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Abstract

Current methodologies for the optimal operation of district heating systems are based on model
predictive control. In complement to load forecasts, accurate predictions (up to 12-hour ahead) of
the water temperature at critical points of the networks are crucial for meeting constraints related
to consumers while minimizing the production costs for the heat supplier. The paper introduces
a new forecasting methodology based on a conditional Finite Impulse Response (cFIR) model, for
which the model coefficients are replaced by nonparametric or semi-parametric coefficient functions
of the water flux at the supply point and of the time of day. This allows for nonlinear variations
of the time delays in the FIR model. The coefficients functions can be adaptively estimated with a
method that combines local polynomial regression, exponential forgetting, recursive weighted least
squares and Tikhonov regularization. Results are given for the test case of the Roskilde district
heating system, over a period of more than 6 years. The advantages of the proposed forecasting
methodology in terms of a higher forecast accuracy, in terms of its use for simulation purposes,
or alternatively for better understanding transfer functions of district heating systems, are clearly
shown.
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1 Introduction

District heating systems consist of centralized heat production facilities with associated

distribution networks. They play an important role in Nordic countries, where they are

used for meeting the demand related to space heating and hot tap water consumption. Ow-

ing to this centralized production combined with complex network architectures, decisions

made from the supply point of view have highly significant economical impacts. In order to

optimally operate district heating systems, control strategies are implemented with some

restrictions e.g. a minimum guaranteed inlet temperature at the consumers. The aim of

these control strategies is to meet these restrictions while minimizing the supply tempera-

ture, and thus the production costs for the heat supplier. Alternative methodologies based

on predictive control have been described by Nielsen (2002) and Sandou et al. (2004).

If considering a unique heat supplier, his decision variables are the magnitude of the wa-

ter flux and the supply temperature. The magnitude of the water flux is directly imposed

by the load, and thus load forecasts serve as a basis for making a decision regarding this

flux. The accuracy of load forecasts has been discussed by Nielsen & Madsen (2000) or

Dotzauer (2002) for instance. Similarly, predictive control for the supply temperature ne-

cessitates a model that permits to forecast the water temperature at critical points of the

network considered. The relevant forecast horizons may be up to 12-hour ahead. Increas-

ing the accuracy of these temperature forecasts is expected to significantly lower the pro-

duction costs for the heat suppliers, as a consequence of them making more optimal control

decisions. The aim of the present paper is to contribute to reaching a higher forecasting

accuracy by proposing a new forecasting methodology.

The models in the literature either derive from a physical description of the heat and mass

transfers in the network (Sandou et al. 2005), or they are based on a statistical description

of the transfer function from the supply point to the critical point considered (Søgaard

1993). In both cases, a fixed time delay in the network is assumed, owing to computational

costs or estimation complexity of using a varying time delay. In contrast, the forecasting

methodology introduced here permits to account for a varying time-delay in the network.

The embedded model is a Finite Impulse Response (FIR) for which the model coefficients

are replaced by nonparametric coefficient functions of influential variables. Owing to this

consideration of the nonlinear influence of external factors on the FIR, the model is referred

to as conditional Finite Impulse Response (cFIR). The proposed cFIR models are used here

for capturing the nonlinear influence of the water flux at the supply point on the transfer

function of the district heating system. Another interest of cFIR models is that they can

account for the influence of the social behavior of the consumers on the temperature at the

critical point. It may be done either by having the time of the day as an influential variable

of the cFIR model, or more classically, by having an offset term in the form of a diurnal

harmonic. Considering these two alternatives will allow us to discuss the assumption of

the social behavior of the consumers impacting (or not) the transfer function of the district

heating system.

The problem of predicting the water temperature at critical points of a district heating

system is described in Section 2, as well as the proposed forecasting methodology. Then,

Section 3 introduces the method for the estimation of the model coefficients. Particularly,

it allows for a recursive estimation of the coefficients so that it accommodates long-term

variations. In addition, a regularization of the recursive estimation method is proposed for

enhancing its generalization ability and for controling its multi-step ahead accuracy. The

3



case-study of the district heating system of Roskilde in Denmark is considered in Section 4

in order to illustrate the benefits of this new forecasting methodology. The original dataset

includes temperature and flux measurements at the supply point, as well as temperature

measurements at 3 critical points of the distribution network, for a period of more than 6

years. In addition to demonstrating the significantly higher performance of the proposed

methodology, its interest for better understanding the time delays in the network is dis-

cussed. Section 5 ends the paper by summarizing the main conclusions and gathering

perspectives regarding future developments.

2 Description of the proposed forecasting methodology

A district heating system often consists in a complex network. Though, one is mainly

interested in what occurs at some specific points of this network. They serve as references

for designing and optimizing the control strategies, and are thus referred to as critical

points. Focusing on a single critical point, the overall network is conceptually simplified: it

is considered that there is a unique simple pipe between the supply and critical points. The

district heating system operator injects in a continuous manner quantities of warm water

(at a controlled temperature), and is interested in knowing what will be the temperature at

this critical point depending on its operation strategy at the supply point. Denote by xt and

ut the value of the flux and of the water temperature at the supply point at time step t. In

parallel, yt is the water temperature at the critical point considered at that same time. The

problem is here discretized. For practical applications, the suitable time step is typically of

one hour. The available data hence consist in the time-series {xt}, {ut} for the supply point

and {yt} for the critical point, all including n observations. The state-of-the-art statistical

approach is introduced in a first part, followed by the description of our new forecasting

methodology based on a cFIR model

2.1 The state-of-the-art statistical approach

The model that is traditionally used for predicting the temperature at critical points, ini-

tially proposed by Søgaard (1993), takes the form of a linear transfer function model with

a first-order autoregressive component

yt = a1yt−1 + b0(ht − τ)ut−τ + b1(ht − τ − 1)ut−τ−1 + b2(ht − τ − 2)ut−τ−2 + εt, ∀t (1)

where ht is the hour of the day corresponding to the time step t, {εt} is the noise sequence,

such that E[ε] = 0 and σ2
ε < ∞. While a1 is not conditional to any variable, the coefficients

bj , j = 0, 1, 2, of the transfer function are made a function of the time of the day and of the

time delay τ in the system, by using a Fourier harmonics with a period of 24 hours

bj(ht − τ − j) = b0
j + b1

j sin

(

π(ht − τ − j)

12

)

+ b2
j cos

(

π(ht − τ − j)

12

)

, ∀t, j = 0, 1, 2 (2)

i.e. they account for the diurnal variations in the system behavior, owing to the social

behavior of the consumers. When using this model for predictive control, Nielsen (2002)

proposed to choose τ as the time delay that maximizes the correlation between the time

series {yt} and {ut−τ}. It can be allowed to change over time by using a sliding window,

thus yielding different time delays in the system depending on the season of the year.
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The above model may provide an acceptable description of {yt}. Though, if used for multi-

step ahead prediction, the forecast accuracy lowers dramatically as the lead time gets fur-

ther. This is due to the autoregressive part of the model. Indeed, when issuing at time t a

k-step ahead forecast ŷt+k|t, the model is fed with the (k − 1)-step ahead forecast ŷt+k−1|t.

A consequence is that forecasting errors directly sum up as k increases. This will be illus-

trated in Section 4, where model (1) will be used as a benchmark. Another drawback of

the model, which significantly affects its performance when used for forecasting purposes,

is the fixed time delay τ , which is not realistic. In practice, τ does not only vary depending

on the season: it is necessarily a function of the flow in the network (Arvatson 2001).

2.2 The proposed forecasting methodology

2.2.1 Modeling the transfer function of the network

Owing to the drawbacks of model (1), it is proposed to introduce a new model with a varying

time-delay, and without any autoregressive component. For modeling the transfer function

of the network, we use as a basis the conditional Finite Impulse Response (cFIR) model

initially described by Nielsen (2000), i.e.

yt =
∑

j∈Sj

βj(xt−1)ut−j + εt, ∀t (3)

where yt is the temperature at the considered critical point at time t, xt−1 is the value of

the flux at the supply point at time t− 1 and ut−j are the lagged values of the temperature

at the supply point. Sj corresponds to the finite set of indexes related to the lagged values

for the cFIR model. {εt} is a white noise sequence, for which E[εt] = 0 and σ2
εt

< ∞.

