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ABSTRACT
Multiplicative updates have proven useful for non-negativity
constrained optimization. Presently, we demonstrate
how multiplicative updates also can be used for un-
constrained optimization. This is for instance useful
when estimating the least absolute shrinkage and selec-
tion operator (LASSO) i.e. least squares minimization
with L1-norm regularization, since the multiplicative
updates (MU) can efficiently exploit the structure of
the problem traditionally solved using quadratic pro-
gramming (QP). We derive two algorithms based on
MU for the LASSO and compare the performance to
Matlabs standard QP solver as well as the basis pursuit
denoising algorithm (BP) which can be obtained from
www.sparselab.stanford.edu. The algorithms were tested
on three benchmark bio-informatic datasets: A small
scale data set where the number of observations is larger
than the number of variables estimated (M < J) and
two large scale microarray data sets (M � J). For
small scale data the two MU algorithms, QP and BP
give identical results while the time used is more or less
of the same order. However, for large scale problems
QP is unstable and slow. both algorithms based on MU
on the other hand are stable and faster but not as effi-
cient as the BP algorithm and converge slowly for small
regularizations. The benefit of the present MU algo-
rithms is that they are easy to implement, they bridge
multiplicative updates to unconstrained optimization
and the updates derived monotonically decrease the
cost-function thus does not need any objective function
evaluation. Finally, both MU are potentially useful for
a wide range of other models such as the elastic net or
the fused LASSO. The Matlab implementations of the
LASSO based on MU can be downloaded from [1].

1. INTRODUCTION

Multiplicative updates were introduced to solve the
non-negative matrix factorization (NMF) problem, i.e.

factor analysis with non-negativity constraints imposed
on all variables [2, 3]. This has recently been extended
to semi-NMF, i.e. where the parameters under consid-
eration are non-negative while the data in itself is un-
constrained [4, 17]. We will presently advance the mul-
tiplicative updates to unconstrained optimization, i.e.
problems where the parameters can both take positive
and negative values. We demonstrate, that these types
of updates are useful to solve least squares problems
with L1-norm penalty also referred to as the LASSO
[5].

The least absolute shrinkage and selection operator
(LASSO), is a shrinkage and selection method for lin-
ear regression. It minimizes the usual sum of squared
errors, with a bound on the sum of the absolute values
also named the L1-norm of the coefficients [5], i.e.

β = arg min{‖Y − βX‖2F } s.t.
∑
m

|βm| ≤ t, (1)

which is equivalent to the minimization

β = arg min{1
2
‖Y − βX‖2F + λ

∑
m

|βm|}. (2)

That is, there is a one to one correspondence between t
and λ [5, 6]. LASSO has connections to soft-thresholding
of wavelet coefficients, forward stagewise regression,
and boosting methods [7] and forms a framework to
solve the Basis Pursuit [8, 9] with noise (Basis Pursuit
Denoising) [6]. The attractive property of the L1-norm
is that it penalizes the non-sparsity of β without vio-
lating the convexity of the optimization problem. Fur-
thermore, the L1-norm is known to mimic the behavior
of the L0 norm, i.e. to attain as many zero elements
as possible [10] giving the simplest and often also the
most parsimonious solution to account for the data.

The equivalent minimization problems given in equa-
tion (1) and (2) have been solved by quadratic pro-
gramming (QP). Since |βm| cannot be handled by regu-
lar QP the problem has been recast in the non-negative



variables β+ and β− such that βm = β+
m−β−m. Then,

the LASSO can be stated in standard QP form by

X̃ =
[

X
−X

]
and β̃ =

[
β+,β−

]
subject to the con-

straint β̃ ≥ 0. We will currently explore the structure
of this reformulated problem to form two algorithms
for the LASSO based on multiplicative updates. Using
multiplicative updates has the following benefits:

1. The non-negativity constraint of β̃ can naturally
be enforced.

2. The fact that X̃ =
[

X
−X

]
can be used to avoid

doubling the size of the problem compared to
standard QP-solvers.

3. The algorithm based on multiplicative updates is
easy to implement, has low computational cost
per iteration and is proven to monotonically de-
crease the cost-function.

4. The multiplicative updates form a general op-
timization framework which can potentially be
used for a wide range of problems.

