
Decision Support System for
Fighter Pilots

Lars Rosenberg Randleff

Kongens Lyngby 2007

IMM-PHD-2007-172

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

During a mission over enemy territory a fighter aircraft may be engaged by
ground based threats. The pilot can use different measures to avoid the aircraft
from being detected by e.g. enemy radar systems. If the enemy detects the
aircraft a missile may be fired to seek and destroy the aircraft. Such a missile
will almost always be either radar guided or heat seeking. It will be launched
from a permanent launch pad, or it will be man portable and small enough
to fit in the boot of a car. The probability of a missile being detected by on-
board sensors depends on the type of missile. If a missile is detected the pilot
may choose to deploy electronic countermeasures to avoid the impact of the
missile. The countermeasures to choose depend on e.g. the type of missile and
guidance system, distance and direction between the missile and the aircraft,
an assessment of the environment hostility, aircraft altitude and airspeed, and
the availability of countermeasures.

Radar systems, guidance of missiles, and electronic countermeasures are all parts
of the electronic warfare domain. A brief description of this domain is given.
It contains an introduction to both systems working on-board the aircraft and
countermeasures that can be applied to mitigate threats.

This work is concerned with methods for finding proper evasive actions when
a fighter aircraft is engaged by ground based threats. To help the pilot in
deciding on these actions a decision support system may be implemented. The
environment in which such a system must work is described, as are some general
requirements to the design of the system. Decisions suggested by the system are
based on information acquired from different sources. The process of providing
information from sources such as intelligence, on-board sensor systems, and

ii

tactical data from other platforms (aircraft, ships, etc.) is described.

Different approaches to finding the combination of countermeasures and ma-
noeuvres improving the survivability of the aircraft are investigated. During
training a fighter pilot will learn a set of rules to follow when a threat occurs.
For the pilot these rules will be formulated in natural language. An expert sys-
tem can be build by translating these rules into a language understandable by a
computer program. This is done in the development of a Prolog based decision
support system.

A fighter aircraft decision support system is likely to base its decisions on input
from non-perfect sources. Warnings from on-board sensor systems can be false
and intelligence reports deficient. A Bayesian net is modelled to address this.
Building the dependency tables of a Bayesian net requires a large number of cells
to be filled with relevant probabilities. Not having sufficient knowledge about
these probabilities makes the work with developing a Bayesian net cumbersome.
Therefore a method for structural learning is investigated. Here a Bayesian net
is build using a set of sample data from a number of missile flight simulations.

Knowledge about threats in the current combat scenario may influence the
choice of evasive manoeuvres and proper countermeasures. If at any given time
more expendable countermeasures are dispensed than necessary, and none is left
for a later necessity, the survivability of the aircraft may decrease. A mathe-
matical model is developed to describe this problem. It is solved to optimality
using solver software. When new threats occur the decision support system
must be able to provide suggestions within a fraction of a second. Since the
time it takes to find an optimal solution to the mathematical model can not
comply with this requirement solutions are sought using a metaheuristic.

Resumé

N̊ar et jagerfly flyver over fjendtligt omr̊ade, kan det blive udsat for jordbaserede
trusler. For at undg̊a at blive opdaget af f.eks. fjendtlige radarsystemer, kan pi-
loten benytte sig af forskellige modmidler. Er flyet først blivet opdaget, kan
fjenden affyre missiler mod det. S̊adan et missil vil næsten altid være en-
ten radarstyret eller varmesøgende. Det kan blive affyret fra en permanent
affyringsrampe, eller det kan være skulderb̊arent, og s̊a lille at det kan skjules
i bagagerummet p̊a en bil. Sandsynligheden for, at sensorer ombord p̊a flyet
kan detektere missilet afhænger bl.a. af missilets type. N̊ar et missil er blevet
detekteret, kan piloten vælge at anvende modmidler for at undg̊a, at flyet bliver
ramt af missilet. Hvilket modmiddel, der skal vælges afhænger bl.a. af mis-
siltypen, hvordan missilet er styret, afstand og retning mellem missilet og flyet,
en bedømmelse af, hvor fjendtlige omgivelserne er, flyets højde og hastighed og
af hvilke modmidler der er tilgængelige.

Radarsystemer, styring af missiler og elektroniske modmidler hører alle til i
domænet elektronisk krigsførelse. En kort beskrivelse af dette domæne er givet
her. Beskrivelsen indeholder b̊ade en introduktion til systemer om bord p̊a flyet,
og en beskrivelse af de modmidler, som kan anvedes for at undg̊a missiler.

Arbejdet beskrevet i denne afhandling g̊ar ud p̊a at finde ud af, hvad piloten
skal foretage sig n̊ar flyet udsættes for jordbaserede trusler. I den forbindelse
kan piloten benytte sig af et beslutningsstøttesystem, der kan være installeret
i jagerflyets cockpit. B̊ade den kontekst hvori et beslutningsstøttesystem skal
fungere, samt generelle krav til designet af systemet er beskrevet. Systemets
beslutninger vil være baseret p̊a informationer fra forskellige kilder, og processen
med at fremskaffe informationer fra efterretningskilder, sensorsystemer ombord
p̊a flyet og taktiske data fra andre andre fly, skibe, osv. er kort beskrevet.

iv

Forskellige tilgangsvinkler til det at finde den optimale kombination af mod-
midler og manøvrer er blevet undersøgt. En del af det en jagerpilot lærer under
sin uddannelse vil kunne sammenfattes i et sæt regler, som skal følges n̊ar jager-
flyet møder en trussel. Disse regler kan formuleres i naturligt sprog. Ved at
oversætte disse regler til et sprog, der kan forst̊as af et computerprogram, kan
man udvikle et ekspertsystem. P̊a denne måde er et beslutningsstøttesystem
baseret p̊a sproget Prolog blevet udviklet.

Et beslutningsstøttesystem kan basere sine beslutninger p̊a data, der ofte vil
komme fra fejlbehæftede kilder. Advarsler fra sensorsystemer ombord p̊a flyet
kan være fejlagtige, og efterretninger kan være mangelfulde. Et bayesiansk
net er blevet udviklet for at kunne h̊andtere dette. Afhængighedstabellerne
i et bayesiansk net skal udfyldes med et stort antal sandsynligheder. Det er
besværligt at udvikle et bayesiansk net bliver, hvis der ikke p̊a forh̊and er
tilstrækkelig kendskab til disse sandsynligheder. Derfor er en metode til au-
tomatisk generering af et bayesiansk net blevet undersøgt, og baseret p̊a data
fra et antal simulerede missilangreb er et net blevet konstrueret.

Valget af manøvrer og modmidler vil afhænge af tilgængelig viden om trusler
i det aktuelle scenarie. Hvis der p̊a et tidspunkt anvendes flere modmidler
end nødvendigt, og der derfor ikke er nok modmidler tilbage, hvis de p̊a et
senere tidspunkt skulle blive nødvendige, kan dette øge flyets risiko for at blive
skudt ned. En matematisk model er blevet udviklet for at beskrive dette. Et
beslutningsstøttesystem skal kunne give forslag til forbedring af flyets over-
levelseschancer i løbet af meget kort tid. Eftersom løsning af den matematiske
model med en solver tilsyneladende ikke kan leve op til dette tidskrav, søges
modellen løst ved brug af en metaheuristik.

Preface

This dissertation was prepared at the department of Informatics and Mathe-
matical Modelling at the Technical University of Denmark, in partial fulfilment
of the requirements for acquiring the Ph.D. degree.

Both concepts of electronic warfare and the need for a decision support sys-
tem in fighter aircraft are described. Such a system must suggest actions to
the fighter pilot that will increase his chances of surviving a mission when fly-
ing over enemy territory. For finding these actions four different technologies
have been evaluated. Each of the technologies are described in the dissertation.
The technologies are compared with regards to a number of requirements, and
recommendations for further work within this area are made.

Acknowledgements

In November 2003 I began as a Ph.D. student at the Danish Defence Research
Establishment (DDRE) with Per Husmann Rasmussen as my supervisor. Per
had many ideas for the Ph.D. project and we spent days together discussing
these. Sadly, Per became seriously ill, and he passed away in the Summer of
2004. While supervising this Ph.D. project for a short time only, large parts of
the work on Bayesian Network (BN) described in this dissertation is still based
on Per’s ideas. During the work with the BN approach I visited Kristian G.
Olesen at the Department of Computer Science at the University of Aalborg.
Kristian evaluated the model developed and gave hints on improvements of both
structure and running time.

vi

At DDRE Gert Hvedstrup Jensen took over as my supervisor. Since Gert has
an interest in the use of Prolog this was chosen as the next approach. Steen
Søndergaard and Jim Titley took it upon them to introduce me to the frightening
yet fascinating world of Electronic Warfare (EW). They willingly answered all
of my more or less cryptic questions about missiles, guidance systems, and state
of the art, and they enthusiastically reviewed all of my ideas.

Part of the work has taken place in the section for Operations Research (OR)
at the department of Informatics and Mathematical Modelling at the Technical
University of Denmark. Here I have had Professor Jens Clausen as my main
supervisor. Inspired by OR courses taken, and under the advice of Jens, a
mathematical model has been formulated. This has been done with assistance
of Associate Professor Jesper Larsen.

In the summer of 2005 I had a two month stay at the Georgia Tech Research
Institute (GTRI) in Atlanta, Georgia. Here I had a beneficial cooperation with
Dr. Fred Wright on the formulation of time aspects in a combat mission. Here
I also met Lee Simonetta who took time from his busy schedule to escort me
to Tucson, Arizona, to Jacksonville, Florida, and to Marietta, Georgia. Randy
Scott organized my stay at Georgia Tech, and he spent many hours showing me
my way around the Georgia Tech campus and on sightseeing all over Atlanta.

All the people mentioned here have helped me in my work with the Ph.D project
and with this dissertation, and I would like to thank them for their efforts. I
would also like to thank all the people who spend time proof reading this disser-
tation. While they have corrected misspelled words, bad wording, and misinter-
pretations, the errors remaining are all mine. Thanks also to Henrik Jørgensen
from Terma for supplying some of the pictures given in this dissertation.

Finally, I would like to thank my family. Both Ane and our son Christian
have suffered from my regular absence, both physically and mentally, since the
beginning of the project. Thanks also to our son Mads, who planned the date
of his arrival so that I could return from Atlanta just before he was born.

Lyngby, March 2007

Lars Rosenberg Randleff

Acronyms and Abbreviations

AAM Air-to-Air Missile

ACS Aircraft Combat
Survivability

AI Artificial Intelligence

ANN Artificial Neural Net

ATRIA Automated Threat
Response using Intelligent
Agents

BN Bayesian Network

BVR Beyond Visual Range

CLP Constraint Logic
Programming

CMAT Countermeasure
Association Technique

CMOP Countermeasure
Optimisation Problem

DDRE Danish Defence Research
Establishment

DG Decision Graph

DIRCM Directional Infrared
Countermeasures

DSS Decision Support System

ECAP Electronic Combat
Adaptive Processor

ECCM Electronic Counter
Countermeasures

ECM Electronic
Countermeasures

EM Estimation-Maximization

EO Electro-Optical

EOB Electronic Order of Battle

EPM Electronic Protective
Measures

ESM Electronic Support
Measures

EU Expected Utility

EW Electronic Warfare

EWMS Electronic Warfare
Management System

viii Contents

GAMS General Algebraic
Modeling System

GAPATS General Aviation Pilot
Advisory and Training
System

GPS Global Positioning System

GTRI Georgia Tech Research
Institute

HDD Heads-Down Display

HUD Heads-Up Display

ICD Interface Control
Document

IDAS Integrated Defensive Aids
System

IFF Identification Friend or
Foe System

INS Inertial Navigation System

IP Intermediate Point

IPB Intelligence Preparation of
Battlefield

IR Infrared

JPD Joint Probability
Distribution

MANPADS Man Portable Air Defence
System

MAWS Missile Approach Warning
System

MCO Missile Countermeasure
Optimization

MFD Multi-Function Display

MWS Missile Warning System

OODA Observe, Orient, Decide,
Act

OR Operations Research

PVI Pilot-Vehicle Interface

RCS Radar Cross Section

RF Radar Frequency

RWR Radar Warning Receiver

SA Situational Awareness

SAM Surface-to-Air Missile

SL Structural Learning

TRP Threat Response Processor

TTG Time-to-Go

UAV Unmanned Aerial Vehicle

UV Ultraviolet

Contents

Summary i

Resumé iii

Preface v

Acronyms and Abbreviations vii

1 Introduction 1

1.1 Contents . 1

1.2 Readers Prerequisites . 2

2 Electronic Warfare 3

2.1 The Electromagnetic Spectrum 3

2.2 Mission Scenarios . 6

2.3 Threats . 8

x CONTENTS

2.4 Electronic Support Measures . 10

2.5 Electronic Countermeasures . 13

2.6 Electronic Protective Measures 18

2.7 The Fighter Aircraft . 18

2.8 Summary . 22

3 Decision Support System in a Fighter Aircraft 23

3.1 Problem Description . 23

3.2 Survivability . 25

3.3 Design Requirements . 26

3.4 Mission Data Flow . 27

3.5 System Data Flow . 29

3.6 Models and Systems . 33

3.7 Summary . 36

4 The Prolog Approach 37

4.1 Motivation . 37

4.2 Basic Theory . 38

4.3 Answering Questions with Prolog 45

4.4 Using Prolog for Decision Support 51

4.5 The Prolog Program . 54

4.6 Testing . 61

4.7 Discussion . 66

CONTENTS xi

4.8 Conclusion . 69

5 The Bayesian Network Approach 71

5.1 Motivation . 72

5.2 Basic Theory . 72

5.3 Building the Model . 86

5.4 Populating Dependency Tables 90

5.5 Structural Learning . 92

5.6 Generating Data with Fly-In . 98

5.7 Testing . 100

5.8 Discussion . 105

5.9 Conclusion . 107

6 The Mathematical Modelling Approach 109

6.1 Motivation . 110

6.2 Linear Programming . 110

6.3 The Framework . 116

6.4 Optimise Survivability . 119

6.5 Modelling the Problem . 127

6.6 The GAMS Program . 142

6.7 Testing . 143

6.8 Discussion . 153

6.9 Conclusion . 155

xii CONTENTS

7 The Metaheuristics Approach 157

7.1 Motivation . 158

7.2 Metaheuristics . 158

7.3 Using Simulated Annealing . 164

7.4 Implementing Simulated Annealing 171

7.5 Testing . 179

7.6 Discussion . 181

7.7 Conclusion . 184

8 Comparing Approaches 185

8.1 The Approaches . 185

8.2 Comparison . 192

9 Further Work 195

9.1 Current Approaches . 195

9.2 Testing with Flight Data . 199

9.3 Other Techniques . 201

10 Conclusion 205

A Threats 207

A.1 Guidance Systems . 207

A.2 Surface-to-Air Missile Reference Guide 211

B The Prolog Program 213

CONTENTS xiii

B.1 Rules . 213

B.2 dss.pro . 215

B.3 util.pro . 221

B.4 cm.pro . 223

B.5 threats.pro . 225

B.6 mission.pro . 227

B.7 current.pro . 227

B.8 warnings.pro . 228

C Survival Score 229

C.1 Constructing a score system . 229

C.2 Optimising the score . 231

C.3 Further work . 232

D The GAMS Program 233

D.1 tempasp.gms . 233

E Software and Hardware 241

E.1 Software . 241

E.2 Hardware . 242

xiv CONTENTS

Chapter 1

Introduction

A fighter aircraft on duty will often fly over enemy territory as part of a mission.
During this mission the aircraft may be engaged by enemy aircraft, or it may
be the target of missiles fired from ground based launch pads. Over time more
and more systems have been implemented aboard fighter aircraft in order to
improve the pilot’s awareness about the condition of the aircraft and the cur-
rent situation in the world surrounding it. As the number and complexity of
these systems increase, so does the quantity of threats to the aircraft. When
new threats emerge, the pilot’s means of mitigating these threats will change.
Already known countermeasures may be applied in new and different ways, and
new countermeasures are designed. When threats occur proper evasive actions
often consist of combinations of manoeuvres and applied countermeasures. To
determine the proper action, the pilot may benefit from a decision support sys-
tem implemented on-board the aircraft.

1.1 Contents

In order to acknowledge the need for a decision support system on-board a
fighter aircraft one has to understand the kind of threats an aircraft may meet,
what type of information on-board sensors may provide to the pilot, and what
he can do to avoid the threats. Most threats, and the relevant countermeasures,

2 Introduction

either receive or emit electromagnetic radiation, and the domain is often referred
to as Electronic Warfare (EW). This domain is described in Chapter 2. The
intention with this chapter is to provide the reader with enough understanding
about Electronic Warfare to understand the considerations given in designing a
decision support system for fighter pilots.

In Chapter 3 the basics of a decision support system in the realm of electronic
warfare are described. The context of such a system is described and require-
ments to the development of the system are specified. Already existing systems,
and some academical approaches to designing them, are also described here.

The aim of the work documented in this dissertation is to explore a number of
approaches to the development of a decision support system for fighter pilots.
These approaches comprise Prolog (Chapter 4), Bayesian Networks (Chapter 5),
formulating and solving a mathematical integer programming model (Chapter
6), and the use of metaheuristics to solve the mathematical model in due time
(Chapter 7). These four approaches are compared in Chapter 8.

Throughout the dissertation the pilot of the aircraft will, for convenience, be
referred to as he/him. The aircraft described is intended to be generic, and
prices for missiles, countermeasures and aircraft, are all fictitious.

1.2 Readers Prerequisites

The intended reader of this thesis should have enough statistical literacy to
comprehend the basics of Bayesian networks. To fully understand the chapters
about mathematical modelling and metaheuristics, some degree of mathematical
maturity is needed as well. To understand the brief introduction to logic and the
Prolog programming language given, the reader will benefit from some experi-
ence with programming. Knowledge about fighter aircraft or electronic warfare
is not needed, as these issues are covered sufficiently for the understanding of the
approaches described. All sections containing mathematical theory are written
without the use of lemmas, corollaries, and theorems. This is a deliberate choice
to ease reading of these parts of the report. For the proper definitions, theorems,
and proofs the reader is encouraged to consult the referenced textbooks.

Chapter 2

Electronic Warfare

A large part of the warfare involving fighter aircraft is based on the use of
electromagnetic radiation. This type of warfare is referred to as Electronic
Warfare (EW) (also known as Electronic Combat). EW is defined as military
actions using electromagnetic radiation to estimate, use, reduce, or avoid enemy
use of the electromagnetic spectrum.

The EW taxonomy can be divided into three main parts: Electronic Support
Measures (ESM), Electronic Countermeasures (ECM), and Electronic Protective
Measures (EPM). ESM is used to gain knowledge about the enemy using sensors
based on electromagnetic radiation. To obstruct enemy use of ESM ECM is
used. Finally EPM is used to lower the applicability of the enemy’s use of ECM.
Terms within these three classes of EW are described in this chapter. For more
detailed descriptions on these subjects the books [41, 42, 46] are recommended.
The threats, sensors, countermeasures, and fighter aircraft described in this and
following chapters are all assumed generic.

2.1 The Electromagnetic Spectrum

Electromagnetic radiation is a common description of physical phenomena such
as visible light, X-rays, radar, infrared, and ultraviolet radiation. All of these

4 Electronic Warfare

describe physically variations within the electrical and magnetical fields. The
variations are described as waves, with a wave characterized by either its wave-
length (λ) or its frequency (f). With c being the speed of light, c ≈ 300, 000
km/s, the relation between λ and f is given by λ = c

f . In Figure 2.1 the wave-
lengths of parts of the electromagnetic spectrum are shown. A band in the
electromagnetic spectrum is an interval of frequencies (or wavelengths). This
section relates some bands with their role in EW.

AM

Short wave

TV

FM

Radar

IR rays

UV rays

X-rays

Gamma rays

104

102

1

10−2

10−4

10−6

10−8

10−10

10−12

10−14

Figure 2.1: The electromagnetic spectrum, ranging from gamma rays to the
wavelengths used for AM radio. The visual part of the spectrum is enhanced at
the right.

Radar is an acronym for RAdio Detection And Ranging. Radar systems function
by transmitting continually waves or short bursts of electromagnetic energy
within the radar band, which can then be echoed off objects such as ships or
aircraft. From the echo received by the radar system it is possible to determine
the direction and range to the echoing objects. A Doppler radar calculates the
velocity of an object using the difference in the frequencies between the emitted
radar radiation and the radiation echoed off the object. Table 2.1 lists some
radar technologies, their waveforms, and the parameters measured using them.

The radar band is itself divided into a number of sub-bands. For non-military
use one set of names is used for these sub-bands, while another set of names is
used within the EW domain. The sub-bands, their letter designations, and the
wavelengths and frequencies dividing the subbands are shown in Figure 2.2.

2.1 The Electromagnetic Spectrum 5

Class: Waveform: Measures:
Pulse Pulse Range

Doppler
Continuous Wave (CW) Velocity
Pulse Doppler (PD) Range and velocity

Table 2.1: Radar technologies in use. A Pulse radar system can be used to
measure the distance to an object only, a radar based on Continues Wave tech-
nology will measure the velocity of the object, and a Pulse Doppler radar will
find both the distance and the velocity.

Radar

EW

Wavelength

Frequency

VHF UHF L S C X Ku K Ka MM

A B C D E F G H I J K L M

120

100

80

30 15

10

7.5

5

3.75

3

2.5 1.6

1.5

1.1

0.75

0.5

0.25

0.3

0.5

1 2

3

4

6

8

10

12 18

20

27

40

60

Figure 2.2: The radar sub-bands letter designations. The names in the top row
refer to the ordinary radar sub-bands, while names in the second row refer to
the names used in the EW domain. Wavelengths are given in cm and frequencies
in GHz. See [41] for more details on the radar sub-bands.

A radar system can work in a number of modes, or independent radar systems
working in different modes can work together in a single radar unit. The inter-
ception of an aircraft in the airspace covered by a ground-based radar is done
by either a scanning radar or a multifunction radar in scan mode. When the
aircraft is intercepted it may be tracked. When in tracking mode the radar will
follow the aircraft to map its trajectory. Tracking the aircraft may lead to a
missile being launched towards the aircraft. While the missile is approaching the
aircraft the radar will be locked onto the aircraft. Since the energy and pattern
of the radar radiation emitted in these different modes will also be different it is
possible for radar receivers on-board the aircraft to distinguish between radar
modes.

The amount of radar energy echoed from an object depends on the surface of the
object facing the radar. The Radar Cross Section (RCS) of an object describes
the reflection of an incident radar wave. It has the unit of a surface area which

6 Electronic Warfare

should not be confused with the actual area of the object seen from the radar.
The higher the RCS of an object the more power of an incident radar wave is
echoed in the direction of the radar. Figure 2.3 shows the magnitude of the RCS

for an aircraft as seen from different angles. It is found by measuring the radar
reflection from angles around the aircraft.

Figure 2.3: A polar plot showing the magnitude of the RCS of an aircraft mea-
sured at angles around the aircraft. (Polar plot is taken from [14]. Modifications
made by the author.)

When in flight the friction from the surrounding air will heat up parts of the
aircraft facing forward. Other parts may also have an increase in temperature
caused by the engine exhaust plume. This heat results in the emission of elec-
tromagnetic radiation within the Infrared (IR) band. In Figure 2.4 the parts
of an aircraft that will have an increased temperature have been marked. This
radiation is used by heat seeking missiles, as described in Section 2.3.1.

2.2 Mission Scenarios

A fighter aircraft will typically be involved in one of two types of combat: air-
to-ground combat where the enemy is positioned on the ground, and air-to-
air combat where the aircraft is fighting other aircraft in mid-air. These two
scenarios are described below.

Air-to-surface missions are often referred to as raids or strikes. According to [10]

2.2 Mission Scenarios 7

Figure 2.4: The parts of a fighter aircraft that will have an increase in temper-
ature during flight.

”a strike is the delivery of a weapon or weapons against a specific target.” The
aim for the pilot in this scenario is to fly to a position near the target in high
altitude, go to low altitude when approaching the target, deliver the weapon
and return to high altitude before heading home. The reason for flying in and
back at high altitude is to avoid ground based missile attacks. Flying above
a given altitude will prevent attacks from both IR and Radar Frequency (RF)
based missiles, while the aircraft will appear to be invisible to radar systems
when flying below another altitude. The altitude profile of a strike is illustrated
in Figure 2.5. The time it takes from descending the aircraft from high altitude
to it is back at high altitude again will usually be a few minutes only. During
these minutes the pilot has to focus on avoiding ground-based threats.

An aircraft is involved in a dogfight when it is fighting one or more enemy air-
craft. When engaged in a dogfight the aircraft is manoeuvred to either avoid
enemy missiles or bullets, or to attack an enemy aircraft with appropriate mea-
sures.

An enemy aircraft will often have the same mobility as the fighter pilot’s own
aircraft. When a fighter aircraft is engaged in a dogfight the threats can be
positioned at any point in three dimensions and that will usually make the
analysis of the current battlefield scenario more complex than for a single target
mission.

Dogfights will usually be fought only as part of a symmetrical warfare. This

8 Electronic Warfare

Figure 2.5: The altitude profile of a strike. The aircraft approach the target at
high altitude, descend to deliver the weapon, and ascend to return home. The
aircraft flies at a ”safe” altitude when above the upper threshold or below the
lower threshold.

means that the parts involved in the war have comparable forces, e.g. fighter
aircraft. In asymmetrical warfare the forces of the one part are superior to
the forces of the other part. Strikes may be part of both symmetrical and
asymmetrical warfare.

2.3 Threats

To the fighter aircraft a ground based threat is either an enemy unit on the
ground, capable of launching a missile towards the aircraft, or it is a launched
missile itself. To the aircraft the best survivability is given if no missile is
launched by the enemy. Flying at a ”safe” altitude will make the aircraft less
visible to the enemy, hopefully avoiding missiles being launched. If the threat is
an enemy radar unit, flying the aircraft close to the ground will make the aircraft
appear invisible due to ground clutter. If the enemy is capable of launching heat
seeking missiles, the heat signature of the aircraft will be too small to lock onto
if the aircraft is flying at a high altitude. When flying is required in a non-
safe altitude the pilot may use pre-emptive measures such as a turning on the
jammer or dispensing flares to prevent the enemy from locking on to the aircraft.
Jammer and flares are examples of Electronic Countermeasures (ECM) which is

2.3 Threats 9

described in Section 2.5.

According to [6] about 650 different missile systems have been developed, and it
is believed that 200-300 of these are still deployed1. A missile launched against
an aircraft will be fired from either the surface of the earth (a Surface-to-Air
Missile (SAM)) or from another aircraft (an Air-to-Air Missile (AAM)). Besides
having a name given by the manufacturer many missile types are also given a
USA/NATO type name, indicating the use of the missile. An example of this
is the Russian S-75 Dvina/Volkhov that has the USA/NATO type name SA-2,
indicating that it is a surface-to-air missile.

Some types of missiles are associated with one or more types of radar systems.
Therefore the pilot may know which type of missile he is likely to encounter
when knowledge about the type of a detected enemy radar system has been
established. Knowing the missile type may give the pilot knowledge about how
the missile can be countered. Since heat seeking missiles are not associated with
a radar system, the pilot will not have this advantage when such a missile is
launched.

For many types of missiles a direct hit at the aircraft is not necessary for it
to have an impact. Many missiles are supplied with proximity fuses which will
make the missile go off when it is within a certain range of the aircraft.

2.3.1 Guidance

Most missiles use some form of guidance in directing the missile towards the
target. To avoid an incoming missile the pilot has to ”break” the guidance
(break lock), or transfer it from the aircraft to another object (lock transfer).

The guidance systems generally use electromagnetic radiation within one of two
bands: Radar Frequency (RF) or Infrared (IR). If the missile is RF guided it is
either equipped with a radar system of its own, or it is guided by a ground-based
radar system. RF based missile guidance is active since it is based on emitting
electromagnetic radiation to determine the position of the aircraft. When radar
radiation is emitted from either the missile or from ground-based radar it may
be detected by the aircraft, thus warning the pilot about an attack.

The IR based missile guidance is passive since it depends solely on radiation
emitted from the aircraft and does not emit radiation itself. This type of missiles
are equipped with an IR sensitive sensor that will guide the missile towards the

1As of February 2007.

10 Electronic Warfare

aircraft. More sophisticated guidance systems are equipped with IR cameras
that feed images to a seeker algorithm. This algorithm analyses the IR images
to detect the aircraft and to distinguish it from false targets. The false targets
may originate from objects in the scenario such as radiation from the sun or
sparks from a welding unit, or they may be artificial targets created by the
aircraft (see Section 2.5.3). A number of guidance systems are described in
Appendix A.1.

As a rule of thumb the more energy that is emitted from or echoed off an object
in the direction of a guidance system, the easier it is for the guidance system to
follow the object. The pilot may manoeuvre the aircraft to reduce the amount
of energy that is emitted towards an enemy observer. See Section 2.5.7 for a
description of breaklock zones.

In many situations IR guided missiles, such as the Man Portable Air Defence
System (MANPADS), will be the enemy’s best choice of weapon. Often systems
for launching these missiles are cheaper than systems using RF guidance, they
are small enough to be stored in the boot of a car, they can be operated with
little training, and until launched they are not easily detectable from the aircraft.
Usually the missiles are launched when the distance to the aircraft is less than
a few kilometres which will give the pilot only a few seconds to perform evasive
actions. For these reasons IR guided missiles are often considered the greatest
threat to both military and civilian aviation.

2.4 Electronic Support Measures

Equipment working within the electromagnetic spectrum to make the pilot
aware of the combat situation surrounding the aircraft are known as Electronic
Support Measures (ESM). The pilot bases his Situational Awareness (SA) on the
ESM on-board the aircraft, and the better equipped the aircraft is, the better
SA the pilot may obtain. In this section some of these measures are described.

2.4.1 Radar Warning Receiver

Different types of radar systems have different characteristics, and this is used
by the Radar Warning Receiver (RWR) to determine from which type of radar
system incoming radar waves originate. This is done by finding the properties
of the wave in a lookup table. In this table the kind of missile often associated
with the radar system may also be found. Based on the table a warning symbol

2.4 Electronic Support Measures 11

is shown in the azimuth indicator, and an audio warning is given to the pilot.
The symbol displayed on the azimuth indicator shows the type of the radar
system and the direction towards it. If the RWR can not show the type of radar
system related to the detected radar signal, the azimuth indicator will indicate
the radar system as being of an unknown type. Appendix A describes some of
the RF-based threats detectable by a RWR. An azimuth indicator is shown in
Figure 2.6.