The advantage of model (3) is that the cFIR is conditional to the flux at the supply point,

since the coefficients βj are indeed coefficient functions of xt−1. This way, the time delay

in the system is also made a (nonlinear) function of the flux. However, since the model

does not integrate any component describing the autocorrelation of the {yt} time-series, it

may require the cardinal of Sj to be large. In addition, it does not account for potential

heat losses that would be a function of the magnitude of the flux. For these two reasons,

it is proposed here to add an offset term (also function of the flux) in model (3), so that it

becomes

yt = β0(xt−1) +
∑

j∈Sj

βj(xt−1)ut−j + εt, ∀t (4)

2.2.2 Integrating the social behaviour of consumers

Model (4) is expected to provide an adequate description of the flux-dependent transfer

function of the distribution network. However, it does not account for the potential in-

fluence of the social behavior of the consumers, i.e. for their consumption pattern (as a

function of the hour of the day) that necessarily depends on the type of consumers that are

connected to the critical point considered. It is intuitive that the consumption pattern is

very different if the critical point corresponds to a residential area, to an industrial area,

or to an hospital.
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There may be two alternative views on how to integrate the social behaviour of the con-

sumers within model (4). On the one hand, one may consider that it does not impact the

transfer function of the network. In this case, it is only necessary to modify the offset term

of the model, in order for it to account for diurnal variations. It is proposed here to use

Fourier harmonics of period 24 hours, so that the offset term β0 in (4) is replaced by

β†
0(xt−1, ht) = β†

0,0(xt−1) + β†
0,1(xt−1) sin

(

πht

12

)

+ β†
0,2(xt−1) cos

(

πht

12

)

, ∀t (5)

with ht the hour of the day at time step t, while the other β†
j coefficient functions remain

unchanged

β†
j (xt−1) = βj(xt−1), ∀j, j > 0 (6)

This model will be referred to as a ‘rigid’ cFIR in the following.

The β†
j coefficient functions can be gathered in vector denoted by β†(xt−1, ht). In parallel,

let u
†
t be the corresponding vector of ones, harmonics values, as well as lagged values of ut.

Then, the rigid cFIR model can simplify to

yt = β†⊤(xt−1, ht)u
†
t + ε†t , ∀t (7)

On the other hand, one may consider that the social behavior of the consumer also influ-

ences the transfer function of the network. Then, this translates to having the βj coeffi-

cients functions in (4) being a function of the time of the day, in addition to being a function

of the flux at the supply point. This yields the alternative model

yt = β∗
0(xt−1, ht) +

∑

j∈Sj

β∗
j (xt−1, ht)ut−j + ε∗t , ∀t (8)

that is, with the β∗
j coefficient functions being a function of both the flux xt−1 at the supply

point and the time of the day ht. Owing to its more supple structure, the model will be

referred to as a ‘supple’ cFIR in the following. In the same manner than for the rigid

one, denote by β∗(xt−1, ht) the vector of coefficient functions for this model and by u∗
t the

corresponding vector of ones and lagged values of ut. In such case, model (8) becomes

yt = β∗⊤(xt−1, ht)u
∗
t + ε∗t , ∀t (9)

To sum up, the difference between the supple and rigid cFIR models is that the former ones

have their coefficient functions conditional to both the flux at the supply point and the time

of the day, while for the latter ones they are only conditional to flux values.

2.2.3 Forecasting with the cFIR models

Models (7) and (9) describe the temporal evolution of {yt} from past information at the

supply point, i.e. measurements of flux and supply temperature. From these models, the

one-step ahead prediction at time t of the temperature at the critical point can be defined

as the conditional expectation of the process at time t + 1 given the information set Ωt up

to time t, and the chosen cFIR model. If denoting by ŷ†
t+1|t the one-step ahead prediction
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for the rigid cFIR model, this writes

ŷ†
t+1|t = E

[

yt+1|β
†,Ωt

]

, ∀t (10)

or alternatively

ŷ∗t+1|t = E [yt+1|β
∗,Ωt] , ∀t (11)

for the supple cFIR model, with ŷ∗
t+1|t denoting the corresponding one-step ahead predic-

tion.

In practice, since E
[

ε†
]

= 0 and E [ε∗] = 0, the one-step ahead predictions are obtained with

ŷ†
t+1|t = β†(xt, ht+1)

⊤u
†
t , ∀t (12)

and

ŷ∗t+1|t = β∗(xt, ht+1)
⊤u∗

t , ∀t (13)

for the rigid and supple cFIR models, respectively.

Note that for computing one-step ahead predictions with cFIR models, the current filtered

flux value xt and the lagged supply temperature values ut−j+1, j ∈ Sj, are available mea-

surements. But then, for multi-step ahead prediction, say k-step ahead, the above equa-

tions become

ŷ†
t+k|t = β†(x̂t+k−1|t, ht+k)⊤u

†
t+k−1, ∀t (14)

and

ŷ∗t+k|t = β∗(x̂t+k−1|t, ht+k)⊤u∗
t+k−1, ∀t (15)

This means that since u is the control variable, one can assume that future values are

known. In contrast, future flux values at the supply point cannot be exactly known, though

they could be deduced from load predictions, since the load qt at time t is related to xt with

qt = cpxt(ut − vt), ∀t (16)

where vt is the return temperature at that same time and cp is the heat capacity of the wa-

ter in the pipe. It is known that the variations of vt are very smooth, so that future values

can be assumed to be known or could be accurately predicted with e.g. exponential smooth-

ing. Consequently, predictions of future flux at the supply point could be straightforwardly

obtained and used to feed the model.

Actually, both flux and temperature at the supply point are control variables in practice,

which are interdependent. For instance, for reaching the same temperature at the critical

point, increasing the flux may allow to have a lower supply point temperature. Restric-

tions on the range of potential values and variations of these two variables may also step

in this complex decision-making problem. Anyways, the cFIR models can also be used for

simulation purposes in order to evaluate the impact of decisions on the flux and tempera-

ture variables in the following hours. In order to illustrate the sensitivity of the prediction

performance of the cFIR models to the choice of future flux values, we will consider in Sec-

tion 4 a forecasting exercise where the supply temperature is the unique control variable
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and for which a simple Auto-Regressive (AR) model of order p is used for describing {xt},

and consequently for multi-step ahead prediction

xt = α0 +

p
∑

i=1

αixt−i + ξt, ∀t (17)

where {ξt} is a white noise sequence, i.e. such that E[ξ] = 0 and σ2
ξ < ∞. Such modeling

approach may be less appropriate than that mentioned above, so that the results given in

Section 4 will consist a lower bound on the potential performance of the proposed forecast-

ing methodology in comparison to the case for which more advanced flux predictions would

be available. This will permit to perform a sensitivity analysis on the prediction perfor-

mance of the cFIR models even if the information on future flux at the supply point is not

perfectly accurate. After inspection of the correlogram of the model residuals, it has been

decided to enhance this AR(p) model with a Fourier harmonics of period 24 hours. This

allows us to account for a periodic diurnal variations in the {xt} time series that cannot be

captured by the autoregressive component only. Model (17) becomes

xt = α0
0 + α1

0 sin

(

πht

12

)

+ α2
0 cos

(

πht

12

)

+

p
∑

i=1

αixt−i + ξt, ∀t (18)

where ht is the hour of the day corresponding to time step t. Multi-step ahead flux forecasts

obtained from model (18) are then used to feed the cFIR model as expressed in (14) and (15).

3 Estimation of the model parameters

For a model such as (18), the model parameters can be easily estimated with a Least

Squares (LS) or Recursive Least Squares (RLS) method, as described in e.g. (Madsen 2006).

In contrast, for the case of cFIR models, the chosen method for nonparametric parameter

estimation is described in the following, both for offline and online applications. It combines

local polynomial regression, weighted LS for the offline case – and respectively weighted

RLS with exponential forgetting for the online case, as well as Tikhonov regularization.

For simplicity, the method is described for a generic cFIR model whose transfer function is

described by the β(r), with r = [r1 r2 . . . rl] the vector of variables that condition the cFIR

model. l should be kept to a low value, say below 3, owing to the curse of dimensional-

ity (Hastie and Tibshirani 1990, pp. 83-84). When necessary, specific points related to the

estimation of the two cFIR models introduced above will be discussed.

3.1 Local polynomial estimates

The coefficient functions βj(r) are estimated in a nonparametric framework, i.e. without

assuming a shape for these functions. This is done by using local polynomial regression

(Cleveland and Devlin 1988), for which the only assumption on the βj coefficient functions

is that they are sufficiently smooth for being locally approximated with polynomials. The

estimation problem is reduced to locally fitting linear models at a number m of fitting

points r(i), where a given fitting point is defined by a pair of flux and time values (i.e. in
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our case l = 2)

r(i) =
[

r(i),1 r(i),2 . . . r(i),l

]⊤
, i = 1, . . . ,m (19)

so that these m fitting points span the range of potential values on the various dimensions

of r. Defining these fitting points is preferably done by using some information on the

distribution of r. For the case of the cFIR models introduced above, this mainly concern

the distribution of flux values, as hour values will be uniformly distributed.