2. METHOD

Multiplicative updates (MU) were introduced in [2, 3]
to solve the non-negative matrix factorization (NMF)
which corresponds to

Y ≈ βX, (3)

where Y ∈ <I×J
+ , β ∈ <I×M

+ and X ∈ <M×J
+ are

all non-negative. This was extended to semi-NMF [4]
where Y ∈ <I×J and X ∈ <M×J i.e. for β non-
negativity constrained while Y and X are unconstrained.
Given a cost function C(β) over the non-negative vari-
ables β, define ∂C(β)+

∂βi,m
and ∂C(β)−

∂βi,m
as the positive and

negative part of the derivative with respect to βi,m.
Then the multiplicative update has the following form

βi,m ← βi,m

 ∂C(β)−

∂βi,m

∂C(β)+

∂βi,m

α

. (4)

A small constant ε = 10−9 is added to the numerator
and denominator to avoid division by zero or forcing β

to zero. If the gradient is positive ∂C(β)+

∂βi,m
> ∂C(β)−

∂βi,m
,

hence, βi,m will decrease and vice versa if the gradi-
ent is negative. Thus, there is a one-to-one relation
between fixed points and the gradient being zero. α is
a "step size" parameter that potentially can be tuned.

Notice, when α→ 0 only very small steps in the nega-
tive gradient direction are taken. The attractive prop-
erty of multiplicative updates is that they automat-
ically enforce non-negativity while given values of α
have been proven to monotonically decrease various
cost functions. For NMF the Kullback-Leibler diver-
gence and least squares cost functions are monotoni-
cally decreased for α = 1 [3] while semi-NMF based
on least squares as defined in [4] is monotonically de-
creased for α = 0.5 [4]. Another form of multiplica-
tive updates for semi-NMF is given in [17] derived in
the framework of quadratic programming with non-
negativity constraints.

Presently, we will demonstrate that multiplicative
updates can also be used for unconstrained optimiza-
tion, that is Y ∈ <I×J , β ∈ <I×M and X ∈ <M×J are
unconstrained. Notice, this problem can be trivially
solved by matrix inverses. However, it is relevant to
solve the problem by multiplicative updates when con-
straints such as sparseness by the L1-norm is imposed
since a closed form solution no longer exists. Further-
more, such constraints are traditionally imposed when
the problem is over complete (M � J) and matrix in-
verses become unstable. Without loss of generality we
will consider β ∈ <1×M . We now have the LASSO
problem as stated in equation (2)

β = arg min{1
2
‖Y − βX‖2F + λ

∑
m

|βm|}. (5)

If β is unconstrained the gradient of the L1-term, i.e.
P = λ

∑
m |βm|, gives ∂P

∂β = λ · sign(β) (β 6= 0) such
that the contribution from the constraint gives a step of
same length regardless of the value of β. Consequently,
for large scale sparse problems oscillations around zero
of small elements of β makes a simple gradient search
get stuck in small step-sizes in order to keep decreasing
the cost function. However, by reformulating the prob-
lem in the variables βm = β+

m − β−m and constraining
β+ and β− to be non-negative elements can no longer
cross zero. Furthermore, the non-differentiability at
β = 0 is no longer a concern as β only goes to zero
from one direction. Presently, non-negativity can nat-
urally be enforced by multiplicative updates. Consider
again the reformulated LASSO problem cast in the
non-negative variables β+ and β− to be solvable by
QP

CLASSO =
1
2
‖Y − β̃X̃‖2F + λ

∑
m

β̃m, (6)

where X̃ =
[

X
−X

]
and β̃ =

[
β+,β−

]
. The gradient

of the cost function is given by
∂CLASSO

∂β̃
= −(Y − β̃X̃)X̃T + λ1 (7)



Notice further, that

Y − β̃X̃ = Y − (β+ − β−)X = Y − βX (8)

YX̃T = [YXT ,−YXT ] (9)

X̃X̃T =
[

XXT −XXT

−XXT XXT

]
. (10)

Using multiplicative updates (MU) as given in equa-
tion (4), we now get (for β ∈ <I×M )

β+
i,m ← β+

i,m

√
([YXT ]++β+[XXT ]−+β−[XXT ]+)i,m

([YXT ]−+β+[XXT ]++β−[XXT ]−)i,m+λ

β−i,m ← β−i,m

√
([YXT ]−+β+[XXT ]++β−[XXT ]−)i,m

([YXT ]++β+[XXT ]−+β−[XXT ]+)i,m+λ

where [M]+ and [M]− denotes the positive and neg-
ative part of M. Based on the approach of [17] the
following multiplicative updates (MUqp) can also be
derived