Figure 2.6: An azimuth indicator as part of the Advanced Threat Display.
(Photo courtesy of Terma.)

The position of a symbol shown in the azimuth indicator indicates the angle
towards the threat and the proximity to the lethal envelope of the threat. The
lethal envelope is the range in which the threat can engage the aircraft, and if the
aircraft is close to, or within, the range of a threat this is shown in the azimuth
indicator. For some azimuth indicators the symbols closest to the centre will
represent the most imminent threats, while others will have these farthest away
from the centre. While the first of these may seem most intuitive, the latter has
its advantages. It will allow greater spatial separation of the highest priority
threats on the display, making it easier for the pilot to determine directions to
threats.

Usually the aircraft will be detected by enemy search radar before it is being
tracked or locked upon. Radar characteristics vary from search radar to tracking
radar and the RWR on-board the aircraft is able to distinguish between these
radar modes based on the characteristics of incoming radar radiation. It is worth
noting that not all symbols shown in the azimuth indicator represent threats.
In any given scenario there may be numerous radars present, and possibly none
or only a few of these represent a threat. Symbols representing search radars
and acquisition and tracking radars may all be displayed simultaneously on the

12 Electronic Warfare

azimuth indicator. Most newer RWR systems offer the possibility of prioritizing
the threats and showing symbols for the threats with the highest priority only.
Older RWR systems will only show the symbols of tracking radars and launched
missiles.

2.4.2 Missile Warning System

The Missile Warning System (MWS) (sometimes referred to as Missile Approach
Warning System (MAWS)) informs the pilot when a missile is approaching the
aircraft. In a passive IR based MWS this is detected by continuously analysing IR

images of the aircraft surroundings. These images are acquired using on-board
IR sensors or IR cameras. If the images contain a hot spot (possibly indicating
the plume of an approaching missile) that increases in size over a relatively short
time span and which seems to follow the aircraft, a missile warning is issued.

In a passive Ultraviolet (UV) based MWS the images analysed are showing in-
formation from the UV part of the electromagnetic spectrum. This type of MWS

has some benefits compared to the IR-based MWS since the UV characteristics
of a missile plume may change during its flight. Information about the missile
(time since launch, time to burn out, etc.) may then be extracted from the UV

images.

A RF based MWS is an active system working in the radar band. It can de-
termine the range and velocity of an approaching missile, thus giving the pilot
an estimate of the time left before the aircraft is hit, known as the Time-to-
Go (TTG). This helps the pilot to find the best point in time for performing
evasive actions. A drawback to this kind of MWS is that missiles may be very
hard to detect due to small RCS values. Another drawback is that missiles may
be designed to follow the emitted radar radiation thus unfortunately converting
the MWS into a missile attraction system.

2.4.3 Identification Friend or Foe

In a complex battle scene with many military platforms, including aircraft,
ships, and/or ground-based vehicles, it might be difficult for the pilot to tell
friend from foe. To help this the vehicles may be equipped with transponders
identifying themselves. An aircraft equipped with an Identification Friend or
Foe System (IFF) can then detect the transponder signal and it will identify the
transponding vehicle as ”friend” or ”foe”. Since not all aircraft are equipped
with an IFF transponder, or a given transponder may not be turned on, the

2.5 Electronic Countermeasures 13

pilot may not assume other aircraft not identifying themselves as ”friends” to
be, by default, ”foes”.

As with the RF based MWS a transponding IFF system will give away the position
of the aircraft and it must be switched off if the presence of the aircraft is to be
hidden from the enemy.

2.5 Electronic Countermeasures

The ESM onboard an aircraft continually informs the pilot about enemy threats.
For the aircraft to counter these threats the aircraft may be equipped with
a number of Electronic Countermeasures (ECM). These measures are used to
either tell the pilot about the ESM used by the enemy, to disrupt the enemy’s
usage of his ESM, or a combination of both.

2.5.1 Jammer

A radar system will usually analyse the radar signals echoed off an aircraft.
Depending on the type of radar system this analysis will decide the velocity,
range, and/or direction to the aircraft. The results of this analysis might be
used by the ground-based radars to determine when a missile must be launched
against an aircraft. To confuse the analysis made by the radar system the
aircraft can be equipped with a radar jammer. Different types of jammers exist:
the simplest ones jams the radar signal by emitting a noise signal in the same
frequency band as that of the radar signal. More advanced jammers calculate
what radar signal to send out to make the results of the analysis in the receiving
radar system erroneous, e.g. by estimating a wrong velocity, range, or angle.
This may e.g. delude the radar into observing the aircraft as approaching while
it may in fact be keeping its distance or even increasing it.

For a jammer to be effective against enemy radars the jamming signal needs to
be emitted using more power than that of the echoed radar signal. Doing this
will make the enemy radar interpret the actually echoed signal as noise compared
to the jamming signal. The difference in power between the jammer signal and
the echoed radiation is being used by some missile guidance systems. These will
guide missiles towards any high-power signal, regardless of the information that
may be found analysing this signal. A jammer that is turned on will thus serve
as a beacon, possibly attracting the attention of an enemy radar operator. It
it is therefore advisable to keep any jamming equipment turned off unless it is

14 Electronic Warfare

considered necessary for the survival of the pilot to have it turned on.

2.5.2 Chaff

Chaff are small pieces of foil or bipolar material that immediately forms a cloud
when dispensed from the aircraft. This cloud has a RCS comparable to that of
the aircraft. This is used to make a radar system tracking the aircraft track the
chaff cloud instead. The time it takes to form a chaff cloud is named the bloom
time. After a few seconds the chaff cloud is dissipated and the aircraft will once
again be visible to enemy radar. The process of forming a chaff cloud to decoy
an approaching RF guided missile is shown in Figure 2.7.

(a) (b)

(c) (d)

Figure 2.7: When chaff is dispensed it will form a cloud to decoy an approaching
missile. In Figure 2.7(a) the centroid of the reflected radiation is positioned on
the aircraft. Chaff is dispensed in Figure 2.7(b) and the centroid is moved
backwards. In Figure 2.7(c) the missile has multiple targets to choose from,
and in Figure 2.7(d) the chaff cloud has become the new target. With proper
evasive manoeuvres of the aircraft the missile will not detect the presence of two
targets and the lock will be directly transferred to the chaff cloud.

2.5 Electronic Countermeasures 15

The tracking radar will follow an object within a given range gate only. If the
aircraft can escape the range gate before the chaff cloud is dissipated it can not
be tracked by the enemy radar before a new acquisition is performed.

The aircraft may be equipped with a number of chaff types and chaff dispensers.
These will depend on a description of the battlefield and they are installed during
the preparation of the aircraft. Chaff is an expendable countermeasure in that
it can only be used for a limited amount of times before the inventory runs dry.

2.5.3 Flares

To escape from an IR guided missile the pilot may have to transfer the missile
lock onto another object. This may be done by dispensing flares. Flares are
another type of expendables which are made of hot burning material that forms
an infrared signature which can be more attractive for the missile to follow
than that of the aircraft. If the guidance system is designed to manoeuvre the
missile towards the hottest spot within the visual range it might go for the flares
instead of the aircraft. Although flares burn out within a few seconds this might
be enough for the pilot to manoeuvre the aircraft away from the path of the
missile.

When flares are dispensed they will soon get a speed remarkably smaller than
that of the aircraft. The decrease in speed may be a signal to guided missiles
that the object to follow (the aircraft) is not the object currently in focus (a
flare). For flares to maintain the same speed as the aircraft they can be either
tethered or self-propelled. Tethered flares are towed behind the aircraft at a
fixed distance for a while, thus having the same speed as the aircraft itself.
Propelled flares will start off by having the same speed as the aircraft. They
will slowly decrease their speed, and the distance to the aircraft will increase.

If the pilot expects to be engaged by IR guided missiles, flares may be used
pre-emptively. If numerous flares are dispensed before a missile is launched the
missile may fail to acquire a lock on the aircraft itself.

As with chaff the number of flares and flare dispensers may vary according to a
description of the battlefield and they will be set during the preparation of the
aircraft as well. Flare dispensers may be directly linked to a MWS so a warning
of an approaching missile immediately will trigger a flare dispense.

16 Electronic Warfare

2.5.4 Directed Infrared Countermeasure

The Directional Infrared Countermeasures (DIRCM) is a system designed to
protect the aircraft from IR guided missiles. When an approaching missile is
detected by a MWS the DIRCM is directed towards the missile. When active the
DIRCM uses pulses of IR energy to jam the IR seekers guiding the missile. The
pulses of IR energy will generally have one of two effects: either the seeker is
blinded and will loose focus on the aircraft long enough for the aircraft to break
the lock, or it will mimic a thermal signature as that of the sun, thus forcing the
seeker to look for alternative targets [1]. If the use of IR pulses is accompanied
by the dispense of flares these may serve as new targets for the seeker and the
lock is transferred.

2.5.5 Towed Decoy

As mentioned in Section 2.5.1 missiles may be guided toward an active jammer.
To avoid this type of missiles while maintaining the effect of a jammer the
jammer may be placed in a towed decoy. When deploying a towed decoy a wire
connecting the decoy to the aircraft is unreeled and the decoy will be towed
behind the aircraft at a fixed distance. When the towed decoy is no longer
needed the wire may be re-reeled or simply severed.

The simplest towed decoys will have their own power supply and they will
continue to jam for as long as the power permits. More sophisticated decoys
may be connected to power supply and sensors on-board the aircraft. They will
be able to adjust the jamming to the current battlefield scenario and they will
continue to jam for as long as it is deemed necessary.

A towed decoy is kept at a safe distance behind the aircraft. At this distance
an impact on the decoy by a missile will leave the aircraft undamaged. The
aircraft manoeuvrability is limited when a towed decoy is deployed, so when
it is no longer in use it must be severed or re-reeled. Before being deployed
a towed decoy is usually placed under the aircraft fuselage or under either or
both of the wings. This limits the total number of towed decoys to be deployed
during a mission to one (the fuselage), two (both wings), or three (fuselage and
wings).

2.5 Electronic Countermeasures 17

2.5.6 Stealth

The highest survivability for the aircraft is obtained if it can fly by stealth, i.e.
fly without being observed by the enemy. In designing a fighter aircraft several
measures are taken to reduce the signatures of the aircraft to make it difficult for
the enemy to observe. These measures include using radar absorbing materials
and shaping the surface of the aircraft to obtain the smallest RCS values possible.
A reduction of the IR signature of the aircraft is obtained by special designs of
the airframe and propulsion system [10].

2.5.7 Breaklock Zones

The signatures of a fighter aircraft influence the success of an approaching mis-
sile. If the RCS of the aircraft is sufficiently small a RF guided missile will not be
able to lock onto it. Likewise, an IR guided missile will have trouble following an
aircraft that is almost invisible within the IR band. During flight the pilot will
manoeuvre the aircraft to obtain the smallest signatures possible. An aircraft
will typically have the largest RCS when seen from the side, while the RCS is
often smallest when the aircraft is flying directly towards the radar receiver. To
lower the IR signature of the aircraft the pilot may reduce the thrust and turn
the aircraft so that hot surfaces are hidden by other parts of the aircraft.

The angles in which the aircraft has the lowest visibility to the enemy are known
as breaklock zones. When a missile is locked onto the aircraft the pilot will ma-
noeuvre the aircraft so that the enemy will become positioned within a breaklock
zone. The manoeuvre will often be accompanied by the dispense of either chaff
or flares, depending on the threat, so the lock can be transferred away from the
aircraft.

2.5.8 Timing the Use of Countermeasures

When a threat is detected the use of appropriate countermeasures must be timed
to gain the best possible protection. If applied too soon the countermeasure
may have no effect, an applied too late the effect may not protect the aircraft.
Dispensed too early a chaff cloud will be dissipated before having any effect on
the missile, and the side-effect of having less chaff available will only decrease
the aircraft’s survivability at a later stage. If the chaff is dispensed too late
the effect on the missile will not prevent it from reaching the aircraft. Similar
considerations must be taken for IR guided missiles and flares. Here the time it

18 Electronic Warfare

takes from launch until the missile reaches the aircraft is usually smaller than
for RF guided missiles, and flares are usually dispensed as soon as the missile
has been detected.

For on-board countermeasures such as jammer, towed decoy, or DIRCM, the
time it takes before the countermeasure becomes active must be taken into
consideration. While it may take only a few seconds for the jammer or the
DIRCM to settle, or for the towed decoy to be unreeled, the use of these must
be appropriately timed, just as for expendable countermeasures.

2.6 Electronic Protective Measures

ESM are used by the pilot to gain knowledge about the current battlefield sce-
nario, and ECM are used for destroying the enemy’s knowledge about the sce-
nario. To spoil the use of ECM by an enemy aircraft one may use Electronic
Protective Measures (EPM) (also known as Electronic Counter Countermeasures
(ECCM)). While the descriptions here assume the user of EPM to be a, proba-
bly hostile, ground based radar system, EPM may also be applied in a fighter
aircraft.

The fighter aircraft may have a RWR to determine the type of an enemy radar,
or it may use either an on-board jammer or a towed decoy to deceive the radar.
Some radar systems are designed to complicate the analysis done by either the
RWR or the jammer. One technology for doing this is frequency agility where the
radar system is able to shift the frequency in use. Spread spectrum technologies
can be applied to prevent the aircraft RWR from correctly determine the kind
of radar system in use. In spread spectrum the electromagnetic energy will be
spread onto a large band within the radar spectrum. This will make the energy
in each sub-band seem like background noise and it will be difficult for the RWR

to recognize the radar signal.

2.7 The Fighter Aircraft

The fighter aircraft itself may limit the use of technology within the field of EW.
These limits may be set by e.g. the design of the aircraft, the space available for
additional EW equipment, or the manoeuvres required to gain maximum effect
of countermeasures. Descriptions of these limits are given in this section.

2.7 The Fighter Aircraft 19

Figure 2.8: Bombs and missiles mounted at stations underneath an F-16 fighter
aircraft. (Photo courtesy of Erwin Stam.)

2.7.1 Adding Equipment

Newer models of fighter aircraft will be designed to comply with the demands
raised by the use of EW equipment. This design is focused on e.g. lowering
the signatures of the aircraft, and is one of the main issues covered in [10]. For
existing aircraft new demands to EW equipment will lead to new configurations
of the aircraft within the limits of the airframe given.

A typical fighter aircraft will have a number of stations for carrying bombs and
missiles. These stations are placed underneath the wings and the fuselage of the
aircraft, and the number of stations varies from one aircraft model to another.
Since carrying missiles may enhance the RCS of the aircraft newer aircraft models
are designed to carry missiles inside the body of the aircraft to maintain a low
RCS. A fighter aircraft carrying bombs and missiles at its stations can be seen
in Figure 2.8.

Adapting older fighter aircraft to carry new EW equipment can be a difficult
task requiring structural changes to parts of the aircraft. To increases the EW

performance of the aircraft with only minor structural changes some of the
stations may be equipped with pylons. A pylon may carry e.g. the IR sensors
for a MWS, a jammer, a DIRCM unit, or cartridges of chaff or flares. While a
pylon takes up a station on the aircraft some pylons may function as stations
themselves. Unfortunately pylons will often increase e.g. the RCS of the aircraft,
and having them installed on the aircraft will thus not always improve the
survivability of the aircraft.

20 Electronic Warfare

Figure 2.9: A pylon mounted under the wing. IR sensors are placed in the
front and the back of the pylon. The holes on the rear end of the pylon will
contain chaff or flare cartridges to be dispensed during flight. (Photo courtesy
of Terma.)

2.7.2 The Cockpit

During combat the cockpit of a fighter aircraft constitutes a highly stressed
environment. The pilot monitors a number of displays and indicating lights
while listening to sounds of caution and danger. Besides this he has to maintain
radio contact with allied aircraft and personnel placed on ships and ground while
manoeuvring the aircraft at high speed.

Figure 2.10 shows the cockpit of the Falcon 4.0 flight simulator. While this
is not a real-world aircraft the cockpit has high resemblance with the cockpit
of a real F-16 fighter aircraft. The most important information about various
avionics and aircraft systems is shown at the displays above the pilot’s knees.
The function of such a display, known as a Multi-Function Display (MFD), can
be chosen according to the pilot’s preferences. Above the left MFD the azimuth
indicator shows the direction to enemy radars as found by the RWR.

As can be seen in Figure 2.10 there is limited space for adding controls and
displays for new EW equipment. While extra functionality may be added to a
MFD the pilot can only monitor a limited number of displays simultaneously.
New equipment may add to the information available to the pilot, but it can
not be allowed to add to the pilot’s workload since this will only increase the
probability of pilot errors.

2.7 The Fighter Aircraft 21

Figure 2.10: The cockpit of an F-16 fighter aircraft. Above the knees of the
pilot two MFDs can be seen. The azimuth indicator is positioned to the top
left, above the left MFD. (Screenshot from the Falcon 4.0 flight simulator from
Microprose.)

2.7.3 Manoeuvres

The effects of some countermeasures are increased if their deployment is ac-
companied by a swift aircraft manoeuvre. While the aircraft may have limited
manoeuvre capability due to its design, the presence of a pilot in the aircraft
will often limit the manoeuvres even more.

The acceleration caused by changing the direction of flight is often measured in
g’s, where one g equals the acceleration due to gravity. When the pilot is exposed
to too much positive acceleration he may loose consciousness for a while. This
is known as black out or g-loc, where loc stands for loss of consciousness. To
prevent black out a fighter pilot may wear a g-suit. This suit applies pressure to
the lower parts of the body to prevent blood from pooling. This will increase the
amount of blood in the brain, hopefully keeping the pilot conscious. Negative
acceleration may cause the pilot to experience red out, where capillaries in the
eyes burst due to the increase in blood pressure. The bursting of capillaries may
also cause haemorrhages in the brain, and like black out it can be lethal.

22 Electronic Warfare

2.8 Summary

This chapter describes the domain of EW as the ”battle of the electromagnetic
spectrum”. Threats may detect a fighter aircraft using radiation within one or
more of the bands in the electromagnetic spectrum. Once the aircraft is detected
a missile may be launched against it. This missile is most likely guided towards
the aircraft using electromagnetic radiation. If the guidance system is passive
it will rely on radiation emitted from the aircraft, e.g. IR radiation from hot
parts of the airframe. A RF guided missile is an example of an active guidance
system. It will emit radar radiation itself, and use the radiation echoed off the
aircraft to determine the distance to, and possibly the velocity of, the aircraft.

The pilot may use ESM to gain knowledge about the current threat scenario.
RWR and MWS are two such ESM systems. To counter threats the pilot may use
different forms of ECM. ECM can either be equipment on-board the aircraft or it
can be expendables dispensed into open air. When a missile is locked onto the
aircraft the lock may be broken by appropriate use of ECM. The pilot may also
use ECM preemptively to prevent threats from obtaining a lock on the aircraft.
To reduce the effect of aircraft ECM the ground based threat may use EPM

technologies. Using these may reduce the probability of the aircraft recognizing
the threat or the threat being jammed by an aircraft jammer.

Chapter 3

Decision Support System in a

Fighter Aircraft

On modern fighter aircraft more and more systems are implemented in order to
improve the pilot’s awareness about the current situation of the aircraft and the
world surrounding it. As the number and complexity of these systems increase
so does the quantity of threats to the aircraft and appropriate countermeasures
for the pilot to choose from. To help the pilot decide on a proper evasive action
when a threat occurs a Decision Support System (DSS) can be implemented
aboard the aircraft [16, 20, 24].

This chapter describes the need for a DSS in a fighter aircraft, the requirements
such a system must comply with, and the flow of data on which decisions from
the system has to be made. Existing experimental and operational systems are
also described.

3.1 Problem Description

In [37] a DSS is described as ”a collection of computer-based interactive appli-
cations, which based on domain specific knowledge and information supports a
decision maker in one or more phases of the decision process.” A DSS may be

24 Decision Support System in a Fighter Aircraft

based upon an expert system which is a computer program that builds upon
domain-specific knowledge from one or more experts. A DSS for fighter pilots
will build upon expert knowledge within the field of EW.

Missiles may be fired from ground or sea based launch pads, or they may be fired
from enemy fighter aircraft in an air-to-air engagement. In the latter case the
workload on the pilot will be higher than it will be for land or sea based threats
since the position, altitude, and speed of the enemy aircraft must be taken into
consideration as well. In this work the subject is to investigate means to design
a DSS for finding responses to ground based threats only.

When engaged by ground based threats one or more missiles may be launched
towards the aircraft. The pilot may choose to use countermeasures to avoid
the impact of an approaching missile. The countermeasures to choose depend
on e.g. the type of missile, the distance and direction between the aircraft and
the missile, the hostility of the environment, altitude of the aircraft, and the
availability of countermeasures. Knowledge about threats that may be met in
the near future may also influence the choice of proper countermeasures and
the sequence in which they are used. If the aircraft is equipped with a limited
amount of expendable countermeasures it might reduce the survivability of the
aircraft for the entire mission if at any given time more expendables were used
than necessary, thus leaving none for a later necessity.

Prototypes for the DSS are designed using techniques from the fields of Artificial
Intelligence (AI) and Operations Research (OR). From the field of AI the pos-
sibility of using the Prolog programming language is examined. This is chosen
since the tactics for responses to ground based threats can be formulated as a
set of rules that can be implemented using Prolog.

At DDRE a Master’s thesis has been written on the subject of using Bayesian
Network (BN) for decision support for fighter pilots [16]. BN may also be consid-
ered as an AI technology, and it is chosen to expand on the experiences gained
by that work by examining further use of BN.

The decisions suggested to the fighter pilot may improve if the DSS is designed
to handle temporal aspects. These aspects may describe limits on the use of
countermeasures during a mission. For this it is chosen to describe the problem
using OR techniques. The problem is described by a mathematical model that
can be solved to optimality. A metaheuristic is also applied, and here a trade-off
between the quality of solutions and the time it takes to find them is made.

3.2 Survivability 25

3.2 Survivability

The aim of this work is to design a DSS that may help to increase the surviv-
ability of the fighter aircraft when flying a mission over enemy territory. In
[10] this survivability is named Aircraft Combat Survivability (ACS), and it is
defined as: ”The capability of an aircraft to avoid or withstand a man-made
hostile environment.” The survivability is related to the terms: susceptibility,
vulnerability, and killabillity as described below:

Susceptibility. The susceptibility of an aircraft describes the inability to avoid
missiles, radars, guns, and other elements of the hostile environment cre-
ated by the enemy.

Vulnerability. When the elements of the hostile environment can not be avoided
the vulnerability describes the inability of the aircraft to withstand the
environment.

Killability. The killabillity describes the probability of the aircraft being ”killed”
due to enemy actions. This depends on both the susceptibility (the aircraft
must be hit) and the vulnerability (this hit must cause sufficient damage
to kill the aircraft) of the aircraft.

Survivability. The survivability is the opposite of the killability. Having a high
probability of being killed will result in a low probability of surviving, and
vice versa.

Throughout the literature on aircraft survivability the survivability is often re-
ferred to as PS , while the killability is referred to as PK [10]. The relation
between PS and PK is PS = 1−PK . For some threats the probability of having
an impact on the aircraft can be established. If the probability for e.g. a proxim-
ity fused missile being fused by the aircraft is known as PF and the probability
of the aircraft being killed by a proximity fused missile is known as PK|F the
survivability of such a missile attack is given by:

PS = 1− PK = 1− PF · PK|F .

The probability PK|F depends on e.g. the construction of the aircraft. While
PS may be calculated for a given missile attack, finding it for an entire combat
mission is more complex. Here the probabilities of e.g. the aircraft being de-
tected by the enemy, and the enemy engaging in an attack of a detected aircraft
must also be established.

26 Decision Support System in a Fighter Aircraft

3.3 Design Requirements

A DSS for fighter pilots must fulfil a number of requirements to be applicable
during a mission. Below six of these requirements are described. In designing
a method for suggesting actions to the pilot these requirements must be taken
into consideration. In Chapter 8 the requirements are used in comparing four
approaches for developing the DSS.

Real-time. The system has to find solutions to occurring threats in near real-
time. It may take as little as 2-3 seconds from a missile has been launched
until it reaches the aircraft. Before actions can be taken to avoid the
incoming missile, sensors on-board the aircraft must detect the missile,
the system must find an appropriate set of actions, and these actions
need to be presented to the pilot. To give the pilot adequate time to
perform evasive actions it is estimated that the system has approximately
200 milliseconds from a change in the threat scenario occurs until a set of
actions has to be suggested to the pilot.

Hardware. Since a final implementation of the system must be run in a fighter
aircraft, the hardware required for developing the system must match the
requirements given to hardware in the aircraft. The results from a DSS

depends on data input from other devices on-board the aircraft and hence
it must be easy to integrate the DSS with these systems.

Updateable. The descriptions of threats and guidance systems are constantly
evolving as are new countermeasure systems. Therefore, the system de-
veloped must be easily updated and maintained [24]. To ensure this the
system must preferably be data driven, and updating the system will then
be a matter of updating data on missile systems, guidance methods, etc.
The algorithms used must have none or minor updates only.

Trustworthy. Any solution from the system must seem reasonable to the pi-
lot. Otherwise the system will not be trusted and hence not used. This
requirement can be divided into two sub-requirements: the system must
suggest a reasonably solution to any changes in the scenario, e.g. when
a new threat occurs, and when no threats are imminent no suggestions
should be given.

Both in combat and during tests in the development phase the user of the
system will be a fighter pilot. If the pilot does not understand how the
solutions suggested by the system can be inferred he may not trust their
validity. Therefore the concept of the inferring parts of the system must
be relatively easy to understand.

3.4 Mission Data Flow 27

Useful. The usefulness of a DSS is its ability to improve the survivability of the
pilot. If the system is limited to only suggest actions to the pilot within
a fraction of all the situations he may find himself and the aircraft in it
is of no use. The difference between this requirement and the previous is
that a system may be trustworthy only within given limits without being
useful to the pilot. An example hereof is a system that suggests actions
to mitigate e.g. RF threats only.

User Interface. Results from the system must be presented to the pilot in
such a way that they are easy and fast to interpret. The presentation can
be visual, use audio, or be a combination of both. During the evaluation
of possible techniques for developing the system the presentation of the
suggested action is of minor importance. In the development of a system
that is to be fielded this requirement must take a high priority.

In [24] more issues are mentioned as critical to the design of a DSS. Among these
issues are the use of data compression techniques, a user friendly database inter-
face for updating the data used by the system, and effective memory manage-
ment. None of these issues are considered crucial in this work and the handling
of these is beyond the scope of the work.

Data from different sensors, or from the same sensor over a period of time,
may be fused to give the pilot a better situational awareness. The discipline of
performing data fusion is a topic of its own, and it too is considered beyond the
scope of the work.

3.4 Mission Data Flow

Before a mission is initiated information about possible positions of enemy
radars and launch pads are collected. This is done during a phase of the prepa-
rations known as the Intelligence Preparation of Battlefield (IPB). From this
the Electronic Order of Battle (EOB) is established. The EOB describes the
battlefield in details used by the pilot and by different systems on-board the
aircraft. During the mission the pilot and on-board systems will continually
retrieve information about the battlefield from on-board sensors and possibly
also from other sources, such as ground personnel or other aircraft. After the
mission the fighter pilot will be debriefed, and any observations during the mis-
sion will be recorded for later use. The data flow shown in Figure 3.1 describes
the collection of data before, during, and after a mission is flown

28 Decision Support System in a Fighter Aircraft

Figure 3.1: Mission data flow.

3.4.1 Intelligence Preparation of Battlefield

The IPB is described as a military method for collecting and processing in-
telligence about the battlefield [30]. The method describes how accurate and
relevant intelligence may be organized and provided to a military decision maker
in a timely fashion.

Sources for intelligence may vary from eyewitness statements and reports from
military personnel to radio intercepts and satellite photos. The IPB describes
how intelligence is to be used to gain knowledge about the battlefield. It is a
repeated process consisting of the four steps described below:

1. Define the battlefield. The battlefield is a geographical area and the
airspace above it. The decision maker will concentrate on decisions re-
garding forces within this area. The size of the area may vary during
combat according to the knowledge of the battlefield available.

2. Describe the effects of the battlefield. Here the influence on the mission by
e.g. the terrain or the current weather is established. This step may find
corridors in where the aircraft can fly without being detected by enemy
radar, or routes in where the aircraft can remain almost invisible due to
fog.

3. Evaluate the threat. A profile of the enemy’s capabilities within the bat-
tlefield is created. This may e.g. include the number and positions of
enemy radar system.

4. Determine enemy courses of action. With the knowledge gained from
the first three steps of the IPB the probable courses of enemy actions are
determined.

3.5 System Data Flow 29

3.4.2 Electronic Order of Battle

The EOB is defined as a list of the locations, identifications, functions, and
capabilities of electronic equipment employed by a military force [41]. This
information is made available to the pilot during the pre-flight preparation of
the aircraft. Information about the planned route and current equipment and
ammunitions on the aircraft may also be loaded electronically to an aircraft
computer. The planned route will often be described using a fixed number of
locations. Such a location is known as an Intermediate Point (IP).

The inventory consisting of countermeasures and weapons is based on the EOB.
Since countermeasures and weapons will often have to share the same stations
placed under the aircraft the more countermeasures that are deemed necessary
the fewer weapons may be carried. Generally the assessment of the battlefield
will lie within one of the categories given below. While battlefields within some
of these categories are estimated as being unlikely, they are mentioned here for
completeness.

• The battlefield contains no known threats and the aircraft is not equipped
with ECM.

• The enemy has passive missiles only (e.g. MANPADS) and the aircraft will
be equipped with flares.

• The enemy has active missiles only and the aircraft will be equipped with
chaff. This situation is unlikely.

• The enemy has active missiles only. These missiles may be jammed and
the aircraft is equipped with both chaff and jammer. This situation is
unlikely as well.

• The enemy has multiple types of weapon or the composition of weapons
is unknown. The aircraft is equipped with chaff, flares, and a jammer.

