)]1)

}
T2 = c(T2,X[1lel)
return(T2)

Read.IntTree = function(STRING)

{
# A
#

C.

function to import interest rate trees.
header = scan(STRING,nlines=1,what=character(), quiet = TRUE)
SS = read.table (STRING,skip=1)

names (SS) = c("Year",'"Node",header)

return(SS)

2 Modeling Functions.R

# H B H H OH R

Functions for modeling, estimation and data handeling for time series
models. In the following order:

R.square, R.adj.sqr, Nominal.Dev, Int.Only, ECM.Model, ECM.Model,
MONA.Model, TimePeriod, ECM.4.lag, MONA.ROLS, Pred.ROLS, Pred.OLS

R.square = function(Y,Y.hat)
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{

# Calculates the R square or Goodness of fit statistic between to series Y
# and the fitted serise Y.hat.

N = length(Y);

R.above.l = (t((Y.hat-Y)~2)%*/matrix(1,nrow=N)) # Matrix %*J), operation.
R.below.1 = sum((Y-mean(Y))"2)

R.2 =1 - (R.above.1/R.below.1)

# Return Goodness O0f Fit.
return(R.2)

R.adj.sqr = function(Y,Y.hat,p)

# Calculates the adjusted R square or Goodness of fit statistic between two
# series Y and the fitted serise Y.hat.

N = length(Y);
R = R.square(Y,Y.hat)
R.adj = 1 - ((N-1)/(N-p))%*%(1-R)

# Return Adjusted Goodness 0f Fit.
return(R.adj)

Nominal.Dev = function(KP,Y.hat,st=1974.25)

{

# Calculates the aggregate house price for a multivariate series element

# Y.hat which are changes. KP is the house price time series object, st is
# the start of acumulation for the house price. There are two versions of
# this function Nominal.Dev2 is used for the valdiation of point estimates.

temp = dim(Y.hat)

if (is.null(temp)){ # If vector.
N = length(Y.hat);

M=1;

Yelseq # If not vector, i.e. if Y.hat is matrix.

N = temp[1];
M = temp[2];

}
Y.0 = window(log(KP),st-0.25,st-0.25) # Set KP to the correct house
Y.tilde.R = matrix(0,nrow=N,ncol=M) # price at time st to use in
# update.
if (!is.null(temp)){ # If Y.hat matrix.

for(j in 1:M){
Y.tilde.R[1,j] = Y.hat[1,j] + Y.0
for(i in 2:N){
Y.tilde.R[i,j] = Y.hat[i,j] + Y.tilde.R[i-1,j]

}
}
Y.tilde.R = ts(as.data.frame(Y.tilde.R),frequency=4,start=st)
Yelseq{ # If Y.hat vector.

Y.tilde.R[1] = Y.hat[1] + Y.0
for(i in 2:N){
Y.tilde.R[i] = Y.hat[i] + Y.tilde.R[i-1]
}
Y.tilde.R = ts(Y.tilde.R,frequency=4,start=st) # Set as ts object.
}
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# Returns a aggregate timeseries object from st.
return(Y.tilde.R)
}

Int.0Only = function(Data,Times)

{

# Calculates the Interest Only Regression Model. Input is Data a list with

# all time series data and Times also a list with the start of in-sample
# period end of in-sample and end of all data.

Sta = Times$Sta; # Start of in-sample or Offline.
End = Times$End; # End of in-sample or start of Online.
Clo = Times$Clo; # End of all or Offline.
diff.off =c(Sta,End)

diff.on =c(diff.off[2],Clo)

# 0ffline

0ff = TimePeriod(Data,diff.off[1],diff.off[2])

HouseP.Int <- 1lm(0ff$Y ~ O0ff$I2 + Off$I3) # OLS performed.

Y.hat.off = ts(fitted(HouseP.Int),frequency=4,start=diff.off[1])
0ff$X = as.matrix(data.frame(rep(1,length(0ff$I12)),0ff$12,0f£f$I3))

Beta = matrix(coef (HouseP.Int)) # Coefficients.
# Online
On = TimePeriod(Data,diff.on[1],diff.on[2]) # Function below.

On$X = as.matrix(data.frame(rep(1,length(0n$I2)),0n$I2,0n$I3))
Y.hat.on = ts(On$X%*%Beta,frequency=4,start=diff.on[1])

# All

All = TimePeriod(Data,diff.off[1],diff.on[2]) # Function below.

