
Algorithms and Software for
Large-Scale Geophysical

Reconstructions

Christian Eske Bruun & Trine Brandt Nielsen

Kongens Lyngby 2007

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

Summary

The main focus of the thesis is algorithms and software for large-scale geophys-
ical reconstructions. Throughout the project we deal with a special Toeplitz
structure of the coefficient matrix that enables a significant loss-less compres-
sion.

The geophysical surveying problems dealt with in the thesis are by nature
ill-posed. For this reason we use regularization methods to perform the recon-
stuctions. The methods used in the paper are TSVD, Tikhonov, and CGLS. We
will describe the constraints in the surveying problems that need to be met in
order to achieve the Toeplitz structures. Aside from enabling compression the
Toeplitz structures makes it possible to use a FFT matrix-vector multiplication
to achieve fast multiplications in the regularization methods. Multi-level obser-
vation sets are used to meet the constraints and a Fourier based upward con-
tinuation method can be used to achieve the multi-levels, however, for forward
problems we are able to compute levels at different altitudes. The performance
of the upward continuation method is investigated.

The result of this thesis is a Matlab object-oriented package implemented
within the frameworks of MOOReTools and expands the existing GravMagTools
package. The package is tested and reconstructions are performed.

Keywords: Toeplitz structures, Large-scale inversions, Ill-posed problems, Com-
pression, FFT matrix-vector multiplication, Regularization methods, Upward
continuation, Object-oriented implementation, MOOReTools

ii

Sammenfatning

I dette speciale vil det primære fokus være p̊a algoritmer og software til geo-
fysiske stor-skala rekonstruktioner. Vi beskæftiger os med en speciel Toeplitz
struktur i koefficient matricen, der muliggøre en kompression uden tab af data.

De geofysiske problemer i afhandlingen er ill-posed. Derfor bruges regularis-
erings metoder til at rekonstruere problemerne. I denne afhandling benyttes
TSVD, Tikhonov og CGLS. Vi vil beskrive de begrænsninger, vi er underlagt i
måle problemerne for at kunne opn̊a Toeplitz strukturer. Toeplitz strukturerne
gør os ikke alene i stand til at komprimere, men ogs̊a i stand til at imple-
mentere en FFT matrix-vektor multiplication, der skal gøre multiplikationerne
i regulariserings metoderne hurtigere. Observations sæt i flere planer bruges til
at imødeg̊a begrænsningerne, og en Fourier baseret upward continuation kan
bruges i denne forbindelse. For forward problemer kan vi beregne observation-
slag for flere højder. Upward continuation undersøges og testes.

Specialet udmunder i sidste ende i en objekt-orienteret Matlab pakke, der
implementeres indenfor rammerne af MOOReTools og udvider den allerede ek-
sisterende GravMagTools pakke. Slutteligt testes pakken og rekonstruktioner
foretages.

iv

Preface

This master thesis is prepared at the Technical University of Denmark (DTU).
The study was carried out between September 2006 and April 2007 at the in-
stitute of Informatics Mathematical Modelling (IMM) under the supervision of
Per Christian Hansen.

We would like to thank the many people who have influenced this project in dif-
ferent ways. First, we would like to thank our supervisor Per Christian Hansen
for support and guidance. Likewise we would like to thank Valeria Paoletti
from Dipartimento di Scienze della Terra at Università di Napoli Federico II for
providing us with insight into the geophysical aspects of this thesis. At IMM
we would furthermore like to thank all the people in the scientific computing
group. Jesper Pedersen and Toke Koldborg Jensen both former students at
IMM provided us with a good insight into the existing implementation of the
package and for this we are most grateful. We also want to thank Jesper and
Valeria for helping us in the final stages by proofreading the thesis.

Finally we would like to thank our families and friends for support and good
non-scientific company.

Lyngby, April 2007

Christian Eske Bruun & Trine Brandt Nielsen

vi

List of Symbols

Here, we provide some general remarks about the symbols as well as a list of
commonly used notation.

Symbol Description
A Coefficient matrix (discretized problem)
aij Element in the coefficient matrix
Bi BTTB block in T 3 matrix
b Right-hand side (discretized problem)
C Circulant matrix
cij Element in the circulant matrix
d Depth of the unknown mass distribution with density f

d̂ Unit vector from the dipole source towards the observation point
∆x Grid spacing in the x directions
∆y Grid spacing in the y directions
∆z Grid spacing in the z directions
e error/noise
f(r) Solution function = unknown distribution of mass density

(or magnetization)
F Fourier matrix
F The field at the source plane
F̂ Fourier transformed version of F
γ Gravitational constant

viii List of Symbols

g(r′) Right-hand side function = potential field (magnetic or
gravitational) due to source

hx, hy, hz Length of each of the segments in the solution grid
hx′ , hy′ , hz′ Length of each of the segments in the observation grid
H Unknown measured field
Ĥ Fourier transformed version of H
I Identity matrix
î Unit vector with the direction of the core field
ĵ Unit vector of the induced field
K Kernel function
Kk Krylov subspan associated with A and b (CGLS)
k Truncation parameter (TSVD)
Λ Diagonal matrix consisting of eigenvalues of the matrix C
λ Regularization parameter (Tikhonov)
L Discrete approximation of derivative operator
µi Singular value in SVD
µper Magnetic permeability
m Solution vector (discretized problem)
m, n Matrix dimensions: A ∈ Rm×n (one dimensional case)
M , N Matrix dimensions: A ∈ RM×N (two and three dimensional

case)
mx,my,mz Number of grid points in the observations
nx, ny, nz Number of grid points in the solution domain
Ω Solution domain
r′ Multi dimensional coordinate vector (observation)
r Multi dimensional coordinate vector (solution)
r′ Observation coordiante (1-D)
r Solution coordinate (1-D)
σi Singular value in SVE
Σ Diagonal matrix containing singular values σi

Ti Toeplitz block in BTTB matrix
ti Element in a Toeplitz matrix
ui Left singular vector
U [u1, ...,un]
vi Right singular vector
V [v1, ...,vn]
wi, wj , wk Quadrature weights
xi, yj , zk, Quadrature point

ix

x′i′ , y
′
j′ , z

′
k′ Collocation point

Yup Weighting function
.= Convergens in the mean
〈·, ·〉 The usual inner product
‖ · ‖2 2 norm
0 Zero vector

x

Contents

Summary i

Sammenfatning iii

Preface v

List of Symbols vii

1 Introduction 1

2 Toeplitz Matrix Theory 3

2.1 Toeplitz Structures . 3

2.2 Circulant Matrices and FFT Multiplication 7

3 The Surveying Problems 11

3.1 The First-kind Fredholm Integral Equation 11

3.2 The Gravity Surveying problem 13

xii CONTENTS

3.3 The Magnetic Surveying Problem 22

4 Preprocessing of Data 27

4.1 Data . 27

4.2 Studies of Interpolation and Upward Continuation 33

5 Regularization Algorithms 43

5.1 Singular Value Expansion . 44

5.2 Singular Value Decomposition . 45

5.3 Truncated Singular Value Decomposition 48

5.4 Tikhonov Regularization Method 49

5.5 Conjugate Gradients (Least Squares) 51

6 Implementation and Representation 53

6.1 Objects in GravMagTools . 54

6.2 Graphical Overview of Package 61

6.3 Performance . 65

7 Inversion of Data 71

7.1 Test of Setup . 71

7.2 Convergence of Regularization Methods 77

7.3 Investigations of Upward Continuation 79

7.4 Box Solver . 85

7.5 Inversions with Topography . 89

CONTENTS xiii

7.6 Large-scale Problems . 91

8 Conclusion 95

8.1 Future work . 97

A Deducting of Equations in the Magnetic Surveying Problem 99

B Description of Cut Border 103

C RegularizerT3 107

D Routines of the New Implementation of the GravMagTools
package 109

xiv CONTENTS

Chapter 1

Introduction

This thesis describes the algorithms and software for large-scale geophysical re-
constructions with special interest in obtaining and maintaining Toeplitz struc-
ture in the models, in order to enable large-scale solution methods/algorithms.
The essence of an inverse problem is described in [11] by posing a Jeopardy-
like problem. The only problem being that the corresponding question is not
well-defined. Consider for instance

”The answer is 4”

There are infinitely many questions that can be answered using this particular
answer. Why should ”What is 2+2?” be better than ”How many corners of the
world exist?”. In the geophysical case we have the measurements but no knowl-
edge of the data to be reconstructed. For this reason we need a mathematical
model mapping the data to the measurements.

The work of this thesis is a new expanded version of the preexisting package
GravMagTools as described in [5]. The problem with the existing implementa-
tion is that it is not possible to solve large-scale problems due to consumption
of memory. In this thesis we perform a dicretization of a continuous function
thereby obtaining a linear system of equations Am = b. In the left part of
Figure 1.1 we illustrate the matrix A calculated using the preexisting package.
The right part of Figure 1.1 shows that by simple column permutations we can

2 Introduction

achieve a systematic Toeplitz structure. This observation is the basis of the
work of this thesis.

In the first part of the thesis the Toeplitz matrix theory that enables a com-

Figure 1.1: On the left-hand side the original structure in the GravMagTools
package. On right part of the figure the new structure.

pression and the underlying theory of the geophysical problems is presented.
Then an investigation of the surveying problems is conducted. We give a de-
scription of the constraints that need to be met in order to obtain Toeplitz
structure in the surveying problems. This is done for gravity as well as the
magnetic case in order to achieve a basic understanding of the problem.

The preexisting GravMagTools package uses full matrices and a straight for-
ward multiplication. In this project we utilize the Toeplitz structures in the
surveying problems to reduce the number of stored elements. Furthermore we
implement a FFT matrix-vector multiplication method in the hopes that this
implementation will speed up the calculations. In Chapter 4 we discuss the pre-
processing of data which is needed before we can achieve the desired Toeplitz
structures. We then describe the representation of data, the implementation,
and the performance of the new implementation in Chapter 6.

In Chapter 5 we will present the tools that are needed to perform the inver-
sions. These tools will be used when we in the final part of the thesis perform the
actual inversions with and without topography. In this section we will perform
large-scale inversions as well.

The software is enclosed on the CD in the back of this thesis. On the CD we
have included demonstration scripts that illustrate some of the features of the
package. Furtermore we have placed a readme file that explains how to install
and use the package.

Chapter 2

Toeplitz Matrix Theory

This chapter describes the underlying matrix theory we use throughout the
project. Furthermore we will describe how the Toeplitz structure can be used
in order to obtain a fast multiplication.

2.1 Toeplitz Structures

2.1.1 Toeplitz Matrix

A Toeplitz matrix is a matrix where all elements of the negative-sloping diag-
onals are identical. This special structure appears when the elements in the
matrix depend entirely on the difference between the indices. The general form
of an m× n Toeplitz matrix is shown in Figure 2.1 To store an m× n Toeplitz
matrix it is only necessary to store m + n − 1 elements as opposed to m · n
elements if the matrix does not possess any structure. This is easily realized,
because all elements in a Toeplitz matrix appears in the first row and column.
• The full structure requires: m · n.
• The Toeplitz structure requires: m + n− 1.

In the special case where the matrix is symmetric as well as Toeplitz it is only
necessary to store the first row or column.

4 Toeplitz Matrix Theory

tm tm+1 ... tm+n

tm−1 tm tm+1

...
... tm−1 tm

. . .
...

...
. . . tm+1

...
. . . tm

...
...

t1 tm+n−1

.

Figure 2.1: m× n Toeplitz matrix.

TMbttb TMbttb+1 ... TMbttb+Nbttb−1

TMbttb−1 TMbttb TMbttb+1

...
... TMbttb−1 TMbttb

. . .
...

... TMbttb−1

. . . TMbttb+1

...
. . . TMbttb

... TMbttb−1

...
...

T1 TNbttb

.

Figure 2.2: BTTB matrix where Ti are Toeplitz blocks and i = 1, 2, ...,Mbttb +
Nbttb − 1.

The advantages of using the Toeplitz structures in matrices arise when operating
with large matrices, because it is redundant to store all elements. If the Toeplitz
structure appears in a matrix, it can be used as a way of compressing it and no
information is not lost in the process. So we have in fact achieved a loss-less
compression.

2.1.2 BTTB Matrix

BTTB is an abbreviation for Block Toeplitz with Toeplitz Blocks. This type
of matrix consists of identical Toeplitz blocks in the negative-sloping diagonals.
The general form of a BTTB matrix is illustrated in Figure 2.2. Figure 2.3 shows
an illustration of a BTTB matrix with 100× 100 elements. The main-diagonal
negative-slope is highlighted in the BTTB matrix on the left-hand side in order

2.1 Toeplitz Structures 5

to illustrate that all blocks in this slope are identical. The same holds for all
other negative-sloping diagonals of the matrix. On the right side of the figure
one of these block elements is illustrated to show that the structure is in fact a
Toeplitz matrix.

The BTTB matrix consist of a number of m× n Toeplitz matrices, thus for

Figure 2.3: On the left-hand side a matrix with BTTB structure. On the right-
hand side one of the Toeplitz blocks enlarged.

each of these Toeplitz matrices we can achieve a compression factor of m·n
m+n−1 .

But the blocked Toeplitz structure of the BTTB matrix can also be used. All
blocks in the BTTB structure appears in the first blocked-row and the first
blocked-column. For this reason we only need to store MBTTB + NBTTB − 1
Toeplitz blocks as opposed to MBTTB ·NBTTB blocks.

Assume that MBTTB = m and NBTTB = n
• The full storage requires: m2 · n2.
• The BTTB storage requires: (m + n− 1)2.

2.1.3 T 3 Matrix

We now introduce yet another Toeplitz structured matrix class. These matrices
consists of identical BTTB blocks in the negative-sloping diagonals. We have
chosen to denote this class T 3 matrices. The structure of the T 3 matrix is
predictably like the BTTB structure from Section 2.1.2 and illustrated in Figure
2.4. The illustration of a T 3 matrix is pictured in Figure 2.5 with a 300 × 300

6 Toeplitz Matrix Theory

BMt3 BMt3+1 ... BMt3+Nt3−1

BMt3−1 BMt3 BMt3+1

...
... BMt3−1 BMt3

. . .
...

... BMt3−1

. . . BMt3+1

...
. . . BMt3

... BMt3−1

...
...

B1 BNt3

.

Figure 2.4: T 3 matrix where Bi are BTTB blocks and i = 1, 2, ..., Mt3 +Nt3−1.

matrix. The BTTB blocks in the main diagonal are high-lighted and in the
right-hand side of the figure we have enlarged one of the BTTB blocks of the
diagonal. The enlarged BTTB matrix is identical to the matrix on the left
hand-side of Figure 2.3. Because of the Toeplitz structure once again it is not

Figure 2.5: On the left-hand side a matrix with T 3 structure. On the right-hand
side one of the blocks (a BTTB block) enlarged

necessary to store all BTTB blocks. We only need to store Mt3 +Nt3−1 BTTB
blocks as opposed to Mt3 ·Nt3 blocks.

2.2 Circulant Matrices and FFT Multiplication 7

Assume that Mt3 = MBTTB = m and Nt3 = NBTTB = n
• The full storage requires: m3 · n3.
• The BTTB storage requires: (m + n− 1)3.

Using Toeplitz structures the compression is achieved without loss of information
about a single element in the T 3 structure.

2.2 Circulant Matrices and FFT Multiplication

In a circulant matrix the columns are circularly shifted. Let C be a n × n
circulant matrix then it takes the form

C =

c0 cn−1 cn−2 ... c1

c1 c0 cn−1 ... c2

c2 c1 c0 ... c3

...
...

...
...

cn−1 cn−2 cn−3 ... c0

Circulant matrices are in fact a special kind of Toeplitz structure where all
elements are given in the first column. Each of the following columns are then
obtained by shifting the previous column circularly. We consider the matrix-
vector multiplication using FFT (Fast Fourier Transform). According to [7]
this operation can be performed in O(nlog2n) flops (for an n × n matrix) as
opposed to 2n2 flops for a general matrix-vector multiplication. In this section
we will consider the matrix-vector multiplication Ax = y. The matrix-vector
multiplication by FFT is described in [7]. The basic idea is that the m × n
Toeplitz matrix, A, is embedded into a larger p× p circulant matrix C. In the
following we have chosen p = m + n. In Figure 2.6 a p × p circulant matrix is
illustrated, the embedded Toeplitz matrix is seen in the upper left corner. The
elements of the matrix marked with a red circle are the free elements that can
assume any value.

In order to perform the multiplication we construct the first column of C

C(:, 1) = [A(1, 1), A(2, 1), ...,A(n, 1), 0, A(1, 2), ...,A(1,m)]T .

In this context the free element is represented by a single zero.

8 Toeplitz Matrix Theory

Figure 2.6: An example of the m×n = 3×2 Toeplitz matrix (upper left corner)
embedded in the p× p = 5× 5 circulant matrix.

Given the m × n Toeplitz matrix A (also represented in Figure 2.3) we have
C(:, 1)

A =

1 4
2 1
3 2

 → C(:, 1) = (1, 2, 3, 0, 4)T .

In [7] it is shown that C can be factorized as:

C = F−1ΛF . (2.1)

where F is the p × p Fourier matrix (a complex symmetric matrix) and Λ is a
diagonal matrix with the eigenvalues of C.