• The enemy has passive missiles only or missiles that may be jammed. The
aircraft is equipped with jammer and flares. This situation too is unlikely.

3.5 System Data Flow

The basic data flow for the working environment of the DSS is shown in Figure
3.2. At the left hand side data is fed to the DSS from different systems on-board
the aircraft. With the aid of a knowledge base and the constructed SA the

30 Decision Support System in a Fighter Aircraft

DSS finds a solution. This solution can then be presented to the pilot, and/or
automatic responses from other on-board systems can be initiated.

Figure 3.2: Data flow. Data is coming from sensors on the left hand side of the
figure. Decisions from the DSS influence the subsystems on the right hand side.

The pilot is continuously gathering information from the on-board systems to
improve and revise his Situational Awareness (SA). In order to support the pilot
the DSS needs to build and maintain its own SA. When a solution is found by
the DSS it must be executed. One way to do this is to present the solution to
the pilot and let him execute the actions suggested. Since one of the reasons for
introducing a DSS is to reduce the workload of the pilot the DSS may be linked
directly to relevant subsystems for automatically deploying countermeasures,
possibly in conjunction with proper evasive manoeuvres.

Decision making in military domains are often described by the four actions:
Observe, Orient, Decide, Act (OODA). These actions are performed repeatedly
in what is known as the OODA loop [5, 37]. When engaged by a missile the
fighter pilot will first observe the missile; he will determine if the missile is
posing an immediate threat; if it is he will decide on proper evasive actions;
and finally he will act to avoid the impact of the missile. If the fighter pilot
is to be aided by a DSS it will itself run through the first three phases of the
OODA loop before a decision is presented to the pilot. If a proper response must
be found no later than 200 milliseconds after a threat occurs, according to the
requirements mentioned in Section 3.3, the DSS must perform a loop at least
five times a second.

3.5 System Data Flow 31

3.5.1 Acquiring Data

In order to decide on actions to suggest to the pilot the system needs input from
various sources. In most fighter aircraft these sources will be systems connected
to a data bus on-board the aircraft. In many aircraft this bus will comply with
the MIL-STD-1553B standard [4].

On a MIL-STD-1553B bus the communication is controlled by a bus controller.
Data can come from a number of remote terminals, and it can be read by a
number of bus monitors. The bus controller serves as an arbiter that allows the
remote terminals to use the bus one at a time. Data on the bus is transmitted as
datagrams from one remote terminal to one or more bus monitors. The format
of a datagram is described in an Interface Control Document (ICD), and since
every remote terminal may use a specific format for every bus monitor receiving
data from the terminal, a large number of ICDs may be needed to describe
communication on the bus. Since a DSS may need input from many remote
terminals, and these may vary from one aircraft to another, the DSS must be
designed so it can be easily adapted to a comply with new sets of ICDs.

Most datagrams are transmitted with a relatively low frequency. If allowed
by the bus controller a typical datagram will have a transmission frequency in
the order of 1 to 20 per second, depending on the assessed importance of the
datagram. Combined with a relatively low clock frequency controlling the bus,
a slack time in the magnitude of 0.1 to 0.5 seconds may well appear between
the time a sensor system has detected a threat till a bus monitor (e.g. the DSS)
receives notification about it. This slack leaves only a short period of time for
the DSS to find and suggest an action to the pilot.

Besides on-board sensor systems data to the DSS may be supplied through a
tactical data link. Link-16 is a standard for such a tactical data link, and it is
used for sharing information (e.g. identification and voice commands) between
allied units (aircraft, ships, etc.) in the battlefield. A DSS may benefit from
data given through Link-16 to maintain a model of threats, their tracks, sizes,
numbers, and positions.

The sensors and sources for detecting threats on-board the aircraft differ in sev-
eral aspects. They operate in different bands of the electromagnetic spectrum,
use different methods to determine the threats, and since they may interpret
their analogue input differently, they may not agree on the threats found. To
give the DSS a single ”ground truth” to work with, it may be essential that data
from the different kind of sources are fused before handed to the system.

32 Decision Support System in a Fighter Aircraft

3.5.2 Threat Evaluation

Not all changes to the threat scenario will require the DSS to suggest new actions.
Throughout a mission one of the goals of the DSS is to minimize the workload
of the pilot. Therefore, when the aircraft flies over friendly territory, and no
threats are imminent, no actions must be suggested by the DSS. As soon as
the MWS issues a warning, or the RWR detects radiation from a possibly hostile
radar, the territory can no longer be considered friendly, and the system will
suggest actions to the pilot.

Even while flying over enemy territory the DSS must only suggest evasive actions
when necessary. To determine when e.g. warnings from the RWR stem from
previously undetected radar system, or if the radar has just reappeared on the
RWR after being lost for a moment, a threat evaluator subsystem may be added
to the DSS. Such a subsystem will have to base its evaluation on a registration
of recent warnings. The RWR may loose track of radar systems if the aircraft is
positioned such that either itself or the terrain underneath it prevents the radar
from being detectable by the RWR antennas. For the MWS some warnings can
be ignored too. If a warning is issued for a fraction of a second only, it is likely
to be caused by e.g. a reflection that is visible only for a moment, instead of
by a missile following the aircraft. If the threat evaluator has to compare every
warning to previous warnings, the first warnings of a threat will be ignored.
When warnings are no longer ignored even less time is left for the DSS to find a
solution.

3.5.3 Executing Decisions

In general a DSS will support a decision maker in deciding proper actions. When
the suggestions from a fighter aircraft DSS is presented to the pilot, the pilot
will have to decide on the actions to perform before carrying them out. Since a
limited time is available for the pilot to do this the DSS can perform the actions
itself; even without the consent of the pilot. Most fighter aircraft use fly-by-wire
control, i.e. all controls are entirely electronic. This means that the DSS can
take control of the aircraft and perform the proper manoeuvres while dispensing
expendables. While this may be technical feasible it is not necessarily a situation
wanted by the pilot. According to [39] nine of ten interviewed pilots said that
having the aircraft taking control was anathema to them.

Having the DSS working in interaction with some of the ECM system on-board the
aircraft, without taking complete control, may still improve the survivability of
the aircraft. The DSS may e.g. notify the jammer about RF threats not detected

3.6 Models and Systems 33

by the jammer itself, or it may release flares or chaff when the aircraft is flying
in the proper direction. While the control of the aircraft remains in the hands
of the pilot, the DSS will increase his survivability and part of his workload will
be taken from him.

3.6 Models and Systems

The approaches to the development of a fighter aircraft DSS described in this
work are not the first attempts on introducing a DSS into the field of aviation.
This section describes a number of experimental models that may be used in a
DSS, and a few existing systems. Some of the models use techniques from the
fields of AI and OR, such as fuzzy sets, mimic nets, and genetic programming.
These techniques are not described here.

3.6.1 Experimental Models

The Countermeasure Association Technique (CMAT) automatically recommends
countermeasures and manoeuvres to a pilot under missile attack [24]. The tech-
nique selects responses that will increase the survivability in relation to both the
current and future threats. It is done by fusing possibly incomplete sensor input
and feeding the results to a mimic net. A set of combat scenarios is presented
to EW experts and the mimic net is trained to mimic the responses from these
experts. Solutions found by the CMAT are called strategies, and given a threat
scenario, a number of strategies are found. The best of these strategies, i.e. the
strategy that best mimics the responses from EW experts, is chosen.

In 1986 the Pilot’s Associate project was initiated by the United States De-
fense Advanced Research Projects Agency [11, 39, 48, 49]. The concept of the
Pilot’s Associate is a set of knowledge-based subsystems: two assessors, two
planning subsystem, and a Pilot-Vehicle Interface (PVI). The Situation Assess-
ment subsystem determines the current state of the outside world, while the
System Status subsystem acquires knowledge about the state of on-board sys-
tems. The Tactics Planner subsystem supports the pilot in choosing responses
from possible alternatives when immediate threats occur. In case of deviations
from the mission plan the Mission Planner will adapt the plan to the current
situation. The PVI adapts the information shown to the pilot to the current
situation. When for instance the pilot needs to respond to an imminent threat,
warnings that can be delayed, e.g. of malfunctioning subsystems, will not be
shown.

34 Decision Support System in a Fighter Aircraft

In [48, 49] the Pilot’s Associate is compared to a French system named Copilote
Electronique. This system is based on an in-depth analysis of the pilot’s cognitive
processing, and the aim is to find ways to support the pilot based on his current
activities and an estimation of his current mental workload.

The concept of General Aviation Pilot Advisory and Training System (GAPATS)
is to run a flight management system on an inexpensive PC [33]. It is inspired by
the Pilot’s Associate system, and it consists of two main parts, the Flight Mode
Interpreter (FMI), and the Pilot Advisor (PA). Based on e.g. aircraft state
variables, such as altitude, airspeed, and rate of climb, the FMI determines the
current flight mode (taxi, take off, cruise, etc.). This is done using fuzzy sets
and the result is continually fed to the PA. Based on the current flight mode and
a set of rules the PA will use the Heads-Up Display (HUD) and the Heads-Down
Display (HDD) to display relevant information to the pilot.

The Missile Countermeasure Optimization (MCO) problem is the subject of a
number of papers, e.g. [31, 32]. In [31] the aim is to combine aircraft manoeuvres
and countermeasures to survive an attack from a single surface-launched anti-
aircraft missile. The best combination of countermeasures and manoeuvres is
found using genetic programming. The method encompasses uncertainties about
both the type and the state of the approaching missile.

The Automated Threat Response using Intelligent Agents (ATRIA) system is
described in [36]. Here Prolog is used in implementing asset agents. An asset
agent represents a military asset such as a missile and/or aircraft tracking sys-
tem, a radar system, or a missile. The agents in the system share an evolving
description of the combat scenario, and while finding responses for themselves
they communicate these to other friendly assets in the battlefield.

In [47] the use of temporal reasoning in the process of decision-making is de-
scribed. Here the scenario is Beyond Visual Range (BVR) combat with multiple
enemy aircraft, and the scope is to give the pilot a visual interpretation of the
situation. For each of the enemy aircraft a goodness value is calculated, indi-
cating which aircraft will have the upside in a close encounter. The goodness
value is based on the time it will take for each aircraft to initiate appropriate
actions. BNs are suggested as a means of evaluating the properties of an enemy
fighter aircraft.

In [19] chaff and flare programs are optimised using a statistical model. This
model express the survivability as a function of various parameters including
missile attack rate, false alarm rate, missile detection probability, and the du-
ration of a mission. The goal of the work described is not to optimise the
survivability in a specific scenario, but rather to study how different parameters
affect the chaff and flare programs.

3.6 Models and Systems 35

3.6.2 Existing Systems

An Integrated Defensive Aids System (IDAS) is a system that collects input
from different sources, and combines these to e.g. automatically dispense ex-
pendables or utilize a jammer to counter enemy systems. Input may come from
different sensors on-board the aircraft, or it may be relayed from sensors on
other platforms such as other aircraft, or ground- or sea-based sensor systems.
Historically EW equipment on an aircraft has been considered as add-on units
and not as integrated parts of the aircraft. In [52] it is mentioned that an IDAS

must be considered as an integrated part of the aircraft systems in much the
same way as the engine, and it is argued that the role of both is to get the air-
craft to the target and back. Each of the two systems described in this section
can be regarded as an IDAS.

The Electronic Warfare Management System (EWMS) is developed by Terma
to reduces the pilot’s workload and to ensure coordinated and effective use
of on-board EW systems [51]. It can be operated in three modes: In manual
mode the pilot activates the countermeasure program to use. When in semi-
automatic mode the Electronic Combat Adaptive Processor (ECAP) will analyze
the presence of threats and chose an effective combination of countermeasures.
This combination is presented to the pilot who can give his consent by activating
a switch. After consent is given a script for the combination of countermeasures
is initiated. The pilot does not need to give his consent when the system is in
automatic mode. A script related to the best use of countermeasures found will
be initiated.

The Threat Response Processor (TRP) is developed at Georgia Tech Research
Institute (GTRI) [55]. It is a combination of straightforward improvements of
the survivability and an expert system, and it has undergone extensive flight
testing over more than seven years. At first inputs from various systems on-
board the aircraft are correlated, ambiguities are handled, and inputs describing
e.g. different threats are prioritized. After this a number of scripts are spawned,
depending on the character of the input. Among other things these scripts select
proper countermeasures to apply and messages to display to the pilot. After
each spawned script is executed the optimal response is found from the results
of the scripts. This response is then fed to the EWMS to handle e.g. dispensing
of expendables.

36 Decision Support System in a Fighter Aircraft

3.7 Summary

This chapter describes the need for a fighter aircraft DSS to assist the pilot in
finding the best responses when being engaged by ground-based threats. Since
solutions from a DSS are intended to improve the survivability of the pilot,
the concept of survivability is introduced. The survivability depends on the
susceptibility, vulnerability, and killabillity of the aircraft.

A DSS must comply with a number of design requirements. Requirements to
response time, ability to run on aircraft hardware, ability to be easily updated,
and the system being both trustworthy and useful are described. In addition to
this a DSS must have an easy to use user interface/PVI. The design of the user
interface is outside the scope of the work.

A DSS will work on mission data in determining optimal responses. The mission
data flow is described, and the concepts of Intelligence Preparation of Battlefield
(IPB) and Electronic Order of Battle (EOB) are introduced. When airborne the
DSS relies on data from on-board sources. Data may often be acquired via an
aircraft data bus. MIL-STD-1553B is a standard for such a bus, and some of
the characteristics of this standard are mentioned.

Experimental models and existing systems are described. The experimental
models apply techniques from the fields of AI and OR while systems that has
already been implemented in aircraft seem to use more pragmatic approaches.

Chapter 4

The Prolog Approach

Prolog is a programming language for describing relations using logic. The name
Prolog is the short concatenation of PROgramming and LOGic. In constructing
a DSS Prolog can be applied for the formulation of a set of rules for the responses
to ground-based threats and launched missiles. This chapter describes how to
use the Prolog programming language for analysing a threat scenario, and for
the construction of a Prolog based DSS.

Starting with some logic theory the basics of Prolog theory is introduced. Some
textbooks on AI describe the terminology used in logic, and the use of logic in
inferencing. See [54] for more details on logic, and [12, 56] for introductions to
Prolog. The introductions of logic and Prolog in this chapter aim at providing
the background for understanding the Prolog based DSS developed. This DSS is
introduced in Section 4.5.

4.1 Motivation

When a fighter pilot is taught the essentials about reacting to ground-based
threats, he is essentially given a set of rules to follow. These rules can be
formulated in natural language by experts in the domain of EW. Rules such as

38 The Prolog Approach

”if you get a missile warning, and not a radar warning, a missile using infrared
guidance is launched” or ”if you keep the altitude low enough, you can escape
radar based threats” can be reformulated in Prolog, and used in the foundation
of a Prolog-based DSS.

The set of rules written in Prolog is referred to as a Prolog program, and to use
it for decision support, it should be fed to a computer program for execution. In
this work the program executing the Prolog program is referred to as the Prolog
interpreter, although Prolog programs can also be executed as compiled code.
Since Prolog interpreters exist on many computer platforms, and input such as
sensor responses and mission descriptions can easily be given using Prolog, the
development of a Prolog based DSS does not require any special system setup.

Although many Prolog interpreters have features that enhance the strength of
Prolog, ”pure” Prolog is a relatively simple programming language. Therefore
implementing a Prolog interpreter on a computer platform usable in a fighter
aircraft is a feasible task, and transferring a desktop version of a DSS to an
aircraft can be expected to be smoothly done.

It is estimated that writing a program in Prolog will often require far less de-
velopment time than writing an equivalent program in e.g. C or C++ [12]. The
syntax of Prolog programs makes them relatively easy to read, even for people
with little or no programming experience. This helps in the validation of a DSS,
since this can then be done partly by domain experts. If care is taken during
development, and the program is written in an almost self-explanatory way, the
task of maintaining a Prolog based DSS can relatively easy be done by people
other than the original developers.

Even if Prolog may not be the preferred technique to use for a DSS, a Prolog
based program may be used to test a DSS based on other techniques. If the
answers from the Prolog system have been validated, it can be used as a look-
up table for the ”correct” responses in the scenarios it is used to evaluate.

4.2 Basic Theory

This section presents some basic theory about logic and Prolog. The vocabu-
laries on both logic and Prolog are relatively large, and some of the basic terms
are introduced here.

In essence the interactions in a domain, and data describing it, are given in
Prolog using a set of rules. These rules are described in one or more files, which

4.2 Basic Theory 39

can be interpreted by a Prolog interpreter. When doing so, the interpreter can
answer questions about the domain, in accordance to the rules given. Prolog
assumes a closed world, meaning that anything not explicitly declared is per
definition non-existing.

Some Prolog systems offer graphical user interfaces, database connectivity, spe-
cial constructs for software-based agents, and other features that enhance the
usability of the system. For the evaluation of Prolog as the base of a DSS, such
constructs are not necessary and they will not be described here.

Programming languages such as C/C++ are classified as imperative, which
means that programs written using these languages describes the steps nec-
essary for a program to evaluate input and produce output. These steps are
described using statements, and the order of execution of these statements is
determined by the programmer. As opposed to the imperative languages, Pro-
log is a declarative programming language. Here the emphasis is on declaring
the relations between input and output, and not on how these relations should
be implemented by the programmer.

4.2.1 Logic

Logic is a mathematical discipline working with statements that can be either
true or false. This is done using predicates, which are functions mapping their
arguments into true/false. A predicate with arguments, or a negation of the
predicate, is known as a literal. When using logic in describing a domain,
the description may include objects. Variables ranging over the objects of the
domain can also be included.

Treating weather as an object, it can be described using a number of vari-
ables such as precipitation in millimetres, temperature in centigrade, etc. Some
questions about the weather, such as ”is it raining?” or ”is it cloudy?” can be
answered using the logical values true and false, while others may need an in-
terpretation of the aforementioned variables. The question ”Is it warm?” could
relate to the temperature: ”If the temperature is above 15◦C, it is warm”. This
would map the temperature in to true/false.

As literals can take the values true and false, so can combinations of literals.
Four of the basic combinations, known as logical connectives, are or (∨), and
(∧), not (¬), and implies (⇒).

When literals are joined using the and -connective, they form a conjunction,
where each part is known as a conjunct. Similarly, when joined using or, they

40 The Prolog Approach

A B A ∧B
0 0 0
0 1 0
1 0 0
1 1 1

A B A ∨B
0 0 0
0 1 1
1 0 1
1 1 1

A B A⇒ B
0 0 1
0 1 1
1 0 0
1 1 1

A ¬A
0 1
1 0

Figure 4.1: Truth tables for four basic connectives. 0 is used to represent false
and 1 represents true.

form a disjunction, also know as a clause, and the parts are known as disjuncts.

The values of combinations of literals, using e.g. the logical connectives, can be
specified using a truth table. A truth table shows the values, true or false, of
all combinations of its arguments. Figure 4.1 show the truth tables for the four
mentioned connectives, each connecting two literals, A and B. In these tables
the number 1 represents the value true, while 0 represents false.

Logic operations can be defined by their truth tables, and if two operations
have identical tables, one may substitute the other. This is known as reversible
substitution, and it is expressed using a double arrow (↔). As can be seen from
the truth tables in Figure 4.1 the values for A⇒ B are the same as the values
for ¬A ∨B. This defines a rule of reversible substitution:

A⇒ B ↔ ¬A ∨B (4.1)

The ¬A used in (4.1) is called a negative literal, because of the negation, and
B is then a positive literal. Clauses with at most one positive literal are known
as Horn clauses1, and they form the cornerstone of the use of logic in Prolog.
Depending on the number of positive literals, two types of Horn clauses exist:
clauses with exactly one positive literal, known as definite clauses (see (4.2)),
and clauses with no positive literals, known as goals (see (4.3)).

¬A1 ∨ ¬A2 ∨ . . . ∨ ¬An ∨B ↔ A1 ∧A2 ∧ . . . ∧An ⇒ B (4.2)

¬A1 ∨ ¬A2 ∨ . . . ∨ ¬An ↔ A1 ∧A2 ∧ . . . ∧An ⇒ (4.3)

The interpretation of the definite clause in (4.2) is that B is true only if all the
literals A1, . . . , An, on the left-hand side of the ”⇒” are true. For the goal in
(4.3) a literal should be introduced on the right-hand side of the ”⇒”, before
the expression can be evaluated. If this literal is instantiated, i.e. it has the
value true or false, the expression itself can be evaluated to either true or false.

1The logician Alfred Horn identified the significance of this type of clauses in 1951.

4.2 Basic Theory 41

If the literal is an un-instantiated variable, it should retrieve the value (true or
false), which will make the evaluation of the expression return true.

Consider the special case of (4.3) with n = 2: A1∧A2 ⇒. Having A1 = true and
A2 = false, and introducing the literal B on the right-hand side, the expression
becomes: true ∧ false ⇒ B. If B itself evaluates to true, the goal is false
(true ∧ false ; true), while the goal is true if the value of B is false. If B is
a variable it should therefore receive the value false, since this would make the
goal evaluate to true.

4.2.2 Horn Clause Logic

Horn clauses are often written with the positive literal to the left, the direction
of the implication arrow reversed, and using commas for or, instead of ∧:

B ⇐ A1, A2, . . . , An (4.4)

The literals on the right-hand side of the ’⇐’ constitute the premises (an-
tecedents), and the literal on the left-hand side is the conclusion (consequent).

In Prolog the names clauses, predicates, rules, and functions are all synonymous
with Horn clauses. Here the arrow is substituted by a colon and a dash:

b :- a1, a2, ..., an (4.5)

The clause in (4.5) can be read as ”b is true, if all the values on the right-hand
side are true”. In Prolog literals starting with a capital letter are interpreted as
variables (described later), and the literals used in (4.5) are thus written using
minuscule letters.

If a literal serve as the consequent in multiple clauses in a Prolog program, the
antecedents may be concatenated using a semi-colon:

b :- a1, a2; c1, c2 (4.6)

The clause in (4.6) can be read ”b is true if a1 and a2 are both true, or if c1 and
c2 are both true”. The semi-colon can be interpreted as an or connective, and
it has a higher precedence than and. Parentheses can be introduced to alter the
bindings of the colons and semi-colons.

42 The Prolog Approach

The clauses may be divided into facts, relations, and directives. Common to all
of these is that they must be terminated by a full stop. For the readability of
this text, the full stop is often omitted.

The building blocks of Prolog are atoms and variables. An atom is a concrete
value, which can be a name (manpads), a string (’Turn left’) or a numerical
value (600). All names have a minuscule as the first character.

Variables are used in enquiring about the contents of the facts given (see Section
4.2.2.1). As opposed to atoms variables are always written with a capital as the
first character. Variables starting with the underscore (’ ’) is an exception of
this. These are known as anonymous variables, since their names can not be
referenced. See Section 4.3.2 for an example of questioning with Prolog using
atoms and variables.

4.2.2.1 Facts

A fact is a clause with no antecedent, and it is unconditionally true. Facts
may be unary, and if so, they are statements about their single argument, such
as ac type(fighter) or altitude(600). The interpretation of a fact is deter-
mined by the programmer, and these two facts may state that the DSS is used in
a fighter aircraft flying at an altitude of 600 m. Here ac type and altitude are
the names of the facts, while fighter and 600 are arguments to them. When
more facts share the same name, each of these are said to be an instance of the
fact.

If a fact has two or more arguments, it describes a relation between these ar-
guments. An example of such a fact is guidance(manpads, ir), declaring
that MANPADS are using IR guidance. Prolog has no requirements to the or-
der of arguments in a relation, and it is up to the programmer to keep the
order of the arguments in similar facts. If the first argument in the guidance

fact is defined to be a threat, and the second is a guidance system, then the
guidance(manpads, ir) is a valid fact, with respect to this definition. Since
Command is a guidance system and SA-2 is a threat the guidance(command,

sa2) fact is not valid. Prolog has no understanding of guidance and it will not
know valid facts from invalid facts. If it is asked about e.g. the guidance systems
with these two facts, it would give ir and sa2 as answers.

4.2 Basic Theory 43

4.2.2.2 Predicates

A predicate has the antecedents-consequent structure as seen in (4.5) and (4.6).
Whereas a fact is unconditionally true, a consequent in a predicate is only true
if the antecedents are true. The antecedents can be either facts or predicates,
or they can be comparisons of results from arithmetic operations.

The example below illustrates the use of both facts and predicates in describing
the weather:

% Facts about the weather

precipitation(rain).

weather(cloudy).

temperature(21).

% Predicates, describing the weather

it_is_warm :-

temperature(T),

T > 15.

weather_is_good :-

it_is_warm,

weather(sunny),

not(precipitation(_)).

The predicate it is warm will evaluate to true, since a fact is stating that
the temperature is above 15◦C. Since it is raining and not sunny, the predicate
weather is good will return false. The % mark a comment, and anything placed
to the right of this is not interpreted by the Prolog interpreter. not is a standard
Prolog-procedure, which is described later.

4.2.2.3 Lists and Structures

In Prolog a list is a data structure containing a number of elements. The list is
described within square brackets; the empty list is denoted [], and non-empty
lists have a head element and a tail, where the tail itself is a, possibly empty, list.
The head has one or more elements, and it is separated from the tail by using
the vertical bar: ([Head|Tail]). To reference e.g. the third element in a list,
which is also the third element in the head of the list, one writes [, ,Third|],
and the element is referenced by the variable named Third. Elements in a list
may be atoms, variables, lists, or structures.

44 The Prolog Approach

A structure is a collection of attributes used to describe objects. If a struc-
ture is used to describe a person, the attributes may be the person’s name,
age, and gender. Describing Tom, who is a 33 year old male, can then be
done by person(tom, 33, male). A family consisting of a mother, a fa-
ther, and a number of children can be described as a structure of persons
family(person(, ,female), person(, ,male), [|]). Here the list at the
end ([|]) describes the children, and since this description has at least one
head element, the family has one or more children.

Structures can be used in goals, just like atoms or variables. In the example
above, the goal of finding families, where the father’s name is Tom, can be
formulated as family(person(tom, ,), ,), and finding families with exactly
two children is done by: family(, ,[,]). As can be seen from these exam-
ples, working with structures often deal with the structures of data, rather than
the contents of these structures.

4.2.2.4 Directives

Directives are used to make the Prolog interpreter perform various standard
operations, such as input/output, generating lists, etc. The number of direc-
tives available varies from one Prolog implementation to another. Some of the
standard directives, used in the Prolog program described in 4.5, are explained
here

The :-include(<filename>) directive is used to include the contents of other
Prolog files into an embedding file. When this is met by the interpreter, the
content of the file, given as argument, is read and interpreted, as was it part of
the embedding file.

findall, bagof, and setof are procedures that will collect instances, fulfilling
certain criteria, into a single list. findall and bagof are equivalent, and will
both collect all instances into the list, thus allowing for multiple instances of
elements in the list. The setof procedure will produce a set of the instances,
where each element of the set is only present once.

To output text to the screen the write procedure is used. If the argument to the
procedure is an atom (e.g. a string) it is written as it is, and if it is a variable,
the value of this is written. To put a line break in the output the nl directive
is used.

The not predicate will return the negated value of its argument. If the argument
is a goal that can be fulfilled, using the not procedure will return no.

4.3 Answering Questions with Prolog 45

4.3 Answering Questions with Prolog

Prolog is used to perform two different, but related, tasks: describing a domain,
and enquiring about it. In its simplest form the first task is done by writing
the Prolog program in one or more files, which can then be read by a Prolog
interpreter, while the second task may be managed using a Prolog interpreter
prompt.

This section describes how one may retrieve information using Prolog, and what
a Prolog interpreter does to provide the information.

4.3.1 Matching

A question to the Prolog interpreter, also known as a goal, takes on the form of
a predicate, or a combination of predicates, and it may contain both atoms and
variables. The Prolog interpreter will try to make a match between the goal
and the predicates given in the Prolog program.

A goal and a predicate match if they are either identical of if variables within
them can be instantiated so they become identical. If this can be made the
interpreter either returns yes or the necessary values of any variables used in
the goal that will result in a match. If no match can be found, the interpreter
returns no.

Consider a Prolog program consisting of these three facts only:

precipitation(rain).

weather(cloudy).

temperature(21).

If the goal precipation(rain) is given to the interpreter, it will return yes,
since a match can be made between the goal and the first fact in the program.
Asking precipation(P) will have the interpreter return P = rain, since in-
stantiating the variable P with the value rain will make the match. The goal
wind(breeze) will not match any of the facts in the program and the answer is
no. The same answer is returned if the goal is set to weather(sunny), although
a predicate named weather is part of the program.

Multiple goals can be given at the prompt. The goals are separated by a comma,
if all goals should be fulfilled, or a semi-colon if matching one of the goals is

46 The Prolog Approach

sufficient.

The Prolog program above, describing the weather, can e.g. be used to deter-
mine whether one wants to ride the bike to work. Suppose the precipitation
can be described using the atoms snow, rain, sleet, and fog. Now the goal
precipitation(snow); precipitation(rain); precipitation(sleet)would
get the answer yes if either of the sub-goals can be matched. If only the
combination of sleet and snow would make the bike stay at home, the goal
precipitation(snow), precipitation(sleet) should be used.

4.3.2 Working with Prolog

Several Prolog interpreters exist for working with Prolog on a standard PC. The
one used in this work is B-Prolog, which offers a prompt interface for asking
question about the Prolog program. For more information about B-Prolog see
Appendix E.

When working with B-Prolog the clauses are given in a number of files, which
are consulted by the Prolog interpreter, before it can provide information about
their contents. Suppose a file describes the guidance relation using the following
clauses:

guidance(sa2, command).

guidance(sa3, command).

guidance(stinger, ir).

guidance(stinger, uv).

At the Prolog prompt the goal guidance(Threat, Guidance) is given. In nat-
ural language this should be interpreted as the question: ”which threats are
using which guidance system?” The interpreter then produces the answer:

Threat = sa2

Guidance = command ?

The question contains two variables, Threat and Guidance, and the answer
given is the first match found. The question mark at the end of the answer is
the Prolog prompt. To get further matches, a semi-colon can be entered at this
prompt, and the interpreter then provides the next match:

Threat = sa3

4.3 Answering Questions with Prolog 47

Guidance = command ?

When no more matches can be made the interpreter replies no when a semi-colon
is entered.