Let us focus on the fitting point r(i) only. The local polynomial approximation zt of the

vector of explanatory variables ut at rt = [rt,1 rt,2 . . . rt,l]
⊤ is given by

zt =
[

ut,1p
⊤
d (rt) . . . ut,kp

⊤
d (rt) . . . ut,lp

⊤
d (rt)

]⊤
(20)

where pd(rt) corresponds to the d-order polynomial evaluated at rt. For instance if d = 2,

p2(rt) can be obtained as

p2(rt) =
[

1 rt,1 rt,2 r2
t,1 rt,1rt,2 r2

t,2

]⊤
(21)

In parallel, write

φ(i) = φ(r(i)) =
[

φ⊤
(i),1 . . . φ⊤

(i),k . . . φ⊤
(i),l

]⊤
(22)

the vector of local coefficients at r(i), where the element vector φ(i),k is the vector of local

coefficients related to the local polynomial approximation of the k-th explanatory variable,

that is, ut,kpd(r(i)).

The nonlinear cFIR is thus locally approximated at r(i) by the linear model

yt = z⊤t φ(i), ∀t (23)

so that the problem of fitting the nonlinear cFIR model is converted in a number m of local

linear models to be fitted, that is, one for each fitting point r(i).

3.2 Offline estimation of the local coefficients

In an offline setting, a set of n observations for each of the time series is available and

one then wants to estimate the local coefficients for this set of data. In such setting, with

the one-step ahead prediction defined as the conditional expectation (cf. Section 2.2.3) the

nonlinear cFIR model can be fitted by minimizing the sum of squared residuals over the

set of observations, that is,

S(β) =

n
∑

t=1

ρ(yt − β⊤(rt)ut) (24)

where ρ is a quadratic criterion, i.e. such that ρ(ǫ) = ǫ2/2.

Then, if focusing on a given fitting r(i), one can estimate the vector of corresponding local

coefficients, that is, φ(i), by using weighted least-squares. The estimate φ̂(i) is then given
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by

φ̂(i) = arg min
φ(i)

S(φ(i))) = arg min
φ(i)

n
∑

t=1

wt,(i)ρ(yt − z⊤t φ(i)) (25)

where the weights wt,(j) are assigned by a Kernel function of the following form

wt,(i) = T

(

l
∏

k=1

|rt,k − r(i),k|k

~(i),k(αk)

)

(26)

In the above, |.|k denotes the chosen distance on the kth dimension of r. For the cFIR models

introduced in Section 2.2, one would choose an Euclidian distance on the dimension of the

flux values and a polar distance on the dimension of hour values.

In parallel in (26), ~(i),k is the bandwidth for that particular fitting point r(i) and for the

kth dimension of r. Whatever the dimension considered, ~(i),k is determined by using a

nearest-neighbor principle (Nielsen et al. 2000). For a chosen proportion αk, the bandwidth

~(i),k(αk) is such that

αk =

∫

D(i),k

frk
(v)dv (27)

where D(i),k = {v ∈ R | |v − r(i),k|2 < ~(i),k} defines the neighborhood of r(i) on the kth

dimension of r, while frk
denotes the density function of the rk values. In practice, frk

is

replaced by the empirical distribution function of the available data.

Finally in (26), T is defined as the tricube function, i.e.

T : v ∈ R
+ → T (v) ∈ [0, 1], T (v) =

{
(

1 − v3
)3

, v ∈ [0, 1]
0 , v > 1

(28)

as introduced and discussed by e.g. Cleveland and Devlin (1988).

Denote by A the data matrix such that its tth row is z⊤t , i.e. the transpose of the local

polynomial approximation of ut. In parallel, write Σ the diagonal matrix for which the tth

element on the diagonal corresponds to the weight wt,(i) to assign to the data point rt. The

solution of (25) is then straightforwardly given by

φ̂(i) =
(

A⊤ΣA
)-1

A⊤Σy (29)

where y is the vector of observations for the time-series {yt}.

The elements of β(i) are finally obtained with

β̂(i) = β̂(r(i)) = p⊤
d (r(i))φ̂(i), i = 1, . . . ,m (30)

And, for a given data point rt, the corresponding coefficient functions β̂(rt) are obtained by

linear-type interpolation. For instance, if l = 2, it is done by using bilinear interpolation of

the coefficient function values at the four fitting points forming the smallest surface that

covers rt.
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3.3 Online estimation of the local coefficients

For real-world applications, one does not want to consider the whole set of available obser-

vations for estimating the local coefficients every time new observations become available.

Instead, for this online setting, one aims at tracking the local coefficients by using a re-

cursive formulation of the estimation method. In addition, such recursive formulation can

allow for an exponential forgetting of old observations, which leads to the model being

adaptive with respect to long-term variations in the process characteristics. From now on,

it is considered that at time n a set of n past observations is available for each time-series,

and thus that the dataset grows as time increases.

First, let us introduce the objective function to be minimized at each time step n, which

consists a modified version of that given by (24)

Sn(β) =

n
∑

t=1

λn−tρ(yt − β⊤(rt)ut) (31)

where λ is the forgetting factor that permits an exponential forgetting of past observations.

For a given λ, λ ∈ [0, 1[, the effective number of observations nλ is

nλ = 1 + λ + λ2 + . . . =
1

1 − λ
(32)

Denote by φ̂n,(i) the estimate of the local coefficients for the fitting point r(i) at time n.

Then, the objective function to be minimized for estimating the local coefficients at r(i) and

at time n writes

Sn(φn,(i)) =

n
∑

t=1

Λn,(i)(t)wt,(i)ρ(yt − z⊤t φn,(i)) (33)

where φn,(i) is related to βn(r(i)) following a relation equivalent to (30). In parallel, Λn,(i)

is the function that permits exponential forgetting of past observations, i.e.

Λn,(i)(t) =

{

λeff
n,(i)Λn−1,(i)(t − 1), 1 ≤ t ≤ n − 1

1 , i = n
(34)

In the above definition, λeff
n,(i) is the effective forgetting factor for the fitting point r(i) which

permits to account for the weighting in the formulation of (33). It follows the definition

given by Nielsen et al. (2000), which tells that λeff
n,(i) is a function of wn,(i) such that

λeff
n,(i) = 1 − (1 − λ)wn,(i) (35)

where λ is the classical user-defined forgetting factor, λ ∈ [0, 1[. This effective forgetting

factor ensures that old observations are downweighted only when new information is avail-

able. This will be further explained in a following part of the present Paragraph. By using

this exponential forgetting scheme, nλ as given by (32) consists a lower bound on the effec-

tive number of observations (Nielsen et al. 2000).

11



The local coefficients φ̂n,(i) at time n for model (23) are then given by

φ̂n,(i) = arg min
φ(i)

Sn(φ(i)) = arg min
φ(i)

n
∑

t=1

Λn,(i)(t)wt,(i)ρ(yt − z⊤t φ(i)) (36)

The recursive formulation for an adaptive estimation of the local coefficients φ̂n,(i) (and

therefore of β̂n,(i), by using Equation (30) at each time-step) leads to the following three-

step updating procedure at time n:

ǫn,(i) = yn − u⊤
n β̂n−1,(i) (37)

φ̂n,(i) = φ̂n−1,(i) + ǫn,(i)wn,(i)

(

Rn,(i)

)−1
z⊤n (38)

Rn,(i) = λeff
n,(i)Rn−1,(i) + wn,(i)znz

⊤
n (39)

where λeff
n,(i) is again the effective forgetting factor. One sees that when the weight wn,(i)

equals 0 (thus meaning that the local estimates should not be affected by the new infor-

mation), then we have φ̂n,(i) = φ̂n−1,(i) and Rn,(i) = Rn−1,(i). This confirms the role of

the effective forgetting factor, that is to downweight old observations, but only when new

information is available.

For initializing the recursive process, the matrices R0,(i), i = 1, . . . ,m, can be chosen as

R0,(i) = δI, ∀i (40)

where δ is a small positive number and I is an identity matrix of appropriate size. Note

that this size, which corresponds to the number of coefficients to be estimated, is equal to

the order of the chosen model in Equation (23) times the order of the polynomials used for

local approximation. In parallel, the coefficient functions are initialized with a vector of

zeros, or alternatively from a best guess on the target regression.

