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Abstract—Multi-look, polarimetric synthetic aperture radar
(SAR) data are often worked with in the so-called covariance
matrix representation. For each pixel this representation gives a
3×3 Hermitian, positive definite matrix which follows a complex
Wishart distribution. Based on this distribution a test statistic for
equality of two such matrices and an associated asymptotic prob-
ability for obtaining a smaller value of the test statistic are given
and applied to change detection, edge detection and segmentation
in polarimetric SAR data. In a case study EMISAR L-band data
from 17 April 1998 and 20 May 1998 covering agricultural fields
near Foulum, Denmark, are used. Soon the Japanese ALOS,
the German TerraSAR-X and the Canadian RADARSAT-2 will
acquire space-borne, polarimetric data making analysis based on
these methods important.

I. INTRODUCTION

Due to its all-weather mapping capability and indepen-
dence of, for instance, cloud cover, synthetic aperture radar
(SAR) data hold a strong potential for e.g. change detection
studies, edge detection and segmentation in remote sensing
applications. It is well-known that different targets in different
locations in a SAR image exhibit different backscatter charac-
teristics. It is also well-known that the development of different
targets (e.g. crops) over time causes changes in the backscatter.
In the crop case the radar backscattering is sensitive to the
dielectric properties of the vegetation and the soil, to the plant
structure (i.e., the size, shape, and orientation distributions of
the scatterers), to the surface roughness, and to the canopy
structure (e.g. row direction and spacing, and cover fraction)
[1], [2].

Based on the complex Wishart distribution of the so-called
covariance matrix representation of multi-look polarimetric
SAR image data this paper describes methods to perform
change detection, edge detection and segmentation in polari-
metric SAR data of agricultural fields.

The polarimetric SAR measures the amplitude and phase
of backscattered signals in four combinations of the linear
receive and transmit polarizations: HH, HV, VH, and VV (H
for horizontal and V for vertical polarization, respectively).
These signals form the complex scattering matrix which
relates the scattered to the incident electric fields [3]. The
inherent speckle in the SAR data can be reduced by spatial
averaging at the expense of loss of spatial resolution. In this

so-called multi-look case a more appropriate representation
of the backscattered signal is the covariance matrix in which
the average properties of a group of resolution cells can be
expressed in a single matrix. The average covariance matrix
is defined as [3]

〈C〉 =

⎡
⎣ 〈ShhS∗

hh〉 〈ShhS∗
hv〉 〈ShhS∗

vv〉
〈ShvS∗

hh〉 〈ShvS
∗
hv〉 〈ShvS∗

vv〉
〈SvvS∗

hh〉 〈SvvS∗
hv〉 〈SvvS∗

vv〉

⎤
⎦ (1)

where 〈·〉 denotes ensemble averaging, ∗ denotes complex
conjugation, and Srt is the complex scattering amplitude for
receive polarization r and transmit polarization t (r and t are
either h for horizontal or v for vertical). Reciprocity, which
normally applies to natural targets, gives Shv = Svh (in the
backscattering direction using the backscattering alignment
convention [3]) and results in the covariance matrix (1) with
rank 3. 〈C〉 follows a complex Wishart distribution.

In this paper a test statistic for equality of two complex
covariance matrices and an associated asymptotic probability
measure for obtaining a smaller value of the test statistic are
given and applied to change detection, edge detection and
segmentation in fully polarimetric SAR data. In [4] a change
detection scheme based on canonical correlations analysis is
applied to scalar EMISAR data, see also [5]–[7].

As opposed to existing methods that work on each polar-
ization (HH, VV, HV) individually followed by some heuristic
fusion step, this test statistic allows for the full polarimetric
information simultaneously.

If used with HH, VV or HV data only our test statistic
reduces to the well-known test statistic for equality of the scale
parameters in two gamma distributions.

For a more thorough description of the method, see [8];
see also [9], [10]. For the edge detection application, see
[11]–[13]. For the segmentation application, see [13]–[15].
See also [16]. Other applications of the complex Wishart
distribution to SAR data not described here include (multi-
temporal) classification [17] and speckle reduction [18].

II. THEORY

This section very briefly describes the complex normal and
Wishart distributions, and the likelihood ratio test for equal-
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ity of two complex Wishart matrices. For a more thorough
description, see [8] and references therein.

A. The Complex Normal Distribution

We say that a p-dimensional random complex vector Z fol-
lows a complex multivariate normal distribution with mean 0
and dispersion matrix Σ, i.e., Z = [Z1 · · · Zp]T ∈ NC(0,Σ)
if the frequency function is

f(z) =
1

πp|Σ| exp{−z∗T Σ−1z}

=
1

πp|Σ| exp{−tr[Σ−1zz∗T ]} (2)

where | · | denotes the determinant, tr denotes the trace of a
matrix, and ∗T denotes complex conjugation (∗) and transpose
(T ). The complex vector [Shv Shh Svv]T whose elements
appear in Equation 1 follows this distribution.