Asking the question guidance(stinger, Guidance), with the single variable
Guidance, produces the following answers (notice the semi-colon after the first
two answers):

Guidance = ir ?;

Guidance = uv ?;

no

When asking a question without using variables, or using only anonymous vari-
ables, Prolog will simply answer yes or no, depending on whether or not a match
can be found.

4.3.3 Search Trees

To understand how the Prolog interpreter infer the answers to give, it may be
helpful to use a graphical representation of the Prolog program, or parts hereof.
The graphical representation described here shows the search tree, and it reflects
the interpreter’s internal representation of the Prolog program.

A search tree has two types of nodes: AND nodes and OR nodes. The nodes
are drawn with edges to their children, who are also AND/OR nodes. An arc
is drawn across the edges connecting the AND node with its children. Parent
nodes are drawn above children nodes, and the edges are not directed. Figure
4.2 shows both an AND and an OR node.

A

B C D

(a) AND node

A

B C D

(b) OR node

Figure 4.2: AND and OR nodes in a search tree.

48 The Prolog Approach

Using the AND and OR nodes a Prolog program can be drawn as a tree. While
this tree does not show special constructions, such as directives or structures, it
gives the possibility to interpret relations at a glance.

The Prolog predicate below is used in the Prolog-based DSS to determine the
lethal distance to a threat, based on the kind of countermeasure that should be
used in mitigating the threat.

lethal_dist(Threat, Dist) :-

use_cm(Threat, chaff),

Dist > 500,

Dist < 5000

;

use_cm(Threat, flares),

ir_mode(preemptive)

;

use_cm(Threat, flares),

ir_mode(reactive),

Dist > 100,

Dist < 1000.

The search tree of this predicate is shown in Figure 4.3. Suppose an enquiry
using the goal lethal dist(sa5, 1250) is made. A match is found at the
root node, if either of its children nodes matches. The SA-5 threat is using RF

guidance, which can be mitigated using chaff. This means that the left branch
is the only one that needs to be investigated. The left child node is an AND
node which will only return a match if Dist > 500 (its left node) and Dist <

5000 (its right node). Since the distance is 1250 (second argument in the goal),
both of these will be matched, and the interpreter will return yes.

When given a goal the Prolog interpreter will traverse the search tree. Prolog
distinguishes between AND nodes and OR nodes. For an AND node to return
a match, all of its children must match, while for OR nodes it is sufficient if
one of its children provides a match. A node with a single child node may be
interpreted as either an AND node or an OR node; it will return a match if the
single child node match.

4.3.3.1 Tracing

In e.g. debugging a Prolog program one would benefit from knowing what the
Prolog interpreter do to find its answers. To help with this the Prolog command

4.3 Answering Questions with Prolog 49

lethal dist
(Dist)

use cm
(chaff)

use cm
(flares)

use cm
(flares)

Dist > 500

Dist < 5000

ir mode
(preemptive)

ir mode
(reactive)

Dist > 500

Dist < 5000

Figure 4.3: A graphical representation of the lethal dist predicate.

trace is convenient. After this command is given, the interpreter will write all
of its calls to the screen, indicating if they exit with a match or fails.

Extend the weather example from Section 4.2.2 with the following rule and facts:

% Clothes to wear

is_clean(t_shirt).

is_clean(shorts).

is_clean(trousers).

what_to_wear(C) :-

weather_is_good,

is_clean(C),

C \= trousers

;

is_clean(C).

Using the trace command, followed by the what to wear(C) goal, results in
the following trace output:

| ?- what_to_wear(C).

Call: (0) what_to_wear(_72c) ?

Call: (1) weather_is_good ?

Call: (2) it_is_warm ?

Call: (3) temperature(_85c) ?

Exit: (3) temperature(21) ?

Call: (4) 21>15 ?

Exit: (4) 21>15 ?

50 The Prolog Approach

Exit: (2) it_is_warm ?

Call: (5) weather(sunny) ?

Exit: (5) weather(sunny) ?

Call: (6) precipitation(_82c) ?

Fail: (6) precipitation(_82c) ?

Exit: (1) weather_is_good ?

Call: (7) is_clean(_72c) ?

Exit: (7) is_clean(t_shirt) ?

Call: (8) t_shirt\=trousers ?

Exit: (8) t_shirt\=trousers ?

Exit: (0) what_to_wear(t_shirt) ?

C = t_shirt ? yes

The result above states, that if the weather is good, i.e. the temperature is
above 15◦C, the sun is shining, and there is no precipitation, one should wear a
t-shirt, provided it is clean.

The command notrace stops the tracing of the Prolog interpreter.

4.3.3.2 Cuts

When the Prolog interpreter traverses a search tree, it may backtrack and search
for another match, when a match is found or when no match is found at the
bottom of the search tree. The cut operator, !, is introduced to prevent Prolog
from backtracking, when a match is found. The interpretation of the cut is,
that all branches to the right of the ! are removed from the search tree, when
it is met.

Let the is clean fact, as introduced previously, be changed to:

is_clean(t_shirt).

is_clean(shorts) :- !.

is_clean(trousers).

The search tree for this fact can be seen in in Figure 4.4. In trying to find a
match to the goal is clean(C) the interpreter will first seek a match in the left
branch, successfully returning C = t shirt. If asked to look for more matches,
the second branch is tried, returning C = shorts. Since the second instance
of the fact contains a cut, all branches to the right of the second branch, i.e.
the branch with the trousers atom, are cut from the search tree. Asking

4.4 Using Prolog for Decision Support 51

for another match will make the interpreter return no. Setting the goal to
is clean(trousers) will return yes, since no matches are made traversing the
first two branches, and the cut is thus not invoked.

is clean

t shirt shorts trousers

!

Figure 4.4: The search tree for the is clean fact, after the cut has been exe-
cuted.

If the cut operator is placed in every predicate that might return a match, it
will ensure that at most one match is found. This match will always be the
first found, and since predicates are written in a given order in a Prolog file this
order will influence the results of the Prolog program. This conflicts with the
declarative nature of Prolog, and the fact that understanding the effects of a cut
often requires knowledge about the order in which predicates are interpreted,
makes the cut an operator that should be used with care.

4.4 Using Prolog for Decision Support

In writing a Prolog program for decision support in fighter aircraft the first step
is to define a number of rules for the program to obey. These rules are defined
in natural language, and they describe the physical nature of different threats,
their guidance systems, and appropriate countermeasures and evasive actions to
mitigate these threats. Rules for determining the type of a threat, if any, and
spatial relations with friendly aircraft are defined as well. The set of rules in
natural language used in developing the Prolog program described in Section
4.5 can be found in Appendix B.1.

The second step is writing Prolog predicates related to the natural language
rules. This is done using stepwise refinement, where each Prolog predicate may
reference predicates not yet defined, or where previously defined predicates may
be re-named, re-modelled, or even deleted. Finally all predicates are reviewed,
and lacking predicates are defined. This is done in several steps to ensure that all
relevant predicates are defined, and that irrelevant predicates are removed from
the program. The result is a Prolog program implementing the rules written

52 The Prolog Approach

in the first step, or a relevant subset hereof, that will suggest actions to any
scenario described.

The Prolog program contains current warnings from the MWS and the RWR.
Whenever a new warning occurs from either of these, the DSS should be con-
sulted to see which action it proposes. Neither changes in the number or posi-
tions of warnings from the RWR nor new warnings from the MWS, do necessarily
imply the presence of a new threat as stated in Section 3.5.2.

4.4.1 Assumptions

The program describes countermeasures and threats, which in substance behave
as described in Chapter 2. To ease the implementation of the Prolog program,
some assumptions are made to the behaviour of threats and countermeasures.
Also assumptions about descriptions of angles and distances are made.

The aircraft may be equipped with any combination of the following counter-
measures: flares, DIRCM, chaff, jammer, and towed decoy. While the system
encompasses all of these countermeasures, they need to be installed on the
aircraft, before the DSS will suggest actions involving them. The amount of
remaining flares, chaff, and decoys are relevant to the Prolog program. These
numbers are assumed updated in-flight by systems other than the DSS.

A warning from the RWR includes the detected threat type and the direction
toward the threat. Even though most RWRs can give an estimated distance to
the threat, this distance is not used by the program. For MWS warnings the
type of threat is not detected. Instead these warnings give the direction and
distance to a threat. Since a passive MWS (see Section 2.4) can not detect the
distance to a threat an active MWS is assumed.

All radar warnings represent threats, and friendly radar systems, information
of which could be given pre-mission, or supplied by an IFF, are not considered
an option.

If warnings from both the RWR and the MWS indicate that a threat occurs in a
given direction, this threat is likely to be RF guided, since this is the only kind
of guidance detected by the RWR. If a MWS warning occurs at a given direction
and no RWR warnings occur in that direction, then an IR guided missile is
approaching from that angle. An exception form this occurs when a friendly
aircraft is positioned in the direction given by the MWS warning, since this could
give false MWS warnings. No other warnings are considered to be false. When
a RWR warning occurs, without a coinciding MWS warning, the RWR describes

4.4 Using Prolog for Decision Support 53

a tracking jammer, and not a RF guided missile.

Both breaklock zones (see Section 2.5.7) and directions to threats can be de-
scribed in many ways. Even restricting the description to discrete values offers
different options, such as integer valued angles, maritime terminology (e.g. fore,
beam, and aft), and aircraft parts (e.g. nose, wing, and tail). It is assumed
that describing angles using numbers between one and twelve is sufficient. The
numbers relates to the positions on a clock, such that twelve o’clock describes
the direction straight ahead, six o’clock is in the opposite direction, and so on.

As with angles, different scales are used to describe distances. Altitude is often
described using feet, while metres, kilometres, miles, or nautical miles are fre-
quently used to describe longer, and mainly horizontal, distances. It is assumed
that the use of metres for all kind of distances does not affect the use of the
program.

4.4.2 Available Information

The information available to the DSS can be divided into four different categories,
based on the life span of the information. Here the categories are listed with
decreasing life spans:

Background Knowledge. Knowledge about missile types and guidance sys-
tems are considered background knowledge. This type of information does
not change very often, and it is considered static during a large number
of missions.

Mission Specific Knowledge. Before each mission, knowledge about the bat-
tle scene, and positions and types of threats can be loaded into the system.
This information may originate from intelligence sources.

Situation Description. Information about the locations of friendly aircraft
may continuously be received via a data link. This type of information is
necessary to recognize false missile warnings caused by friendly aircraft.

Warnings from on-board sensors. When a warning occurs from either the
RWR or the MWS, information associated with this warning is fed to the
DSS. RWR warnings give a direction to the threat, and information about
what kind of threat it is estimated to be. MWS will also give a direction
to the threat, combined with an estimated distance.

54 The Prolog Approach

4.5 The Prolog Program

The Prolog program developed implements most of the rules described in Ap-
pendix B.1. The program is divided into two parts, where one part is concerned
with responding to actual warnings, and the other part responds to assump-
tions about the environment, in which the aircraft is flying. A warning response
consist of three parts: finding the set of appropriate countermeasures, selecting
the relevant program for each of these countermeasures, and calculating the ma-
noeuvre that will bring the threats to the breaklock zone for the countermeasure
selected.

For each warning the program may suggest more actions. All of these actions
comply with the rules set for the program, and they are not prioritized in any
way. A prioritization might be performed before the actions found are presented
to the pilot. The actions can be ordered according to an estimate of their
survivabilities, and if more actions offer the same survivability, the one requiring
the least effort from pilot and aircraft would have the highest priority.

Another use of the Prolog program is to query about e.g. the hostility of the
environment, or the countermeasures to use for certain threats, etc.

4.5.1 Files

The Prolog program developed is described in seven files. Some of these files are
assumed static during flight, while the contents of others files are dynamically
updated. The files are described below and their contents can be found in
Appendix B. All files have the .pro extension. While this is not a necessary
extension of Prolog-files, it makes it easier to recognize the files as such.

dss.pro This file includes the main parts of the Prolog-based DSS. It includes
rules for estimating and addressing the hostility of the environment, and
finding relevant countermeasures for the warnings given. The suggestions
of countermeasures depend on e.g. the altitude of the aircraft, the distance
to threats, and the availability of the countermeasures. It is assumed that
no new operational rules are given during flight, and the content of this
file is thus considered static.

warnings.pro The current warnings are described here. Warnings from the
MWS are described with an angle and a direction to the alleged incoming
missile, while RWR warnings are described by angle and type of threat.

4.5 The Prolog Program 55

Since warnings may occur and disappear at any time during flight the
content of this file is highly dynamic.

current.pro The current description of the aircraft itself is provided in this
file. This includes information about altitude, the amount of remaining
expendables, and the modes of available countermeasures. The position of
friendly aircraft is also given in this file. As with warnings, the information
given in this file is highly dynamic.

mission.pro Details about the mission, the countermeasures available to the
pilot, and a description of the estimated threat scenario are given in this
file. This information is supposed to be given pre-mission, and the file can
thus be considered static during the mission. If new information about
e.g. the positions and numbers of threats become available during flight
it should be possible to update this file.

cm.pro For chaff and flares a number of different programs are available. Which
program to choose depends on the threat, the number of chaff or flares
remaining, the altitude, etc. These programs, as well as breaklock zones
for different countermeasures, are described in this file, as are rules for
determining whether the countermeasures are currently in effect. Nei-
ther countermeasures nor their related programs are subjects to frequent
changes, and this file can be considered static.

threats.pro This file describes background knowledge about all threats that
may be encountered, not just the threats expected in the current mission.
It also describes what type of guidance systems missiles associated with
the threats use, and how to mitigate these guidance systems. This file is
considered static.

util.pro This file contains functions for handling lists, writing messages to the
screen, and calculating manoeuvres between angles. It should be updated
only if the DSS itself changes.

The file dss.pro includes all other files and it is thus the only file one needs to
consult to run the program. The facts and predicates described in the program
are listed in Tables 4.1 and 4.2. When the current situation is described in
the files mission.pro, current.pro, and warnings.pro, the rule go (without
arguments) can be invoked at the Prolog prompt. Most of the work is done in
the what to do function, and go only measures how long it takes to perform
what to do, and writes the result to the screen.

The program will return all feasible actions. This has the effect that warnings
with more than one appropriate countermeasure will get actions recommending
each of these, and countermeasures with more than one breaklock zone will be
recommended with a manoeuvre to each of these zones.

56 The Prolog Approach

4.5.2 Atoms and Predicates

The atoms used in the program can be described in sets. These sets are listed
in Table 4.1. Some of the sets are used in describing the current situation for
the aircraft, while the rest are used by the program in determining the nature
and hostility of the environment.

Since Prolog does not have a type check, as e.g. C or C++ has, it is possible to
use atoms other than the ones described in Table 4.1. Doing this may cause the
program to give unexpected results, and care should therefore be taken when
e.g. describing scenarios.

Set: Atoms:
A/C type fighter, transport
Angles one o clock, two o clock, . . . , twelve o clock

Band ir, rf, uv
Countermeasures chaff, flares, dircm, jammer, towed decoy

Decoy Mode deployed, not deployed

DIRCM Mode auto, receive, off
Environment friendly, hostile
Fly mode take off, cruise, landing
Guidance command, sarh, qas tvm, inertial, ir, aclos,

saclos, optical, laser beam rider, uv
IR mode preemptive, reactive
IR threat none, moderate, severe
Jammer mode auto, receive, off
Programs flare01, flare02, flaredef, chaff01, chaff02,

chaffdef, default
RF Hostility low, high
Threats sa2, sa3, . . . , roland, stinger, manpads
Warnings mws, rwr

Table 4.1: The atoms used by the Prolog program. Atoms only serving as
strings for output, as well as numbers, are not included in the table.

The predicates defined in the program are listed in Table 4.2. Each of the
predicates can be included in a goal, to examine the states leading to the answer
given by the DSS. The full program listings can be found in Appendix B.

Predicate: Description:
ac type(AC) The type of aircraft (fighter or transport).

Table 4.2: Predicates defined in the Prolog program. Continues...

4.5 The Prolog Program 57

Predicate: Description:
altitude(Alt) Altitude in metres.
approp list(Angle,

Cms)

Cms is the list of countermeasures to counter
the threats at angle Angle.

available(Cm) Is the countermeasure Cm available?
breaklock(Cm, Angle) The Cm has breaklock zone at Angle.
chaff disp(S) Chaff was dispensed S seconds ago.
chaff left(N) N is the number of chaff cartridges remaining.
cm has effect(Cm) Is Cm currently having effect?
count(N, List) The List contains N elements.
count ir threats(N) N is the number of probable IR threats in the

scenario.
decoy mode(Mode) The towed decoy can be either deployed or

not deployed.
dircm mode(Mode) The DIRCM can be in one of these modes:

auto, receive, or off.
doppler(SA) The SA threat is a Doppler radar.
flares disp(S) Flares was dispensed S seconds ago.
flares left(N) N is the number of flares remaining.
fly mode(Mode) The mode of flight (take off, cruise, or

landing).
friend(Angle) A friendly aircraft is positioned at Angle.
go The main predicate. The time it takes to find

solutions is measured here.
guidance(T, G) The threat T uses a G guidance system.
handle warning(W) Suggest an action to counter the warning W.
ir mode(Mode) Response mode for IR guided threats

(pre-emptive and reactive).
ir threat(Status) The Status of the IR threats may be none,

moderate, or severe, depending on the num-
ber of probable IR threats.

jammer mode(Mode) The jammer can be in one of these modes:
auto, receive, or off.

lethal dist(Cm, D) The countermeasure Cm should only be ap-
plied, if the distance (D) to the threat is within
the lethal distance of the Cm.

manoeuvre(F, T, D, S) A manoeuvre from the angle F to the angle T

requires S steps in the direction D.
manoeuvre left(F, T,

S)

Manoeuvring from the angle F to the angle T

turning left requires S steps.
manoeuvre right(F, T,

S)

Manoeuvring from the angle F to the angle T

turning right requires S steps.

Table 4.2: Predicates defined in the Prolog program. Continues...

58 The Prolog Approach

Predicate: Description:
memberof(M,List) M is a member of List.
mitigates(B, Cm) Threats using guidance in the B band can be

mitigated using the countermeasure Cm.
phys guidance(G, B) The guidance system G works within the band

B.
prog(Cm, Prog) The countermeasure Cm can be activated using

the program Prog.
proper cm(Angle, Cm) Cm is one of the countermeasures to be used

against threats at Angle.
recommend action(W,

Cm, M, P)

The recommended action to the warning W

consists of a countermeasure Cm, a manoeuvre
M, and a program P.

recommend cm(W, Cm) Cm is a recommended countermeasure counting
threats at the angle described in the warning
W.

recommend man(W, Cm,

M)

The manoeuvre M, described by a direction
and a number of steps, should accompany the
countermeasure Cm to counter threats at the
angle described in the warning W.

rf hostility(H) Depending on the amount of probable RF

threats in the scenario, the RF hostility can
be either low or high.

safe altitude(B) The aircraft may fly at an altitude, where
threats operating in the band B do not pose
a threat.

threat probable(SA) The presence of threat SA is considered prob-
able.

turn left(X, Y) Angle Y is one step to the left of angle X.
turn right(X, Y) Angle Y is one step to the right of angle X.
warning(S, (Angle,

Data))

S indicates the sensor from which the warning
comes, and Angle gives the direction to the
threat. If S is mws the warning describes a
missile, and the Data part gives the distance to
the missile. If S is rwr the Data part describes
the type of threat.

what to do This predicate will find actions related to all
warnings, and to the hostility of the environ-
ment.

write cm(Cm, Prog) The recommended countermeasure Cm and the
program Prog to use is written to the screen.

Table 4.2: Predicates defined in the Prolog program. Continues...

4.5 The Prolog Program 59

Predicate: Description:
write manoeuvre(Man) Write a description of the manoeuvre Man to

the screen. A manoeuvre consists of a direc-
tion and a number of 30◦ steps.

write threat(Warning) Write information about the Warning to the
screen.

Table 4.2: Predicates defined in the Prolog program.

4.5.3 Comments

While the program is intended to be self-explanatory, the understanding of some
of the predicates may require a few comments.

Even though the purpose of the program is to describe feasible actions for a
fighter aircraft when addressing hostile environment or threats, it takes only mi-
nor adjustments to make the system work for transport aircraft as well. There-
fore the fact ac type(<aircraft type>), stating what type of aircraft the program
suggest actions for, is introduced. The aircraft type can be either fighter or
transport. This fact is used in the ir mode(pre-emptive) predicate, since a
transport aircraft is vulnerable during take-off and landing in enemy territory.
Fighter aircraft usually do not take-off and land in enemy territory.

The safe altitude(Cm) predicate will return yes if the aircraft is flying in
a safe altitude with regards to the countermeasure Cm. This predicate only
contains safe altitudes regarding missiles using guidance working within the IR

and RF bands. For missiles using guidance within the UV band, this predicate
will return no. While this type of missiles may have a safe altitude, the system
works cautiously since it does not reject threats about which it has no knowledge.

cm has effect(Cm) returns true if the countermeasure Cm is currently having
an effect on threats. Jammer, towed decoy, and DIRCM should all be turned on
to have an effect, while both chaff and flares should have been dispensed within
the last few seconds to maintain their effect.

Manoeuvres are used to turn the aircraft around, thus placing threats in the
relevant breaklock zones. Figure 4.5 shows the angles and direction involved in
doing this. A manoeuvre is described by its direction and a number of steps
in that direction. A step is 30◦, which is the angle between two consecutive
numbers, e.g. one o’clock and two o’clock.

60 The Prolog Approach

Direction of Flight

Threat

Breaklock zone

(a) Turning left

Direction of Flight

Threat

Breaklock zone

(b) Turning right

Figure 4.5: To get the threat within the breaklock zone the aircraft has to
perform a manoeuvre. The angle to turn is the angle between the breaklock
zone and the threat. Turning both left (Figure 4.5(a)) and right (Figure 4.5(b))
will position the threat within the breaklock zone. Only the turn with the
smallest angle is given by the Prolog program.

4.6 Testing 61

In [12] it is recommended that long functions should be avoided in Prolog pro-
grams, since they are generally difficult to understand. With a few excep-
tions this principle is followed in the program. One of these exceptions is the
proper cm predicate, where each of the instances describe the use of a single
countermeasure. To increase the readability of these clauses parentheses and
indentation are used.

4.6 Testing

Testing the program must ensure two things. The first is that invoking the go

rule with any given scenario, the program will suggest all the actions fulfilling
the set of rules given in Appendix B.1. The second is that there must be only
necessary actions suggested, i.e. all actions must be related to a threat in the
scenario or to the hostility of the environment.

Using only the atoms described in Table 4.1, at most one threat of each type
at each angle, and a limited set of numeric values to describe e.g. the altitude
and distances to threats, there exists a finite number of scenarios to test. This
is, however, not a feasible approach, since the number of scenarios may become
very large, and the differences between some scenarios are insignificant.

Another approach is to test the predicates individually, and finally test the
combination of the predicates in the Prolog program. Testing a predicate like
ir threat can be done by using it as a goal with a variable as argument. This
variable gets instantiated to one of three atoms, none, moderate, and severe,
depending on the number of probable IR threats declared, and the test is done
by declaring a number of threats that instantiate the variable to each of these
atoms. The results of this test can be seen in Table 4.3.

Number of Expected Instantiation
IR threats: status: as expected:

0 none X

2 moderate X

5 severe X

Table 4.3: Results for testing the ir threat predicate.

Predicates working on numbers, such as count ir threats, can not easily be
tested with all possible numbers. To test count ir threats a number of prob-
able threats are declared, some IR threats and some not. If the predicate is
used as a goal, with a variable as argument, and this variable gets instantiated

62 The Prolog Approach

according to the number of IR threats, the predicate works as intended. For
predicates working on lists, the same problem occurs: not all lists can easily be
tested for, and a subset should be chosen. The predicate approp list is one
example of such a predicate. If used as a goal, with the second argument being
a variable, the instantiation of this variable can be controlled to see whether the
countermeasures suggested are according to the set of rules.

The testing of all predicates is performed during the development of the Prolog
program. To test if the program itself behaves as expected, a number of scenarios
are described, and the program is run with each of these scenarios as described
below.

4.6.1 Scenarios

Eight different scenarios are used in testing the DSS. These scenarios vary in
gravity, from a single threat to a scenario where the number of threats probably
exceeds that of any real-world scenario. The last of these scenarios is constructed
to be a worst case scenario, and it is included here to find the maximum running
time of the DSS. While worse scenarios may be constructed it is assumed that no
real-world scenario will require more performance of the Prolog program than
this. The scenarios are described in Table 4.4. If nothing else is mentioned
in the description of a scenario the fighter aircraft will be equipped with all
the described countermeasures, the amounts of available expendables will be
high enough to perform any of the programs, and the aircraft is cruising at an
altitude of 600 metres. The threats shown in the scenarios are also the threats
found to be probable, described using the threat probable predicate.

Description: Scenario:
Scenario 1

SA-2A single non-Doppler radar is positioned at
twelve o’clock. No missile is detected.
Scenario 2

SA-2

SA-3

SA-7

This scenario contains three threats, two
radar-based (SA-2 and SA-3), and a sin-
gle threat with IR guidance (SA-7). The
threats are all placed in front of the air-
craft (eleven o’clock, twelve o’clock, and
one o’clock). A missile is fired from the
SA-7.

Table 4.4: Scenarios used for testing the Prolog based DSS. Con-
tinues...

4.6 Testing 63

Description: Scenario:
Scenario 3

SA-7
SA-2

SA-3

SA-5

SA-13

SA-10

Six threats are positioned in front of the
aircraft, covering all positions from nine
o’clock to two o’clock. IR guided missiles
are being launched from positions at nine
o’clock (SA-7) and one o’clock (SA-13).

Scenario 4
SA-7

SA-2

SA-18

SA-5

SA-10

SA-13
SA-3

Seven threats positioned in a semicircle in
front of the aircraft. All IR guided threats
are launching missiles (SA-7, SA-13, and
SA-18). Also a single RF guided missile is
launched from a SA-3 at three o’clock. The
jammer and the towed decoy are unavail-
able on-board the aircraft.

Scenario 5

SA-7

SA-18

SA-10

SA-3

SA-2

SA-5

SA-13

IR guided missiles are launched from po-
sitions at seven o’clock, nine o’clock, and
eleven o’clock. RF based threats are posi-
tioned at twelve o’clock, one o’clock, three
o’clock, and five o’clock. The threat at five
o’clock, a SA-2, is also launching a missile.
The aircraft altitude is 250 m.
Scenario 6
The threat scenario is the same as in sce-
nario 5. Here the aircraft altitude is 1000
m.
Scenario 7
The threat scenario is the same as in sce-
nario 5. Here the aircraft altitude is 2500
m.

Table 4.4: Scenarios used for testing the Prolog based DSS. Con-
tinues...

64 The Prolog Approach

Description: Scenario:
Scenario 8 – Worst case

ASPID

SA-18

SA-12b
SA-5

SA-10

SA-13

SA-3

MANPADS

STINGER
SA-10

SA-15

SA-8

SA-5

SA-19

SA-2

SA-6

MANPADS

IHAWK

SA-8

SA-12

SA-11

SA-3

SA-19

ROLAND

This scenario contains a large variety of
threats. The threats are positioned at all
angles and at different distances. Both
IR and RF guided missiles are launched.
Three friendly aircraft are positioned at
seven o’clock, eight o’clock, and nine
o’clock)

Table 4.4: Scenarios used for testing the Prolog based DSS. For each
scenario the placements of threats are depicted. Threats launching
missiles against the aircraft are marked with a dotted oval.

For each of the scenarios described in Table 4.4 a file named scenarioX.pro is
made. This file includes both the static files (dss.pro, cm.pro, threats.pro,
util.pro), and the dynamic files (warnings.pro, current.pro, mission.pro),
which are renamed to reflect the scenario (warningsX.pro, currentX.pro,
missionX.pro). In all file names the X is replaced by the number of the sce-
nario. A description of the results running the Prolog program for each of these
scenarios can be found in Table 4.5

Testing the Prolog program with the described scenarios revealed minor flaws
with the program. One of these concerned the use of breaklock zones. When a
threat was to be countered by a given countermeasure the program will suggest
a turn to bring the threat within the breaklock zone of that countermeasure.
Although the jammer breaklock zone was described to span from eleven o’clock
to one o’clock no suggestions were given to bring the threat to the twelve o’clock
angle. It turned out that the clause breaklock(jammer, tvelwe o clock) had
a misspelled atom (tvelwe o clock instead of twelve o clock). To the Prolog
interpreter the misspelled atom was considered to be a new atom since atoms
do not need to be declared before being used. Correcting the misspelled atom
made the program suggest turns to the twelve o’clock angle when the jammer
was recommended.

Another flaw was found when a MWS warning was given, and no friendly aircraft
was registered. When finding actions to mitigate a MWS warning the program

4.6 Testing 65

S
c
e
n
a
rio

:

W
a
rn

in
g
s:

R
u
n
n
in

g
tim

e
:

T
h
re

a
t

re
sp

o
n
se

s:

S
c
e
n
a
rio

re
sp

o
n
se

s:

A
s

e
x
p
e
c
te

d
:

1 1 7.1 Use chaff, jammer, or
towed decoy.

Use jammer in auto
mode.

X

2 3 18.0 Use flares, chaff, jammer,
or towed decoy.

Use jammer in auto
mode.

X

3 6 24.2 Use flares, chaff, jammer,
or towed decoy. Do not
use chaff to counter SA-5
and SA-10.

Use jammer in auto
mode.

X

4 8 10.0 Use chaff to counter RF

guided missile and RF

threats. Use flares to
counter IR guided missiles.

Use chaff (default
program).

X

5 8 5.0 Use flares to counter all
missiles. Do not use coun-
termeasures against RF

threats.

No responses. X

6 8 28.0 Flares against IR guided
missiles. Chaff, jammer,
and towed decoy. No chaff
against SA-5 and SA-10
(Doppler).

Use jammer in auto
mode.

X

7 8 26.0 No flares to counter IR

missiles. Chaff, jammer,
towed decoy to counter
RF threats. No chaff
against SA-5 and SA-10
(Doppler).

Use jammer in auto
mode.

X

8 23 113.0 Use appropriate counter-
measures. Not able to dis-
tinguish between threats
at same angle.