When calculating the product of C with x̂ =
(
x
0

)
we get

ŷ = Cx̂ =
(
A B
B̂ Â

)
x̂ =

(
Ax
ŷ2

)
=

(
y
ŷ2

)
,

where Â and B̂ are not necessarily identical to A and B, respectively, in fact in
any non-square system they are not identical. y is the real data from the first
n components of ŷ.

2.2 Circulant Matrices and FFT Multiplication 9

When multiplying AT with y (in order to achieve AT y = z)

ẑ = CT ŷ =
(
AT B̂T

BT ÂT

)
ŷ =

(
AT y
ẑ2

)
=

(
z
ẑ2

)
,

where C = F−1ΛF ⇔ CT = FT ΛT F−T

FT is symmetric complex thus FT = F, and hence

CT = FΛF−1 .

We know from [7] that F−1 = 1
p F̄ where F̄ is the notation for the complex

conjugated and p = m + n. Thus

F−1 = 1
p F̄ = 1

p F̄
T

m
F = (1

p F̄
T)−1 = pF̄−T

m
F̄−T = 1

pF .

Hence

CT = C̄T = F̄T Λ̄T F̄−T

= pF−1Λ̄T (
1
p
F)

= pF−1Λ̄(
1
p
F)

= F−1Λ̄F . (2.2)

When comparing the factorization of C (Equation (2.1)) and the factorization of
CT (Equation (2.2)) it becomes clear that the only difference is the conjugation
of Λ.

2.2.1 Pseudocode

In the following we present pseudocode for A∗x and AT ∗y using FFT matrix-
vector multiplication

10 Toeplitz Matrix Theory

Pseudocode for A ∗ x = y using FFT matrix-vector multiplication:

λ = fft(C(:,1));

x̂ = fft
(
x
0

)
;

ŷ = λ. ∗ x̂;
y = ifft(ŷ);
y = real(y(1 : n))

Pseudocode for AT ∗ y = z using FFT matrix-vector multiplication:

λ = fft(C(:,1));

ŷ = fft
(
y
0

)
;

ẑ = conj(λ). ∗ ŷ;
z = ifft(ẑ);
z = real(z(1 : n))

Considering the two pseudocodes it is clear how the only difference (apart from
the naming of the variables) is the conjugation of the eigenvalues.

Chapter 3

The Surveying Problems

In this thesis we consider geophysical problems more precisely the gravity and
magnetic surveying problems. We consider the gravity problem in one, two, and
three dimensions, respectively. For the magnetic surveying problem we will only
consider the three dimensional problem.

This project has special interest in achieving and maintaining the Toeplitz
structures. Hence, we will carefully cover the constraints that need to be met
in order to achieve the structures as covered in Chapter 2. However, we will
first describe the Fredholm integral equation of the first kind which provides a
model for our surveying problems.

3.1 The First-kind Fredholm Integral Equation

The generic model for the geophysical problems is illustrated in Figure 3.1.
The figure shows the relationship between the hidden data that we wish to
reconstruct and the measurements. Knowing the hidden source (hidden data
in Figure 3.1), the measurements can be found using a forward calculation.
However, in geophysical problems the solution is rarely known. The challenge
is then: given the measurements to reconstruct an inverse problem in order to
find the hidden source. We face the inverse problem of computing properties of

12 The Surveying Problems

Figure 3.1: The generic model.

the interior of a domain given measurements taken outside the domain and a
mathematical model for their interrelation. The model provides the relationship
between the measurements and the interior of the domain. This relationship can
be described by a Fredholm integral equation of the first kind.

The Fredholm integral equation of the first kind in one dimension is given as
follows ∫ 1

0

K(r′, r)f(r)dr = g(r′), a ≤ r′ ≤ b , (3.1)

where g(r′) is the observation at point r′ and f(r) describes the physical quantity
we are trying to reconstruct at r. K(r′, r) is called the kernel and it is a function
that depends on the geometric placement of observation point r′ and the source
point r.

In multiple dimensions the Fredholm integral equation of the first kind takes
the form ∫

Ωr

K(r′, r)f(r)dr = g(r′), r′ ∈ Ωr′ . (3.2)

The Fredholm integral equation we deal with has the special property that
the kernel only depends on the difference between r′ and r which implies that
K(r′, r) = k(r′ − r) where k is some function.

The Fredholm integral equation of the first kind can be discretized so it can be
solved numerically. The equation is discretized using the midpoint quadrature
method. Note that f is now substituted with f̃ because f can not be calculated
exactly.

n∑

j=1

wjK(r′i, rj)f̃(rj) = g(r′i) , i = 1, ..., m . (3.3)

where r′1, r′2, ..., r′m are the collocation points and r1, r2, ..., rn are the abscissas
for the midpoint quadrature rule. In matrix notation

3.2 The Gravity Surveying problem 13

K(w1r1, r′1) w2K(r1, r′2) ... wnK(r1, r′n)
K(w1r2, r′1) w2K(r2, r′2) ... wnK(r2, r′n)

...
...

. . .
...

K(w1rm, r′1) w2K(rm, r′2) ... wnK(rm, r′n)

f̃(r1)
f̃(r2)

...
f̃(rn)

 =

g(r′1)
g(r′2)

...
g(r′m)

 .

In simple notation
Am = b . (3.4)

In the above linear system of equations A is the coefficient matrix, m is the
solution, and b is the right hand-side.

In this project the linear inverse problems we consider are by nature ill-posed.
A system of equations is considered to be ill-posed if a small change in the
coefficient matrix or a small change in the right hand side results in large changes
in the solution vector. There are many examples of physical problems that lead
to this form. A couple of these problems are described in the following.

3.2 The Gravity Surveying problem

The gravity surveying problem is based on studying anomalies in the gravity
field. The anomaly is caused by contrast of density under ground.

3.2.1 The One dimensional Case

We consider the Fredholm integral equation of the first kind in one dimension.
In the following we substitute r with x and r′ with x′. The measured signal
(the right hand-side of the equation) will then be a function of x′ and the mass
distribution is a function of x. First we will shortly describe the geometry of
the gravity surveying problem in one dimension.

In Figure 3.2 the measured signal g(x′) is the vertical component of the gravity
field and it is illustrated by a blue arrow. The measuring points are in the
interval between x′start and x′end. The mass distribution f(x) which causes the
gravity field is placed at the depth d from 0 to 1 on the x axis1. The kernel K
in the problem is derived in [8] and it is given by

K(x′, x) = γ d

(d2+(x′−x)2)
3
2

,

1The figure is slightly modified, but taken from [7] Figure 1 pp. 327.

14 The Surveying Problems

Figure 3.2: The geometry of the gravity surveying model problem. The mea-
sured signal g(x′) is the vertical component of the gravity field due to a 1-D
mass distribution f(x) at depth d.

where γ is the gravitational constant (γ = 6.673 ∗ 10−11 m3

kg·s2). We assume that
d > 0 in order to ensure that we do not divide by 0 in the model.2. The problem
is discretized so it can be reconstructed using a computer. x′ is divided in to m
points and x in to n points. The matrix of the discretized problem is denoted
A and to derive this we make use of the fact that the elements in A are given
by

ai′i = wiK(x′i′ , xi) , i′ = 1, 2, ..., m and i = 1, 2, ..., n .

The quadrature weight wi is calculated by using the midpoint quadrature rule

wi = |1−0|
n = 1

n .

The midpoint quadrature rule is also used to find the quadrature points

xi = hxi− hx

2 , hx = 1
n .

We choose the collocation points x′i′ to be

x′i′ = x′start + hx′i
′ − hx′

2 , where hx′ = |x′end−x′start|
m .

2This assumption also applies to the 2-D and 3-D gravity surveying models.

3.2 The Gravity Surveying problem 15

Hence, the matrix elements ai′i are

ai′i = wiγ
d

(d2 + (x′i′ − xi)2)
3
2

=
γ

n

d

(d2 + (x′start + hx′i′ − hx′
2 − (hxi− hx

2))2)
3
2

=
γ

n

d

(d2 + (x′start − hx′
2 + hx

2 + (hx′i′ − hxi))2)
3
2

. (3.5)

In order to achieve Toeplitz structure, the matrix A must only depend on the
differences between the indices. This implies that ai′i = ai′+k,i+k for all allowed
values of k. When considering Equation (3.5) it is clear that this is the case if
hx′i

′ − hxi = i′ − i and hence

|x′end − x′start|
m

i′ − 1
n

i = i′ − i ⇔
|x′end − x′start|

m
=

1
n

⇔
1

|x′end − x′start|
=

n

m
.

It means that the ratio between n and m must be equal to the ratio between 1
and |x′end−x′start|. In the special case where n = m the length of |x′end−x′start|
is consequently equal to 1. However, it is of no importance where the interval
from x′start to x′end is placed on the x′ axis. The depth of the mass distribution
d does not affect the structure of the matrix A. If matrix A is a symmetric
Toeplitz structure the following condition must be met

aii′ = ai′i ⇔

γ

n

d

(d2 + (x′start − hx′
2 + hx

2 + (hx′i′ − hxi))2)
3
2

=

γ

n

d

(d2 + (x′start − hx′
2 + hx

2 + (hxi− hx′i′))2)
3
2

.

It follows that aii′ = ai′i if i = i′. In the case where i 6= i′ then x′start −
|x′end−x′start|

2m + 1
2n = 0 and |x′end−x′start|

m = 1
n . This can only be the case if three

different properties are met, namely:

|x′end − x′start| = 1
m = n .

x′start = 0 .

16 The Surveying Problems

Thus the two intervals must be the same length and discretized into the same
numbers of points. The last property implies that the two intervals must be
placed directly above each other.

Now we will continue the theory for the two dimensional case.

3.2.2 The Two dimensional Case

The geometry of the gravity surveying problem in 2-D is slightly more compli-
cated than in 1-D, but the general idea is the same. The measured signal is now
two dimensional and we have chosen to denote g(r′) = g(x′, y′). The measured
signal g(x′, y′) is the vertical component of the gravity field and the measuring
points are in the interval [x′start x′end] × [y′start y′end]. The mass distribution
which causes the gravity field f(r) = f(x, y) is placed at depth d in the interval
[0 1]× [0 1]. The geometry is illustrated in Figure 3.3.

Figure 3.3: The geometry of the gravity surveying model problem in 2-D. The
measured signal g(x′, y′) is the vertical component of the gravity field due to a
mass distribution f(x, y) at depth d.

In the 2-D case the kernel takes the form:

K(x′, y′, x, y) = γ d

(d2+(x′−x)2+(y′−y)2)
3
2

.

The x and y intervals are discretized into n points and the x′ and y′ into m
points. To derive a matrix A for the discretized problem we utilize that the
elements now are given by

aMN = γwiwjK(xi, yj , x
′
i′ , y

′
j′) , i, j = 1, 2, ..., n , i′, j′ = 1, 2, ..., m ,

3.2 The Gravity Surveying problem 17

where M = (j′ − 1)m + i′, N = (i − 1)n + j. The quadrature weights using
the midpoint quadrature rule are

wi = 1
n and wj = 1

n .

The quadrature points are

xi = ihx − hx

2 , hx = 1
n .

yj = jhy − hy

2 , hy = 1
n .

The collocation points we choose as

x′i′ = x′start + i′hx′ − hx′
2 , hx′ = |x′end−x′start|

m

y′j′ = y′start + j′hy′ − hy′
2 , hy′ = |y′end−y′start|

m .

Thereby we can formulate the matrix elements aMN

aMN =
γ

n2

d

QMN
ij

, (3.6)

where
QMN

ij = (d2 + (x′
i′ − xi)

2 + (y′
j′ − yj)

2)
3
2

= (d2 + (x′start + hx′ i
′ − hx′

2
− (hxi− hx

2
))2 + (y′start + hy′j

′ − hy′
2
− (hyj − hy

2
))2)

3
2

= (d2 + (x′start −
hx′
2

+ 1
2n

+ (hx′ i
′ − hxi))2 + (y′start −

hy′
2

+ 1
2n

+ (hy′j
′ − hyj))2)

3
2 .

In order for A to achieve a BTTB structure the following conditions must be
met

|x′end − x′start|
mx

i′ − 1
n

i = i′ − i ⇔

F
n

mx
=

1
|x′end − x′start|

,

and similarly in the y-direction. As for the 1-D case, the placement of the inter-
vals [x′end x′start] and [y′end y′start] are of no importance to the BTTB structure.
Furthermore we notice that the depth d has no effect on the structure of A.

The matrix A will be symmetric if the symmetry properties listed for the one
dimensional case are satisfied. When using real data the properties are rarely
met - especially the property which requires that the intervals to be placed di-
rectly above each other can be difficult. Due to this we decide to assume that
A will not have a symmetric BTTB structure, but simply a BTTB structure.

18 The Surveying Problems

3.2.3 The Three dimensional Case

For this case we will derive the general formulation. In three dimensions we
once again consider the geometry which can be used to reconstruct the under-
lying problem. The mass causing the gravity field is placed in a volume from
[xstart xend] × [ystart yend] × [zstart zend]. In this case g(r′) is substituted with
g(x′, y′, z′) and the mass distribution is substituted with f(x, y, z). The kernel
K is

K(x′, y′, z′, x, y, z) = γ z′−z

((z′−z)2+(x′−x)2+(y′−y)2)
3
2

.

In the three dimensional case the numerator of the fraction takes into account
the depth. The model consists of a measurement grid and a solution grid which
are both three dimensional. The solution grid is discretized into nx×ny×nz grid
points and the measurement volume into mx ×my ×mz points. The geometry
is illustrated in Figure 3.4.

Figure 3.4: The geometry of the gravity surveying model in 3-D. The measured
signal g(x′, y′, z′) is the vertical component of the gravity field due to a mass
distribution f(x, y, z) at depth d.

In the 3-D geometry the elements in A are given by

3.2 The Gravity Surveying problem 19

aMN = wiwjwkK(xi, yj , zk, x′i′ , y
′
j′ , z

′
k′) ,

i = 1, 2, ..., nx, j = 1, 2, ..., ny, k = 1, 2, ..., nz ,
i′ = 1, 2, ...,mx, j′ = 1, 2, ..., my, k′ = 1, 2, ..., mz ,

where M = i′+(j′−1)mx +(k′−1)mxmy and N = i+(j−1)nx +(k−1)nxny.
The quadrature weights using the midpoint quadrature rule are

wi = |xend−xstart|
nx

, wj = |yend−ystart|
ny

, wk = |zend−zstart|
nz

.

The quadrature points are

xi = xstart + ihx − hx

2 , hx = |xend−xstart|
nx

.

yj = ystart + jhy − hy

2 , hy = |yend−ystart|
ny

.

zk = zstart + khz − hz

2 , hz = |zend−zstart|
nz

.

The collocation points are

x′i′ = x′start + i′hx′ − hx′
2 , hx′ = |x′end−x′start|

mx
.

y′j′ = y′start + j′hy′ − hy′
2 , hy′ = |y′end−y′start|

my
.

z′k′ = z′start + k′hz′ − hz′
2 , hz′ = |z′end−z′start|

mz
.

The elements in A is in this model given by

aMN = γwiwjwk
z′start−zstart+

hz
2 −

h
z′
2 +(hz′k

′−hzk)

QMN
ij

,

where
QMN

ij = ((z′start − zstart + hz
2
− hz′

2
+ (hz′k

′ − hzk))2 + (x′start − xstart + hx
2
− hx′

2
+

(hx′ i
′ − hxi))2 + (y′start − ystart +

hy

2
− hy′

2
+ (hy′j

′ − hyj))2)
3
2 .

In this model both the solution and the observation grids are three dimensional
which, under suitable conditions, causes A to have a blocked Toeplitz structure
where the blocks are BTTB matrices. This is what we in Chapter 2.1.3 denoted
a T 3 structure. An example of a T 3 structure is plotted in Figure 3.5. In the
figure the clearly visible blocks consists of a number of Toeplitz blocks.

20 The Surveying Problems

Figure 3.5: A matrix with T 3 structure.

If the following properties hold for A then the matrix will have a T 3 structure

|x′end − x′start|
mx

i′ − |xend − xstart|
nx

i = i′ − i ⇔
nx

mx
=

|xend − xstart|
|x′end − x′start|

.

Similarly we have:

ny

my
=
|yend − ystart|
|y′end − y′start|

,
nz

mz
=
|zend − zstart|
|z′end − z′start|

.

When storing any T 3 structure we need to store:3 (nx + mx − 1) · (ny + my −
1) · (nz + mz − 1) elements.

A special case of the 3-D model is where only one level of observations is used
as illustrated in Figure 3.6. A model like this would result in a blockwise BTTB
structure which is a subclass of the T 3 structure. An example of a blockwise
BTTB structure is illustrated in Figure 3.7. When considering only one level of
observations mz = 1 thus we only need to store (nx +mx−1) · (ny +my−1) ·nz

elements. However, the system should preferably be square as opposed to an
underdetermined system. For this reason mx and my can not be the same in the

3We postpone the explanation for Chapter 6.1.1.

3.2 The Gravity Surveying problem 21

Figure 3.6: The geometry of the gravity surveying model problem in three
dimensions. The measured signal g(x′, y′, z′) is the vertical component of the
gravity field due to a mass distribution f(x, y, z) at depth d.