A11$X = as.matrix(data.frame(rep(1,length(A11$I2)),A118I2,A11813))
Y.hat.all = ts(A11$X%*%Beta,frequency=4,start=diff.off[1])

# Fits

sig = (t(resid(HouseP.Int)))*%resid(HouseP.Int))/(dim(0f£$X) [1]-dim(0££$X) [2])
Hat = list(’0ff’=Y.hat.off,’On’=Y.hat.on,’Al11°=Y.hat.all, ’sigma.hat.sq’=sig)

# Returns four sublist in the output list object.
return(list (’0LS’=HouseP.Int,’0ff’=0ff,’0n’=0n,’A11°=A11, *Hat’=Hat))

ECM.Model = function(Data,Times)

Calculates the Error-Correction Model using only lagged kp and rente, levels

all time series data and Times also a list with the start of in-sample

{
#
# and differenced series. Input is Data a list with
#
# period end of in-sample and end of all data.

Sta = Times$Sta; # Start of in-sample or Offline.
End = Times$End; # End of in-sample or start of Online.
Clo = Times$Clo; # End of all or Offline.
diff.off =c(Sta,End)

diff.on =c(diff.off[2],Clo)

# 0ffline

0ff = TimePeriod(Data,diff.off[1],diff.off[2])

MODEL.ECM = 1m(0ff$ECM$DKP ~ Off$ECM$DRE + Off$ECM$DKP.1 + Off$ECM$KP.1 + Off$ECMIRE.1)

Y.hat.off = ts(fitted(MODEL.ECM),frequency=4,start=diff.off[1])
0ff$X = ts.union(’I’=rep(1,length(0ff$ECM$DRE) ), ’DRE’=0ff$ECM$DRE,

’DKP.1°=0ff$ECM$DKP.1, ’*KP.1°=0ff$ECM$KP.1,°RE.1°=0ff$ECMSRE.1)
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Beta = matr

# Online
On = TimePe

ix (coef (MODEL.ECM)) # Coefficients.

riod(Data,diff.on[1],diff.on[2]) # Function below.

On$X = ts.union(’I’=rep(1,length(On$ECM$DRE)), ’DRE’=0n$ECM$DRE,

Y.hat.on =
# All

A1l = TimeP
A118$X = ts.

Y.hat.all =

# Fits

sig = (t(resid(MODEL.ECM))%*%resid(MODEL.ECM))/(dim(0ff$X) [1]-dim(0f£$X) [2])
Hat = 1list(’0ff’=Y.hat.off,’0On’=Y.hat.on,’A11’=Y.hat.all, ’sigma.hat.sq’=sig)

# Returns f
return(list

*DKP.1°=0n$ECM$DKP .1, °KP.1°=0n$ECM$KP.1, *RE.1’=0n$ECM$RE. 1)
ts(On$X%*%Beta,frequency=4,start=diff.on[1])

eriod(Data,diff.off[1],diff.on[2]) # Function below.
union(’I’=rep(1,length(A11$ECM$DRE)) , >DRE’=A11$ECM$DRE,

’DKP.1°=A11$ECM$DKP.1, ’KP.1°=A11$ECM$KP.1,°RE.1°=A11$ECM$RE.1)

ts(A11$X%*%Beta,frequency=4,start=diff.off[1])

our sublist in the output list object.
(°0LS’=MODEL.ECM, *0ff*=0ff, ’0n’=0n, >A11°=A11, *Hat ’=Hat))

MONA.Model = function(Data,Times)

{
# Calculates Re
# with time se

stricted Ordinary Least Squares (ROLS). Input as before Data
ries objects and Times with start of in-sample, end of

# in-sample and end of all data.

Sta = Times
End = Times
Clo = Times

diff.off
diff.on

# 0ffline
0ff = TimeP
# OLS
HouseP.1lm =
# ROLS

R = MONA.RO
Beta_R = R$
Y.hat.off =

# Online
On = TimePe
Y.hat.on =

# A1l
A1l = TimeP
Y.hat.all =

# Fits

Hat = 1list(

# Returns f
return(list

$Sta; # Start of in-sample or Offline.
$End; # End of in-sample or start of Online.
$Clo; # End of all or Offline.