B. The Complex Wishart Distribution

We say that a Hermitian, positive definite random p × p
matrix W follows a complex Wishart distribution, i.e., W ∈
WC(p, n,Σ) if the frequency function is

f(w) =
1

Γp(n)
1

|Σ|n |w|n−p exp{−tr[Σ−1w]} (3)

where

Γp(n) = πp(p−1)/2

p∏
j=1

Γ(n − j + 1). (4)

The frequency function is defined for w positive definite.
If Zi ∈ NC(0,Σ), i = 1, . . . , n are independent (n > p),

then W =
∑n

i=1 ZiZ
∗T
i ∈ WC(p, n,Σ). The complex matrix

〈C〉 in Equation 1 follows this distribution.
If X and Y are independent and both follow com-

plex Wishart distributions, X ∈ WC(p, n,Σ) and Y ∈
WC(p, m,Σ), then their sum also follows a complex Wishart
distribution, S = X + Y ∈ WC(p, n + m,Σ).

C. Test for Equality of Two Complex Wishart Matrices

Let the independent p × p Hermitian, positive definite
matrices X and Y be complex Wishart distributed, i.e., X ∈
WC(p, n,Σx) with Σ̂x = 1

nX and Y ∈ WC(p, m,Σy) with
Σ̂y = 1

mY . We consider the null hypothesis H0 : Σx = Σy

which states that the two matrices are equal against the
alternative hypothesis H1 : Σx �= Σy .

If H0 is true (in statistical parlance: “under H0”) S = X +
Y ∈ WC(p, n + m,Σ) with Σ̂ = 1

n+mS = 1
n+m (X + Y ).

The likelihood ratio test statistic becomes

Q =
L(Σ̂)

Lx(Σ̂x)Ly(Σ̂y)
. (5)

Here

Lx(Σ̂x) =
1

Γp(n)
| 1
n

X |−n|X|n−p exp{−ntrI} (6)

(and similarly for Ly(Σ̂y)) where I is the identity matrix
(trI = p). For the numerator of Q we get

L(Σ̂) =
1

Γp(n)Γp(m)
| 1
n + m

(X + Y )|−(n+m) ×
|X|n−p|Y |m−p exp{−(n + m)trI}. (7)

This leads to the desired likelihood ratio test statistic

Q =
(n + m)p(n+m)

npnmpm

|X|n|Y |m
|X + Y |n+m

. (8)

If n = m we get

ln Q = n(2p ln 2 + ln |X| + ln |Y | − 2 ln |X + Y |). (9)

An asymptotic expression for the probability of finding a
smaller value of −2ρ lnQ is

P{−2ρ lnQ ≤ z} � P{χ2(p2) ≤ z}+
ω2[P{χ2(p2 + 4) ≤ z} − P{χ2(p2) ≤ z}] (10)

with

ρ = 1 − 2p2 − 1
6p

(
1
n

+
1
m

− 1
n + m

) (11)

and

ω2 = −p2

4
(1 − 1

ρ
)2+

p2(p2 − 1)
24ρ2

(
1
n2

+
1

m2
− 1

(n + m)2
) (12)

For covariance matrix data p = 3. For HH, HV or VV data
p = 1. In the latter case X and Y are therefore scalars X
and Y , and Q reduces to

Q =
(n + m)n+m

nnmm

XnY m

(X + Y )n+m
(13)

which is equivalent to the well-known likelihood ratio test
statistic for the equality of two gamma parameters [19], [20].

The elements in the covariance matrix containing co- and
cross-polarized components often contain little information,
and for randomly distributed targets with azimuthal symmetry,
these elements are zero. It is important to notice, however,
that if the sample covariance matrix is forced into azimuthal
symmetry, the sample covariance matrix no longer follows the
complex Wishart distribution [8].

D. Azimuthal Symmetry

By setting the elements in the covariance matrix 〈C〉 in
Equation 1 containing co- and cross-polarized components to
zero, and swapping first rows and then columns two and three,
we obtain in the azimuthal symmetry case⎡

⎣ 〈ShhS∗
hh〉 〈ShhS∗

vv〉 0
〈SvvS∗

hh〉 〈SvvS∗
vv〉 0

0 0 〈ShvS∗
hv〉

⎤
⎦ =

[
X1 0
0 X2

]
= X, (14)



Fig. 1. L-band EMISAR data from 17 April 1998

where X1 is p1 × p1 (here 2 × 2) and X2 = 〈ShvS
∗
hv〉 is

p2×p2 (here 1×1). This matrix is not Wishart distributed. We
now consider X1 ∈ WC(p1, n,Σx1), X2 ∈ WC(p2, n,Σx2),
Y 1 ∈ WC(p1, m,Σy1), Y 2 ∈ WC(p2, m,Σy2), and we
assume that X1, X2, Y 1 and Y 2 are mutually independent.