Figure 3.7: Blockwise BTTB structure. mx = my = 8, nx = ny = nz = 4.

two cases. In Figure 3.8 we have illustrated the two different setups for a specific
example. Table 3.1 lists the numbers of elements needed to store for a setup
where nx = ny = mx = my = 100 points and nz = mz = 36 levels for the T 3

structure. To store the model using only one observation level nx = ny = 100,

22 The Surveying Problems

Figure 3.8: A specific example of the two kinds of setup of the 3-D geometry.

mx = my = 600, nz = 36, and mz = 1. We have also listed the number of

Structure No. elements (example)
T 3 ∼ 2.8 · 106

Blockwise BTTB ∼ 1.8 · 107

No structure ∼ 1.3 · 1011

Table 3.1: Comparison of the storage of elements for the different structures.

elements to be stored if there is no structure in the matrix. When considering
the numbers in the table we see that data compression would be a good idea.
The most beneficial structure would be the T 3 structure or the blockwise BTTB.

A disadvantage of the T 3 structure is that the observation data need to be in
several levels. When dealing with real data it can be a problem getting multi-
level data in fact all sets that we have received have been a single level of data.
In Chapter 4 we return to how we achive multi-level data.

3.3 The Magnetic Surveying Problem

In this section we will explain the formulation of the magnetic surveying model
and the assumptions made in order to achieve the Toeplitz structure. We will
for the magnetic surveying model only consider the three dimensional case.

The magnetic field measured above the Earth is the sum of different fields. In
this project we assume that all magnetic fields originate from the interior of the

3.3 The Magnetic Surveying Problem 23

Earth and consists of the sum of the core field and the crust field. According to
[9] only a small fraction of the measured magnetic field originates from outside
the Earth. The core of the Earth generates a field which is well defined all
over the world. The crust field arises because of the presence of geomagnetic
material e.g. rocks containing iron which can be located several kilometers under
ground. The crust field can locally have a different direction than the core field
and therefore gives an anomaly in the core field. This anomaly will be referred
to as the total field anomaly and it is this anomaly we are interested in. We
describe the magnetization by using a dipole formulation. This implies that the
magnetization consists of small magnetic dipoles. Each of these dipoles can have
a individual direction, but for reasons of simplicity we assume that they all have
the same direction. A magnetic dipole induces a magnetic field, which is shown
in Figure 3.9, in the figure it is illustrated how the field will change around
the dipole. The strength of the magnetic field weakens the further away from
the dipole the measurements are performed. The kernel K for the magnetic
surveying model is derived in [5] and is given by the following formulation

K(r, r′) =
µper

4π

ĵ · (3(̂i · d̂)d̂− î)
‖r− r′‖32

, d̂ =
r− r′

‖r− r′‖2 . (3.7)

In the above equation r is the location of a magnetic dipole source and given
by r =

[
x y z

]T , r′ =
[
x′ y′ z′

]T is an observation point. î =
[
ix iy iz

]T is a unit

vector with the direction of the core field induced by the Earth. ĵ =
[
jx jy jz

]T

is a unit vector with the direction induced by the dipole source in r and d̂ is
a unit vector pointing in the direction from r toward r′. µper is the magnetic
permeability and is equal to 4π × 10−7N · A−2. Figure 3.10 gives a graphical
illustration of the model. The components K(r, r′) in the kernel is the magnetic
field at r along the direction of î due to the dipole source located in r′ with a
unit intensity and the direction ĵ. In order to use equation (3.7) we must assume
that the observation points are placed outside the solution domain, otherwise
the magnetic field would have a rotation and the model would be incorrect. î
and ĵ can be expressed in the terms of the angels inclination and declination in
the Spherical coordinate system. Throughout this thesis the inclination will be
90 degrees and declination 0 degrees unless otherwise is stated.

We discretize the problem and derive the conditions which has to be met
before the kernel obtains the T 3 structure. The details of the discretization and
deduction are listed in appendix A. As it turns out the conditions to be met
to obtain T 3 structure are the same as for the gravity surveying model in 3-D,

24 The Surveying Problems

Figure 3.9: Illustration of a cross section of a dipole locate in (0,0,0). In the
plot the y coordinate is fixed to 0.

Figure 3.10: The geometry of the magnetic surveying model where ĵ is the unit
vector in the direction of the magnetization in r. î is the unit vector with the
direction of the core field and d̂ is the unit vector from r towards r′.

namely:

nx

mx
=
|xend − xstart|
|x′end − x′start|

.

ny

my
=
|yend − ystart|
|y′end − y′start|

.

nz

mz
=
|zend − zstart|
|z′end − z′start|

.

3.3 The Magnetic Surveying Problem 25

Hence it is possible to achieve T 3 structure for the magnetic surveying model
as well.

26 The Surveying Problems

Chapter 4

Preprocessing of Data

As discussed in the previous chapter we need multi-level data sets. However,
this choice requires additional preprocessing of the data before the right-hand
side b can be set up. In this chapter we will describe the decisions we have
made and the steps that lead to the setup.

It is important to notice that the existing version of the GravMagTool package
is implemented in such a way that the units are of no importance as long as the
use of units are consistent. We decide to implement the same feature in the new
version.

4.1 Data

In the new implementation of the GravMagTools package the user is required to
input an observation set in order to setup and reconstruct an inverse problem.
In Chapter 3 it was shown that several levels of data are needed in order to
achieve the T 3 structure. All data sets we have access to have been measured
at the same height above sea level. For some of the surveys it is difficult to keep
the exact same height when taking the measurements and for this reason it is
sometimes necessary to interpolate the measurements to a single level. This is
the first step in Figure 4.1. The next step is to interpolate the measurements

28 Preprocessing of Data

so they are placed on a grid. When the data is placed on a grid it is possible to
perform an upward continuation. We will return to the upward continuation in
Section 4.1.2. The University of Naples has provided us with several data sets

Figure 4.1: Illustration of some of the initial pre-processing of data.

where the data points have all been placed in one level for each set. For this
reason we decide that the geophysicists will preprocess the data so the input will
be data in a plane. This choice is based on the fact that a geophysicist knows
more about the physics of the problems and in some cases they have a priori
knowledge about the fields they are trying to reconstruct. Either way they are
more likely to know which sources of error they introduce. This knowledge is
out of the scope of this project, that deals with inversion of data. Hence, the
input to our algorithm is a measurement plane, and from there we will perform
the interpolation that will place the data on a grid.

4.1.1 Interpolation

Before the interpolation can be conducted a dicretization needs to be performed.
The measurement data is in a plane. To be able to perform an interpolation to a
grid of a certain fineness the user specifies an interval in the x and y direction and
the number of points in each direction. From this input the software calculates
the grid spacing in the x and y directions:

∆x = |x′end−x′start|
mx

, ∆y = |y′end−y′start|
my

From Section 3.2.3 we recall the conditions that need to be met in order to
achieve a T 3 structure do not include that ∆x = ∆y. For this reason the new
implementation of the GravMagTools package had initially no requirements to
the relationship between the two grid spacings. However, the geophysicists from
the University of Naples require that the spacings are identical in the x and y di-
rection. The software they use require that ∆x = ∆y and the data sets are thus

4.1 Data 29

designed for this purpose. Because we want to preserve a consistency between
the work in Naples and the package, we have chosen to make this another require-
ment of the user. When performing the discretization we use a midpoint quadra-
ture rule. Hence we place the first grid point at (x′start + 1

2∆x, y′start + 1
2∆y)

and we place the last grid point at (x′end − 1
2∆x, y′end − 1

2∆y). In Figure 4.2 we
have illustrated an example of a discretization. In this example x′ = [0 3.5] and
y′ = [0 2] and mx = 7 and my = 4.

To perform the actual interpolation we have to choose the method to use.

Figure 4.2: Illustration of example of the discretization.

We need a method that can take randomly placed measurement points and
place them on a 2-D grid as illustrated in Figure 4.31. An important quality of
the interpolation method is that it has to be able to perform an interpolation
that does not magnify errors in the data. We need to consider the limita-
tions concerning the placement of the measurement points with respect to the
discretization points. We have chosen to consider the Dace package [10] and
Matlab’s griddata function. Both interpolation methods are able to take ran-
domly located data points and interpolate to a grid in a plane. Neither method
can calculate the function value of a discretization point using extrapolation.
For this reason we have chosen to exclude the option of extrapolation of data,
it simply leaves too many possibilities of errors.

We choose to perform the interpolation using the griddata function. This
choice is based on the fact that in this context none of the packages seem to hold
any relevant advantages over the other. Since the griddata function is included
in Matlab it requires the minimum effort of the user. Using the griddata func-
tion we have different options with respect to the interpolation method. We
list the options in Table 4.1. The method needs to be continuous in the 0th

derivative (the function itself). This demand rules out nearest neighbor inter-
polation. We have no need for derivatives - other then the 0th. We decide that

1Even if the user inputs data in a 2-D grid there is most likely still a need for interpola-
tion/regridding for instance in order to adjust the coarseness of the grid.

30 Preprocessing of Data

Figure 4.3: Illustration of the interpolation.

there is no reason to compromise the speed of the method and choose the lin-
ear interpolation method. Another clear advantage using linear interpolation is

Interpolation method Smoothness Remark
Linear Discontinuous in 1st derivative Faster than cubic and

the matlab4 griddata
methods.

Nearest neighbor Discontinuous in 0st derivative
Cubic Smooth
matlab4 griddata Smooth

Table 4.1: Interpolation options using griddata.

that according to [1] the maximum induced error is no larger than the maximum
error in each of the endpoints. Thus the error in data is not enhanced when
using a linear interpolation method.

We illustrate the interpolation using a real data set (the Campanian Plain
gravity field). This is done in order to illustrate how the interpolation and in
this case the regridding operates. The interpolation is performed using a data
set consisting of 53 × 84 measurements. The new interpolated set is a 13 × 13
set in approximately the same interval. In Figure 4.4 the visual result of the
interpolation is illustrated on the right-hand side (on the left-hand side the full
data set is illustrated). The result looks correct as it is a coarse version of the
full data set.

4.1 Data 31

Figure 4.4: Illustration of interpolation. A 53×84 set is interpolated to a 13×13
set. The axis properties are not correct in the right figure.

4.1.2 Upward Continuation

After the data have been interpolated to a grid specified by the user, the upward
continuation is performed in order to achieve the multiple data levels that is
required for the T 3 structure.

The upward continuation software we utilize is code provided to us by Valeria
Paoletti of the University of Naples. The method takes as input the first level
of data, and using a fast Fourier transformation calculates each of the following
levels as illustrated in Figure 4.5.

Figure 4.5: Illustration of the upward continuation. The dark blue color repre-
sents the input level, while the light blue levels are the computational levels.

Upward continuation is a 2 dimensional deconvolution. According to [12] upward
continuation can be expressed using the Dirichlet integral

H(x, y) =
∫ ∞

−∞

∫ ∞

−∞

h
2π

(h2 + α2 + β2)
3
2
· F (x− α, y − β)dαdβ , (4.1)

32 Preprocessing of Data

where H(x, y) is the field measured on a plane at the height h above the source,
and F (x, y) is the field at the source plane. If the field at the source plane is
known all over then the integral is a physical model. However, we only have
measurements in a finite surface. Furthermore the function is not known all
over only samplings are known. For these reasons the Fourier based upwards
continuation is only an approximation to the physical model. We know that if
the field converges towards 0 in a proper manner at the edges of the measurement
surface then the approximation to the physical model is good.

The corresponding input-output frequency equation to (4.1) is

Ĥ(u, v) = F̂ (u, v)Yup(u, v) , (4.2)

where Ĥ is the 2-D Fourier transformed version of H, F̂ is the 2-D Fourier
transformed version of F , and Yup is the weighting function and is the 2-D

Fourier transformed version of
h
2

(h2+α2+β2)
3
2
.

According to [12], the upward continuation filter response is given by

Yup(u, v) =
∫ ∞

−∞

∫ ∞

−∞

h
2π

(h2 + α2 + β2)
3
2
e−i(ux+vy)dxdy = e−h

√
v2+u2

(4.3)

The upward continuation is performed using FFT, which assumes that the sig-
nals are periodic. Due to the periodicity it is important that the transitions are
smooth in order to avoid border effects2. For this reason it is useful to place an
artificial3 border around the data before the upward continuation is performed.
This border has experimentally proven to be most efficient if the total size of
the altered data array is a power of 2. There are several options when choosing
the type of border, however, a smooth extension of order 0 has experimentally
been the most successful. In Figure 4.6 an illustration of a 16 × 16 data array
that is expanded with an artificial border of size 120 in each direction resulting
in a total size of 256 = 28. The type of border is a smooth extension of order 0.
In Figure 4.7 we give a small example of a matrix P that we wish to expand 2
data points in each direction using a smooth extension of order 0. The resulting
matrix P̃ is then illustrated on the right hand-side of the figure. The original
data set is highlighted and appears in the middle of the new set.

To show an example of an upward continuation we take a magnetic obser-
vation level and perform upward continuation in 11 levels. The result is plotted
in Figure 4.8 where each of the levels is plotted separately. Level 0 is the input
data level and levels 1-11 are the levels created in the upward continuation pro-
cess. As expected we see in the figure how the field grows wider and weaker as
the height increases.

2Border effects are errors in the outer edges of the data levels.
3By artificial we mean not field measurements.

4.2 Studies of Interpolation and Upward Continuation 33

Figure 4.6: Example of a bordered matrix. The original data is the tiny spot in
the middle.

Figure 4.7: Illustration of a smooth extension of order 0.

4.2 Studies of Interpolation and Upward Con-
tinuation

4.2.1 Test of Interpolation

In the first test, two different sets of observations are calculated for the same
magnetic source. The only difference being the number of measurement points.
The interpolated observations (red crosses) are calculated using the values of
the measurement points (blue circles) as shown in Figure 4.9. On the left-hand
side a set with few measurement points and on the right-hand side a set with
several measurement points. In both figures the blue circles represent the actual
measurement points and the red crosses are the grid that the blue circles are
to be interpolated to. In order to have something to compare the interpolated

34 Preprocessing of Data

Figure 4.8: An example of an upward interpolation from level 0 to levels 1-11.

values with we calculate the exact measurement values in the red crosses (for
the same source).

Figure 4.9: Placement of measurement points(blue circles) in two separate in-
terpolations. The red crosses are the grid we wish to interpolate to.

The interpolation is performed using griddata and it is now feasible to com-
pare the exact observation values of the red crosses with the interpolated values.
Since measurement errors are unavoidable we have chosen to perform the inter-
polation with and without noise (order of magnitude 10% relative noise normally
distributed) in order to see the influence the errors has on the interpolation re-

4.2 Studies of Interpolation and Upward Continuation 35

Figure 4.10: Relative differences between the exact set and the interpolated sets
with and without noise.

sult. The relative differences in each of the 25 grid points are plotted in Figure
4.10. The relative differences has been calculated as

‖ginterpolate − gexact‖2
‖max(ginterpolate)− min(ginterpolate)‖2 .

When considering the relative differences with no noise in Figure 4.10 (the top
plots) the importance of the number of measurement points in the interpolation
becomes clear. The average of the relative differences on the left-hand side
is 3.35% whereas using several points yields an average relative difference of
1.24%. The conclusion is self-evident: the more measurement points that are
used in the interpolation the better result. When taking into account the noisy
data it can generally be stated that the relative differences grows when noise
is added for both the test with few points and the test with several points.
However, it is important to mention that the noise is created using randn which
is a Matlab function creating normally distributed random numbers. Thus the
tests including noise varies depending on the testrun. But still we see how using
several measurement points makes the interpolation more accurate.

4.2.2 Test of Upward Continuation

In this line of testing we perform an upward continuation. In the test we fix
the border size to 512 and the type of border to be a smooth extension of order
0. The setup for the following tests are visualized in Figure 4.11. On the left
side the simulated4 multi-level observation set is shown and on the right hand-

4By simulated data we mean data levels for all altitudes of the specified grid.

36 Preprocessing of Data

side the set calculated using the upward continuation method. In the upward
continuation the input level is the simulated bottom level from the left hand-
side of the figure. This level is then used to calculate the remaining levels using
upward continuation. Now we consider the relative differences in each of the
4 data levels of this particular system. The relative difference is calculated as
follows:

‖(gi − gi,ex)‖2
‖(gi,ex)‖2 ,

where gi is the calculated value at the ith level and gi,ex is the exact values of
the ith level.

Figure 4.11: Setup for testing the accuracy of the upward continuation.

The relative differences are plotted as a function of the number of level on the left
hand-side of Figure 4.12. As the levels grow the relative difference between the
simulated and the upward continuation data grows. This is expected behavior
seeing how the distance to input level grows for each level. On the right hand-
side of Figure 4.12 we have projected the source onto the first level of data
(the source illustrated by the green square). In Figure 4.12 the source is, when
projected onto the lowest level of observations, placed approximately in the
middle of the observations. For this test the maximum relative error is 0.9%
and the development of the error is approximately linear. We then repeat the
test, this time placing the source so that the projection of the source is placed
along the border of the observations. The resulting plots are shown in Figure
4.13. When considering the maximum relative error of 44% it is clear that the
placement of the source is of great importance.