Use flares (default
program) and jam-
mer in auto mode,

X

Table 4.5: The results of testing the Prolog program with eight different sce-
narios. Running time is an average over ten runs. It is given in milliseconds.

66 The Prolog Approach

first checks if a friendly aircraft is reported to be at the same angle and if so
the warning is neglected. If no friendly aircraft was registered the B-Prolog
interpreter was not able to run. This may be an interpreter dependent error
since other interpreters may just return no if a predicate has not been defined.
The flaw was corrected by always defining a friend(none) clause, and the
program can now be run by the B-Prolog interpreter.

As no more flaws were found the program returns expected responses to all of the
scenarios. Appropriate countermeasures are suggested depending on the threats,
the aircraft altitude, and the countermeasures available. Also responses to the
scenario are as expected. They depend on the types and number of probable
threats in the scenario, and on the availability of countermeasures.

It is found that the number of warnings in the scenario description has some
influence on the time it takes to run the Prolog program. The first scenario
has one warning only, and finding solutions to this is done in an average of
7 milliseconds. Responses to the last scenario, having 23 warnings, are found
at an average of 113 milliseconds. Since four of the eight scenarios have eight
warnings, and the average time for finding solutions for these vary from 5 to
28 milliseconds, it can not be concluded that the number of warnings alone
determine the time it takes to find solutions to a given scenario.

4.7 Discussion

In developing the Prolog program, the first step was to describe a set of rules
for the program to fulfil. During development, questions to these rules come up,
and more rules may become necessary. Therefore the set of rules are not to be
considered a static entity. The set will evolve in a number of iterations during
the development of the program.

Some of the rules are expressed in such a way that they can be more or less
directly translated into Prolog predicates. Other rules have a more subtle formu-
lation, which makes them more difficult to implement. The rule ”The jammer
will reveal the position of the aircraft” is an example of one such rule. While
it is true, and relatively easy to implement, the implications of the rule on the
Prolog program are not obvious. A rule stating ”The jammer should only be
active in a non-severe environment if it mitigates a missile launched towards the
aircraft”, would describe the same intention: the jammer should not be active
unless it makes a positive difference to the survivability. Implementing it in the
program is just as easy.

4.7 Discussion 67

Running a Prolog program, compared to running a program written in e.g. C
or C++, will often require substantially longer execution time. One reason for
this is that when the execution of a program finds an answer to a goal, this
answer is not stored, and the next time the same goal is set, the answer will
be obtained once again. Another reason is that the Prolog program is often
interpreted, which itself is almost synonymous with a prolonged execution time.
There exist Prolog methods for self-modification, so that answers to goals that
may be used multiple times, are stored as facts. For the program developed
here, running on the laptop PC described in Appendix E, the execution time
never exceeded 150 ms. To this amount of time the time it takes to process
data before and after the Prolog DSS is invoked needs to be added. Processing
data constitutes collecting relevant sensor output data from systems on-board
the aircraft and preparing them for processing by the DSS, and after a list of
relevant actions is found by the DSS, the list must be prioritized and presented
to the pilot. Although the total amount of time is not known, it is assumed
that for most scenarios it will be less than the 200 ms limit set in Section 3.3.
Therefore no measures are taken to improve execution time in this work.

In using this program, an approaching missile can be ”hidden” by a friendly
aircraft. Even if the MWS recognizes the missile the MWS warning will be con-
sidered false if it is placed in an angle similar to that of a friendly aircraft.
While this will bring down the number of false alarms, it can not be described
as failsafe. If a missile is in fact attacking from this angle, only the aircraft
closest to the missile will respond to it. This might be enough to mitigate the
approaching missile; but combining the effort of more aircraft could increase the
effect on the missile, thus providing all friendly aircraft with a higher survivabil-
ity. If warnings from the MWS were to be shared among the friendly aircrafts,
using e.g. a data link system, this could add to the usability of the DSS. A
MWS warning repeated by a friendly aircraft in the same direction may not be
ignored and proper evasive actions have to be found.

The order of the declarations of predicates, as well as the order of predicates
within other predicates, will have no influence on the results given by the in-
terpreter when a program is interpreted according to the definitions of Prolog.
B-Prolog, as well as most other Prolog interpreters, does not comply with this
in full. An example of this can be seen in Figures 4.6 and 4.7.

recommend_cm(_,(Angle,_),Cm) :-

approp_list(Angle, Cms),

memberof(Cm, Cms).

Figure 4.6: Implementation of recommend cm that works.

68 The Prolog Approach

recommend_cm(_,(Angle,_),Cm) :-

memberof(Cm, Cms),

approp_list(Angle, Cms).

Figure 4.7: Implementation of recommend cm that does not work.

When a Prolog program is interpreted, the predicates are tested in the order
they appear. In the working version of the recommend cm predicate, shown in
Figures 4.6, the approp list is interpreted first, thus instantiating the list of
appropriate countermeasures, Cms, which is then used in the second predicate.
In the non-working version, shown in 4.7, the order of these two predicates
is reversed. Hence the interpreter will first try to make a list containing the
variable Cm. Since Cm is not instantiated, there exists no defined list that will
fulfil this clause, and the query will not succeed. Whether the Prolog interpreter
implementation discovers this, and exits gracefully, or keeps on running until it
is out of memory, is entirely up to the implementation. The B-Prolog interpreter
does not detect this inexpediency, an continues to look for the countermeasure
until it runs out of memory.

Some facts are meant to occur no more than once in the Prolog program. For
instance declaring multiple instances of the altitude or the fly mode makes
no sense. Despite of this, it can easily be done, resulting in a program that does
not behave according to the intentions. Declaring more altitudes could result
in the position of the aircraft being interpreted as out of range of both IR and
RF guided missiles. To solve this kind of conflicts the directive once may be
used. Replacing altitude(Alt) with once(altitude(Alt)) will result in only
the first instance of altitude being used.

In Section 4.1 it is stated that Prolog programs are easy to read. While this
is true, the readability can be enhanced introducing e.g. operator descriptions.
Mathematical operators, such as + (add), - (subtract), / (divide), · (multiply),
or % (percent) are easily recognized. They can be either prefix, (+ and -), infix
(+, -, /, or ·), or postfix (%), and they are described by a precedence. The
precedence is used to establish the order in which operators are evaluated, star-
ing with the lowest precedence, and since division and multiplication have lower
precedence than addition and subtraction, the expression A + B / C − D · E
is equivalent to A + (B/C)− (D · E).

The operator is guided by can be declared by giving the directive :-op(600,

xfx, is guided by). It is given the precedence 600 and the xfx part describes
it as an infix operator. Operators may be prefix (fx), infix (xfx), or postfix
(xf). With the is guided by operator the fact guidance(sa2, command) may
be written as sa2 is guided by command, which may be closer to a natural

4.8 Conclusion 69

language description of the guidance relation.

4.8 Conclusion

Developing a DSS prototype using Prolog is relatively easy. Based on rules stated
by experts in the EW domain simple Prolog predicates can be developed with
little effort. Combining all the rules translated from formulations in natural
language into one working Prolog program requires a little more effort. The
concept of having the program perform two tasks, one finding proper responses
to the environment and one handling warnings from RWR and MWS, is not
evident from the original set of rules.

While the concept of imperative programming seems intuitive, it may be dif-
ficult to adjust to for a programmer used to imperative programming. Some
knowledge about imperative programming may prove useful when programming
Prolog, e.g. to find out why a Prolog program runs out of memory, when the
order of clauses is not set right.

Having a fixed set of rules to build the DSS from may not be the best foundation
to build upon. As the development of the Prolog program progress the set of
rules must be updated to reflect new requirements to the knowledge gained from
the rules.

In a DSS the use of Prolog will narrow the set of possible actions. While this may
help the pilot deciding on the actions to actually perform, it is not guaranteed
that action chosen will give the best survivability possible. Through his training
the pilot will have learned the rules from which the DSS infer actions, and
therefore an experienced pilot may not benefit as much from the DSS as a rookie
would. Since the hostile environment changes from one theatre to another, and
the tactics to follow are constantly evolving, even the best skilled pilot can
benefit from the presence of a Prolog based DSS, provided it is being frequently
updated.

Usually Prolog programs are considered slow. The Prolog program described in
this chapter performs relatively fast, and solutions are found within the stated
200 millisecond limit. Adding to the usability of the program is likely to slow
down the performance of it, and a satisfactory trade-off between usability and
performance must be found.

70 The Prolog Approach

Chapter 5

The Bayesian Network

Approach

This chapter describes the use of a Bayesian Network (BN) as a method for
evaluating actions for a fighter pilot to perform when a threat occurs. It de-
scribes the basic theory of BN and why the technique may be an appropriate
approach in designing a DSS for fighter pilots. The process of constructing a BN

using the HUGIN tool is described. HUGIN offers a graphical user interface for
the construction of the network [7, 28] and details on HUGIN can be found in
Appendix E.

The model developed gives the probability of the survival of the aircraft de-
pending on the state of the world surrounding the aircraft, knowledge about
an emerging threat, and a selection of possible actions for the pilot to take. In
building the model, part of the work may seem both cumbersome and complex.
Hence two methods to do these parts in a semi-automatic way are explored and
described as well.

BNs are used in a wide range of areas, including vision, natural language process-
ing, robot navigation, planning, and machine learning [17]. In relevant literature
BNs are also referred to as belief networks, Bayesian belief networks, Bayesian
dependency nets, or causal probabilistic networks. The name decision graphs,
as used in section 5.2.6, refers to BNs containing utility and/or decision nodes

72 The Bayesian Network Approach

[22]. These are also known as influence diagrams [17]. See [13, 21, 22, 23, 34]
for more in-depth description of BN and probabilistic reasoning.

5.1 Motivation

A decision support system on-board an aircraft will depend on information from
a number of sources. The uncertainty of some information (such as the kind
and amount of expendables on-board the aircraft, the pattern in which they will
be dispensed, and the angle in which they will depart from the aircraft) may
be considered negligible. Information about the kind of missiles the aircraft
is likely to encounter may be obtained from intelligence sources, and should
be considered with some degree of uncertainty. Finally, data from on-board
warning systems, giving angle, distance, and speed between the aircraft and an
incoming missile, must be considered with high degrees of uncertainty. Incorrect
or incomplete data may be all the DSS initially has to support its decisions.

Since the sensors on-board the aircraft do not give an accurate image of the world
surrounding it, using a BN to model this world seems a plausible approach as
a BN can deal with the probabilities of e.g. the sensors being wrong and the
countermeasures not working as intended.

5.2 Basic Theory

A BN consists of a set of random variables, each variable having a number of
mutually exclusive states (at least two), and the variable can be in any one of its
states with a given probability. It can be depicted as a directed acyclic graph,
G = (V, E), with V being the set of variables shown as nodes in the graph, and
the set of directed edges between nodes, E, indicating dependencies between
them. Changes in states of some variables may cause changes in states of other
variables. The strengths of dependencies between variables are represented in
tables named dependency tables, conditional probability tables, or potential tables
[22, 34]. In this work the term dependency table is used. For nodes without
ancestors, the dependency tables contain unconditional probabilities.

Relations between nodes in a BN are depicted using arrows. If A and B are
variables in the same network modelling a given domain an edge from B to
A indicates that changes in the probabilities of the states in B may result in
changes in the probabilities of states in A. A is then said to be a child of B,
and B is a parent of A (see Figure 5.1). A variable can have a number of both

5.2 Basic Theory 73

children and parents. The set of parent nodes to A is written as pa(A), and the
family set containing A and its parent nodes is written as fa(A).

B A

Figure 5.1: States in A depends on states in B.

In a BN arrows can be both causal and non-causal. When arrows are causal
changes in the states of the real-world entity represented by the parent node
may cause changes in the states of a child node representing another real-world
entity. When non-causality is used the causality may be directed against the
arrow for some relations while it follows the arrow for other relations in the same
network. While this is perfectly legal when constructing a BN it may be difficult
to maintain and develop a model if no clear causal relations are given by the
arrows. For modelling purposes the edges should therefore always indicate the
causality between nodes.

Dependencies between states in A, a1, . . . , an, and states in B, b1, . . . , bm, can be
described in a dependency table as shown in Table 5.1. In this table each row
describes the dependencies between a state in A (a1 or a2) and the states in B
(b1 and b2). The states of a variable are mutually exclusive and the probabilities
for each column must sum up to 1, i.e. the probability for a variable being in
none of its states is zero.

B b1 b2

a1 0.2 0.87
a2 0.8 0.13

Table 5.1: Dependency table for a node A showing its dependencies of states in
its parent node B.

When constructing the BN all nodes will have prior probabilities. For a node
without parent nodes these probabilities can be based on e.g. observations while
nodes with parents have prior probabilities dictated by their dependency tables
and the probability distributions of their parents. When a variable receives
evidence a new probability distribution based on e.g. recent observations is given
to it, independent of prior distributions. If the probability of the variable being
in a given state is 1 after the state has been given evidence, the variable is said
to be instantiated in that state. When one or more variables receive evidence
the probabilities for all depending states in other variables in the network are
updated.

74 The Bayesian Network Approach

The nomenclature used in this chapter has been collected in Table 5.2.

A, B Nodes in the BN

ai, bj States of a node
pa(A) The set of parents to nodes in the set A
fa(A) The family set including A and its parents
P (a) The probability of the state a
A⊥B|C A and B are d-separated given evidence to C

Table 5.2: Nomenclature for Bayesian networks.

5.2.1 Probability Calculations

The probability of A being in state ai is written as P (A = ai). When the
variable involved is clearly defined by the context the form P (ai) is used. The
probability of A being in state ai depending on B being in state bj is written as
P (A = ai|B = bj) (or P (ai|bj) for short).

For doing probability calculations the fundamental rule is given by:

P (ai|bj)P (bj) = P (ai, bj). (5.1)

Here ai, bj means that A is in state ai and B is in state bj. Since P (ai|bj)P (bj) =
P (ai, bj) = P (bj|ai)P (ai) the following rule is formulated:

P (bj |ai) =
P (ai|bj)P (bj)

P (ai)
. (5.2)

This rule is known as Baye’s Rule1 and it is fundamental to the use of Bayesian
networks. The probability P (ai|bj) clearly indicates that the value of A depends
on the value of B. If the value of A is known, this probability also indicates some
knowledge about the value of B. P (ai|bj) is thus often referred to as the likelihood
of bj given ai and it is written as L(bj|ai).

The HUGIN software uses potentials instead of probabilities. A potential can be
any non-negative real number. The potential distribution for a given variable
can be turned into a probability distribution by normalization. Let A be a
variable with n states, and let π(ai) be the potential of the ith state of A. The
probability P (ai) of A being in the state ai is then given by

P (ai) =
π(ai)Pn

j=1 π(aj)
.

1The rule is named after the Presbyterian minister and mathematician Thomas Bayes,
1702 – 1761, who came up with the formulation ”A is known given knowledge about B”[3].

5.2 Basic Theory 75

5.2.2 d-separation

When one or more nodes in a BN have received evidence, the prior probability
distribution in the BN is no longer valid, and a new probability distribution is
to be propagated throughout the net. In propagating evidence the d-separation
property between pairs of nodes in the net is vital. This section gives the defi-
nition of d-separation and in Section 5.2.5 a use of d-separation in propagating
the probability distributions within a BN is described.

When changes in the states of a node A have no influence on the node B in the
BN the nodes are said to be d-separated (short for ”dependency separated”),
and this is written A⊥B. The connection between two nodes, and the nodes
connecting them, determines when these nodes are d-separated. If the two
nodes are d-separated given evidence to some node C this is written as A⊥B|C.
When two nodes are not d-separated they are said to be d-connected.

All connections between two nodes can be classified as either serial, converging,
or diverging. For a serial connection the two nodes are d-separated if any node
between them has become instantiated. In Figure 5.2 the nodes Influenza and
Fatigue are d-separated if Fever has become instantiated. At first glance it might
seem counterintuitive that Fatigue and Influenza are not related given Fever; if
a person has a fever he or she can still be tired due to the flu. The definition
of d-separation does not describe the state in which the intermediate node is
instantiated. Thus if the person does not have a fever, any fatigue is no longer
related to the presence of a flu.

Influenza Fever Fatigue

e

Figure 5.2: d-separation in a serial connection.

In Figure 5.3 a diverging connection between nodes in a BN is shown. Here
the two nodes, Fever and Headache, are d-separated if their common parent
Influenza has been instantiated. To understand this, assume that the person
does not have the flu. Now the person can have both a fever and a headache,
but they are not related.

In diverging connections nodes are d-separated when intermediate nodes, or
their descendants, have not received evidence. In Figure 5.4 a fever can be
caused by both Influenza and Cold. If evidence has shown that a person has a

76 The Bayesian Network Approach

Fever

Influenza

Headache

e

Figure 5.3: d-separation in a diverging connection.

fever, Influenza and Cold becomes d-connected.

Influenza

Fever

Cold

e

Figure 5.4: d-separation in a converging connection.

If two nodes A and B are d-separated and evidence e is given to a node in the
BN, the probability P (A|B, e) is given by P (A|e).

5.2.3 Joint Probability Distribution

For a BN the Joint Probability Distribution (JPD) is the probabilities of each of
the combinations of states in the nodes of the BN. If for instance the BN has two
nodes, A with states a1 and a2 and B with states b1, b2, and b3, then the JPD

is comprised of the six probabilities P (a1, b1), P (a1, b2), P (a1, b3), P (a2, b1),
P (a2, b2), and P (a2, b3).

Figure 5.5 shows a small BN describing the dependencies between four nodes.
For each node in the BN the dependency table is shown. In the following this
BN is used for illustrating the principles of probability calculations.

The probability of the variables being in a given combination can be found using
the fundamental rule (5.1). An example of this probability calculation is given
by:

5.2 Basic Theory 77

Friendly 70%

Hostile 30% Territory
No Warning 15%

SA-2 50%

SA-3 35%
RWR

RWR No Warning SA-2 SA-3

Territory Friendly Hostile Friendly Hostile Friendly Hostile

Yes 0.1% 5% 5% 80% 10% 95%

No 99.9% 95% 95% 20% 90% 5%

Missile

Missile Yes No

RWR No Warning SA-2 SA-3 No Warning SA-2 SA-3

No Lock 95% 3% 15% 99.9% 20% 35%

Lock 5% 97% 85% 0.1% 80% 65%

RF Lock

Territory Friendly Hostile
RF Lock No Yes No Yes

Missile = No
RWR = No 0.10479 0.00010 0.04271 0.00004
RWR = SA-2 0.06650 0.26600 0.00600 0.02400
RWR = SA-3 0.07718 0.14333 0.00184 0.00341

Missile = Yes
RWR = No 0.00010 0.00001 0.00214 0.00011
RWR = SA-2 0.00053 0.01698 0.00360 0.11640
RWR = SA-3 0.00368 0.02083 0.01496 0.08479

Figure 5.5: A small BN describing the dependencies between a RF lock, the
presence of a missile, the type of warning coming from a RWR, and the hostility
of the territory over which the aircraft is flying. It is assumed that the presence
of radar systems does not depend on the state of the territory. A dependency
table is shown for each node. The JPD calculated from the dependency tables
is shown at the bottom.

78 The Bayesian Network Approach

P (RF Lock = No, Missile = No, RWR = SA-2, Territory = Friendly)
= P (RF Lock = No | Missile = No, RWR = SA-2) ·

P (Missile = No | RWR = SA-2, Territory = Friendly) ·
P (RWR = SA-2) ·
P (Territory = Friendly)

= 20% · 95% · 50% · 70%
= 6.5%

Finding the probability of any combination of states in the BN is easily done
by a simple look-up in the JPD. The combinations of states in some nodes,
disregarding the probabilities of states in other nodes, may also be found from
calculations on the entries in the JPD (see Section 5.2.4). Unfortunately the
number of entries grows exponentially with the number of nodes in the BN and
for larger BNs it may prove impossible to maintain the full JPD on a computer.
For larger BNs it is therefore useful to keep the representation of the probability
distribution as a BN and do the probability calculations by propagating evidence
throughout the BN (see Section 5.2.5).

5.2.4 Prior and Posterior Probabilities

As stated in Section 5.2.3 the JPD can be used to find the probability of any
combination of states. To do this the entries in the JPD associated with that
combination are added up. This is known as the marginal probability. The
marginal probability for RF Lock = Yes from the BN in Figure 5.5 is given by:

P (RF Lock = Yes)
= 0.00010 + 0.26600 + 0.14333 + 0.00001 + 0.01698 + 0.02083 +

0.00004 + 0.02400 + 0.00341 + 0.00011 + 0.11640 + 0.08479
= 0.67599

This means that at any given time, with no evidence for any of the variables in
the BN, the probability of a RF lock on the aircraft is 67.6%. As no evidence is
entered this number is the prior marginal probability.

If a variable gets instantiated finding the posterior probability of another variable
is done by narrowing the number of entries in the table and then re-normalize it.
If e.g. the RWR issues a warning, and the RWR gets instantiated to SA− 2, all
the entries in the JPD with RWR = NoWarning or RWR = SA−3 will represent
impossible states. So finding the posterior probability of RF Lock being Lock is
done like this:

5.2 Basic Theory 79

P (RF Lock = Yes | RWR = SA-2)

=

P
P (RF Lock = Yes, RWR = SA-2)P

P (RWR = SA-2)

=
0.26600 + 0.01698 + 0.02400 + 0.11640

0.06650 + 0.26600 + 0.00600 + 0.02400 +
0.00053 + 0.01698 + 0.00360 + 0.11640

= 0.84675

Comparing the prior and posterior probabilities just described one gets that
knowing that a RWR warning is issued the probability of a RF lock increases to
84.7% compared to the 67.6% when no knowledge about the RWR was given.

Due to the symmetry of conditional probabilities, updating the BN can be used to
both predict the outcome of different settings, and to examine the settings that
yield the best outcome. Table 5.3 shows the prior and posterior probabilities
for the BN in Figure 5.5. The posterior probabilities shown are calculated when
the RF Lock node is instantiated in the NoLock state. This instantiation causes
an increase in each of the probabilities P (Territory = Friendly), P (RWR =
NoWarning), and P (Missile = No).

State: Prior: Posterior:
Territory = Friendly 70.00% 78.01%
Territory = Hostile 30.00% 21.99%
Missile = Yes 26.41% 7.72%
Missile = No 73.59% 92.28%
RWR = No Warning 15.00% 46.21%
RWR = SA-2 50.00% 23.65%
RWR = SA-3 35.00% 30.14%
RF Lock = No Lock 32.40% 100.00%
RF Lock = Lock 67.60% 0.00%

Table 5.3: The prior and posterior probabilities of when instantiating the
RF Lock in the No Lock state.

5.2.5 Propagating Evidence

When an event occurs in the world modelled by a BN the probabilities of one
or more states in the nodes may change. This happens if a node has received

80 The Bayesian Network Approach

evidence (e.g. the probability of an approaching missile will increases when
the MWS issues a warning) or if a node has been instantiated (e.g. when an
approaching missile has actually been spotted). When probabilities for states
in the BN changes the dependency tables for all relevant nodes needs to be
updated throughout the BN. Calculating prior probabilities can always be done
using the values of the JPD. For larger networks this is not a feasible solution
since the JPD may become too large to be stored in computer memory, and the
computations will be too numerous to be carried out in reasonable time. A
number of methods have been proposed to both reduce the size of the storage
necessary and to speed up the propagation of evidence.

5.2.5.1 Propagation in HUGIN

In HUGIN the propagation of evidence is done using junction trees. This section
describes how to construct a junction tree from a BN, and how to use it for
propagation of evidence. Details about the construction of junction trees and
the HUGIN propagation are given in [21].

Before propagating evidence the structure and dependencies of a BN are collected
in a junction tree. The junction tree consist of a number of nodes known as
cliques, each of which represents a number of nodes from the BN. For each node
Ai in the BN that has a non-empty parent set, pa(Ai) 6= ∅, at least one clique
in the junction tree will represent the set pa(Ai) ∪ Ai. Each clique has a table
representing the part of the JPD given by the nodes represented by the clique.
The construction of a junction tree is done in the following steps:

• From the BN a moral graph is constructed. This is done by first adding
connections between any parent nodes sharing a common child node, and
then removing the directions on all edges. Figure 5.6(b) shows the moral
graph made from the BN shown in Figure 5.6(a).

• A junction graph is constructed from the moral graph by collecting clus-
ters of nodes from the moral graph, where all nodes in the clusters are
interconnected. Each of these clusters constitutes a clique in the junction
graph. Cliques that share nodes from the moral graph are connected in
the junction graph. Each connection is labelled with a separator, shown
graphically as a rectangle containing the nodes in common for the cliques
it connects.

• Let A and B be two cliques in the junction tree. The path between A
and B contains the nodes in common for A and B. This is known as the
junction tree property. If the junction graph contains no cycles (i.e. it is

5.2 Basic Theory 81

A B

C

D E

F G

(a) The original Bayesian
network

A B

C

D E

F G

(b) The moral graph

ABC

BC

BCE

C

CD

E

EG

D

DF

(c) A junction tree

Figure 5.6: From the original BN in (a) the moral graph in (b) is found. Based
on this the junction tree in (c) is constructed.

a tree) and the junction tree property is observed, the junction graph is
also the junction tree used for propagation.

• If the junction graph is not yet a junction tree, the moral graph gets
triangulated. In triangulation cycles in the graph are identified. If a cycle
has more than three nodes in it fill-in chords are added between nodes not
connected.

• The junction tree is a subgraph of the junction graph. To dissolve cycles
in the junction graph connections are removed as long as the remaining
graph obeys the junction tree property. The result of this is the final
junction tree. Figure 5.6(c) shows a junction tree for the BN shown in
Figure 5.6(a). Note that the ABC clique is arbitrarily chosen as the root
node.

The propagation in HUGIN is done using two functions: DistributeEvidence

and CollectEvidence. The algorithms are used on the junction tree made for
the BN. When a node in the BN receives evidence the CollectEvidence function
is called with the root clique of the junction tree as argument. This function
will return the evidence entered in the table of the clique given as argument, but
not before this table has been updated by calling the CollectEvidence function
with each of is children cliques as argument. When the root clique of the junction
tree has received evidence from all of its children cliques, it updates its table
and distributes this to its children. This is done using the DistributeEvidence

82 The Bayesian Network Approach

function, which is used recursively throughout the junction tree. The resulting
tables of the cliques now contain the updated probability distribution of the BN.

5.2.6 Decision Graphs

When using a BN for decision support a number of combinations of states having
received evidence can be compared. In this comparison each combination can be
associated with a scalar value, and the best combination will be the one yielding
the highest/lowest value. If the BN is to be used in a DSS for fighter pilots the
value to compare solutions by may be the probability of the aircraft surviving
an attack (PS).

In associating a BN with a scalar value two types of nodes are introduced:
decision nodes and utility nodes. Adding a node of either of these types to a
BN makes it a Decision Graph (DG) [22], also known as an influence diagram
[23]. Graphically decision nodes are shown as rectangular and utility nodes are
diamond-shaped. A DG showing both decision and utility nodes can be seen
in Figure 5.7. In a BN each node represents a variable. For a DG this is not
the case since neither action nor utility nodes represent variables in the domain
modelled.

Decision nodes represent actions in the network, and they have no dependency
tables. Changes in the state of a decision node may influence the probability
distribution in ordinary nodes, while there is no influence the other way around.

The utility nodes represents additive contributions to the Expected Utility (EU)
of the BN. The EU for a DG is the measure that is sought optimised. It may
have a unit and all contributions to it stem from utility nodes. Each utility node
is drawn with incoming lines from the nodes that may influence the outcome
of that node. Where ordinary nodes have a dependency table a utility node
has a table showing the contribution by each combination of states in its parent
nodes. Note that this contribution may be negative, e.g. representing a cost in
a total turnover.

The DG in 5.7 was constructed using HUGIN. It models the situation of an Un-
manned Aerial Vehicle (UAV) (cost price $100,000) flying over enemy territory.
The UAV has been equipped with a flare dispenser and the DG can be used to
calculate the expected utility depending on whether or not flares are dispensed
in a given situation. The EU is the sum of two terms, one concerned with the
price of dispensing flares ($1,000 per dispensing), and one concerned with the
expenses related to a possible UAV crash. With e being the evidence given to
the nodes IR Lock and Hit, and C being the cost of dispensing flares, the EU is

5.2 Basic Theory 83

IR Lock

Hit Flares

A/C Cost Flares Cost

(a) The DG

No Lock 50%
Lock 50%

(b) Dependency table for IR Lock

Flares Dispensed No
IR Lock No Lock Lock No Lock Lock
Yes 0.0001% 5% 0.2% 98%
No 99.9999% 95% 99.8% 2%

(c) Dependency table for Hit

Hit Yes No
Utility $100,000 $0

(d) Utility table for A/C Cost

Flares Dispensed No
Utility $1000 $10

(e) Utility table for Flares Cost

Figure 5.7: DG modelling the cost of flare dispensing. Dispensing flares influence
the total cost of the flight.

84 The Bayesian Network Approach

given as:

EU(Flares|e) = C(Flares) +
X
Hit

U(Hit)P (Hit|Flares, e)

When no knowledge about an IR lock has been received the probability of its
presence is set to 50%. The EU of dispensing flares can then be found as:

EU(Dispensed) = $1000 + $100, 000 · 0.0001% · 50% + $100, 000 · 5% · 50%

= $3500.05

This can be compared to the EU of not dispensing flares:

EU(No) = $10 + $100, 000 · 0.20% · 50% + $100, 000 + 98% · 50%

= $49, 110

So saving flares while flying over hostile territory (with P (IR Lock = Lock) =
50%) may prove to be very expensive.

If evidence is given stating that no IR lock is present the EU of dispensing is
changed to $1000, while the EU of no dispensing is $210. So if no knowledge is
given about IR locks, and they are present, it is better to dispense flares, just to
be on the safe side. On the other hand, if intelligence reports that no possible
IR threats are in sight, dispensing flares would just be a waste.

In a general BN the direction of edges does not necessary need to display causal-
ity. In a DG they do. Consider the BN shown in Figure 5.2 (repeated in Figure
5.8). Here fatigue is caused by fever which is then again caused by the flu. If
the action of taking an aspirin, which is generally taken to lower fever, is given
as evidence to the Fever node, it will influence the fever and hence the fatigue.
If the directions of the edges were reversed, the aspirin would lower the fever,
thus handling the influenza, without helping with the fatigue.2

Influenza Fever Fatigue

e

Figure 5.8: d-separation in a serial connection. (Figure 5.2 repeated here.)