β+
i,m ← β+

i,m

−Pi,m+
√

P2
i,m−4(β+[XXT ]+)i,m(β+[XXT ]−)i,m

2(β+[XXT ]+)i,m

β−i,m ← β−i,m
−Ri,m+

√
R2

i,m−4(β−[XXT ]+)i,m(β−[XXT ]−)i,m

2(β−[XXT ]+)i,m

where P = −YXT − β−XXT + λ1 and R = YXT −
β+XXT + λ1. A proof, that the first type of updates
(MU) monotonically decrease the cost function is given
in the Appendix, see section 5. An equivalent proof
for the second type of updates (MUqp) follows directly
from [17]. Thus, the algorithms formed by the updates
above do not need to evaluate the objective function.
Notice, for both algorithms all that is needed in mem-
ory is the precalculated values YXT and XXT while
each iteration requires computations of size βXXT .
Consequently, the computational complexity is given
as O(IM2). Furthermore, the problem is in theory
convex and therefore not prone to local minima. How-
ever, one problem is to estimate when the algorithm
has converged. Presently, we defined the convergence
as a small relative change in β less than 10−8 or when
20000 iterations had been reached. To speed up the
algorithm, we used active sets to disregard very small
elements in β+ and β−. Furthermore, for λ = 0 the
activity of β+ and β− is arbitrary for fixed difference,
i.e β = β+ − β−. Thus, if an element in β changed
infinitesimally between each iteration the complete ac-
tivity of this element was placed in either β+ or β−

depending on the sign of the element in β to further
reduce the problem size.

3. RESULTS AND DISCUSSION

We tested the two types of multiplicative updates presently
derived for the LASSO against the standard solver in

Matlab for quadratic programming (QP) and the basis
pursuit denoising (BP) algorithm described in [6] which
is available from www.sparselab.stanford.edu. Three
data sets were considered: One small scale and two
large scale problems.

3.1. Small scale data set (M < J)

The first example is a well known study performed by
[11] also used as an example in [12], where M < J . The
study examined the correlation between the level of
specific prostate antigen and 8 clinical measures (M =
8). The clinical measures were taken on 97 men (J =
97) who were about to receive a radical prostatectomy.

For the data set, we see that the solutions of MU,
MUqp, QP and BP are equivalent in standard error
(given as

√
1
J

∑J
j=1(Yj − (β̃X̃)j)2), see figure 1 (a).

The cpu-time usage is of same order for MU, MUqp,
BP and QP although QP is slightly faster than the
other three, see figure 1 (b).

3.2. Large scale data sets (M � J)

The two large scale data sets consist of microarray
data taken from [13] of studies performed by [14] and
[15] of colon data and breast cancer data, respectively.
The microarrays contain expressions of 2000 and 3226
genes.

The first data set represents a study of the gene
expression for 40 tumor and 22 normal colon tissues.
The samples were divided into a training set with 13
normal samples and 27 tumor samples and a test set
with 9 normal samples and 13 tumor samples.

The second data set considers gene expressions for
carriers of BRCA1 mutation, BRCA2 mutation, and
sporadic cases of breast cancer. Here, we will consider
the separation of BRCA1 mutations from the tissues
with BRCA2 mutations or sporadic mutations. The
training set consists of 4 samples with BRCA1 muta-
tions and 10 without. The test set consists of 3 samples
with BRCA1 mutations and 5 without.

The results obtained from the colon data set as well
as the breast cancer data set are given in figure 2 and
figure 3, respectively. For small values of λ both MU
and MUqp have not fully converged however for large
values of λ the solutions are equivalent to BP. Finally,
QP is unstable and have problems finding the minima
regardless of the values of λ.

4. CONCLUSION AND FUTURE WORK

The present algorithm for the LASSO based on two
types of multiplicative updates performed equally well



(a) Std dev

(b) Cpu-time

Fig. 1. The standard deviation and the cpu-time as
a function of λ for the prostate cancer data. The so-
lutions found by QP, MU, MUqp and BP are identical
while the time-usage is of more or less the same order.
The time usage of MU and MUqp reduces for large val-
ues of λ due to occurence of zero elements which can
be disregarded in the updates. The error bars denotes
the standard deviation of the mean of 10 runs.

for small scale problems as QP and BP. However, for
large scale over complete problems BP was much faster
than both QP, MU and MUqp. For large values of λ
BP, MU and MUqp had same quality of solutions but
for low values MU and MUqp did not converge. While
QP was unstable for large scale problems this was nei-
ther the case for MU, MUqp nor BP. Although, mul-
tiplicative updates suffer from slow convergence when
λ is small they are simple and easy to implement and
clearly outperform QP for large scale problems. How-
ever, they are not as good as state of the art algorithms

(a) Std dev

(b) Cpu-time

Fig. 2. The standard deviation and the cpu-time as
a function of λ for the colon cancer data. While QP
is unstable and slow, MU and MUqp are more stable
than QP. However, for small values of λ the multiplica-
tive updates are slower than QP and does not fully
converge. For large values of λ MU and MUqp is faster
than QP and the solutions of MU and MUqp are equiv-
alent to those obtained by BP. The error bars denotes
the standard deviation of the mean of 3 runs, due to
the large computational time for QP only one run of
QP has been included.

such as the BP algorithm [6]. The present multiplica-
tive updates were based on two different approaches, [4,
17]. Despite their different nature their performances
were for the present analysis very similar.

