
Container loading with multi-drop
constraints

Søren Gram Christensen

David Magid Rousøe

Kongens Lyngby 2007
IMM-MSC-2007-37

April 10, 2007



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk



Abstract

In this thesis, we develop an algorithm for the container loading problem (CLP)
with multi-drop constraints. The CLP is the problem of loading the maximal
value of a set of boxes into a container, while ensuring that the boxes neither
overlap each other nor the container walls. By adding multi-drop constraints it
is further demanded, that the relevant boxes must be available, without rear-
ranging others, when each drop-off point is reached.

The algorithm is made with a setup in mind, where the CLP will be solved
as a feasibility check on a route suggested by a vehicle routing application.
Therefore solutions must be obtained fast. Furthermore it is demanded, that
packings must be feasible in a real world scenario. The latter is accomplished
by a detailed model, which makes sure that all boxes are placed multi-drop
feasible, properly supported and only rotated in feasible directions. It is also
assured, that boxes that are stacked, are not damaged. Based on the model,
a tree search framework has been developed. The tree search utilises different
greedy methods to evaluate the potential of each node considered. To make
the framework more generic, a dynamic breadth is proposed. Based on problem
characteristics and the time limit imposed, it will choose the breadth of the tree,
making sure that the time is utilised most profitable.

The algorithm is tested on data from the two Danish companies Aarstiderne
and Johannes Fog. The obtained results show, that the proposed model and
algorithm is able to solve these problems within a reasonable time, giving so-
lutions that respect all the constraints imposed and are feasible in a real world
scenario.
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Resumé

I denne afhandling udvikles en algoritme til container loading problemet med
multi-drop begrænsninger. Container loading problemet best̊ar i, at pakke den
maksimale værdi af et sæt af bokse ind i en container. Boksene m̊a hverken
overlappe hinanden eller container væggene. Ved at tilføje multi-drop begræn-
sninger kræves det yderligere, at de relevante kasser er tilgængelige, uden at
omrokere andre kasser, n̊ar de skal tages ud.

Algoritmen er lavet med henblik p̊a, at skulle kunne benyttes til at kontrollere,
om ruter foresl̊aet af en ruteplanlægningsapplikation er gyldige. Dette kræver,
at løsningerne bliver fundet hurtigt. Det er et yderligere krav, at pakningerne er
virkelighedstro. Dette er opn̊aet ved hjælp af en detaljeret model, der sikrer, at
alle kasser er placeret s̊a de overholder multi-drop begrænsninger, er tilstrække-
ligt understøttede og kun roteres i tilladte retninger. Det er yderligere sikret,
at bokse kun placeres ovenp̊a hinanden, hvis de kan holde til det. Baseret p̊a
denne model er der udviklet en træsøgningsalgoritme. Denne udnytter forskel-
lige gr̊adige metoder til at evaluere potentialet i de betragtede knuder. For at
lave træsøgningen mere generel anvendelig, foresl̊as en dynamisk bredde, der
baseret p̊a problem karakteristika og den angivne tidsgrænse, vælger bredden,
s̊a tiden bliver udnyttet bedst muligt.

Algoritmen er testet p̊a data fra to de danske selskaber Aarstiderne og Johannes
Fog. De opn̊aede resultater viser, at den foresl̊aede model og algoritme kan løse
problemerne indenfor en rimelig tidsgrænse. De fundne pakninger respekterer
alle begrænsningerne og er virkelighedstro.

Nøgleord: Pakning af lastrum, Container loading, Ruteplanlægning, Multi-drop,
Heuristikker, Træ-søgning
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Chapter 1

Introduction

The mathematical field of Operations Research (OR) supplies a number of tools
that are used to model, solve and improve solutions to many problems faced by
companies today. These problems are often found in areas such as logistics and
planning.

One such problem is packing of goods. Packing problems are met in many forms.
In a smaller scale it could be arranging boxes on a pallet, on a larger scale it could
be loading a fleet of trucks delivering consumer goods at supermarkets. The
packing problems can be categorised into several different OR problems. One
of these is the container loading problem (CLP). In general terms, the problem
can be formulated as follows: Given a set of small boxes and a container, load
the boxes into the container, maximising the total value of the load. Often the
value of a box equals its volume, thus the problem is to maximise the volume
utilisation of the container.

Another classical OR problem is the vehicle routing problem (VRP). It is the
problem of visiting a number of customers in the least expensive way, when a
fleet of vehicles is given. A possible extension to this problem is that the vehicles
are distributing some kind of goods to the customers and the vehicles have lim-
ited space to store these goods. Then the problem becomes a capacitated vehicle
routing problem (CVRP). In CVRP the capacity is calculated as a one dimen-
sional measure. This is a reasonable assumption if, for instance, the problem is
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to distribute oil to households. Then the volume of the tank on the truck is a
natural capacity limit on how many litres of oil the truck can hold. However,
the one dimensional capacity measure is often to simple. If the problem is to
bring out construction products, there is no natural one dimensional measure
on how many products a vehicle can hold. This is because the products can
be very different in size and shape. In that case a three dimensional capacity
measure is needed.

To solve a vehicle routing problem containing a three dimensional capacity mea-
sure, it is necessary to be able to solve both VRP and CLP. The combined
problem is known as the three-dimensional loading capacitated vehicle routing
problem (3L-CVRP). In this problem, a box loaded in the container must be
dropped of at a certain customer on the route. In a practical setting, it is rea-
sonable to demand, that when a customer is reached, the boxes that should be
dropped off must be accessible. This adds multi-drop constraints to the CLP.

Both the VRP and the CLP have had the focus of researchers for many years,
but the combined problem has only recently been investigated. It is a natural
development that more complex problems can be considered today, as both
computer power and the solution methods have improved drastically during the
past years. 3L-CVRP is an example of this.

A possible solution procedure for 3L-CVRP, is to find a solution to the VRP
and check for each of the vehicles assigned to a route, if all boxes can be loaded.
This reduces the CLP to a feasibility check for the VRP solution. This means
that the two problems can be solved independently, which is illustrated in Figure
1.1.

Figure 1.1: The interface between a vehicle routing and a container loading algorithm

For this setup to work in a practical application, short response time from the
CLP is important. The reason for this is that algorithms solving the VRP
typically generate and evaluate a large number of routes. If the feasibility check
of a route cannot be done quickly, it is not possible, in a practical setting, to
use the algorithm.
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The Danish company Transvision A/S is a leading provider of transportation
management solutions and their core product is a state-of-the-art vehicle routing
application. This product is used by a range of customers, mainly situated in
Northern Europe. Transvision wishes to improve their application, so that it
can handle 3L-CVRP. To do this an algorithm that is able to solve the CLP is
needed.

1.1 Purpose

The purpose of this work is to develop an algorithm to solve the three di-
mensional rectangular container loading problem with multi-drop constraints.
Packings found by the algorithm must be feasible in a real world scenario. To
reveal the complications met in real world scenarios industrial cases must be
included. The algorithm must be usable in connection with a vehicle routing
application and hence, must be able to give solutions fast.

1.2 Thesis structure

The layout of this thesis is as follows. First, we will describe the container
loading problem that we will solve and place it in the family of packing problems.
In the subsequent chapter, we will go through the most important literature.
We will especially focus on the part of the literature which deals with heuristic
solution approaches. We will also mention some problem extensions which have
been introduced by others.

In Chapter 4 a mixed integer programming model, describing the basic CLP,
is formulated. This is primarily done to introduce the problem, but also to
illustrate the complexity of the problem. Then, in Chapter 5, we will introduce
a more realistic container loading model. This is done by imposing additional
constraints on the problem, such as the multi-drop constraint. In Chapter 6
we will further extend the model, so that is becomes capable of handling prob-
lems faced by two very different companies that solve the CLP with multi-drop
constraints in their everyday work.

In Chapter 7 the different solution approaches we have developed are explained.
This is partly a number of greedy methods and partly a tree search improvement
framework. Chapter 8 shortly explains the most fundamental points from the
implementation, and Chapter 9 introduces the data we have used to tune and
test the proposed algorithms. Afterwards, in Chapter 10, the methods are
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tuned to perform best possible. This includes discarding some of the greedy
methods and afterwards finding the best settings for the introduced tree search
framework.

Finally, in Chapter 11, we will report the results obtained with our algorithm.
The test of the algorithm consists of two stages. First, benchmark problems
from the literature are solved and secondly, the performance on specific industry
problems is reported. In Chapter 12, we will discuss our results and point out
possible improvements and further research topics in this field. Chapter 13
conclude on our findings.



Chapter 2

Problem description

In this chapter we will place the container loading problem in the family of
cutting and packing problems, and further specify the problem which is the
subject of this work.

In 1990 Dyckhoff wrote ”A typology for cutting and packing problems” [9]. This
article was published in The European Journal of Operations Research (EJOR)
and recently received the honour of being chosen, by the editors of EJOR, among
the 30 most influential papers published in the first 30 years of the journals
history. Based on Dyckhoff’s typology, Wäscher et al. [35] developed a new
improved typology for cutting and packing problems. These typologies form
the basis for the following description of packing problems.

It can be realised that there exists a close connection between basic cutting and
packing problems. Packing small items into large objects can be juxtaposed
with cutting the small items out of large objects. An example of small items
and large objects are boxes and containers, respectively. When the problems
are further specialised, the connection is less obvious. In this description, we
will focus on packing problems.
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2.1 General packing problems

Packing problems can be split in two basically different problem types: max-
imisation and minimisation. In the maximisation problem, the large object is
limited and a maximal number of small items should be packed inside the large
object. The minimisation problem, on the other hand, is the problem of pack-
ing a limited number of small items into a minimal number of large objects.1

Two classical examples of one dimensional packing problems are the knapsack
problem [27] and the bin packing problem [29]. These are maximisation and
minimisation problems, respectively.

Several criteria are used to classify the different packing instances. These are:

Dimensionality The distinction is basically between 1, 2 or 3 dimensions, but
also problems with more dimensions have been considered in the literature.

Assortment of large objects If more than one large objects is used, it is of
interest whether the large objects are identical or not.

Assortment of small items There are three cases. Problems where all the
small items are of same size are denoted homogeneous. Problems, with
many small items of few different sizes are denoted weakly heterogeneous.
Lastly, problems with many different small items of many sizes are denoted
strongly heterogeneous.

Shape of small items If problems have more than one dimension, it is an
important problem characteristic, what shapes the small items have. Ba-
sically they can be either regular or not. Regular shapes are rectangles,
boxes, circles, balls etc. while irregular (or non-regular) items are for ex-
ample the shape of a t-shirt, sofa etc. Among regular shapes a further
distinction is made between rectangular items and circular items.

Different extensions can be added to the problem to make it more realistic or
specialised. A condensed list, taken from Bischoff and Ratcliff [3], is shown
below:

Orientation constraints Only specific rotations of the boxes are allowed.
This is often indicated by a “this side up” mark on boxes.

1A special case of the minimisation problems is the strip packing problem, where all small
items should be packed into one variable sized large object, minimising the size of the large
object.
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Fragile items Some items are fragile and hence, no items should be placed on
top them.

Load bearing constraints Each box can carry only a limited weight.

Load stability The packing should be stable, so that when the container is
handled, the boxes do not move. Therefore, it can be important that
boxes are supported from below and from the sides.

Multi-drop The boxes are to be dropped off at different places and at each
place the unloading should be possible without rearranging the boxes left
in the container.

Grouping of items The same type of boxes should be grouped, to ease loading
and unloading of the container.

Weight limit The weight limit on the container should not be exceeded.

Weight distribution Restrictions on the weight distribution in the container
are imposed.

2.2 Container loading in a vehicle routing con-
text

When solving 3L-CVRP, a number of customers are assigned to each vehicle.
For each vehicles all boxes belonging to the customers should be loaded. This
means that each instance of the packing problem consist of only one large ob-
ject, but many small items, belonging to a number of customers. The large
object considered is a three dimensional container, and the small items three
dimensional boxes. This packing problem is also known as the single container
loading problem (SCLP), and it is a maximisation problem.

In the typology by Wäscher et al. [35] SCLP is classified as a three-dimensional
rectangular SLOPP and -SKP, whereas Dyckhoff [9] classify it 3/B/O/F, 3/B/-
O/M and 3/B/O/R. In Wäschers typology both SLOPP (Single Large Object
Placement Problem) and SKP (Single Knapsack Problem) identifies problems
with a single large object. SLOPP contains a weakly heterogeneous consign-
ment, whereas SKP contains a strongly heterogeneous consignment. From Dy-
ckhoffs typology 3/B/O, describes problems with a three dimensionsional (3),
maximisation (B) problems (german: beladen) where one large object is consid-
ered (O). The fourth character in the classification describes the assortment of
the small items. These can be either few (F), many of many different sizes (M)
or many of relatively few different sizes (R).
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For a solution to the SCLP to be practical applicable it should also satisfy
a number of the problem extensions described in Section 2.1. First of all, it
is important to obey the multi-drop constraint, as this is a natural extension
when SCLP is solved in combination with VRP, because more customers are
considered. In a real world scenario, SCLP is not realistic, because boxes are
allowed to float in the air, hence no guarantee can be given about the stability
of the boxes. Therefore extensions regarding the relation between the boxes
should be included. These are stability-, load bearing strength- and rotation
restriction constraints. The weight limit restriction should also be considered,
but, as we are solving the CLP in a vehicle routing context, all boxes must be
packed. Therefore it is more obvious to check the weight limit constraints in
the VRP application.

It has been a goal throughout the project to make an algorithm which is able to
solve problems faced by real world companies. Therefore, the constraints on the
model have been chosen with this in mind. The primary considerations about
multi-drop constraints were introduced by Transvision, who also requested con-
straints regarding the stability of the load and assurance of fragile boxes. The
model obtained with these constraints is denoted a realistic model. We have
further extended the problem to meet the needs of the two Danish companies
Aarstiderne and Johannes Fog, who distribute organic vegetables and fruit, and
construction products, respectively. These models are both denoted specialised
models.

For a load to be multi-drop feasible, we demand that boxes should be available
when they are needed. This means that no boxes which are to be dropped off
later should be placed on top or in front of the boxes we need to drop off at a
given time. In the realistic model, we will allow unloading from one direction
only. This restriction is relaxed in one of the specialised models, so that three
unloading directions are available.

The stability of a load is closely related to how much support the boxes get. We
will only work with support from below. In the realistic model we will assume
that all boxes must be fully supported from below. In one of the specialised
models, this will be relaxed, so that the minimum amount of support can be
chosen freely.

Load bearing strength constraints assure that boxes do not get damaged. It can
be seen as an extended fragility principle, but gives a more realistic measure on
which boxes can be stacked. This is only part of the specialised models. In the
realistic model, however, we will assume that boxes can be either fragile or not.

Finally, the boxes can only be rotated in some given ways. Most often the
restriction is on which side of a box should be up. This is for instance the case
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if open boxes with vegetables are distributed. This constraint is implemented
in the realistic model.
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Chapter 3

Literature review

The combined problem of CLP and VRP has only lately been a subject of
academic research in a notable degree. Because of the problem complexity, real
world applications have only been documented in few cases. However, separately
each of the problems have been studied thoroughly for decades.

Before attempting to solve the combined problem, the nature of both problems
must be investigated thoroughly. The focus of this work is to solve CLP with
multi-drop constraints, that afterwards, can be combined with a suitable solver
for the VRP. Therefore, we have concentrated this review on literature con-
cerning the pure container loading problem as well as the combined container
loading and vehicle routing problem, leaving out the massive study of the pure
vehicle routing problem.

The first section of this chapter presents two typologies of cutting and packing
problems. The next section refers to articles where mixed integer programming
(MIP) models are used to represent the CLP. In Section 3.3 known solution
procedures for the problem are discussed and in Section 3.4 articles describing
solution procedures to the combined packing and routing problem are discussed.
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3.1 General packing and cutting problems

In 1990 Dyckhoff wrote “A typology of cutting and packing problems” [9]. The
paper identifies the logical structure that is common for the many different cut-
ting and packing problems and develops a standard notation for describing the
different characteristics in these. The article gives an overview of the research
done in the field until that date, and is an excellent introduction to both cutting
and packing problems.

Since the time Dyckhoff published his typology, the research on the field has in-
tensified, and in the light of this development an updated version of the typology
has been written. This was done by Wäscher et al. [35]. In the typology it is
stated that more than 400 articles have been published from 1995 to December
2005 dealing with cutting and packing problems “in the narrow sense”. This
excludes all papers describing problem extensions, such as weight limit, weight
distribution, multi-drop, stability, etc. In the improved typology a more fine
grained classification scheme is proposed. This supports a more precise classifi-
cation of both new and old literature. References to all the literature classified
in the article has been gathered in a database, which is available on the internet
[11].

Both these typologies were used as a basis to classify and describe our problem
in Chapter 2.

3.2 MIP models for the container loading prob-
lem

The CLP is known to be an NP-hard combinatorial optimisation problem [28].
Hence, it cannot be guaranteed to be solved to optimality in polynomial time.
This is probably the reason that only few contributions exist on MIP models
for the problem.

In 1993, Chen et al. [6] formulated the single- and multi-container loading
problems as MIP models and solved them to optimality for small problems.
This was done as a proof of concept to make sure that the models actually
give feasible solutions to the problem. Validation of the models is done on
problems with only 6 boxes. To solve these problems, solution times of 15
minutes are reported. They extent the model, so that it can solve the strip
packing problem and problems where the weight distribution is of importance.
Their final conclusion was that: “A more efficient solution procedure is needed
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to solve large scale container loading problems.”

In 1999, Scheithauer [31] presents another model of the problem, which is based
on one dimensional bars. The bars represent stacks and are found as solutions to
knapsack problems. The model is decomposed into a subproblem, that generates
the one dimensional bars and a master problem that chooses, which combination
of bars that gives the best packing. The master problem is a two dimensional
packing problem. The model is solved by column generation, where the bars
are generated as solutions to knapsack problems. They use the model to find
bounds to both the single and multi-container loading problems based on LP-
relaxations. The bound for the single container loading problem is found within
36 seconds on average, when 5 different box types are considered.

Both models only consider the basic CLP. The only constraints imposed, is that
boxes should not overlap with each other or the container walls. This is seen
as a major drawback of the models, as the solutions found are not valid in a
realistic setting. Moreover, there is no real perspective for our purposes, as
solutions to these models cannot be found fast enough. The value of the papers
is that, they show that MIP models cannot be used effectively to solve the CLP.
Furthermore a formal description of the most basic CLP can be derived.

3.3 Heuristics approaches for the container load-
ing problem

As earlier mentioned, the CLP is NP-hard. For this reason, when solution
procedures are developed, heuristics are often used. In the following, the most
important of the different methods will be mentioned.

A general solution strategy is to divide the container into smaller pieces, packing
each of these separately. The point often being to reduce the solution space from
three dimensions to one or two. Pisinger [28] gives an excellent overview of these
strategies.

The most common dividing procedure is wall building, introduced by George
and Robinson [16]. A wall is constructed by making a vertical slice through the
container. The depth of a slice is defined by the depth of the first box placed
in the wall. As the slice is filled, the boxes will create a wall-like formation.
This procedure is used in [4, 7, 24, 28]. Methods where the container is split by
horizontal slices have also been developed. This is often called layers. Compared
to the wall approaches, layer approaches are said to be produce more stable
loads. Examples can be seen in [3] and [20]. In stack building approaches (see
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[13, 17]) box stacks are constructed, leaving only a two dimensional problem of
arranging the stack on the container floor. Other methods put together boxes
in blocks before they are placed in the container. A block typically consists of
one or two types of boxes, and the advantage is therefore that each block can
be tightly packed. This procedure is used by [5] and [10].

A common term used, both in connection with wall and layer building algo-
rithms, but also alone, is guillotine cuts. The term is taken from cutting theory,
and it describes a cut going straight through an object. The cut will continue
until another guillotine cut is met or the object is cut through. When cutting
glass, it is often demanded that the cutting patterns are guillotine cuttable. In
relation to container loading, guillotine cuts can be used to split the container
into smaller pieces, which is utilised by Morabito and Arenales [23].

Typically, greedy construction procedures are used to make fast solutions to the
overall packing problem or sub problems. On top of this, many different heuristic
frameworks are used. In the recent literature metaheuristics such as tabu search
[34], genetic algorithms [34] and GRASP [12] have been used. Straight forward
construction heuristics and tree search heuristics are also common.

3.3.1 Construction algorithms

In 1965 Gilmore and Gomory [17] presented a paper in which they solve two- and
three dimensional cutting stock problems. The cutting stock problem consist of
cutting demanded material out of bigger raw-material. In the two dimensional
case this is often paper, glass, steel etc. In the three dimensional case it could
be small stones cut out of a large one. They realise that cutting and packing
problems are very closely related, and point out that the proposed heuristic can
be use to solve the single container loading problem. The algorithm basically
consists of building all possible stacks by solving knapsack problems, and af-
terwards solving a two dimensional packing problem of arranging these stacks
on the container floor. They do not solve any specific container loading prob-
lems, but mention the first known, to the knowledge of the authors, solution
procedure.

In 1980 George and Robinson [16] developed the first attempt to pack a single
container with a given set of boxes. They use a wall building approach, where
one wall is build at a time, and the depth of the wall is defined by the first box
placed in the wall. They have two different rules for choosing the first box in
a wall. The first one chooses the box type with the most boxes left while the
second chooses the box with the largest smallest dimension. The first rule tends
to build blocks of the same box types, while the second rule is based on the
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intuition, that large boxes may be hard to place later on in the packing process.
Rectangular empty cuboids, denoted empty spaces, are used to indicate where
in the container it is possible to place boxes. The use of empty spaces is now
common when modelling the problem. The authors solve a real life problem
with around 800 different boxes and up to 20 different box types. They solve
15 problems in all. All the solutions were found by hand, which - as the authors
mention - was a time consuming process taking many hours.

In 1994, Ngoi et al. [25] presented a somewhat different representation of the
problem. The container is modelled as many matrices, where the first row and
column of each matrix determines the coordinates on the container floor and the
rest of the elements in a matrix identify different boxes. Each matrix correspond
to different layers in the container. Their heuristic uses a ranking scheme when
selecting which boxes to place. The scheme favours placements where the most
dimensions between the box and the empty space are equal. All combinations of
boxes and empty spaces are considered. The algorithm is tested on 15 problems,
and volume utilisations around 80% were found within 1 minute.

In 1995 Bischoff and Ratcliff [3] describe two different heuristics to solve the
CLP. Each heuristic cater for different problem extensions. First, they consider
the stability of the load to be of importance. This is accomplished by build-
ing layers from the container floor and upwards, which assures that the highest
placed box is placed relatively low. Thereby the overall stability of the load is
increased.
Secondly, they cater for multi-drop situations. This is accomplished by packing
the boxes in the opposite sequence of the visiting order. When the container is
packed, the boxes are chosen according to a ranking scheme, where box types
which give the best utilisation in a vertical stack in the chosen empty space is
favoured. Both heuristics are tested on a number of problems. These prob-
lems do not have any information about different drop-off points, so the test of
the algorithm, which is designed for multi-drop situations, is in reality done on
problems with one customer only.
Bischoff and Ratcliff remark that common test data is necessary, if different so-
lution approaches should be compared. Therefore, 700 problems are generated,
that are still used as benchmark problems today. These problems can be found
in the OR-Library [1]. Both algorithms yield volume utilisations around 82%.
Overall the heuristic made for multi-drop situations turns out to be the better of
the two proposed algorithm. However, the two algorithms seem to compliment
each other. With concern to the multi-drop constraint the results are irrelevant,
as only one customer is considered.

In Davies and Bischoff’s paper from 1999 [7], an algorithm that cater for weight
distribution and stability is described. The algorithm build segments consisting
of one or more walls. Inside a segment, the face of the previous wall is used
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as starting point for the next one, instead of using a straight wall. Between
the segments, guillotine cuts are used. The motivation for building segments
instead of walls is that it gives a more stable load, than the straight forward
wall building approach. When the packing density is increased, the boxes are
more tightly packed, hence, giving more support to each other making the load
more stable. The drawback is that the segments make it harder to create an
even weight distribution. To make a better weight distribution the segments
are rotated and/or interchanged. To identify empty spaces in the container,
the representation suggested by Ngoi et al. [25] is used. When the problems
mentioned in [3] are solved, volume utilisations between 82,4% and 85% are
obtained. Davies and Bischoff also solve problems with up to 100 different box
types. When these problems are solved the volume utilisation drop to around
73%. The time spent before finding their final solutions varies between 1 and
48 seconds.

In 2004 Bischoff [2] proposed an algorithm to solve problems where the load
bearing strength of the boxes is limited. To model the empty space in the con-
tainer, Bischoff propose a new matrix representation of the container. Instead
of keeping one matrix for each layer, as proposed by Ngoi et al. [25], only a
single matrix is used. In this matrix the first column and row represent diffe-
rent coordinates on the container floor. The remaining elements describe how
high the boxes have been stacked in that given area. A similar matrix is used to
model the load bearing strength. Five different criteria are introduced favouring
different box/space combinations. In each iteration of the search procedure, a
new relative ranking of these criteria are used. Using 1000 iterations the average
volume utilisation for the OR-Library problems is above 90% when load bearing
strength is omitted. These results are obtained in between 26,4 and 321 seconds
on average. When load bearing strength is introduced the volume utilisation
decreases.

Common for the solution approaches mentioned so far, is that they all, except for
the latter, make one greedy solution to the problem, and do not try to improve it.
Many different problem extensions have, however, already been introduced. This
includes multi-drop constraints, stability measures and load bearing strength.
Two distinct ways of modelling the spaces in the container and placement of
the boxes have been introduced. The concept of empty spaces, introduced by
George and Robinson [16], and the matrix representation by Ngoi et al. [25],
which was slightly modified by Bischoff [2], are used for these purposes. In the
following sections we will go through different approaches, which use some kind
of improvement method to solve the CLP. This is most often done in combination
with some greedy methods, which all, to some extent, looks like the construction
algorithms introduced.

We will start by describing different tree search algorithms. Afterwards different



3.3 Heuristics approaches for the container loading problem 17

metaheuristics will be mentioned.

3.3.2 Tree search algorithms

Scheithauer [30] developed a dynamic program based on the “forward state
strategy” to solve the container loading problem. If all box/space combinations
(states) are visited, when trying to place a box (stage), an optimal solution to
the problem can be found. But due to the size of the problem, only a limited
number of states in every stage of the dynamic program are considered. He
reports having tested with 1, 2 and 5 states in every stage. The tendency is
(not surprising) that 5 states gives better results than 1 and 2. But it takes
“some” minutes instead of “a few” seconds to find a solution. Problems with
up to 100 boxes are considered.

In Morabito and Arenales (1994) [23] an approach to the container loading
problem using guillotine cuts is proposed. They generate a tree by guillotine-
cutting the container into smaller parts eventually leading to boxes. To make
a heuristic solution they prune their tree. This is done by making crude upper
and lower bounds, based on how many of a single box type can fit into the piece
of the container, evaluated in the current node. They also give the framework
of an exact solution approach to the problem, where the container should be
guillotine cuttable, that is, an optimal solution for the specific problem, but it
is not necessary optimal for the original container loading problem. They are
able to solve the problems from the OR-Library in less than 200 seconds giving
volume utilisations just around 90%.

Michael Eley’s approach from 2002 [10] uses block arrangements to solve the
container loading problem. The advantage of the blocks is that boxes of same
type can be stored closely, loading time is reduced and stability is improved. The
solution method applied is a greedy heuristic with a tree search improvement
strategy. In every node of the search tree a single box is placed. The placement
is evaluated by the corresponding greedy solution, and only a limited number of
nodes are kept in every depth of the tree. The method is both applied to multi-
and single container loading problem. For the single container loading problem
volume utilisations between 88% and 89,2% were found with a time limit of 10
minutes. This was done on the test problems from the OR-Library.