3.4 Regularization for a better generalization ability

The cFIR models (7) and (9) are originally designed for performing one-step ahead predic-

tion. However, it is used here for multi-step ahead forecasting purposes with flux predic-

tions as input. One should then try not to amplify the error in flux forecasts when passed

through the model. This can be done by insuring that we work with a ‘smooth’ model. In

addition, using recent data for fitting the model does not ensure an optimal performance

when consequently used for predicting on new and independent data. This ability of per-

forming well with new and independent data is referred to as the generalization ability of

the model (see e.g. Stone (1974)). For these two reasons, we propose here a regularized

version of the estimation method described in the above Paragraph.

Several approaches may be considered for regularization in recursive least squares meth-

ods. They are widely used for ill-conditioned numerical problems, for avoiding overfitting

when training neural networks (Leung et al. 1999, Sjöberg & Ljung 1995) or more gener-

ally for estimation in nonlinear systems (Bishop 1995, Johansen 1997). Here, the type of

regularization applied is that known as Tikhonov regularization (Tikhonov and Arsenin

1977). It consists in adding a penalty term related to the norm of the coefficients (or of

12



their derivatives) in the loss function to be minimized for model fitting.

For the case of the offline estimation of the model coefficients, it is well known that adding

Tikhonov regularization makes that equation (29) becomes

φ̂(i) =
(

A⊤ΣA + µI
)-1

A⊤Σy (41)

where I is an identity matrix of appropriate size, and where µ is the regularization param-

eter that permits to control the trade-off between the minimization of the fitting errors and

the norm of the model estimates. One thus sees that Tikhonov regularization consists in

penalizing the diagonal elements of the inverse covariance matrix.

If going to the case of online estimation of the cFIR model coefficients, the loss function to

be minimized at each time t can be reformulated as

S̃n(φn,(i)) =
µ

1 − λ
φ⊤

n,(i)φn,(i) +
n
∑

i=1

Λn,(i)(t)wn,(i)ρ(yt − z⊤t φn,(i)) (42)

where φ⊤
n,(i)φn,(i) represents the quadratic norm of the model estimates. We restrict our-

selves to the case for which λ < 1. The regularization parameter µ is multiplied here by

(1 − λ)−1, which corresponds to the effective number of observations for this loss function

formulation. By doing so, µ represents the regularization load to be added to each obser-

vation accounted for in the loss function. The regularization is thus independent with the

size of the virtual sliding window considered, which is in turn controlled by λ. If no expo-

nential forgetting was used, a single parameter µ would multiply the norm of the model

estimates. Choosing µ in such case would be an issue, as the result of the sum in (42)

would increase as n increases, while µ is not a function of n. Note that when regulariza-

tion in RLS methods is considered in the literature, see e.g. (Hubing and Alexander 1991,

Ismail and Principe 1997), it is always for the case λ = 1 and with effect of the regulariza-

tion fading as the size of the dataset increases. The aim of such regularization is mainly to

control first adaptation steps after model initialization.

For the adaptive formulation of the loss function in (42), the recursive procedure for updat-

ing the cFIR model coefficients at each time step can be rewritten in order to account for

regularization. In fact, the main difference with the classical updating procedure described

above relates to the updating formula for the inverse covariance matrix Rn,(i). One in-

deed then works with a regularized inverse covariance matrix R̃∗
n,(i), which replaces Rn,(i)

in (38), and which is updated with

R̃n,(i) = λeff
n,(i)R̃n−1,(i) + wn,(i)znz

⊤
n +

1 − λeff
n,(i)

1 − λ
µI (43)

where I is an identity matrix of appropriate size. The inverse covariance matrix R̃(i),0 can

be initialized with δ = µ in equation (40). Such a recursive scheme for the updating of the

covariance matrices makes that its diagonal elements are always penalized with the same

regularization parameter µ(1−λ)−1 (as it is the case in (41)). The model estimates are still

updated by applying (38) at each time step.
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4 Case-studies and results

4.1 Description of the case-studies

The models and forecasting methodology described above are applied to the test case of

the Roskilde district heating system. Roskilde is a city of around 250.000 inhabitants

located 30 kilometers west of Copenhagen in Denmark. The district heating system has a

unique heat production facility, and focus is given to three critical points on the distribution

network. They correspond to a retirement home, the local hospital and the Viking museum.

They are hereafter referred to as critical points 1, 2 and 3, respectively.

The available data consist in measurements of the water flux and temperature at the sup-

ply point, as well as measurements of the water temperature at the three critical points.

They have a time resolution of 5 minutes. Hourly data are obtained by averaging the 5-

minute measurements so that, for instance, the hourly temperature value at 01:00 is the

average of all values between 00:05 and 01:00. If more than two measurements are missing

for a given hour, the corresponding hourly value is considered as erroneous. The period for

which measurements are available goes from August 16th, 2000, to December 12th, 2006.

This translates to 55423 hourly values for each variables. For the specific case of critical

point 2, the last 11000 data points are not considered owing to a suspicious behavior of the

time-series, which is in turn due to the application of local control strategies of the water

temperature at Roskilde hospital from 2005. The overall percentage of valid data for the

three critical points are of 88.49, 86.28% and 94.56%, respectively.

The aim of the present exercise is to demonstrate the significantly higher performance

of the proposed forecasting methodology in comparison with the state-of-the-art approach

described in Section 2.1. But also, the structure of the proposed models, and the two rival

approaches to the integration of the social behavior of the consumers, will allow us to

discuss the time-delays in the network and the assumption such that the social behavior

impacts (or not) the transfer function of the distribution network.

4.2 Setup and optimal fitting of the cFIR models

The cFIR models (7) and (9) comprise the central part of the forecasting methodology. For

both models the set of indices that defines the past values of the water temperature at the

supply point is such that Sj = {1, 2, . . . , 10}, i.e. the cFIR models rely on the last 10 hourly

values of supply temperature.

Regarding local polynomial regression, one has to start by defining the order of the polyno-

mials used for locally approximating the regression. Linear polynomial regression is used

in order to limit the number of local coefficients to be estimated, and thus the related com-

putational costs. In addition, it is necessary to set the fitting points and the proportions

that defines the nearest-neighbor bandwidths. For both rigid and supple cFIR models, be-

cause of the yearly cycle in the flux values, it is chosen to use one year of flux values for

obtaining a representative empirical distribution f̂x of the flux values. This distribution of

flux values can been seen from Figure 1.

The fitting points along the flux dimension x(i), i = 1, . . . ,mx, are then defined such that

there is the same proportion of flux values in each of the intervals defined by two successive
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FIGURE 1: One year distribution of flux values at the supply point. The bin size is set to 25 m3.h−1.

fitting points. This writes

∫ x(i)

0
fx̃(v)dv =

i − 1

mx − 1
, i = 1, . . . ,mx (44)

The number of fitting points mainly has an impact on the computational costs for model

estimation, provided that mx is set to a sufficient value so that local polynomial approx-

imation is suitable. It has been found that the model fitting was not significantly better

when having m above 11, and it has been chosen to use this value. The related bandwidth

values ~(i),x, i = 1, . . . ,mx are obtained by applying the nearest-neighbor principle intro-

duced in (27), parameterized by αx. Similarly, we have witnessed that the improvement in

the model fitting was negligible when having αx higher than 0.4, and it is thus the value

chosen in the following. For the specific case of the supple cFIR model, it is chosen to have

four fitting points uniformly distributed over the range of daily hours. The local coefficients

for the supple cFIR models will hence be estimated for 00:00, 6:00, 12:00 and 18:00. In or-

der to have very smooth variations along this dimension of the supple cFIR, the related

bandwidth is set to a large value (αh = 0.6).

In parallel, concerning the recursive estimation method itself, one has to set the value of

the forgetting factor λ, which defines the rate of forgetting of old observations, and controls

the ability of the method to account for long-term variations in the process characteristics.

Though, if choosing a value for λ that is too low, the fitting of the model will be very poor.

Finally, a last parameter to consider is the regularization parameter µ, defining the trade-

off between model fitting and the smoothness of the model estimates. Our methodology for

defining optimal values for these two parameters is to use one-fold cross validation. The

first year of the available dataset is used as a training period, while the second year is seen

as the validation set. Since it is considered that the cFIR model will be used in practice

for generating temperature predictions up to 12-hour ahead, the criterion we choose to

minimize on the validation set is the Root Mean Square Error (RMSE), averaged over this
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TABLE 1: Results from the cross-validation procedure for the choice of the optimal forgetting factor

λ and regularization parameter µ. These results are for the rigid cFIR model (a) and supple cFIR

model (b).