4.2.2.1 Natural Border

Until now we have been performing the upward continuation using only the
artificial border in the upward continuation method. Now we wish to examine
the effect of placing a border of natural data around the input data level, by
natural data we mean actual field measurements. After performing the upward

4.2 Studies of Interpolation and Upward Continuation 37

Figure 4.12: Relative difference between the levels of the simulated set and the
set calculated using upward continuation. To the right is a illustration of one of
the observation levels and the projection of the source(the green box)

Figure 4.13: Relative difference between the levels of the simulated set and the
set calculated using upward continuation. To the right is a illustration of one of
the observation levels and the projection of the source(the green box)

38 Preprocessing of Data

continuation of the extended input data level, all data levels of the resulting
observation grid will then be cut to the size of the original input. The following
line of testing will show whether a natural border reduces the error of the upward
continuation and furthermore the effect of the placement of the source when
performing the upward continuation.

We create a forward problem as shown in Figure 4.14. We are not interested
in the inversion of the problem solely the observations. The source is a cube
placed under the surface of the earth. We have as shown in the figure, calculated
the observations in all the 4 levels. But seeing how a geophysicist would (most
likely) present us with a single plane of observations, we take out the lowest plane
and perform an upward continuation of this to a total of 4 levels (3 additional
levels). It is then possible to compute the relative difference of each of the levels
comparing the exact values with the values of the upward continuation.

Figure 4.14: Illustration of the forward problem. The solution volume is the
discretization domain and the light-blue cube is the source with intensity of 1
(the rest of the discretization domain is 0).

We perform three different tests. For each of the three tests we plot two figures.
One illustrating the observations at the input level. In this figure the blue crosses
illustrate the area that represent the input level (without the natural border)
of the upward continuation, the red crosses represent the natural border, and
a green square shows the projection of the source onto the observation grid.
The second figure illustrates the relative differences between the simulated set
and the upward continued data using a natural border (blue line) and using no
natural border (red line).

• Large natural border, placement of source in the middle

In the first test we create a relatively large natural border placed around the
data that we wish to perform an upward continuation of. First we perform an
upward continuation of the blue crosses on the left-hand side of Figure 4.15.

4.2 Studies of Interpolation and Upward Continuation 39

The 4 levels are then compared to the exact data and the relative differences
are plotted using the red line on the right hand-side of the Figure 4.15. Second
we perform an upward continuation using the data set with the natural border
(shown by the red crosses). The comparison of this result with the exact data is
shown using the blue line on the right hand-side of the figure. When considering

Figure 4.15: To the left an illustration of the observations used in the upward
continuation. On the right hand-side the relative difference of no natural border
compared with the exact observations (red line) and the large natural border
compared to the exact observations (blue line).

the comparisons in Figure 4.15 is becomes clear that the natural border is of
great importance when wanting to reduce the error of the upward continuation.
The comparison using no border reaches a relative error of 11%, whereas when
using the large natural border reaches about 1%. Now the question becomes
will a smaller natural border also be able to reduce the error?

• Small natural border, placement of source in the middle

In test number two we reduce the width of the natural border to a single data
point. The relative error when using no natural border is still 11%. When using
the natural border of one data point the relative difference drops to about 7.9%.
Thus, the natural border has an effect even when it is small.

• Large natural border, placement of source in lower right corner

In this third and final test we work with the large natural border once again.
This time we place the source differently this can be seen by observing the

40 Preprocessing of Data

Figure 4.16: On the left-hand side an illustration of the observations used. To
the right the relative difference of no natural border compared with the exact
observations (red line) and the small natural border compared to the exact
observations (blue line).

projection of the source in Figure 4.17 that it is now placed at the edge of the
blue crosses. This time the importance of the natural border becomes apparent.
The difference between the exact levels and the data using no natural border
is about 52%. The difference when using the large natural border is still about
2%. This is of great importance because it is not always possible to predict
where the projected source will be.

Figure 4.17: To the left an illustration of the observations used in the upward
continuation. The source is in this case placed on the edge of the blue crosses.
To the right the relative difference of no natural border compared with the
exact observations (red line) and the large natural border compared to the
exact observations (blue line).

4.2 Studies of Interpolation and Upward Continuation 41

4.2.2.2 Placement of Solution- and Observation grid

In the following test we wish to investigate how the distance between the solution
and the observation grid effects the upward continuation. The grids are both
of size 15 × 15 × 6. The grid spacing in x and y direction is 0.5 and 0.25 in z
direction. The source is a gaussian and placed in the middle of the solution grid.
In the test we fix the placement of solution grid whereas the observation grid
(placed directly above the solution grid) is moved upwards so that the distances
between the two grids gradually increases. The 6 observation levels are simulated
in one case and calculated using the upward continuation for the other case.
We calculate the relative difference between the upward continued data and the
simulated data. It is important to stress that the upward continuation method is
given good conditions by the use of 7 points of natural border in each direction.
The result of the test is illustrated in Figure 4.18. The upward continuation

Figure 4.18: The relative difference between the upward continued data and the
simulated data for different distances between the solution and observation grid

has problems calculating a good approximation to the simulated data when the
distance between the grids is small. The further away the observation grid is
from the source is the more it resembles a point source. The upward continuation
performs well when approximating a point source.

We replicate the test but this time we change the inclination and declination
from [90 0] degrees to [60 40] degrees. When comparing Figure 4.19 to Figure
4.18 it can be seen how the upward continuation can not perform well when the
inclination and declination is different from [90 0]. To understand why we take
a look at Figure 3.9, in this figure the dipole has an inclination of 90 degrees and
a declination of 0 degrees. If the inclination and declination of the induced field
from the dipole are changed then the field becomes more complicated. This is
the cause of the bad performance of upwards continuation when the angles are

42 Preprocessing of Data

Figure 4.19: The relative difference between the upward continued data and the
simulated data for different distances between the solution and observation grid.
The inclination is 60 degrees and the declination is 40 degrees

changed.

4.2.2.3 Summary

This line of testing clearly shows that if there is extra data then it is an advantage
to use the extra information. The larger the natural border the better, but even
a small border helps to reduce the error in the upward continuation method.
For this reason we create an algorithm that ensures that the border is chosen to
be as wide as possible. For further explanation of this algorithm see appendix
B. Furthermore the importance of placing the observations appropriate with
respect to the expected source is illustrated. But we realize that when dealing
with a real field inversion it is not always possible to predict the placement of
the source. In the last tests we performed we see an indication that performance
of the upward continuation is not as stable as we had hoped. It seems to be
limited even in the cases where it performs well. In Chapter 7 we will perform
inversions with upward continued data.

Chapter 5

Regularization Algorithms

We want to solve the discretized problem Am = b. The naive solution as found
using a least squares minimization

minm‖Am− b‖2 . (5.1)

is useless when dealing with ill-posed problems. The problem is that infinitely
small perturbations in the input data b can cause infinitely large perturbations
in the solution m due to the nature of the ill-posed problem. For this reason we
introduce regularization methods that according to [8] enforce the regularity on
the computed solution - typically in the form of a requirement that the solution
is smooth, in some sense. This means that the high frequencies are damped in
the solution.

In this section we will perform an Singular Value Decomposition1. In or-
der to obtain an insight into the problems. This insight can be used in some
regularization methods as well as for understanding other methods. However
the task of computing an SVD is computationally heavy making the regular-
ization methods depending on an SVD feasible only for small problems. We
will then describe the theory of the Tikhonov regularization method and CGLS
regularization algorithm. Both Tikhonov and CGLS are, if implemented for the
purpose, suitable for large-scale problems.

1The Singular Value Decomposition will from this point on be referred to as the SVD

44 Regularization Algorithms

5.1 Singular Value Expansion

The method of this investigation is a Singular Value Decomposition. To be able
to understand how the SVD works and which information we gain using it, we
will first take a look at the Singular Value Expansion2.

We recall Equation (3.2) which shows that the generic problem
∫

Ωr

K(r′, r)f(r)dr = g(r′), r′ ∈ Ωr′ .

To be able to perform an SVE analysis of the kernel K we must assume that
K is square integrable and therefore

∫
Ωr

∫
Ωr′ K(r′, r)2drdr′ must be finite. The

reason for this assumption is that in reality the quantities of the magnetization
and gravitation are finite. From [8] we know that the SVE for any square
integrable kernel is given by

K(r′, r) .=
∞∑

i=1

µiui(r′)vi(r) .

The .= in the above formulation means that the right side converges in the
mean to the left side. The function ui is designated the left singular function
and vi is designated the right singular function. The functions vi, i = 1, 2, ...
are orthonormal to vi, i = 1, 2, ... with respect to the usual inner product. The
same applies to ui. The inner product between the functions is defined as
〈φ, ψ〉 =

∫
Ω

φ(r)ψ(r)dΩ. This implies that

〈ui,uj〉 = 〈vi,vj〉 =

{
1, i = j

0, otherwise ,

where µi are the singular values which are a non-increasing sequence.

From [8] we know by expanding the functions f and g and by using the ”fun-
damental relation”, an expression for the solution f(r) can be derived

f(r) .=
∞∑

i=1

〈ui, g〉
µi

vi(r) .

The solution f has to be square integrable. This implies that the following
expression for the 2-norm of f must be satisfied

‖f‖22 =
∫

Ω

f(r)2dΩ =
∞∑

i=1

(〈ui, g〉
µi

)2

< ∞ (5.2)

2The Singular Value Expansion will from this point on be referred to as the SVE

5.2 Singular Value Decomposition 45

The 2-norm is used to derive Equation (5.2) because the usual inner product is
used to derive the expressions in the SVE. Now we take a closer look at (5.2) to
understand what this expression says about the solution. The expression is true
if the solution coefficients 〈ui, g〉 decay in a proper way faster towards zero than
the singular values µi. The relation (5.2) is also known as the Picard condition.
The SVE is not suited for numerical computations, but based on the SVE we
are able to create a discrete version which works on finite dimensional matrices.
This version is know as the SVD.

5.2 Singular Value Decomposition

We know from Equation (3.4) that the discretized problem takes the form

Am = b .

The SVD can be performed on any rectangular matrix and it holds a funda-
mental relationship to the SVE, which we will describe below. In the following
expression of the SVD we assume that the matrix either has more rows than
columns or is square for reasons of simplicity. An SVD of any matrix A ∈ Rm×n

with m ≥ n will take the form

A = UΣVT =
n∑

i=1

uiσivT
i .

The columns in matrices U ∈ Rn×n and V ∈ Rn×n are called the left and right
singular vectors. The columns in U and V are orthonormal

U = [u1, . . . ,un] ,V = [v1, . . . ,vn] ,

UT U = VT V = I .

The diagonal matrix Σ ∈ Rm×n contains the singular values. These singular
values have the property that they are a non-increasing sequence

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 . (5.3)

As mentioned before the SVD can be regarded as an approximation to the SVE.
In this approximation the singular values σi of the matrix A are approximations
to the singular values µi from the kernel K. In the same way the left and right
singular functions can be approximated. If these approximations are denoted
ũj(r′) and ṽj(r) where j = 1, . . . , n then we know from [8] that the inner product
〈ũj , g̃〉 approximates the inner product in the SVE and will have the definition

〈ũj , g〉 = uT
j b .

46 Regularization Algorithms

We can now derive expressions for m, b and Am

m =
n∑

i=1

(vT
i m)vi , b =

n∑

i=1

(uT
i b)ui ,

Am =
n∑

i=1

σi(vT
i m)ui .

The expression for Am and b can be used to formulate an expression for the
solution m. If A has rank n then all the singular values are positive, and the
expression will be

m = A−1b =
n∑

i=1

uT
i b
σi

vi (5.4)

It is now possible to define a discrete Picard condition by using Equation (5.4).
It is clear by looking at Equation (5.4) and (5.2) that the two are related. The
formulation of the discrete Picard condition is formulated in the box below. An

The Picard condition is satisfied if for all singular
values σi which are not dominated by errors, then the
coefficients |uT

i b| must decay faster on average than the
singular values σi.

easy way to check if the Picard condition is met is to construct a Picard plot.
A Picard plot is a plot where the singular values σi, the coefficients |uT

i b|, and
the solution coefficients |uT

i b|/σi are plotted as a function of i. The Picard plot
makes it possible to make a visual inspection of the Picard condition.

In the following we will illustrate how the Picard plot can be used. We create
two examples of a one dimensional gravity surveying problem3. It is important
to notice that we do not use upward continuation to generate data, instead all
data is simulated. In the first example we invert a problem where the right
hand-side b is without any influence of noise. In the second example the same
problem is set up except for the fact that the right hand-side is effected by
white noise with a relative noise level of 10−5. Figure 5.1 shows the Picard plot
for the first example. The coefficients |uT

i b| (illustrated by ×) decay faster on
average than the singular values σi (illustrated by •) until the singular values
become so small that they are dominated by the rounding errors. Thus, the
Picard condition is satisfied for the first problem. The second example has a
noisy right hand-side b and is therefore of more interest to us, because real field
measurements are noisy. The Picard plot for the second example is illustrated
in Figure 5.2. The SVD coefficient |uT

i b| decay until they reach the noise level
3The details of the discretized problem can be seen in Section 3.2.1.

5.2 Singular Value Decomposition 47

at 10−5, where they level out. The singular values σi decay until they get so
small that the rounding errors start to dominate. We can see in Figure 5.2 that
the Picard condition is satisfied until the SVD coefficients |uT

i b| reach the noise
level. After this point the singular values decay faster than the SVD coefficients.
In the Picard plot we also plot the solution coefficients (illustrated by ◦). The
solution coefficients increase drastically, beginning when the Picard condition is
no longer satisfied. This implies that the solution no longer is square integrable.
To understand what happens we take a closer look at the term |uT

i b| in the SVD
formulation. We know that the right hand-side b is affected by noise, hence

uT
i b = uT

i (bexact + e) ,

where e is the noise and bexact is the exact noise-free right hand-side. Let

Figure 5.1: Picard plot for a 1-D gravity surveying problem without noise. The
figure shows the singular values σi (•), the right hand-side coefficients |uT

i b|
(×) and the solution coefficients |uT

i b|
σi

(◦)

τ denote the index of which the coefficients |uT
i b| no longer decay faster than

σi thus the Picard condition is no longer satisfied. Hence we can write uT
i b in

another way

uT
i b = uT

i bexact + ei '
{

uT
i bexact, τ À i

uT
i e, τ ¿ i .

(5.5)

Simplified there are two different kinds of right hand-side coefficients. The first
kind is where τ À i. These are the coefficients we can trust and which contribute
to the solution. The other coefficients where τ ¿ i are dominated by the
noise and corresponds to small singular values. These noisy coefficients do not

48 Regularization Algorithms

Figure 5.2: Picard plot for a 1-D gravity surveying problem with a noise level
of 10−5. The figure shows the singular values σi (•), the coefficients |uT

i b| (×)
and the solution coefficients |uT

i b|
σi

(◦).

contribute to the exact solution, because they are samples of the noise function.
As mentioned the noisy coefficients corresponds to small singular values and
therefore these solution coefficients will become very large and dominate the
solution.

5.3 Truncated Singular Value Decomposition

Truncated Singular Value Decomposition4 is a regularization method that re-
quires an SVD computation.

The idea behind the TSVD method is relatively simple. In Equation (5.5)
we saw how we can trust the first SVD coefficient where the Picard condition
is fulfilled. These first coefficients contribute to the solution so the idea of the
TSVD is only to use the first k components. The TSVD solution mk is defined
as

mk ≡
k∑

i=1

uT
i b
σi

vi,

where the constant k is the truncation parameter which ensures that we only
use the first k SVD components. k can be determined by considering the Picard

4The Truncated Singular Value Decomposition will from this point on be denoted TSVD.

5.4 Tikhonov Regularization Method 49

plot of the problem. When the size of the problems increase is it no longer
possible to calculate an SVD. For this reason we need a regularization method
which do not rely on an SVD.

5.4 Tikhonov Regularization Method

The Tikhonov regularization method has a formulation which includes regular-
ization. The main idea is to obtain a small solution norm, but then accepting
that the residual is larger than zero. The Tikhonov formulation takes the general
form

minm{‖Am− b‖22 + λ2‖Lm‖22} , (5.6)

where λ ≥ 0 is the regularization parameter that controls the weighting between
the first and the second term of the function. Note that when λ = 0 we obtain
the naive solution.

• ‖Am− b‖22 is a measure of how well the solution m predicts the data b.

• ‖Lm‖22 is the regularization term. The term is able to suppress the high
frequencies of the large noise components. L can be a discrete approxi-
mation of a derivative operator (or the identity matrix). By including the
stabilizer L we improve the reconstruction because this way we include a
priori knowledge about the solution.

The quality of the Tikhonov solution now depends on the regularization param-
eter. If λ is set too low the noisy data is fitted, and if λ is set too high too
much weight is given to the minimization of the solution norm (and hence for
λ → ∞ it approaches the nullspcae of L). In [8] the common choices (the first
and second derivative respectively) of L are listed for 1-D problems

L1 =

−1 1

.
−1 1

 ∈ R(n−1)×n and

L2 =

1 −2 1
.

1 −2 1

 ∈ R(n−2)×n .

50 Regularization Algorithms

Equation (5.6) can be formulated as a least-squares problem of the form

minm

∥∥∥∥
(

A
λL

)
m−

(
b
0

)∥∥∥∥
2

(5.7)

We perform an SVD analysis with L = I in order to understand the theory of
the Tikhonov solution, mλ.