An algorithm for the single container loading problem based on knapsack pack-
ing has been proposed by Pisinger in 2002 [28]. The algorithm is based on the
wall building strategy, where each wall is composed of vertical and horizontal
stacks, which are found solving knapsack problems. A tree search framework is
applied to decide the depth of the walls. To decrease the problem complexity,
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only the most promising nodes are kept in each depth in the tree. The wall
depths and the stack widths are ranked by considering the dimensions of boxes
not yet packed. Many different ranking strategies are tested. Pisinger reports
volume utilisations around 90% for problems which are comparable to the ones
found in OR-Library.

3.3.3 Genetic algorithms

In Gehring and Bortfeldt’s genetic algorithm from 1997 [13], many box stacks
are produced leaving the authors with a two dimensional packing problem of ar-
ranging the stacks on the container floor. The two dimensional packing problem
is solved by a genetic algorithm. The solutions are represented by the packing
sequence (chromosomes) of the box stacks, which are mutated and crossed with
each other to get better solutions. Mutation and crossover operations consist
of changing the sequence of the stacks and interchange stacks, respectively. In
each iteration new box stacks are made by the set of not loaded boxes in that
chromosome. Testing on the problems from OR-Library the authors get average
volume utilisations between 85% and 88%. This is done in 3 minutes on average.

The same authors proposed a new genetic algorithm in 2001 [4]. Here they use a
wall building approach to fill the container. After having generated a population
of solutions they cross and mutate solutions to get new solutions. The mutation
and crossover methods choose walls from the parent(s) which are combined into
new solutions. When no more walls can be added without having the same
box in the solution twice, the remaining of the container is loaded greedily, by
the basic wall building algorithm. This approach achieves between 87,8% and
90,7% in volume utilisation for the OR-Library problems. 316 seconds are used
on average.

3.3.4 Tabu search algorithm

In 2002 Bortfeldt et al. [5] propose a parallel tabu search to solve the CLP. The
method uses a measure of support, allowing either full or partial support of the
boxes from below. A greedy procedure is used to load a container and a tabu
search to improve the load. Two different neighbourhood definitions are used.
A big one considering all neighbours, where one “arrangement” is different from
the current solution, and a small one where only the most promising part of the
neighbourhood is considered. An arrangement consist of a number of boxes pro-
ducing a homogeneous block. Four differently configured tabu searches are run
in parallel, exchanging best solutions. Numerical result show that the sequen-
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tial algorithm is effective, but parallelization does not improve solution quality
significantly. The results obtained on the OR-Library problems report average
volume utilisations of 91,6% and 92,2% for the sequential and parallel versions,
respectively. This was achieved with a time limit of 10 minutes. The average
solution time for the sequential algorithm however was around 38 seconds.

3.3.5 GRASP algorithms

Moura and Oliviera (2005) [24] propose a GRASP algorithm for the CLP. They
do a straight forward wall building approach, where they, among a given per-
centage of the most promising boxes, choose a random one to place next. After
the container is packed with all the boxes, they perform a neighbourhood search
by taking out all boxes placed later than a given box i and greedily pack the rest,
without including the box type of box i before at least one other box is placed.
The volume utilisations achieved are on average between 88% and 90,1% for the
problems from the OR-Library. This was found in 33 seconds on average.

Another GRASP approach, developed by Parreño et al. [26], was presented at
the 4th ESICUP meeting 2007. The new approach uses spaces, which have the
largest possible expansion. Thereby no guarantee of support is given. When
a space has been selected, the authors chooses to place the block consisting of
boxes of the same type, which utilise the space the best way. This method
achieves an average volume utilisation of 94% in around 30 seconds.

3.3.6 Hybrid algorithms

In 2004 Mack, Bortfeldt and Gehring [21] further developed their parallel tabu
search ([5]) to also include a simulated annealing. In the hybrid version of their
method, they use the simulated annealing to jump around in the solution space
and the tabu search to search for better solutions in the neighbourhood found by
the simulated annealing. Both sequential simulated annealing, sequential tabu
search, hybrid sequential search and parallel dittos are tested. By combining
all these methods and take the best found solution, the authors are able to
report some really good volume utilisations. For the 700 OR-Library problems
an average utilisation of 93,78% are achieved in 596 seconds on average, using
64 PC’s.

Based on priority rules, Lim and Zhang (2005) [20] propose an algorithm, which
repeatedly produce loads. They build layers from the container floor and up-
wards. To build a layer, they choose the lowest unoccupied point inside the



20 Literature review

container and identify the extension of the related surface. They fill this surface
with only one box type using the G4 heuristic proposed by Scheithauer and
Terno [32] to solve two dimensional pallet loading problems. After a solution
is found, it is analysed and boxes not packed are given higher priority. Then a
new solution is found based on the new priorities. Average volume utilisations
between 91% and 92,4% are found in 707 seconds on average for the problem in
the OR-Library. However, the time usage spans between 1 and 4600 seconds.

The overview of the heuristics shows, that throughout the years many diffe-
rent solution approaches have been tried. The trend is that metaheuristics are
replacing simple construction heuristics. Tree search approaches are, however,
applied with comparable results. To the basic container loading problem a sin-
gle greedy solution can give volume utilisations between 80% and 85%. If an
improvement method is used, this measure can be enhanced to between 90%
and 94%.

3.4 Combined routing and packing

Now, we will turn the focus to approaches which have been applied to the
combined VRP and CLP problem. Within this field out focus is how the two
problems are interacting, how the introduction of a more complex loading con-
straint will affect the VRP results, and of course which loading algorithms are
considered.

In 2006 Iori et al. [19] proposed an exact algorithm for the two-dimensional
loading capacitated vehicle routing problem (denoted 2L-CVRP). They are fully
aware of the need to pack in three dimensions, but argue that the problem
typically is to load pallets that cannot be stacked, leaving only a two-dimensional
packing problem. Their exact approach is based on a branch-and-cut framework
that minimises the routing cost and calls a branch-and-bound method to check
for feasibility in the corresponding packings. They consider 60 problems with
up to 35 customers and 114 items, but are not able to guarantee optimality in
five cases within the given time limit (1 CPU-day).

Gendreau et al. (2006) [15] developed a tabu search for 2L-CVRP. They propose
two different packing approaches, one considering the basic two dimensional
problem and one that additionally cater for multi-drops. Moreover the possible
rotations of the pallets are restricted, so that only one rotation is feasible for each
pallet. This is argued as a reasonable restriction as the pallets are handled with
a forklift, which does not allow rotation inside the container. When constructing
a solution, a box is inserted in the space where the largest surface of the box
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abut another box or the container. To obtain different packings, different box
sequences are tried. Before a box is inserted, it is tested whether or not the
loading constraints are violated. On the tested problems it is shown that the
solution quality drops on average 53%, when the multi-drop constraints are
introduced. The extra solution time spent only amounts to 4% on average.
Problems with between 16 and 252 customers are considered in the test. Each
customer receives between 1 and 5 pallets.

Doerner et al. (2006) [8] recently solved a real-world capacitated vehicle routing
problem with multi-drop constraints using metaheuristics. Because of the simple
nature of their packing problem, it is reduced from a three dimensional to a one
dimensional problem. No weight or stability constraints are imposed. They solve
the vehicle routing problem by either tabu search or ant colony optimisation.
The packing problem is solved by a dynamic program or greedy heuristic. As
the authors reduce the packing constraints the paper is not really interesting in
our situation.

In 2005 Gendreau et al. [14] developed a tabu search heuristic to solve the three
dimensional loading capacitated vehicle routing problem (3L-CVRP). They de-
mand that loads obey stability-, fragility-, fixed vertical orientation and multi-
drop constraints.
Overall they use two distinct tabu searches, one solving the VRP and one solv-
ing the CLP, with the problem extensions mentioned. The latter tabu search is
solving a strip packing problem, with a virtual container of infinite length, but
otherwise the same dimensions as the real container. The problem is to find a
packing with a length smaller than or equal to the real container length. The
neighbourhood is defined as the interchange between boxes which are loaded
inside the real container and the boxes which are not. Two different greedy
procedures are introduced to make the actual packings. The first one chooses
the lowest valid point in the container to pack a given box, whereas the second
one try all insertions which are valid with respect to the problem extensions and
chooses the best found insertion evaluated by the amount of the surface of the
box that touches either another box or the container.
To evaluate their approach, VRP instances from VRPLIB [33] are used. Each
customer in the VRP instances is assigned a set of boxes. Tests show that
adding the extra constraints to the CLP extend the solution time needed to find
their best solutions from 1500 to 2000 seconds on average. Unfortunately, it is
not reported how the packing constraints affect the solution quality.
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3.5 Summary

The literature review reveals that many different approaches to the container
loading problem with many different problem extensions have been tried. How-
ever, not much focus is given to three dimensional packing with multi-drop
constraints. Two articles mention solution procedures to solve the problem.
The first one is proposed in [3], but was not tested on problems where multi-
drop situations occur. The second approach is mentioned in [14], where the
combined routing and packing problem is solved. The shared idea is to load the
boxes in the opposite sequence as they should be dropped off (LIFO). The latter
approach furthermore introduces the idea to check the feasibility of an insertion,
before a box is placed. This was also done in [15] for a two dimensional packing
problem.

Another rarely mentioned extension, is the load bearing strength constraint.
This was introduced in [2], where a matrix representation of the container is
used to model the load bearing strength. Most of the mentioned approaches,
assure that the boxes are, 1) only rotated in feasible directions and 2) fully
supported from below, which are also restrictions that we imply on our problem.

When the 3L-CVRP (or reductions of it) are solved, the two problems are
solved separately. Thereby the same setup is used as proposed in Chapter 1.
Only sparse documentation concerning solution quality is available, but the
introduction of loading constraints on the vehicle routing problem, seems to
make it harder to solve.

The problem, which is treated in this thesis, is highly restricted compared to
most problem considered in the literature. To be able to handle this, a high
degree of control of the different box placements is needed. This kind of control
is given in the tree search frameworks presented by Scheithauer [30] and Eley
[10], where every box/space combination is a choice in the tree. When explicitly
choosing each box placement, feasibility checks, like the ones used by Gendreau
et al. [14], can be carried out, assuring that the different additional constraints
we impose on our problem, are not violated. This is not straight forward in the
tree search approaches by Morabito and Arenales [23] or Pisinger [28]. The same
applies for the genetic algorithms proposed by Bortfeldt and Gehring [4, 13].
Here especially the multi-drop constraints becomes hard to cater for. Their
solutions are represented by either a vector of box stacks or a vector of walls,
which are permutated, thereby many boxes already loaded together, are moved
around between the different solutions, which in many cases would conflict with
the multi-drop constraint. Both the tabu search approach by Bortfeldt et al. [5]
and the GRASP approach by Moura and Oliveira [24], gives the opportunity to
make feasibility checks before each box is inserted.



Chapter 4

The basic single container
loading problem

In this chapter a mixed integer programming model, describing the basic single
container loading problem, is introduced. The problem can be formulated as
follows: Given a set of boxes and a container, find the subset of the boxes
with maximum total volume, which can be placed in the container without
overlapping each other.

The model is inspired by the work of Chen et al. [6], who consider the multi-
container loading problem. Their model is extended to describe two other pack-
ing problems, namely strip packing and the problem of choosing the smallest
among many containers, wherein all considered boxes must be loaded. The
different models introduced by Chen et al. describe problems where the size
or the amount of containers should be minimised. Our problem is of a slightly
different nature. We want to load as many of the boxes as possible into a con-
tainer - if possible all. In a feasible solution, with regards to the VRP, all boxes
must be loaded into the container. This is an optimal solution to the SCLP.
If all boxes cannot be loaded, valuable information can still be gathered from
the solution. The volume utilisation will give information about how dense the
container is packed and the volume of the boxes not loaded indicates how much
the consignment should be reduced, to allow all boxes to fit in the container.
As a result we want to solve a problem where the total volume of the packed
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boxes are maximised. We have one fixed sized container and a limited number
of boxes. A model describing this is introduced in the following.

4.1 Mathematical model

To be able to relate the placement of the different boxes to each other, we place
the container in a cartesian co-ordinate system. The container is placed with
the back-left-lower corner in the origin of the co-ordinate system. The length
of the container is placed along the x-axis, the width along the y-axis and the
height along the z-axis.

Given the set of boxes B, the list below gives the parameters and variables used
in the model:

N Total number of boxes |B|
li, wi, hi Parameters indicating the length, width and height of box i
(L,W,H) The container dimensions
(ai, bi, ci) Continuous variables. The coordinate describing the place-

ment of box i.
`xi , `

y
i , `

z
i Binary variables indicating whether the length of box i is

parallel to the x- (`xi = 1), y- (`yi = 1) or z-axis (`zi = 1)
wxi , w

y
i , w

z
i Binary variables indicating whether the width of box i is par-

allel to the x- (wxi = 1), y- (wyi = 1) or z-axis (wzi = 1)
hxi , h

y
i , h

z
i Binary variables indicating whether the height of box i is

parallel to the x- (hxi = 1), y- (hyi = 1) or z-axis (hzi = 1)
leik Binary variable indicating if box i is placed on the left side

of box k
riik Binary variable indicating if box i is placed on the right side

of box k
beik Binary variable indicating if box i is placed behind box k
frik Binary variable indicating if box i is placed in front of box k
abik Binary variable indicating if box i is placed above box k
unik Binary variable indicating if box i is placed underneath box

k
pi Binary variable indicating if box i is placed in the container
M Large number used in Big-M constraints

The variables leik, riik, beik, frik, abik and unik are only defined for i < k, since
that fully describes the placement relationship between box i and k. In Ap-
pendix A, a complete list of symbols used in this thesis can be found.

We have introduced 9 sets of binary variables to describe the rotations of the
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boxes. This gives a over-representation of the variables necessary to describe
the possible rotation. A reduced model is described in Section 4.1.1. For now
we have chosen to include the variables to make the model easier to interpret.

(`xi , `
y
i , `

z
i ) = (0, 1, 0) (`xk, `

y
k, `

z
k) = (1, 0, 0)

(wxi , w
y
i , w

z
i ) = (0, 0, 1) (wxk , w

y
k, w

z
k) = (0, 1, 0)

(hxi , h
y
i , h

z
i ) = (1, 0, 0) (hxk, h

y
k, h

z
k) = (0, 0, 1)

leik = 0, riik = 1, beik = 0, frik = 1, abik = 0, unik = 0,

Figure 4.1: Two boxes placed in a container, all variables concerning these boxes are
shown.

In Figure 4.1 two boxes are placed in a container. It can be seen that the origin of
the coordinate system coincide with one of the corners of the container, namely
the back-left-lower corner. The container has dimensions L,W,H shown in the
front-right-upper corner of the container. The two boxes i and k (i < k) are
placed in (ai, bi, ci), respectively (ak, bk, ck). Box i is placed with its length li
along the y-axis, its width wi along the z-axis and the height hi along the x-axis.
This is also indicated by the binary variables `yi , w

z
i and hxi . It can be seen that

box i is placed right of and in front of box k, which is indicated by the binary
variables riik and frik.

The objective of the basic single container loading problem is to maximise the
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volume of the boxes packed in the container. Now the basic single container
loading problem can be formulated as:

max
∑
i∈B

(liwihi)pi (4.1)

Subject to:

ai + li · `xi + wi · wxi + hi · hxi ≤ ak + (1− beik) ·M
∀i, k, i < k (4.2)

ak + lk · `xk + wk · wxk + hk · hxk ≤ ai + (1− frik) ·M
∀i, k, i < k (4.3)

bi + li · `yi + wi · wyi + hi · hyi ≤ bk + (1− leik) ·M
∀i, k, i < k (4.4)

bk + lk · `yk + wk · wyk + hk · hyk ≤ bi + (1− riik) ·M
∀i, k, i < k (4.5)

ci + li · `zi + wi · wzi + hi · hzi ≤ ck + (1− unik) ·M
∀i, k, i < k (4.6)

ck + lk · `zk + wk · wzk + hk · hzk ≤ ci + (1− abik) ·M
∀i, k, i < k (4.7)

leik + riik + beik + frik + abik + unik ≥ pi + pk − 1
∀i, k, i < k (4.8)

ai + li · `xi + wi · wxi + hi · hxi ≤ L ∀i (4.9)
bi + li · `yi + wi · wyi + hi · hyi ≤ W ∀i (4.10)
ci + li · `zi + wi · wzi + hi · hzi ≤ H ∀i (4.11)

`xi , `
y
i , `

z
i , w

x
i , w

y
i , w
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x
i , h
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i , h

z
i , pi ∈ B ∀i (4.12)

leik, riik, beik, frik, abik, unik ∈ B ∀i, k, i < k (4.13)
ai, bi, ci ∈ R+ ∀i (4.14)

The objective function (4.1) maximises the volume of loaded boxes. Equations
(4.2)-(4.7) assure that the loaded boxes do not overlap. Equation (4.2) for
instance, assures that, if a box i is placed behind another box k, then the
following must hold:

ai + li · `xi + wi · wxi + hi · hxi ≤ ak

where li · `xi +wi ·wxi + hi · hxi is the size of the dimension of box i placed along
the x-axis.

Equation (4.8) assures that all placed boxes are considered in the constraints
(4.2)-(4.7). If both box i and k are placed in the container (pi + pk = 2), then
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they are not allowed to overlap. This is assured by forcing at least one of the
six variables leik, riik, beik, frik, abik, unik to one.

Equations (4.9)-(4.11), make sure that the boxes do not overlap with the con-
tainer walls and finally constraints (4.12)-(4.14) describe each type of variables
used.

4.1.1 Reducing the model

As described in Chen et al. [6] there are many redundant variables in the model.
If the model should be solved this redundancy should be removed.

It is clear that a given box can be placed with its length along only one dimen-
sion, either x, y or z. Thereby:

`xi + `yi + `zi = 1, ∀i
wxi + wyi + wzi = 1, ∀i
hxi + hyi + hzi = 1, ∀i

(4.15)

must hold. It is also clear that only one box side can be placed along the same
dimension. Thereby also:

`xi + wxi + hxi = 1, ∀i
`yi + wyi + hyi = 1, ∀i
`zi + wzi + hzi = 1, ∀i

(4.16)

must hold.

The relations in Equations (4.15) and (4.16), can be used to eliminate some of
the variables used in the model. As the equation system described in (4.15)
and (4.16) has rank five, one of the equations is fully described by the others.
Therefore, one set of equations can be eliminated, leaving five sets of equations.
One among many solutions is:

`yi = 1− `xi − `zi , ∀i
hzi = 1− hxi − hyi , ∀i
wxi = 1− hxi − `xi , ∀i
wyi = `xi + `zi − hyi , ∀i
wzi = hxi + hyi − `zi , ∀i

(4.17)

This can be used to reformulate constraints (4.2) to (4.7) and (4.9) to (4.11) as
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follows:

ai + li · `xi + wi · (1− hxi − `xi ) + hi · hxi ≤ ak + (1− beik) ·M
∀i, k, i < k (4.18)

ak + lk · `xk + wk · (1− hxk − `xk) + hk · hxk ≤ ai + (1− frik) ·M
∀i, k, i < k (4.19)

bi + li · (1− `xi − `zi ) + wi · (`xi + `zi − hyi ) + hi · hyi ≤ bk + (1− leik) ·M
∀i, k, i < k (4.20)

bk + lk · (1− `xk − `zk) + wk · (`xk + `zk − hyk) + hk · hyk ≤ bi + (1− riik) ·M
∀i, k, i < k (4.21)

ci + li · `zi + wi · (hxi + hyi − `zi ) + hi · (1− hxi − hyi ) ≤ ck + (1− unik) ·M
∀i, k, i < k (4.22)

ck + lk · `zk + wk · (hxk + hyk − `zk) + hk · (1− hxk − hyk) ≤ ci + (1− abik) ·M
∀i, k, i < k (4.23)

ai + li · `xi + wi · (1− hxi − `xi ) + hi · hxi ≤ L ∀i (4.24)
bi + li · (1− `yi − `zi ) + wi · (`xi + `zi − hyi ) + hi · hyi ≤ W ∀i (4.25)
ci + li · `zi + wi · (hxi + hyi − `zi ) + hi · (1− hxi − hyi ) ≤ H ∀i (4.26)

where equation (4.18)-(4.23) corresponds to (4.2)-(4.7) and equation (4.24)-
(4.26) corresponds to (4.9)-(4.11). Finally equation (4.12) should be changed
to:

`xi , `
z
i , h

x
i , h

y
i , pi ∈ B ∀i (4.27)

since the number of variables is reduced.

By doing this reformulation the number of variables is reduced by 5N .

The model as formulated in equations (4.1), (4.18)-(4.23), (4.8), (4.24)-(4.26),
(4.27), (4.13) and (4.14) describes the basic single container loading problem.
It has 7N N−1

2 + 3N constraints, 6N N−1
2 + 5N = (3N + 2)N binary variables

and 3N continuous variables.

4.1.2 Deciding the value of M

When solving MIP models like the one described, it is always important to keep
M as small as possible. If M is chosen arbitrarily large, the relaxations used by
the MIP solver will be weak, leading to excessive branching and thus increased
computation time.
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To make the constraints (4.18)-(4.23) valid, M must be larger than the largest
dimension of the box i which is considered in the constraint. This means that
M becomes a set of values, one for each box. Mi can formally be defined as:

Mi = max(li, wi, hi)

The index used on M should be the same as the index used on the left side of
the inequalities in Equations (4.2)-(4.7) and (4.18)-(4.23). Equation (4.2) then
becomes:

ai + li · `xi + wi · wxi + hi · hxi ≤ ak + (1− beik) ·Mi ∀i, k, i < k

whereas Equation (4.3) becomes:

ak + lk · `xk + wk · wxk + hk · hxk ≤ ai + (1− frik) ·Mk ∀i, k, i < k

4.2 Summary

In an industrial application it would not be unusual that 100 boxes should
be packed. In that case the mathematical model has 34950 constraints, 300
continuous variables and 30200 binary variables. When Chen et al. introduced
their models, which have the same characteristics as the model introduced in
this chapter, they solved problems with 6 boxes, which took around 15 minutes.
This clearly shows that using MIP models to solve our problem is not a possible
approach.

Another problem with the model, is that many necessary constraints are ne-
glected. In this basic model the only restriction is, that boxes do not overlap
each other and do not protrude the container wall. This would allow the boxes
to hover free in the air and furthermore not guarantee that fragile boxes are
placed safely. These restrictions should at least apply to an industrial applica-
tion, to assure that the content of the boxes is not damaged during transport. A
further demand is that boxes can be restricted in their possible rotations. This
is also not part of the model, but the constraint is straight forward to incorpo-
rate, as the only necessary change is to eliminates some of the binary variables.
Moreover, in our specific setup, it is important also to include the multi-drop
constraint, which are also not part of the introduced MIP model.
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Chapter 5

A realistic single container
loading problem

In the previous chapter a formal mixed integer programming model of the basic
single container loading problem was derived. Because of the large amount
of binary variables and constraints it proofed not to be a reasonable solution
approach, considering our problem setup. Therefore no attempt was made to
make the model more realistic.

In the light of this a heuristic solution approach is chosen. To accommodate this,
a new mathematical model is introduced in this chapter. The modelling of the
boxes and the container will be thoroughly described, this include properties
regarding these entities. An important concept considered, is how to handle
the space inside the container. Beside the restrictions contained in the basic
model, some further extensions are considered. These will make the model
more applicable in a real world scenario. The extensions are multi-drop- and
stability constraints as well as limitations on the possible rotations of the boxes.
First of all, however, we will introduce necessary general modelling notation.
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5.1 General notation

A central part of the modelling takes advantage of, that the boxes and the
container are placed in a cartesian coordinate system. As already mentioned all
objects we consider will have a cuboid form, as they are rectangular boxes. A
cuboid can be defined as follows:

Definition 5.1 (Cuboid) A cuboid, p, is a three dimensional object defined
by the point closest to the origin of the co-ordinate system (the minimum):

p = (p
x
, p
y
, p
z
)

and the point furthest away from the origin of the co-ordinate system (the
maximum):

p = (px, py, pz)

such that p < p ⇔ p
x
< px ∧ p

y
< py ∧ p

z
< pz and p

x
, p
y
, p
z
≥ 0 and

px, py, pz > 0.

The cuboid occupy all space, in the interval from its minimum to its maximum,
in all three dimensions.

It is necessary to be able to relate and compare cuboids placed in the coordinate
system. To do this, it is needed to compare points and intervals in both one, two
and three dimensions. As these relations are used very often in the modelling,
we have chosen to introduce some extra notation to ease the descriptions later
on.

A very fundamental check is to see if two cuboids overlap.

Definition 5.2 (Overlap) Two cuboids p and q are said to overlap if and only
if:

p
x
< qx ∧ q

x
< px ∧

p
y
< qy ∧ q

y
< py ∧

p
z
< qz ∧ q

z
< pz

We will for short denote this p� q.

This means that cuboids are overlapping, if they overlap in the intervals between
their minimum and maximum, in all three dimensions of the coordinate system.
For each dimension we introduce the operators �x,�y and �z which correspond
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to overlap in the x-dimension, y-dimension and z-dimension, respectively. For
instance, two cuboids p and q overlap in the x-dimension if:

p�x q ⇔ p
x
< qx ∧ qx < px

.

The following definition is also needed.

Definition 5.3 (Overlap-equal) Two cuboids p and q overlap-equal if:

p
x
≤ qx ∧ q

x
≤ px ∧

p
y
≤ qy ∧ q

y
≤ py ∧

p
z
≤ qz ∧ q

z
≤ pz

We will denoted this p� q.

This means that the cuboids either overlap or abut each other. For each dimen-
sion we introduce the operators �x,�y and �z which correspond to overlap-
equal in the x-dimension, y-dimension and z-dimension, respectively.

5.2 Boxes

The boxes are the small items that we want to place inside the container and
they are per definition cuboids. Their size is denoted (li, wi, hi) (length, width,
height) as seen in Chapter 4. Each box i is also characterised by a mass, which
we will denotemi. We will assume that the geometrical and gravitational centres
coincide and that the mass is homogeneously distributed in the boxes. Further-
more boxes can be fragile. If this is the case then no other boxes should be
placed on top of them. This is indicated by the parameter fi for box i. If box i
is fragile then fi = 1, otherwise fi = 0.

When multi-drop constraints are introduced, it becomes important to know
which boxes should be delivered at each customer. This imposes a so called
sequence number on each box. The boxes that should be dropped off at the
first customer get sequence number 1, boxes with sequence number 2 should be
dropped off at the second stop and so on. We call the sequence number of box
i di.

When solutions are constructed, we need to make decisions regarding how a
box should be rotated. To a box i a set of feasible rotations fr ∈ FRi exists.
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Without any rotation restrictions, the boxes can be rotated in six different
ways, see Figure 5.1. Sometimes, however, this is not desirable due to the goods
contained in a box. This is often illustrated with a “this side up” mark on the
boxes, which means that the given box is restricted in possible rotations. In this

Figure 5.1: Possible rotation of a box. On the figure the box with
initial dimensions (l, w, h) is rotated to give the following 6 possibilities;
(l, w, h), (l, h, w), (w, l, h), (w, h, l), (h, l, w) and (h,w, l).

model only the vertical rotation, that is, the dimension that is placed vertical,
can be limited. This means that for a box where only one side can be the upside,
there exists two possible rotations. If two different sides can be the upside, four
feasible rotations exist and finally if all three sides can be the upside, the six
rotations shown in Figure 5.1 are all feasible.

Finally, the notion of a box type must be introduced. Two boxes have the same
box type, if all the above attributes, except the sequence number, are equal.
This means that they must have the same size, fragility, mass and rotation
restrictions. We will say that box i has box type bti.