2Example taken from [22].

5.2 Basic Theory 85

5.2.7 Utility Scale

The EU is the sum of utilities from all utility nodes in the BN. Therefore it is
necessary for utilities to have a common unit. In maximising profit or minimising
cost a monetary unit will be adequate, while the unit to use in other cases may
be less obvious. For a company some actions may result in a momentary higher
income, while decreasing the customer satisfaction. In the long haul this may
lead to a loss of customers, thus decreasing the turnover. In a situation like
this the EU should be measured using a utility scale, weighing both income and
customer satisfaction.

Using a DG for decision support for fighter pilots will also require an appropriate
utility scale. Having the probability of survival, PS , defining the scale may be
less opportune since this probability depends on combinations of actions. This
means that the values of the utility nodes does not depend solely on states in
discrete nodes, and therefore the utility nodes cannot be correctly connected
to any nodes in the DG. To remedy this, a single node to connect a utility
node to can be constructed. This node will contain all combinations of states
from the nodes on which the survivability depends. While this is possible the
construction of such a node is cumbersome and the ability for using a DG for
modelling the domain is weakened.

If survivability is represented as a score, where mitigating a threat would have a
positive influence on the score, while e.g. using expendables or making the threat
focus on the aircraft by turning on the jammer when this is not necessary, would
have a negative influence, optimising the survivability can be done. Section C
describes the construction of a score system that may be used as utility scale.

Instead of using the intangible survivability, one may instead operate on the
concept of costs. Everything involved in the mitigation of a threat has a fiscal
cost, and finding the combination of manoeuvres and countermeasures that will
yield the lowest total cost, can then become the aim of decision making. To find
the price of the involved countermeasures is relatively easy since all flares, chaff,
towed decoy, etc., has a list price. So does a new aircraft, if the current aircraft
is lost to an incoming missile. This price may be harder to find, since it involves
a complex mixture of e.g. salary to people employed with the procurement of
new aircraft, the inability to fulfil requirements about the number of deployed
aircraft, the use of aircraft for training, and so forth. Also finding the price of a
new pilot is involved, and although this is possible seen from a pragmatic point
of view, it may not be politically correct to do so.

86 The Bayesian Network Approach

5.3 Building the Model

The model developed gives the probability of the survival of the aircraft, PS ,
depending on the states of variables representing the surrounding world, knowl-
edge about an emerging threat, and a selection of possible actions for the pilot
to take.

The first step is to specify the structure of the BN based on knowledge about
the EW domain. This structure can have several layouts, depending on the
degree of details one wishes to model. The general rule is to incorporate enough
details to be able to establish the probability distribution between nodes. On
the other hand, more details will require more nodes, and thus populating the
dependency tables becomes more difficult. When the structure of the BN is
in place, every node is supplied with a sufficient number of states, and the
conditional probabilities between nodes are entered into the dependency tables.

At first the model is a ”pure” BN since no decision or utility nodes are introduced.
Any probabilities used in the model are merely based on ”good guesses” and
not on data from real aircraft and threats. Adding decision and utility nodes to
the BN will change it into a DG. As explained in Section 5.2.7 no good utility
scale is found for the use of a DG in decision support for fighter pilot, and hence
no utility nodes are used in the model.

5.3.1 Assumptions

It is assumed that the current combat scenario contains at most one threat, and
that only a single missile may be launched towards the aircraft at any given
moment. This will ensure that when multiple nodes receive evidence they are
all the result of the presence of a single threat. If more threats are present in
the scenario, and they are detected by e.g. radiation in several RF bands, the
probability of a proper detection of each of these by the BN decreases.

In the Prolog approach (Chapter 4) it is assumed that all warnings relate to
real threats or friendly aircraft. In the BN approach this is not the case. Here it
is assumed that all observations come with a probability/certainty, and thus a
warning indicates that a threat is present with a given probability. Since none
of the on-board sensors/warners give this number in conjunction with a warning
it is up to a threat evaluator to calculate it. This can be done using statistics on
the number of times a warning was given for a threat in a given distance and at
a given angle, etc. This threat evaluator is assumed existing and working, and
the design of it is not considered part of this work.

5.3 Building the Model 87

Figure 5.9: The BN modelling the world in and around the fighter aircraft. The
model is divided into three layers, one representing the world surrounding the
aircraft, another representing the on-board sensors, and the last one giving the
survivability for a given combination of states having received evidence. (Picture
exported from HUGIN.)

5.3.2 Constructing the Model

The BN constructed can be seen in Figure 5.9. It is lay out as a three layer
model, with the top layer representing the world surrounding the aircraft, the
middle layer containing nodes for the on-board sensors, and finally the bottom
layer giving the results of deploying countermeasures. The jammer is placed in
the middle layer, as it gives input about RF locks. Since it serves as both a
sensor and a countermeasure it might as well have been placed in the bottom
layer.

All edges between the ordinary nodes in the BN shows causality. To ease the
reading of the model the nodes are arranged in such a way that causality points
downwards. In this way the nodes in the top layer (the surrounding world),
causes changes in the states of the nodes in the middle layer (the sensors),
which in turn influence the calculated survivability.

88 The Bayesian Network Approach

In the construction of the model some observations are made. A number of
these are described below.

Enemy Territory. If enemies are present and threatening the aircraft, the
aircraft is, by definition, flying over enemy territory. This is why the
Enemy Territory is not just a binary node, indicating whether or not the
border has been crossed; enemies might exist on the friendly side of a
border as well (e.g. terrorists), and missiles may be ”friendly fire”, i.e.
launched by ones own forces.

Missile Seen. It is possible for the pilot to visually see an incoming missile
that he has not been warned about by either the MWS or the RWR. To
represent this, a Missile Seen node was initially added to the BN model.
While the presence of a missile that has not been seen by the aircraft
sensors is of vital importance to the results of the DSS, it may not be
possible to use this information in the DSS. To do so would require the
pilot to tell the system that a missile has been seen, and possibly both the
direction and range to the missile. While it is possible to construct and
incorporate this type of registration in the PVI, the registering process in
itself would be too time consuming to be feasible. The missile may have
hit the aircraft before the pilot has told the system about it. For this
reason the node is not part of the model.

Expendables. In the model dispensing chaff or flares is described using a bi-
nary action node; either they are dispensed or they are not. In the real
world there would be more programs to select from, each program de-
signed to take care of a given threat or threat scenario. Introducing more
programs into the model will increment the number of entries in the de-
pendency tables, which again will make it more difficult to find proper
values for making the BN behave properly.

Guidance System. It is assumed that any missile guidance system uses either
RF or IR guidance, and that none of the missiles under consideration in this
work has multiple guidance systems. Therefore the detection of a radar
guided missile, as seen by the RWR can intuitively lead to the assumption
that a missile detected by the MWS, assuming it is detected in the same
direction, will not be using IR guidance. This gives the causality between
two nodes, RF Guidance and IR Guidance, as seen in Figure 5.10.

RF Guidance IR Guidance

Figure 5.10: If a missile is RF guided it will not also be IR guided.

5.3 Building the Model 89

Since RF and IR guidance are mutual exclusive there is no reason to main-
tain two nodes, and the RF Guidance and IR Guidance nodes are thus
merged to a single node named Guidance.

Since different types of missiles use the same type of guidance, with dif-
ferent results, the presence of an IR lock depends on both the type of
missile and on the guidance in use. It can not depend on the missile type
alone, since missiles having the same missile types may be equipped with
different types of guidance systems.

Decision and Utility Nodes A number of decision nodes are added to the
model. These nodes and their states can be seen in Table 5.4. Let |A|
be the number of states in a decision node A. With the seven nodes
in the model there are |Jammer Present| · |Jammer Mode| · |Manoeuvre| ·
|Chaff Loaded| · |Chaff| · |Flares Loaded| · |Flares| = 2 · 3 · 3 · 2 · 2 · 2 · 2 = 288
combinations of states in the decision nodes.

Not all decision nodes need to be part of the decision since the pilot
has no way of changing the state of these while in-flight. The decision
nodes is thus split into two sets, the preparation nodes comprising the
Jammer Present, Chaff Loaded, and Flares Loaded, and the action nodes :
Jammer Mode, Manoeuvre, Chaff, and Flares. This now gives a total of
3 · 3 · 2 · 2 = 36 combinations of states in the action nodes which should
be tested to find the combination yielding the highest survivability. Some
of these combinations would not be feasible, and could thus be removed
from the set of combinations to test for. For instance a combination of
flares and manoeuvres does not make any sense, if Flares Loaded indicate
that no flares are available.

Decision node: States:
Jammer Present Yes, No
Jammer Mode Off, Rx, Auto
Manoeuvre None, Left, Right
Chaff Loaded Yes, No
Chaff No, Dispense
Flares Loaded Yes, No
Flares No, Dispense

Table 5.4: The decision nodes and their states.

As can be seen in Figure 5.9 the action nodes are interconnected. In
Section 5.2.6 it is stated that action nodes have no dependency tables,
and the edges between action nodes does not constitute a parent-child
relation per se. Instead they are needed for the propagation algorithm
used by HUGIN. The direction of the arrows between the action nodes is
of no influence to the calculated survivability.

90 The Bayesian Network Approach

As described in Section 5.2.6 the introduction of a utility scale for the
model is not straightforward. At first the number of remaining expend-
ables was introduced as a utility scale and utility nodes were connected
to the Flare and Chaff nodes. This is skipped since flares and chaff are
two very different types of expendables, and having a number of flares left
will not increase the survivability when a RF based threat occurs. Sec-
ond, optimizing the amount of inventory would only result in using less
expendable, not in increasing the survivability at all. For these reasons no
utility nodes are used in the final model.

5.4 Populating Dependency Tables

The work with constructing a BN can be divided into two parts: the construction
of the qualitative structure of the net, where all nodes and dependencies between
nodes are established, and the quantitative population of the dependency tables.
Different approaches to ease the latter part of the process have been tried. In
[17] the relations between nodes are described using Prolog-like Horn clauses
and by parting the network into self-contained objects, and in [24] the degrees
of certainty in relations are described using simple sentences in semi-natural
English. While these approaches have some advantages in the initial population
of dependency tables, they do not appeal to the strength of using a precision tool
as BN. The HUGIN tool offers different techniques for describing the probability
distributions using e.g. discrete distributions or arithmetic functions.

5.4.1 Multi-dependency Tables

In this work a simple model describing the domain is developed. This model
contains the nodes deemed necessary for decision support for fighter pilots, and
each of the nodes has a very limited number of states. In simple tests the
simple model works as expected, but it does not handle the complexity of e.g.
several different missile types and guidance systems. Therefore the model is
expanded by adding more states to some of the nodes. Going from e.g. two
values for the Missile node (Present/Not present) to 12 values (Not present and
11 different missile types) gives not only six times as many entries in the Missile
node dependency table, but also in the tables of all nodes dependent on the
Missile node.

This section describes a semi-automatic procedure for producing multi-dependency
tables, i.e. tables giving the dependency of multiple parents. For nodes hav-

5.4 Populating Dependency Tables 91

B b1 b2

a1 B(1, 1) B(1, 2)
a2 B(2, 1) B(2, 2)

Table 5.5: The B table.

ing more than one parent, dependency tables are created for each of the parent
nodes. The cells of these dependency tables are then multiplied with each other,
assuming that states in any two parent variables can be treated as independent.
This gives an initial value in the multi-dependency table.

To see how this works let A, B, and C be three nodes, with A being a child of
both B and C, as shown in Figure 5.11.

B C

A

Figure 5.11: A is dependent on B and C.

If A has the states a1, . . . , an, B has the states b1, . . . , bm, and C the states
c1, . . . , cl, then P (A|B) is an n × m dependency table (referred to as B) and
P (A|C) is an n × l dependency table (referred to as C). The values in these
tables are combined in an n × (m · l) table BC where the value at position
(i, j), i = 1, . . . , n, j = 1, . . . , m · l, is calculated as B(i, dj/le) · C(i, j mod l).
Tables 5.5, 5.6 and 5.7 show the dependency tables for n = 2, m = 2, and l = 3.

C c1 c2 c3

a1 C(1, 1) C(1, 2) C(1, 3)
a2 C(2, 1) C(2, 2) C(2, 3)

Table 5.6: The C table.

The table BC does not equal P (A|B, C), although it gives an approximation to
it. An example to illustrate, that BC will not always be a valid dependency
table follows. The B and C tables shown in Tables 5.8 and 5.9 are both valid de-
pendency tables, with the probability in each column of the two tables summing
up to 1. If the cells in these tables are multiplied according to the algorithm
previously described the resulting BC table is the one shown in Table 5.10.

As can be easily seen BC is not a valid dependency table since five of the

92 The Bayesian Network Approach

B b1 b2

C c1 c2 c3 c1 c2 c3

a1 B(1, 1)· B(1, 1)· B(1, 1)· B(1, 2)· B(1, 2)· B(1, 2)·
C(1, 1) C(1, 2) C(1, 3) C(1, 1) C(1, 2) C(1, 3)

a2 B(2, 1)· B(2, 1)· B(2, 1)· B(2, 2)· B(2, 2)· B(2, 2)·
C(2, 1) C(2, 2) C(2, 3) C(2, 1) C(2, 2) C(2, 3)

Table 5.7: The BC table.

B b1 b2

a1 1 0.25
a2 0 0.75

Table 5.8: The B table with values.

six columns do not sum up to 1. For the rightmost three columns this can
be handled by normalizing the values. Let BC∗ be the normalized table with
BC∗

i,j = BCi,j/
Pn

k=1 BCk,j , where i and k denote rows, and j denotes the
column. For the two leftmost columns this is not applicable since each of these
columns sum up to 0. By replacing each cell in these columns by a 1 before
normalizing, the resulting cells will all have the value of 1/n. The probability
interpretation of this is that ”no combination of A, B, and C states is possible”
has been replaced by ”all combinations of A, B, and C states have the same
probability”.

5.5 Structural Learning

As seen in Section 5.2.3 a BN is a way of representing a JPD in an intuitive
way. Populating the dependency tables requires a full JPD, or knowledge about
how to obtain it. If this knowledge is not available, methods exists to learn the
structure and dependencies in a BN from sample data.

Structural Learning (SL) is a method to automatically construct a BN on the
base of sample data faithfully representing the scenario to be modelled. Variants
of this method are described in e.g. [22] and [53]. The process of performing
SL with the HUGIN tool is illustrated in Figure 5.12 and described in Section
5.5.1. Section 5.6 describes how a BN is build using SL based on synthetic data
from a missile approach simulator.

5.5 Structural Learning 93

C c1 c2 c3

a1 0 0 1
a2 1 1 0

Table 5.9: The C table with values.

B b1 b2

C c1 c2 c3 c1 c2 c3

a1 0 0 1 0 0 0.25
a2 0 0 0 0.75 0.75 0

Table 5.10: Result of multiplying cells from B and C.

5.5.1 Structural Learning using HUGIN

Constructing a BN using the SL feature in HUGIN is done in three major steps:
preparing data from the domain, learning the structure of the BN, and finally
finding the probability distributions in the dependency tables of the nodes in
the BN. Each of these steps are divided into several sub-steps, as can be seen in
Figure 5.12. The three steps are described below.

Data Preparation. At first the data source is selected. Data may be read
from a text file, formatted as a table, where each column represents a
domain parameter, or it may be read from a relational database. If a
database is selected all joins between tables need to be described, so a
joint table can be generated. In the final part of this phase it is possible
to define replacements or discretisation of values for the given parameters,
or to exclude variables from the BN to be generated.

Structural Learning. Each of the parameters determined in the data prepa-
ration phase will be represented by a node in the constructed BN. The
first step in this phase is to describe known dependencies/independencies
between these nodes. The actual SL, which is the next step, will use this
predefined knowledge in constructing the BN. To perform the SL HUGIN
offers the use of two different algorithms, named PC and NPC. The PC
algorithm is briefly described in section 5.5.2. Both of these algorithms
need a preset level of significance for detected dependencies, and this can
be set before performing the SL step. After this step any structural un-
certainties found by the algorithm in use can be manually solved. As the
last step in this phase, HUGIN lets the user see how strong each of the
detected dependencies is.

Probability Distribution. To fill in the dependency tables a method named

94 The Bayesian Network Approach

Figure 5.12: Structural Learning using HUGIN. The boxes indicate the steps
involved in constructing a BN using the SL feature in HUGIN.

Estimation-Maximization (EM) is used. This method is described in sec-
tion 5.5.3. It uses the distributions of node values given in the sample
data. If other distributions of the parameters are to be used, it is possible
to set these distributions prior to the EM-step. The EM-method will make
the contents of the dependency tables reflect the distributions of the given
parameters in a number of iterations. Both the number of iterations and
a convergence threshold can be set using the HUGIN user interface.

5.5.2 The PC Algorithm

A BN consists of a set of nodes V and a directed acyclic graph G that connects
the nodes via a set of edges. An effective SL algorithm will find a graph G that
describes the relations obtainable from the sample data, without examining all
combinations of edges between nodes in V . Assuming that two nodes, A and B,
may have one of four different relations (A depends on B, B depends on A, A and
B depends on each other, or A and B are independent) the number of possible

5.5 Structural Learning 95

relations in a graph with n nodes is 4
�n
2

�
. Given that no cycles are allowed in a

BN reduces this number of combinations, although the number will still be too
large to make an exhaustive search through all of them feasible. For a network
with 12 variables the number of directed acyclic graphs is approximately 5.4·1039

[45].

With the HUGIN tool the graph can be constructed using either the PC3 or the
NPC algorithm4. The BN described in this work is constructed using the PC
algorithm, and hence it is the one described here. Descriptions of the algorithm
can be found in [28, 44, 45].

The PC algorithm performs four steps in learning the structure of a BN:

1. Find the conditional dependencies between nodes in the BN. This is ac-
tually done by finding all the pairs of nodes that are conditionally inde-
pendent, and then categorizing the pairs left as conditionally dependent.
The dependency between any two nodes, A and B, is examined given a set
of nodes SAB not including A and B. SAB of sizes ranging from 0 to 3 are
used. If A and B are conditionally independent given SAB, A⊥B|SAB, the
search for independency between A and B is halted, and an independency
relation between them is registered. This is tested by statistical tests using
a significance level set using the HUGIN user interface before initiating
the algorithm.

2. Identify the skeleton of the graph from the dependencies and independen-
cies found during step 1. The skeleton is the graph consisting of all the
dependencies without directions.

3. Find the graph colliders; these are nodes where arrowheads from multiple
arrows collide, i.e. they depend on multiple nodes. The colliders are
found using one rule: Consider three nodes, A, B, and C, where A and B
are connected, B and C are connected, and A and C are not connected.
If B /∈ SAC for any SAC satisfying A⊥C|SAC, then B is a collider. This is
illustrated in Figure 5.13.

4. Supply directions to all edges, thus making the graph directed. This is
done by repeated application of four rules to the edges in the graph. These
four rules are illustrated in Figure 5.14. The direction of the resulting ar-
row in the first rule follows from the fact that no collider was found. The
second, third, and fourth rules ensure that no cycles are introduced to

3The algorithm was described by Peter Spirtes and Clark Glymour and the letters PC are
the initials of the authors’ first names. The PC algorithm is developed from the SGS algorithm
described by P. Spirtes, C. Glymour, and R. Scheines.

4The NPC algorithm is an extension of the PC algorithm. The extension consists of a
Necessary Path Condition, hence the name.

96 The Bayesian Network Approach

A B C

(a) Before step two

A B C

(b) After step two

Figure 5.13: Identifying B as collider.

the graph. The fourth rule is only necessary if known dependencies/inde-
pendencies are introduced to the structure of the BN before the learning
process is initiated. The dashed line indicates that the nodes A and C has
a registered independency.

5.5.3 The EM Algorithm

A BN is described by a graph, G, showing the nodes and their interdependen-
cies, and a set of parameters, Θ, describing how states of a given node depend
on the states of the parents of this node. The PC algorithm generates a G for
the BN, and the EM algorithm is used to estimate Θ, thus populating the de-
pendency tables of the BN. The algorithm consists of two steps, the estimation
step (E-step) and the maximization step (M-step). These are used alternately
to produce adequate dependency tables. The algorithm is run for a number
of iterations, each iteration containing both an E- and an M-step, until some
given threshold is reached. With HUGIN this threshold is either the number
of iterations or a maximum difference between the results of two contiguous
steps. Both thresholds can be set in the HUGIN user interface. The algorithm
is described in detail in [25, 26, 28].

Let θijk describe the dependency between a state k in the node Xi, and the state
j of pa(Xi):

θijk = P (Xi = k | pa(Xi) = j)

The set Θ is the set of dependencies, Θ =
S

ijk θijk. The family set fa(Xi) of a

node Xi is given as fa(Xi) = Xi ∪ pa(Xi).

If data used in the parameter learning phase are complete, and faithfully cover
all situations possible for the BN to be constructed, the number of different
combinations of states within fa(Xi) may be used to calculate the probability
distribution of states in Xi. Since a BN is often constructed based on a more
sparse sample data set expected counts are used instead. In the E-step the

5.5 Structural Learning 97

A B C ⇒ A B C

(a) First rule

A B C ⇒ A B C

(b) Second rule

A B C

D

⇒
A B C

D

(c) Third rule

A

B

C

D

⇒ A

B

C

D

(d) Fourth rule

Figure 5.14: The four rules for adding orientation to edges in the BN during SL.

98 The Bayesian Network Approach

expected counts n∗ for each family fa(Xi) and parent pa(Xi) configuration of
every node Xi is computed based on the current counts n. This is done using
the function EΘ based on the current set of parameters Θ, and the sample data
D. Some details on the EΘ function can be found in [25].

n∗
fa = EΘ{nfa(Xi = k, pa(Xi) = j)|D}

n∗
pa = EΘ{npa(pa(Xi) = j)|D}

In the M-step n∗
fa and n∗

pa are used to update the parameters θ∗ijk, thus forming
a new set of parameters Θ∗ =

S
ijk θ∗ijk:

θ∗ijk =
n∗

fa

n∗
pa

In the next iteration the ”old” values in the algorithm are replaced by the ”new”
values: Θ← Θ∗, nfa ← n∗

fa, and npa ← n∗
pa.

5.6 Generating Data with Fly-In

A software package named Fly-In is used to generate sample data for the SL of
a BN to be used in the EW domain. The Fly-In software simulates the flight
of an IR guided missile towards an aircraft. It does so by taking models of an
aircraft, a missile, the image processing used in guiding the missile, and flares
dispensed from the aircraft, and combine these with motion models for aircraft
and missile to calculate the resulting missile approach. The calculations are
done in contiguous time steps where the resulting positions of missile, aircraft,
and possibly dispensed flares in one time step are used as input for the next
time step. For each time step the image that might be seen by an IR camera at
the tip of the missile is generated. The generated image is then analyzed to find
the possible target points for the missile to aim for. When flares are dispensed
they are also added to the generated image, and they will hence be included
as possible targets in the simulation of the missile approach. Concluding each
time step calculation the change in the trajectory of the missile is found, and
aircraft, flares, and missile are moved according to their motion models, before
calculations for the next time step is initiated. Some information on the Fly-In
software is given in Appendix E.

Each missile approach simulation is ended when either a preset maximal amount
of flying time is reached, or when the missile hits or passes the aircraft. If the
missile passes the aircraft Fly-In gives the estimated smallest distance between

5.6 Generating Data with Fly-In 99

them. Since a missile might be proximity fused the distance is used in the later
data processing.

Fly-In is used for simulating 600 missile approaches. Doing this on the laptop
PC described in Appendix E takes several days. A simulation is defined by
numerous parameters, all influencing the result. The simulations used in this
work include combinations of six parameters only, and thus the BN constructed
from the results of the simulations can contain seven nodes only, one for each
parameter, and one describing the result of the simulation. The resulting BN is
depicted in Figure 5.15.

Figure 5.15: The BN generated from Fly-In data. (Screenshot from HUGIN.)

Since the Fly-In software can only do missile simulations for IR guided missiles
it can not be used to generate dependency tables for the entire BN described
in 5.3.2. If the structure of the BN generated from the Fly-In had fitted inside
the existing BN model, it could replace parts of this model. Alas, this is not
the case, and the dependency tables in the existing model are instead populated
”by hand” and by using the method described in 5.4.1.

100 The Bayesian Network Approach

5.7 Testing

The model described in Section 5.3.2 consists of three layers. The testing of
this model is carried out by testing each of these layers. The tests is done by
instantiating nodes in a layer, registering the survivability, and then finding
the combination of countermeasures that will give the highest increase in the
survivability. The survivability is defined as the probability of the node Survive
being in the Survive state. Testing is done using the HUGIN software, and
whenever a node in the BN is instantiated the propagation of evidence is carried
out automatically.

At first it is tested how changes in the first layer, i.e. changes to the states
of the surrounding world, will affect the survivability found. Changes in the
surrounding world is modelled by instantiating states in the Missile and RF
source nodes. With |Missile| = 13 and |RF source| = 8 testing all combinations
of states within these nodes requires a total of 13 · 8 = 104 tests. To make fewer
tests, only combinations of 4 states for the Missile node and 3 states for the RF
source node are tested. The set of appropriate countermeasures is found for each
combination of states, and so are the increases in survivability when applying
these countermeasures. The results of these tests are given in Table 5.11. Here
the first two columns show the states initiated in the nodes mentioned, the third
column shows the survivability before countermeasures are applied, the fourth
column shows the best combination of countermeasures for the current threat
scenario, and the last column has the survivability when the countermeasures
have been applied. Countermeasures in the fourth column are only included
if they make a significant difference in the survivability, and countermeasures
improving the survivability with less than 0.01% are thus excluded. For all tests
the nodes representing the availability of countermeasures are instantiated so
that all countermeasures are available. The Manoeuvre node is also instantiated
so that a manoeuvre will always be performed.

It can be noted that with this model the survivability is very close to 100%
when no missile is launched. Launching a missile will give a large decrease in
survivability, and while using appropriate countermeasures always increases the
survivability, it will almost never get close to 100%. While these numbers may
seem plausible the tests do show some inconsistencies in the model: An SA-
2 missile is RF guided. Having the possible combination of the Missile being
instantiated in the SA-2 state while the RF source is instantiated in the None
state shows that these nodes must be dependent on each other, and having them
as being independent in the model is a flaw. Another flaw is that having the
jammer turned on will never increase the survivability. While it is true that in
some scenarios having the jammer turned off might increase the survivability,
since it can then not attract missiles being guided towards jammer emissions,

5.7 Testing 101

Missile: RF source: PS before: Countermeasures: PS after:
No missile None 100,00% None 100,00%
No missile X band 99,87% Flares 99,99%
No missile L band 99,90% Flares 99,99%
SA-2 None 40,88% Chaff 43,18%
SA-2 X band 64,97% Chaff, no jammer 67,73%
SA-2 L band 64,80% Chaff, no jammer 67,13%
Stinger Basic None 58,15% Flares 86,98%
Stinger Basic X band 59,37% Flares 91,09%
Stinger Basic L band 57,67% Chaff, flares 87,10%
HAWK None 57,42% Chaff 59,10%
HAWK X band 65,96% Chaff, no jammer 68,67%
HAWK L band 68,63% Chaff, no jammer 70,75%

Table 5.11: Testing the first layer of the BN model. Changing the surroundings
(the nodes Missile and RF source) influence the survivability (PS before). When
countermeasures are applied the survivability changes (PS after).

having it turned off will in general not have this effect. When RF radiation is
present, and no missile has been launched, the use of a jammer will generally
increase the survivability. This is not shown by the tests.

In testing the second layer of the model the influence on the survivability by
input from on-board systems is evaluated. This is done with combinations of the
states of the MWS, RWR, and Jammer nodes. Of the |MWS| · |RWR| · |Jammer| =
2 · 4 · 5 = 40 combinations of states in these nodes 2 · 3 · 2 = 12 are selected. The
circumstances with these tests are the same as for testing the first layer. The
results are shown in Table 5.12.

From these results it can be seen that having the RWR registering a radar lock
will give a remarkably low survivability. Even if proper countermeasures are
applied the survivability will not increase very much. The results also reveal
other inexpediencies with the survivabilities related to RWR warnings: If the
RWR detects a RF source, that is likely to be a threat, the survivability is higher
than if the RWR detects no RF source. When prior to using countermeasures
the survivability is at 100% no countermeasures can increase the survivability.
For all other test cases the use of proper countermeasures will increase the
survivability, although the size of this increase may be questionable.

Testing the first and the second layer shows the influence on changes in the
survivability. Since survivability is the probability of the third layer node Survive
being in the state Survive, tests of the third layer can show how changes to this
node influence the probability distribution in the rest of the BN. To do this

1
0
2

T
h
e

B
a
y
e
sia

n
N

e
tw

o
rk

A
p
p
ro

a
c
h

MWS: RWR: Jammer: PS before: Countermeasures: PS after:
No warning No warnings No RF waves 100,00% None 100,00%
No warning No warnings Hostile RF waves - no jamming 100,00% None 100,00%
No warning No warnings Hostile RF waves - jamming 100,00% None 100,00%
No warning RF source No RF waves 100,00% None 100,00%
No warning RF source Hostile RF waves - no jamming 100,00% None 100,00%
No warning RF source Hostile RF waves - jamming 100,00% None 100,00%
No warning Lock No RF waves 56,94% Chaff, flares, jammer 96,01%
No warning Lock Hostile RF waves - no jamming 21,97% Chaff, flares, jammer 48,34%
No warning Lock Hostile RF waves - jamming 19,97% Chaff, flares 31,54%
Warning No warnings No RF waves 99,88% Flares 99,96%
Warning No warnings Hostile RF waves - no jamming 80,26% Flares 93,63%
Warning No warnings Hostile RF waves - jamming 81,80% Flares 94,13%
Warning RF source No RF waves 99,99% Flares 100,00%
Warning RF source Hostile RF waves - no jamming 99,98% Flares 99,99%
Warning RF source Hostile RF waves - jamming 99,98% Flares 99,99%
Warning Lock No RF waves 11,00% Chaff, flares, no jammer 14,50%
Warning Lock Hostile RF waves - no jamming 8,74% Chaff, flares, jammer 11,92%
Warning Lock Hostile RF waves - jamming 8,72% Chaff, flares, jammer 11,81%

Table 5.12: Testing the second layer of the BN model. Changing the input from onboard systems (the nodes MWS, RWR
and Jammer) influence the survivability (PS before). When countermeasures are applied the survivability changes (PS

after). Notice that the PS values are smaller in the last row, where the jammer is turned on, compared to the PS values
in the second to last row, where the jammer is off. This may be due to the fact that the jammer is often treated as a
missile attractor, thus reducing the survivability when turned on.