The normal equations for the least-squares problem (5.7) are

(AT A + λ2I)m = AT b ⇔ mλ = (AT A + λ2I)−1AT b .

We now insert the SVD of A into the normal equations. Furthermore we use
the fact that I = VVT

mλ = (VΣ2V
T

+ λ2VVT)−1VΣUT b

= V(Σ2 + λ2I)−1VT VΣUT b

= V(Σ2 + λ2I)−1ΣUT b .

Inserting the singular values σi and the vectors ui (left singular vector) and vi

(right singular vector) we get

mλ =
n∑

i=1

fi
uT

i b
σi

vi . (5.8)

where fi are the so-called filter factors for i = 1, ..., n satisfying

fi =
σ2

i

σ2
i + λ

'
{

1 σi À λ
σ2

i

λ2 σi ¿ λ

• For singular values greater than the regularization parameter, λ, the asso-
ciated filter factor will be (close to) one. This means that the correspond-
ing SVD component contribute to the solution vector with full strength.

• For singular values smaller than the regularization parameter the SVD
components are filtered.

Figure 5.3 illustrates the filter factors for Tikhonov (red line) and the filter for
TSVD (blue line) respectively. The regularization parameter λ = σk where k is
the truncation parameter for TSVD. It is obvious from the figure that the filters
used by Tiknonov is smoother than the filter used in TSVD. Thus the TSVD

5.5 Conjugate Gradients (Least Squares) 51

Figure 5.3: The blue line is the filter factor for the TSVD with the truncation
parameter k. The red line is the filter factor for the Tikhonov where λ = σk

and Tikhonov will converge towards different solution. These solution might
have same visual appearance but they will be different because the smoother
Tikhonov filter add more components then the TSVD filter.

The Tikhonov method can be used for large scale problems if it solved in
apporiate way. One way can be to use a stabel implementation of the Conjugate
Gradient.

5.5 Conjugate Gradients (Least Squares)

Conjugate gradients (CG) is another method for solving a system of linear equa-
tions. We have seen how the TSVD is able to make a reconstruction using the
first k singular values. This solution is spanned by the first k right singular
vectors. The idea in the CG method is to find a set of basis vectors with the
same overall features as the first k right singular vectors. We recall the least
squares problem minm‖Am − b‖2 and it can be shown that the solution m(k)

is obtained after applying k steps of the CG algorithm

m(k) = argminm‖Am− b‖ s.t. m ∈ Kk , (5.9)

where Kk is the Krylov subspace associated with A and b defined as the span
of powers of AT A applied to AT b. The advantage of the CG method is that
there is no need to store all the basis vectors explicitly. All that is needed during

52 Regularization Algorithms

the iterations is matrix-vector multiplications with A and AT (and some vector
operations). In [8] it is stated that the most stable implementation of the CG
algorithm is the CGLS algorithm. The pseudocode of this algorithm is:

m(0) = starting vector (often zero vector)
r(0) = b−Am(0)

d(0) = AT r(0)

for k = 1, 2, ...
ᾱk = ‖AT r(k−1)‖22/‖Ad(k−1)‖22
m(k) = m(k−1) + ᾱkd(k−1)

r(k) = r(k−1) − ᾱkAd(k−1)

β̄k = ‖AT r(k)‖22/‖AT r(k−1)‖22
d(k) = AT r(k) + β̄kd(k−1)

end

There are two ways that CGLS can be used for regularization

• apply directly to Am = b or

• apply to Tikhonov problem in the least squares formulation (5.7) .

We choose the first approach because for the Tikhonov method we have to find
an appropriate value of the regularization parameter λ. The obvious way to find
this value would be to conduct test with different values and this is not suited
for large scale problems. When expressing the iteration vector in terms of the
SVD of A we get

m(k) =
n∑

i=1

f
(k)
i

uT
i b
σi

vi (5.10)

where f
(k)
i are the filter factors depending on both b and the singular values.

It can be shown that

f
(k)
i =

{
O(σ2

i), for small σi

1, for large σi

In [7] it is shown that CGLS can compute an approximation to a TSVD or
Tikhonov solution by using regularizing iterations.

Chapter 6

Implementation and
Representation

The GravMagTools package is an object-oriented package that allows for setting
up and inverting geophysical problems. The reason why the package use ob-
jects is to obtain a user friendly interface. The use of objects ensures that the
user does not need to keep track of where and how the information is stored.
Nevertheless the program stores the information in an appropriate way and it
is still accessible for the user. The GravMagTools package draws on the object-
oriented MOOReTools package [4]. The GravMagTools package is able to use
the collection of iterative algorithms for linear inversion which are implemented
in MOOReTools. The objects of the existing implementation are all maintained
in the new GravMagTools package so a user is still able to perform inversions
using full structured coefficient matrices. We have implemented new objects and
modified some of the existing to work on both T 3 structure and full structure.
In this section we will describe the objects and the new implementation of the
package. We give a thorough description of the representation of the coefficient
matrix when using a T 3 structure. Furthermore we describe the bookkeeping of
the FFT multiplication. Finally we will give a graphical overview of the package.

54 Implementation and Representation

6.1 Objects in GravMagTools

In this section we describe the objects of the package, but only the object
connected to the new version of package1 in which the coefficient matrix is of
a T 3 structure. We start by describing the solution and data objects which
are modified versions of the GMData and GMSolution objects from the existing
implementation. Furthermore we will describe the new regularization object
which is closely related to the old object. For these objects we will put great
emphasize on describing the modifications and the reasoning behind these. Then
we describe the object GMT3Operator which stores the representation of the
coefficient matrix with a T 3 structure. In order to give a overview of the object
we have made tables which describe the fields in each of the objects. In these
tables a • represents a field. For some of the fields we have chosen not to store
all data, but instead store a filename hereby saving memory.

? GMSolution Object
This object is designed to contain the solution m when we solve the problem
Am = b. The object has been modified from the previous version of the package
to contain an extra field with information about the type of structure of the
corresponding coefficient matrix. It is important to notice that the change in the
ordering of the columns of the coefficient matrix causes a change in the ordering
of the solution. This will not affect the solution object in other regards than in
the respect that the data is arranged differently compared to the solution object
of the existing implementation. The extra field we have added to the object is
necessary because of the rearranging of the solution. This field enables us to
pass along information about the rearrangement of data. In Table 6.1 the fields
of the GMSolution object is listed.

? GMData Object
The information about the right hand-side b is stored in the GMData object. We
add three fields to this object; one field with information about the structure
of the coefficient matrix, one with information about the solution grid, and
finally one containing information about the observation grid. These fields are
added in order for the visualization routine to be able to retrieve the required
information. Fields contained in GMData is shown in Table 6.2.

? GMT3Regularizer Object
The GMT3Regularizer object is similar to the GMRegularizer object in the
existing implementation except it uses the different multiplication routine. The
new multiplication routine takes into account that when using a T 3 structure
the data contained in the GMData and the GMSolution objects are rearranged2.

1The objects of the existing implementation are covered in [5]
2The multiplication routine is covered in appendix C.

6.1 Objects in GravMagTools 55

Object Mathematical quantity Information included in the object
m Solution vector m • Solution elements

• Unit vector ĵ with the direction of the
field induced by the source (magnetiza-
tion only) or the string ’gravity’
(gravitation only)
• Information about the solution grid
• A structure containing the filename of
topography file and a vector of the points
of the solution which is inside the
topography
• Information about the structure
of the corresponding coefficient matrix.

Table 6.1: GMSolution object.

Object Mathematical quantity Information included in the object
b Data vector b • Measured data

• Unit vector î with the direction of the
induced core field
(magnetization only) or a string
’gravity’ (gravitation only)
• The filename of the file containing the
coordinates of observation points
• The filename of the file containing
the topography data
• Information about structure of corresponding
coefficient matrix
• Information about the solution grid
• Information about the observation grid
• String containing information about
problemtype (inverse or forward)

Table 6.2: GMData object.

The GMT3Regularizer object contains the fields listed in Table 6.3

? GMT3Operator Object
The GMT3Operator differs significantly from the representation of the coeffi-
cient matrix in the existing implementation, GMMatrix. GMMatrix stores the
full matrix while GMT3Operator only stores the values of the EIG structure3.
As GMMatrix the GMT3Operator carries around a structure with information

3The EIG structure will be explained in details in Section 6.1.1

56 Implementation and Representation

Object Mathematical quantity Information included in the object
(field)

L Regularization matrix L • Derivative operator
• Solution object
• Derivatives to use

Table 6.3: GMT3Regularizer object.

about the solution grid, the observation grid, and a filename of the file contain-
ing the observations. The remaining fields are identical to those of the existing
implementation. The multiplication routine uses an FFT matrix-vector multi-
plication routine4. Table 6.4 lists the fields in GMT3Operator.

Object Mathematical quantity Information included in the object
A Coefficient matrix A • Elements of the array EIG (repre-

sentation of A)
• Filename of the file containing
topography data
• Structure containing information
about the solution grid, the observation
grid and the filename of the file
with the observations
• A structure with the unit vector î
and the unit vector ĵ (magnetization only)
or the string ’gravity’ (gravitation only)
• Information about problemtype (inverse,
forward, or solution only)

Table 6.4: GMT3Operator object.

6.1.1 Representation of A

In this project we will use iterative methods to solve the generic model Am =
d. For this reason it is important that we can perform a quick matrix-vector
multiplication. In the following section we will present our representation of
A that enables us to implement a fast FFT matrix-vector multiplication. The
representation of A is denoted EIG.

Due to the structure of a T 3 coefficient matrix it is no longer necessary to
store all elements of A. An example of the elements that need to be stored from

4The implementation of the FFT multiplication routine will be explained in Section 6.1.2

6.1 Objects in GravMagTools 57

A when nx = mx = ny = my = nz = mz = 3 is illustrated in Figure 6.1. The
number of elements when mx = my = mz = nx = ny = nz = n is given by
2n · (2n − 1)2 ' 8n3 which takes up much less storage space than the n6 we
would need to store if there where no structure in A. In general, the number
of elements that need to be stored in the new representation of the coefficient
matrix is: ((nx + mx)− 1) · ((ny + my)− 1) · ((nz + mz)− 1).

Figure 6.1: Illustration of needed storage elements from A

In order to save time in the FFT multiplication as described in Section 2.2, we
represent each of the Toeplitz matrices of A as a vector containing the eigen-
values of the first row and the first column from the circulant matrices defined
from the blocks of A (in Section 2.2 this is equivalent to C(:, 1)). When storing
eigenvalues we store complex elements. This means that we need twice as much
storage space compared to storing one number in double precision, but by doing
this we save time in every iteration of the iterative solvers.

The eigenvalue vector for each of the circulant matrices, are stored in the
three-dimensional array EIG. Each of the columns in EIG represent the eigen-
values of one of the circulant matrices from A. In Figure 6.2 we illustrate how
we store the elements from A, but a little explanation is needed. The red circle
on the left hand-side of Figure 6.2 that contains 9 double elements is a Toeplitz
matrix. For this reason we only need to store 5 of the 9 elements ((nx +mx−1)
elements). The 5 elements we take out are changed into a circulant matrix and
the first column is taken out. The eigenvalues of the circulant matrix are calcu-

58 Implementation and Representation

lated by computing the FFT of the first column, and it is the resulting vector
of eigenvalues that is then stored as a column in EIG. The blue circle contains
the 9 Toeplitz matrices of the particular BTTB block and they are all stored in
the first level of the EIG structure ((ny +my−1) columns). Each level of EIG
contains information about one BTTB matrix and EIG contains (nz + mz − 1)
levels.

Figure 6.2: On the left hand-side A. On the right hand-side the representation
of A that contains the eigenvalues of the circulant matrices stored in a three
dimensional array EIG.

This way we compress the coefficient matrix A significantly, but we do not loose
information about a single element in A. There is also another advantage in not
creating a full coefficient matrix; the fact that it is not necessary to calculate all
elements of A, but only the elements that we need to create EIG. Furthermore
we are able to implement the algorithm using vectorization as opposed to using
nested for-loops.

A representation of AT is also needed. In Section 2.2 we show that multiplying
with AT is done by conjugating the diagonal matrix Λ. However, when storing
the data in the EIG structure there is a need for rearrangement of data. But
instead of storing the data we simply take into account the unique rearrangement
in each step of the multiplication.

6.1 Objects in GravMagTools 59

6.1.2 New Multiplication

The multiplication of the GMT3Operator is based on FFT matrix-vector mul-
tiplication. The multiplication method depends solely on the bookkeeping. In
Section 2.2 the FFT matrix-vector multiplication is described for a Toeplitz
matrix. When operating on BTTB and T 3 matrices it is now only necessary
to keep track of the Toeplitz matrices that make up each of these structures.
In this section we will give an overview of the different things to keep track of
during the multiplication.

We multiply the Toeplitz matrices of an entire BTTB block at a time. In Fig-
ure 6.3 we illustrate the representation of the BTTB blocks in the EIG structure
for an example where nx = mx = ny = my = nz = 3 and mz = 4. Below we

Figure 6.3: The bookkeeping visualized with respect to EIG

will list the pseudocode for the selection and bookkeeping of BTTB matrices
from the T 3 structure. However, it is important to notice that the multiplica-
tion is performed using the EIG structure this means that when referring to e.g
T3(2, 3) it translates into EIG(:,:,5) for the example in Figure 6.3.

Pseudocode for multiplyT3:

function [b] = multiplyT3(T3,x)

for i= 1:mz

for j=1:nz

b sub = multiplyBTTB(T3(j,i),x((i-1)*nx*ny+1 : i*nx*ny))

b((j-1)*mx * my+1:j*mx*my) += b sub

60 Implementation and Representation

end

end

Now for the multiplication of the BTTB block with the corresponding subpart of
the vector. Figure 6.4 illustrates a BTTB block on the left hand-side this could
for instance be T3(2, 3) and on the right side of the figure the representation of
the BTTB block in EIG in this case EIG(:,:,5). We have also illustrated the
subpart of the vector (Figure 6.5). In the psuedocode multiplyBTTB (referred
to in the first pseudocode of this section) the actual FFT multiplication is per-
formed as described in Section 2.2. The only difference being that we perform
several multiplications of the Toeplitz matrices and vectors simultaneously:

Figure 6.4: The bookkeeping visualized with respect to EIG(:, :, i)

Figure 6.5: The subvector given as input to multiplyBTTB

Pseudocode for multiplyT3

6.2 Graphical Overview of Package 61

function [b sub] = multiplyBTTB(BTTB,x sub)

z = fft([reshape(x sub,nx,ny) ; zeros(mx,ny)])

for i=1:ny

vec = index of all columns of the BTTB representation (Toeplitz matrices)

to be multiplied with the part of x sub where ny = i

z sub = repmat(z(:,i),1,my)

if (A)

b sub += (BTTB(:,vec).*z sub)

elseif (A T)

b sub += (conj(BTTB(:,vec)).*z sub)

end

end

b sub = ifft(b sub)

b sub = real(b sub(1:mx,1:my))

b sub = reshape(b sub,mx*my,1)

6.1.3 Test of FFT matrix-vector multiplication

In this chapter we will perform a test of the implemented FFT matrix-vector
multiplication. We will compare the results with the straight-forward matrix-
vector multiplication.

We start out testing whether the multiplication is performed correctly. In the
first test we multiply our representation of the coefficient matrix GMT3Operator
with a solution vector. The result is then placed in a data object. We then
convert the EIG structure of the GMT3Operator into a full structured matrix
and extract the values from the solution object and place them in a vector. The
matrix and vector is then multiplied using the straight-forward multiplication
in Matlab (this is the multiplication method of the existing implementation).
Finally the relative difference between the resulting vector and the data object
is calculated. We use the same approach when testing the multiplication of AT

with the observations. In both cases the relative difference is in the order of
magnitude of 10−16 which is the highest level of accuracy we can achieve on a
computer.

6.2 Graphical Overview of Package

In this section we will give a graphical overview of the package and explain the
basic use of it.

Figure 6.6 is a flowchart illustrating the input and output when using our

62 Implementation and Representation

Figure 6.6: Flowchart showing input and output from the setup files.

two different setup files MagSetupT3 and GravSetupT3. The MagSetupT3 is
used for magnetic problems and GravSetupT3 is used for gravity problems. The
flowchart is only for setup of inverse problems - for solution only and forward
setups there would be small adjustments to the flowchart. The pink circles on
the figure represent the input parameters/files, the blue squares represent the
actual setup files, and the green circles represent the output objects. The input
files are ASCII files and contain the information the GravMagTools package
require to set up the problems. We will briefly explain the different input files.

• directions file
This file is only used by magnetic problems and it contains the inclination and
declination of ĵ which is the direction of the magnetic dipole source. If the
inclination and declination are identical to those of the induced core field the
file is not necessary.

• observation file
The observation file will for a magnetic problem contain the inclination and
declination of the induced core field. For inverse magnetic problems the file will
also contain the observation points of the format (xk, yk, zk, datak) where zk is
the clearance above the topography. datak is the component of the magnetic
field along the induced field. For a gravity setup the file will contain the obser-
vation points in the same format where datak is the vertical component of the

6.2 Graphical Overview of Package 63

gravity field. The file will not contain any observation points if the problem is
a forward problem for any of the setups.

• solutiongrid file
The solutiongrid file contains information about the number of grid points in
the x, y, and z direction in the solution domain and the location of the domain.
Forward and solution only problems also include the solution in the file.