When a box is placed inside the container, the placement and rotation of the
box is chosen. When this is done the extension along the x-, y- and z-axis is
given by ∆ai, ∆bi and ∆ci, respectively.
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This means that the minimum of a box i is given by its placement (ai, bi, ci),
which is also denoted: i = (ai, bi, ci). The maximum of a box i is given by its
placement plus extension, (ai + ∆ai, bi + ∆bi, ci + ∆ci), which is also denoted:
i = (ai, bi, ci).

5.2.1 The batch - a set of boxes

When a set of boxes is considered it will be denoted a batch, B. To a batch there
exist some properties, namely how many boxes of each box type there exist in
the batch, and information about the smallest dimension of a box present in the
batch.

The set B holds for every box type bt, the number kbt of boxes of that box type.
The smallest dimension among all the boxes in the batch is also at all times
known. The smallest dimension is denoted sm.

When we load boxes into the container, we will work with two distinct batches,
namely the batch containing already placed boxes Bplaced and the batch with
not placed boxes BnPlaced. Notice that when no boxes are placed Bplaced = ∅
and BnPlaced = B. At all times

Bplaced ∩BnPlaced = B ∧ Bplaced ∪BnPlaced = ∅

must hold.

5.3 The container

A feasible solution to the CLP consists of a number of boxes placed inside
the container. Thereby, the container defines the natural physical bound of
where the boxes can be placed. The container is a cuboid and its size can be
described by its three interior dimensions: Length L, width W and height H.
The container will always be placed such that its minimum coincides with the
origin of the co-ordinate system and the length expands along the x-axis, width
along the y-axis and height along the z-axis.

When a box is placed in the container, part of the space in the container is
occupied, and the remaining possible space to place the next box is reduced.
This calls for a way to manage the space inside the container, so that the possible
positions to place boxes are known.
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In the literature two distinct ways to handle the space inside the container are
described. Ngoi et al. [25] introduced a matrix representation of the container,
which was modified by Bischoff [2]. Here the first row and column describe
different areas inside the container and the remaining elements, the space left
from the container floor or the placed boxes to the container roof. Another
approach was pointed out by George and Robinson [16]. They used what is
called empty spaces to handle the space inside the container. We have chosen
the latter approach, which is also the most common. In the following a detailed
description of how we handle the space inside the container is given.

5.3.1 The space inside the container

A way to look at the problem is that we want to fill out the empty space inside
the container. Each time a box is placed in the container, the empty space is
reduced. Following this thought, the container at first can be considered as a
single empty space the size of the container. When more boxes are placed it
will be divided in smaller cuboid spaces.

Definition 5.4 (Empty space) An empty space s is a cuboid inside the con-
tainer. It has minimum in s = (xs, ys, zs) and maximum in s = (xs, ys, zs).
The space inside this area must be empty. Empty spaces will for short also be
denoted spaces in the following.

The size of the space s is denoted (∆xs,∆ys,∆zs) and found as:

∆xs = xs − xs

∆ys = ys − y
s

∆zs = zs − zs

Corollary 5.5 No placed boxes overlap with valid empty spaces. This means
that a space s ∈ S is valid if:

∀i ∈ Bplaced ¬(i� s)

This situation should be attained, for all spaces, every time a box is placed in
the container.

When a box is added to the container, it is placed in a space. This makes
the space occupied and therefore it is invalid (Corollary 5.5). Instead of this
space, new empty spaces should be made, surrounding the box, but still being
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bounded by the old space. Therefore an updating procedure for the empty
spaces is needed. This is described in Section 5.3.2.

In principle, a box can be placed anywhere in an empty space as long as it is
fully contained by the space. However, to reduce the solution space, we will
only consider the situation where a box is placed in the point in the empty
space closest to the origin of the coordinate system. This is the minimum of the
empty space, and follows the concept of a normalised packing, see [10]. It can be
shown that to any packing, an equally good normalised packing exists. This was
done by Martello et al. [22], when packing a single bin in the three dimensional
bin packing problem and by Herz [18] for the two dimensional stock cutting
problem. This means that we have a discrete representation of the possible
places, where a box can be placed.

Definition 5.6 (Placement of boxes in empty spaces) Boxes are always
placed in the minimum of an empty space.

To have a feasible packing, it is however not enough to assure that the place,
where a box is placed, is not occupied by other boxes. In a real world scenario,
the box must be placed, either on the container floor or on top of other boxes.
This gives the box support from below, and hence increases the stability of
the cargo. When a box is placed, we therefore further demand that it has full
support. A box has full support when the base surface of the box has full contact
with the surface below. The surface below could either be other boxes or the
container floor.

Observation 5.7 When working with full support, the height of empty spaces
is always given by the container roof. Thereby all spaces have the same z.

This observation makes it easier to update the empty spaces as it means, that
there is no need to consider changes to z.

Full support is a reasonable constraint, as it assures that boxes will never float
in the air and it stabilises the load. The constraint could of course be relaxed
to allow a solution with less then 100% support for all boxes. This is done in
Chapter 6. In the next section it will be shown that full support can be assured
by simple considerations of how to update the spaces.
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5.3.2 Updating the empty spaces

A number of strategies can be considered when modelling the empty spaces, but
there are two basically different approaches. For both methods a choice can be
made, whether full support for all boxes placed in the container, is guaranteed.
The difference between the methods is that either the spaces are allowed to
overlap or not. Models where no overlap is allowed are used by for instance,
Moura and Oliveira [24], Bortfeldt et al. [5] and George and Robinson [16].
Models allowing overlapping spaces has been tried by Eley [10], Bischoff and
Ratcliff [3] and Parreño et al. [26]. Figure 5.2 shows an example of a box

Figure 5.2: The empty spaces generated inside the space where the box is placed.
No overlap is allowed. The left picture shows the empty spaces generated, if walls
against the back of the container is build. The right picture shows empty spaces that
lead to walls along the container sides.

placed in a container with empty spaces that do not overlap. Figure 5.3 shows
the same situation with overlapping spaces. In the first case it is clear that a
choice has to be made regarding which situation is wanted. It is not possible to
get the spaces shown on the left and right graph at the same time. The main
problem with overlapping spaces, however, is, that a box placed in a space will
possibly affect other spaces, leading to a more complicated update procedure.
Thereby disadvantages exists to both methods. We find that a rule of non-
overlapping spaces will limit the solution space too much, thereby removing
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Figure 5.3: The empty spaces generated inside the space where the box is placed.
Overlap is allowed.

good solutions. Thus, we will allow spaces to overlap.

5.3.2.1 Generating new spaces

When a box is placed in the container, the empty spaces must be recalculated
and adapted. At least one empty space is made infeasible, namely the empty
space in which the box is placed. The infeasible space must be deleted and
instead new valid empty spaces inside the old space must be generated. All new
empty spaces must of course respect Definition 5.4, otherwise they would not
be valid.

Lets say that we place a box i, with minimum (ai, bi, ci) and maximum (ai, bi, ci),
in a space s ∈ Sold, with minimum in (xs, ys, zs) and maximum in (xs, ys, zs).
In general three new empty spaces are generated. One above, one in front and
one right of the box. The resulting new spaces is shown in Table 5.1. Here space
t = 1 is placed in front of, t = 2 right of and t = 3 above the box. The space
above is only made if the box i is not fragile, thereby no boxes can be placed
on top of fragile boxes. The maximum of space 1 and 2 are only limited by the
old space, s. This is not the case for space 3, which is limited by the placed
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min max
t xt y

t
zt xt yt zt

1 ai y
s

zs xs ys zs
2 xs bi zs xs ys zs
3 xs y

s
ci ai bi zs

Table 5.1: The three resulting spaces constructed after an insertion is made.

box in both the x- and y-dimension. This is done to always assure full support
in the empty spaces. After the procedure the set of spaces Snew is given by
Snew = {(Sold \ s) ∪ N}, where N is the set of valid empty spaces from Table
5.1. Two spaces are overlapping, namely space 1 and 2. This can also be seen
on Figure 5.3.

5.3.2.2 Remove box overlap with other spaces

Using overlapping spaces has the consequence that when we place a box, we
have to investigate the remaining spaces to see if there are other spaces made
invalid by the newly placed box. If a space s is made invalid by a placed box
i, the space is deleted and instead new spaces are generated inside s, but not
invalidated by the placed box. This means that four different spaces, seen in
relation to the box, theoretically can be created. These could be placed in front
of, behind and on both sides of the box. The calculations used to make the new
spaces are given in Table 5.2. Here space t = 1 is behind, t = 2 in front of,

min max
t xt y

t
zt xt yt zt

1 xs y
s

zs ai ys zs
2 ai y

s
zs xs ys zs

3 xs y
s

zs xs bi zs
4 xs bi zs xs ys zs

Table 5.2: The four spaces that can be made when a placed box i overlap with a
space s, which is different from the space the box is placed in.

t = 3 and t = 4 on each side of the box. Again only empty spaces that respect
Definition 5.4 are made. An illustration of new empty spaces surrounding a
placed box is shown in Figure 5.4. On the left figure it is seen that a box has
been placed, which invalidate a different space than the one it is placed in. On
the right figure the new spaces, which are generated from the invalidated space,
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are shown. The new spaces are all fully contained within this. Three spaces

Figure 5.4: Illustration of new spaces surrounding a placed box.

are generated, one behind, one in front and one right of the placed box. The
spaces are indicated with the dashed lines, going from their minimum to their
maximum. The dark grey indicates where the spaces overlap each other. Three
of the four cases from Table 5.1 occur.

It could be argued, that a new space above the invalid empty space should be
made. But, this space is guaranteed to be a subset (see Section 5.3.2.3) of space
3 from Table 5.1, created when the box was inserted in the first place, and it is
therefore not created.

It can be realised, that the method to remove box space overlaps, can be gener-
alised to include the special case, where the space considered is the space where
the box is placed. This is done by including the space made above the placed
box from Table 5.1 to the spaces made by Table 5.2.

5.3.2.3 Removal of subsets

When updating overlapping empty spaces, it is possible that two spaces cover
the same areas of the container. Thereby a space can be considered a subset of
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another space. The concept of subsets is also used by others, see for instance
Bischoff and Ratcliff [3].

Definition 5.8 (Space subsets) An empty space s is a subset of another
space t if:

s ≥ t ∧ s ≤ t

This means that space s is a subset of space t if, all points in s are contained in
t, meaning that the minimum of s is greater than the minimum of t and that
maximum of s is smaller than the maximum of t. If this happens, we do not
need space s anymore because it is completely described by t.

5.3.2.4 Amalgamation of the empty spaces

The way the spaces are constructed assures full support for the boxes, but
sometimes the method limits the spaces to much. The method has a secondary
effect of creating stacks where a box on top of another at most will be as large
as the one below. This is not always desirable, as it can give an ineffective use
of the space in the container.

Figure 5.5: Two boxes with the same height placed beside each other. On the left
picture the individual spaces that are generated after the spaces updating procedure.
On the right picture a new combined space is shown.

Consider the situation where two equally tall boxes are placed beside each other,
it would be possible to place a box on top of both boxes, still meeting the demand
for full support. An example is shown on Figure 5.5. In the way the spaces are
generated, this would not be allowed, as there would be two empty spaces, one
on top of each of the boxes, but neither overlapping with the space over the other
box (left). In this case it should be possible to generate a space that expands
over both boxes (right). This operation is called amalgamation of empty spaces
and was introduced by George and Robinson [16].
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We are able to amalgamate two spaces s and t when the following expression is
true.

zs = zt∧
[(
s�x t∧ (y

s
= yt∨yt = ys)

)
∨
(
s�y t∧ (xs = xt∨xt = xs)

)]
(5.1)

This is the case if the two spaces s and t have the same floor-height (zs = zt).
Moreover it should be true that their borders touch (xs = xt ∨ xt = xs ∨ ys =
yt ∨ yt = ys) and finally the base dimension that does not touch should be
overlapping (s�y t ∨ s�x t, respectively).

From the square bracketed expression in Equation (5.1), we see that two different
things can lead to the amalgamation of two empty spaces, namely overlap in
the x- or in the y-dimension. Both situations can be seen in Figure 5.6, where

Figure 5.6: Amalgamation of the two spaces s and t. On the left, amalgamation in
the x-direction is shown. On the right, amalgamation in the y-direction is shown.

the grey rectangles indicate the new space obtained by amalgamating the two
old spaces drawn with bold lines.

If we are able to amalgamate two spaces, and overlap between these are in the
x-dimension, the new amalgamated space will have greater extension in the y-
dimension. We will say that we amalgamate in the y-direction. If two spaces
can be amalgamated and overlap between these exists in the y-dimension, we
will say that we amalgamate in the x-direction.
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Amalgamate in x-direction

Two spaces will be amalgamated in the x-direction if the following hold:

zs = zt ∧ ((s�y t ∧ (xs = xt ∨ xt = xs))

If this is the case, the new empty space u is given as:

xu = min (xs, xt)

y
u

= max
(
y
s
, y
t

)
zu = zs

xu = max (xs, xt)
yu = min (ys, yt)
zu = zs

This is shown in Figure 5.6, left.

Amalgamate in y-direction

Two spaces will be amalgamated in the y-direction if the following hold:

zs = zt ∧ ((s�x t ∧ (y
s

= yt ∨ yt = ys))

If so, the new empty space u is given as:

xu = max (xs, xt)

y
u

= min
(
y
s
, y
t

)
zu = zs

xu = min (xs, xt)
yu = max (ys, yt)
zu = zs

This is shown in Figure 5.6, right.

When two spaces are amalgamated to make a new empty space, both are still
valid. But to keep the number of empty spaces low subsets (see Definition 5.8)
are removed. This would be the case in Figure 5.6, left, where the rightmost
space is fully contained in the new grey space.
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On the container floor, spaces are only limited by the container size and other
placed boxes, as full support exists. Therefore, amalgamation will never ex-
pand these. Hence, when updating empty spaces, amalgamation should only be
considered for spaces above the container floor.

5.3.2.5 Removal of too small empty spaces

As more and more boxes are placed in the container, the spaces will gradually
be reduced in size. If a space is smaller than all boxes not yet loaded, then
it should be discarded. However, if there is a possibility to amalgamate the
space later on in the loading process it should be kept. The fewer spaces we
have to consider when finding a solution, the easier. The strictest check would
compare all three dimensions of the space with the dimensions of the boxes.
To simplify the procedure of removing too small empty spaces, we have chosen
only to consider one dimension of the boxes and spaces. Therefore only the
smallest dimension in the batch of not placed boxes, sm, is compared with the
dimensions of the spaces.

space] A space s ∈ S, can be deleted if:{
∀t ∈ S \ s : ∆zs < sm ∨(
(∆xs < sm ∨∆ys < sm) ∧ ¬((s�x t) ∧ (s�y t) ∧ zs ≥ zt

))} (5.2)

where � is the overlap-equal operator defined in Definition 5.3. From Defini-
tion 5.2, it is seen that spaces can generally be deleted if the extension in one
dimension is smaller than the smallest available box dimension, sm. However,
if it is possible to expand the size of the space in that direction it should not be
deleted anyway. It is only possible to expand spaces by amalgamation, which
again only is possible in the x- and y-direction. Therefore if the expansion of
the space in the z-dimension is smaller than sm the space is always deleted. If
it is in the x- or y-dimension, we further demand that no other spaces t exists
which fulfill both s�x t, s�y t and zs ≥ zt, meaning that it should overlap-equal
both in the x- and y-dimensions and be placed lower.

5.4 A valid box placement

The procedure for placing a box in the container is to match it with an empty
space. As mentioned earlier a box is always placed in the minimum of the space.
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When a box is placed in a space, two things should be considered, to make the
placement valid. It must be, feasible regarding the space and multi-drop feasible.

5.4.1 Feasible regarding a space

The box is feasible regarding the space, when the box, with the chosen rotation,
can be placed in the space without protruding the boundaries of the space.

More formally this can be expressed as: Given the box i and the space s, there
is room for i in s if:

∆ai ≤ ∆xs ∧ ∆bi ≤ ∆ys ∧ ∆ci ≤ ∆zs (5.3)

If the box was allowed to protrude the space one of two things would happen.
Either the box would overlap other boxes placed in the container or the placed
box would not be stable. This is certain because of the way the spaces are
generated.

If there were no other constraints on the problem than fitting the boxes into the
container this could do as a check. In our situation we also need to check if the
multi-drop constraint is satisfied.

5.4.2 Multi-drop feasibility

When the container arrives at a customer, naturally the boxes belonging to the
customer have to be taken out. If all boxes go to the same customer this is a
trivial exercise. If there are more customers on the route, care has to be taken
when the container is loaded, if unloading the container should be easy. A given
box should be available and easy to take out when the container arrives at the
customer who requested the box. This is handled by the multi-drop constraint.

To make sure that these demands are respected, we require that no boxes with
higher sequence number is placed above the given box or in the passage from
the box to the entrance/exit of the container.

In Figure 5.7 two different situations are depicted. The unloading direction is
shown with an arrow. The red boxes belongs to customer 2, while the blue
box belongs to customer 1. This means that the blue box should be unloaded
before the red ones. On the left graph, the blue box is placed behind one of the
reds. Thereby, it is no longer possible to take it out, and that placement is not
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Figure 5.7: Not valid (left) and valid (right) placement of a box.

multi-drop feasible. On the right graph, the blue box is placed in front of the
red ones which is fully legal.

5.4.2.1 Boxes placed on top of each other

If a box is placed above another box, either fully or partly, we say that they
overlap in the {x, y}-plane. If this is the case for boxes i and j then:

i�x j ∧ i�y j

is true.

Lets assume that two boxes are overlapping in the {x, y}-plane and without loss
of generality that box i is placed under box j. For the multi-drop constraints
to hold, we demand that the sequence number di of box i is greater than or
equal to the sequence number dj of box j, i.e. di ≥ dj . This means that if two
boxes overlap in the {x, y}-plane then the box on top should be the one with
the lowest sequence number.

5.4.2.2 A passage between the entrance and a box

In this model we work with one entrance to the container. Without loss of
generality we consider the surface with coordinates: (L, 0, 0)− (L,W,H) to be
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the entrance. In Figure 5.7 this would be the surface indicated by the arrow.

To be able to unload box i when the container arrives at the customer who has
requested the box, there must be a passage from the entrance of the container
to the box.

Definition 5.9 (Passage) There exist a passage between the entrance of the
container and the box i if:

∀j ∈ Bplaced \ i | ai ≥ aj ∨ di ≥ dj ∨ ¬(i�y j)

The opposite situation, namely when there does not exist a passage is intuitively
easier to understand. There does not exist a passage if:

∃j ∈ Bplaced \ i | ai < aj ∧ di < dj ∧ (i�y j)

meaning that box i has lower sequence than some other box which is placed in
front of it.

On the left picture in Figure 5.7 there does not exist a passage between the blue
box and the entrance of the container, because one of the red boxes is in the
way.

Definition 5.10 (Multi-drop feasible packings) A solution to the container
loading problem respects the multi-drop constraints if: For all boxes i there ex-
ists a passage, and no boxes j placed on top of i with overlapping {x, y}-plane,
have higher sequence number.

To maintain a multi-drop feasible packing, each time a box is placed, it must
compared to all other placed boxes, to assure they are still multi-drop feasible.

It could be considered to put the information about allowed sequence numbers
directly on the spaces. This would decrease the number of checks needed when
a box is inserted. Such a decision would, however, increase the complexity of
the space handling and was thus not carried out.
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5.5 Summary

In this chapter we have introduced a mathematical model, describing a real-
istic single container loading problem. Besides describing the boxes and the
container, the model consist of two main elements, updating empty spaces and
checking for valid placements. This model offers the basic operations needed to
create heuristic solutions to the problem.

When updating empty spaces a number of operations must be carried out. This
include, the generation of new empty spaces, amalgamation and removal of
subsets and too small spaces. A number of conditions should be checked before
a box is inserted in an empty space. First of all enough room should be present
and secondly we demand that the insertion of a box does not make any boxes
multi-drop infeasible. The generation of empty spaces assures that fragile boxes
are placed safely and that full support for the boxes is guaranteed. Thereby all
the demands we have for a realistic model is achieved.
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Chapter 6

Industrial insight

The model presented in Chapter 5 can handle basic constraints, which are nec-
essary to include in the CLP, if it should be used in connection with a real world
vehicle routing application. When dealing with problems faced by specific com-
panies or industries, it must be expected, that the model should be adapted
to handle different or further constraints. In this chapter, we will analyse and
show the possibilities of incorporating such extensions, in the proposed model.
This is done by modelling two very different problems from companies facing
the challenge of single container loading with multi-drop constraints in their
everyday business.

6.1 Aarstiderne A/S - Distribution of vegetables

Aarstiderne A/S is a Danish company delivering organic vegetables, fruit and
meat to the door step of 35.000 families all over Denmark. The delivery is on
a weekly basis and the customers often change their requests. Aarstiderne offer
around 30 distinct products with different selections of fresh vegetables, fruit
or meat. Additionally, grocery products, such as cereals, wine and beer, are
offered. The different products are all packed in boxes, of which there exists
10 different types. The different products are designed to meet the needs of
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different sized families. Therefore, typically one or two boxes are demanded by
each customer. In a typical packing problem there are between 100 and 200
boxes going to between 70 and 150 different customers.

Aarstiderne A/S both handle the packing of the groceries in the boxes as well
as the overall distribution of the boxes. The boxes are distributed to depots
around the country, and from each of these depots the boxes are delivered to
the customers. It is this last delivery we have focussed on, as this is where the
multi-drop constraint becomes most important.

Today, the vehicles are loaded, by the drivers. In the depot, the boxes with the
same products are stacked together, see Figure 6.1. This means that the drivers
have to walk around collecting the boxes needed on the route, as opposed to
a situation, where the boxes are ranked in front of the vehicle slots. As such,

Figure 6.1: The distribution centre in Bjæverskov, Denmark

every driver has his own way of loading the vehicle. However, some common
characteristics exist. The loads are to the greatest extent made so that, all
the different products are available, at all times on the route. This is the way
the multi-drop constraint is handled today. To minimise time used loading
the vehicle, most drivers load the same products close together. We have not
focused on this point in our model. The extra time used for the driver to pack
a vehicle should be compared to the time saved unloading the vehicle on the
route. Finally, when the driver drop of boxes at the customers, empty boxes
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from the last delivery should be picked up. This means that we have a delivery
and pick-up system. It is, however, not a strict constraints that all empty boxes
must be brought back, and moreover, is it significantly easier to bring back the
empty boxes, as they can be placed inside each other, taking up much less room.
Therefore, we have chosen to neglect this issue.

6.1.1 Changes made to the model

The change made to the model is motivated by the fact, that a box only gives
support to boxes placed above it, through its four corners. This is because
Aarstiderne use open wooden boxes with no lid on. Two different boxes are
depicted in Figure 6.2. If two boxes are placed on top of each other and the
box on top has smaller base dimension than the one below, it would mean that
the box above would not be supported and thereby damage the contents of the
box below. Therefore, to require full support, boxes can only be stacked when
all four corners of the boxes are resting directly above corners of a box below.
As long as the corners of the box are supported from below, there is no limit on
(except for the container size) how many boxes can be stacked on top of each
other. If high stacks have no support on the sides from other boxes, extendable
poles are put up between the floor and ceiling in the container to make the load
stable.

Figure 6.2: A picture of the “basic box” (left) and “fruit box” (right) with the boxes
they are packed in.

To make sure that boxes are properly stacked, extra care should be taken when
they are inserted on top of other boxes. This changes both the way we manage
spaces but also the definition of a valid box placement.



54 Industrial insight

The following procedures are changed:

• A valid box placement

• Update empty spaces:

– Amalgamation

– Remove subsets

It is important to notice that when placing a box on the container floor, support
is always guaranteed. This means that the following changes only concerns boxes
placed on top of other boxes. In the same way a change in the amalgamation
rule is only needed above the container floor.

6.1.1.1 A valid box placement

To be able to guarantee that boxes are supported in all four corners when placed,
we check at insertion time whether this condition is true. For box i in space s
the check is:

∆ai = ∆xs ∧
∆bi = ∆ys ∧
∆ci ≤ ∆zs (6.1)

This check is used whenever a box is not placed on the floor. The check presumes
that all spaces not starting at the floor are sized so that the corners have support.
It should of course still be checked if a placement is multi-drop feasible as defined
in Section 5.4.2, page 46.

6.1.1.2 Update empty spaces

Since only boxes stacked directly on top of each other are valid, there is no
longer any need to amalgamate empty spaces when the spaces are above the
container floor. Therefore, the amalgamation is discarded for the spaces that
are not starting on the container floor. Recall that amalgamation is not done
on the container floor. This means that whenever working with problems like
the ones from Aarstiderne, amalgamation should not be part of the procedures
needed to update the empty spaces.
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Since amalgamation is discarded and we use a new valid box placement check,
when a box is placed above ground, no spaces will be subsets of other spaces,
provided that they are above the container floor. Hence, there is no need to try
to remove subsets of these.

6.2 Johannes Fog A/S - distribution of construc-
tion products

Johannes Fog A/S deals with some very different products than Aarstiderne.
They handle construction products, such as gypsum boards, rockwool, concrete,
mortal, wooden planks, windows and doors. This makes the consignments ex-
tremely diverse. The products are delivered to around 50 customers every day,
most of them in the morning and the rest in the afternoon. A typical load
consist of 10-20 different products going to between 1 and 5 customers.

Johannes Fog use trucks, that can be unloaded from the sides as well as the
back. Therefore, we need to be able to reflect this relaxation of the multi-drop
constraint when solving the problem. Moreover when solving this problem, it
is necessary to relax the constraint demanding full support. Full support does
not allow enough flexibility, compared to a real world scenario, when loading
construction products. A five metre long wooden plank for example, would still
be stable if for instance only four metres were supported. Instead of full support,
it is demanded that at least a fixed fraction of each box should be supported.
Finally, the diversity of the consignments makes it important to know which
boxes can be stacked, when loading the container. It may be feasible to pack a
small cardboard box on top of gypsum board, whereas it is not feasible to place
a load of concrete on top of rockwool. This introduces need for a measure of
how much weight each box can carry.

To sum up, these modifications to the model must be made:

• The multi-drop constraint must reflect that more unloading directions
exist.

• Reduced support is introduced to allow boxes to overhang each other.

• Load bearing strength is used to make sure that boxes are stacked properly.
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6.2.1 The multi-drop constraint

Figure 6.3 shows a truck operated by Johannes Fog A/S. From the picture it is

Figure 6.3: A Johannes Fog truck.

evident that boxes can be loaded and unloaded from three sides of the container.
As the products generally are handled with crane and forklift, it is not possible
to unload the boxes vertically without having access from a side.

To model this situation we need to change Definition 5.10, regarding multi-drop
feasible packings. Since more unloading directions exist, the four parameters
X+, Y + and Y − are introduced, as properties on the container. They indicate
whether the container surfaces (L, 0, 0) − (L,W,Z), (0,W, 0) − (L,W,Z) and
(0, 0, 0)− (L, 0, Z) are unloading surfaces.

In the realistic model from Chapter 5, we used the concept of a passage to reveal
if each box was multi-drop feasible. This passage was define for unloading
direction X+, which must be generalised to encompass the other unloading
directions. For a load to be multi-drop feasible, we demand that a passage
exists, for all placed boxes, in at least one of the possible unloading directions.
In the case from Johannes Fog three unloading directions are feasible, namely
Y −, Y + and X+. The passage for unloading direction X+ is given in Definition
5.9. Then unloading directions for Y − and Y + are given in Definitions 6.1 and
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6.2.