=c(Sta,End)
=c(diff.off[2],Clo)

eriod(Data,diff.off[1],diff.off[2])

Im(Off$Y~0ff$X1+0f £$X2+0f F$X3+0f F$X4+0f £ $X5+0f £ $X6+0f f$X7+0f£$X8)

LS(0ff) # The ROLS function see below.
Beta_R
ts (0f£$X%*%Beta_R,frequency=4,start=diff.off[1])

riod(Data,diff.on[1],diff.on[2])
ts (On$X%*%Beta_R,frequency=4,start=diff.on[1])

eriod(Data,diff.off[1],diff.on[2])
ts(A11$X%*%Beta_R,frequency=4,start=diff.off[1])

’0ff’=Y.hat.off,’0On’=Y.hat.on,’A11°=Y.hat.all,
’sigma.hat.sq’ = R$sigma.hat.sq)

ive sublists ’ROLS’ has the ROLS coefficients.
(’0LS’=HouseP.1lm, ’ROLS’=R,’0ff> = 0ff,’0n’=0n, ’A11’> = All,
’Hat ’=Hat))
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TimePeriod = function(Data,From,To)

{

# A data cutting function. Input is Data object with time series objects
# From and To mark the time window which is sought. Uses the ts function
# window.

}

# Model Variables.

Y = window(diff(log(Data$kP)),From,To)

X1 = window(diff (log(Data$PCP)),From,To)

X2 = window(diff (Data$RENTE.SSATS) ,From,To)

X3 = window(diff (Data$RENTE.SSATS) ,From-0.25,To-0.25)

X4 = window(Data$RENTE.SSATS,From-0.25,To-0.25)

X5 = window(Data$DPCPE,From-0.25,To-0.25)

X6 = window(Data$DKPE,From-0.25,To-0.25)

X7 = window(log(Data$kP/Data$PCP) ,From-0.25,To-0.25)

X8 = window(log((Data$YDP-Data$IPV)/Data$PCP)-log(Data$FWH),
From-0.25,To-0.25)

KP = Data$kP;
# Time vector.
ts = time(Y);

# Tax with out Interest.

SSATS.X2 = window(diff (Data$SSATS),From,To)

SSATS.X3 = window(diff (Data$SSATS) ,From-0.25,To-0.25)
SSATS.X4 = window(Data$SSATS,From-0.25,To-0.25)

# Interest with out Tax.

INT.X2 = window(diff (Data$RENTE+0.01),From,To)

INT.X3 = window(diff (Data$RENTE+0.01) ,From-0.25,To-0.25)
INT.X4 = window(Data$RENTE+0.01,From-0.25,To-0.25)

X0 = ts(rep(1,length(Y)),frequency=4,start=From);
Zip = ts(rep(0,length(Y)),frequency=4,start=From) ;

# The Fixed vector.

FA = ts.union(X0,X1,"S2"=SSATS.X2,"S3"=1ag(SSATS.X3,-1),
"S3"=lag (SSATS.X4,-1),"X5"=1lag(X5,-1),
"X6"=lag(X6,-1),"X7"=1lag(X7,-1),"X8"=1lag(X8,-1))

FA = window (FA,From,To);

# Interest Only Vector.

AA = ts.union(Zip,Zip,"I2"=INT.X2,"I3"=1ag(INT.X3,-1),"I4"=1ag(INT.X4,-1),
Zip,Zip,Zip,Zip)

AA = window(AA,From,To);

ECM = ECM.4.lag(Data,From,To);

# Design or Explanatory Matrix.
X = as.matrix(data.frame("X0"=rep(1,length(Y)),X1,X2,X3,X4,X5,X6,X7,X8))

# Returns a list with numerous sublist including all the data needed for

# analysis and forecasting.

return(list(’Y’ = Y,’X’=X, ’X1°=X1,°X2°=X2,’°X3°=X3,°X4’=X4,°X5°=X5,
’X6°=X6,’X7°=X7,’X8’=X8,°52°=SSATS.X2, ’S3’=SSATS.X3,
’S4°=SSATS.X4,°I2°=INT.X2,°I13°=INT.X3,°I4°=INT.X4,
*t’=ts, ’KP’=KP, ’FA’=FA, >AA’=AA, ’ECM’=ECM) )

ECM.4.lag = function(Data,st,en)

{

# A data cutting function. Input is Data object with time series objects
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# From and To mark the time window which is sought. Uses the ts function

# window.

RE = Data$RENTE+0.01
KP = log(Data$KP)
DKP = diff (KP)

DRE = diff(RE)