• observationgrid file
This file contains information about the observation grid. For inverse problems
the number of observation points in the x, y, and z direction and the location
of the observation grid in the x and y direction. For forward problems the file
will furthermore contain the z bottom coordinate of the observationgrid.

• topography file
This file consist of the coordinates (xk, yk, zk) to the topography where zk is the
height above sea level. If only one point is present, z1, then a flat topography
in z1 is used. If the file is omitted a flat topography at sea level is used.

• opts file
The opts file controls the parameters of upward continuation. In the file the
size of the total domain and the type of border is specified. If the file is omitted
a default value of 512 for the size of the domain and ’sp0’ (smooth extension of
order 0) will be used.

In order to achieve an understanding of which steps the setup files executes
before being able to return the objects we have in Figure 6.7 and 6.8 presented
some, in some sense, more detailed versions of the chart in Figure 6.6. In Fig-
ure 6.7 the preliminary operations are performed. They consists of reading the
input data. The routine which reads the topography also locates the solution
points above the topography. These point are not valid solution points and will
be set to 0 in the solution. The next step is testing whether the input meets
the requirements of the software. If they are not met, an error is returned to
the user. On the other hand if all requirements are met the interpolation (and
upward continuation) is performed resulting in a new observation set. The chart
continues in Figure 6.8. Here it is important to notice that the input files are
not read twice in the setup file. In flowchart 6.8 the files are used to calculate
the different fields of the output objects. The pink circles in this figure represent
the objects that are returned to the user.

GravMagTools have two different methods for computing a large-scale reg-
ularized reconstructions Tikhonov and CGLS. Figure 6.9 presents a flowchart
showing the input and output when using one of the two regularization methods.
The input object are computed with MagSetupT3 or GravSetupT3. Tikhonov
require a regularizer object, GMT3Regularizer, if no regularizer object is given

64 Implementation and Representation

Figure 6.7: Flowchart showing a more detailed version of the first stage of the
setup files.

the identity matrix is used. Furthermore the method requires a regularization
parameter, λ. Tikhonov returns a GMSolution object or a VectorCollection
of GMSolution objects. A VectorCollection is a MOOReTool object used to
store many solution object. The CGLS method takes as additional input the
number of iterations to be performed and returns a GMSolution object. It is
possible to give several numbers and the method will then store the solutions in
a VectorCollection.

In this section we have described the design of the new objects and we have
seen how some of these are associated with uniquely designed multiplication
functions. These functions are overloaded operators which ensures correct mul-
tiplication and at the same time they ensure the user friendliness that is essential
for the package. We design several different overloaded functions for instance
the show function. The show function works on both the GMSolution, GMData,
and GMT3Operator. In appendix D we have listed the routines of the new im-
plementation of the GravMagTools package. For a more detailed description we
have implemented a help topic in Matlab for each of the routines.

6.3 Performance 65

Figure 6.8: Flowchart showing a more detailed version of the second stage of
the setup files.

6.3 Performance

We set up a forward gravity surveying problem in order to test the new im-
plementation of the GravMagTools package versus the existing implementation.
We conduct a series of tests to illustrate the time and memory consumption for
the two implementations

After setting up the problem the system an inversion is conducted using the
CGLS solver implemented in the MOOReTools package ([4]). We recall how the
CGLS solver performs multiple matrix-vector multiplications in order to calcu-
late the solution, this way the efficiency of the newly implemented multiplication
should become apparent. The only differences between the new implementation
and the existing one that could effect the performance of the package is the rep-
resentation of A and the matrix-vector multiplication, so by performing tests
of various sizes we will have an indication of our implementation versus the ex-
isting implementation.

The number of CGLS iterations is set to 10. This number is very low, but for
now we are not interested in the quality of the reconstruction, but rather that it
does not differ from the corresponding reconstruction of the thoroughly tested
existing implementation of the package. We set the tolerance level of CGLS to

66 Implementation and Representation

Figure 6.9: Flowchart showing the use of our regularization methods.

10−6. For this test problem this choice ensures that the full number of itera-
tions is performed. Throughout the tests only the solution- and the observation
grid will change in size. Before commenting on the tests we list the results in
Table 6.5 and 6.6 and we note that our solutions for the different grid sizes were
equal to those calculated using the full structure. The time consumptions in

nx = mx = ny = my nz = nz time (A) time (m) # elements (full A)
10 5 1.42 0.18 2 MB
15 5 5.01 1.61 10.13 MB
15 10 18.31 6.46 40.5 MB
20 10 53.70 21.29 128 MB
20 15 126.89 50.67 288 MB
25 20 N/A N/A 1250 MB
50 20 N/A N/A 20000 MB
100 25 N/A N/A 500000 MB

Table 6.5: GravMagTools with the existing representation of A and the straight-
forward multiplication. Where time (A) is the number of seconds it takes to
create A and time (m) is the number of seconds it takes perform 10 CGLS
iterations.

6.3 Performance 67

nx = mx = ny = my nz = nz time (EIG) time (m) memory (EIG)
10 5 0.10 0.70 0.054 MB
15 5 0.13 1.10 0.126 MB
15 10 0.22 4.18 0.264 MB
20 10 0.29 6.63 0.474 MB
20 15 0.40 14.49 0.724 MB
25 20 0.70 41.18 1.528 MB
50 20 1.73 227.92 6.178 MB
100 25 6.16 2421.30 31.204 MB

Table 6.6: GravMagTools with new representation of A and new multiplication.
Where time (EIG) is the number of seconds it takes to create EIG (the new
representation of A) and time (m) is the number of seconds it takes to perform
10 CGLS iterations.

Table 6.5 and 6.6 are visualized in Figure 6.10. In the figure we see how the
straight-forward multiplication marked with a blue line is faster for small prob-
lems than the new implementation marked with a green line. However, when
the problems grow in size the graphs intersect and the EIG structure with the
new multiplication performs much faster. In the subplots of Figure 6.10 the red
points marks where the existing implementation run out of memory and is no
longer able to perform the test. The new implementation did not at any point in
the test run out of memory, however the time consumption grew exponentially
in size. Hence the iterative regularization methods of the package will (for most
problems) run faster than the existing implementation. The last thing we want

Figure 6.10: Time consumptions from our test.

to visualize from the tables is the memory consumptions for the two methods

68 Implementation and Representation

compared in a coordinate system. This is done in Figure 6.11 where it is be-
comes obvious why Matlab runs out of memory when solving the system using
the existing objects.

Figure 6.11: Memory consumptions from our test.

So in theory it is possible to set up large-scale problems using the new imple-
mentation. This conclusion is supported by our performance test that prove
that not only can we setup up the large-scale problems we can also do it within
a reasonable time consumption. Furthermore the new multiplication was faster
than the straight-forward multiplication.

Large-scale problems are difficult to setup and reconstruct in Matlab because
only a limited virtual memory is available. On 32-Bit architecture systems5 4
GB addressable memory is available. The operating systems reserve the upper
2 GB of address space, thereby limiting the available virtual memory to 2 GB.
Upon launch of Matlab additional 0.8 GB is used. In practice this limits the
available virtual memory to 1.2 GB. In addition to this Matlab requires that
each variable is stored in a contiguous block of virtual memory. This means
that when for instance a coefficient matrix is created at a particular point in
time we are limited by the amount of contiguous free virtual address space.

Assuming that we have 1 GB virtual memory available at a time of creating
a coefficient matrix, we have then in Table 6.7 listed the theoretical sizes for the
solution- and observation grid (which we here assume to be identical) and the
memory consumption for the full and the compressed coefficient matrix. Each
element of the full structure is saved using double precision requiring 8 bytes
of virtual memory whereas each element if the EIG structure is complex and

5The operating systems at IMM (unix) and on our private PC’s (windows) are all 32-Bit
architecture systems.

6.3 Performance 69

requires 16 bytes of memory to be stored in double precision. We have in both
cases fixed nz = mz = 12 and the difference is astounding. The theoretical
largest T 3 matrix would if stored in full structure take up 5.2 ∗ 105 GB virtual
memory!

Type nx = ny = mx′ = my′ nz = mz′ Memory
Full 30 12 ' 1 GB
T 3 820 12 ' 1 GB

Table 6.7: Largest theoretical possible coefficient matrix (full and compressed).

70 Implementation and Representation

Chapter 7

Inversion of Data

The theory and tools are now in place and we are able to perform the inversions.
In this chapter we wish to find a good setup for these type of problems. Then
we will experiment with inversions using both simulated and upward continued
multi-level data. Finally we will use the conclusions to perform large-scale
inversions. Throughout the chapter we test using the 3-D magnetic setup with
a gaussian source. The same tests will be performed using a dipole source and
if nothing else is stated in the test, the findings match those of the gaussian
source. The same goes for the gravity setup.

In parts of this chapter we will use tools from the REGULARIZATION TOOLS
[6]. These tools are not intended for large-scale problems, but they are used in
order to achieve an understanding of the problems before we are able to perform
large-scale inversions.

7.1 Test of Setup

In order to achieve the best possible inversions we set out to find a good setup.
In this section we experiment with different types of setups and use SVD analysis
as a tool to find the best overall setup.

72 Inversion of Data

7.1.1 Number of Data Levels

In Chapter 3 we saw how the 3-D geometry behind the surveying models led to
the T 3 structure. A special case of the T 3 structure is achieved when using only
one observation level, this structure is called blockwise BTTB structure. We
want to investigate whether there is a difference between the case using one level
and using 3 observation levels for different dimensions of the solution domain.

We know that ill-posed problems can be hard to solve, so in this section
we investigate if the setup is of influence with regard to the ill-posedness. We
use SVD as the analysis tool and we only consider the coefficient matrix. No
inversions are performed in this section. For a number of different setups we
calculate the condition number of the coefficient matrices

cond(A) =
σmax

σmin

. (7.1)

But this is not sufficient information when investigating the level of ill-posedness.
We also need to consider the development of the singular values. This process is
a deciding factor when determining how many components that can be used in
the reconstruction. In Figure 7.1 we illustrate two examples with the exact same
condition number, but different development in the singular values. Assuming
that the right hand-side b and the noise level are identical a significantly larger
amount of components can be used in the example on the right hand-side.

Figure 7.1: Two different developments in singular values for two coefficient
matrices with the same condition number.

We set up two problems both approximately square. The first problem only
contains one observation level with 64 × 64 grid points, the second problem
contains three observation levels each of the levels is 37× 37. For both solution
grid and observation grid the grid spacings ∆x = ∆y = ∆z = 0.5. For each
setup we create four different solution grids illustrated in Figure 7.3 and listed

7.1 Test of Setup 73

Figure 7.2: On the left hand-side the blockwise BTTB structure and on the
right hand-side the T 3 structure.

in Table 7.1 and Table 7.2. In these tables we list the decrease in the singular
values for each system in the test. When talking about the decrease we mean the
span of the singular values in a specified range (for instance 1 to 1000). In Figure
7.4 the singular values are plotted for the solution grid of 36×36×4. On the left
hand-side the blockwise BTTB and on the right hand-side the T 3 structure.

Figure 7.3: The different solution grids.

From Equation (5.3) we know the singular values are a non-increasing sequence.
Hence the first singular values are least likely to be affected by errors. For this
reason we are interested in a small decrease in the large singular values so they
can contribute to the solution. When comparing Table 7.1 and 7.2 we see that
the T 3 structure is preferable over the blockwise BTTB. This statement is based
on the fact that the singular values decrease slower in Table 7.2 than in Table
7.1.

There are several conclusions to be drawn from this line of testing. The
primary conclusion is that when working with the T 3 structure we should work

74 Inversion of Data

Figure 7.4: The singular values for the blockwise BTTB structure on the left
hand-side and the T 3 structure on the right hand-side.

Solution grid decrease σi decrease σi decrease σi

1-1000 1001-2000 2001+
36× 36× 4 101 1011 109

20× 20× 10 109 107 104

12× 12× 28 1015 103 103

10× 10× 40 1016 102 103

Table 7.1: One observation level: Decrease in singular values for the different
solution grids.

Solution grid Decrease σi Decrease σi Decrease σi

1-1000 1001-2000 2001+
36× 36× 4 102 102 1015

20× 20× 10 104 109 107

12× 12× 28 1013 105 102

10× 10× 40 1016 102 102

Table 7.2: Three observation levels: Decrease in singular values for the different
solution grids.

with multi-level observations sets1. Working with only one observation level
when using the T 3 structure leaves us vulnerable to any kinds of error whether
that be measurement errors or interpolation errors. It is however, important to
notice that we are still vulnerable to error working with multi-levels observation
sets, but in a less degree than if using one observation level. Furthermore we
know from the performance section of Chapter 6 that the T 3 structure requires

1However, under different conditions one observation level has proven good, see [3].

7.1 Test of Setup 75

least memory. Another conclusion from this investigation is that when working
with square systems, it is preferable to work with solution layers and observation
levels of approximately the same size.

7.1.2 Cell Proportions

In the previous test the grid spacings for the three directions was chosen to be the
same, i.e. ∆x = ∆y = ∆z = 0.5. We have chosen to make it a requirement that
∆x = ∆y thus when experimenting with the cell proportions we will only vary
∆z. For the T 3 structure using three observation levels we fix ∆x = ∆y = 0.5
and then the singular values for three different values of ∆z are calculated -
one larger (0.75), one identical (0.5) and one half size (0.25). In Figure 7.5 the
visual result is illustrated and it is clear that the squeezed cells where ∆z = 0.25
yields the best result. The same test has been performed for all the solution
grids from the test in Section 7.1 and the conclusion for each test is identical to
the conclusion of this first test.

Figure 7.5: The singular values for three different values of ∆z. For the red line
∆z = 0.75, for the blue and green line ∆z = 0.5 and ∆z = 0.25, respectively.
∆x and ∆y are both fixed to 0.5.

76 Inversion of Data

7.1.3 Distance between Observation grid and Solution grid

The final part of the setup is a test that describes the importance of the place-
ment of the observation and solution grid respectively. For this purpose we set
up a forward problem where the observation and solution grid both contains
15 × 15 × 6 grid points. We then place the two grids in 4 different distances
and calculate the coefficient matrix. For each matrix we take out the singular
values and plot them, the result can be seen in Figure 7.6. The placement of
the solution grid is fixed and the observation grid is then placed at a distance of
10 meters, 400 meters, 800 meters, and 1.2 km respectively. From the decrease
of the singular values it is clear to see that the problem is less ill-posed when
the two grids are closest together.

Figure 7.6: The singular values the different placements of the solution grid.
The blue line represents the singular values for a distance of 10 meters, the red
400 meters, the green 800 meters, and finally the magenta 1200 meters.

To sum up the tests of this section we have seen that we achieve a good setup
using multi-level observation sets with squeezed cells in the z direction. Fur-
thermore the observation and solution grid has to be approximately the same
size and placed close together.

7.2 Convergence of Regularization Methods 77

7.2 Convergence of Regularization Methods

Throughout this chapter inversions will be performed using some of the regular-
ization methods described in Chapter 5. In this section we will invert the same
setup using TSVD, CGLS, and Tikhonov, respectively.

We set up a square system containing 32×32×4 grid points in both solution

Figure 7.7: The exact solution.

and observation grid where ∆x = ∆y = 0.5 and ∆z = 0.25. The gaussian source
is placed off set from the center in the x and y direction and half way down the
solution domain as shown in Figure 7.7 which illustrates the exact solution. We
now perform the inversions using the methods as listed in Table 7.3. The table
lists the specifications for each of the inversions. The time consumption in col-
umn 4 is the time to finish the inversion on the Solaris Sunfire server at IMM.
In Figure 7.8 the reconstructions for the three different regularization methods
Tikhonov, CGLS, and TSVD are shown. The inversions are all, in some sense,
close to the exact solution in figure 7.7. At the same time they are also visually
alike even though they do not convert towards the same solution.

Method Tolerance # iter. Time (sec) Other Fig. 7.8
Tikhonov 10−6 100000 5.1 ∗ 104 λ = 1.2 ∗ 10−9 Top left

(σ3700)
CGLS 10−8 17939 8.4 ∗ 103 N/A Top right
TSVD N/A N/A 1.5 k = 3700 Bottom

Table 7.3: Methods used to perform inversion of the setup.

78 Inversion of Data

Figure 7.8: The solutions for the three different regularization methods. On the
top Tikhonov and CGLS and on the bottom of the figure TSVD.

7.3 Investigations of Upward Continuation 79

Figure 7.9: On the left hand-side the first setup using upward continuation. On
the right hand-side the second setup using solely simulated data.

7.3 Investigations of Upward Continuation

In Section 4.1.2 we saw that given the right conditions, upward continuation
created an observation set that corresponds well to the simulated data. However
we also saw that small changes in the conditions could have damaging effects on
the upward continued data. In this section we perform inversions using upwards
continued data.