Definition 6.1 (A passage in Y −) There exist a passage for box i in the Y −

direction if:
∀j ∈ Bplaced \ i | bi ≤ bj ∨ di ≥ dj ∨¬ (i�x j)

Definition 6.2 (A passage in Y +) There exist a passage for box i in the Y +

direction if:
∀j ∈ Bplaced \ i | bi ≥ bj ∨ di ≥ dj ∨¬ (i�x j)

With the extra passage definitions, we can redefine a multi-drop feasible packing.

Definition 6.3 (Multi-drop feasible packings) A solution to the CLP re-
spects the multi-drop constraints if: For all boxes i, there exist a passage in
a possible unloading direction, and no boxes j on top of i with overlapping
{x, y}-plane, have higher sequence number.

For Johannes Fog Definition 6.3, tells that in a feasible load a passage should
exist, for all boxes, in at least one of the directions Y −, Y + or X+. To keep
information about which unloading directions are available for a placed box, we
introduce the boolean variables x+, y+ and y−. These are kept as properties on
each box. When boxes are placed these values are updated, in relation to the
possible unloading directions.

Notice, that a generalisation to also incorporate X− is straight forward.

6.2.2 Reduced support of the boxes

This is by far the most complex change to the model we will introduce. It
affects a large number of operations performed on the empty spaces. A model
were reduced support is considered - and guaranteed - have been proposed by
Bortfeldt et al. [5], but they consider non-overlapping spaces.

The idea is to adjust the spaces so that they overhang boxes below, as the empty
spaces define where boxes can be placed. This allows the boxes to overhang each
other, reducing the demand for support.

When a box is placed in a space, we always place it in the minimum of the
space according to Definition 5.6, page 37. If the space above a box is allowed
to overhang all sides of the box below, a box placed in the overhanging space
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could end up without any support at all. To avoid this, we demand that spaces
begin in a point, which is supported from below. This will guarantee that a
small box placed in a large space is fully supported. The problem is illustrated
in Figure 6.4. In the situation on the left picture the space overhangs the box

Figure 6.4: A small box placed in a large space. In the left figure the space overhang
the minimum of the box below. On the right it starts where support from below exists.

below on all sides. This makes it possible to place a box with no support at all,
which is not reasonable. On the right figure, the same box is placed in the space
starting in a point with support, thereby guaranteing support for the box. This
way of assuring support for the boxes is also used by Bortfeldt et al. [5]. A
disadvantage is that many types of stable loads, with reduced support, cannot
be constructed. However, it allows the remaining of the introduced model to be
unchanged.

To control how much support boxes must have, the non-negative parameter γ is
introduced. This parameter controls how large a part of the space that does not
need support. If γ = 1, the supported and the not supported parts of the space
have the same size. If γ = 0, no overhang is allowed. In a practical setting γ < 1,
as this implies that the geometric centre of the box is supported from below.
Recall that we assume, that the geometrical and gravitational centres coincide
(see Section 5.2, page 33). This is a reasonable assumption when packing for
Johannes Fog. In nearly all their products the mass is evenly distributed. This
is sound for wood, stones, rockwool, gypsum etc.

The possible extension of a space depends on the amount of support from boxes
below. We define support as continuous contact with a box below or the con-
tainer floor in a direction. To determine the allowed size of the overhanging
empty space, we need to know the extension of support from below. We have
constructed the empty spaces such that support always exist in the minimum
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of the spaces.

Therefore we introduce two variables α and β, holding knowledge about the
maximum support from below in a space in the x- and y-dimension, respec-
tively. Notice that, if γ = 0 then α = x and β = y. The initial empty space
(representing the empty container) has full support, by definition. This could be
relaxed to allow overhang out of the container. This however, is not considered
in this work.

The introduction of α and β changes the definition of an empty space, found in
Definition 5.4, page 36. Besides what is stated there, a space s has the support
parameters (αs, βs) and:

xs < αs ≤ xs ∧ ys < βs ≤ ys

6.2.2.1 Updating the empty spaces

If we place a box i in a space s with support parameters (αs, βs), the resulting
new spaces can be seen in Table 6.1.

min max
t xt y

t
zt xt yt zt

1 ai y
s

zs (1 + γ) · αs − ai · γ ys zs

2 xs bi zs xs (1 + γ) · βs − bi · γ zs

3 xs y
s

ci min(xs + ∆ai · (1 + γ), xs) min(y
s

+ ∆bi · (1 + γ), ys) zs

support
t αt βt

1 αs βs

2 αs βs

3 min(ai, αs) min(bi, βs)

Table 6.1: The new empty spaces when overhang is allowed.

For the spaces to be valid, we demand that the new generated empty spaces
are inside the old empty space. If this was not the case, unstable loads could
be constructed. For space 1 and 2 in Table 6.1 this trivially holds - which
is elaborated shortly. For space 3 this should be assured, which is done by
comparing the maximum of the old and the new overhanging space and choosing
the smallest of these. If this was not done, the space above could be expanded
to be larger than the old space and unstable arrangements like the one on Figure
6.5 could be constructed.

It can easily be realised that space 1 and 2 in Table 6.1 are inside the old
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Figure 6.5: An unstable stack.

space. This is true because all dimensions of the boxes are positive, hence, the
amount of support from below becomes smaller which makes the new empty
space smaller. This is shown in Figure 6.6. The largest rectangle in the figure is
the original empty space which is supported from (xs, ys) to (αs, βs) indicated
with dark grey. In this space a box is placed, indicated by light grey. The
new resulting empty spaces, space 1 and space 2 (calculated as shown in Table
6.1), are shown like light grey transparent surfaces. For instance, the supported
area in space 2 is given by the area with minimum in (xs, bi, zs) and maximum

Figure 6.6: The new smaller empty spaces , space 1 and space 2 when a box is placed
in a space with overhang.
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in (xs, y2, zs). The new space with overhang gets a smaller expansion in the
y-dimensions since less support is present. The maximum in the y-dimension
y2 is given by:

y2 = βs + (βs − bi) · γ = (1 + γ) · βs − bi · γ

For space 2 nothing changed in the x-dimension compared to the old empty
space, since there is still the same support in that dimension.

Similar changes are made to space 1.

In the case when a box is placed so that it is overhanging another box, at least
one space is made with no support at all. Lets look at a small example.

Example 6.1 Given the space with minimum in (0, 0, 4), maximum in (10, 10, 10)
and support parameters (α, β) = (8, 8) and the box (l, w, h) = (9, 5, 3). There
is obvious room for the box in the space, where it is placed with the preferred
rotation - which is as it is. The new spaces will according to Table 6.1 become:

min max support
t xt y

t
zt xt yt zt αt βt

1 9 0 4 7,75 10 10 8 8
2 0 5 4 10 8,75 10 8 8
3 0 0 7 10 6,25 10 8 5

obviously, space 1 is invalid as x1 < x1, therefore space 1 is discarded and not
added to the set of new spaces. This is exactly the space that is made where no
support exist.

Also notice, that the space above is limited in the x-dimension by the space
wherein the box is placed. If this was not the case the space above would have
had maximum in (11, 25; 6, 25; 10), which we do not allow since the new space
then would protrude the old one, and arrangements like the one on Figure 6.5
could emerge.

As can be seen from Example 6.1, empty spaces can be made with negative
expansion - because they have no support at all. These spaces are of course not
included in the set of new empty spaces, following Definition 5.4, page 36.

Remove overlap with other empty spaces

As when overhang was not allowed, a box can invalidate more empty spaces
than the space where it is placed.



62 Industrial insight

Compared to the situation when no overhang was allowed, more new spaces
can be made. The four spaces surrounding the placed box must still be made.
Besides this a new space under the box can also be made.

The five new empty spaces are given by the expressions in Table 6.2.

min
t xt y

t
zt

1 xs y
s

zs

2 ai y
s

zs

3 xs y
s

zs

4 xs bi zs
5 xs y

s
zs

max
t xt yt zt

1 ai ys zs

2 min(αs · (1 + γ)− ai · γ, xs) ys zs

3 xs bi zs

4 xs min(βs · (1 + γ)− bi · γ, ys) zs

5 xs ys ci

support
t αt βt

1 min(αs, ai) βs

2 αs βs

3 αs min(βs, bi)
4 αs βs

5 αs βs

Table 6.2: The spaces made in other spaces when inserting a box and reduced support
is allowed.

As in section 5.3.2.1, page 39, it can be realised that removing overlaps between
the placed box and other spaces can be generalised to contain all spaces. It is
seen that space 1 and 2 from Table 6.1 are the same as space 2 and 4 in Table
6.2. Thereby only the space above box i is missing in Table 6.2. This space is
constructed in all spaces, where i = s. This is necessary, because two spaces
having the same minimum can have different support.

6.2.2.2 Amalgamation

The empty spaces can of course still be amalgamated, but also here changes are
needed.

In the space s we define the supported cuboid Ss = {(xs, ys, zs), (αs, βs, zs)},
which is the subset of s where support from below is guaranteed.
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Two empty spaces s and t can be amalgamated if:

zs = zt ∧
[(
Ss �x St ∧ (βs = y

t
∨ y

s
= βt)

)
∨(

Ss �y St ∧ (αs = xt ∨ xs = αt)
)]

This tells us that two spaces can be amalgamated if the part of an empty space
with support abut on the minimum of another empty space. Besides this the
part of the spaces with support should overlap and finally, the empty spaces
must have the same floor height.

As in Section 5.3.2.4, 42, amalgamation of empty spaces can be split in two
distinct cases: Amalgamation in the x- and in the y-direction. Here only amal-
gamation in the x-direction will be described further, but similar rules can be
applied in the y-direction.

Amalgamate in x-direction

Two empty spaces s and t can be amalgamated in the x-direction if:

zs = zt ∧
(
Ss �y St ∧ (αs = xt ∨ xs = αt)

)
A case where this happens is shown in Figure 6.7. Here the new amalgamated
empty space is shown with the blue colour. The new empty space r is given in

Figure 6.7: New empty spaces when amalgamating two empty spaces with overhang.
Amalgamation in the x-direction
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Min.
xr = min (xs, xt)

y
r

= max
(
y

s
, y

t

)
zr = zs

Max.
xr = max (xs, xt)
yr = βr · (1 + γ)− y

r
· γ

zr = min (zs, zt)

Support
αr = max (αs, αt)
βr = min (βs, βt)

Table 6.3: The resulting empty space after amalgamation in the x-direction.

Table 6.3. Even though the new space r has larger support in the x-direction,
it is not expanded beyond the borders of the original empty spaces. This is not
done because we do not know if other boxes are placed here. Moreover, we do
not know how the support is underneath the boxes which are under the spaces
we amalgamate. If we expanded the amalgamated space, we may end up with
less support than we desire, as in Figure 6.5.

6.2.2.3 Remove subsets

The definition of subsets is now changed. We have introduced two parameters
to control the support from below α, β, which should be reflected.

Definition 6.4 (Space subsets) An empty space s is a subset of another
space t if it respects Definition 5.8 and:

αs ≤ αt ∧ βs ≤ βt

This means the support as well as the size of the space s must be a subset of
the space t. Note that this definition states the same as Definition 5.8 if γ = 0
and thereby α = x ∧ β = y.

6.2.3 Load bearing strength

The concept of load bearing strength (LBS) was first investigated by Bischoff [2].
The basic idea is that all boxes to some extent are fragile. Hence, we need to
guarantee that no boxes, are put under more pressure from other boxes, than
allowed. Load bearing strength is a measure for how much weight a given box
can carry without being damaged.
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To model this feature we need to know, for every box i ∈ B what its load bearing
strength is. This is denoted LBSi. In our model there exist one LBS-value for
every box, no matter how the box is rotated. This differs from the work of
Bischoff [2] who use three LBS, one for each of the different surfaces.

First we will explain how the load bearing strength constraints are defined if no
overhang is allowed. In Section 6.2.3.2 this will be extended to include overhang.

6.2.3.1 Load bearing strength without overhanging boxes

To calculate if a given box is load bearing strength feasible, we need to find the
sum of the weight of the boxes placed above the given box. These boxes could
either be placed directly on top of the given box, or add to the weight through
other boxes.

More precisely a box i is considered to be placed on top of box j if:

i�x j ∧ i�y j ∧ zi > zj (6.2)

meaning that, they overlap in the x- and y-dimension and i is placed higher
than j. Since more than one box can be placed directly on top of the same box1

it is not enough to find all boxes placed above another box and calculate the
above boxes joint weight. Instead it is necessary to check for every point on the
container floor, if the boxes placed above it are load bearing strength feasible.
In practice not every point need to be checked, only one point for every different
box stack. In Figure 6.8 two box stacks exists. One consisting of boxes 1 and 3,
and one consisting of boxes 2 and 3.

Figure 6.8: Two boxes placed directly on top of the same box.

1 Box i is placed directly on top of box j if: i �x j ∧ i �y j ∧ zi = zj
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Definition 6.5 (Box stack) A box stack bs is bound to a point on the con-
tainer floor. This point is called the reference point, r = (rx, ry, rz), of the box
stack. A box stack is composed by all boxes, which overlap the reference point
in their x- and y-dimensions. More formally a box i is a member of a box stack
bs if:

ai < rx < ai ∧ bi < ry < bi

The set of box stacks is denoted BS.

Notice, that since the box stack is bound to a reference point, two boxes placed
in the same height cannot be members of the same box stack. Box 1 and 2 on
Figure 6.8 can for instance not be in the same box stack. Now every box i is
a member of at least one box stack bs. For every box stack bs ∈ BS, a check
should be made, regarding the other boxes in the stacks. The check is:

LBSi ≥
∑
j∈bs

ci<cj

mj

∆aj∆bj
, ∀i ∈ bs (6.3)

If this holds for all box stacks bs ∈ BS the packing is load bearing strength
feasible.

6.2.3.2 Load bearing strength with overhanging boxes

When we work with overhang two major problems arise, both illustrated on
Figure 6.9.

Figure 6.9: One box (box 3) placed overhanging another box (box 1). Under the
overhanging part of the box 3, box 2 is placed. There is no contact between box 2 and
box 3.
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1. Boxes placed above one another (as given in Equation (6.2)), does not
necessarily support each other. In Figure 6.9, box 3 is placed above box
2, but there is no contact between them.

2. If a part of a box i does not get support from below, then the boxes that
do support it, becomes strained with more weight, proportional to the
part of i not supported. In Figure 6.9 box 3 is placed on top of box 1, but
it does not have full support, therefore all weight is placed on box 1.

Since boxes can be situated on top of each other without having contact, the
concept of box stacks needs to be changed.

Definition 6.6 (Box stack) A box stack bs, with reference point, r = (rx, ry, rz),
is composed of all boxes where

ai < rx < ai ∧ bi < ry < bi ∧
(
ci = 0 ∨ (∃j ∈ bs, j 6= i|ci = cj)

)
is true.

Definition 6.6 tells us that boxes are only members of a box stack, if they have
support in the reference point by either another box in the box stack or the
container floor.

When a box is overhanging it means that the supported area is smaller than the
base area of the box. Thereby Equation (6.3) is no longer sufficient to describe
the weight resting on other boxes. The change, however, is relatively small.
Now the supported area Sareaj is used instead of the base area. The new load
bearing strength check becomes:

LBSi ≥
∑
j∈bs

ci<cj

mj

Sareaj

, ∀i ∈ bs (6.4)

where Sareaj is given as the supported area of box j and bs ∈ BS.

Notice that the changes made to the check introduced when we work with over-
hanging spaces, work perfectly well when we do not allow overhang. If no boxes
overhang others, the supported area always equals the base area of a box. Like-
wise, when no overhang exists, we are sure that when two boxes are placed on
top of each other, there will also be contact. Therefore, the latter described
checks, fully replace the earlier described ones. If full support is guaranteed, it
should, however, be utilised.
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6.3 Summary

In this chapter it is shown how the model introduced in Chapter 5, can be
modified to handle the extra complexity needed, when problems from the real
world are to be solved. The complexity of the changes needed, depends on
which part(s) of the model they affect. To be able to make meaningful loads for
Aarstiderne, it was rather simple to change the check done whenever a box was
inserted on top of another box. On the other hand it is far more complex to make
changes in the way the empty spaces are handled. This has been illustrated by
the changes needed to be able to solve the problems from Johannes Fog. The
model introduced to the Johannes Fog problems, is more a generalisation, than
a specialisation of the realistic model. The multi-drop constraint is relaxed
to allow unloading in more directions, it is however, still possible only to allow
unloading in one. Instead of only consider fragile boxes, all boxes can be thought
of as relatively fragile, using the load bearing strength concept. Finally, also the
minimum amount of support from below can be changed.

Besides allowing us to model the specific problems from Aarstiderne and Jo-
hannes Fog, the additions to the model can be combined to solve a wide variety
of problems met in different industries. An example could be the problem from
Aarstiderne, which resembles problems met in the brewery industry. Instead of
vegetables it is softdrink and beers which is distributed. The properties of the
problems are, however, comparable.



Chapter 7

Algorithms

Now, models have been introduced to describe different realistic container load-
ing problems with multi-drop constraints. This gives us the necessary tools to
develop a solution procedure. Our demands to the algorithm is that it should
produce solutions fast and respect the introduced constraints. Moreover, it
should be kept in mind, that the algorithm must be capable of finding solutions
to problems of very different size and nature.

The main algorithm proposed in this chapter, consist of two parts. A tree search
framework is constructed to guide the search for good solutions. To evaluate
the nodes in the tree search, greedy packings based on different strategies are
developed. The basic tree search will provide a structured framework to search
through the solution space. To improve the search process, different tweaks are
suggested.

First the different greedy methods are described. Afterwards the tree search
framework is introduced.
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7.1 The greedy procedures

Previously researchers have worked with constructive algorithms that build walls
(see e.g. [16, 28]), layers (see e.g. [3, 20]), stacks (see e.g. [3, 13]) or blocks (see
e.g. [5, 10]). Of these methods, we choose to disregard building layers. If only
one unloading direction is considered, the allowed sequences in each layer, would
depend on boxes in other layers. The other methods seen in the literature all
have favourable features, and we have chosen to try approaches, which favours
both walls, stacks and blocks.

All the greedy methods proposed follow the same framework. The only difference
is the strategy for matching boxes and spaces.

The generic framework of the methods is summarised in Algorithm 7.1. The
main difference between them is how line 4 is performed.

Algorithm 7.1: Greedy

1: repeat
2: Choose subset of the not placed boxes BnPlaced with desired sequence

number(s)
3: while More boxes can be placed do
4: Find feasible box/rotation/space combination
5: Insert found box in the found space
6: Update empty spaces and boxes
7: end while
8: until stop

Before entering the while loop, the option to work on a limited number of
customers at a time, is given. This can help control the packing sequence more
thoroughly. If we for instance choose to load boxes from one customer at a time
- starting with the customer visited last and ending with the one visited first -
this will indeed be a LIFO (Last-In-First-Out) packing. This follows the ideas
introduced by Bischoff and Ratcliff [3] and Gendreau et al. [14] to cater for
multi-drop constraints. The minimum number of boxes present in the subset of
BnPlaced used when running the inner loop of the greedy algorithms is called
κ. The point of splitting the batch in smaller subsets should be not too mix
up boxes from different customers. Loading one customer at a time, however,
could be too strict.

The algorithm stops if: 1) all boxes are packed, 2) no boxes in the current subset
of BnPlaced fit in the left empty spaces or 3) there are no more empty spaces.
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7.1.1 Choose the first feasible box/rotation/space combi-
nation

The next two methods have very simple strategies in line 4 of Algorithm 7.1.
They depend on that the boxes in BnPlaced are sorted according to some rule.
We have chosen 3 different, namely:

1. First by sequence then by largest dimension

2. First by sequence then by largest surface

3. First by sequence then by largest volume

The strategies are chosen with focus on placing the largest boxes early, as these
are the potentially hard boxes to place. A smaller box will more easily fit in
the container later in the loading process. The motivation for not only looking
at volume, is that it might be harder to place boxes with one or two very large
dimensions, than a big but even sided one.

Also the sequence in which the different feasible box rotations are tried is im-
portant. We are considering 6 different sequences. The first one favours the
biggest dimension placed along the x-dimension, the middle dimension along
the y-dimension and the smallest dimension along the z-dimension. This is de-
noted XY Z. The second favours the biggest dimension along the x-dimension,
the middle one along the z-dimension and the smallest along y-dimension, which
is denoted XZY . The same principle make up the last four rotation sequence,
which are denoted Y XZ, Y ZX, ZXY and ZY X.

Finally the empty spaces in the set S are also sorted. This is done according to
their position in the container, starting with the spaces with low x, y and z in
that sequence.

7.1.1.1 Find a box to the chosen space (SB)

The procedure chooses the first space and then tries to find a box that can be
placed in it, starting with the most promising box according to the chosen box
sort rule.
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Algorithm 7.2: Find box/rotation/space combination (SB)

1: for all Spaces do
2: for all Box types do
3: for all Feasible rotations do
4: if Box is valid in space then
5: return Box/rotation/space combination
6: end if
7: end for
8: end for
9: end for

If the first chosen box with the first feasible rotation does not fit in the space the
next rotation is tried. When no more rotations exist for the box the next box
type is tried. If no boxes at all fit in the space the next space is tried starting
all over with the boxes. The procedure to find the box and space is shown in
Algorithm 7.2. As spaces are sorted by x-dimension first, this procedure favours
wall constructions.

7.1.1.2 Find a space to the chosen box (BS)

In the second greedy algorithm all the spaces and boxes are ranked according
to the same rules as in the first procedure.

Algorithm 7.3: Find box/rotation/space combination (BS)

1: for all Box types do
2: for all Feasible rotations do
3: for all Spaces do
4: if Box is valid in space then
5: return Box/rotation/space combination
6: end if
7: end for
8: end for
9: end for

The difference between the two procedures is that we choose a box, then a
rotation and then searches for a space where it can be placed. This tends to
favour placements of the same box types in blocks. In Algorithm 7.3 it is shown
how this works.
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7.1.2 Choosing the most promising box/rotation/space com-
bination

The methods described in this section rank all boxes with all possible rotations
against all spaces available. This is done based on some criteria, which we will go
into more details with, in the subsequent sections. As we rank all spaces against
all boxes, there is no need to sort neither the spaces nor the boxes. However,
for each chosen box/rotation/space combination more calculations are needed.
This makes them more time-consuming than the first two methods described.
The framework to find a box and a space for the next two procedures is shown
in Algorithm 7.4.

Algorithm 7.4: Find box/rotation/space combination (ST & VL)

1: for all Box types do
2: for all Feasible rotations do
3: for all Spaces do
4: Evaluation the box/rotation/space combination
5: end for
6: end for
7: end for
8: return Best box/rotation/space combination

7.1.2.1 The Bischoff & Ratcliff multi-drop method (ST)

This method is taken directly from the work of Bischoff and Ratcliff from 1995
[3]. We have chosen to implement it, as it, to the knowledge of the authors,
is the only really well described method that considers multi-drop situations
reported in the literature.

For every box/rotation/space combination we calculate 4 statistics used to find
the best. If the placement of box i with rotation fr is valid in space s, we
calculate:

K∗1
bti,s = min

(⌊
∆zs
∆ci

⌋
, kbti

)
where kbti ∈ B is the number of boxes of box type bti left yet to be placed. The
other part of the minimum expression calculates the maximum number of this
box type that is possible to stack in space s. This means that K∗1

bti,s
represent

the number of boxes of box type bti which can be placed in a stack in space s.
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Example 7.1 Lets assume that we have 3 boxes of the same type yet to be
packed (kbti = 3). Furthermore, lets say that the boxes have ∆ci = 4 in the
chosen rotation and the space we are evaluating has height ∆zs = 17 and in all
dimensions can contain the box. Then: K∗1

bti,s
= min

(⌊
17
4

⌋
, 3
)

= min(4, 3) = 3.

Now the criteria can be formulated as follows:

Main criterion: Largest potential space utilization:

ui,s = K∗1
bti,s ·

(
liwihi

∆xs∆ys∆zs

)
1. Tie breaker: Smallest lengthwise protrusion: pi,s = xs + ∆ai

2. Tie breaker: Largest box volume: vi = liwihi

3. Tie breaker: Lowest value of y
s

The main criterion favours a box type that gives the best volume utilisation
in the space, when we can place K∗1

bti,s
of them. The first tie breaker favours

box/rotation/space combinations that does not expand in the x-dimension of
the container, trying to pack the boxes as close to the back wall as possible. The
second tie breaker tries to place big boxes first, as they may be difficult to place
later on. The only purpose of the last tie breaker is to make a unique selection
when the other rules does not give one. It is these criteria that are used in line
4 of Algorithm 7.4, to evaluate a box/rotation/space combination.

Of course the second tie breaker only concerns a box and hence, does not need
to be recalculated for every box/rotation/space combination. The same apply
to the third tie breaker, which only concerns the space and hence only need to
be evaluated when a new space is looked upon. This does not apply to the main
criterion or the first tie breaker as they depend on both the space, the box and
the chosen box rotation.

It is important to notice, that the calculation of K∗1
bti,s

only gives a limited
lookahead in each iteration. This means that after placing one box, there is no
guarantee that the same box type will be placed on top of it.
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7.1.2.2 Ranking the boxes based on their volume usage in the entire
space (VL)

This method is almost the same as the previous, except for the main criterion.
Instead of only looking at the volume usage in a stack, we look at the volume
usage in the entire space. This can easily be changed by changing the definition
of K∗1

bti,s
to the number of boxes which can be placed in the space. To reflect

the number of boxes that can be placed in the space, we calculate how many
boxes can be placed in each direction in the space and multiply these. The new
K∗2
bti,s

is given by:

K∗2
bti,s = min

(⌊
∆xs
∆ai

⌋⌊
∆ys
∆bi

⌋⌊
∆zs
∆ci

⌋
, kbti

)
which replaces K∗1

bti,s
in the main criterion. Otherwise, we use exactly the same

criteria as in the previous method.

7.1.2.3 Minimise the volume of generated unusable space (EL)

The third method that evaluates the combination of spaces and boxes, seeks to
minimise unusable space generated by the insertion of a box. This method is
an implementation of Eley’s greedy heuristic [10].

Algorithm 7.5: Find box/rotation/space combination (EL)

1: foundBox = false
2: for all Box types do
3: for all Feasible rotations do
4: for all Spaces do
5: Evaluate the box/rotation/space combination
6: end for
7: end for
8: if A valid box/rotation/space combination is found then
9: return Best box/rotation/space combination

10: end if
11: end for

In this method, we actually only look at one box at a time, namely the box
not yet packed with largest volume. The box is inserted in as many different
ways as there are valid rotations for it in each available empty space. For each
insertion, we look at the resulting empty spaces and check whether boxes can be
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inserted into them. If we produce spaces that are too small to contain a box, the
evaluation of the box insertion is worsened by the volume of the unusable space.
If two insertions yield the same evaluation, we favour the box insertion, which
is placed with euclidian distance closest to the origin in the container. If both
insertions are in the same space, this will also evaluate to the same value, and
the insertions are considered equally good. Then the first box/rotation/space
combination is chosen. The pseudo code for this insertion method is shown in
Algorithm 7.5.

7.2 The improvement framework

As mentioned in the literature review, many different approaches have been tried
by others. These approaches rank from tree searches to many different kinds
of metaheuristics. The most promising metaheuristics for the CLP are based
on either tabu search, GRASP or genetic algorithms. Both tabu search and
GRASP need an appropriate neighbourhood. As the complexity of a packing is
very large, it is not trivial to remove a box from the container and guarantee that
the packing stays feasible. In fact, if this is to be done without a complicated
check, the boxes must be removed in the opposite sequence as they were packed.
If not, a complete repacking is necessary. What other researchers have done, is to
make a greedy solution and use the packing sequence as a representation for the
solution. Then a new solution can be found by interchanging two boxes in the
packing sequence (see e.g. [14]) or by removing a box temporarily, insert another
box, and then making the removed box available to the algorithm again (see e.g.
[24]). Other approaches that for instance greedily insert boxes in blocks, make
all the block choices at every insertion point, different neighbouring solutions
to their problem (see e.g. [5]). The drawback of all these definitions is that the
neighbourhoods quickly become very large, which leads to large computation
times for both the local search algorithm in GRASP and the neighbourhood
search in the tabu search.