(a) rigid cFIR model

critical point number λ µ mean RMSE [◦C]

1 0.98 0.00075 0.4851

2 0.98 0.0008 0.4902

3 0.9 0.1 0.8210

(b) supple cFIR model

critical point number λ µ mean RMSE [◦C]

1 0.975 0.001 0.5014

2 0.98 0.0006 0.5304

3 0.9 0.1 0.8108

range of forecast horizons. For that purpose of model fitting, only flux measures are used.

The results from the cross-validation procedure are gathered in Table 1. For the three

critical points, the optimal parameters λ and µ are very similar if considering the rigid or

supple cFIR models. For two out of the three critical points, the mean RMSE related to

the optimal parameters is slightly higher for the supple cFIR model than for the rigid cFIR

model. This is not the case for the third critical point. However, one sees that the value

of the optimal forgetting factor is low (0.9), while the regularization parameter value is

very high (0.1) in comparison with the other critical points. The mean RMSE also reaches

a surprisingly large level in comparison with the two other critical points. This might

indicate some abnormal behavior in the data, owing to e.g. the quality of the temperature

measurements. One should note though that this critical point corresponds to the Viking

museum, which has the lowest contribution to the heat consumption. This might introduce

some different behavior in the data that cannot be captured by the proposed cFIR models.

A nice feature of the cFIR models is the low sensitivity to the choice of the two parameters

λ and µ. For instance, Figure 2 shows the variation of the average RMSE on the validation

set, for the supple cFIR model applied to critical point 1, as a function of λ (y-axis) and

µ (x-axis). These variations are described by a contour plot, with 30 level lines related to

uniformly distributed mean RMSE values. The minimum average RMSE is obtained for

(λ, µ) = (0.975, 0.001).

From Figure 2, one sees that the 3-dimensional surface describing the variations is a

smooth and convex surface. The convex nature of this surface makes that there is a unique

(λ, µ) combination that minimizes the mean RMSE value on the cross-validation set. Also,

the fact that this surface is smooth demonstrates the low sensitivity of the performance of

the cFIR models to the choice of the parameters λ and µ.

In a last stage, we depict the estimated cFIR model related to the transfer function of the

district heating system between the supply point and critical point 1. The contour plot

of Figure 3 indeed gives the amplitude of the coefficient functions in the cFIR model, as a

function of both the water flux and the lag of the water temperature at the supply point. For
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FIGURE 2: Mean Root Mean Square Error [◦C] over the validation set as a function of both the

forgetting factor λ (y-axis) and the regularization parameter µ (x-axis). These results are for the

supple cFIR model and for critical point 1.

high flux values, the transfer function of the district heating network between the supply

point and critical point 1 is highly concentrated: the water temperature at critical point 1 is

almost only determined by that at the supply point 2 hours before. The coefficient function

takes a value of almost 1 for this lag, while it sharply decreases for shorter and longer lags.

One can observe such behavior for flux values down to 1000m3.h−1. For lower values, the

transfer function is less concentrated and more lagged values of the water temperature at

the supply point contribute to determining that at critical point 1. This may be explained

by a different mixing of the water in the pipe owing to a lower flux. In addition, it has been

noticed (for both cFIR models and for the three critical points) that the offset term in the

cFIR tends to decrease as the flux values are lower, indicating higher temperature losses.

The interest of Figure 3 is also that it permits to better appraise the physical behavior

of the district heating system between the supply point and a given critical point. The

influence of the flux on the losses has already been mentioned above. In addition to this,

one can also visualize the influence of the flux at the supply point on the time delays

in the network. It varies here between 2 and 5 hours when going from the highest to

lowest flux values. The time-delay variations appear to be nonlinear, though this may

come from some numerical artifact. Indeed, the same regularization parameter µ is used

for all fitting points. However, since an optimal regularization parameter (for a linear

model) is related to the variance and the norm of model estimates (see e.g. (Golub et al.

2000, Wang and Chow 1989)), the optimal µ for the estimation of the coefficient functions

in the cFIR should also be a function of the fitting point considered. This is because both

the variance and the norm of the coefficient functions will vary depending on the fitting

point. The optimal and local tuning of the regularization parameter µ should be further

investigated in the future. Note that for the case of the supple cFIR models, one could also

visualize contour plots such as that of Figure 3 for different hours of the day. Since we have

not witnessed highly significant variations in the ‘shape’ of the transfer functions through
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FIGURE 3: Contour plot of the amplitude of the coefficient functions of the rigid cFIR model at the

end of the validation set for critical point 1. The x-axis gives the flux at the supply point (in m3.h−1)

while the y-axis gives the lag of the transfer function in hours.

the day, this point is not further discussed here.

4.3 Out-of-sample evaluation of the cFIR models

The remaining of the dataset is seen as an out-of-sample evaluation set, for which the

application of the forecasting methodology has to mimic operational conditions, so that

observed performance would be representative. The evaluation set consists of 33900 data

points (∼ four years) for critical points 1 and 3, and of 22500 data points (slightly less

than three years) for critical point 2. The cFIR models estimated for the three critical

points permit to describe the transfer function between the supply point and each of these

critical points. For control purposes in operational conditions, these models can serve for

simulating what would be the temperature at a given critical point for the following hours,

depending on the chosen control strategy (on both flux and water temperature variables)

at the supply point. Therefore, for the out-of-sample evaluation of the cFIR models, the

measurements of both the flux and the water temperature at the supply point are used as

input to the models.

Several criteria are considered for evaluating the prediction performance. All these criteria

are calculated on a per-horizon basis, since it is expected that the prediction performance

deteriorates as the lead time gets further. The bias, which equals the mean of all predic-

tion errors, corresponds to the systematic part in the prediction error. Then, the Mean

Absolute Error (MAE) gives the average deviation in absolute value between forecasts and

measures. Finally, the Root Mean Square Error (RMSE) is the average of squared er-

rors, thus giving more weight to large prediction errors. This last error measure is used

as the main criterion when evaluating the prediction performance, since it relates to the
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quadratic loss function used for model estimation (and parameter selection through the

cross-validation procedure). Note that the range of temperature variations over the whole

dataset are of 31.26◦C, 28.58◦C and 30.53◦C for critical points 1, 2 and 3, respectively. A

final criterion that will be used is the Mean Absolute Percentage Error (MAPE), for which

absolute errors are divided at each time step by the measured temperature. The full set of

results from the evaluation are gathered in Tables 5, 6, and 7 in the Appendix.

Figure 4 summarizes the evaluation of the cFIR models with the MAE and RMSE error

measures calculated as a function of the look-ahead time. There is indeed a slight increase

of the prediction error as the lead time gets further for the first 2 critical points, while

this increase is more pronounced for the third one. In addition, the average level of pre-

diction error is significantly higher for this last critical point, as it was also the case when

fitting the cFIR models from the cross-validation procedure. The MAE averaged over the

forecast length ranges between 0.291 and 0.597◦C depending on the cFIR models and the

critical point considered. For the first 2 critical points, there is significant difference in

the accuracy of predictions generated with the supple and rigid cFIR models, with a clear

advantage for the latter ones. However for the third critical point their forecast accuracy

are much more similar, with this time an advantage for the supple cFIR models for horizon

further than 5-6 hours ahead.

4.4 Sensitivity to the flux values used as input to the cFIR models

In this Section, a sensitivity analysis on the performance of the proposed forecasting method-

ology is carried out. Especially, focus is given to the sensitivity of this performance depend-

ing on the flux values used as input to the cFIR models. It is then imagined here that in

operational conditions a simple model is used for predicting the flux at the supply point for

the following hours. The accuracy of forecasts obtained with the autoregressive model (18)

is assessed in a first part. Subsequently, instead of using flux measurements or flux sce-

narios as input to cFIR models multi-step ahead prediction, they are fed with the forecasts

obtained by using the autoregressive model. The influence on the performance of the re-

sulting temperature predictions is discussed.