We want to test the hypothesis H0 : Σx1 = Σy1(= Σ1)
and Σx2 = Σy2(= Σ2) against all alternatives. We have the
likelihood function

L(Σx1,Σx2,Σy1,Σy2) =

L(1)(Σx1)L(2)(Σx2)L(3)(Σy1)L(4)(Σy2). (15)

The likelihood ratio test statistic becomes

Q =
(n + m)p(n+m)

npnmpm

|X1|n|Y 1|m|X2|n|Y 2|m
|X1 + Y 1|n+m|X2 + Y 2|n+m

=
(n + m)p(n+m)

npnmpm

|X|n|Y |m
|X + Y |n+m

(16)

where the latter equality is due to the fact that the determinant
of a block diagonal matrix is the product of the determinants
of the diagonal elements, i.e., we get the same test statistic as
in the full covariance matrix case. In this case p2 = p2

1 + p2
2.

If

ρ =
1
p2

(p2
1ρ1 + p2

2ρ2) (17)

ρi = 1 − 2p2
i − 1
6pi

(
1
n

+
1
m

− 1
n + m

) (18)

and

ω2 = −p2

4
(1 − 1

ρ
)2 +

p2
1(p

2
1 − 1) + p2

2(p
2
2 − 1)

24
×

(
1
n2

+
1

m2
− 1

(n + m)2
)

1
ρ2

(19)

then an asymptotic expression for the probability of finding a
smaller value of −2ρ lnQ is

P{−2ρ lnQ ≤ z} � P{χ2(p2) ≤ z}+
ω2[P{χ2(p2 + 4) ≤ z} − P{χ2(p2) ≤ z}]. (20)

Fig. 2. L-band EMISAR data from 20 May 1998

III. CASE STUDY: EMISAR DATA

The EMISAR is the result of a research and development
project initiated in 1986 at the Department of Electromagnetic
Systems (now part of the Danish National Space Center) of
the Technical University of Denmark [21], [22]. The EMISAR
system is fully polarimetric and interferometric and it operates
at two frequencies, L-band (1.25 GHz/25 cm wavelength) and
C-band (5.3 GHz/5.7 cm wavelength). The EMISAR is flown
on a Royal Danish Airforce Gulfstream G-3 aircraft and is
normally operated from an altitude of approximately 12,500
m, the spatial resolution is 2×2 m2 (one-look), the ground
range swath is approximately 12 km, and typical incidence
angles range from 35◦ to 60◦. The processed data from this
system are fully calibrated by means of an advanced internal
calibration system.

To illustrate the change and edge detection, and segmenta-
tion capabilities of the derived test statistic this case study uses
EMISAR data from an agricultural test site at the Research
Center Foulum located in Central Jutland, Denmark. The data
used here are part of the data used in a previously reported
study on polarimetric signatures of crops [2].

Two EMISAR L-band images from 17 April 1998 and 20
May 1998 are shown in Figures 1 and 2 as color composites
of the HV (actually the complex addition of HV and VH;
red), HH (green), and VV (blue) channels. The HH and VV
channels are stretched linearly from –30 dB to 0 dB and the
HV channel is strethed from –36 dB to –6 dB. The single
look scattering matrix data have been converted to covariance
matrix data, and at the same time speckle reduced by a raised
cosine filter to an equivalent number of looks of approximately
11 (= n = m).

The geometrical co-registration is very important in a
change detection application where two images are compared
on a pixel-by-pixel basis. The polarimetric images were regis-
tered to a digital elevation model generated from interferomet-
ric data acquired by EMISAR. The registration was carried out
by combining a model of the imaging geometry with a few
ground control points, and the images were registered to one



Fig. 3. L-band EMISAR data from 20 May 1998, span image

another with an rms-accuracy of better than one pixel [23].
Figure 3 shows the sum of the diagonal elements (actually

HH+2HV+VV) in the covariance matrix data for the data
acquired on 20 May 1998. This is the so-called span image.

Fields A and B are winter wheat and spring barley, re-
spectively. The winter wheat field has a relatively high phase
difference between HH and VV, probably because of double
bounce scattering between the soil surface and the vegetation.
The spring barley field has a low phase difference. Fields C
and D are oats and peas fields, respectively. The oats field has
a high and the peas field has a low phase difference.

A. Change Detection

Figure 4 shows ln Q for the full covariance matrix data
stretched linearly between –50 and 0. Where Q is close to
1 and therefore ln Q close to 0 which are the bright regions,
no or little change occurred between the two points in time.
Where ln Q is small which are the dark regions change did
occur.