With concerns to genetic algorithms, two different approaches have been pro-
posed by Bortfeldt and Gehring [4, 13], one is based on stacks and the other on
walls. The disadvantage of the proposed genetic algorithms is that many boxes
are moved around, when new solutions are constructed. This makes it hard to
maintain multi-drop feasibility.

The last structured improvement method we have seen introduced with success
is the tree-search approach, which we have chosen as our algorithm of choice.
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7.2.1 Tree search

In order to guide the search for good solutions, a tree search improvement
framework is developed. The framework gives the opportunity to test different
loading sequences in a constructive way. In the proposed framework each box
insertion is a choice in the tree. This follows the ideas from Scheithauer [30] and
Eley [10]. Thereby, many different box insertion can be tried after each box is
placed, instead of only choosing one greedily. Two different strategies, on how
to choose the space wherein a box should be inserted, are tested. Either the
space can be chosen by the greedy method, as proposed by Eley, or the space
choice can be made part of the tree, as proposed by Scheithauer.

To improve the solution speed an extension of the tree search is proposed, taking
advantage of the greedy solutions generated during the procedure. This is called
the accelerated tree search. Furthermore, we also propose a dynamic breadth
that will adjust the breadth of the search tree in each iteration.

7.2.1.1 The basic framework

The general idea in the tree search is to construct a tree consisting of partial
solutions, where in each node of the tree, a combination of box, rotation and
space is chosen carefully.

A partial solution consists of a set of valid empty spaces and two batches, Bplaced
and BnPlaced. Additionally in a partial solution, it has not been shown, that
no more boxes can be placed. The initial state of the algorithm is an empty
container. The empty container is the partial solution, where no boxes are
placed at all. This partial solution is the root of the search tree.

In each node of the search tree it is desirable to have both a primal and a dual
bound on the solutions. The primal bound is rather easy to obtain, as it can be
found as a solution to the problem found by the greedy procedure (Algorithm
7.1). Getting a good (tight) dual bound, on the other hand, is not a trivial
task. Examples of dual bounds to the CLP are seen in the literature (see.
e.g. [23, 31]), but because of our time perspective and the extra constraints
introduces in our problem, it is not considered.

It is not possible to fully branch on all partial solutions, due to the many possi-
bilities there exists when a new box should be inserted. An example of the size
of the tree is seen in example 7.2.
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Example 7.2 If we have 20 different box types in our problem and all of them
have 6 feasible rotations. The first decision alone leads to 120 possibilities.
When the next box is inserted there are 1202 = 14400 different nodes in the
fully expanded tree.

Because the number of nodes in the fully expanded search tree grows very fast,
as illustrated in Example 7.2, and we have a limited amount of time available to
run the algorithm, it is not possible to search through all branches in the tree.
Instead, we define a breadth, λ, of the search tree. At every depth, the tree can
at most be λ wide. The choice of λ will of course affect the running time of the
algorithm, and if there is a tight upper bound on the time available, it is crucial
to choose λ correctly. If λ is chosen too high, the algorithm will terminate, while
still being in the top of the tree. This means that many boxes are not placed by
the tree search, but only placed greedily. If, on the other hand, λ is chosen too
low, the algorithm will simply terminate without spending all time available,
and fewer packing combinations will be tried. In either way the quality of the
solutions decrease.

The basic framework of the tree search, where the spaces are chosen greedily,
is shown in Algorithm 7.6. The algorithm begins with the partial solution

Algorithm 7.6: Tree search

1: Partial solution := empty container
2: repeat
3: for all Partial solutions do
4: for all Box types do
5: for all Feasible rotations do
6: Tentatively insert the box in the container using Greedy()
7: Add solution to partial solutions and evaluate by inserting the

remaining boxes using Greedy()
8: end for
9: end for

10: end for
11: Delete identical solutions
12: Keep best λ partial solutions
13: until optimal solution found or #partial solutions = 0

or time > timeLimit

containing the empty container and a batch of boxes to place. Besides this,
only λ, is given. The algorithm is constructed to be able to work with any
greedy algorithm, finding a feasible solution to the problem. In each iteration
of the procedure, the job is to insert a box in the partial solutions. This is done
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by trying to insert all possible box types not yet loaded with all their feasible
rotations. The place to insert the box is in the basic approach chosen by the
greedy method. This is done in line 6. When a box is inserted into a partial
solution, we need to measure the quality of the solution. This is done by calling
the greedy procedure with the rest of the not loaded boxes, which is seen in
line 7. From the best found greedy solution, information about which boxes are
loaded and the volume utilisation, is stored. From all other greedy solutions
only the volume utilisations are stored.

Every different insertion gives a new partial solution. From these we first delete
solutions that are identical (see Section 7.2.1.2) and then keep the best λ. This
gives up to λ new partial solutions, which can be expanded in the same way.
When no more boxes can be inserted into a partial solution the partial solution
is no longer partial, but full. Therefore it is deleted (of course it is remembered
if it the best one yet) to leave room for other partial solutions in which more
boxes can be inserted. The algorithm terminates if an optimal solution is found,
no more time is available or no more partial solutions exist.

7.2.1.2 Deleting identical solutions

Different packing sequences can lead to the same partial solution because of
the multiple symmetry of the container loading problem, meaning that different
paths in the tree can lead to identical solutions. This can lead to situations
where all stored solutions are replaced by the same good solution. To avoid
this, a rule to remove identical partial solutions is used. A similar rule was
proposed by Eley [10].

Two partial solutions are considered identical if boxes with the same box type
and sequence number are placed at the same position. This can happen even
though the boxes are not loaded in the same sequence.

7.2.1.3 The space choice

In the basic framework, the empty space, in which a box is inserted, is chosen
by the greedy procedure. This follows the concept of the tree search proposed
by Eley. Instead of leaving this choice to the greedy procedure it could be a
good idea to have the space choice as a part of the branching scheme. This
means that a box insertion is now tried for every different box type, with all
feasible rotations in all valid empty spaces. This follows the ideas of Scheithauer.
This means that an extra loop, running over empty spaces should be inserted
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in the inner loop of Algorithm 7.6. Thereby the space choice in line 6 becomes
faster, because this choice is already made, however more partial solutions are
generated, which means that more greedy solutions should be made. Therefore,
the overall complexity of the algorithm increases, when insertion in all spaces is
tried.

7.2.2 The accelerated tree search

In the basic framework one box is placed in the container in each iteration, given
by the loop in line 2-13 (Algorithm 7.6).

When a greedy solution is found, all information except the volume utilisation,
is thrown away. The accelerated tree search tries to analyse the greedy solution,
and possibly use a part of it in the partial solution.

Algorithm 7.7: Accelerated tree search

1: Partial solution := empty container
2: repeat
3: for all Partial solutions do
4: for all Box types do
5: for all Feasible rotations do
6: Tentatively insert the box in the container using Greedy()
7: Add solution to partial solutions and evaluate by inserting the

remaining boxes using Greedy()
8: end for
9: end for

10: end for
11: Delete identical solutions
12: Keep best λ partial solutions
13: Extend partial solutions by selected part of ancillary greedy solutions,

see Algorithm 7.8
14: until optimal solution found or #partial solutions = 0 or time > timeLimit

The accelerated tree search can be seen in Algorithm 7.7. The only difference
between this and Algorithm 7.6, is the addition of line 13. In this line the partial
solutions are extended to contain a part of the greedy solutions, that were found
during the evaluation of the partial solutions in line 7. Pseudo code explaining
this extension, is shown in Algorithm 7.8. GS is the greedy solution found based
on the partial solution PS.

A greedy solution is analysed by looking at the empty spaces left in the container,
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Algorithm 7.8: Extension of partial solution

1: PS := partial solution
2: GS := ancillary greedy solution
3: sold := space found in last iteration
4: for all empty spaces in GS do
5: locate empty space furthest back, sback later then sold
6: end for
7: for all boxes in GS \ PS do
8: locate first box ifirst placed after sback
9: end for

10: In GS \ PS remove ifirst and all boxes placed after this and call the
resulting set EPS (Extension of Partial Solution)

11: PS := PS ∪ EPS

when the greedy algorithm has terminated. The empty spaces can be seen as
an indication of where the boxes could have been packed better. The idea is
to locate the empty space furthest back in the container, and remove all boxes
placed after this space. To be able to compare the placements of the spaces, we
must define when a point is further back in the container than another.

Definition 7.1 (Point placed further back) A point p = (xp, yp, zp) is placed
further back than a point q = (xq, yq, zq) according to the following criteria:

Main criterion: xp < xq

Tie breaker 1: yp < yq

Tie breaker 2: zp < zq

Now, spaces and boxes can be compared to see which is further back. This is
done by comparing their minimum based on Definition 7.1. If minimum for two
spaces are the same, they are considered equally far back in the container and
one is arbitrarily chosen.

By removing the first box placed after the space chosen, and all boxes placed
later than this by the greedy algorithm, we assure that no boxes are placed after
the empty space selected, thereby giving the tree search a possibility to improve
the packing in that area. Boxes placed later than the first box chosen, could
very well be placed further back than the space this box was compared with.
An idea could be to leave these boxes in the container, this would however break
the loading sequence, thus removing the guarantee of a feasible load.
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The reason to exclude boxes already included in the partial solution when finding
the first box to remove (line 7 in Algorithm 7.8), is to assure the convergence
of the solution. At the same time it is necessary to keep track of earlier chosen
spaces in line 8 to assure always to select a space further out in the container,
otherwise if we cannot fill out a space, we would repeatedly find it and then
only pack one box at a time, missing the point of the accelerated tree search.

The effect of the accelerated tree search, is that the choice of branching in the
algorithm has been changed. Instead of branching on every box and rotation,
the branching is reduced to be on the first box placed after the next empty
space. An effect of the strategy is that there is no guarantee that the nodes
chosen in an iteration will have the same number of boxes loaded in the search
tree. But because of the way the solution evaluation criterion is constructed,
they can still be compared.

All in all the algorithm will reach the leaf nodes fast when the greedy solutions
are tightly packed, and more slowly when there are many empty spaces. Worst
performance for the accelerated tree search is the case where branching is done
on all boxes and rotations. Then the number of branches equals the number of
branches made by the basic tree search.

7.2.3 The dynamic breadth

As mentioned, when the static breadth was introduced, the choice of λ is crucial
for the performance. A reasonable choice depends on both the problem at hand
and the time available to solve it. Partly because of this and partly because it
could be a good idea to change the breadth throughout the search, we introduce
a dynamic breadth.

The dynamic breadth is calculated on the fly, based on the remaining time, ∆t,
and the estimated time necessary to get to the bottom of the search tree through
one branch tbranch. This leads to the following value of the breadth in iteration
p:

λp =
∆t

tbranch,p
· W (7.1)

where W is a weight which will be explained further in Section 7.2.3.1. The
time used in one branch of the tree is not trivially estimated, as it depends
on many factors varying independently. The most important of these are the
number of different boxes possible to place, the possible rotations of these, the
greedy method used, the number of spaces in the container and the depth of the
branch. All these factors cannot be taken into account and instead a simplified
estimate is used.
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The time tPS , it takes to expand one partial solution PS in the tree is estimated
to be linear dependent on the number of not yet loaded boxes |BnPlaced,PS |, and
given by:

tPS = K · |BnPlaced,PS | (7.2)

Here, both tPS , as well as |BnPlaced,PS |, are known. To expand a partial solution
all feasible combinations of box types and rotations (if the space choice is greedy)
are evaluated by the greedy method. tPS and |BnPlaced,PS | are estimated based
on the average time used to develop all the possible solutions and the average
number of boxes not loaded, in each node. In the not accelerated algorithm
|BnPlaced,PS | is the same for all partial solutions and equals the total number
of boxes minus the depth of the tree. If the accelerated algorithm is used,
a different number of not loaded boxes exists in every partial solution. The
expansion time varies between the different partial solutions, mainly because
different boxes are available. Based on tPS and |BnPlaced,PS |, K can be found.
To make a full solution, we need to place many boxes. The best guess on how
many boxes should be placed, is the number of boxes placed in the best found
solution so far. The number of not placed boxes in the best know solution
is denoted |B∗

nPlaced|. The total time tbranch,PS needed to get from a partial
solution PS to the leafs in the tree, can be found as the integral:

tbranch,PS =
∫ |BnP laced,P S |

|B∗nP laced|
K · x dx (7.3)

Thereby the breadth λp in each iteration is estimated as:

λp =
⌊

2∆t · |BnPlaced,PS |
tPS(|BnPlaced,PS |2 − |B∗

nPlaced|2)
· W
⌋

(7.4)

If |BnPlaced,PS | < |B∗
nPlaced| then the denominator in Equation (7.4) is set to

tPS .

The new breadth λp is sensitive to changes in time measure tPS and fluctuations
in this time measure could change the breadth unwanted. Hence, it is chosen
that λp can change with maximum 20% compared to λp−1. If the breadth is
too small to change at all (for instance λp−1 = 2) then it is allowed to change
the breadth with ±1.
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7.2.3.1 Changing the weight used in the dynamic breadth

When building the search tree, it is not necessarily best to have the same breadth
in the start and the end. When only a few boxes are in the container, it is harder
to estimate which choice of placement for the next box is best. Therefore a tree
that narrows in along the way could lead to better solutions than an equally
weighted tree. To test this, a weight W is introduced in Equation 7.1. It is
found as:

W =

(
2−

|BPSplaced|
|B∗
placed|

)ψ
(7.5)

where ψ ∈ R. If ψ = 1 the weight W will in the beginning, be close to 2 and
the breadth is thereby twice as wide as the estimated breadth. In the end the
weight is close to 1, and not influencing the estimated breadth. By changing ψ
the impact of the weight can be adjusted.

7.3 Summary

It has been a goal to develop a general method to solve the CLP with multi-
drop constraints. This is reflected in the choice of solution methods. A tree
search framework is proposed where every box placement is chosen carefully.
This framework provides a general scheme, which can be used to search the
solution space. Greedy methods, which favours different box arrangements, are
also proposed to evaluate the different choices taken in the tree search.

A number of tweaks are suggested to the tree search. Accelerating the search
could be useful when a very short time limit is given. By proposing a dynamic
breadth the method uses the available time efficiently independent of the prob-
lem at hand. Whether the spaces should be chosen greedily or not, if compact
placed block should be left in the partial solutions and if a dynamic chosen
breadth will improve the search, should all be investigated further.
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Implementation

The algorithms were implemented in C++ with use of the STL-library. The algo-
rithms were developed in Visual C++ and analysed with the performance profiler
Visual Quantify to assure a high-speed implementation. All tests, however, were
carried out on the Linux grid, available on IMM, DTU.

A number of different classes are introduced to model the problem. Figure 8.1
shows the conceptual data model for the implemented program.

For each class only the most fundamental attributes and member functions are
shown. The basic class is the Dimension class. This is used to handle three
dimensional values. This could either be coordinates or sizes of boxes or spaces.
The member functions of this class can handle relations and basic computations
in three dimensions. Both the Box, Space and Container class depend on this
to model the placement and size of the different objects.

The Box class contains all attributes defining a box, besides the size of the box
this is, for example, the sequence and the feasible rotations. When a box is
placed in the container, the assigned placement and rotation is also kept as
attributes of the box. To manage and manipulate the boxes, a Batch class is
created. The batch holds a vector of boxes, and the member functions evalu-
ates the boxes in the batch, either all boxes such as the boxSort(), that sorts
the boxes by a chosen criterion, or a single box such as placeBox, that sets
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Figure 8.1: Conceptual Data Model for the program. Only the most important
attributes and methods are included.

placement and rotation of the box.

The Space class is a small class in the program, capturing the attributes of a
space, i.e. placement and size. The Container class contains all information
regarding the container, most importantly its size and the list of empty spaces
defining where boxes can be placed in the container. The methods that evaluates
the vector of empty spaces, such as removeSubset() and amalgamate() are also
found in the Container class.

All information regarding the packing problem at hand, is gathered in the CL
(Container Loading) class. It contains a batch with the boxes placed in the
container, and a batch with the boxes not placed. Furthermore, it contains the
container. All methods in the class depend on information regarding both boxes
and spaces. When for example a box is placed, the spaces in the container must
be updated accordingly. This is done by the method updateEmptySpaces().
The CL class works in close connection with the Solution Methods that contains
all the methods used to solve the container loading problem. This is the different
greedy methods and the tree search. The greedy methods can either be called
directly from CL or through the tree search method.

The Solution class keeps track of the current best solutions and it contains
methods that can check if a solution is feasible. This was very useful when
debugging.
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Data

Data from different sources has been used to test the algorithms. We have used
data from the OR-Library to make quantitative tests, as many problems are
available from this source. This also gives the opportunity to benchmark against
other researchers. However, these problems have some limitations, and do not
always illustrate the problems faced when considering industrial applications.
Therefore, we also include data supplied by the two companies we have worked
with, namely Aarstiderne and Johannes Fog.

In the following sections we will go through the characteristics of the data sup-
plied by the different sources.

9.1 OR-Library

From the OR-Library a number of different datasets are available. Seven diffe-
rent files which supply data for the single container loading problem (BR1-BR7)
are considered. We will call each file a data group. The seven data groups, were
first used by Bischoff and Ratcliff in 1995 [3]. In each of these, there are 100
problems. In the different data groups, problems with different number of box
types appear. The number of box types in the different data groups are 3(BR1),
5(BR2), 8(BR3), 10(BR4), 12(BR5), 15(BR6) and 20(BR7).
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Each problem is generated using a random box generator. First the different
box types are generated. All dimensions of the box types are within a defined
minimum and maximum and only rotations considered stable, based on the ratio
between the dimension, are allowed. When the box types have been generated,
one box is generated at a time, chosen randomly from the different box types,
until the total volume of the boxes exceed the volume of the container, the last
generated box is not part of the problem. Therefore, the total volume of the
boxes in a problem is slightly smaller than the volume of the container. In
practice, however, this does not mean that all boxes can be loaded. For further
details on how the test problems have been generated, we refer to Bischoff and
Ratcliff [3].

For the problems, the dimensions as well as rotation restrictions on the boxes
are given. However no multi-drop consideration have been made when the prob-
lems were generated. To be able to perform a meaningful test of the proposed
algorithms, which are designed to solve problems with multi-drop constraints,
we need to introduce sequence numbers on boxes. The number of different cus-
tomers in a problem is denoted nC. To introduce customers to the problems we
take a random integer between 1 and nC and leave that number as the sequence
number. This is done for each box in the problem.1

When solving problems from the OR-Library we always demand full support
(γ = 0) and whenever more customers are present (nC > 1), the boxes can only
be unloaded in the X+ direction. Load bearing strength is not considered.

9.2 Aarstiderne

The data from Aarstiderne has been supplied by Transvision. Data from routes
already driven, is stored by Transvision, and this is the data we have had access
to. This means that we beforehand know that the boxes assigned to a truck
can be feasibly loaded. Otherwise the route could not have been driven. It is,
however, still interesting to use our method to solve the packing problems, as it
will show whether the algorithm can handle the challenges of a real life problem.
So far Transvision has used a simple one dimensional measure to assure that
the capacity has not been exceeded. One could expect that this is done very
conservatively, as the measure poorly reflect the actual capacity.

In the problems considered, Aarstiderne operates with about 10 different box
types with standard dimensions. All the boxes which contain vegetables and
fruit have the same base dimension. They are 28cm × 38cm and come in two

1The random number generator is seeded by the seed given in the problems in BR1-BR7.
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different heights. The boxes with fresh meat, fish and groceries are packed in
different boxes. These boxes have not got the same base dimension among each
other or compared to the vegetable and fruit boxes. This means that they can
not be stacked in the same stacks as the vegetable and fruit boxes.

Aarstiderne use many different types of trucks to deliver the goods. It is, in
our model, possible to distinguish the size of the containers in which the goods
are loaded, and thereby the truck type. However, in the data delivered by
Transvision no differentiation of the size is made. Therefore, we have chosen a
standard delivery truck for all problems. This is a truck with a 10.3m3 container
with dimensions (L,W,H) = (300, 180, 190). The boxes are only allowed to be
unloaded in the X+ direction. Of course, all constraints described in Section
6.1 must be respected.

9.3 Johannes Fog

As earlier mentioned Johannes Fog distributes construction products from a
depot to different construction sites. When an order is given, it is not known
whether or how the products are bundled together. If the order is 126 pieces
of 3400mm× 150mm× 10mm wooden planks, there are many different ways to
pack these. The general rule used in the business, is that the packages should be
between 1 and 1,2 metres wide. This is done because it makes it easier to load
different boxes on top of each other. The fact that Johannes Fog has no exact
measure of how large their packages are, when they are loaded onto the vehicles,
makes it very difficult to get the necessary information about the consignments.

To be able to work with loads from Johannes Fog, we went to their depot in
Lyngby and measured the dimensions of all the boxes in a number of consign-
ments. Along with our own notes we also got the order sheets for each routes.
Besides information about each product, the order sheets contain information
about the destination of the orders and the accumulated weight. An example of
an order sheet is found in Appendix B. In the planning department of Johannes
Fog, only the information on the order sheets are used to make both routes and
consignments. This is done by hand.
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Figure 9.1: Cargo consignments from Johannes Fog

In Figure 9.1 two different consignments are shown. As it can be seen, the sizes
of the boxes loaded are very different. Both very large pallets of rockwool (the
yellow plastic bag on the right picture in Figure 9.1) and small cardboard boxes
with tools are distributed.

Apart from the dimensions of the boxes, it is necessary to get information about
what can be put on top of each other. These rules were made in co-operation
with Johannes Fog. First of all, only rockwool can be put on top of rockwool.
Also, nothing can be put on top of the very odd-sized objects, such as the
cylinders placed vertically on the pallet in the middle of the right picture. This
also counts for gravel and similar products, which are distributed in sacks. On
the other hand, both wooden plank and gypsum boards can be put on top
of each other. However, the very heavy gravel sacks and concrete are allowed
on top of neither gypsum nor wood. The exact information on the different
consignments can be found in Appendix C. This information is reflected in the
calculated load bearing strength values.

In feasible packing at Johannes Fog boxes are allowed to overhang each other.
To reflect the properties of the problems we choose γ = 0, 2. Moreover unloading
can be done in the directions X+, Y − and Y +.
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Tuning the algorithms

In Chapter 7, an algorithmic framework to solve the CLP with multi-drop con-
straints, was proposed. A tuning of the algorithms should now be done. First,
we will find the greedy methods which are best suited to solve the problem.
Afterwards, the best greedy algorithms are used as a part of the tree search
framework. Both considerations on the solution quality and time usage are
included in the evaluation of the methods.

All the tests are performed on data from the OR-Library. This is done, because
it is the only data source - available to us - where enough data exists. In the
test of the greedy methods all 700 problems are used, whereas only the first 10
from each data group are included when tuning the tree search. The algorithms
are tuned to problems, that can be solved by the realistic model. To reflect this,
OR-Library problems with customers added are used.

All the tests are performed on the grid available at IMM, DTU. The grid
presently consist of 30 linux machines with 2,7 GHz 64 bit AMD dual core
processors and 2 GB RAM, and four high memory Linux machines with eight
2,7 GHz 64 bit AMD processors and 32 GB RAM. To make the quantitative
analysis SAS 9.1 was used.
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10.1 Best settings for the greedy algorithm

The greedy algorithms are characterised by making fast solutions to the problem,
and distinguish themselves by different strategies on how to make these. In this
section, the best settings for the greedy algorithms, will be found.

The greedy methods were introduced in the following sections 7.1.1.1 (SB),
7.1.1.2 (BS), 7.1.2.1 (ST), 7.1.2.2 (VL) and 7.1.2.3 (EL).

Some of the methods, namely SB, BS and EL depend on the sequence in which
the boxes are tried inserted in the container. This is because they, when a box
placement is evaluated, have a first fit principle. When the first valid placement
in the container has been found, the box is inserted. The other methods (ST
and VL) try all different box types with all possible rotations in all possible
spaces before a combination is chosen. These methods will also be denoted best
fit methods. When a first fit method is used, the sequence of how the boxes are
tried will have an effect on the final solution quality.

Before we complicate the problems by adding customers, it is decided to find the
best choices for both rotation and sorting of the boxes in the first fit methods
SB, BS and EL. We need to test, in which sequence the different rotations,
for a given box, should be tried and how the boxes are sorted. The different
sort strategies are: 1) largest dimension, 2) largest surface or 3) largest volume.
The box rotation strategies are XY Z, XZY , Y XZ, Y ZX, ZXY and ZY X, as
explained in Section 7.1.1, page 71.

10.1.1 Rotation of boxes

As mentioned in Section 5.2 we work with six different ways to rotate a box.
When we use the methods BS, SB and EL, the choice of the sequence in which
the different possible rotations are tried, will affect the solution quality. The six
different rotation sequence strategies, presented in Section 7.1.1, are tested. The
results are shown in Table 10.1. The volume utilisations reported are calculated
based on tests over 700 problems, with the 3 different sort strategies possible
for the boxes, which means that each number is an average over 2100 different
solutions. From the table it is clear, that on average the best rotation sequence
is Y XZ. This is true for all three greedy methods. It is also the case that
not much can be gained when comparing Y XZ with the other box rotation
sequences.

The Y XZ strategy favours box placements where the largest dimension is along
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Method Volume utilisation
XY Z XZY Y XZ Y ZX ZXY ZY X

SB 81.41 80.88 82.10 81.37 80.82 80.74
BS 81.65 81.48 82.16 81.77 81.28 81.03
EL 79.74 79.72 80.22 80.21 79.59 79.80
Overall 80.93 80.69 81.49 81.12 80.57 80.52

Table 10.1: The influence of different box rotation sequences for the different first fit
methods.

the back of the container, thereby protruding least possible into the remain-
ing container floor. Moreover, having the smallest box dimension in the z-
dimension, generally allows for a larger area to support other boxes.

A more detailed look at the different box rotation sequences compared with both
batch sort strategy and greedy method does not deviate from what is shown in
Table 10.1. This is shown in Figure D.1 in Appendix D.

In all succeeding tests, the rotation strategy Y XZ is used. This strategy favours
placing the biggest dimension along the y-dimension, the middle dimension along
the x-dimension and the smallest dimension along the z-dimension.

10.1.2 Sorting the batch

For the first fit methods, it is also important how the batch is sorted. Different
sort strategies are described in section 7.1.1.

In Figure 10.1 the results of the test are shown. On the horizontal axis the diffe-
rent data groups from the OR-Library are shown, and the volume utilisation is
on the vertical axis. The different graphs in the figure correspond to the diffe-
rent greedy algorithms SB, BS and EL. On each graph the three different sort
strategies are shown. For all three methods there is no big difference between
sorting by the surface or the volume. On the other hand if one sorts by the
biggest dimension, a markedly worse solution is obtained for the problems in
data groups 1-3, whereas the average solution values seem to be about the same
for the problems in data groups 4-7. For methods SB and BS there even seems
to be a tendency that sorting by the biggest dimension gives better results for
the more heterogeneous data groups.

When considering the sorting strategies, we thought it most likely, that the
volume was the best measure to describe when a box is hard to place. The results
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Figure 10.1: The influence of different batch sort strategies for the different first fit
methods.

of the test is somewhat surprising, as it shows that sorting by biggest dimension,
should be preferred when more heterogeneous data sets are considered. However,
the sort strategy that yields the overall best results is sorting by the largest
volume. The precise results are shown in Table 10.2. Because a generally good
solution method is preferred we choose to sort the batches by the largest volume.