4.4.1 Flux prediction at the supply point

In a first stage, focus is given to the issue of multi-step ahead prediction of the flux at

the supply point. For that purpose, model (18) is fitted by using a RLS estimation method

with exponential forgetting. The forecast length is set to 12 hours, and the order of the

AR model is chosen to be 24 hours. One-fold cross validation is performed for selecting an

optimal forgetting factor, the optimality criterion being defined as the Root Mean Square

Error (RMSE) averaged over the forecast length. The first 1000 points are used as a learn-

ing period, and the following 3000 (approximately 4 months) serve for the cross-validation

procedure mentioned above. To give the reader an idea on the variations of the flux at the

supply point, the minimum and maximum values over the dataset are of 300m3.h−1 and

1528m3.h−1, respectively. The trend is to witness a yearly cycle with lower flux values in

summer (owing to a lower demand) and higher flux values in winter. It would have then

seemed more appropriate to use a whole year for cross-validation instead of the considered

4 months. However, as mentioned in Section 2.2, our aim is not here to have the best possi-

ble performance on flux prediction, but more to have realistic predictions, the performance
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FIGURE 4: Out-of-sample evaluation of the forecast performance of both the rigid and supple cFIR

models for the three critical points. Flux measurements are used as input to the cFIR models. The

forecast performance is evaluated with MAE and RMSE error measures as a function of the look-

ahead time up to 12-hour ahead.
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of which will give a lower bound on the quality of flux predictions that would be used in

future applications. Finally, the remaining data points (approximately 55400) are used for

the out-of-sample evaluation of the proposed flux prediction method. Out of this evaluation

set, 84.22% of valid data can be used for forecast evaluation. Error measures such as bias,

MAE, RMSE (in m3.h−1), and MAPE (in %) are considered. The results are gathered in

Table 2.

TABLE 2: Some prediction accuracy measures related to flux forecasting in the Roskilde district

heating system. These measures are the bias, Mean Absolute Error (MAE), Root Mean Square Error

(RMSE), Mean Absolute Percentage Error (MAPE). The first three error measures are expressed in

m3.h−1 while the latter one is in percentage of predicted output.

horizon [h] bias [m3.h−1] MAE [m3.h−1] RMSE [m3.h−1] MAPE [%]

1 0.011 17.790 25.233 2.31

2 0.006 29.996 42.036 3.82

3 0.036 37.683 52.326 4.80

4 0.031 42.196 58.302 5.38

5 -0.015 44.913 62.061 5.73

6 -0.052 46.554 64.442 5.94

7 -0.108 47.586 65.991 6.07

8 -0.158 48.219 66.955 6.14

9 -0.187 48.644 67.628 6.20

10 -0.210 49.057 68.263 6.25

11 -0.232 49.437 68.845 6.30

12 -0.267 49.864 69.514 6.35

Comparing the magnitude of the bias with that of the RMSE, one appraises that predic-

tions are relatively unbiased whatever the look-ahead time. Owing to the auto-regressive

structure of the model chosen for prediction, predictions for a look-ahead time k are nec-

essarily produced by feeding the model with predictions for horizons up to k − 1. This

makes that even if model fitting is based on minimizing the average quadratic error over

the forecast length for a better generalization ability, prediction errors still sum up as the

look-ahead time increases. This increase is here highly significant for the first forecast

horizons, while the level of prediction error stabilizes for further look-ahead times. The

maximum MAPE, which corresponds to 12-hour ahead forecasts, reaches 6.35%.

4.4.2 Performance of cFIR models fed with flux predictions

Instead of using the cFIR models for simulations purposes, as it has been done in Sec-

tion 4.3, they are used here for genuine prediction purposes. It is not assumed that one

could feed cFIR models with flux measurements for multi-step ahead predictions. The flux

forecasts obtained by the autoregressive model (18), the performance of which have been

discussed in the above Paragraph, are used instead.

The evaluation of the performance of the multi-step ahead predictions resulting from this

approach are gathered in Tables 5, 6, and 7 in the Appendix. In parallel, Figure 5 summa-

rizes the evaluation of the cFIR models with the MAE and RMSE error measures calcu-

lated as a function of the look-ahead time. It can then be directly compared to the results
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of Figure 5 in order to quantify the loss in forecast accuracy owing to the use of flux values

that are not the true values for feeding the cFIR models.

The range of variations of the MAE and RMSE error measures as a function of the look

ahead time appears to be similar to that observed in Figure 5, i.e. in the case for which flux

measurements input cFIR models. The increase in error measures as the lead time gets

further is slightly sharper for the case of critical points 1 and 2, but not for the third one.

The MAE averaged over the forecast length goes here from 0.318 and 0.590◦C depending

on the cFIR models and the critical point considered. Because of the smooth nonlinear

variations of the transfer function of the network (if seen as a function of the flux at the

supply point), the errors in flux predictions are actually dampened when passed through

the cFIR models. Obviously, using more advanced methods for flux prediction (such as that

described in Section 2.2.3) should permit to have more accurate temperature forecasts, but

the impact on the gain in accuracy would be limited.

Note that while the loss in prediction accuracy is much more significant for the rigid than

for the supple cFIR models. The supple cFIR models still appear to be globally superior,

though the difference in prediction accuracy between the two types of cFIR models is now

very low.

4.5 Comparison with the state-of-the-art approach

In a last part of this study, focus is given to comparing the introduced forecasting method-

ology to the state-of-the-art statistical approach. This one is based on the lagged transfer

function of model (1). As explained in Section 2.1, the lag τ in this model is chosen as

that which maximizes the correlation between the time series {yt} and {ut−τ}. A single

time-delay is considered over the whole dataset. The chosen lag for each of the critical

points, as well as the corresponding correlation values are gathered in Table 3. Significant

differences in correlation values for the 3 critical points can be noticed. The fact that the

correlation is higher and the lag shorter for critical point 2 indicates that this critical point

has a larger share of the heat consumption. Note that observing a higher correlation does

not mean that one should expect a higher forecast accuracy of the lagged transfer function

approach. This will indeed be shown in the following.

TABLE 3: Characteristics of the lagged autoregressive models used for temperature predictions.

The lag of each model is that which maximizes the correlation between the lagged values of the

water temperature at the supply point and the temperature measurement at each critical point. The

forgetting factor is obtained from a one-fold cross-validation procedure.

critical point lag [h] correlation λ

1 2 0.421 0.988

2 1 0.814 0.994

3 2 0.742 0.98

The model coefficients are adaptively estimated with a RLS method with exponential

forgetting. The optimal value of the forgetting factor is obtained from a one-fold cross-

validation procedure, similar to that employed for optimal tuning of the cFIR models or

of the autoregressive model used for flux predictions. In order to have a fair comparison

between cFIR models and the lagged transfer function models, we also use here the sec-
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FIGURE 5: Out-of-sample evaluation of the forecast performance of both the rigid and supple cFIR

models for the three critical points. Flux predictions are used as input to the cFIR models. The

forecast performance is evaluated with MAE and RMSE error measures as a function of the look-

ahead time up to 12-hour ahead.
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ond year of the data as a validation set, and the remaining of the dataset for out-of-sample

evaluation of the forecast performance. The autoregressive and cFIR-based approaches are

evaluated on the same period and same data. The optimal forgetting factors are also given

in Table 3. The level of forgetting is again more pronounced for critical point 3.

The full evaluation of the accuracy of the multi-step ahead predictions for the 3 critical

points, resulting from the use of the lagged transfer function model of the state of the art,

is summarized in Tables 11, 12, and 13 in the Appendix. In addition, Figure 6 depicts the

evolution of the MAE and RMSE error measures as a function of the look-ahead time for

this set of test cases.

Tables 11, 12, and 13 show that the bias increases with the look-ahead time. It reaches (for

12-hour ahead prediction) levels that are much higher than that of forecasts generated with

the cFIR models. Also, the MAE and RMSE error measures increase almost linearly with

the forecast horizon (cf. Figure 6), thereby illustrating the comment in Section 2.1 such

that forecast errors would sum up as the lead time gets further, owing to the autoregressive

component of model (1), thus dramatically affecting forecast accuracy.

The prediction performance is higher for critical points 1 and 3, while for the case of cFIR

models it was actually higher for critical points 1 and 2. There is not obviously critical

points where it is easier or more difficult to predict. It may depend on the forecasting ap-

proach considered. The MAE for critical points 1 and 3 ranges between 0.3 and 0.7◦C while

it goes from 0.4 to 0.9◦C for the case of critical point 2. If one compares with the evaluation

results shown in Figures 4 or 5 for cFIR models, one sees that there is a dramatic differ-

ence between the levels of prediction accuracy for the two approaches. For appraising the

reduction in prediction error when going from the state-of-the-art approach to that based

on cFIR models, the improvement with respect to the RMSE criterion is calculated for each

critical point and for each cFIR type. This improvement is given by the decrease in RMSE

divided by the RMSE for the lagged transfer function models. The improvement values are

gathered in Table 4 as a function of the look-ahead time.

These improvement values increase as the lead time gets further. For 1-hour ahead fore-

casts, some of them are negative indicating that for such short horizon the use of the

state-of-the-art approach may be beneficial. However, improvement values reach a very

high level rapidly, with a descrease in RMSE up to 53% for 12-hour ahead predictions for

critical point 2. The improvement is slightly less for the two other critical points, but the

forecasting method based on cFIR models clearly outperforms the state-of-the art approach

based on the lagged transfer function model.