DRE.1 = window(lag(DRE,-1),st,en);
DRE.2 = window(lag(DRE,-2),st,en);
DRE.3 = window(lag(DRE,-3),st,en);
DRE.4 = window(lag(DRE,-4),st,en);
DKP.1 = window(lag(DKP,-1),st,en);
DKP.2 = window(lag(DKP,-2),st,en);
DKP.3 = window(lag(DKP,-3),st,en);
DKP.4 = window(lag(DKP,-4),st,en);

KP.1 = window(lag(KP,-1),st,en)
RE.1 = window(lag(RE,-1),st,en)
DKP = window (DKP,st,en)

DRE = window(DRE,st,en);

RE = window(RE,st,en)

# Design or Explanatory Matrix.

#X = as.matrix(data.frame("X0"=rep(1,length(DKP)),DRE,DKP.1,KP.1,RE.1))

# Returns a list with numerous sublist including all the data needed for

# analysis and forecasting.

return(list (’DKP’ = DKP, °’DRE’ = DRE,
’DRE.4°=DRE.4, ’DKP.1°=DKP.1,
’KP.1°=KP.1, ’RE’=RE, ’RE.1’ = RE.1,°KP’ = KP,

MONA.ROLS = function(Data)

{

# The actual Resticted Oridnary Least Squares is calculated for the MONA house
# price model. Returning all the same values as OLS with Im does. Input is Data

# list of the format as TimePeriod outputs.

Y = Data$yY
n = length(Y)

# OLS

X = Data$X

XX.1 = solve(t(X) %*% X)
Beta = XX.1%x%t (X)%*%Y

Constraint RY#*JBeta R = r

= ¢(Int=0,X1=0.25,X2=0,X3=0,X4=1,X5=1,X6=1,X7=0,X8=0) ;

#
a
R = t(as.matrix(a));
r =0.25

# Coefficient for ROLS, Beta_R.

b = t(R)%*%ksolve (RA*YXX.1%*%t (R))
c = (r-Ri*%Beta);

Beta_R = Beta + XX.1%*%blx%c;

# Y.hat, fit with Beta_R.
Y.hat <- X %*% Beta_R

’DKP.3’=DKP.3,
’DRE’ = DRE))#,

’DRE.1°=DRE.1,’°DRE.2’=DRE.2, DRE.3’=DRE. 3,
’DKP.2°=DKP.2, ’DKP.4°=DKP.4,

’X? = X))
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# Estimated variance of residuals.
sigma.hat.sq <- sum((Y - Y.hat)~2) / (n - ncol(X)+1)

Covariance matrix, V, for Beta_R.
= diag(1,9) - XX.1%+%b%*%R

= M U*l XX.1 Y% (M)

= sigma.hat.sq * C

se = sqrt(diag(V))

= Q= %

# t - values
t = Beta_R/se
# p - value

p.value = 2%pt(-abs(t),df=n-ncol(X)+1)
All=data.frame(’Estimate’=round(Beta_R,5),’Std.Error’=round(as.matrix(se),5)
,’t.value’=round(t,3),’p.value’=p.value)

# Returns many values in a list ’Summary’ returns a comprihensive description

# similar to a summary(lm-object).

return(list (’Beta_R’=Beta_R, ’Beta’=Beta, ’XX.1°=XX.1, ’Cov.ROLS’=V,
’sigma.hat.sq’= sigma.hat.sq, ’Std.Error.Beta R’ = se,
’t.value.R’ = t, ’p.value.R’ = p.value, ’Y.hat’ = Y.hat, ’M’=M,
’Summary’=A11))

Pred.ROLS = function(List,alpha=0.05)

{

# Calculates prediction intervals for the MONA ROLS model. The covariance matrix is
# different and the prediction therefor also. alpha sets the prediction intervals

# confidence interval by conf.int = 1-(alpha/2). alpha is set to 0.05 by default.

yOFF=List$Hat$0ff

yON =List$Hat$0n #0ut of sample, or Online Point Estimate.
x0FF=List$0ff$X

x0N =List$0n$X

sigma = List$Hat$sigma.hat.sq
M = List$ROLS$M

XX = solve(t (xOFF)%*%x0FF) ;
n = length(yOFF) ;

p = dim(XX) [1] - 1;

tt = qt(l-alpha/2,n-p)

tmp=c() ;