Method Volume utilisation
Dimension Surface Volume

SB 81.98 82.17 82.16
BS 82.12 82.20 82.17
EL 79.32 80.45 80.88
Overall 81.14 81.61 81.74

Table 10.2: Aggregated results when different batch sort strategies are used.
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10.1.3 Several customers in the problems

Now we introduce several customers in the problems. We still use the problems
from OR-Library and choose four categories with “several customers”, namely
nC ∈ {2, 5, 10, 50}.

In all the greedy procedures, it is a possibility to load the not already placed
boxes in subsets, only considering one subset at a time. This is controlled by
the parameter κ. We have tested with κ ∈ {1, 5, 10, 25, 50, 100,∞}.

Figure 10.2: The effect of adjusting κ when having more customers.

In Figure 10.2 the result of the test is shown. Four graphs are visible in the
figure. Each graph is created based on problems with a different number of
customers. On the horizontal axis the minimum number of boxes that should
be present in each iteration, κ, and on the vertical axis the average volume
utilisation, is shown. The different lines on the graphs indicate the different
methods used. There is a clear tendency showing that, when κ increases the
solution value decreases. This is true whatever the number of customers is.
However, it is also visible that methods BS and EL do not depend on κ. The
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reason for this is, that these methods take one box at a time, and tries to place
it. Since the sequence in which the boxes are tried does not change, the results
are still the same. For SB, also a first fit algorithm, the sequence in which the
boxes are loaded does depend on κ. The method tries to find a box to place in
a given space, and when more boxes are present at the same time, some boxes
with lower sequence number may be loaded in the container early on, leaving
less space where boxes can be placed because of the multi-drop constraints.

The graphs in the figure clearly shows, that the methods perform best when κ
is small. There may, however, be more book-keeping when a smaller amount of
boxes is tried at a time, hence we must also investigate how the solution times
depend on κ. This is done in the next section.

By comparing the four graph in Figure 10.2 it is seen, that the overall solution
quality decreases with the number of customers in the problem. For nC = 2
the solutions are in the interval from 0,7 to 0,75, whereas when nC = 50 the
solutions are in the interval from 0,45 to 0,5.

10.1.4 Time usage by the greedy methods

It is important to know how much time is used by the proposed algorithms.
Some of the algorithms evaluate more carefully each time a box is inserted than
others. Hence, the time usages should show this.

In Figure 10.3, it is shown how the average time usage depends on the number
of boxes loaded in the problem. In the graph to the left, it is seen that method

Figure 10.3: Time used depending on how many boxes are loaded. The right graph
is without method EL.
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EL generally uses much more time than the rest of the greedy algorithms. It
becomes especially bad for problems with many boxes, indicating that method
EL is less scalable than the other methods. On the graph to the right the same
times are shown, but without method EL, as the presence of this method makes
it hard to conclude anything about the other methods. On the right graph it can
be seen that there is a clear connection between the number of boxes found in a
solution and the solution time. The time seems to increase exponentially with
the number of boxes. It is also seen that the methods group in two. One group
consisting of the methods ST and VL and one group consisting of SB and BS.
The methods in the first group are the best fit methods, which try all different
box types with all possible rotations in all empty spaces, and based on some
criteria, choose a placement for a box. The second group consist of the first
fit methods, which picks the first feasible place for an insertion. Therefore, the
division of the methods in these two groups does not come as a surprise. That
method EL is significantly more time consuming than the other methods is to
some extent surprising. The reason for the bad performance, is that whenever
a box insertion is tried, the resulting empty spaces need to be found, to be
able to evaluate that particular insertion. This is done for every feasible box
rotation in every feasible empty space. Because method EL is much more time
consuming than any of the other methods, and it never on average performs
best, as depicted on Figure 10.2, it is excluded from further tests.
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10.1.4.1 The time usage’s dependency on κ

In Figure 10.4, the connection between the time usage and κ is shown. It can

Figure 10.4: The time dependency of having more customers and adjusting the
minimum number of boxes available to the algorithms.

be seen, that the time usage of methods ST and VL decrease when κ increases.
This should be seen in relation with the results from Figure 10.2. The time
decrease is partly because the solution quality also decreases and therefore less
boxes are packed. And as we saw on Figure 10.3 there is a clear connection
between how many boxes are loaded in a problem and the time used.

In Section 10.1.3, it was concluded that κ = 1 gives the best results, and should
be chosen, if only solution quality was considered. Figure 10.4 shows, that
solution time is longer when κ = 1, but it is still preferred on basis of the much
better results.
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10.1.5 The best settings for the greedy algorithms

To sum up the findings for the best settings of the greedy algorithms, the fol-
lowing has been found:

Box rotation strategy: Y XZ

Batch sort strategy: Largest volume

Minimum number of boxes when loading (κ): 1

Furthermore, it is decided that method EL should not be tested any further,
as there are always better and faster alternatives. For the remaining greedy
methods (SB, ST, VL and BS), Table 10.3 shows the average results over the
problems from the OR-Library with 1, 2, 5, 10 and 50 customers. From the table

Method Min. Avg. Max. SD.
SB 27,17 66,11 91,46 13,87
ST 26,98 66,82 92,42 13,60
VL 26,98 66,73 93,05 13,53
BS 29,55 66,32 91,53 13,69

Table 10.3: Results obtained with the greedy methods.

it is seen that there is a little difference between the results obtained by the first
fit and the best fit algorithms. The best fit algorithms perform slightly better
than the first fit. This should be seen in relation to the time usage, as shown
in Figure 10.3, where the first fit methods are faster. Both the time and the
solution quality of the greedy methods will have influence on the performance
of an improvement method. Therefore, we choose to keep the remaining four
greedy methods and test them in combination with the suggested improvement
framework.

10.2 Tuning tree search

Based on the settings found for the greedy algorithm, we will now tune the tree
search algorithm. The improvement algorithm is to be used as an integrated
part of a heuristic to the vehicle routing problem and it is therefore important
to find solutions fast. We choose two different time perspectives. A short one
on 10 seconds and a long one on 60 seconds.



100 Tuning the algorithms

There are a number of different parameters to tune in the tree search framework
introduced in Section 7.2. These are listed below:

1. The effect of accelerating the search should be tested. Most likely, it is
better to choose the accelerated version when less time is available.

2. The value of evaluating all empty spaces when inserting a box should be
compared to making this choice greedily. Again, this choice could very
well depend on the time available. If the choice is made greedily, the same
greedy method is used to both find the empty spaces and generate the rest
of the solution.

3. The choice of breadth should be evaluated:

(a) First static breadth is considered. The breadth is constant through-
out the search.

(b) Secondly dynamic breadth is considered. The algorithm decides the
breadth, based on the amount of time left.

When tuning tree search, we have chosen to use the first ten problems from each
of the seven BR data groups. To test the algorithms ability to solve problems
with more customers, we use the possibility to incorporate more customers in
the problems. We have used nC ∈ {1, 2, 5, 10, 50}. First, we will examine the
results that can be obtained, when using a static breadth. In the subsequent
section the dynamic breadth strategy is tested.

10.2.1 Static tree breadth

In the first test we use a static breadth. This is done to evaluate the influence
of the breadth, both on the solution quality, but also on the time used and how
it depends on the reached depth in the tree. The different tested breadths are
λ ∈ {1, 2, 5, 10, 100}. Along with the breadth, we have tried settings to test both
accelerated search and not, and if the space choice in the tree search should be
made greedy or not. Finally there are 4 different greedy methods, which can be
applied in the tree search. This gives a total of 28.000 test runs.

10.2.1.1 Overall performance

In Figure 10.5 the overall results, when a time limit of 10 seconds is applied,
are shown. The results cover a very wide aspect of different problem types -
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Figure 10.5: Aggregated results for the different methods with different breadths.
Time limit: 10 seconds.

problems with between 1 and 50 different customers and 3 and 20 different box
types.

The results clearly show that the effect of accelerating the search is negative.
This is sound for all the different greedy methods and applies both when all
spaces are tried and when this choice is made greedy. Hence, at least when there
is no prior knowledge to the problem, the search should not be accelerated.

Based on the graphs in the figure, it is not possible to say anything about the
best setting for the breadth. It does, though, seem as if, a smaller breadth is
better when using the greedy space choice whereas a larger breadth is better
when trying insertion in all spaces, but the difference is minimal. It is notewor-
thy, that if the search is accelerated, it is always better to keep the tree wide.
The generally bad results found with the accelerated search can be explained
by the fact that we look in the container for empty spaces. When there are
several customers in the problem, focusing only on empty spaces is not enough
to guarantee better loads. The big issue when there are several customers is,
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whether the placement of a new box makes other boxes infeasible. Hence, the
search for spaces alone is not enough to guarantee that the boxes we leave in
the solutions are loaded in a good way.

It can also be seen, that whenever method BS is used, it should be done in
combination with a tree search setup where the spaces are chosen by the search,
and thereby not done greedily by method BS.

However, as seen in Figure 10.6, looking only on the data where one customer
is present, the effect of accelerating the search cannot be disregarded. Here
it can be seen, that for method ST the accelerated search outperforms the not
accelerated version and for method VL the accelerated search is competitive with
the not accelerated alternatives. But for both SB and BS, there is no advantage
in accelerating the search. The same results are found when 60 seconds are

Figure 10.6: Performance when one customers exists in the problems. Time limit:
10 seconds.

given as time limit and when the breadth is chosen dynamically. This is shown
on Figures D.2 and D.3 in Appendix D.
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Figure 10.7: Aggregated results for the different methods with different breadths.
Time limit: 60 seconds.

In Figure 10.7 the time limit is changed to 60 seconds, but otherwise the same
test setup is used as in Figure 10.5. Overall the average volume utilisation
have increased. This increase is more profound when the tree search is not
accelerated.

As for the 10 second runs, it is seen that when using a greedy insertion the
breadth should be smaller than when trying insertion in all spaces.

Based on the 10 and 60 seconds run (Figure 10.5 and 10.7) it can be seen that
method SB without acceleration overall outperforms all other greedy methods.
This is the case for all breadths tested. Because of this, only method SB without
acceleration, is considered in further tests.
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10.2.1.2 Time usage and obtained depths

When the breadth is static, there is no guarantee that all time available will
be used trying to find a good solution. Moreover, it is not known how deep in
the tree the search will get. If the breadth is chosen too small, the search will
terminate early of its time limit. On the other hand if the breadth is chosen
too large the search will terminate still being in the top of the search tree. The
effect of this will be revealed in this section.

In the following we will use the measure relative depth, to express the relation
between the depth reached when the search terminates and the number of boxes
loaded in the best found solution.

In Figure 10.8 the results of the test are shown. On graphs to the left, the
part of the used time is shown and on graphs to the right, the relative depth
is shown. On the graphs it is seen, that whenever the breadth is small, not all

Figure 10.8: The part of the available time used (left) and the depth obtained (right)
with different static breadths. The top graphs show results with a time limit of 10
seconds, and the bottom graphs with a time limit of 60 seconds.
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the time available is used. However, it is also seen that only when the breadth
is small, there is enough time to search to the bottom of the search tree. It is
so both when the time limit is 10 seconds and when it is 60 seconds. It is clear
that when 60 seconds are available, the tree search reaches further down in the
tree. This is easily seen on the graphs showing the relative depth (right), but
also on the left graphs, where a much higher percentage of the runs terminate
prematurely. From the tests with a time limit of 10 seconds, it is interesting to
follow the results obtained with the breadth equal 1. When we look at the left
graphs we see that many solutions terminate early of the time limit. On the
right graphs, however, it is seen, that even with the smallest possible breadth,
we are sometimes unable to reach the bottom of the tree. This is the case, if
the number of box types are greater than 3 (BR2-BR7). This indicates, that 10
seconds is very little time, compared to the complexity of the problems.

Furthermore, there is a clear connection between the different data groups and
the results. This tells us that, not surprisingly, more time is used, in each node,
when more different box types exist in the problems. The same correlation is
found with the number of boxes present in the problems.

The overall conclusion of this section is that the breadth should be chosen based
on the type of problem that should be solved when a fixed time limit must be
kept. This is exactly the purpose of the dynamic breadth.

Even though not all the time is used when the breadth is small, the solutions
obtained are competitive with the solutions found by the wider breadths. This
was shown in Figure 10.5 and 10.7. This means that good solutions can be
obtained when the search gets deeper in the search tree, as well as when the
tree is kept wide.
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10.2.2 Dynamic tree breadth

In the previous sections, it was shown how the overall performance of the tree
search is, when a static breadth is used. The major drawback of the static
breadth is, that the same breadth is not necessarily the best choice when diffe-
rent problems are solved. The most obvious problem characteristics such as
the number of box types and the number of boxes present in the problem are
closely related to the solution time and thereby also, as it was shown in Section
10.2.1.2, to the preferred breadth and the obtained depth. In this section we
will explore properties of the dynamic breadth, introduced in Section 7.2.3.

If the proposed strategy works, the breadth should be scaled, such that the
time is better utilised. Thereby also better results should be obtained. The
time usage and the relative depth, as well as the breadth actually chosen by the
dynamic breadth, should be investigated.

10.2.2.1 Overall performance

The first test we make with the dynamic breadth is comparable to the test made
to the tree search with static breadth. However, the breadth is no longer a
parameter. Instead the breadth weighting factor ψ, described in Section 7.2.3.1,
page 84, becomes of importance. This parameter is tested with ψ ∈ {−1, 0, 1, 2}.

The results are shown in Figure 10.9. Here, respectively, 10 and 60 seconds are
used as time limits.

Figure 10.9: Aggregated results for method SB with dynamic breadth. On the left
graph the time limit is 10 seconds, on the right it is 60 seconds.

The figure shows that no matter what breadth weight factor is used, the volume
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utilisation is above 75% for the short runs and 76,5% for the long runs. When
this is compared to the test using static breadth, see Figure 10.5 and 10.7,
it can be seen that the dynamic breadth performs better then the static, no
matter which static breadth is used. Figure 10.9 shows, that the best setting
for the breadth weight factor ψ is either -1 or 0. This means that the breadth
of the tree in the top should be kept relatively narrow. Moreover, it is seen
that a greedy space choice is better than trying insertion in all spaces. This
indicate that the faster greedy space choice in quality is close enough to trying
all spaces. In Figure 10.10 results are shown when the data groups are varied.

Figure 10.10: Performance dependencies on data groups, the number of customers
and the breadth weight factor ψ. Time limit: 60 seconds.

The left graph shows the average achieved volume utilisation, when one customer
exists in the problems. The right graph shows the average volume utilisation,
when 50 customers are present in the problems. Both graphs are based on
results obtained with a time limit on 60 seconds. Graphs showing results for the
remaining customers and with a 10 seconds time limit, can be seen in Appendix
D, Figure D.5 and D.6.

On the graphs it is seen, that when the number of customers is low (here 1)
there is no big difference between the different choices of ψ. However, when
many customers exist, ψ should not be chosen to large. This will be analysed
further in the next section.
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10.2.2.2 Time usage and obtained depths

Even though the dynamic breadth seeks to use all the time given, it is not always
possible. This is because the calculated breadth is only based on an estimate of
the actual time it would take to complete the search with the given breath. In
some cases, this will lead to too few solutions and the algorithm will terminate
prematurely. Because of this, it is interesting to find out how large a part of
the available time is used and how deep the search gets into the tree, when
the dynamic breadth is used. The results are found in Figure 10.11. From the

Figure 10.11: The part of the available time used (left) and the depth obtained
(right) with dynamic breadth and different breadth weight factors. The top graphs
are based on 10 seconds runs and the bottom ones are based on 60 seconds runs.

graphs on the left in the figure, it is seen that almost all the available time is
used. Only for the fast runs with low breadth weight factor and few different
box types, this is not the case.

Just as for the static breadths, it is seen on the top right graph that when the
time limit is 10 seconds, we are generally not able to get to the bottom of the
search tree. Here the results for ψ = −1 and ψ = 0 looks very much alike. This
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is because the only breadths found is either 1 or 2, as these are the smallest
valid choices of λ. In this case the obtained depths should be close to the results
found for the static breadth with λ = 1 and λ = 2, which is also the case. By
choosing ψ = 2 it is clear that we do not get very deep in the search tree, both
when the time limit is 10 seconds and when it is 60 seconds.

When 60 seconds is used and many different box types exist (BR6 and BR7),
we are not able to get to the bottom of the search tree. This, again, is because
the breadth cannot be chosen small enough. The overall conclusions on this test
is, that 10 seconds is simply not enough time to search to the bottom of the
search tree, when more than 3 box types exist in the problem. The dynamic
breadth, however, is able to choose breadths which utilise all the time available,
and whenever possible also gets to the bottom of the search tree. The later is
seen on the bottom graphs. This, of course, depends on the choice of ψ.

From Figure 10.9 it was found, that the best choice for ψ is either -1 or 0.
In combination with Figure 10.11 this shows, that overall it is better to get
rather deep in the search tree, than seek thoroughly in the top nodes of the
tree. The results for ψ = −1 and ψ = 0 from Figure 10.9 does not deviate
much. Marginally better results are, however, obtained with ψ = 0, which
is therefore chosen. This means that the breadth should be kept relatively
unchanged throughout the search.

The test shows that whether the time is spent in top of the tree or further down,
becomes increasingly important when considering more customers. When there
are just one or two customers, greedy solutions found in the top are typically
pretty good, but when considering many customer this is not the case. Instead
time should be spent going faster down the tree, so that boxes placed later also
will be explicitly placed by the tree.
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10.2.2.3 Chosen breadths

When the dynamic breadth is used, it is interesting what breadths are actually
chosen. Since the breadth can change in every iteration, no single measure
can be given describing the size of the breadth. We have chosen to report the
average-, start- and end breadths as well as the overall average breadth used
throughout a run. This should give a good indication of whether the breadth is
adjusted reasonably compared to the time limits.

In Figure 10.12 the results are shown. The different data groups are shown
on the horizontal axis and the average start and end breadths and the overall
average breadths are shown on the vertical axis. The top graphs show the
average start breadth, the middle graphs show the overall average breadth and
the bottom graphs show the average end breadths.

Graphs to the left indicate runs with 10 seconds used and graphs to the right
indicate that 60 seconds have been used.

On the top two graphs in Figure 10.12 the start breadth are shown. These relate
to each other exactly as expected, meaning that a higher choice of ψ yields
larger start breadths. This is independent of the data groups. It is also seen
that different start breadths are chosen depending on the different data groups
and on the available time. On the middle graphs the overall average breadth
is shown. Here, the exact opposite relation between the breadth weight factors
are present. The result should be seen in combination with the bottom graphs
showing that the end breadth becomes much larger, when the start breadth is
small. This is a natural development as less time is used in the beginning when
the start breadth is small, which means that more time is available later in the
search tree and a wider search can be performed. The figures show that the
adjustments of the breadth made with the dynamic breadth strategy, depends
of the problem size and the number of box types. It is also seen that ψ is
effective in controlling whether time should be used in the top or bottom of the
tree.

From all six graphs in Figure 10.12 it is clear, that many different breadth have
been chosen. This choice is seen to depend on both the data group, the time
available and the choice of ψ. A single value for λ - as chosen by the static
breadth - will never be able to describe this diversity.



10.2 Tuning tree search 111

Figure 10.12: Start, average and end breadth when 10 or 60 seconds are used.
Method SB, not accelerated and greedy space choice.
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10.3 Summary

In this chapter we have found the best settings for our algorithm. In the tuning
of the greedy methods it was found that the best box rotation sequence is given
by the rule Y XZ. Sorting the batch after the volume was the better choice.
Moreover, when customers exist, the minimum number of boxes to load at a
time κ should be one, meaning that one customer is loaded at a time. Based
on large time usage and the poor results, the greedy method EL was discarded,
already before it was tried in combination with the tree search framework.

When the greedy methods were combined with the tree search framework, many
new parameters were tested. Accelerating the search, generally worsens the
solution quality. However, if all boxes on the load was assigned to the same
customer accelerating the search, in combination with greedy method ST, did
indeed perform better than any other method.

It was furthermore found that with methods SB, ST and VL the space choice
should be made by the greedy procedure, whereas in method BS, insertion
in all different spaces should be tried. Considering the results of the static
breadth test, SB outperformed the other methods. Therefore it was chosen.
Because of the limited time, the speed of SB proved essential. The proposed
dynamic breadth is an improvement to the method compared with the static
breadth. Mainly because this strategy gives the opportunity to utilise all the
time available and ψ gives an effective way to control whether more time should
be spend in the top or bottom of the tree. When the dynamic breadth is used
the breadth weight factor ψ should be chosen low. This indicates that it is
important to spent time placing each box explicitly in the tree search. The
overall best breadth weight factor setting proofed to be ψ = 0.
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Test

Now the time has come to test our final algorithm. This is done on all the
problems described in Chapter 9. The settings for the algorithm that proved
best with regard to our type of problems and time horizons were: The tree search
in combination with greedy method SB, a greedy space choice, the dynamic
breadth with ψ = 0 and no acceleration. This is described in Chapter 10.
Therefore, these settings of the algorithm has been used through all the following
tests. An exception is made in Section 11.1.2. Furthermore, all tests are made
with a time limit on 10 or 60 seconds, the choice of time limits should reflect
the purpose of using the method in a 3L-CVRP framework.

In Section 11.1, we will test the proposed algorithm on the data available from
the OR-Library using the realistic model from Chapter 5. Both problems where
customers are assigned (as described in Section 9.1) and the original problems
without customers, are solved.

In Section 11.2, we will test how the proposed algorithm performs on the prob-
lems faced by Aarstiderne, using the specialised model described in Section 6.1,
page 51. It quickly turns out, that very large parts of the container room is un-
occupied, which means that the packing problems are easily solved. Therefore,
we change make the container room smaller to further challenge the algorithm.

The subsequent section (Section 11.3) deals with the problems from Johannes
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Fog. Here few problems exist. The algorithm is tested with the specialised
model, proposed in Section 6.2, page 55. Again the original problems are always
solved to optimality, even though this is not trivial in all cases. Because of this,
extra problems are generated, based on the original test data. This gives the
opportunity to test the algorithms further.

Finally, we will look at how the time usage is distributed among the different
operations performed, when the algorithms runs. This is done in Section 11.4.

11.1 OR-Library problems

In the first section customers are assigned to the boxes as described in Section
9.1, page 87. This is done to test the performance of the algorithm and the
effect of the multi-drop constraint. The next section focuses specifically on the
standard OR-Library problems without customers, to allow a comparison with
other authors.

11.1.1 Problems with multi-drop

Table 11.1 shows the results obtained when solving the OR-Library problems.
All results are obtained with a time limit of either 10 or 60 seconds. The
problems where nC = 1 are the original OR-Library problems, while the other
results are with more customers randomly assigned to the problems.

10 sec. 60 sec.
nC Avg. SD. Avg. SD.
1 87,96 2,31 89,07 2,10
2 84,31 3,07 85,96 2,71
5 76,10 6,37 78,52 5,45
10 69,64 8,74 72,64 7,54
50 61,13 10,08 64,45 9,37
All 75,83 11,89 78,13 10,81

Table 11.1: Test of OR-Library problems with customers.

The overall average volume utilisation for the 10 seconds run is 75,8%, which
can be improved to 78,1% when using 60 seconds, a gain of 2,3%. It is seen that
the results are highly dependent on the number of customers. In the 10 seconds
run, when there is just one customer, 88,0% of the container is filled. This drops
to just 61,1% when 50 customers exist. The same effect is seen for the 60 seconds
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run. This clearly shows, that adding customers is a serious constraint to the
solution space, which makes it hard to obtain a high volume utilisation. When
looking at the standard deviation, it can be seen, that it is increasing with the
number of customers. When just one customer is present, the results will only
vary a few percent but adding customers leads to much greater variation in the
results.

Figure 11.1 shows a more detailed picture of the solution quality obtained when
solving the problems. On the horizontal axis the number of customers in the
problems solved, are shown. Each line represent results from distinct data
groups.

Figure 11.1: The results dependencies on the number of customers and the number
of box types. Time limit: 60 seconds.

As already shown in Table 11.1, there is a clear connection between the number
of customers and the solution quality. The figure, however, reveals that the
solution quality depends not only on this, but also on the combination of the
number of box types and the number of customers in the problem. When only
3 box types exist (BR1) the solution quality only drops 5% going from 1 to 50
customers, when 20 box types exist (BR7) the difference is around 30%. This
relation between box types and solution quality also explains the large standard
deviations seen in Table 11.1, when many customers are present.

It is not surprising, that the difficult problems both have many customers and
box types. When the load is only weakly heterogeneous the multi-drop con-
straint will have little effect, as several boxes of each box type are available to
all customers, leaving much freedom when choosing each box.
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The general impression gathered when solving the problems is that adding the
multi-drop considerations, makes the characteristics of the problems very diffe-
rent from the basic OR-Library problems. The problems becomes more re-
stricted and the solution quality must be expected to decrease.

11.1.2 The original problems from the OR-Library

Many solution procedures to solve the CLP have preceded this work. To be able
to compare our method with work done previously, we will in this section focus
on solving the original problems from the OR-Library.

We have not optimised our algorithm specifically for this purpose, but it was
seen in Section 10.2.1, that when only one customer exists in the problems a
different setup of the algorithm may be more suitable. It was found that better
performance on problems with only one customer, was obtained by using an
accelerated tree search in combination with greedy method ST. Spaces should
still be chosen greedily and the breadth should be chosen dynamically with
ψ = 2. This can be seen in Figure D.4. ψ = 3, 4 have also been tested, but with
worse results.

The results obtained with our algorithm are reported in Table 11.2. A time
limit of 60 seconds have been used, and no customers are added to the problems
(nC = 1).

Data group Min. Avg. Max. SD.
BR1 83,38 90,48 96,81 2,70
BR2 85,31 91,16 94,93 1,89
BR3 87,77 91,33 94,97 1,53
BR4 87,91 90,98 94,09 1,34
BR5 86,41 90,83 93,25 1,32
BR6 87,03 90,19 93,12 1,26
BR7 84,81 88,36 91,48 1,27
All 83,38 90,48 96,81 1,93

Table 11.2: Test of OR-Library problems with one customer. Time limit: 60 seconds.

The test shows an average volume utilisation of 90,5%, looking across all data
groups. The best results obtained are for BR3, with 8 different box types, where
the average is 91,3%. The worst results are obtained for BR7 (20 box types)
with 88,4%. The data group that vary most in solution quality is BR1, with the
highest standard deviation and also containing both the overall best and worst
result.
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The overall average of 90,5% seems a very good result compared to our general
method where we obtained 89,1% with the same limit of 60 seconds (results
from Table 11.1). As seen in Table 11.3, this however, is only in the cases
with one customer. The table shows the results obtained when the method
is used on problems with more customers. In the last column, the difference
between results obtained by our general method and the method tuned for
one customer problems, is shown. Even though the gain for the one customer
problems is notable, it is also obvious that the method behaves badly, when
applied to problems with more customers. This reflects the results from the
tuning (Section 10.2.1), where it was shown that accelerating the search leads
to bad results, when more customers are considered.

nC Avg. SD. Diff.
1 90,48 1,93 1,41
2 83,33 3,84 -2,63
5 72,10 7,42 -6,42
10 65,25 8,12 -7,39
50 56,16 7,93 -8,29
All 73,46 13,84 -4,67

Table 11.3: Settings good for one customer compared to the standard method (Table
11.1) based on OR-Library problems with more customers. Time limit: 60 seconds.

The results for one customer can be compared to work done by other authors. A
selection of results obtained by others, can be seen on Table 11.4 together with
our results. In the table, B/R is the results obtained by a construction algorithm
proposed by Bischoff and Ratcliff [3], B/G is a genetic algorithm proposed by
Bortfeldt and Gehring [4], E is the tree search approach by Eley [10], B/G/M
is a parallel tabu search proposed by Bortfeldt et al. [5], M/O is a GRASP
proposed by Moura and Oliveira [24] and L/Z is the algorithm proposed by Lim
and Zhang [20]. Common for all these algorithms is that full support of the
boxes are required.