We set up two forward problems, in both problems the source is gaussian
and placed in the exact same location and the solution grids are identical. The
observation and solution grid are placed 500 meters apart in order to limit the
relative error between the upward continued set and the simulated data while
still achieving an acceptable decrease of the singular values. The observations
for the first problem are simulated in one level (to imitate a real data set).
This data set is then upward continued to a total of 6 levels (we provide the
best condition placing a natural border of 7 data points around the data to
be used in the upward continuation). The second observation set is simulated
in 6 levels with the same dimensions and placement of the first set. Figure
7.9 illustrates the two setups. The relative difference between the first and the
second observation set is 0.8%. We now perform inversions of the two setups
using Tikhonov2. In Figure 7.10 the exact solution is shown on the top to the
far left while the two inversions are illustrated on the top to the right (the
inversion using upward continued data) and on the bottom (the inversion using
the simulated data). The best inversion is clearly the solution calculated using
the simulated data. To be sure that the difference is not caused by the upward
continuation being performed in too many levels we perform an inversion using
3 data levels and the result is once again no depth resolution - for this reason

2The best regularization parameter λ is found using a trial-and-error method.

80 Inversion of Data

Figure 7.10: The top left figure is the exact solution. The inversion using the
upward continued data in 6 levels is shown on top to the right and at the bottom
the inversion using the simulated data in 6 levels.

we have chosen not to include the reconstruction.

7.3.1 SVD Analysis of the Test Problem

Now we investigate why the inversions using upward continued data are so dif-
ferent from the one using simulated data even though the vectors are almost
identical. To understand why there is no depth resolution we perform an SVD
analysis of the problem. On the left hand-side in Figure 7.11 we can see the
Picard plot of our test problem using upward continued data. The Picard con-
dition is violated after 300 components and this means that only these may
contribute to the regularized solution. (We will return to the right hand-side
of the plot later in this section.) We now take a closer look at the singular
vectors ui and vi for the two setups. From [8] we know that in 1-D the higher
the index i, the more oscillations ui and vi have. To illustrate that the same
holds true in 3-D we plot the 1st, 3rd, 6th, and 9th left singular vectors in Figure
7.12 and in Figure 7.13 the 1st, 300th, 600th, and 750th right singular vectors.

Figure 7.12 and 7.13 clearly shows that the higher the index the more os-

7.3 Investigations of Upward Continuation 81

Figure 7.11: Picard plots of the two setups with 6 observation levels.

Figure 7.12: The 1st, 3rd, 6th, and 9th left singular vectors ui of coefficient
matrix.

cillations in the vectors. In Figure 7.12 the largest values of the left singular
vectors is placed in the bottom of the sliceplot. This is logical because the left
singular vectors are the expansion of the right hand-side b which contains the
observation values and we know that the strongest observation values are lo-
cated closest to the source. If we look at the right singular vector vi in Figure
7.13 we see that when i = 1 the highest values are placed in top of the plot
while they for i = 300, i = 600, and i = 750 moves down. This observation
leads to an important tool when discussing depth resolution namely the Depth
Resolution Plot3. The DRP is according to [3] calculated by rearranging every

3In the rest of this report the Depth Resolution Plot will be referred to as DRP

82 Inversion of Data

Figure 7.13: The 1st, 300th, 600th, and 750th right singular vectors vi of coeffi-
cient matrix.

vi vectors to a 3-D box4. The 2-norm is then calculated for every layer in these
boxes, placed in a vector and plotted. We can in the DRP plot see where the
ith right singular vector contributes most to the solution. In [3] it is shown that
the more components we are able to include the more depth resolution can be
obtained. Figure 7.14 illustrates the DRP of the test problem. From the Picard
plot in Figure 7.11 we know that we can trust the first 300 components, and
when applying this information to the DRP in Figure 7.14 we can see that this
give us sufficient information to reconstruct 2 layers; which also is what we see
in the reconstruction in Figure 7.10 (top right plot).

On the right hand-side of Figure 7.11 we have plotted the Picard plot for the
simulated data in 6 levels. The plot tells us that the Picard condition is violated
after approximately 1000 components and when we look at the DRP in Figure
7.14 we can see it means we can reconstruct to layer 5. This is consistent with
the reconstruction on the bottom of figure 7.10 it is clear how this plot is much
closer to the exact solution than the inversion using upward continued data.
This implies that the error introduced by the upward continuation is cause of
the lack of depth resolution. Thus we investigate the error thoroughly in the
following.

4It is important that this box have the same ordering as the solution would have if reshaped
into a 3D box

7.3 Investigations of Upward Continuation 83

Figure 7.14: The Depth Resolution Plot of the simulated magnetic test problem.

7.3.2 Error Behavior in Upward Continuation

In this section the errors introduced by the upward continuation is examined. A
forward problem like in Section 7.3 is set up. Hence we create a forward problem
and from the bottom level we perform an upward continuation in 5 additional
levels. The exact observation level from the forward problem is compared to
the upward continued levels. The error of upward continuation is plotted in
Figure 7.15 for each level. The figure shows how the error from level 1 to
level 5 appears to change into something that looks like a signal in the upward
continuation. The small difference in level 0 is cause by numerical errors. The
upward continuation functions as a lowpass filter. That is the method passes
low frequencies well and reduces high frequencies. White noise consists of high
frequencies, but in our case the noise frequencies are low (due to the upward
continuation) and for this reason it is not possible to separate the noise from
the actual signal.

We now plot |uT
i eerror| in order to see how the upward continuation error

effects singular values. On the left hand-side in Figure 7.16 |uT
i eerror| is plotted

for the upward continuation error from our test problem. On the right hand-
side we have created white noise in the same order of magnitude as the upward
continuation error. In these figures it becomes quite clear how the specific noise
of the upward continuation effects the large singular values in a way that white
noise never would.

84 Inversion of Data

Figure 7.15: The error of the upward continuation compared to the exact ob-
servations from the forward problem.

Figure 7.16: To the left is the plot of |uT
i eupward|, and to the right |uT

i ewhitenoise|
where the noise level is 10−5.

7.3.3 Summary

These investigations lead to the rejection of the Fourier based upwards continua-
tion for these type of problems using the T 3 structure. The main problem of the
method is that it is a filtration and not a physical model. According to [12] the
Fourier based transformation would be a physical model if the integrated area
was infinite. However, this is not possible. The resulting error is developed into
a signal that is unseparable from the actual signal of the measurements. Hence
the largest singular values are affected causing bad inversions. The derivation

7.4 Box Solver 85

and implementation of a new upward continuation model is out of the scope
of this project. Thus from this point on we will only perform inversions using
simulated data.

7.4 Box Solver

We have seen how we can obtain the best reconstructions using squeezed cells.
But this means that we only can achieve a limited depth of the solution grid
unless a very large number of grid points are used in the z direction. For this
reason we present the outlines of a solver technique denoted a box solver.

In Figure 7.17 we illustrate the basic idea behind this solver. The four dif-
ferent solution domains are the four boxes (1 to 4) and they are overlapping as
illustrated in the figure. First we setup the problem including only box 1, then
box 2, and so on. When inverting system 1-4 the reconstructions can be merged
in an appropriate manner as shown to the far right in the figure.

Figure 7.17: Illustration of the box solver.

For this test we choose to use the SVD analysis as a tool and TSVD as the
regularization method to perform the inversions. We will look at each inversion
separately and we will not perform the actual merging. We design a forward
problem where the observations are 3 levels of 37 × 37 data points. The total
solution domain is 32 × 32 in 10 layers and each of the boxes are 32 × 32 in 4
layers. Thus each of the systems to be inverted are approximately square. On
the left part of Figure 7.18 the exact solution is visualized and the colorbar is
set to [0 1]. In the following inversions the colorbars are set to [0 3]. On the
right part of Figure 7.18 we therefore visualize the exact solution once again
with a colorbar of [0 3]. This is done in order to ensure that the exact solution
is visually comparable with the inversions. The source is gaussian and placed
approximately in the 4th-6th layer. The 4 different solution domains are now
created, the systems with the coefficient matrices and the right hand-side are

86 Inversion of Data

Figure 7.18: On the left side the exact solution with a colorbar set to [0 1].
On the right hand-side the exact solution with a colorbar set to [0 3].

set up. Below the solution domains are listed and opposite to each domain we
list which of the layers the domain cover with respect to the solution domain as
seen in Figure 7.18.

Box 1: Layer 1-4
Box 2: Layer 3-6
Box 3: Layer 5-8
Box 4: Layer 7-10

Figure 7.19 shows the Picard plots for each of the four systems. From the Picard
plots it is clear to see that the first box from the top is the one that achieves
the best depth resolution. About 3000 SVD components can be used before the
Picard condition is no longer met. For the second box from the top about 3000
components can be used. In the third box approximately 750 components and
in the fourth box the Picard condition is seemingly not met at all.

TSVD regularization method is now used for the actual inversion. For each
box we perform 3 inversions adjusting only the truncation parameter. In Figure
7.20 the inversions of the first box from the top. For the middle plot using a
truncation parameter of 2000 and it resembles the source. However, the inten-
sity of layer 3 is a bit too high compared to the third layer of Figure 7.18, this is
maybe not all that strange seeing how the main part of the source is actually not
placed in this box. The second box from the top is the box in which most of the
source is located. This makes it all the more strange that the method actually

7.4 Box Solver 87

Figure 7.19: The Picard plots for each of the 4 boxes.

88 Inversion of Data

does not seem to reconstruct the source in this box. This is seen for the three
inversions of Figure 7.21. In the third box the method places the source at the
top of the domain - see Figure 7.22. Once again the method places too much
magnetization in the domain, but this is understandable because the source is
actually only partially placed in this box. We have chosen not to include the
inversions of the fourth box because it does not meet the Picard condition for
any number of components.

Based on this experiment we conclude that this way of reconstructing in

Figure 7.20: The inversions for the first box from the top.

Figure 7.21: The inversions for the second box from the top.

order to achieve depth resolution would need some adjusting. Moreover the
merging of domains must be done with great care and it would take a lot of
experiments in order to design a stable algorithm to perform this type of inver-
sion. This section has just been an outline and we decide not to include this
type of solver in the package.

7.5 Inversions with Topography 89

Figure 7.22: The inversions for the third box from the top.

7.5 Inversions with Topography

The GravMagTools package is capable of taking any given topography into con-
sideration when performing an inversion. In this section we will setup a test
problem with a topography. The topography is the Mount Vesuvius (Italy).
After having rejected the Fourier based upward continuation for this type of
problems when using T 3 structure, we are not able to use the observation set
consisting of real observations. For this reason we create a forward problem
simulating the observation set and placing a source. Figure 7.23 shows the
placement of the source inside the topography - we have plotted the source us-
ing no interpolation. This means that each of the grid points of the solution
domain in which the magnetic gaussian source is placed is marked with a yellow
crosses. The solution grid is 25 × 40 × 4 and the observation grid is 4 levels
of 28 × 43 grid points. The distance between the two grids are 350 meters.
The implementation deals with the solution points outside the topography by
assigning them a value of 0. The inversion is then performed using CGLS with
a tolerance level of 10−8 the method performs 3958 iterations and in Figure 7.24
the exact solution is illustrated on the left hand-side and the inversion on the
right hand-side. The inversion is regarding depth resolution almost identical to
the exact solution. The yellow line of the figure represents the mountain side.
An interpolated shading is used this is the reason why it appears that not all
points outside the topography is set to 0.

90 Inversion of Data

Figure 7.23: The exact solution plotted with topography. The yellow crosses
represent the placement of the source.

Figure 7.24: The exact solution on the left hand-side and on the right hand-side
the inversion. The yellow line indicates where the mountain sides is placed.

7.6 Large-scale Problems 91

7.6 Large-scale Problems

This section revolves around the large-scale problems and our ability to perform
the inversions. In Section 7.3 we rejected the Fourier based upwards continua-
tion when using the T 3 structure, so the observations of these problems are all
simulated. We will setup two different large-scale problems one with an uncom-
pressed coefficient matrix of 1.2 GB and one with an uncompressed matrix of
approximately 49 GB.

We start with the test problem illustrated in Figure 7.25. The problem has

Figure 7.25: Problem setup for full coefficient matrix of 1.2 GB.

a 55 × 55 × 4 solution grid and a 64 × 64 × 3 observation grid. This produces
an coefficient matrix of size 1.3 MB that if stored with full structure would
take up 1.2 GB virtual memory. On the left hand-side of Figure 7.26 the exact
solution of the forward problem is plotted. On the right hand-side the result
of the inversion performed using the CGLS regularization method with a toler-
ance of 10−8. The result is visually almost identical to the exact solution. The
reconstruction was performed in 13 hours and 40 minutes on the Solaris sunfire
server at IMM (using Matlab 2006a) and the method stopped when reaching the
tolerance level after having performed 30161 iterations. The relative difference
between the inversion and the exact solution is 11%.

The second test problem was only solved on our private PC. For this problem
we were not especially interested in the quality of the solution compared to the
exact solution. The reason for this is that we saw in the first test problem that
for this setup it is only a question of a low tolerance level and/or enough iter-
ations when using CGLS. The setup of this test is bigger than the first one, in
fact the uncompressed coefficient matrix is approximately 49 GB. Whereas our
version of the coefficient matrix takes up only 8.9 MB virtual memory. The PC

92 Inversion of Data

Figure 7.26: On the left hand-side the exact solution of the forward problem.
On the right hand-side the CGLS solution with at tolerance of 10−8.

we use to perform the inversion is a 6 year old Fujitsu Simens with OS Windows
XP professional and Matlab 2006a. The processor is an Mobile-Intel Pentium
4 with a CPU of 2.2 GHz, 1.0 GB Ram. The setup contains an solution grid
of 125× 125× 5 grid points and an observation grid containing 140× 140 grid
points in 4 levels - as seen in Figure 7.27. Once again we show the exact solution

Figure 7.27: Problem setup for full coefficient matrix of 49 GB.

next to the inversion. This is done in Figure 7.28 where the exact solution is
shown on the left hand-side. On the right hand-side the result of the CGLS
inversion after 12770 iterations. The inversion took 110 hours and 52 minutes
and was terminated on iterations before reaching the tolerance level of 10−7.
The relative difference between this large-scale inversion and the exact solution
is approximately 30%. Even though the inversion is not identical with the exact
solution it is clear to see that the method has placed the magnetization correctly

7.6 Large-scale Problems 93

Figure 7.28: On the left hand-side the exact solution of the forward problem.
On the right hand-side the CGLS solution with at tolerance of 10−7.

in the solution domain and we are convinced that with more iterations it would
have been an inversion much closer to the exact solution. But as mentioned
the main purpose of the test was to prove that the new implementation of the
GravMagTools package is able to perform an extreme large-scale inversion using
a standard PC.

94 Inversion of Data

Chapter 8

Conclusion

In this project we have implemented a new version of the preexisting object-
oriented GravMagTools package. The new implementation is designed and im-
plemented in such a way that the existing implementation is still fully opera-
tional. The main purpose of the new implementation is inversions of large-scale
geophysical problems. Our main focus has been on producing and maintaining
Toeplitz structures in order to save memory and obtain speed in the computa-
tions.

For both the magnetic and the gravity surveying problem we were able to
derive a 3-D geometry model in which we achieved the Toeplitz structure that
we chose to denote the T 3 structure. This allowed us to design a new data struc-
ture storing only the necessary elements of the Toeplitz structured coefficient
matrix. Thereby we compressed data significantly without loosing information
about a single element in the matrix. Having achieved the lossless compression
we implemented a uniquely designed FFT matrix-vector multiplication that al-
lowed for multiplications of the new data structure with a vector. In fact this
multiplication method performed faster for larger problems than the straight-
forward multiplication implemented in Matlab.

The geophysical problems are by nature ill-posed which means that when per-
forming the inversion we are vulnerable to errors of any kind. The SVD analysis
was used as a tool in able to find a good setup. The resulting setup consisted
of using multi-level observation sets, squeezed cells in the z direction, and not
placing the observation and solution grid too far apart.

96 Conclusion

The multi-levels observations sets require some sort of preprocessing of data
because geophysicist (usually) provide data sets in one level. To transform the
single-level data set to multi-levels the scientists of the University of Naples pro-
vided us with the Fourier based upward continuation method. To understand
the performance of this method we conducted several tests. These tests illus-
trated that under some conditions the performance of the method was good,
but small changes in the conditions lead to devastating effects. However even
under good circumstances we did not achieve depth resolution when inverting
with upward continued data. For this reason we conducted an investigation of
the behavior of the error introduced by the upward continuation. When using
the upward continuation method the error was developed into a signal insepa-
rable from the actual measured signal. Finally we reached the conclusion that
the Fourier based upward continuation method was not suited for the type of
problems of this thesis when using T 3 structure. This decision was not made
without regret seeing how it means that we would then be unable to perform
inversions using real data sets. For the remainder of the thesis we therefore
focused on inversions using simulated data.

In the final part of the thesis the inversions were performed. We were not
able to work with real observation data, but we were still interested in showing
the potential of the package using simulated data. For this reason we set up
a large-scale problem using the topography of Mount Vesuvious. This problem
was reconstructed satisfactorily both with regard to the quality of the recon-
struction and the incorporation of the topography. The main purpose of this
thesis is to set up and reconstruct large-scale problems within a reasonable time
consumption. First we set up a problem in which the coefficient matrix took
up 1.3 MB, in comparison the uncompressed coefficient matrix took up approx-
imately 1.2 GB of virtual memory. The inversion of this problem was visually
very close to the exact solution. To illustrate the point that the package do not
require a high performance computer to reconstruct a large-scale problem we
set up an even larger problem on a 6 year old standard PC. For this problem the
coefficient matrix was 8.9 MB whereas the corresponding full structured matrix
would require 49 GB. The setup took 22 seconds and the CGLS solution was
reached within 111 hours. This illustrated the fact that even an old PC can
solve large-scale problems using the new implementation of the GravMagTools
package. Furthermore this is done within a reasonable time consumption es-
pecially when considering the hardware used. We did not reconstruct bigger
problems than this last setup, but we calculated that the theoretically largest
coefficient matrix that we could setup and use in calculations corresponded to
an uncompressed matrix of 5.2 ∗ 105 GB.