# For each out of sampe point calculate the prediction interval.

for(i in 1:length(yON)){
TEM = sqrt( sigma * (1 + xON[i,]%*%MA*%XX%*%t (M) %*%as . matrix(t(x0N) [,i1)));
tmp[i] = tt * TEM

}

predict = cbind(yON-tmp,yON,yON+tmp,tmp)

# Returns a time series object with four series, point estimat - variance, point
# estimate, point estimate + variance, variance.
return(predict)

Pred.OLS = function(List,alpha=0.05)
{
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#
#
#

Calculates prediction intervals for the OLS model. alpha sets the prediction intervals
confidence interval by conf.int = 1-(alpha/2). alpha is set to 0.05 by default. List is
a list of type as output from TimePeriod.

yOFF=List$Hat$0ff

yON =List$Hat$0n #0ut of sample, or Online Point Estimate.
x0FF=List$0ff$X

x0N =List$0n$X

sigma = List$Hat$sigma.hat.sq

XX = solve(t (x0FF)%*%x0FF) ;
n = length(yOFF);

p = dim(XX) [1];

tt = qt(1l-alpha/2,n-p)

tmp=c () ;
# For each out of sampe point calculate the prediction interval.
for(i in 1:length(y0ON)){
tmp[i] = tt * sqrt( sigma * (1 + xON[i,]%*%XX%*%as.matrix(t(x0N)[,i]1)));

predict = cbind(yON-tmp,yON,y0N+tmp,tmp)

# Returns a time series object with four series, point estimat - variance, point
# estimate, point estimate + variance, variance.

return(predict)
}
#
# Functions for simulating error in change and levels for time series, along
# with many sub functions. In the following order:
#
# BOOT, GenerateCoefficients, GenerateEstimatChange, Erro.Cal, AggHPsim, MS,
# Print.Boot, Plot.C, Lines.Boot, PredictInt, YLIM
#
BOOT = function(ROLS,INT,ECM,k,N=10000,t.st=1997.75,Coeff=F)
{
# BOOT is a simulation of the error when bootstrapping three different models, it
# estimates the change in house prices error for MONA full, MONA fixed and INT only.
# The inputs are: ROLS object which is the output from MONA.Model.
# INT obeject which is the output from Int.0Only.
# k the prediction horizon.
# N repetitions for each simulation, default set to N=10000.
# t.st the start of prediction. Default set to last Offline, 1997.75.
# Coeff a logical variable, see below default set to FALSE.

# Data

A1l = ROLS$A11

X = A11$X; S2 = A11$S2; S3 = A11$S3; S4 = A11$S4
Y = A11$Y; I2 A11$12; I3 A11$I3; 1I4 = A11$I4

# Setting up for the ROLS.

V.R = ROLS$ROLS$Cov.ROLS
Beta.R = ROLS$ROLS$Beta R
sig.R = ROLS$ROLS$sigma.hat.sq
B.A = Beta.R

B.F = Beta.R

# Setting up for the Interest Only Regression.
X.In = INT$ALI$X
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sig.I = as.numeric(INT$Hat$sigma.hat.sq)
Beta.I = as.matrix(coefficients (INT$OLS))

V.I = sig.

Ixsolve (t (INT$Of£$X) %*%INT$0L£$X)

B.I = Beta.I

# Setting

up for the Error-correction Model.

X.Ecm = ECM$A11$X
sig.E = as.numeric(ECM$Hat$sigma.hat.sq)
Beta.E = as.numeric(coefficients(ECM$0LS))

V.E = sig.

E * solve(t(ECM$0£f£$X)%*/ECM$OL£$X)

B.E = Beta.E

# Initializing variables.

k=k+ 1; # Add one to k to add last In-sample point.
Y.tF = matrix(0,ncol=k,nrow=N);

Y.tA = matrix(0,ncol=k,nrow=N);

Y.tI = matrix(0,ncol=k,nrow=N);

Y.tE = matrix(0,ncol=k,nrow=N);

ind.F = which(time(Y)==t.st); # Index of Fixing.

ind = ind.

# For t=0,...,k, since now k = k+1.

for(p in 1:k){
tp = t.st + (p-1)*0.25; # Time period increment.
ind = ind.F + (p—l); # Index increment.
X.A = X[ind,1; # X.A set to correspoding explt.
X.F = X[ind.F,]; # X.F set to fixed explt.
X.F[3]1=S2[ind.F]+I2[ind] # Interest elemtents set.
X.F[4]=S3[ind.F]+I3[ind] # eplanitory variables.
X.F[5]1=S4[ind.F]+I4[ind]
X.I = X.In[ind,];
X.E = X.Ecm[ind,];

F; # Index without fixing. Initially set to fixed index.