Authors Avg.
B/R (1995) 84,94
B/G (2001) 90,06
E (2002) 88,75
B/G/M (2002) 92,20
M/O (2005) 89,73
L/Z (2005) 91,81
Our method 90,48

Table 11.4: Solution quality compared to other authors.

When comparing our algorithm with others, it is important to remember that
our method is not particularly created to solve problems from the OR-Library.
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It should be able to handle them, as well as more complex problems. The time
limit used is also a consideration. As said we have set the time limit to 60
seconds, while this vary much between other authors. Bischoff and Ratcliff [3]
use a single construction method, while the results by Bortfeld et al. [5] and Eley
[10] are obtained, using a time limit of 10 minutes. In Bortfeldt and Gehrings
genetic algorithm [4] a time limit of 500 seconds is used. Moura and Oliveira
reports that average solutions times are under 64 seconds, when they perform
200 iterations of their GRASP approach [24]. The solution times reported by
Lim and Zhang [20], spans between 1 and 4600 seconds.

Our results are not fully competitive with the the newest methods developed
to solve these academic problem instances. However, within a reasonable time
limit we still obtain an average volume utilisation above 90%.

Many authors have also reported results for either a relaxed stability measure
or no assurance of stability at all. This generally allows for larger volume utili-
sation. A hybrid parallel method developed by Mack et al. [21] reports average
volume utilisations around 93,8% obtained within 10 minutes. A GRASP ap-
proach by Parreño et al. [26] also gives volume utilisation around 94%. We have
chosen not to focus on tests within this area, even though reducing the demand
for support for the boxes is possible, in our implementation.

11.2 Aarstiderne

11.2.1 The original problems

The problems from Aarstiderne were tested with the tree search using greedy
method SB with a time limit of 10 seconds. The result of the test is shown in
Table 11.5.

Min. Avg. Max. SD.
Volume utilisation 4,75 26,34 50,18 10,66
Time 0,00 0,00 0,01 0,00

Table 11.5: Test result for the 84 Aarstiderne problems

The results are very convincing. All 84 problems are solved to optimality and
all, are solved in less than 0,01 seconds. All solutions are found in the first node
of the tree. The table shows however, that the volume utilisation is very low.
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On average only 26% of the container is filled, and the problem taking up most
space fills half of the container. An example of a packing is seen in Figure 11.2.
This problem consists of 152 boxes going to 108 customers. The same packing
is shown on the two figures, but from different angles. The colours on the left
figure indicate the sequence on the boxes, blue colours indicate low sequence
and red colours high. The colours on the right figure indicate the different box
types, the blue boxes are standard boxes with fruit and vegetables, the red boxes
are specialities like meat, fish or beer.

Figure 11.2: An example of an Aarstiderne packing (optimal solution).

The picture of the packing shows a half filled container, the volume utilisation is
only 37%. The boxes are stacked according to the specified rules for Aarstiderne,
therefore it is seen that only boxes with the same base area are stacked. The
effect of the sequence constraint, is easily seen by the bands of changing colours
on the left figure. The packing has many stacks that do not expand to the top
of the container. It is easy to see, that the boxes with specialities are hard to
place. There are only few of them that are alike, which in combination with the
sequence constraint, means that they cannot be stacked.
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Figure 11.3: On the left, the route corresponding to the Aarstiderne packing shown
on Figure 11.2. On the right a truck packed with groceries, ready to leave the depot.

On Figure 11.3 to the left, the route corresponding to the packing seen on Figure
11.2 is shown. The route is seen to be in the area around Horsens.

As all the data used corresponds to routes actually driven, the test shows that
Aarstiderne has a very low volume utilisation on their loads. The reason for this
could be, that other constraints than the capacity are binding, when looking on
the combined problem of vehicle routing and container loading. This could for
instance be the maximal allowed driving time for the driver.

On Figure 11.3 to the right, a loaded Aarstiderne truck, ready to deliver gro-
ceries, can be seen. It is seen on the picture that the limits concerning stacking
is reasonable, it is also seen that the truck is not heavily loaded - which the test
has shown, is the general case.

The results clearly show, that the trucks are overdimensioned, compared to the
loads driven and a suggestion could be, to use smaller trucks to deliver the
goods.
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11.2.2 Generated problems - smaller container

The test on the original data from Aarstiderne did not really give an opportunity
to show the performance of our algorithm. The problems were to easy. Because
of this, we have chosen to generate some new problems based on the original
Aarstiderne data. To make the problems harder the container is reduced in
size. Three new settings have been tested, where the size of the container is
reduced between 35% and 55%. Figure 11.4 shows the results, with a time limit
of 10 seconds. The horizontal axis shows the ratio between the volume of the

Figure 11.4: The connection between volume utilisation and ratio of boxes packed.
Aarstiderne data. Time limit: 10 seconds.

boxes and the container in a problem. On the plot, the dots are connected two
and two, so that for a chosen box/container volume ratio, a pair of black and
red dots corresponds to the solution to one problem. The black dot shows the
volume utilisation of the solution, the red shows the percentage of the volume
of the boxes packed. This means that if the red dot is at 100%, the solution
is optimal. The graph shows that as long as the boxes fill less than 70% of
the container, an optimal solution is always found. For a ratio above 70% the
volume utilisation flattens out, and the highest volume utilisation is around
80%. At the same time the percentage of packed boxes falls. Optimal solutions
are not found when the ratio is above 80%, and cannot be guaranteed when
the ratio is between 70% and 80%. When the total volume of the boxes is the
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same as the container volume (the ratio is 1) only about 70% of the boxes are
contained in the solution.

Figure 11.4 shows, that for the Aarstiderne data, the box/container ratio should
be above 70% for the problems not to be trivial. When the ratio is higher we
cannot guarantee optimality in all cases, but some problems are solvable. A
volume utilisation above 80% is, however, rarely seen.

That problems with a box/container ratio up to 70% and many customers are
solved to optimality, are explained by the OR-Library test, Figure 11.1. As the
box types of Aarstiderne are not that diverse, the multi-drop constraint is not
limiting the solution space much. This allows high volume utilisations even for
problems with many customers.

On Figure 11.5 the same consignment as on Figure 11.2 can be seen, but the
container has been reduced in size. This is done by lowering the container roof
from 190cm to 90cm, a reduction of 53%. The solution shown is optimal and
has a volume utilisation of 78%. It was found within 10 seconds. Compared to
Figure 11.2, the boxes are placed with greater care. More stacks are filled to
the roof. As the problem no longer is easy the algorithm is forced to make more
clever choices.

Figure 11.5: An example of an Aarstiderne packing, where the container room has
been reduced with 53% (optimal solution).
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11.3 Johannes Fog

11.3.1 The original problems

In Table 11.6 it is seen, that all the problems were solved in less than 0,001
seconds. The mean volume utilisation is 26% but loads with box/container
ratios up to 71% are packed. All the problems were solved to optimality. This
shows that the algorithm is fully capable of loading consignments of the type
driven today by Johannes Fog.

Min. Avg. Max. SD.
Volume utilisation 5,47 25,85 71,21 23,13
Time 0,00 0,00 0,00 0,00

Table 11.6: Test results for the 8 Johannes Fog problems. Time limit: 10 seconds.

Most of the loads were found in the first node of the tree, but for two problems,
the solutions were found in a depth of 2 and 4, respectively. Figure 11.6 shows
one of the solutions.

Figure 11.6: An example of an Johannes Fog packing (optimal solution).

There are two sub figures, the left shows the sequence of the boxes, the right
shows the product types. The solution shown is optimal and has a volume
utilisation of 71%. There are 6 customers and 19 boxes. Information about
which colour corresponds to which customer and all the products and the truck,
can be seen on Table 11.7. The list shows that very different products are placed
on the same load, both big pallets of rockwool, stacks of gypsum boards and
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long tree poles. Figure 11.7 (right) shows a selection of these products. The
pictures show that it is a key factor to be able to measure the load bearing
strength (LBS) of the products. A ton of stone cannot be placed on top of
some tiles for the bathroom.

Customer # Dimensions Rotations Weight LBS Description
L×W ×H(cm) kg kg/cm2

- - 720× 250× 280 - 9500* - The truck
1 (Dark blue) 3 240× 90× 58 0× 0× 1 777 0.1 Gypsum boards
1 1 360× 90× 16 0× 1× 1 193 0.02 Gypsum bars
1 4 100× 60× 53 1× 1× 1 3 0.0002 Rockwool
2 (Light blue) 2 100× 100× 113 0× 0× 1 900 0.1 Founda. blocks
3 (Turquoise) 1 120× 80× 70 0× 0× 1 250 -1 Tiles
4 (Green) 1 420× 95× 83 0× 0× 1 1500 0.1 Tree poles
4 1 450× 112× 65 0× 0× 1 1500 0.1 Tree poles
4 1 500× 85× 35 0× 1× 1 100 0.1 Wood boards
4 1 38× 31× 29 1× 1× 1 5 -1 Cardboard box
5 (Yellow) 1 228× 60× 16 0× 1× 1 40 0.03 Flooring
6 (Orange) 3 200× 120× 265 0× 0× 1 75 -1 Rockwool

* The capacity of the truck

Table 11.7: List of products corresponding to the packing shown on Figure 11.6.

Comparing the solution of Figure 11.6 with the packing list, it can be seen that
tiles and some gypsum boards are placed on top of the wood, stone is placed on
stone, and rockwool is placed on top of both wood, gypsum and stone. These
would all be realistic choices.

The route corresponding to this load can be seen on Figure 11.7 to the left. The
route is seen to be run all the way across Northern Sealand. Two customers are

Figure 11.7: To the left, the route corresponding to the Johannes Fog packing shown
on Figure 11.6. To the right, some of the products included in the packing.
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placed by the green mark (Sjællands Odde) on the map. Because of the great
distance travelled with this load, the value of packing all the boxes is high.

The test shows, that we are able to solve the problems corresponding to the
loads actually driven by Johannes Fog, and within a very short time. This
shows that the model is flexible enough to allow realistic loads to be packed.
A concern could be that the model is not strict enough, and it is possible to
pack loads that would not be feasible in a real world scenario. To test this, new
random problems are generated.

11.3.2 Generated problems - new random consignments

The problems from Johannes Fog were all solved to optimality, without testing
the algorithm to a great extend. To put the algorithm to a harder test, new
problems have been generated. The new problems have been generated by
gathering all the products collected at Johannes Fog, keeping the information
of which customer each product belongs to. From this list of about 80 products,
random customers have, in groups, been assigned to loads. In this way 9 new
problems have been generated, each containing between 4 and 9 customers and
the total volume of the boxes is between 28% and 86% of the container volume.
The problems are listed in Appendix C. The sequence of the customers is chosen
randomly without considering the actual route. In Table 11.8 the results of a
test where the tree search has run for 10 seconds is shown.

Min. Avg. Max. SD.
Volume utilisation 24,16 44,54 61,97 14,47
Time 1,26 6,30 9,57 2,47

Table 11.8: Test results for the nine random consignments. Time limit: 10 seconds.

It is seen that the average volume utilisation is 44,5%, nearly twice as high as
for the original problems. However, in none of these problems all boxes are
placed. On average, only 63% of the time has been used, indicating that for a
very short run, with relatively few boxes, the dynamic breadth does not have
enough opportunity to adjust itself.

The test shows, that even for the problems with only around 30% box/container
volume ratio, all boxes cannot be placed. This shows that for problems of this
type, with many highly odd sized boxes, the volume ratio alone is not a very
good indication of how hard a problem is to solve. The characteristics of each
box makes a difference. This is because of the very different types of boxes and
their ability to carry other boxes.
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Figure 11.8: An example one of the generated problems using Johannes Fog products.
Two boxes have not been packed.

In Figure 11.8 an example of a solution to one of the generated problems can
be seen. The problem has 4 customers and a total of 25 boxes. The volume
utilisation is 34%. In the solution, two boxes have not been packed. In Table C.9
in Appendix C the packing list corresponding to the problem can be seen. The
colours blue, turquoise, yellow and red (hidden) on the left figure correspond to
customers 1, 2, 3 and 4. The boxes not packed are some 5,4 metres long wooden
planks and a heavy sack of concrete. By only looking at Figure 11.8, it could
seem, that there is a large area unused on top of the four equally large turquoise
boxes, where the concrete could easily be placed. It should be remembered,
that those boxes actually represent four sacks of cement mix, and that it is
impossible to stack on top of the uneven surface of such sacks. It is easy to see
that the long wooden planks, going from one end of the truck to the other, are
hard to place without neglecting the sequence constraint.

Figure 11.8 clearly shows, that if the solution should be used for more than
a feasibility check, a secondary objective is needed. The rockwool placed last
(blue boxes), is just piled up in one end to the full height of the container. To
make the load more stable they could just as well have been placed next to each
other. The reason why the algorithm stops, is that it does not matter where
the boxes are placed, as long as they are inside the container.
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11.4 Time usage

We have now tested the algorithm on a number of different problems and seen
the overall performance of the algorithm. It is, however, also important to
analyse what procedures in the algorithm that are time consuming compared
to others. A detailed analysis has been performed in Rational Quantifier to
uncover this information.

Figure 11.9 shows the time used in the different parts of the algorithm. The
times are collected from a test run on a problem from the OR-Library, with the
realistic model and five customers assigned. The time used by each method is
shown in percent of the total time, used by the tree search.

Figure 11.9: The distribution of the time used on key methods of the algorithm, in
percent. OR-Library problem BR4 no. 56 with five customers and 233 boxes. Time
limit: 60 seconds.

It can be seen, that almost all the time is used by the greedy method greedySB(),
leaving only 1,5% of the time for administration of the tree framework. The
greedy method SB uses about 2/3 of the time on checking whether a chosen
box/rotation/space combination is valid. In this case almost 40% of the total
computation time is spend on checking the multi-drop constraint, multi-drop(),
and 8% is spend checking if the space is big enough to hold the box, space().

The remaining time of greedySB() is used on the procedure to insert a box in
the container. This procedure consists of two things, to actually place a box
and to update the empty spaces. Basically all time is spend on updating the
empty spaces, after the box is placed. It can be seen, that only little time is
used on the actual creation of the new spaces (remBSoverlap()), instead time
is used on amalgamation of the spaces and on removing subsets. The greedy
algorithm demands, that the spaces are sorted at all times, and it can be seen
that 6,6% of the time is spend doing this.
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It is important to notice that a major amount of time is spend checking at
each box insertion, that the load is multi-drop feasible. This can be explained
by the fact, that the check is made regarding all other boxes in the container.
As this is a problem containing more than 200 boxes, it is a demanding check.
The insert procedure is not as time consuming as the valid place check. This is
connected to the fact, that many valid place checks are performed before every
single box is inserted. It should also be noticed, that nearly no time is spend in
greedySB() besides the two methods mentioned. This is because of the simple
nature of the method where no evaluation of box/rotation/space combinations,
is done. The first match is simply chosen.

Figure 11.10: The distribution in percent of the time used on key methods of the
algorithm. Johannes Fog problem Generated 4 with five customers and 22 boxes. Time
limit: 60 seconds.

Figure 11.10 shows a similar test on one of the generated problems from Jo-
hannes Fog, using the specialised model from Section 6.2. The main difference
is that on these problems, load bearing strength is also a concern. In the prob-
lem, 22 boxes should be distributed to five different customers. Compared to
Figure 11.9 an extra method is included, it is the load bearing strength check,
LBS(), which takes a substantial amount of the total time. It is also seen, that
the time is used in remBSOverlap(). This can be explained by the fact, that
overhanging spaces are allowed in this model, which results in more box/space
overlaps.

Because of the few boxes present in the problem, the check on the size of the
space and the sequence check, is not that time consuming. Therefore, about
the same fraction of the time used by greedySB(), is spend checking for valid
places in both problems. Also, notice that less of the total time is spend in
greedySB(), only 84,5%. This is because greedy solutions are produced faster,
as less boxes exists, leaving relatively more time for bookkeeping in the tree
search.
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11.5 Summary

We have now tested the algorithm on a large and very diverse set of problem
instances. Both real world problems and academic problems have been consid-
ered. The test clearly shows, that solution quality depends strongly on what
type of problem is solved.

The OR-Library problems were solved with customers assigned to the boxes.
This gave a clear indication of the extra complexity introduced by adding cus-
tomers to the problem, especially combined with a high number of box types.
The test concentrating on the original problems with just one customer showed,
that our algorithm produces results comparable to other authors, although our
focus has been to solve problems with more constraints.

The original problems from Aarstiderne were all easily solved, because of the
large container compared to the total volume of the boxes. The problems with
reduced container size showed, that a volume utilisations between 70% and 80%
can be achieved. Considering the very large number of customers present in
each load this achievement is good. The results are also comparable with the
ones found for the problems from the OR-Library, where problems with many
customers and 5 to 10 different box types, yield the same results.

The original problems from Johannes Fog were all solved very convincingly. To
all the problems optimal solutions were found within fractions of a second. Gen-
erating new loads showed, that the possible volume utilisation depends heavily
on the mix of products and also the number of customers. Even when the
box/container volume ratio is 25%, packings containing all boxes cannot be
guaranteed. On average a volume utilisation of 44,5% was found.

The analysis of the time usage of the algorithm revealed several issues. The
primary thing to note, is that both the multi-drop constraint and the LBS
constraint are very time consuming to check, making the valid place method
much more difficult, than if only the basic box/rotation/space comparison was
made. About 20-30% of the time is spend maintaining the spaces.

Both the results based on Johannes Fog and Aarstiderne data, clearly shows that
the proposed algorithm is fully capable of solving problems from the industry.
Moreover also the time limit wherein solutions are obtained, makes it possible
to incorporate the proposed algorithm in a VRP application.
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Chapter 12

Discussion

Throughout this work, our focus has been to develop an algorithm, that can
solve a variety of packing problems actually met by companies today. The pro-
posed algorithm should furthermore be able to work in connection with a vehicle
routing application. This is achieved with a flexible model and an efficient al-
gorithm.

In this chapter the different results obtained with our algorithm will be dis-
cussed. We will especially focus on how the algorithm can be used by Transvision
and the advantages it will offer the two companies, Aarstiderne and Johannes
Fog. Finally we will discuss in which areas future work could be focussed.

An effective algorithm depends on the model it is based upon. In our case it
was not trivial to model the interaction between the different entities and their
properties. Therefore, much effort has been put into the model, compared to
the algorithmic part, as reflected in the focus of this work. Looking at the
specific industry problems, the need for emphasis on the model was clearly
seen. Otherwise, no solutions, which are feasible in a real world scenario, could
be found.
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12.1 Industrial application

12.1.1 Transvision

The requirements to the algorithm were given by Transvision, so that it would be
relevant to use in a setup together with the Fleet Planner (their vehicle routing
application). These were, to make a general CLP algorithm, which caters for
multi-drop constraints and is able to find solutions fast. These requirements
are met by the proposed algorithm. Smaller changes can, however, be expected
when applying the method to specific companies. This could either be changes to
the model or the algorithm. An important feature of the suggested framework, is
that new greedy methods, taking advantage of problem specific characteristics,
can easily be incorporated in the existing tree search. Of course the possibility
to fine-tune the already existing methods to a specific case, is also present.

As our studies of the Johannes Fog and Aarstiderne problems show, the algo-
rithm can, within fractions of a second, find feasible solutions to real life packing
problems. These results are very promising, and show that there is a potential
in using the algorithm in combination with the Fleet Planner. This would give
Transvision an improved product and open up the marked of customers, where
packing and routing must be combined before route planning will have any real
value. This is certainly the case for builders merchants like Johannes Fog, but
it is also relevant in other fields.

A necessary step, however, is to test how the algorithm will perform in combina-
tion with the Fleet Planner. More studies are needed to describe this interaction,
so that questions, like how many times the CLP must be solved in the combined
optimisation process, can be answered. The actual setup must of course be con-
sidered very carefully. To save time, the CLP should only be solved when there
is need for it. In the case of Aarstiderne, it was found, that whenever the box/-
container ratio was less than 70%, solutions were found trivially. Moreover,
when the ratio was above 80%, solutions containing all boxes were rarely found.
Therefore it should be considered whether routes with a ratio over 80%, should
simply be discarded or checked, in the hope of finding a feasible solution, where
all boxes are loaded. This indicate that the use of problem specific knowledge
in the combined optimisation process, can be useful, when deciding how the
interaction between the VRP and the CLP is constructed. As the CLP is not
a simple check it should only be done in the most necessary cases. This would,
for instance, be, when a new best, but not necessarily loading feasible, solution
is found, in the VRP.

When a mathematical model is used as decision support in a company, high
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standards of data quality is required. The company must by able to supply
all necessary input to the model. In our model, knowledge about the different
attributes on the boxes and container should be available. For some companies
this is not a trivial, as discussed in the case of Johannes Fog. This should be
considered when choosing a target audience for the application.

12.1.2 Aarstiderne

Today the vehicles handled by Aarstiderne are maximally half full when deliv-
ering their goods. This happens when around 180 boxes are distributed on the
same route. When 180 boxes are present in one consignment, it is not possible
to add more customers to the route without violating other constraints in the
vehicle routing problem. This is constraints such as the drivers working hours
and mileage. When the boxes are very alike in size, the multi-drop constraint
is not very binding. Thus, given the vehicles used today, the loading constraint
is not binding for Aarstiderne. To lower the cost of the distribution, smaller
vehicles could be used. We found, that whenever the box/container ratio is be-
low 70%, feasible loads could easily be found. When this measure get over 80%,
the problems get harder to solve and one can generally not count on finding
feasible loads. Investing in delivery trucks with a 30% smaller container, would
still allow for a trouble free loading process. If smaller vehicles are used, savings
would be available concerning both petrol usage and possibly a reduction in the
vehicle license taxes.

A concern about the solutions found, is that the same product type can be
loaded in all corners of the container. This greatly increase the time used to
load the vehicles compared to how it is handled today, where each stack most
often contain the same type of boxes. Before the found solutions can be used
without revision from the drivers, this issue should be addressed. This could be
done by including a secondary objective. Another obstacle is the fact, that many
of the vehicles from Aarstiderne have doors on the sides, which gives some extra
possibilities when unloading the vehicles. These issues are further considered in
Section 12.3.

12.1.3 Johannes Fog

In the planning of routes for Johannes Fog, the packing constraint is often bind-
ing. This means that the routes cannot be made, without at the same time
having an idea of, whether or not the corresponding loads can be constructed.
Today this is done manually. We have shown that it is possible to use our
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algorithm to solve the complicated packing problem. Furthermore it has been
shown, that the problem complexity depends both on the combination of prod-
ucts packed and the total volume of the products. What makes the combination
of products important, is that they have very different characteristics. There-
fore, when the boxes are stacked, both the load bearing strength of the products
and the multi-drop constraint, must be considered.

To test the algorithms ability to find realistic solutions, new consignments were
constructed. All the solutions found to these problems are also valid in real life.
This shows, that the model is constrained enough to handled real life situations,
and does not produce solutions which are not actually possible. In general, the
model is to strict compared to the real world scenario. Looking at the loads
as they are driven by Johannes Fog today, boxes are often allowed to tilt a bit
and if necessary overhang the back and the sides of the truck. These situations
are totally prohibited in our solutions. Also in general, there is no need for the
multi-drop constraint to be equally strict on all boxes. Small bags of rockwool
for instance, could easily be rearranged when a customer is visited and other
boxes are dropped of. This introduces an idea of allowing to rearrange the boxes,
as discussed in Section 12.3.

Our test shows, that the algorithm is able to solve the type of problems faced
by Johannes Fog. However, before a routing/packing tool can be considered
it is also necessary that Johannes Fog is ready to use such an application. As
mentioned in Section 9.3, the only information available to the planners at
Johannes Fog, besides what they know by experience, is what is shown on
the order sheets (Appendix B). Here, often no information about the specific
dimensions of the products are available. In praxis orders are often bundled
together before the trucks are loaded. This means that a standard should be
introduced regarding which entities can be bundled together, and how, which
should be available electronically. If, for instance, a customer request 50 gypsum
boards it becomes important if they are all bundled together or if they are split
in smaller packages.

12.2 Academic results

The tests made on the academic problems from the OR-Library had several
purposes. Compared to the industrial data, these data sets are very large, and
none of the problems have been proven to be solved to optimality.

The large amount of data gave us an opportunity to test the effect of the multi-
drop constraint. A varying number of customers were assigned to the problems,
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and tests clearly showed that as more customers are added, the found volume
utilisation drops. The trend is only weak when few box types are present, but
very strong as more box types are mixed.

Secondly, a test was made to the problems where only one customer was consid-
ered. This gave us some results that could be compared to work done be other
researchers. The algorithm did not outperform the best algorithms available
today, but it did provide comparable results, even using less time. The results
show, that even though we have focused on making a framework that can handle
a wide variety of problems, it can still compete with more specialised methods,
considering academic problems.

12.3 Future work

As we have worked on this thesis, it has been an important part of the process
to choose the focus of our work. Given only a limited amount of time, not all
possible solution procedures can be tried and not all ideas can be carried out.
In this section we will give a short overview of, in which direction future work,
with basis in the subject studied in this thesis, could take.

The most obvious and possible also the most exciting extension to our algorithm,
would be to incorporate it with a vehicle routing application. Only by doing
this, one would be able to truly measure the proposed algorithms capability to
work in the desired context. The most obvious way of doing this would be to
incorporate it with the Fleet Planner, as proposed in Chapter 1. An interesting
idea would be to allow rehandles when reaching the customer. This could very
well be less time consuming from the drivers point of view than driving farther
or splitting the load. A way to handle, this could be to relax the multi-drop
constraints and punish rehandles at customers in the objective function.

12.3.1 Improvements of the model

A concern about the solutions found by the algorithm, is that no guarantee to the
weight distribution can be given. When solving problems from Aarstiderne, this
is no problem, because all boxes have just about the same weight. It is a more
serious matter, when problems from Johannes Fog are solved. Here the products
have very different weight characteristics. When this matter was discussed with
the drivers at Johannes Fog, we learned that the weight distribution along the
length of the container is most important. A given amount of the overall weight
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should be put on the steering axis, which is the part of the container closest
to the driver’s cabin. If rockwool is loaded on the steering axis and gypsum
boards in the back, the truck will have very bad handling properties. To solve
the weight distribution issue, one should have in mind, that the load must be
valid on the entire route, meaning that when a customer have been visited and
products dropped off, the weight distribution of the remaining products should
still be valid. Instead of incorporating the weight distribution in the model,
another possibility is to add a secondary objective, favouring the desired weight
distribution.

Concerning the multi-drop constraints, trucks often have doors on the sides of
the container, that are too small to be modelled as whole surfaces. Such doors
have not been considered in this work. In neither a standard container nor the
trucks of Johannes Fog, this is needed. Here, rather whole surfaces can be used
when unloading, making our model appropriate. However, if smaller doors are
introduced as valid unloading places, the concept of a passage to a box should
probably be changed. In general, there are many issues concerning this concept.
When packing for Aarstiderne, feasible loads with 2 metres long very narrow
passages could be build, where the next box to be unloaded is the box at the
end of the passage. This box is, however, not practically unloadable. Moreover,
when small boxes are loaded, like in the case from Aarstiderne, it is in praxis
possible to walk around other boxes to find the desired box inside the container.
This as well calls for a new way to handle the multi-drop constraints, and more
precisely the passage concept. One way could be to find a passage to the box
through sufficiently large empty spaces.