5.7 Testing 103

Figure 5.16: The BN with the decision nodes replaced by ordinary nodes. Picture
exported from HUGIN

the decision nodes of the BN are converted into ordinary nodes with equal prior
probabilities for all states in each node. This BN is illustrated in Figure 5.16.

This part of the test is performed using the combinations of nodes and states
also used for testing the first and the second layer. At first the combinations of
states from the Missile and RF source nodes, as used for testing the first layer,
are tested again. Each test is performed by first instantiating the states in the
two nodes. This results in a survivability similar to that given in Table 5.11
(PS before). Instantiating the Survive node to the Survive state may result in
changes in the probability distributions of the three countermeasures. For chaff
and flares the probabilities of these being dispensed are registered, and for the
jammer the mode having the highest probability is registered. If instantiating
the Survive node suggests that either chaff or flares gets dispensed, or that
the jammer is set in a given mode, the Chaff, Flares, and Jammer nodes are
instantiated accordingly. With the countermeasure nodes being instantiated,
the Survive node is un-instantiated, and the resulting survivability (PS after) is
registered. These results are given in Table 5.13

Converting the decision nodes in the BN into ordinary nodes has no effect on the

1
0
4

T
h
e

B
a
y
e
sia

n
N

e
tw

o
rk

A
p
p
ro

a
c
h

Missile: RF source: PS before: Chaff: Flares: Jammer mode: PS after:
No missile None 100,00% 50,00% 50,00% All 33,33% 100,00%
No missile X band 99,87% 50,00% 50,06% All 33,33% 99,99%
No missile L band 99,90% 50,00% 50,04% All 33,33% 99,99%
SA-2 None 40,88% 52,81% 50,00% All 33,33% 43,18%
SA-2 X band 64,97% 51,88% 50,00% Off 33,99% 67,73%
SA-2 L band 64,80% 51,62% 50,00% Off 33,77% 67,13%
Stinger Basic None 58,15% 50,00% 74,79% All 33,33% 86,98%
Stinger Basic X band 59,37% 50,00% 76,71% All 33,33% 91,09%
Stinger Basic L band 57,67% 50,00% 75,52% All 33,33% 87,09%
HAWK None 57,42% 51,47% 50,00% All 33,33% 59,10%
HAWK X band 65,96% 51,82% 50,00% Off 33,97% 68,67%
HAWK L band 68,63% 51,40% 50,00% Off 33,72% 70,75%

Table 5.13: Testing the third layer of the BN model. The combinations of nodes and states are the same as for testing
the first layer.

5.8 Discussion 105

survivabilities found. This can be seen by comparing the values in the third (PS

before) and the last column (PS after) with the similar columns in Table 5.11.
The major difference between working with the BN containing decision nodes
and the BN without decision nodes is that with the latter a good combination
of countermeasures is found by instantiating the Survive node only.

In the final part of the BN test the combinations of states in the MWS, RWR,
and Jammer nodes, as used for testing the second layer, is tested again. Table
5.14 holds the results of these tests.

Comparing the PS values in Table 5.12 and Table 5.14 shows differences between
the survivabilities found. The PS values found before countermeasures are ap-
plied are identical, but after applying countermeasures they tend to be smaller
in Table 5.14. The reason for this is that instantiating the Survive node does not
guarantee that the best combination of countermeasures is found, and instanti-
ating the countermeasures in the BN without action nodes, according to the set
of countermeasures given in Table 5.12, will result in the same survivabilities as
given here.

5.8 Discussion

It seems that a BN can be useful in modelling a domain where not all knowledge
is categorical. In a DSS where decisions are based on uncertain observations
the uncertainties can themselves, if they can be estimated, become part of the
decision base. For the threat situation in a fighter aircraft the use of a BN seems
adequate since decisions here will often be based on imperfect data from sensors
on-board the aircraft. A reason for using a BN is that it is relatively easy to build
a model for the threat response situation, and that this model can be built to
reflect the uncertainties related to sensor output. The down side of using a BN

for modelling the threat situation is that it requires a vast amount of knowledge
to be represented in dependency tables in the BN.

Section 5.4.1 describes a semi-automatic method for populating dependency ta-
bles for nodes which depends on multiple parents. The method is not applicable
for populating single parent dependency tables, and to be applicable for mul-
tiple parent dependency tables it needs a dependency table set up for each of
the parents. The labour of finding proper values to populate these tables is not
diminished by this method, and the resulting multi-dependency tables are not
valid if the parents are interdependent.

Using the SL method described in Section 5.5 the dependency tables of the BN are

1
0
6

T
h
e

B
a
y
e
sia

n
N

e
tw

o
rk

A
p
p
ro

a
c
h

MWS: RWR: Jammer: PS before: Chaff: Flares: Jammer mode: PS after:

No warning No warnings No RF waves 100,00% 50,00% 50,00% All 33,33% 100,00%
No warning No warnings Hostile RF waves - no jamming 100,00% 50,00% 50,00% Rx 50,04% 100,00%
No warning No warnings Hostile RF waves - jamming 100,00% 50,00% 50,00% Auto 100,00% 100,00%
No warning RF source No RF waves 100,00% 50,00% 50,00% Off 98,61% 100,00%
No warning RF source Hostile RF waves - no jamming 100,00% 50,00% 50,00% Rx 50,09% 100,00%
No warning RF source Hostile RF waves - jamming 100,00% 50,00% 50,00% Auto 100,00% 100,00%
No warning Lock No RF waves 56,94% 50,13% 84,23% Off 38,68% 95,81%
No warning Lock Hostile RF waves - no jamming 21,97% 55,24% 74,69% Rx 57,23% 28,84%
No warning Lock Hostile RF waves - jamming 19,97% 56,05% 73,08% Auto 100,00% 31,54%
Warning No warnings No RF waves 99,88% 50,00% 50,04% Off 33,35% 99,96%
Warning No warnings Hostile RF waves - no jamming 80,26% 50,00% 58,33% Rx 50,07% 93,62%
Warning No warnings Hostile RF waves - jamming 81,80% 50,00% 57,53% Auto 100,00% 94,13%
Warning RF source No RF waves 99,99% 50,00% 50,00% Off 98,58% 99,99%
Warning RF source Hostile RF waves - no jamming 99,98% 50,00% 50,01% Rx 51,70% 99,99%
Warning RF source Hostile RF waves - jamming 99,98% 50,00% 50,01% Auto 100,00% 99,99%
Warning Lock No RF waves 11,00% 64,92% 50,75% Off 33,53% 14,50%
Warning Lock Hostile RF waves - no jamming 8,74% 67,48% 50,31% Rx 68,91% 11,82%
Warning Lock Hostile RF waves - jamming 8,72% 67,54% 50,20% Auto 100,00% 11.81%

Table 5.14: Testing the third layer of the BN model. The combinations of nodes and states are the same as for testing
the second layer.

5.9 Conclusion 107

populated regardless of the number of parents for each node. The drawback of
using this method is that it requires a dataset faithfully representing the domain
to model. If this dataset is available, either from real-world observations or from
synthetic data, e.g. based on simulations, the SL feature will produce a usable
BN or it will populate the dependency tables in an existing BN structure.

With both these methods the major part of the work is related to the gathering
of detailed data describing the domain. A large part of the knowledge necessary
for populating these dependency tables does either not exist or it is restricted
and thus unavailable. Therefore constructing a BN to represent the relations in
the EW domain for fighter pilots may become difficult or even impossible.

It is still possible to construct a simpler model that does not show the exact
relations from a real world scenario. While this model will have flaws in some
scenarios it may still be adequate for decision support in most situations.

In this work the HUGIN tool is used for both constructing the BN and for
updating it during tests whenever nodes receive evidence. This is done using
a graphical user interface, and while this seems fast it is difficult to evaluate
whether the real-time requirement described in Section 3.3 is met. As described
in Section 5.7 the model developed in this work has a small number of combina-
tions of actions, and finding the combination yielding the best survivability can
be done relatively fast. It is therefore assessed that the real-time requirement
can be fulfilled using a BN for decision support if proprietary software for han-
dling the necessary BN updates was written, so that time spent on e.g. updating
a graphical user interface can be avoided.

5.9 Conclusion

This works has shown that it is possible to construct a simple BN to model the
threat scenario and possible outcome of different combinations of countermea-
sures and manoeuvres for a fighter aircraft. The easy part of this is to define
relationships between variables/nodes in the domain, while the hard part is to
qualify these relationships by populating the dependency tables.

With a lack of real-world data the BN constructed is made on simple assumptions
and it suffers from obvious errors, e.g. that the probabilities for survival will
almost always be smaller than in a real-world scenario. Despite of this the tests
show that most times the proper combination of countermeasures is found using
the BN. It is not evident that this BN can be used in a DSS for fighter pilots,
since the model constructed in this work is based on imaginary values only. In

108 The Bayesian Network Approach

constructing a model for real-world use more elaborate data should be used.

It seems that using a BN for decision support in fighter aircraft can be considered
a viable approach only if necessary data describing the domain are available. If
this is the case it is estimated that a proper BN can be constructed to be used
for this purpose.

Chapter 6

The Mathematical Modelling

Approach

When a threat occurs for which expendable countermeasures are an appropriate
response these countermeasure may be applied to improve the survivability of
the aircraft. As an aircraft is equipped with a limited number of expendables
only, releasing all expendables at once may later bring the aircraft in a situation
where expendables are needed without being available. Knowledge about threats
that may engage the aircraft during a mission can help find the best overall use
of the expendables. In situations where non-expandable countermeasures may
offer nearly as good a protection as expendables, choosing the first over the
latter may increase the survivability of the aircraft for the whole mission.

This chapter introduces a survivability measure. Determining which combina-
tion of countermeasures that will give the aircraft the highest probability of
surviving a mission will be a matter of optimising this survivability measure.
The influence on this measure by a set of countermeasures is described. A
mathematical model to describe the countermeasures, temporal aspects about
their use, and their contribution to the survivability is developed. Optimising
the survivability for flights in a number of scenarios given is done by solving the
problem described by the mathematical model for these flights.

110 The Mathematical Modelling Approach

6.1 Motivation

With the Prolog program (Chapter 4) or the BN (Chapter 5) the best coun-
termeasure response can be found to the threat scenario at any given time. In
finding these responses the countermeasures are assumed instantly active and
the need for countermeasures at a later state in the mission is not considered.
Introducing these aspects to the problem of finding the highest survivability for
the aircraft may require the time frame of a mission to be discretised into a fi-
nite number of time steps. Finding the highest survivability for the pilot is then
accomplished by finding the optimal combination of survivabilities for each of
these time steps. To measure the survivability in each time step a survivability
measure can be introduced. This measure must be based on both the current
threat scenario and the countermeasures applied.

The problem of finding appropriate use of countermeasures during a mission
will also include the amount of expendable countermeasures available and the
restrictions imposed by e.g. the time it takes for the countermeasures to become
active. For every feasible solution to this problem a survivability can be found,
and the best solution will give the optimal survivability. For even very small
problems described by few time steps only, evaluating all possible solutions to
find the best will not be feasible due to the vast amount of solutions.

It will be possible to describe the countermeasures, how they are turned on, and
when they become active, with a mathematical model. Also their influence on
threats and the limitations set by the number of expendables available can be
described. Therefore it is chosen to describe the problem using a mathematical
model, which can then be solved to optimality.

6.2 Linear Programming

This section describes some basic theory on linear programming. Short intro-
ductions to both the CPLEX solver and to the General Algebraic Modeling
System (GAMS) are also given. Readers familiar with these subject are encour-
aged to skip this section and continue with Section 6.3.

An optimisation problem is described using a number of equations and inequal-
ities, and the optimal solution to the problem is the solution with the max-
imum/minimum value that satisfies the equations and inequalities describing
the problem. The problem is described using a number of variables and pa-
rameters. Parameters are static values used to describe the problem, and the

6.2 Linear Programming 111

variables are assigned values in the process of solving the problem. These val-
ues identify the problem solution. If the equations and inequalities contain only
linear relations between the variables the model is called a Linear Programming
model. If the solution is required to have only integer values for all variables
involved Integer Programming is used. Mixed Integer Programming models are
models where only a subset of the variables are required to be integer. Binary
variables are special cases of integer variables.

To see the benefits of a mathematical model consider the task of preparing a
fighter aircraft for a mission over enemy territory. The aircraft has a number
of stations, and each of these stations may hold either a missile or a pylon with
two canisters with flares. Let the two integer variables c and m describe the
number of canisters and missiles on-board the aircraft, and let the parameter s
be the number of stations on the aircraft. The relation between c, m, and s can
be described by:

1

2
· c + m ≤ s (6.1)

The aircraft should be prepared for both engaging enemy aircraft and for missile
attacks. Therefore, the inventory should contain at least three missiles and two
canisters of flares. This is described by:

m ≥ 3 (6.2)

c ≥ 2 (6.3)

Let s be the number of stations on the aircraft. With seven stations, s = 7, the
equations (6.1), (6.2), and (6.3) can be illustrated as the three lines in Figure
6.1. Here the triangle contains all the values of m and c that fulfil the three
equations. Since m and c are required to be integer, only 16 combinations of m
and c are valid.

Suppose the price of a missile is given by the parameter pm, and the cost of
filling a canister with flares is given by pc. Let C be the total cost of equipping
the aircraft for a mission. C is given by:

C = pm ·m + pc · c (6.4)

In finding the minimum cost for preparing the aircraft the equation (6.4) is
called the objective function and the equations (6.1), (6.2), and (6.3) becomes
constraints. The complete mathematical model is an integer program, and it is

112 The Mathematical Modelling Approach

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-1

0

1

2

3

4

5

6

7

8

c

m

m ≥ 3

c
≥

2

1
2 · c + m

≤ 7

Figure 6.1: Three inequalities describing the need for flares and missiles in
preparing an aircraft. The arrows describe where feasible solutions are found.
All feasible solutions can be found inside the gray triangle.

given as:

Minimise

C = pm ·m + pc · c

Subject to

1

2
· c + m ≤ s

m ≥ 3

c ≥ 2

m, c ∈ N

With positive values for pm and pc the minimum cost is found in the lower left
corner of the triangle in Figure 6.1, where m = 3 and c = 2.

6.2 Linear Programming 113

6.2.1 CPLEX

The problem described by the mathematical model derived in Section 6.2 can
be solved by visually inspecting the graph in Figure 6.1. For larger problems
finding the solution by drawing a figure will not be feasible; if the model has
more than two variables it may not even be possible to draw such a figure.
Mathematical problems can be solved using solver software. CPLEX is such a
solver, and it can be used to solve e.g. linear programs. More information on
CPLEX can be found in Appendix E.

To make CPLEX solve a mathematical problem, the problem can be formulated
in a file using the lp-format (lp for Linear Programming). Setting the prices for
missiles and flares to pm = 1000 and pc = 10 respectively, the problem of finding
the minimum cost for preparing the aircraft for a mission can be described by:

\ Finding the minimum cost when

\ preparing an aircraft for a mission

minimize

1000m + 10c

subject to

.5c + m <= 7

bounds

m >= 3

c >= 2

integer

m c

end

Having CPLEX solve the problem generates the following results:

Integer optimal solution: Objective = 3.0200000000e+03

Solution time = 0.00 sec. Iterations = 0 Nodes = 0

Variable Name Solution Value

m 3.000000

c 2.000000

The results state that having three missiles (m = 3) and two canisters of flares
(c = 2) will give the minimum total cost of 3020. These results are the same as
those found by inspecting the graphs in Figure 6.1.

114 The Mathematical Modelling Approach

6.2.2 GAMS

When problems get too large to be easily formulated using CPLEX, turning to
GAMS may make the formulation possible. GAMS is a high-level modelling sys-
tem for mathematical programming and optimisation. Problems may be written
in the GAMS language, and when submitted to GAMS calculations in the program
are performed, solvers such as CPLEX are invoked, and one or more output files
are generated. GAMS is ideal for fast prototyping of large scale modelling ap-
plications, since the developer may focus mainly on the mathematical model.
Implementing the problem in a program using a language such as C/C++, and
linked to a solver library, may improve the running time of the program, while
possibly increasing the time it takes to develop the model. In this work the com-
bination of solving a mathematical model with GAMS using CPLEX is referred
to as GAMS/CPLEX. The use of GAMS is described in [29]. More information
on GAMS can be found in Appendix E.

The CPLEX model from Section 6.2.1 describes the problem of preparing an
aircraft for a single mission. If more missions are planned, the constraints con-
tained in the model will occur for each mission, and more constraints for the
set of missions may appear. Instead of formulating every constraint for each
mission a more general formulation can be made using GAMS.

Let M be the number of missions to be modelled. The inequalities (6.1), (6.2),
and (6.3) will be repeated for every mission. This can be written by giving each
of the variables a mission index i, 0 < i ≤M :

1

2
· ci + mi ≤ s

mi ≥ 3

ci ≥ 2

Assume that the number of missiles available is fixed to a value a. This can be
described by:

MX
i=1

mi ≤ a.

Suppose the flares available are from an old batch. According to military pro-
curement no new flares will be acquired before all flares from the old batch has
been dispensed. There are enough old flares left to fill o canisters and all of

6.2 Linear Programming 115

these must be dispensed during the set of missions modelled:

MX
i=1

ci = o.

Next a GAMS program describing the requirements for preparing an aircraft for
a number of missions is shown. Here M = 5, a = 17, and o = 15. While writing
all constraints for the five missions in lp-format may use less line than the GAMS

program, the GAMS program will remain the same size if the number of missions
is changed to 50, 500, 5000, or more.

Sets

mis ’Mission’ / 1 * 5 /

;

Parameters

prMis ’The price of a missile’

prCan ’The price of a canister full of flares’

misAvail ’Number of missiles available’

flAvail ’Number of canisters that must be filled’

misReq ’Missiles required’

canReq ’Canisters required’

;

prMis = 1000;

prCan = 10;

misAvail = 17;

flAvail = 15;

misReq = 3;

canReq = 2;

Variables

totCost The total cost

m(mis) Number of missiles for the i’th mission

c(mis) Number of canisters for the i’th mission

;

Scalars

stations Number of stations on the aircraft / 7 /

;

Equations

obj Define objective function

stat(mis) Number of stations on the aircraft

minMis(mis) Minimum number of missiles for a mission

minCan(mis) Minimum number of canisters for a mission

maxMis Maximum number of missiles for all missions

116 The Mathematical Modelling Approach

allFl All flares left

;

obj .. totCost =e=

sum(mis, prMis*m(mis) + prCan*c(mis));

stat(mis) .. 0.5*c(mis)+m(mis) =l= stations;

minMis(mis) .. m(mis) =g= misReq;

minCan(mis) .. c(mis) =g= canReq;

maxMis .. sum(mis, m(mis)) =l= misAvail;

allFl .. sum(mis, c(mis)) =e= flAvail;

Model minCost /all/;

Solve minCost using mip minimizing totCost;

display m.L;

display c.L;

display totCost.L;

When solving the problem using GAMS/CPLEX the following is reported:

---- 44 VARIABLE m.L Number of missiles for the i’th mission

1 3.000, 2 3.000, 3 3.000, 4 3.000, 5 3.000

---- 45 VARIABLE c.L Number of canisters for the i’th mission

1 7.000, 2 2.000, 3 2.000, 4 2.000, 5 2.000

---- 46 VARIABLE totCost.L = 15150.000 The total cost

From here it can be seen that exactly three missiles are used for every mission.
For the first mission the aircraft will be equipped with seven canisters of flares.
These will occupy four stations, thus leaving three stations for the missiles.

6.3 The Framework

A mathematical model is developed for finding the optimal use of countermea-
sures during a flight. The model is described in Section 6.5. To test the model a
number of flight descriptions are needed. For this a framework for designing test
scenarios and generating flight descriptions is developed using MATLAB. This
is done for two reasons: first of all data about real-world scenarios are difficult
to obtain, and second, a threat scenario can be designed to test certain aspects
of the model.

A scenario is described in a two-dimensional world. It consists of a number of

6.3 The Framework 117

Figure 6.2: A scenario with two threats. The target is marked with an inversed
triangle (O), and each Intermediate Point (IP) is marked with a pentagram (9).
The target is placed in the upper right corner.

ground based radar threats, a target point, and a flight path given by a number
of positions, each known as an Intermediate Point (IP). The aircraft flies in
straight lines between the IPs in the order given. It is equipped with a number
of countermeasures, some of which are limited in their number of deployments.
Figure 6.2 shows a scenario with two threats and two IPs. The threats are shown
as circles indicating the range of each threat. The units on the axes describe
distances in metres.

Section 2.4 describes how ground based radar systems can have different modes,
and that a radar system will change mode when an aircraft is detected. The
ground based radars in this framework are simplified versions of real radar sys-
tems. A radar threat is here described by its location and its range/lethal
envelope. Three types of radars are used, and they differ only by their ranges
and their lethalities. The lethality describes how dangerous a threat is to the
aircraft. More details on the lethality measure is given in Section 6.4.1. The
lethality of a threat depends on the distance between the aircraft and the threat;
the closer the aircraft is to the threat the larger the lethality. Outside the range
of a threat the lethality is set to zero.

The pilot may use one of three countermeasures intended for RF threats only:
jammer, towed decoy, and chaff. All countermeasures are simplified version of
real-world countermeasures, and they are described next:

118 The Mathematical Modelling Approach

The jammer works by obfuscating any nearby threats. It works on a threat if the
aircraft is within the range of this threat. The jammer antenna is positioned so
it offers the biggest reductions if the threat is placed either in front of or behind
the aircraft. When close to the threat the jammer offers no reduction in the
threat lethality. The reduction increases as the aircraft gets further away from
the threat, and it reaches its peak when the aircraft is at the rim of the range
of the threat.

At any time the jammer will be in one of four states: off; on but not yet active;
on and active; and active while turning off. In the model the jammer has to be
in one of these states for a given period of time, i.e. for a given number of time
steps, before its transition into the next state. No upper limits exist on the time
the jammer should be off before it is turned on, or for how long it must be active
before being turned off. Turning the jammer on and off takes a preset period of
time, so a number of time steps is necessary on these transitional states. There
is no limit to the number of times the jammer can be turned on. If it does
not offer the best reductions it should not be turned on, since it may attract
unnecessary attention from threats.

The towed decoy works basically as a ”jammer on a string”. One of the main
differences between the on-board jammer and the towed decoy is the reductions
given by the use of the decoy. Since the decoy is towed behind the aircraft it has
the highest effect when the aircraft is flying away from the threats. It will be in
one of four states: off; on but not yet active; on and active; and severed while
the system is settling. It takes time for the decoy to become active since this
requires the unreeling of a wire connected to the decoy. The towed decoy will
stop jamming as soon as it has been turned off. It is assumed that the jammer
may continue to jam as long as it is not severed. While the jammer may be
turned on and off as often as necessary the number of towed decoys on-board
the aircraft is limited. When it is turned off the wire is cut and the decoy is
lost.

When chaff is dispensed it will form a cloud with a RCS comparable to that of
the aircraft. Once formed, the cloud will maintain its RCS for a while. Chaff can
be dispensed even if a chaff cloud is already formed. The frequency of dispensing
chaff is limited by a latency period between two contiguous dispensings and by
the amount of chaff available.

6.4 Optimise Survivability 119

6.4 Optimise Survivability

The aim of this work is to give the aircraft the highest probability of surviving
a mission as possible. Determining the probability of surviving, PS , is not a
trivial task, and a survivability measure, S, is introduced. No direct mapping
between S and PS is given, but the one is given by a monotonous bijection from
the other.

Determining a value of S over a time frame can be done by subdividing the
frame into a number of time steps, calculating the value for each of these steps,
and finally combining the values into a single value for that time frame. This is
described in the Sections 6.4.1 and 6.4.2. The optimal solution indicates when
each of the available countermeasures must be activated. The usage is described
for each of the time steps in the given time frame.

6.4.1 Lethality

The lethality experienced by the aircraft at any given time depends on the
threats given in the current scenario. Let T denote the number of time steps in
the time frame and let H be the number of threats in the current scenario. At
the time t, 0 < t ≤ T , the lethality given by the threat h, 0 < h ≤ H is defined
by three factors: the probability Pth of a ground based radar actually posing a
threat to the aircraft, the threat lethality Lth, and finally the current lethality
reduction Rth for the threat which depends on e.g. the countermeasures in use.

Knowledge about the presence of a threat may be the result of intelligence
reports or measurements done by on-board sensors. Both of these sources may
be more or less reliable, and the probability of a radar system posing a threat
may depend on the reliability of the source. A radar actually positioned in the
scenario may also be out of function, thus not posing a threat.

The reduction of the lethality of threat h to the time t depends on two parame-
ters: the angle towards the threat, αth and the distance between the threat and
the aircraft, ρth (see Figure 6.3). The distance between threat and aircraft is
measured as a percentage of the threat range, and since a threat has no lethality
outside its range the lethality is set to zero when ρth > 100%. In Figure 6.4 the
reductions of lethality for the three countermeasures are shown as functions of
both angle and distance.

The aircraft will always point in the direction of flight, i.e. towards the next
IP or the target. This is used when finding the angle between the aircraft

120 The Mathematical Modelling Approach

Figure 6.3: Angle α and distance ρ.

and a threat. The total reduction of threat lethality by a countermeasure is
the product of the reductions from angle and distance. Reductions can not be
added, and only the countermeasure with the highest reduction at any given
time is considered as the countermeasure to use. Any synergy effects that may
be obtained by combing available countermeasures are thus neglected. This is a
deliberate choice as estimating the effect of multiple countermeasures mitigating
a threat can then be avoided.

At any given time one of the countermeasures will be the one giving the best
reduction of lethality. Since no countermeasure is needed when the aircraft is
flying out of range of threats in the scenario a dummy countermeasure NoCm
is introduced to be chosen here. Let C be the set of available countermeasures
C = {Jammer, Decoy, Chaff, NoCm}. The modes of all countermeasures are de-
scribed by the vector MCt, e.g. MCt = (off while active; on and active; off; off)
which means that the jammer is off while still active, a towed decoy is both on
and active, and both chaff and NoCm are off to the time t. The total scenario
lethality experienced to the time t, Λt, is then given by:

Λt =
HX

h=1

Pth · Lth · (1 −Rmax
th (αth, ρth, MCt)) (6.5)

where Rmax
th (αth, ρth, MCt) is the best reduction of the lethality of threat h to

the time t offered by one of the countermeasures in C. This reduction depends
on the angle to the threat, αth, the distance to the threat, ρth, and the modes,
MCt, of the countermeasures available.

6.4 Optimise Survivability 121

Figure 6.4: Countermeasure reductions. The polar plots at the left show the
reductions as functions of the angle α, and the plots on the right shows the
reductions as functions of the distance ρ to the threat. Here the threat is
positioned in the middle of the plot at the point (50, 50).

122 The Mathematical Modelling Approach

6.4.2 Survivability

The relation between the lethality and the survivability at time t, St is here
defined as:

St = 1− Λt (6.6)

Since all factors in Λt have values between 0 and 1, both Λt and St will have val-
ues between 0 and 1. As stated earlier the survivability should not be mistaken
for the probability of survival, as the scope of St suggests.

Finding an overall survivability measure by combining the survivabilities over
time can be done in numerous ways. One way is by integrating the survivability
over time:

S =

Z
T

Stdt (6.7)

Discretising the time frame into time steps, the combination of the survivabilities
from each time step can be calculated as a sum:

Ssum =
TX

t=1

St (6.8)

If the aircraft flies the entire time frame outside the range of any threat, the
survivability in each time step is 1, and the sum of survivabilities then equals
the number of time steps. Since this value will be more than one if more than
one time step is used, the analogy to the PS is lost. If Ssum is normalized by
dividing it with the number of time steps in the time frame, it will have a value
between 0 and 1, and the analogy to the probability of survival is regained:

Ssum,norm =
1

T

TX
t=1

St (6.9)

Optimising Ssum may not ensure the aircraft the highest probability of surviv-
ing. In Figure 6.5 two courses with different development in scenario lethality
are compared. The graph in Figure 6.5(a) shows varying scenario lethality as
a function of time. This scenario lethality may be the result of the aircraft
approaching a threat without any active countermeasures, which gives the rise
in lethality. At some point in time the jammer may be turned on, which results
in a decline in scenario lethality. In Figure 6.5(b) the scenario lethality is kept
roughly constant, e.g. due to an active jammer. If the time steps are kept
sufficiently small Ssum is comparable to the area under the graphs. The area in

6.4 Optimise Survivability 123

6.5(a) is smaller than the area in 6.5(b), indicating that the first solution is the
best. The peaking lethality means that the survivability at this point reaches a
low, giving a low probability of surviving. Having low lethality for the rest of
the mission is of little importance to the pilot, if the momentary low probability
of surviving means that he will not survive the peak in lethality.

(a) Varying lethality. (b) Constant lethality.

Figure 6.5: Two courses with different development in lethality.

A good solution to finding the best use of countermeasures over time should
avoid time steps with low survivability. This suggests another survivability
measure where the object is to maximise the lowest survivability for a time step
during the time frame:

Smin = min
t≤T

St (6.10)

Maximising the Smin ensures that the value of the lowest survivability over time
will be as high as possible. Since a low survivability may be unavoidable in some
scenarios, maximising Smin will not necessarily choose the solution with the best
survivability for all other time steps than the one with the lowest survivability.

Although St should not be mistaken for PS , it may in some ways be treated like
a probability measure. Since the probability of surviving any time steps past a
given time step, t0, depends on surviving all prior time steps, including t0, the
survivability can be given as the product of survivabilities for each time step:

Sprod =
TY

t=1

St (6.11)

As St has a value between 0 and 1 so has Sprod. Interpreting St as a probability
makes Sprod the probability of surviving the entire time frame.