Other algorithms for the LASSO than the present
QP and BP exist, see for instance Osborne et al. [16].
Also, algorithms not based on directly minimizing the
LASSO cost for a specific value of λ such as least an-



(a) Std dev

(b) Cpu-time

Fig. 3. The standard deviation and the cpu-time as
a function of λ for the breast cancer data. The same
tendencies are observed as for the colon cancer data in
figure 2. Namely, For small values of λ MU and MUqp
have not fully converged. Furthermore, QP is again un-
stable and slow. MU and MUqp is faster and for large
values of λ equivalent to BP in quality of solutions ob-
tained. The error bars denotes the standard deviation
of the mean of 3 runs, due to the large computational
time for QP only one run of QP has been included.

gle regression selection (LARS) [7] and the Homotopy
method [18, 16] have recently been proposed. How-
ever, these algorithms are based on successively intro-
ducing or removing variables rather than directly min-
imizing the cost-function for a specific value of λ hence
do not directly compare to the present algortihms for
the LASSO based on multiplicative updates.

The multiplicative updates based on equation (4)
is a general framework to solve non-negativity con-

strained problems and can easily be generalized to other
cost-functions and additional constraints. Presently,
we demonstrated that multiplicative updates can be
used for unconstrained minimization where β takes both
positive and negative values and how this could be used
to form two simple algorithm for the LASSO. Recently,
the LASSO has been advanced to the so called "elastic
net" which apart from a L1-norm penalty has an addi-
tional L2-norm penalty on β. This encourages a group-
ing effect, where strongly correlated predictors tend to
be in or out of the model together and improves the sta-
bility in the M � J case for small values of λ [19]. Fur-
thermore, the LASSO has been advanced to the fused
LASSO where the L1-norm is imposed on both the co-
efficients and their successive differences. This encour-
ages local constancy of the coefficient profile and also
improves stability in the M � J case [20]. It should be
possible to advance the present multiplicative updates
to both accommodate the elastic net as well as the fused
LASSO. This will be the focus of future work. Further-
more, in [21] it was demonstrated that multiplicative
updates easily can accommodate missing values - this
might be relevant to consider when modeling data us-
ing the LASSO. Hence, it is our strong belief that the
present multiplicative methods can be extended to form
simple algorithms for a wide range of data as well as
models.

5. APPENDIX: PROOF OF
CONVERGENCE FOR MU α = 0.5

The proof is based on the use of an auxiliary func-
tion [3] and follows closely the proofs for the conver-
gence of semi-NMF given in [4]. Briefly stated, an
auxiliary function G to the function F is defined by:
G(B,B′) ≥ F (B) and G(B,B) = F (B). If G is an
auxiliary function then F is non-increasing under the
update B = arg minB G(B,B′).

Let B ∈ <I×M
+ . In [4] the following relations are

proven to hold

Tr(B[XXT]+B) ≤
∑
i,m

([XXT ]+B′)i,mB2
i,m

B′
i,m

Tr(B[XXT]−B) ≥
∑

i,m,m′

[XXT ]−m,m′B′
i,mBi,m′

(1 + log
Bi,mBi,m′

B′
i,mB′

i,m′
)

Tr(B[Y]−) ≤
∑
i,m

[Y]−i,m

(
B2

i,m + B′2
i,m

2B′
i,m

)



Tr(B[Y]+) ≥
∑
i,m

[Y]+i,mBi,m(1 + log
Bi,m

B′
i,m

)

Bi,m ≤
B2

i,m + B′2
i,m

2B′
i,m

The present LASSO costfunction is given as:

C(β̃) =
1
2
‖Y − (β+ − β−)X‖2F + λ

∑
i,m

(β+
i,m + β−i,m)

=
1
2
Tr(YYT)

+
1
2
Tr((β+ − β−)([XXT ]+ − [XXT ]−)(β+ − β−)T )

− 2Tr((β+ − β−)([XYT ]+ − [XYT ]−))

+ λ
∑
i,m

(β+
i,m + β−i,m)

Using the upper bounds on positive contributions and
lower bounds on negative contributions given before,
an auxiliary function for G(β̃, β̃

′
) is derived. Mini-

mizing this function with respect to β̃ we obtain the
multiplicative updates with α = 0.5.