5 Concluding remarks

Models for the prediction of the temperature at critical points of district heating systems

are paramount for the heat suppliers to make optimal decisions on the water temperature

at the supply point. This is because the decision-making methodologies are based on model

predictive control. It is thus expected that improvements in the accuracy of temperature

forecasts at critical points will significantly improve the control decisions on supply temper-

ature, and thus lower the operational production costs of heat suppliers. The forecasting

methodology introduced in the present paper contributes to reaching a higher accuracy

of such temperature forecasts. An evaluation of the performance of this methodology has
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FIGURE 6: Out-of-sample evaluation of the forecast performance of the lagged transfer function

model of the state of the art. The forecast performance is evaluated with MAE and RMSE error

measures as a function of the look-ahead time up to 12-hour ahead.
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TABLE 4: Improvements with respect to the RMSE criterion achieved by the genuine predictions

from cFIR models in comparison with forecasts obtained from the state-of-the-art approach. Im-

provements are given for each critical point, both types of cFIR model, and are expressed in %.

(a) rigid cFIR model

horizon [h] critical point 1 critical point 2 critical point 3

1 -5.5146 26.9938 5.0830

2 10.5332 36.7955 14.1353

3 17.9085 39.8307 16.1290

4 21.5780 40.3498 17.1729

5 25.3272 41.0283 18.5601

6 28.8176 42.7063 20.5886

7 31.8774 44.6379 22.9004

8 34.8676 46.5684 25.2898

9 37.7255 48.5652 27.6495

10 40.6136 50.2731 29.7891

11 43.1811 51.7465 31.4742

12 45.5966 53.0583 32.8710

(b) supple cFIR model

horizon [h] critical point 1 critical point 2 critical point 3

1 -12.6672 20.6373 -8.9477

2 3.6866 30.6035 5.2472

3 13.2943 34.7397 11.4181

4 18.3019 35.9590 14.9800

5 23.0563 37.2037 18.1995

6 27.1536 39.3316 21.3865

7 30.5186 41.6330 24.4759

8 33.6480 43.8192 27.3243

9 36.5062 45.8661 29.8913

10 39.2566 47.4513 32.0293

11 41.7219 48.7801 33.5817

12 44.0663 50.1574 34.7064

been carried out by considering the case of the Roskilde district heating system over a

period covering several years.

It has been explained that in contrast to the state-of-the-art statistical and physical ap-

proaches, the proposed model can account for varying time delays in the distribution net-

work. Indeed, the described cFIR model belongs to the family of FIR models, but for which

the model coefficients are replaced by smooth coefficient functions. The choice of the flux

at the supply point as a variable that conditions the transfer function of the network is

obvious. In contrast, the way to account for the social behavior of the consumers is not

straightforward. This is why it has been chosen to evaluate if this should be accounted for

within the cFIR model, i.e. by considering the time of the day as a second variable condi-

tioning the cFIR model, or outside of the cFIR model just by allowing the offset term to

have diurnal variations. The former alternative is computationally less expensive (owing
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to the lower number of coefficients to be estimated) and actually had a significantly higher

forecast accuracy for 2 out of the 3 critical points considered. Whatever the chosen ap-

proach, the prediction accuracy of our methodology is dramatically higher than that of the

state of the art in statistical approaches to the present problem.

The proposed class of models may be used for simulation or prediction for other types of

problems that involve nonlinearly varying time-delays in a transfer function. This could

be the case in e.g. signal processing, network modeling, or flood modeling. In addition, the

described method for the estimation of the coefficient functions in cFIR models can be im-

proved in the future, both for offline and online applications. Mainly, the issue of optimally

tuning the regularization parameter at each fitting point should be further investigated.

This may involve the use of numerical methods, but one may also envisage to search for

some analytical solutions similar to that existing for the choice of optimal regularization

parameters for least squares estimators in linear models.

In parallel, it would be interesting to study the alternative possibility of considering cFIR

models with the load (instead of the flux) variable as that which conditions the transfer

function of the district heating system. The main interest of such an approach would then

be that forecasts of the temperature at critical points could not be affected by the interde-

pendence of the flux and temperature variables at the supply point. Broader perspectives

to this work finally include the use of the described forecasting methodology within the

model predictive control based methods employed today for decision-making in district

heating systems. This will allow us to quantify the operational benefits of a higher accu-

racy of temperature forecasts.
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Sjöberg, J., Ljung, L. (1995). Overtraining, regularization and searching for a minimum, with ap-
plication to neural networks. International Journal of Control 62:1391-1407.

Stone, M. (1974). Cross-validation and assessment of statistical predictions (with discussion). Jour-

nal of the Royal Statistical Society B 36:111-147.

Søgaard, H.T. (1993). Stochastic systems with embedded parameter variations - Applications to
district heating. Ph.D. dissertation, Technical University of Denmark, Institute of Mathematical
Statistics and Operations Research.

Tikhonov, A.N., Arsenin, V.Y. (1977). Solutions of Ill-posed Problems. Wiscon: Washington, DC.

Wang S.-G., Chow S.-C. (1989). A note on adaptive generalized ridge regression estimator. Statistics

& Probability Letters 10:17-21.

28



A Detailed results related to multi-step ahead predictions

with cFIR models and flux measurements as input

A.1 Critical point 1

TABLE 5: Some prediction accuracy measures related to temperature forecasting at critical point 1,

when the cFIR models are fed with flux measurements. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 3.345 0.2555 0.3865 0.3535

2 4.126 0.2722 0.4147 0.3765

3 4.345 0.2832 0.4311 0.3918

4 4.158 0.2896 0.4410 0.4007

5 3.782 0.2940 0.4475 0.4068

6 3.126 0.2968 0.4512 0.4107

7 2.313 0.2987 0.4541 0.4133

8 1.469 0.3001 0.4559 0.4153

9 0.813 0.3009 0.4568 0.4163

10 0.313 0.3013 0.4574 0.4169

11 0.188 0.3015 0.4580 0.4171

12 0.094 0.3012 0.4576 0.4167

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 11.53 0.2773 0.4189 0.3842

2 17.82 0.3023 0.4541 0.4186

3 17.82 0.3081 0.4622 0.4265

4 17.13 0.3108 0.4661 0.4302

5 16.25 0.3127 0.4688 0.4327

6 15.10 0.3140 0.4702 0.4346

7 13.91 0.3152 0.4719 0.4362

8 12.78 0.3160 0.4732 0.4374

9 11.94 0.3167 0.4741 0.4383

10 11.28 0.3173 0.4750 0.4392

11 11.00 0.3178 0.4759 0.4399

12 10.88 0.3183 0.4765 0.4405
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A.2 Critical point 2

TABLE 6: Some prediction accuracy measures related to temperature forecasting at critical point 1,

when the cFIR models are fed with flux measurements. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -2.31 0.3003 0.4330 0.4251

2 -2.74 0.3120 0.4535 0.4421

3 -3.37 0.3203 0.4659 0.4538

4 -4.14 0.3236 0.4719 0.4585

5 -5.00 0.3261 0.4763 0.4621

6 -5.74 0.3276 0.4796 0.4643

7 -6.43 0.3286 0.4819 0.4658

8 -7.03 0.3295 0.4836 0.4671

9 -7.60 0.3300 0.4846 0.4677

10 -8.03 0.3304 0.4851 0.4683

11 -8.26 0.3305 0.4852 0.4684

12 -8.26 0.3303 0.4851 0.4681

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 15.86 0.3224 0.4707 0.4573

2 21.18 0.3431 0.5034 0.4866

3 20.75 0.3485 0.5114 0.4942

4 19.46 0.3510 0.5157 0.4979

5 18.01 0.3527 0.5185 0.5003

6 16.66 0.3540 0.5203 0.5021

7 15.52 0.3549 0.5215 0.5033

8 14.46 0.3554 0.5221 0.5040

9 13.86 0.3555 0.5225 0.5042

10 13.29 0.3557 0.5229 0.5045

11 13.06 0.3561 0.5235 0.5050

12 13.15 0.3566 0.5242 0.5056

30



A.3 Critical point 3

TABLE 7: Some prediction accuracy measures related to temperature forecasting at critical point 1,

when the cFIR models are fed with flux measurements. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -7.72 0.3209 0.4519 0.4414