# Repeat the following process N times.

for (i

#

in 1:N){

Add error to coefficients. If Coeff=T.

if (Coeff){

<o H

R R T
1

MEEE

Misc = lis
Ret = list

B.F = GenerateCoefficients(B=Beta.R,CVar=V.R); # Subfunction see below.

#B.I = GenerateCoefficients(B=Beta.I,CVar=V.I);
#B.A = GenerateCoefficients(B=Beta.R,CVar=V.R);
#B.F[3]=B.A[3]; B.F[4]=B.A[4]; B.F[5]=B.A[5];

Error estimate of Fixed and All explanitory vectors.

.tF[i,pl=GenerateEstimatChange (X=X.F,te=B.F,sdt=sig.R) # Subfunction.
.tA[i,p]=GenerateEstimatChange (X=X.A,te=B.A,sdt=sig.R)
.tI[i,p]l=GenerateEstimatChange (X=X.I,te=B.I,sdt=sig.I)
.tE[i,pl=GenerateEstimatChange (X=X.E,te=B.E,sdt=sig.E)

= list(’Y’=Y.tF,’MS’=MS(Y.tF,t.st)) # lists with value, mean and sd.

= 1list(’Y’=Y.tI,’MS’=MS(Y.tI,t.st)) # MS subfunction.

= list(’Y’=Y.tA,’MS’=MS(Y.tA,t.st))

list(’Y’=Y.tE,’MS’=MS(Y.tE,t.st))

Erro.Cal(Y,Y.F,t.st,k) # Error.Cal subfunction.
Erro.Cal(Y,Y.I,t.st,k)

Erro.Cal(Y,Y.A,t.st,k)

E = Erro.Cal(Y,Y.E,t.st,k)

t (CKP’=A11$KP,’Y’ = Y,’k’=k-1,’t.st’=t.st);
(’Y.F’=Y.F,’E.F’=E.F,’Y.I’=Y.I,’E.I’=E.I,
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’Y.A’=Y.A,’E.A’=E.A,’Y.E’=Y.E,’E.E’=E.E, ’Misc’=Misc);

# Return a list with many sublist, e.g. one for each model.
return(Ret)

GenerateCoefficients = function(Beta,CVar)

{

# Sub function of BOOT, generates a sample from a normal distribution
# where N(Beta,CVar).

p = length(Beta);

B = numeric(p);

for(i in 1:p){

B[i] = rnorm(1,mean=Betali],sd=sqrt(CVar[i,i]));
}

# Returns a vector with a sample from the coefficient distribution.
return(B)

}

GenerateEstimatChange = function(X,te,sdt,mean=0)

{

# Sub function of BOOT, calculates a sample from a normal distribution
# using the residual variance and adding to the model part.

Model = X%*%te
Resid = rnorm(1,mean=mean,sd=sqrt(sdt))
Y = Model+Resid;

# Return a sample value of Y with a residual and regression error.
return(Y)

Erro.Cal = function(Y,Y.S,t,k)
{
# A simple function for moving the point estimate to zero, i.e. basing the
# change from 0. Y
Y.S=Y.S$Y
p = min(dim(Y.S))
N = max(dim(Y.S))

temp = matrix(0,nrow=N,ncol=p)

D = matrix(0,nrow=N,ncol=p)
Y.obs = window(Y,t,t+(k-1)*0.25)
for(i in 1:p){
temp[,il=rep(Y.obs[i],N)

}

D = temp-Y.S;

A = 1ist(°Y’=D,’MS’=MS(D,t));

# Returns the Y.S matrix centered around O.
return(A)

AggHPsim = function(Ret,N=10000)
{

# A simulation for the aggregate effect of the house price model. Three models are
# simulated MONA full, MONA fixed and INT only. The input is a list object from the
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# BOOT function above.

Misc

Ret$Misc;

.A=Ret$Y.A;
.F=Ret$Y.F;

.E=Ret$Y.E;

= Misc$Y;

Observed Nominal House Price.
#Y.0BS = Nominal.Dev(KP,Y);
In.kp = log(KP);

A =
A.on

Y.cA
Y.cI
Y.cF
Y.cE
#
f

For t=0,...