8.1 Future work 97

8.1 Future work

In order to be able to use the new implementation of the GravMagTools package
for real inversions a new approach for achieving multi-level data sets is required.
This can either be done by measuring data in multi-levels or by designing a phys-
ical model of the upward continuation.

In Chapter 7.4 we outlined the work for the implementation of a box solver
routine to be able to reconstruct deeper. However the routine needs extensive
development before it is operational

The object-oriented approach of the package makes future work easy as ob-
jects or modules can be replaces without further modification.

98 Conclusion

Appendix A

Deducting of Equations in the
Magnetic Surveying Problem

We will in this appendix deduce the equation for the discretized magnetic sur-
veying problem and the constrains which have to be satisfied in order to obtain
a T 3 structure.

The kernel is given by

K(r, r′) =
µper

4π

ĵ · (3(̂i · d̂)d̂− î)
‖r− r′‖ (A.1)

r =
[
xi, yj , zk

]T is the location of a dipole magnetic source, r′ =
[
x′i′ , y

′
j′ , z

′
k′

]T

is a observation point. d̂ is the unit vector with the direction from r towards r′.
î =

[
ix, iy, iz

]T is a unit vector with the direction of the magnetic field induced

by the Earth. ĵ =
[
jx, jy, jz

]T is the unit vector in the direction induced by the
dipole in r. µper is the magnetic permeability.

In order to discretize the problem we divide x into nx points, y is divided into
ny points, z is divided into nz points, x′ is divided into mx points, y′ is divided
into my points, and z is divided into mz points. The discritization methods we
are using is the midpoint quadrature rule. The matrix of the dicretized problem
A is given by

aMN = wiwjwkK(xi, yj , zk, x′i′ , y
′
j′ , z

′
k′)

100 Deducting of Equations in the Magnetic Surveying Problem

where
M = i′ + (j′ − 1)mx + (k′ − 1)mxmy

N = i + (j − 1)nx + (k − 1)nxny

i = 1, 2, ..., nx

j = 1, 2, ..., ny

k = 1, 2, ..., nz

i′ = 1, 2, ...,mx

j′ = 1, 2, ...,my

k′ = 1, 2, ..., mz

The quadrature weights using the midpoint quadrature rule are

wi = |xend−xstart|
nx

and wj = |yend−ystart|
ny

and wk = |zend−zstart|
nz

The quadrature points are

xi = xstart + ihx − hx

2 where hx = |xend−xstart|
nx

yj = ystart + jhy − hy

2 where hy = |yend−ystart|
ny

zk = zstart + khz − hz

2 where hz = |zend−zstart|
nz

The collocation points are

x′i′ = x′start + i′hx′ − hx′
2 where hx′ = |x′end−x′start|

mx

y′j′ = y′start + j′hy′ − hy′
2 where hy′ = |y′end−y′start|

my

z′k′ = z′start + k′hz′ − hz′
2 where hz′ = |z′end−z′start|

mz

To obtain a expression for K(xi, yj , zk, x′i′ , y
′
j′ , z

′
k′) we insert the expression for

the quadrature points and the collection points into Equation (A.1) and calcu-
late the expression. First we calculate what d̂ becomes when inserting these
points.

d̂ =

xi−x′
i′√

(xi−x′
i′)

2+(yj−y′
j′)

2+(zk−z′
k′)

2

yj−y′
j′√

(xi−x′
i′)

2+(yj−y′
j′)

2+(zk−z′
k′)

2

zk−z′
k′√

(xi−x′
i′)

2+(yj−y′
j′)

2+(zk−z′
k′)

2

We can now write the expression a in the following way

aMN = µperwiwjwk

PMN
ijk

QMN
ijk

(A.2)

101

P MN
ijk = ĵx(3(̂ix(x′start − xstart +

hx

2
− hx′

2
+ (hx′ i

′ − hxi)) + îy(y′start − ystart

+
hy

2
− hy′

2
+ (hy′j

′ − hyj)) + îz(z′start − zstart +
hz

2
− hz′

2
+ (hz′k

′ − hzk)))

(x′start − xstart +
hx

2
− hx′

2
+ (hx′ i

′ − hxi))− îx((x′start − xstart +
hx

2
− hx′

2

+(hx′ i
′ − hxi))2 + (y′start − ystart +

hy

2
− hy′

2
+ (hy′j

′ − hyj))2 + (z′start

−zstart +
hz

2
− hz′

2
+ (hz′k

′ − hzk))2)) + ĵy(3(̂ix(x′start − xstart +
hx

2

−hx′

2
+ (hx′ i

′ − hxi)) + îy(y′start − ystart +
hy

2
− hy′

2
+ (hy′j

′ − hyj)) +

îz(z′start − zstart +
hz

2
− hz′

2
+ (hz′k

′ − hzk)))(y′start − ystart +
hy

2
− hy′

2

+(hy′j
′ − hyj))− ŷx((x′start − xstart +

hx

2
− hx′

2
+ (hx′ i

′ − hxi))2 + (y′start

−ystart +
hy

2
− hy′

2
+ (hy′j

′ − hyj))2 + (z′start − zstart +
hz

2
− hz′

2
+ (hz′k

′

−hzk))2)) + ĵz(3(̂ix(x′start − xstart +
hx

2
− hx′

2
+ (hx′ i

′ − hxi)) + îy

(y′start − ystart +
hy

2
− hy′

2
+ (hy′j

′ − hyj)) + îz(z′start − zstart +
hz

2
−

hz′

2
+ (hz′k

′ − hzk)))(z′start − zstart +
hz

2
− hz′

2
+ (hz′k

′ − hzk))−

îz((x′start − xstart +
hx

2
− hx′

2
+ (hx′ i

′ − hxi))2 + (y′start − ystart +
hy

2

−hy′

2
+ (hy′j

′ − hyj))2 + (z′start − zstart +
hz

2
− hz′

2
+ (hz′k

′ − hzk))2))

Qijk = (
√

(xi − xi′)2 + (yj − yj′)2 + (zk − zk′)2)5

To obtain a T 3 structure the elements in the matrix must only depends on the
differences between the indices. By looking at Equation (A.2) is it possible to
realize that the following expressions are the only ones containing indices

hx′i
′ − hxi

hy′j
′ − hyj

hz′k
′ − hzk

We are now able to deduce the conditions which have to be met to obtain a T 3

102 Deducting of Equations in the Magnetic Surveying Problem

structure

hx′i
′ − hxi = i′ − i

m
|x′end − x′start|

mx
i′ − |xend − xstart|

nx
i = i′ − i

m
nx

mx
=

|xend − xstart|
|x′end − x′start|

In the same way we calculate the two other condition

ny

my
=

|yend − ystart|
|y′end − y′start|

nz

mz
=

|zend − zstart|
|z′end − z′start|

These are the same conditions we saw for the gravity surveying problem.

Appendix B

Description of Cut Border

The linear interpolation method uses a triangle-based linear interpolation and
this can cause NaNs1 at the edges of the resulting dataset. For this reason we
design a function that allows for a border to be chosen to be as wide as possible
without including any NaNs.

In Figure B.1 an example of a data set containing a NaN (represented by a
cross). The blue square in the figure represent the primary data set. This is the
data set that will enter into the calculations after having performed an upward
continuation. It is important to notice that we do not allow for NaN in the
primary data set. The white part of the data set is the natural border that
will be used in the upward continuation routine. The red dotted line indicates
where we would place the cut in order to preserve the natural border as large
as possible. The first thing the function does is to devide the total data set
(primary set and the natural border) into different sections. In Figure B.2 we
have illustrated the sections. The dark blue color represent the primary data
set and the pink and the light blue are different types of the border. We then
consider the pink areas that are all treated similarly and therefore we only
illustrate one of these areas in Figure B.3. The crosses represent the NaNs. In
these areas we measure the distances form each of the NaN to the primary data
set. Then the cut is placed (in this case horizontally) at the smallest distance.

The light blue parts of the border in Figure B.2 are treated lastly and any NaN
1NaN is the IEEE arithmetic representation for Not-a-Number.

104 Description of Cut Border

Figure B.1: Example of a data set containing a NaN.

Figure B.2: The division of the total data set. The dark blue area is the primary
data set and the pink and light blue are different types of the border.

Figure B.3: Cut illustrated for the pink type of border

that has already been eliminated due to the cuts caused by any occurrence of
NaN in the pink area are not considered in this step. If there are any NaNs in
the light blue areas we consider two different scenarios:

One NaN:
This scenario is illustrated in Figure B.4. From the NaN we measure
the distance to the primary observations. We then cut so that the
natural border is as large as possible in all directions.

105

More than one NaN:
This is illustrated in Figure B.5. The function now needs to perform
two steps. Firstly the NaN point closest to the nearest corner of the
primary set is located and the border is cut so the natural border
is preserved as large as possible in both directions. Secondly the
smallest rectangle spanned by the corner of the primary data set
and the NaN closest to the corner. Then a second cut is performed
perpendicular to the first cut.

Figure B.4: Cut illustrated for one NaN in the light blue type of border

Figure B.5: Cut illustrated for more than one NaN in the light blue type of
border

106 Description of Cut Border

Appendix C

RegularizerT3

The regularization object used in the new implementation is the same as the
implementation using the full structure. To be able to use the object as is, the
multiplication routine must be changed in order to make sure that A ∗m and
L ∗m holds the same ordering

The basic idea of the new routine is illustrated in Figure C.1. When the multi-
plication method is used (L ∗m) the ordering of the solution object is changed
so it corresponds to the ordering of the solution object using the full coefficient
matrix. The multiplication is then preformed resulting in a vector that before
being returned is changed back to the ordering of the new implementation.

Figure C.1: The multiplication routine for the new regularization routine.

108 RegularizerT3

In the following we will derive that this is possible. We have

y = L ∗m

we denote the regularizer object of the MOOReTools ordering L̂. The regular-
izer object of our implementation is simply a left and right transformation of
the MOOReTools object, thus:

L = πT L̂P

y = πT L̂Pm = πT L̂(Pm)

where πT is a left permutation matrix and P is a right permutation matrix.

In least squares formulation we have

‖Lm‖2 = ‖πT L̂(Pm)‖2

π is an orthogonal matrix (πT π = I) this leads to

‖πT L̂(Pm)‖2 = ‖L̂(Pm)‖2

From this we can conclude that we can use the regularizer object from MOOReTools,
we simply have to perform a permutation of the solution object before and after
the multiplication is performed.

Appendix D

Routines of the New
Implementation of the

GravMagTools package

In this appendix we will list the routines of the new implementation. For further
descriptions we have implemented a help topic for each of the routines. These
can be activated using the commando

help function name (regular functions)
help private/function name (private functions)

Initial operations

Function Description

path ./

startup Sets up the necessary paths required by the GravMagTools
package - regardless of which OS it is run on

110 Routines of the New Implementation of the GravMagTools package

Objects

Function Description

path ./@GMT3Operator

GMT3Operator Constructor of the
GMT3Operator object

GMInfo Lists information contained in GMT3Operator
GetDimensions Display dimension of GMT3Operator object
GetLegalPoints Display legal points of GMT3Operator object
GetWidths Display widths of GMT3Operator object

(dx, dy, dz)
display Display information on GMT3Operator object
show Vizualization of the coefficient matrix
sub applytovector Supports multiplication of a T3 element with

Vector3D
sub getmatrix Returns full structure of the coefficient

matrix
sub size Returns the size of GMT3Operator
subsref Extracts any field of object

GMSolution object

path ./@GMT3Operator/private

T3 mul preforms FFT vector-matrix multiplication
of T3 matrix and a vector

createA create the coefficient matrix given the
EIG structure

gravityEIG create the EIG structure for a gravity setup
magneticEIG create the EIG structure for a magnetic setup
mul BTTB preforms FFT vector-matrix multiplication of

bttb matrix and a number (mx*my) of
vectors of size nx*ny

create EIGtranspose create the transposed representation of
the coefficient matrix

path ./@GMData

GMData Data object (modified - fields added)
show Visualization of data object (modified)
subsref Extracts any field of object (modified)
GMInfo Lists information contained in object

(modified)

path ./@GMSolution

GMSolution Solution object (modified - fields added)
show Visualization of data object (modified)
subsref Extracts any field of object (modified
GMInfo Lists information contained in object

(modified)
SetZerosT3 Insert zeroes at grid points that lies above

topography.

path ./@GMT3Regularizer

sub applytovector Multiplication routine for regularizer object
(This object has been copied from
GMRegularizer
object - only the multiplication routine has
been changed)

111

Setups

Function Description

path ./setupsT3

GravSetupT3 Setup gravity problem
(forward/inverse/solution only)

MagSetupT3 Magnetic gravity problem
(forward/inverse/solution only)

path ./setupsT3/private

CalBorder Calculates the largest possible border around
data without including NaN

ConvertGridT3 Converts the coordinates in the solution grid,
struct which corresponds to the positions of
the dipoles.
These are centered in the cells.

InterpT3 Preform the linear interpolation
InterpT3Test Tests if the data needs to be extrapolated
ReadDirectionsT3 Reads from data file the assumed directions for

the solution in the struct ’solution’
ReadObservationGridT3 ReadObservationGridT3 reads from data file

specifying the observation grid
ReadObservationsT3 Reads the observations from a file
ReadOptionsT3 Reads from datafile in which the domain size

and type of upward continuation is stated
ReadSolutionGridT3 Reads the solutiongrid from a datafile.
ReadTopographyT3 Reads topography data from file. Corrects

the coordinates of observations since these are
defined to be the height above topography.
It also locates solution points above the
topography.

ReshapeT3 Reshapes a vector of T3 form to a matrix
(of type GMMatrix ordering)

T3StructurTest Test if the solution- and observation grid in the
x and y direction produces T3 structure.

bordowav Places a border around the observation level
cont2D Performs the upward continuation

112 Routines of the New Implementation of the GravMagTools package

Tools

Function Description

path ./Tools

GenGridT3 Generates a file with T3 grid
GenSolution Generates a file with all the data needed to describe

a solution
WriteDataToObsFile Generates the observation file in the right format

from a matrix with observations/data
GM 2 GMT3 Permutate a vector or matrix of GMMatrix ordering

to T 3 ordering
GMT3 2 GM Permutate a vector or matrix of T 3

ordering to GMMatrix ordering

Visualization routines

Function Description

path ./VisualizeT3

PlotLegalPointsT3 Visualization of legal grid points
an SVD and produces a Picard plot

sliceplotT3 Visualization of solution vector using sliceplot
draw line Visualize the edge of the topography. Used

by sliceplotT3

Bibliography

[1] Lars Eldén, Linde Wittmeyer-Koch, Hans Bruun Nielsen, Introduction
to Numerical Computation - analysis and MATLAB illustrations,
Studentlitteratur, Lund, 2004, pp 375

[2] M. S. Zhdanov, Geophysical Inverse Theory and Regularization
Problems, Elsevier 2002, Salt Lake City, 2002, pp 609

[3] Maurizio Fedi, Per Christian Hansen, and Valeria Paoletti, Analysis of
depth resolution in potential-field inversion, Geophysics, vol. 70, A1-
A11, 2005

[4] Michael Jacobsen, Modular Regularization Algorithms, IMM-
PhD-2004-140, IMM, 2004, pp 205. Software can be acquired from
http://www2.imm.dtu.dk/∼tkj/MOOReTools/index.shtml

[5] Per Christian Hansen, Jesper Pedersen, Maurizio Fedi, and Valeria Pao-
letti GravMag Tool: an object oriented Matlab package for 3-D
potential-field inversion, IMM, Work in progress

[6] Per Christian Hansen, Regularization Tools: A Matlab Package
for Analysis and Solution of Discrete Ill-Posed Problems, Nu-
merical Algorithms 6: pp 1-35, 1994. Software can be aquired from
http://www2.imm.dtu.dk/∼pch/Regutools/index.html

[7] Per Christian Hansen, Deconvolution and regularization with
Toeplitz matrices, Numerical Algorithms 29: 323-378, 2002

[8] Per Christian Hansen, Discrete Inverse Problems, Insight and Algo-
rithms, manuscript in progress, IMM, November 2005

114 BIBLIOGRAPHY

[9] Richard J. Blakely Potential Theory in Gravity & Magnetic Appli-
cations, Cambridge University Press, Cambridge, 1996, 441 pp.

[10] Søren Nymand Lophaven, Hans Bruun Nielsen, Jacob Søndergaard,
DACE - A Matlab Kriging Toolbox, Version 2.0, IMM-
REP-2002-12, IMM, 2002. Software can be acquired from
http://www2.imm.dtu.dk/∼hbn/dace/.

[11] Toke Koldborg Jensen, Stabilization Algorithms for Large-Scale
Problems, IMM-PhD-2006-163, IMM, 2006, pp 243

[12] William C. Dean, Frequency Analysis for Gravity and Magnetic
Interpretation, Geophysics, vol XXII, pp 97-127, 1958)