6. REFERENCES

[1] M. Mørup and L.H. Clemmensen, “Mulasso,”
http://www2.imm.dtu.dk/pubdb/views/
edoc_download.php/5235/zip/imm5235.zip.

[2] D.D. Lee and H.S. Seung, “Learning the parts of ob-
jects by non-negative matrix factorization,” Nature,
vol. 401, no. 6755, pp. 788–91, 1999.

[3] D.D. Lee and H.S. Seung, “Algorithms for non-negative
matrix factorization,” in Advances in Neural Informa-
tion Processing Systems, 2000, pp. 556–562.

[4] C. Ding, T. Li, and M.I. Jordan, “Convex and semi-
nonnegative matrix factorizations,” LBNL Tech Report
60428, 2006.

[5] R. Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society.
Series B (Methodological), vol. 58, no. 1, pp. 267–288,
1996.

[6] S.S. Chen, D.L. Donoho, and M.A. Saunders, “Atomic
decomposition by basis pursuit,” SIAM J. Sci. Comp.,
vol. 20, no. 1, pp. 33–61, 1999.

[7] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani,
“Least angle regression,” Annals of Statistics, vol. 32,
no. 2, pp. 407–499, 2004.

[8] S.C. Shaobing and D. Donoho, “Basis pursuit,” 28th
Asilomar conf. Signals, Systems Computers, 1994.

[9] V. Guigue, A. Rakotomamonjy, and S. Canu, “Ker-
nel basis pursuit,” European Conference on Machine
Learning, Porto, 2005.

[10] D. Donoho, “For most large underdetermined systems
of linear equations the minimal l1-norm solution is also
the sparsest solution,” Communications on Pure and
Applied Mathematics, vol. 59, no. 6, pp. 797–829, 2006.

[11] T. Stamey, J. Kabalin, J. McNeal, I. Johnstone,
H. Freiha, E. Redwine, and N. Yang, “Prostate specific
antigen in the diagnosis and treatment of adenocarci-
noma of the prostate ii. radical prostatectomy treated
patients,” Journal of Urology, vol. 16, pp. 1076–1083,
1989.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Ele-
ments of Statistical Learning, Springer, 2001.

[13] N. Pochet, F. De Smet, A. K. Suykens, and L. R.
De Moor Bart, “Systematic benchmarking of microar-
ray data classification: assessing the role of nonlinear-
ity and dimensionality reduction,” Bioinformatics, vol.
20, no. 17, pp. 3185–95, 2004.

[14] A. Alon, N. Barkai, D. A. Notterman, K. Gish,
S. Ybarra, D. Mack, and A. J. Levine, “Broad pat-
terns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonu-
cleotide arrays,” Proc. Natl. Acad. Sci. USA, 1999.

[15] I. Hedenfalk, D. Duggan, Y. Chen, M. Radmacher,
M. Bittner, R. Simon, P. Meltzer, B. Gutsterson,
M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor,
E. Dougherty, J. Kononen, L. Bubendorf, W. Fehrle,
S. Pittaluga, S. Gruvberger, N. Loman, O. Johanns-
son, H. Olsson, B. Wilfond, G. Sauter, O.-P. Kallion-
iemi, A. Borg, and J. Trent, “Gene-expression profiles
in hereditary breast cancer,” The New England Jour-
nal of Medicine, vol. 344, pp. 539–548, 2001.

[16] M.R. Osborne, B. Presnell, and B.A. Turlach, “A new
approach to variable selection in least squares prob-
lems,” IMA Journal of Numerical Analysis, vol. 20,
no. 3, pp. 389–403, 2000.

[17] F. Sha, L.K. Saul, and D.D. Lee, “Multiplicative up-
dates for nonnegative quadratic programming in sup-
port vector machines,” in Advances in Neural Infor-
mation Processing Systems 15, 2002.

[18] I. Drori and D.L. Donoho, “Solution of l1 minimization
problems by lars/homotopy methods,” in IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing, 2006.

[19] H. Zou and T. Hastie, “Regularization and variable
selection via the elastic net,” J. R. Statist. Soc. B, vol.
67, no. 2, pp. 301–320, 2005.

[20] R. Tibshirani and M.A. Saunders, “Sparsity and
smoothness via the fused lasso,” J. R. Statist. Soc.
B, vol. 67, no. 1, pp. 91–108, 2005.

[21] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learn-
ing from incomplete ratings using non-negative matrix
factorization,” 6th SIAM Conference on Data Mining
(SDM), 2006.