Y
Y
Y.I=Ret$Y.I;
Y
Y
#

k = Misc$k;

t.st = Misc$t.st;

KP = Misc$KP;

window(ln.kp,t.st,t.st)

window(1ln.kp,t.st)

matrix(0,ncol=k+1,nrow=N);
matrix(0,ncol=k+1,nrow=N);
matrix(0,ncol=k+1,nrow=N);
matrix(0,ncol=k+1,nrow=N);

or(p in 1:(k+1)){
# Repeate each forcast N times.
for(i in 1:N){

[

R ]
[ |

= list(’Y’=Y.
= list(’Y’=Y.
= list(’Y’=Y.
= list(’°Y’=Y.
Ret =

if (p==1){

,k, since now k = k+1.

# First t is known.

Y.cAli,p] =
Y.cI[i,p] =
Y.cF[i,p]
Y.cE[i,p]

}elsed{

A
A
A;
A

# Start Value of House Price.

# t>0 sample change for from distibutions gotten from the
# BOOT output.
rnorm(1,mean=Y.A$MS[p,1],sd=Y.A$MS[p,2])

RCA =
RCI
RCF =
RCE =

t>0

<o 3

tMA = mean(Y.
tMI = mean(Y.
tMF = mean(Y.
tME = mean(Y.

= rnorm(1,mean=Y.I$MS[p,1],sd=Y.I$MS[p,2])

rnorm(1,mean=Y.F$MS[p,1],sd=Y.F$MS[p,2])
rnorm(1,mean=Y.E$MS[p,1],sd=Y.E$MS[p,2])

aggregate

sample from a
cA[i,p] = RCA
cIfi,pl = RCI
cF[i,p] = RCF
cE[i,p] = RCE

cAl,pl);
cIl,pl);
cFL,pl);
cE[,pl);

effect by adding the sample change to a
distribution of previous aggregate price.
rnorm(1,mean=tMA,sd=tSA);
rnorm(1,mean=tMI,sd=tSI);
rnorm(1,mean=tMF,sd=tSF);
rnorm(1,mean=tME,sd=tSE);

+

+
+
+

tSA =
tSI =
tSF =
tSE =

cF,’MS’=MS(Y.cF,t.
cI,’MS’=MS(Y.cI,t.
ch,’MS’=MS(Y.cA,t.
cE,’MS’=MS(Y.cE,t.

sd(Y.
sd(Y.
sd(Y.
sd (Y.

st))
st))
st))
st))

cAl,pl);
cIl,pl);
cF[,pl);
cE[,pl);

# lists with value, mean and

list(’Y.F’=Y.F,’Y.I’=Y.I,’Y.A’=Y.A,’Y.E’=Y.E);

# Return a list with a hierachy of lists.
return(Ret)

MS = function(Y,t=F)

{
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# Calculates the mean and standar deviation of matrix Y returns as time series
# if is.numeric(t). Subfunction of BOOT and AggHPsim.

p = ncol(Y)
N = nrow(Y)
mean = numeric(p)
sd = numeric(p)
# Simpler way for this is the function apply. See Zapply.
for(i in 1:p){
mean[i] = mean(Y[,i])
sd[i] = sd(Y[,i])
}
if(is.numeric(t)){
temp = ts(cbind(’Mean’=mean,’Sd’=sd),frequency=4,start=t);
}elsed{
temp = cbind(’Mean’=mean, ’Sd’=sd)

}

# Return a vector with mean and sd of each column in Y.
return(temp) ;

Print.Boot = function(List)

{

# A function which prints out the result for the simulation of BOOT, input is list
# of the same format as BOOT or AggHPsim export.

MS=List$MS
k=nrow (MS)
cat(" k \t Mean \t\t Stand Deviation \t\n")

for(p in 1:k){
cat(" ",p-1,"\t",MS[p,1],"\t",MS[p,2],"\t\n")
}

# No Value is Returned.

Plot.C = function(List,br=20,main="",col=2,add=F,1ty=2,1lwd=1,type=’1’,xlab="",mu=F)
{
# A home made function for plotting the normal disributions denerated by the data
# from BOOT and AggHPsim. List is a list object from the simulation functions BOOT or
# AggHPsim.

if(is.list(List)){ # If List is a list object.

Y=List$Y

A=List$MS

Yelse{ # If List is numeric.