2 -7.02 0.3526 0.4994 0.4862

3 -5.46 0.3825 0.5417 0.5276

4 -3.97 0.4017 0.5714 0.5547

5 -2.93 0.4170 0.5945 0.5761

6 -2.44 0.4269 0.6105 0.5899

7 -2.38 0.4335 0.6221 0.5991

8 -2.72 0.4379 0.6300 0.6052

9 -3.21 0.4409 0.6353 0.6094

10 -3.66 0.4425 0.6379 0.6116

11 -3.91 0.4427 0.6383 0.6120

12 -3.99 0.4418 0.6368 0.6107

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -28.03 0.3653 0.5187 0.5037

2 -17.95 0.3891 0.5536 0.5368

3 -16.88 0.4041 0.5745 0.5576

4 -15.42 0.4137 0.5885 0.5709

5 -13.71 0.4209 0.5991 0.5809

6 -11.94 0.4259 0.6069 0.5879

7 -10.32 0.4295 0.6128 0.5928

8 -9.13 0.4322 0.6172 0.5965

9 -8.40 0.4341 0.6206 0.5992

10 -8.18 0.4353 0.6230 0.6008

11 -8.21 0.4362 0.6247 0.6021

12 -8.18 0.4368 0.6257 0.6030
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B Detailed results related to multi-step ahead predictions

with cFIR models and flux predictions as input

B.1 Critical point 1

TABLE 8: Some prediction accuracy measures related to temperature forecasting at critical point

1, when the cFIR models are fed with flux predictions. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 3.345 0.2555 0.3865 0.3535

2 2.813 0.2694 0.4077 0.3724

3 2.720 0.2893 0.4341 0.3998

4 3.564 0.3071 0.4572 0.4243

5 4.220 0.3197 0.4735 0.4415

6 4.251 0.3280 0.4834 0.4529

7 3.908 0.3337 0.4913 0.4607

8 3.470 0.3376 0.4967 0.4662

9 3.220 0.3401 0.5005 0.4696

10 3.407 0.3420 0.5033 0.4722

11 4.220 0.3436 0.5062 0.4743

12 4.595 0.3448 0.5084 0.4759

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 11.38 0.2728 0.4127 0.3778

2 15.52 0.2931 0.4389 0.4055

3 15.36 0.3084 0.4585 0.4265

4 15.07 0.3222 0.4763 0.4453

5 14.60 0.3314 0.4879 0.4579

6 14.00 0.3375 0.4947 0.4663

7 13.21 0.3421 0.5011 0.4726

8 12.39 0.3454 0.5060 0.4771

9 11.76 0.3479 0.5103 0.4806

10 11.72 0.3499 0.5148 0.4834

11 12.13 0.3519 0.5192 0.4861

12 12.32 0.3537 0.5227 0.4887
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B.2 Critical point 2

TABLE 9: Some prediction accuracy measures related to temperature forecasting at critical point

1, when the cFIR models are fed with flux predictions. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -2.31 0.3003 0.4330 0.4251

2 -7.72 0.3057 0.4430 0.4322

3 -10.32 0.3229 0.4692 0.4564

4 -11.20 0.3395 0.4945 0.4797

5 -10.43 0.3518 0.5150 0.4971

6 -9.83 0.3588 0.5263 0.5070

7 -9.86 0.3635 0.5343 0.5137

8 -10.15 0.3671 0.5403 0.5187

9 -10.46 0.3684 0.5431 0.5206

10 -10.32 0.3702 0.5463 0.5231

11 -9.97 0.3719 0.5498 0.5255

12 -10.12 0.3732 0.5518 0.5273

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 15.86 0.3224 0.4707 0.4573

2 18.38 0.3331 0.4864 0.4720

3 15.39 0.3491 0.5089 0.4946

4 13.20 0.3640 0.5309 0.5154

5 12.80 0.3744 0.5484 0.5300

6 12.52 0.3805 0.5573 0.5387

7 11.66 0.3842 0.5633 0.5440

8 10.80 0.3870 0.5681 0.5478

9 10.32 0.3883 0.5716 0.5497

10 10.49 0.3901 0.5773 0.5523

11 10.63 0.3925 0.5836 0.5557

12 10.35 0.3942 0.5859 0.5581
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B.3 Critical point 3

TABLE 10: Some prediction accuracy measures related to temperature forecasting at critical point

1, when the cFIR models are fed with flux predictions. These measures are the bias, Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The

first three error measures are expressed in ◦C while the latter one is in percentage of predicted output.

(a) rigid cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -7.72 0.3209 0.4519 0.4414

2 -7.42 0.3406 0.4811 0.4688

3 -7.54 0.3712 0.5252 0.5111

4 -5.46 0.3928 0.5590 0.5412

5 -3.02 0.4112 0.5871 0.5666

6 -0.67 0.4229 0.6071 0.5828

7 0.24 0.4312 0.6215 0.5944

8 0.89 0.4369 0.6316 0.6022

9 0.82 0.4405 0.6390 0.6073

10 0.64 0.4425 0.6425 0.6099

11 0.46 0.4431 0.6438 0.6109

12 0.09 0.4431 0.6437 0.6108

(b) supple cFIR model

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 -28.03 0.3653 0.5187 0.5037

2 -24.64 0.3732 0.5309 0.5140

3 -25.40 0.3903 0.5547 0.5375

4 -23.29 0.4030 0.5738 0.5550

5 -20.42 0.4132 0.5897 0.5690

6 -17.28 0.4200 0.6010 0.5783

7 -15.30 0.4249 0.6088 0.5850

8 -13.56 0.4285 0.6144 0.5899

9 -12.58 0.4311 0.6192 0.5935

10 -12.15 0.4324 0.6220 0.5954

11 -11.94 0.4336 0.6240 0.5970

12 -11.78 0.4349 0.6261 0.5988
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C Detailed results related to multi-step ahead predictions

with the lagged transfer function approach of the state of

the art

C.1 Critical point 1

TABLE 11: Some prediction accuracy measures related to temperature forecasting at critical point

1, with the lagged transfer function approach of the state of the art. These measures are the bias,

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error

(MAPE). The first three error measures are expressed in ◦C while the latter one is in percentage of

predicted output.

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 9.95 0.2509 0.3663 0.3437

2 16.59 0.3160 0.4557 0.4329

3 21.74 0.3760 0.5288 0.5147

4 26.01 0.4175 0.5830 0.5712

5 29.89 0.4562 0.6341 0.6236

6 33.78 0.4917 0.6791 0.6717

7 38.65 0.5253 0.7212 0.7173

8 44.30 0.5597 0.7626 0.7639

9 50.12 0.5939 0.8037 0.8102

10 57.07 0.6297 0.8475 0.8584

11 65.10 0.6653 0.8909 0.9065

12 73.38 0.6991 0.9345 0.9519
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C.2 Critical point 2

TABLE 12: Some prediction accuracy measures related to temperature forecasting at critical point

1, with the lagged transfer function approach of the state of the art. These measures are the bias,

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error

(MAPE). The first three error measures are expressed in ◦C while the latter one is in percentage of

predicted output.

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 17.69 0.4272 0.5931 0.5973

2 30.35 0.5210 0.7009 0.7298

3 40.07 0.5897 0.7798 0.8249

4 48.36 0.6337 0.8290 0.8854

5 55.16 0.6712 0.8733 0.9375

6 61.79 0.7095 0.9186 0.9912

7 68.96 0.7498 0.9651 1.0477

8 76.88 0.7902 1.0112 1.1046

9 85.94 0.8295 1.0559 1.1600

10 95.77 0.8677 1.0986 1.2135

11 105.09 0.9028 1.1394 1.2628

12 113.81 0.9325 1.1755 1.3042

C.3 Critical point 3

TABLE 13: Some prediction accuracy measures related to temperature forecasting at critical point

1, with the lagged transfer function approach of the state of the art. These measures are the bias,

Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error

(MAPE). The first three error measures are expressed in ◦C while the latter one is in percentage of

predicted output.

horizon [h] bias [10−3.◦C] MAE [◦C] RMSE [◦C] MAPE [%]

1 7.45 0.3355 0.4761 0.4586

2 10.23 0.3943 0.5603 0.5408

3 12.30 0.4408 0.6262 0.6046

4 13.43 0.4736 0.6749 0.6500

5 14.72 0.5042 0.7209 0.6922

6 16.21 0.5323 0.7645 0.7309

7 17.92 0.5602 0.8061 0.7694

8 20.52 0.5865 0.8454 0.8057

9 23.66 0.6118 0.8832 0.8407

10 25.77 0.6335 0.9151 0.8708

11 27.60 0.6500 0.9395 0.8936

12 29.07 0.6638 0.9589 0.9130
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