As well as a refinement of the multi-drop constraints could be in place, also a
refinement to the concept of overhanging boxes could be necessary. In our model,
all boxes are allowed to overhang with the same amount. In a practical setting
this is not always the case. If we consider the consignments from Johannes Fog,
then the very tall rockwool boxes probably needs a larger proportion of support
from below, than the relative low gypsum boards. This is because the centre of
gravity is placed higher for the rockwool than for the gypsum. A possible way
to handle, this is to make the empty spaces as large as possible, neglecting the
demand for support. Then it should be checked if boxes are properly supported,
before they are placed.

The concept of load bearing strength has been incorporated in the model with
success. However, it should be considered how the concept can be more inte-
grated in the model. For instance, by deleting spaces on top of boxes, which
cannot carry any of the remaining boxes. This would improve the performance
of the algorithm. Further studies considering overhang in combination with load
bearing strength, should be done to reveal, whether the model describes real life
situations close enough.
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12.3.2 Improvements of the algorithm

As mentioned before, the purpose of this work has been to develop an algorithm,
that performs overall good to problems with different individual characteristics.
Better results to the individual problems could obviously be found if many
different specialised algorithms are constructed. When solving problems for
Aarstiderne, it properly could be utilised that almost all boxes have the same
base dimension. It could for instance be an idea to use an approach like the
one by Gehring and Bortfeldt [13], where box stacks are created “on the run”
leaving only a two dimensional packing problem. This approach could also, to
some extent, be used to group the different product in the container.

When an optimal load is found by the proposed method, the procedure stops.
This is independent of how the load is arranged. Often, many different loads,
which are all optimal, can be found. However, in the eyes of the drivers, two
loads are seldom equally good. To compare loads containing the same boxes
a secondary objective could be introduced. When an optimal load is found, it
could be improved by re-optimising according to another objective. In connec-
tion with Aarstiderne it could be to gather products of the same type closer
together, which would lower the loading time at the depot. For Johannes Fog,
it could be to lower the highest placed product, which would increase the sta-
bility of the load. Depending on how binding a weight distribution constraint is
imposed on the problem, this could also be handled by a secondary objective,
as proposed by Davies and Bischoff [7].

12.3.3 Communicating the solutions

An important issue is how to explain to the personnel, which are to actually load
the vehicles, how to pack according to the solutions found. If there is enough
spare room in the container, this is often not necessary, as the packing personnel
often have a lot of experience. But if each box must be placed exactly as the
solution suggests, some guidelines are necessary. It is possible to make lists,
showing in which sequence the products should be loaded, but with 200 boxes
to load, some coordination between how the boxes can be distinguished and
what is written on the packing list, is needed. Alternatively, small animations
on how the containers must be loaded could be shown on some hand-held devices,
available to the packing personnel.
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Chapter 13

Conclusion

In this thesis, we have developed an algorithm to solve the container loading
problem (CLP) with multi-drop constraints. The algorithm is capable of solving
a wide variety of packing problems met by companies today. It is furthermore
possible to incorporate the algorithm in a framework used to solve the three
dimensional loading capacitated vehicle routing problem (3L-CVRP). If this is
done, the algorithm will perform loading feasibility checks on routes proposed
by a vehicle routing problem (VRP) application.

The basis for the developed algorithm, is a highly detailed model, which makes
it possible to guarantee that loads found by the algorithm, are realistic in a
real world scenario. The model has been introduced in a realistic form, that
afterwards was specialised to accommodate more specific needs in relation to
the two Danish companies Aarstiderne and Johannes Fog. The realistic model
offers the framework to handle three dimensional objects and allows boxes to
be manipulated in a container. Besides this, all boxes placed will be multi-drop
feasible and fully supported from below. The realistic model furthermore makes
sure that fragile boxes are placed safely and the rotation restriction of the boxes
are respected.

The model developed to describe problems from Aarstiderne differs only slightly
from the realistic model. The boxes used by Aarstiderne can only be stacked if
there is support in all four corners. This was ensured by a minor change to the
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check performed before a box can be placed.

In the case of Johannes Fog, more severe changes were needed. Many of the
assumptions in the realistic model are simply not reasonable, when construction
products must be packed. In this specialised model, boxes can be unloaded
from three sides, thereby changing the multi-drop considerations. Secondly,
the model allows the boxes to overhang other boxes below, still guaranteeing
a certain degree of support. Furthermore the model allows for a graduation of
the fragility of boxes. This is possible by assigning a load bearing strength to
each box. With all these changes incorporated into the model, it is possible
to resemble the reality, seen at Johannes Fog, very closely. Even though this
model is made as a specialisation of the realistic model, it should rather be seen
as a generalisation. All the changes in the model adds further flexibility and a
greater sense of reality.

To solve the problems, a tree search heuristic and five greedy methods have been
developed. The tree search can be used in combination with any of the greedy
methods. It is possible to accelerate the search, going faster down the nodes in
the tree, based on an analysis of the greedy solutions. Furthermore a dynamic
breadth strategy allows the algorithm to adjust the breadth of the search tree
depending on characteristics of the specific problem and the time limit imposed.

The algorithms have been tested on three different dataset. In the early stages
of the tuning and testing, theoretical data was used to choose the best choice
of greedy method and setting for the tree search. One generally good solution
method was found, based on the problems that could be modelled with the
realistic model. The final algorithm is based on the tree search with dynamic
breadth, and uses a fast first fit greedy method. We found that the suggested
dynamic breadth strategy is an improvement to the algorithm. However, accel-
erating the search is only lucrative, for problems with one customer.

The algorithm and the realistic model was tested on theoretical benchmark
problems, to allow a comparison with algorithms developed others. This was,
however, only possible on data without multi-drop considerations. The results
showed that, although our algorithm is not as good as the best developed for
these problems, the performance is still comparable. Tests were also performed
where customers were added to the problems. This illustrated the extra com-
plexity added by the multi-drop constraint.

The algorithm and the specialised models, were tested on real life problems, from
the two companies Aarstiderne and Johannes Fog. The results, of the test on the
data from Aarstiderne, revealed that as the loads are driven today, the loading
constraint is never binding, when considering the overall 3L-CVRP. Further
experiments were conducted, where the space in the container was reduced.
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This showed that the algorithm found optimal solutions to all problems, when
the volume utilisation of the container was below 70%. For problems with a
box/container ratio of up to 80%, optimal solutions can be found, within a time
limit of 10 seconds.

The test of the problems from Johannes Fog showed, that all the original prob-
lems could be solved to optimality within 0,01 seconds. Based on the new
generated problems it was found, that the box/container ratio is not an appro-
priate measure for the problem complexity. The combination of the load bearing
strength and multi-drop constraints complicates the problems. The overall re-
sults, however, are very promising as all the loads found, are also feasible in a
real world scenario.
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List of Symbols

Symbols used with the boxes

(∆ai,∆bi,∆ci) The extension of box i ∈ Bplaced in the x-, y- and Z-direction,
respectively

B A set holding for every box type bt present in a batch the
number of boxes with this box type

B The set of all boxes

BnPlaced The set of not placed boxes

Bplaced The set of placed boxes

bs ∈ BS The set of box stacks BS

bti The box type of box i

di The sequence number of box i

fi 1 if box i is fragile, 0 otherwise

fr The rotation of a box

FRi The set of feasible rotation for box i
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i, j, k Index variables for boxes

kbt Index in B

LBSi The load bearing strength of box i

mi The mass of box i

nC The number of different customers in B

Sareai The supported area of box i ∈ Bplaced

sm The smallest dimension among all boxes in a batch

x+, y+, y− Boolean variables indicating whether the box can be unloaded
from the surfaces (L, 0, 0)− (L,W,Z), (0,W, 0)− (L,W,Z) and
(0, 0, 0)− (L, 0, Z), respectively

(ai, bi, ci) The maximum of a box.

(ai, bi, ci)) The minimum of a box.

(ai, bi, ci) Continuous variables indicating the location of box i, along the
x-, y- and z- dimension respectively.

li, wi, hi Parameters indicating the length, width and height of box i

N The total number of boxes in the problem

`xi , `
y
i , `

z
i Binary variables in the MIP model indicating whether the length

of box i is parallel to the x- (`xi = 1), y- (`yi = 1) or z-axis
(`zi = 1)

wxi , w
y
i , w

z
i Binary variables in the MIP model indicating whether the width

of box i is parallel to the x- (wxi = 1), y- (wyi = 1) or z-axis
(wzi = 1)

hxi , h
y
i , h

z
i Binary variables in the MIP model indicating whether the height

of box i is parallel to the x- (hxi = 1), y- (hyi = 1) or z-axis
(hzi = 1)

leik Binary variable in the MIP model indicating if box i is placed
on the left side of box k

riik Binary variable in the MIP model in the MIP model indicating
if box i is placed on the right side of box k

beik Binary variable in the MIP model indicating if box i is placed
behind box k
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frik Binary variable in the MIP model indicating if box i is placed
in front of box k

abik Binary variable in the MIP model indicating if box i is placed
above box k

unik Binary variable in the MIP model indicating if box i is placed
underneath box k

pi Binary variable in the MIP model indicating if box i is placed
in the container

Symbols used with the container and empty spaces

(L,W,H) The container dimensions

α Support from below in a space in the x-dimension

β Support from below in a space in the y-dimension

γ The overhang factor when boxes are allowed to overhang one
another

Sx The maximum supported area of a space in the x-dimension

Sy The maximum supported area of a space in the y-dimension

S The set of empty spaces

s, t, r Index variables for empty spaces

X+ Boolean parameter indicating if the container can be load-
ed/unloaded from the surface given by (L, 0, 0)− (L,W,Z)

Y + Boolean parameter indicating if the container can be load-
ed/unloaded from the surface given by (0,W, 0)− (L,W,Z)

Y − Boolean parameter indicating if the container can be load-
ed/unloaded from the surface given by (0, 0, 0)− (L, 0, Z)

(∆xs,∆ys,∆zs) The size of an empty space

(xs, ys, zs) The maximum of an empty space

(xs, ys, zs) The minimum of an empty space

Symbols used in the algorithms
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ψ Parameter to change the effect of the weight in the dynamic
tree search.

κ The minimum number of boxes to pack at a time in the greedy
algorithms

λ The breadth of the tree in the tree-search algorithm

K∗1
bti,s

The number of boxes i ∈ BnPlaced with box type bt that can
be placed in a stack in empty spaces s

K∗2
bti,s

The number of boxes i ∈ BnPlaced with box type bt that can
be placed in the empty spaces s

Other symbols

� Binary operator denoting that cuboids are overlapping or lead-
ing up to each other in all 3 dimensions

�x,�y,�z Binary operator denoting that cuboids are overlapping or lead-
ing up to each other in respectively x-, y- or z-dimension

� Binary operator denoting that cuboids are overlapping in all
three dimensions

�x,�y,�z Binary operators denoting that cuboids are overlapping in re-
spectively x-, y- or z-dimension

M Large number used in big-M constraints in the MIP model



Appendix B

Order sheets from Johannes
Fog

This is an example of the order sheets used by Johannes Fog. This is the only
information used by the planners today, to make the consignments and routes
for all the vehicles handled by Johannes Fog. There is no information about how
the different products are bundled, on the order sheets. In the example from this
order the following entities are packed together: “TAGLÆGTER” and “FYR
SEKSTA TRYKIMP.” giving a package with dimensions 540cm×100cm×45cm
and “VTA FYR”, “REGLER” and “FORSKALLING” giving the dimensions
480cm×110cm×65cm. As it is today, the planning personnel have no influence
on how the drivers actually pack the different entities together. From page 3 of
the order (Figure B) 3 entities with “ISOVER” is requested.
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Figure B.1: Order sheet used by Johannes Fog today - page 1. Problem Rum3 1−
2006− 12− 19.
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Figure B.2: Order sheet used by Johannes Fog today - page 2. Problem Rum3 1−
2006− 12− 19.
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Figure B.3: Order sheet used by Johannes Fog today - page 3. Problem Rum3 1−
2006− 12− 19.



Appendix C

Problems from Johannes Fog

C.1 Original consignments

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 4 90× 85× 120 1× 0× 0 501 -1 Concrete/gravel
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes

* The capacity of the truck

Table C.1: OV 96581 1− 2006− 12− 14

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 6.700 * - The truck
1 1 110× 112× 520 1× 0× 0 3.162 0.04 Wood
1 1 45× 60× 90 1× 1× 1 5 -1 Rockwool
2 1 55× 119× 252 1× 0× 0 58 -1 Eternite

* The capacity of the truck

Table C.2: PC90153 1− 2006− 12− 14
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 605× 250× 280 - 6.700 * - The truck
1 2 90× 85× 120 1× 0× 0 500 -1 Concrete/gravel
1 1 50× 120× 80 1× 0× 0 1.000 -1 Concrete/gravel

* The capacity of the truck

Table C.3: RV 92760 1− 2006− 12− 14

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 56× 360× 90 1× 0× 0 800 0.03 Gypsum boards
1 1 14× 208× 12 1× 0× 0 25 -1 Wood
1 1 25× 16× 21 1× 1× 1 27 -1 Cardboard boxes
1 3 45× 60× 90 1× 1× 1 0 0 Rockwool
2 1 31× 360× 97 1× 0× 0 500 0.03 Gypsum boards
2 1 4× 204× 83 1× 0× 0 25 0.01 Wood
2 1 9× 361× 19 1× 1× 1 10 0.02 Wood
2 1 14× 208× 12 1× 0× 0 7 -1 Wood
2 1 25× 16× 21 1× 1× 1 0 -1 Cardboard boxes
2 2 45× 60× 90 1× 1× 1 0 0 Rockwool
3 3 51× 240× 90 1× 0× 0 800 0.03 Gypsum boards
3 1 25× 240× 90 1× 0× 0 300 0.03 Gypsum boards
3 1 8× 360× 19 1× 0× 1 36 -1 Gypsum bars
3 1 8× 360× 60 1× 0× 0 91 0.015 Gypsum bars
3 3 45× 60× 90 1× 1× 1 0 0 Rockwool

* The capacity of the truck

Table C.4: Rum2 1− 2006− 12− 14

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
1 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
1 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
1 1 15× 360× 90 1× 0× 0 300 0.02 Gypsum bars
1 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
1 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
2 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards

* The capacity of the truck

Table C.5: OV 96581 1− 2006− 12− 19

C.2 Generated consignments
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 48× 395× 105 1× 0× 0 1.243 0.04 Wood
2 1 134× 100× 100 1× 0× 0 1.118 -1 Concrete/gravel
3 1 42× 445× 105 1× 0× 0 10 0.04 Wood
3 1 24× 22× 16 1× 1× 1 4 -1 Cardboard boxes
3 1 23× 100× 45 1× 1× 1 20 0.04 Cover board
4 1 21× 430× 110 1× 0× 0 330 0.04 Wood
4 1 105× 120× 80 1× 0× 0 246 -1 Concrete/gravel
4 1 55× 120× 80 1× 0× 0 435 -1 Wood

* The capacity of the truck

Table C.6: PC90355 1− 2006− 12− 19

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 4 256× 120× 120 1× 0× 0 10 -1 Rockwool
1 1 90× 120× 120 1× 0× 0 5 -1 Rockwool
1 1 115× 120× 80 1× 0× 0 50 -1 Rockwool
1 1 26× 160× 210 1× 0× 0 500 0.1 Wood
1 1 19× 122× 244 1× 0× 0 500 0.04 Wood
1 1 72× 250× 90 1× 0× 0 800 0.03 Gypsum boards
1 1 45× 100× 540 1× 0× 0 1.000 0.04 Wood
1 1 65× 110× 480 1× 0× 0 1.000 0.04 Wood

* The capacity of the truck

Table C.7: Rum3 1− 2006− 12− 19

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 3 58× 240× 90 1× 0× 0 777 0.1 Gypsum boards
1 1 16× 360× 90 1× 0× 1 193 0.02 Gypsum bars
1 4 53× 60× 100 1× 1× 1 3 0.0002 Rockwool
2 2 113× 100× 100 1× 0× 0 900 0.1 Concrete/gravel
3 1 70× 120× 80 1× 0× 0 250 -1 Tiles
4 1 29× 31× 38 1× 1× 1 5 -1 Cardboard boxes
4 1 83× 420× 95 1× 0× 0 1.500 0.1 Wood
4 1 65× 450× 112 1× 0× 0 1.500 0.1 Wood
4 1 35× 500× 85 1× 0× 1 100 0.1 Wood
5 1 16× 228× 60 1× 0× 1 40 0.03 Wood
6 3 265× 200× 120 1× 0× 0 75 -1 Rockwool

* The capacity of the truck

Table C.8: Rum3 1− 2007− 02− 15



154 Problems from Johannes Fog

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 3 58× 240× 90 1× 0× 0 777 0.1 Gypsum boards
1 1 16× 360× 90 1× 0× 1 193 0.02 Gypsum bars
1 4 53× 60× 100 1× 1× 1 1 0.0002 Rockwool
2 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 4 90× 85× 120 1× 0× 0 501 -1 Concrete/gravel
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
3 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
3 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
3 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
3 1 16× 360× 90 1× 0× 0 300 0.02 Gypsum bars
3 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
3 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
4 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards

* The capacity of the truck

Table C.9: Generated 1

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 16× 228× 60 1× 0× 1 40 0.03 Wood
1 3 265× 200× 120 1× 0× 0 80 -1 Rockwool
1 1 110× 112× 520 1× 0× 0 3.162 0.04 Wood
1 1 45× 60× 90 1× 1× 1 5 -1 Rockwool
1 1 55× 119× 252 1× 0× 0 58 -1 Eternite
2 1 48× 395× 105 1× 0× 0 1.243 0.04 Wood
2 1 134× 100× 100 1× 0× 0 1.118 -1 Concrete/gravel
2 1 42× 445× 105 1× 0× 0 10 0.04 Wood
2 1 24× 22× 16 1× 1× 1 4 -1 Cardboard boxes
2 1 23× 100× 45 1× 1× 1 20 0.04 Cover board
2 1 21× 430× 110 1× 0× 0 330 0.04 Wood
2 1 105× 120× 80 1× 0× 0 246 -1 Concrete/gravel
2 1 55× 120× 80 1× 0× 0 435 -1 Wood
3 2 90× 85× 120 1× 0× 0 500 -1 Concrete/gravel
3 1 50× 120× 80 1× 0× 0 1.000 -1 Concrete/gravel
4 1 56× 360× 90 1× 0× 0 800 0.03 Gypsum boards
4 1 14× 208× 12 1× 0× 0 7 -1 Wood
4 1 25× 16× 21 1× 1× 1 27 -1 Cardboard boxes
4 3 45× 60× 90 1× 1× 1 0 0 Rockwool
4 1 31× 360× 97 1× 0× 0 500 0.03 Gypsum boards
4 1 4× 204× 83 1× 0× 0 25 0.01 Wood
4 1 9× 361× 19 1× 1× 1 10 0.02 Wood
4 1 14× 208× 12 1× 0× 0 7 -1 Wood
4 1 25× 16× 21 1× 1× 1 27 -1 Cardboard boxes
4 2 45× 60× 90 1× 1× 1 0 0 Rockwool

* The capacity of the truck

Table C.10: Generated 2
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 3 58× 240× 90 1× 0× 0 777 0.1 Gypsum boards
1 1 16× 360× 90 1× 0× 1 193 0.02 Gypsum bars
2 2 113× 100× 100 1× 0× 0 900 0.1 Concrete/gravel
3 1 70× 120× 80 1× 0× 0 250 -1 Tiles
4 1 29× 31× 38 1× 1× 1 80 -1 Cardboard boxes
4 1 83× 420× 95 1× 0× 0 1.500 0.1 Wood
4 1 65× 450× 112 1× 0× 0 1.500 0.1 Wood
5 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
6 1 35× 105× 540 1× 0× 0 500 0.03 Wood
6 1 40× 92× 218 1× 0× 0 535 0.03 Wood
6 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
7 1 42× 445× 105 1× 0× 0 10 0.04 Wood
7 1 24× 22× 16 1× 1× 1 4 -1 Cardboard boxes
7 1 23× 100× 45 1× 1× 1 20 0.04 Cover board
8 1 21× 430× 110 1× 0× 0 330 0.04 Wood
8 1 105× 120× 80 1× 0× 0 246 -1 Concrete/gravel
8 1 55× 120× 80 1× 0× 0 435 -1 Wood
9 2 90× 85× 120 1× 0× 0 500 -1 Concrete/gravel

* The capacity of the truck

Table C.11: Generated 3

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
1 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
1 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
1 1 15× 360× 90 1× 0× 0 300 0.02 Gypsum bars
1 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
1 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
2 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards
3 1 110× 112× 520 1× 0× 0 3.162 0.04 Wood
3 1 45× 60× 90 1× 1× 1 5 -1 Rockwool
4 1 55× 119× 252 1× 0× 0 58 -1 Eternite
5 4 256× 120× 120 1× 0× 0 10 -1 Rockwool
5 1 90× 120× 120 1× 0× 0 5 -1 Rockwool
5 1 115× 120× 80 1× 0× 0 50 -1 Rockwool
5 1 26× 160× 210 1× 0× 0 500 0.1 Wood
5 1 19× 122× 244 1× 0× 0 500 0.04 Wood
5 1 72× 250× 90 1× 0× 0 800 0.03 Gypsum boards
5 1 45× 100× 540 1× 0× 0 1.000 0.04 Wood
5 1 65× 110× 480 1× 0× 0 1.000 0.04 Wood

* The capacity of the truck

Table C.12: Generated 4
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
3 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
3 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
3 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
3 1 15× 360× 90 1× 0× 0 300 0.02 Gypsum bars
3 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
3 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
4 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards
5 1 55× 119× 252 1× 0× 0 58 -1 Eternite
6 4 256× 120× 120 1× 0× 0 10 -1 Rockwool
6 1 90× 120× 120 1× 0× 0 5 -1 Rockwool
6 1 115× 120× 80 1× 0× 0 50 -1 Rockwool
6 1 26× 160× 210 1× 0× 0 500 0.1 Wood
6 1 19× 122× 244 1× 0× 0 500 0.04 Wood
6 1 72× 250× 90 1× 0× 0 800 0.03 Gypsum boards
6 1 45× 100× 540 1× 0× 0 1.000 0.04 Wood
6 1 65× 110× 480 1× 0× 0 1.000 0.04 Wood

* The capacity of the truck

Table C.13: Generated 5

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
3 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
3 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
3 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
3 1 15× 360× 90 1× 0× 0 300 0.02 Gypsum bars
3 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
3 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
4 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards
5 1 55× 119× 252 1× 0× 0 58 -1 Eternite
6 4 256× 120× 120 1× 0× 0 10 -1 Rockwool
6 1 90× 120× 120 1× 0× 0 5 -1 Rockwool
6 1 115× 120× 80 1× 0× 0 50 -1 Rockwool
6 1 26× 160× 210 1× 0× 0 500 0.1 Wood
6 1 19× 122× 244 1× 0× 0 500 0.04 Wood
6 1 72× 250× 90 1× 0× 0 800 0.03 Gypsum boards
6 1 45× 100× 540 1× 0× 0 1.000 0.04 Wood
6 1 65× 110× 480 1× 0× 0 1.000 0.04 Wood

* The capacity of the truck

Table C.14: Generated 6
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 3 265× 200× 120 1× 0× 0 80 -1 Rockwool
1 1 35× 500× 85 1× 0× 1 100 0.1 Wood
2 1 48× 395× 105 1× 0× 0 1.243 0.04 Wood
2 1 134× 100× 100 1× 0× 0 1.118 -1 Concrete/gravel
3 1 42× 445× 105 1× 0× 0 10 0.04 Wood
3 1 24× 22× 16 1× 1× 1 4 -1 Cardboard boxes
3 1 23× 100× 45 1× 1× 1 20 0.04 Cover board
4 1 21× 430× 110 1× 0× 0 330 0.04 Wood
4 1 105× 120× 80 1× 0× 0 246 -1 Concrete/gravel
4 1 55× 120× 80 1× 0× 0 435 -1 Wood
5 2 90× 85× 120 1× 0× 0 500 -1 Concrete/gravel
5 1 50× 120× 80 1× 0× 0 1.000 -1 Concrete/gravel
6 1 56× 360× 90 1× 0× 0 800 0.03 Gypsum boards
6 1 14× 208× 12 1× 0× 0 25 -1 Wood
6 1 25× 16× 21 1× 1× 1 27 -1 Cardboard boxes
6 3 45× 60× 90 1× 1× 1 0 0 Rockwool
7 1 31× 360× 97 1× 0× 0 500 0.03 Gypsum boards
7 1 4× 204× 83 1× 0× 0 25 0.01 Wood
7 1 9× 361× 19 1× 1× 1 10 0.02 Wood
7 1 14× 208× 12 1× 0× 0 25 -1 Wood
7 1 25× 16× 21 1× 1× 1 27 -1 Cardboard boxes
7 2 45× 60× 90 1× 1× 1 0 0 Rockwool

* The capacity of the truck

Table C.15: Generated 7

Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 4 90× 85× 120 1× 0× 0 501 -1 Concrete/gravel
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
3 1 48× 395× 105 1× 0× 0 1.243 0.04 Wood
4 1 134× 100× 100 1× 0× 0 1.118 -1 Concrete/gravel
5 1 42× 445× 105 1× 0× 0 10 0.04 Wood
5 1 24× 22× 16 1× 1× 1 4 -1 Cardboard boxes
5 1 23× 100× 45 1× 1× 1 20 0.04 Cover board
6 1 21× 430× 110 1× 0× 0 330 0.04 Wood
6 1 105× 120× 80 1× 0× 0 246 -1 Concrete/gravel
6 1 55× 120× 80 1× 0× 0 435 -1 Wood
7 2 90× 85× 120 1× 0× 0 500 -1 Concrete/gravel
7 1 50× 120× 80 1× 0× 0 1.000 -1 Concrete/gravel

* The capacity of the truck

Table C.16: Generated 8
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Customer # Dimensions rotations Weight LBS Describtion
cm kg kg/cm2

- - 720× 250× 280 - 9.500 * - The truck
1 1 114× 112× 244 1× 0× 0 1.652 0.04 Wood
2 4 90× 85× 120 1× 0× 0 501 -1 Concrete/gravel
2 1 55× 80× 120 1× 0× 0 1.000 -1 Concrete/gravel
2 1 35× 105× 540 1× 0× 0 500 0.03 Wood
2 1 40× 92× 218 1× 0× 0 535 0.03 Wood
2 1 50× 30× 43 1× 1× 1 1 -1 Cardboard boxes
3 2 95× 120× 60 1× 1× 1 5 -1 Rockwool
3 1 90× 30× 30 1× 1× 1 5 -1 Rockwool
3 1 51× 300× 90 1× 0× 0 900 0.04 Gypsum boards
3 1 15× 360× 90 1× 0× 0 300 0.02 Gypsum bars
3 1 24× 16× 23 1× 1× 1 4 -1 Cardboard boxes
3 1 13× 23× 13 1× 1× 1 10 -1 Cardboard boxes
4 1 31× 90× 240 1× 0× 0 486 0.04 Gypsum boards

* The capacity of the truck

Table C.17: Generated 9
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Additional graphs and tables
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Figure D.1: Nine graphs showing results for the different sort methods in “column”.
The first column is sorting after biggest dimension, the middle column is after the
biggest surface and the third column is after the biggest volume. The different greedy
methods are shown on “rows”. The greedy methods are; SB in the first row, BS in
the second row and EL in the third row. On each graph the different data groups
are shown on the horizontal axis. The different lines corresponds to the distinct box
rotation strategies.
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Figure D.2: Performance when one customers is present in the problems. Time limit:
60 seconds.
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Figure D.3: Performance when one customer exists in the problems. Dynamic
breadth. Time limit: 10 seconds.

Figure D.4: Performance when one customer exists in the problems. Dynamic
breadth. Time limit: 60 seconds.
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Figure D.5: Method SB. 1-50 customers. 1-50 customers. Time limit: 10 seconds.

Figure D.6: Method SB. Time limit: 60 seconds.
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