Y = List;

A = MS(Y);

}

p = min(dim(Y))
ylim = numeric(p)
x1lim = range(Y)
tmp = 0;
mu.tmp = 0;
# Used to find a common ylim that has all distributions.
for(i in 1:p){
tmp = hist(Y[,i],freq=F,plot=F,br=br)
mu.tmp = range(mu.tmp,range(Y[,i]-A[i,1]))
ylim[i]l=max (tmp$density)
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}
# Switch used to get all graphs on one graph.
if (mu){
xlim = mu.tmp;
A[,1]1=0;
Yelseq{
x1lim = range(Y)
}

ylim = c(0,max(ylim))

nd=seq(x1im[1],x1im[2],0.001)

# If add=F then the plot is set up.

if (tadd){
plot(Y,type=’n’,ylim=ylim,xlim=x1im,xlab=xlab,ylab=’Density’,main=main)

for(i in 1:p){
y=dnorm(nd,mean=A[i,1],sd=A[i,2])
lines(nd,y,type=type,col=col,lwd=1wd,lty=1ty)
}
abline (h=0)
abline (v=0)

# No return value.

Lines.Boot = function(List,col=1,1lwd=1,1ty=2,prod=1,on=T,pp=T)

{

# Plots the simulated prediction intervals and point estimates, prod is the
# t-value of the prediction interval.

A=PredictInt (List,prod=prod) # Small sub function see below.
lines(A[,2],col=col,lwd=1wd,lty=1ty-1)

if (pp){

points(A[,2],col=col,pch=19,cex=0.8)

}

if (on){

lines(A[,1],col=col,lwd=1wd,lty=1ty)
lines(A[,3],col=col,lwd=1wd,lty=1ty)
}

# No return Value.

PredictInt = function(Y,prod=1)

{

# Sub function of Lines.Boot. Y is a matrix with mean values and standard
# deviations (MS list object). prod is the t-value used for the width of

# the prediction intervals.

me = Y$MS[,1]; sd = Y$MS[,2];

# Return a mean-(variancext-value), mean, mean+(variancext-value)
return(cbind (’SD.m’=me-prod*sd, ’MU’=me, ’SD.p’=me+prod#*sd))

YLIM = function(List,TSer,prod=1)

{

# Small help function for plotting. Finds the range for ylim when setting up plots.
# List is a MS list object. TSer is the observed house price value.
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a=range (c(List$MS[,1] + prod * List$MS[,2], List$MS[,1] - prod * List$MS[,21))
tt=range(range(TSer) ,a)

# Return the vector with range tt.
return(tt)



APPENDIX D

C# Code and Class

Diagram

For C# code contact me at snorri.pall.sigurdsson@gmail.com.
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D.1 C+# Class Diagram

Node A (Tree 3? Data A TreeTester
Class Class Class Class
[=I Fields [=I Fields = Methods [=I Methods
# children »¥ currlastlabel v ExportHousePrice 2" Main
# label ## currParentLabel “ ExportToMatlab
¥ parent ## nodeCount ¥ HousePriceToString
# period ¥ pattern
# probability # Root
[= Properties +# treeNodes
' Label [= Properties
' Parent 5 Pattern ;
5 Period 5 TreeNodes ;“"Ct"’“s
e ass
7' Probability (= Methods
= Method
eoce % addNodes = Methods
v getNumberOfChil... v GenerateTree
. % HPDI
¥ PrintNode ¥ getNodeByLabel @ HPDI MO
% setChild % PrintTree -
W Tree (+ 1 overloa...
IRNode 3]
Class
-+ Node IRTree A
Class
= Fields R
# deltaShortR = Methods
# shortRate
. v GenerateTree
@ VPropertles W IRTree (+ 1 overl...
j) DeltaShortR ¥ ReturnDeltaShortR
' ShortRate @ ReturnShortRates
[zl Methods
v PrintNode
HPTree A
= Class
HPNode 3] -+ IRTree
Class
pighicde [=] Methods
B Felds “ ExportHousePrice
4# deltaHousePricel “ BxportToMatlab
- N v GenerateTree
## deltaHousePrice2
housePrice  HPTree (+ 1 over...
4 - ¥ ReturnHousePrice
[=l Properties
' DeltaHousePricel
= DeltaHousePrice2
“ HousePrice
[zl Methods
@ PrintNode

Figure D.1: The class diagram for the scenario tree implementation in C#.
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