The bright, very light green areas in Figures 1 and 2 are
coniferous forests and we observe very small change for
these areas (Figure 4) due to the very stable backscatter from
such forest areas (see e.g. [24]). The agricultural fields show
different degrees of change, dependent on the crop type. To
the extreme left in the image between the lake in the upper
left and the coniferous forest three small fields show change,
no-change and change behavior, respectively. The field with
no change is a beet field, which for both acquisitions is a bare
field. The two other fields are spring barley fields, which are
bare at the first acquisition and have a 12-14 cm vegetation
layer at the second acquisition. The three large fields (marked
B and A in Figure 3 and the field to the left of field A) in the
image are from left to right: grass, winter wheat (A) and spring
barley (B). The grass field is virtually unchanged between
the two acquisitions. The vegetation height for the winter
wheat field (A) has changed from 14 to 42 cm between the
two acquisitions, and we observe a moderate change between
the images. It is obvious from the results presented here and

Fig. 4. L-band EMISAR change, lnQ, full covariance matrix

the more detailed evaluation in [8] that this change detection
method works very well when changes in the polarimetric
parameters are experienced.

B. Edge Detection

The edge detection is performed by visiting each pixel in
the image in succession, and for each pixel applying a set
of filters with different orientations. The filters estimate the
mean covariance matrices on each side of the central pixel,
and the test of equality of these two mean covariance matrices
determines whether an edge is detected by the current filter or
not; see [11], [12] for further details.

Figure 5 shows edges detected using the diagonal elements
in the L-band EMISAR data from 20 May 1998. Figure 6
shows edges detected using the azimuthal symmetric data from
the same date.

The advantage of including the polarimetric information in
the edge detection is clearly seen. Especially, the difference
is seen for the edges between fields A and B, and C and D,
respectively (Figure 3). In these cases, no edge is detected
when only the backscatter coefficients are used in the edge
detection (Figure 5), whereas the edge is detected when the
polarimetric information is included (Figure 6).

C. Segmentation

The MUM (Merge Using Moments) segmentation algorithm
for single-channel SAR images was proposed in [25]. As
a first step the MUM algorithm severely over-segments the
SAR image by dividing it into quadratic segments of size
n × n pixels, where the value of n depends on, e.g., the
desired resolution in the resulting segmentation map and on the
computational load. Below we use n = 2. These initial, small
segments are then merged based in their statistical properties.
The MUM algorithm tries to determine appropriate regions
in the image through an iterative region growing process of
merging and sorting the segments. The sorting is performed
because the order of the merging of the segments affects the
final result. It should be noted that the merging performed in



Fig. 5. L-band EMISAR data from 20 May 1998, edges using diagonal
elements

Fig. 6. L-band EMISAR data from 20 May 1998, edges using azimuthal
symmetry

[25] is based on the Student’s t-test, which is only appropriate
for Gaussian data, hence an improved segmentation result may
be obtained by applying the proper test statistic for Gamma
distributed intensities for single-channel SAR images as shown
in [26]. Here, the test statistic outlined above is used for
segment merging in the multi-look polarimetric data.

Figure 7 shows segmentation using the diagonal elements in
the L-band EMISAR data from 20 May 1998. Figure 8 shows
segmentation using the azimuthal symmetric data from the
same date. The colours chosen for the segments are arbitrary.

The advantage of including the polarimetric information
in the segmentation algorithm is clearly seen. Especially,
the difference is seen for the segments covering fields A
and B, and C and D (Figure 3). For both cases, the two
neighboring fields (i.e. A and B, and C and D, respectively)
are merged when only the backscatter coefficients are used
(Figure 7), whereas they are not merged when the polarimetric
information is included (Figure 8).

IV. CONCLUSIONS AND FUTURE WORK

A test statistic for the equality of two matrices following the
complex Wishart distribution is given with an asymptotic prob-
ability for obtaining a smaller value of the test statistic. These
measures are applied to change detection, edge detection and
segmentation in polarimetric synthetic aperture radar data. The
test statistic and the associated probability measure combines
the full polarimetric signal in a unified way. As opposed to
existing methods that deal with each polarization marginally in
turn followed by some heuristic fusion step, this test statistic
allows for the full polarimetric information simultaneously.

With the Japanese ALOS in space, the German TerraSAR-X
and the Canadian RADARSAT-2 coming up, methods as the
ones described here are expected to become very important
for future work on polarimetric data.

Ongoing work includes an object oriented approach in
which the Wishart based segmentation is followed by the
Wishart based change detection of the segments after allowing
for the increased number of equivalent looks of the segments

Fig. 7. L-band EMISAR data from 20 May 1998, segmentation using
diagonal elements

Fig. 8. L-band EMISAR data from 20 May 1998, segmentation using
azimuthal symmetry



[27]. Also, work on the application to low equivalent number
of looks with a closer investigation of the asymptotic distri-
bution in Equations 10 and 20 is in progress.
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