It is the subjective assessment of the author that Sprod is the best survivability
measure introduced. Despite of this Ssum and Ssum,norm are the survivability
measures chosen for further work. These are chosen since it is assumed that
calculating the survivability using addition only, as in both Ssum and Ssum,norm,

124 The Mathematical Modelling Approach

will be slightly faster than using multiplication as in Sprod. The survivability
measure chosen for the mathematical model will be the same as the one used
by the metaheuristics in Chapter 7. Here the time it takes to calculate the
survivability may have a substantial effect on the results found.

6.4.3 Distribution of Time Steps

The time frame for the most critical part of a mission will usually be no more
than three to five minutes. To find the survivability within this amount of time
the time frame is divided into a number of time steps. The route for the mission
is sampled with this number of time steps, and the position of the aircraft is
found for each time step. From these positions the distances and angles to
threats in the scenario are found, and the survivability is calculated. Figure 6.6
shows a flight with 19 sampled positions.

0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Figure 6.6: 19 positions on a simple route.

It is a requirement that the system can deliver solutions to changes that has
occurred within the last 200 milliseconds. It may therefore seem reasonable to
suggest the length of each time step to be no more than 200 milliseconds. For
each minute of flight this will add 300 time steps to the time frame. Assuming
that the aircraft will be within the range of threats for no more than five minutes
during a mission, the total number of time steps within the time frame will not
be more than 1500. According to tests described in Section 6.7 the survivability
found for a flight may not vary much if this number is reduced.

6.4 Optimise Survivability 125

The time steps in this work are distributed evenly over the time frame. While
this makes the sampling of location points easy it may not be the best way to
distribute the time steps. If the aircraft is within the lethal range of a threat
the pilot must focus on this threat for more reasons: if he does not survive the
encounter with this threat he will not survive encounters with future threats
either, and the probability of this threat actually posing a threat is likely to
be higher than for any threats that may or may not be encountered later on.
Focussing on threats in the near future may be reflected in the distribution of
time steps. This can be done by sampling the first period of time, e.g. the next
30 seconds, with a higher frequency, the next couple of minutes with a lower
frequency, and finally having only a few samples in the last part of the time
frame.

Keeping the focus on the actions in the near future can also be done by weight-
ing contributions from early time steps higher in the survivability measure. This
can e.g. be done in the estimation of the probability for each threat. Like with
the unevenly distribution mentioned before meeting threats in the far future
will have only minor influence on the survivability found. The down side to
this approach is that the benefit from optimising the use of expendable counter-
measures may be reduced. This has to be considered when introducing either
uneven distribution or weighing of time steps.

6.4.4 Deployment Scheme

A solution to the problem of finding the best use of countermeasures takes the
form of a deployment scheme. In a deployment scheme two columns describe
each of the countermeasures. The one column indicates the time steps in where
the countermeasure is active and the other column describes when the counter-
measure is turned on/dispensed. Figure 6.7 shows such a deployment scheme.

When a countermeasure is active it will remain so for a number of time steps.
Each of these collections of time steps is called a deployment interval. For the
towed decoy the maximum number of deployment intervals equals the number
of decoys on-board the aircraft. If the towed decoy is not needed for a short
period of time during flight, it may be necessary to keep it active to avoid using
more decoys than are available. For chaff a deployment interval can consist of
more chaff dispensings.

126 The Mathematical Modelling Approach

J
a
m

m
er

is
o
n

J
a
m

m
er

is
a
ctiv

e

D
ecoy

is
d
ep

loy
ed

D
ecoy

is
a
ctiv

e

C
h
a
ff

is
d
isp

en
sed

C
h
a
ff

clo
u
d

is
fo

rm
ed

×
×
×
×
×

×
×
×
×

...
...

...

×
×
×
×
×
×

×
×
×

...
...

...

×

×
×
×

Figure 6.7: A deployment scheme showing the status of each of the countermea-
sures at every time step. Here the countermeasures are active one at a time.
They can be active simultaneously, e.g. if they counter different threats.

6.5 Modelling the Problem 127

6.5 Modelling the Problem

Ssum,norm is chosen as the survivability measure to optimise in the mathemati-
cal model. This is chosen over Ssum since comparing results for flights having
different number of time steps is more difficult using the latter. For simplicity
Pth is set to 100% during the time steps where the aircraft is within the range
of the threat h, while it is set to 0% when flying outside the range of the threat.
This in effect reduces the need for estimating Pth in finding the lethality. Values
for the threat lethalities and the lethality reductions as functions of both ρ and
α are found in look-up tables. These tables are constructed for testing purposes
only, and they do not necessarily reflect any real-world behaviour.

Parameters used in the model can be divided into scenario related and inde-
pendent parameters. The scenario related parameters describe the distances
and angles between the aircraft and each of the threats at any time step. The
scenario independent parameters describe the general reductions by any of the
countermeasures as functions of both distance and angle.

6.5.1 General Constraints

The time frame contains T time steps, and the scenario describes H threats. The
survivability to maximize is Ssum,norm as defined in (6.9). From the survivability
a penalty term P is subtracted. This penalty is introduced to ensure that
all countermeasures are on and active for the necessary time steps only. The
following sections describe the penalties included in P . Every penalty in P is
weighted with a small value ε. This is chosen so that the difference between
the survivability and the objective function is relatively small even when a large
number of penalties are included in the latter. The objective function is given
as:

max Z = Ssum,norm − P (6.12)

The survivability Ssum,norm is given by:

Ssum,norm =
1

T

TX
t=1

(1 − Λt) (6.13)

The scenario lethality in the time step t, Λt, is defined by:

Λt =
HX

h=1

Pth · Lth · (1−Rmax
th (αth, ρth, MCt)) (6.14)

128 The Mathematical Modelling Approach

The variable Rmax
th is the value of the reduction of lethality of the threat h to

the time step t. It takes the highest possible value of the reduction of one of the
countermeasures. RJ

th is the reduction from the jammer, RD
th is the reduction

from the decoy, and RC
th is the reduction from chaff. The values of these are

calculated from the distances and angles to the threats in the scenario. Since
other constraints may prevent the countermeasure with the highest reduction
from being active, simply assigning the highest value of RJ

th, RD
th, and RC

th may
not be correct.

Let the binary variables AJ
t , AD

t and AC
t describe if the countermeasures are

active to the time t. The variables describe the states of the jammer, the
towed decoy, and chaff respectively. With these variables the value of Rmax

th is
calculated as:

Rmax
th = max{RJ

thAJ
t , RD

thAD
t , RC

thAC
t } (6.15)

Expressing (6.15) using inequalities gives the following constraints:

Rmax
th ≤ RJ

thAJ
t + M(1− aJ

th) (6.16)

Rmax
th ≤ RD

thAD
t + M(1− aD

th) (6.17)

Rmax
th ≤ RC

thAC
t + M(1− aC

th) (6.18)

Rmax
th ≤ M(1− aN

th) (6.19)

Here acm
th is a binary variable describing the use of the countermeasures. The

superscript on a indicates the countermeasure (J = jammer, D = decoy, C =
chaff, and N = NoCM). It has the value 1 if cm is the active countermeasure
yielding the highest reduction of the lethality of threat h to the time t, and 0
otherwise.

For each threat h, only one countermeasure is reducing the lethality to the time
t. To ensure that exactly one countermeasure is assigned to mitigate each threat,
the following constraint is introduced:X

cm∈C

acm
th = 1 (6.20)

When flying outside the range of a threat no real countermeasure will be de-
ployed, i.e. the dummy countermeasure NoCM must become active. Let ρth

describe the distance between the aircraft and the threat h to the time t. ρth

has a value less than or equal to 1 when the aircraft flies within the range of
the threat, and it is more than 1 when flying outside the range. The param-
eter ρ∗th is introduced as a distance that can not have a value greater than 2:
ρ∗th = min(ρth, 2). Assigning a value to the binary variable aN

th, indicating when

6.5 Modelling the Problem 129

no countermeasure should be deployed, is done by the constraints:

aN
th ≤ ρth (6.21)

aN
th ≥ ρ∗th − 1 (6.22)

6.5.2 Generic Time-related Constraints

After a countermeasure has been turned on, it takes a while for it to become
active. The state of a countermeasure is described with at least two decision
variables for each time step, one indicating if the countermeasure is turned on,
and one indicating if it is active. Most of the constraints in the model describe
the relations between these two variables.

The need for a countermeasure being active may be expressed in non-contiguous
time steps, as illustrated in Figure 6.8.

Time

Active

Inactive

Figure 6.8: Example of the need for a countermeasure being active. The need
is defined by the presence of threats in the scenario.

Some countermeasures will not be active to a given time unless they are turned
on some time in advance, and they may need to be active for another period of
time while turning off. It can therefore be necessary to keep the countermeasure
active for longer time than it is required by the scenario.

Figure 6.9 shows the relations between two binary variables, Ot and At, for a
given countermeasure to the time t. Ot has the value 0 when the countermeasure
is turned off, and the value 1 when it is turned on. The variable At indicates
if the countermeasure is active, At = 1, or not, At = 0, in the time step t.
The time it takes from a countermeasure is turned on at t = t0, Ot0 = 1, to
it becomes active at t = t1, At1 = 1, is given by the number of time steps
Tstart = t1 − t0. When it is again turned off, Ot2 = 0, it takes another period of
time, Tend, before it stops being active at t3.

The variables describing the status of a countermeasure should be 0 unless
explicitly set to 1. This is to ensure that a countermeasure is not turned on, or
being active, unless there is a need for it. It is ensured by subtracting a penalty

130 The Mathematical Modelling Approach

Time

At

Ot

t0 t1 t2 t3

Tstart Tend

Figure 6.9: The binary variables describing when a countermeasure is turned
on (O = 1), and when it is active (A = 1).

value from the objective function whenever the value of one of these variables
is set to 1.

In general the deployment of a countermeasure can be described in five phases,
as shown in Figure 6.10. In the first phase the countermeasure is not turned on,
and it is thus not active either. The next phase describes the time that goes from
the countermeasure is turned on and until it becomes active. This phase has
a fixed duration that depends on the countermeasure. The situation where the
countermeasure is both turned on and being active is given in the third phase.
The duration of this phase depends on the need for the countermeasure being
active, and it is determined by the presence of threats. Usually this phase will
endure for a period much longer than that of the second phase. In the fourth
phase the countermeasure has been turned off, and it continues to be active for
a fixed period of time. The fifth phase describes again the situation where the
countermeasure is neither turned on or active. This phase is also the first phase
of the next deployment of the countermeasure. Of the three countermeasures
described here only the jammer will follow all of the five phases.

Time

At

Ot

I II III IV V

Figure 6.10: The five phases of a countermeasure deployment.

6.5 Modelling the Problem 131

The binary variable O′
t is introduced to describes when the countermeasure gets

turned on, i.e. when the second phase of the deployment commences. The vari-
able is assigned the value 1 exactly in the time step where the countermeasure
gets turned on, and 0 in all other time steps. To find the number of times the
countermeasure has been turned on during an entire mission, one needs only to
count the number of time steps where O′

t = 1.

The binary variable O′′
t is introduced to describe when the countermeasure is

again turned off, i.e. when the fourth phase begins. Here O′′
t is 1 in the time

step where the countermeasure gets turned off, and 0 otherwise. The relations
between the variables Ot, O′

t, and O′′
t are illustrated in Figure 6.11.

Time

O′′
t

O′
t

Ot

Figure 6.11: The binary variables O′
t and O′′

t describe when the countermeasure
is turned on and off.

The value of O′
t is 1 exactly when the countermeasure is turned on. The coun-

termeasure must be turned on Tstart time steps before becoming active, i.e.
At+Tstart = 1 and At+Tstart−1 = 0. This can be described by the constraints:

O′
t ≥ At+Tstart − At+Tstart−1 (6.23)

O′
t ≥ 0 (6.24)

Since O′
t is a binary variable, and it can have the values 0 and 1 only, the

constraint in (6.24) is not needed. To ensure that the value of O′
t is 0 during all

remaining time steps, a penalty value is subtracted from the objective function
whenever the value of O′

t is 1, as with At and Ot.

The value of O′′
t can be found using the constraint:

O′′
t ≥ Ot−1 −Ot (6.25)

This will ensure that O′′
t has the value 1 whenever the countermeasure gets

turned off. Subtracting a penalty value from the objective function whenever
the value of O′′

t is 1 will again limit the number of time steps where the value
of O′′

t is 1.

132 The Mathematical Modelling Approach

During the first phase the values of Ot and At are set to 0 by their inclusion in
the objective function. In the second phase it must be ensured that the value
of Ot is set to 1 for all values of t within this phase. This can be formulated as:

O′
t = 1⇒ Ot = . . . = Ot+Tstart−1 = 1

m

O′
t = 1⇒

t+Tstart−1X
j=t

Oj = Tstart

m

t+Tstart−1X
j=t

Oj ≥ Tstart ·O
′
t (6.26)

It is not possible to turn off the countermeasure before it has been turned on
for at least Tstart time steps. Therefore it is not possible to assign a value of 1
to O′′

t for any t within the second phase. Since the value of Ot can not become
0 within this phase, this requirement is implicitly fulfilled.

In the third phase of deployment the countermeasure should be both turned on
and active. The start of this phase can be found by counting the number of
time steps the countermeasure has been turned on, and set At to 1 when this
count exceeds Tstart. Let Ct be an integer variable that is incremented with 1 for
each time step for as long as the countermeasure is on, Ot = 1, starting from 0.
When the countermeasure is turned off again, the value of Ct returns to 0. The
relations between the variables Ot, At, and Ct are illustrated in Figure 6.12.

With the introduction of Ct the value of At can be set by the constraint:

Tmax ·At ≥ Ct − Tstart (6.27)

Here Tmax is a big number that ensures that the left-hand side of the inequality
is greater than the right-hand side whenever the Ct is greater than Tstart. It
describes the maximum number of time steps the countermeasure can be on,
and since it may be so for the entire mission, Tmax can be set to the number of
time steps T in the problem description, i.e. Tmax = T .

Ct is defined by the following constraints, which are almost similar to constraints
described in [9]:

Ct ≤ Ct−1 + 1 (6.28)

Ct + Tmax(1−Ot) ≥ Ct−1 + 1 (6.29)

Ct − Tmax ·Ot ≤ 0 (6.30)

Ct ≥ 0 (6.31)

6.5 Modelling the Problem 133

Time

At

Ct

. .
.

Ot

Tstart

Figure 6.12: Relations between the variables Ot, At, and Ct during the second
and third phase.

The constraints (6.28) and (6.29) will increment Ct with 1 for each time step as
long as the countermeasure is on. Ct must have the value 0 when the counter-
measure is turned off, and this is ensured by the constraints (6.30) and (6.31).

To ensure that the countermeasure is kept turned on for the duration of the third
phase the value of O′′

t can be related to the time where the countermeasure is
no longer active. This is done by:

At+Tend
≤ 1−O′′

t (6.32)

The fourth phase, where the countermeasure is active for Tend time steps while
it has been turned off, bear some similarity to the second phase. The phase is
started when the countermeasure gets turned off, i.e. O′′

t = 1, and it can be
described by the constraint:

t+Tend−1X
j=t

Aj ≥ Tend ·O
′′
t (6.33)

As it is not possible to turn off the countermeasure during the second phase, it
is also not possible to turn it on again during the fourth phase. Since constraint
(6.33) does not include Ot this has to be stated explicitly. This is done by:

t+Tend−1X
j=t

Oj ≤ Tend · (1−O′′
t) (6.34)

134 The Mathematical Modelling Approach

If Tstart and Tend is of the same size for a given countermeasure, all relations
between Ot and At may be described using a single constraint:

At = Ot−Tstart (6.35)

Since Tstart and Tend will often have the magnitude of a few seconds, while the
countermeasure may be active for several minutes, assuming equality between
Tstart and Tend will introduce only a minor error in the model. The use of
a single constraint such as (6.35) is likely to decrease the computation time
for finding the optimal solution, and it is thus beneficial to use this instead.
The original formulation of dependencies between At and Ot will ensure that
if a countermeasure can not be turned both off and on in between deployment
intervals, it will remain on. The constraint in (6.35) will not insure this. On
the contrary, gaps in At will be repeated in Ot.

6.5.3 Jammer-related Constraints

The status of the jammer can be described using the five phases mentioned
above. The binary variable telling if the jammer is turned on or off to the time
t is called OJ

t , and whether it is active or not is given by the binary variable AJ
t .

The time it takes for the jammer to become active after it has been turned on
is called TJA, and the number of time steps it will remain active after having
been shut down is called TJS . Relations between the variables OJ

t and AJ
t , and

the parameters TJA and TJS are illustrated in Figure 6.13.

Time

AJ
t

OJ
t

TJA TJS

Figure 6.13: The relations between turning the jammer on/off and it being
active.

The binary variables O′J
t and O′′J

t are introduced to indicate when the jammer

6.5 Modelling the Problem 135

is turned on and off, respectively. They are defined by the constraints:

O′J
t ≥ AJ

t+TJA
−AJ

t+TJA−1 (6.36)

O′′J
t ≥ OJ

t−1 −OJ
t (6.37)

Both OJ
t and AJ

t are included in the objective function, and their values during
the first phase are thus set to 0. In the second phase the jammer has been
turned on and it can not be turned off for TJA time steps. This is controlled by
the constraint:

t+TJA−1X
j=t

OJ
j ≥ TJA ·O

′J
t (6.38)

In the third phase the value of AJ
t is controlled by the integer variable CJ

t which
counts the number of time steps since the jammer was turned on. Keeping the
countermeasure turned on, the definition of CJ

t , and the relation between CJ
t

and AJ
t are given by the constraints:

CJ
t ≤ CJ

t−1 + 1 (6.39)

CJ
t + T (1−OJ

t) ≥ CJ
t−1 + 1 (6.40)

CJ
t − T ·OJ

t ≤ 0 (6.41)

CJ
t ≥ 0 (6.42)

T ·AJ
t ≥ CJ

t − TJA (6.43)

AJ
t+TJS

≤ 1−O′′J
t (6.44)

(6.45)

The fourth phase begins when the jammer is shut down. This phase endures
for TJS time steps during which the jammer will remain active, AJ

t = 1, while
it can not be turned on again, OJ

t = 0. This is described by the constraints:

t+TJS−1X
j=t

AJ
j ≥ TJS ·O

′′J
t (6.46)

t+TJS−1X
j=t

OJ
j ≤ TJS · (1−O′′J

t) (6.47)

6.5.4 Decoy-related Constraints

As with the jammer the towed decoy will become active some time after it has
been deployed. A difference between the jammer and the decoy is, that the

136 The Mathematical Modelling Approach

decoy stops working as soon as it is severed. Although no towed decoy is active,
the system controlling the decoys needs to settle for a period of time before
the next decoy can be deployed. The variables for describing the status of the
towed decoy are: OD

t (is the decoy deployed), AD
t (is the decoy active), O′D

t

(the decoy gets deployed), O′′D
t (the decoy gets severed), and CD

t (for how long
has the decoy been deployed). Figure 6.14 illustrates the relations between the
variables and the time parameters: TDA, the time it takes for a deployed decoy
to become active, and TDR, the time it takes for the system to settle when a
decoy has been released.

Time

AD
t

OD
t

TDA TDR

Figure 6.14: The relations between deploying the towed decoy and it being
active.

For the first three phases of the deployment most constraints for the towed decoy
are similar to the constraints for the jammer. The main differences are that OJ

t

is replaced by OD
t , AJ

t by AD
t , etc.

O′D
t ≥ AD

t+TDA
−AD

t+TDA−1 (6.48)

O′′D
t ≥ AD

t−1 −AD
t (6.49)

t+TDA−1X
j=t

OD
j ≥ TDA ·O

′D
t (6.50)

CD
t ≤ CD

t−1 + 1 (6.51)

CD
t + T (1−OD

t) ≥ CD
t−1 + 1 (6.52)

CD
t − T ·OD

t ≤ 0 (6.53)

CD
t ≥ 0 (6.54)

T · AD
t ≥ CD

t − TDA (6.55)

OD
t ≥ AD

t (6.56)

For the towed decoy the fourth phase begins when the decoy is released. During
the TDR time steps of this phase the released decoy is not active, and no new

6.5 Modelling the Problem 137

decoy can be deployed. Having a penalty value subtracted from the objective
function for each time step t in which AD

t = 1 will ensure that the decoy is not
set as active during this phase. That no new decoy gets deployed is ensured by:

t+TDR−1X
j=t

OD
j ≤ TDR · (1−O′′D

t) (6.57)

A maximum of KD towed decoys can be deployed during the mission. Since
O′D

t has the value 1 each time a decoy gets deployed, this is given by:

TX
t=1

O′D
t ≤ KD (6.58)

6.5.5 Chaff-related Constraints

The dispensing of chaff will not follow the five phases of countermeasure deploy-
ment previously presented. Dispensing of chaff is initiated during a single time
step, and after a short period of time a chaff cloud is formed behind the aircraft.
This cloud will last for another period of time before being dissipated. After
dispensing chaff the next dispense may take place after a short latency period,
regardless of whether the first cloud is yet formed, or if the effect of it has gone.
The binary variables OC

t and AC
t describes the use of chaff to the time t. OC

t

is 1 only during the time steps where chaff dispensing is initiated, and AC
t is 1

when a chaff cloud is formed and potentially having an effect.

Three parameters describe the periods of time involved in chaff dispensing.
TCF is the time it takes for a chaff cloud to be formed after chaff dispensing is
initiated, TCD denotes the duration of a chaff cloud, before it is dissipated, and
TCL is the latency between contiguous chaff dispensings. The relations between
these parameters and the variables OC

t and AC
t are illustrated in Figure 6.15

When chaff is dispensed, the chaff cloud will be formed after TCA time steps,
and it will dissipate after another TCD time steps. This can be expressed as:

OC
t = 1⇒ AC

t+TCF
= . . . = AC

t+TCF +TCD−1 = 1

m

OC
t = 1⇒

t+TCF +TCD−1X
j=t+TCF

AC
j = TCD

m

138 The Mathematical Modelling Approach

Time

AC2

t

AC1

t

OC
t

TCF

TCL TCD

Figure 6.15: The relations between dispensing chaff and a chaff cloud being
formed. AC1

t and AC3

t are set to 1 when the cloud is formed after the first and

second dispensing respectively. The value of AC
t is 1 if either AC1

t or AC2

t is 1.

t+TCF +TCD−1X
j=t+TCF

AC
j ≥ TCD ·O

C
t (6.59)

If no chaff has been dispensed for a while, a chaff cloud is no longer formed:

OC
t−TCD−TCF +1 = 0 ∧ . . . ∧OC

t−TCF
= 0⇒ AC

t = 0

m

AC
t ≤

t−TCFX
j=t−TCD−TCF +1

OC
j (6.60)

No chaff dispensing can be initiated for TCL steps after the previous dispensing
has taken place:

OC
t = 1⇒ OC

t+1 = . . . = OC
t+TCL

= 0

m

OC
t = 1⇒

t+TCLX
j=t+1

OC
j = 0

m

t+TCLX
j=t+1

OC
j ≤ TCL(1−OC

t) (6.61)

6.5 Modelling the Problem 139

As with the towed decoy, chaff can only be deployed a limited number of times.
For chaff this number is KC . Chaff dispensing is initiated during a single time
step, and the number of time steps in where a dispensing is initiated may not
exceed KC .

TX
t=1

OC
t ≤ KC (6.62)

6.5.6 The Model

The model for optimising the use of countermeasures over time consist of the
objective function given in (6.12), and the set of constraints described in Sec-
tions 6.5.1 through 6.5.5. The Table 6.1 shows the constants, parameters, and
variables used in the model.

Constants:
H Number of threats in the scenario
KC Maximum number of chaff dispensings
KD Maximum number of decoys to be deployed
M A big number
T Number of time steps in the given time frame
TJA The time it takes for the jammer to become active after being

turned on
TJS The time it takes for the jammer to stop jamming after being

turned off
TDA The time it takes for a deployed decoy to become active
TDR The time it takes to release a decoy
TCF The time it takes to form a chaff cloud after chaff has been

dispensed
TCD The duration of a chaff cloud
TCL Latency time between two contiguous chaff dispensing
ε Penalty value subtracted
Parameters:
ρth The distance between the aircraft and the threat h to the

time t
ρ∗th The minimum of the distance and the value 2
αth The angle between the aircraft and the threat h to the time

t
Pth The probability of a radar h posing a threat to time t
RJ

th The jammer reduction of lethality for threat h to the time t

Table 6.1: Constants, parameters, and variables used in the mathe-
matical model.

140 The Mathematical Modelling Approach

RD
th The towed decoy reduction of lethality for threat h to the

time t
RC

th The chaff reduction of lethality for threat h to the time t
Variables:
OJ

t Is 1 when the jammer is turned on
O′J

t Is 1 exactly when the jammer gets turned on
O′′J

t Is 1 exactly when the jammer gets turned off
CJ

t Count for how long the jammer has been on
AJ

t Is 1 if the jammer is active
OD

t Is 1 if a decoy is deployed
O′D

t Is 1 exactly when the decoy gets deployed
O′′D

t Is 1 exactly when the decoy gets severed
CJ

t Count for how long the towed decoy has been deployed
AD

t Is 1 if the decoy is active
OC

t Is 1 when chaff are dispensed
AC

t Is 1 if a chaff cloud is formed
Z The objective value
Ssum,norm The survivability measure
Rmax

th Maximum reduction of lethality for threat h to time t
Lth The lethality of threat h experienced at time t
aJ

th Determines if the jammer is mitigating threat h to time t
aD

th Determines if the towed decoy is mitigating threat h to time
t

aC
th Determines if chaff is mitigating threat h to time t

aN
th Determines if the no countermeasures are mitigating
P The total penalty

Table 6.1: Constants, parameters, and variables used in the mathe-
matical model.

The problem, which is hereafter referred to as the Countermeasure Optimisation
Problem (CMOP), is described by the compiled model given below.

Maximize

Z = Ssum,norm − P

Subject to

P =
TX

t=1

ε · (OJ
t + O′J

t + O′′J
t + AJ

t +

OD
t + O′D

t + O′′D
t + AD

t + OC
t + AC

t)

6.5 Modelling the Problem 141

Ssum,norm =
1

T

TX
t=1

(1 − (
HX

h=1

Pth · Lth · (1−Rmax
th)))

Rmax
th ≤ RJ

thAJ
t + M(1− aJ

th) ∀ t, h

Rmax
th ≤ RD

thAD
t + M(1− aD

th) ∀ t, h

Rmax
th ≤ RC

thAC
t + M(1− aC

th) ∀ t, h

Rmax
th ≤M(1− aN

th) ∀ t, hX
cm∈C

acm
th = 1 ∀ t, h

aN
th ≤ ρth ∀ t, h

aN
th ≥ ρ∗th − 1 ∀ t, h

O′J
t ≥ AJ

t+TJA
−AJ

t+TJA−1 ∀ t

O′′J
t ≥ OJ

t−1 −OJ
t ∀ t

t+TJA−1X
j=t

OJ
j ≥ TJA ·O

′J
t ∀ t

CJ
t ≤ CJ

t−1 + 1 ∀ t

CJ
t + T (1−OJ

t) ≥ CJ
t−1 + 1 ∀ t

CJ
t − T ·OJ

t ≤ 0 ∀ t

CJ
t ≥ 0 ∀ t

AJ
t+TJS

≤ 1−O′′J
t ∀ t

T ·AJ
t ≥ CJ

t − TJA ∀ t

t+TJS−1X
j=t

AJ
j ≥ TJS ·O

′′J
t ∀ t

t+TJS−1X
j=t

OJ
j ≤ TJS · (1 −O′′J

t) ∀ t

O′D
t ≥ AD

t+TDA
−AD

t+TDA−1 ∀ t

O′′D
t ≥ AD

t−1 −AD
t ∀ t

t+TDA−1X
j=t

OD
j ≥ TDA ·O

′D
t ∀ t

OD
t ≥ AD

t ∀ t

CD
t ≤ CD

t−1 + 1 ∀ t

CD
t + T (1−OD

t) ≥ CD
t−1 + 1 ∀ t

142 The Mathematical Modelling Approach

CD
t − T ·OD

t ≤ 0 ∀ t

CD
t ≥ 0 ∀ t

T · AD
t ≥ CD

t − TDA ∀ t

t+TDR−1X
j=t

OD
j ≤ TDR · (1−O′′D

t) ∀ t

TX
t=1

O′D
t ≤ KD

t+TCF +TCD−1X
j=t+TCF

AC
j ≥ TCD ·O

C
t ∀ t

AC
t ≤

t−TCFX
j=t−TCD−TCF +1

OC
j ∀ t

t+TCLX
j=t+1

OC
j ≤ TCL(1−OC

t) ∀ t

TX
t=1

OC
t ≤ KC

t ∈ [1, T]

h ∈ [1, H]

OJ
t , OD

t , OC
t ∈ {0, 1}

O′J
t , O′′J

t , O′D
t , O′′D

t , ∈ {0, 1}

AJ
t , AD

t , AC
t ∈ {0, 1}

CJ
t , CD

t ∈ {0, 1}

aJ
th, aD

th, aC
th, aN

th ∈ {0, 1}

Lth, Ssum,norm, Rmax
th ∈ R

Z,P ∈ R

6.6 The GAMS Program

The CMOP from Section 6.5.6 is implemented in a GAMS program. When run
this program includes two files. The first file, reductions.dat, contains the
reductions for the three countermeasures as functions of both angle (measured

6.7 Testing 143

in degrees) and range (measured in percentage of maximum range). The second
file describes the flight for which the optimal survivability is to be found. It
contains the distances and angles to the threats in the scenario for every time
step in the timeframe. For each time step the lethalities for all threats are also
described. The name of this file is given as an argument to GAMS when the
program is run.

The GAMS program is included in Appendix D. Before the optimisation of
the objective function is commenced the reductions of threat lethality for each
countermeasure against every threat in each time step must be calculated. This
is done by looking up the relevant values in the reductions.dat file included.
Also the values of ρ∗th are calculated for all threats at every time step. Finally
the probability of every threat actually posing a threat is found for all time
steps. The model is solved by GAMS using a Mixed-Integer Problem solver in
CPLEX.

When a solution is found the results are added to a file. These results describe
the date and time of the run, the number of time steps in the time frame, the
objective value, the optimal survivability, the number of seconds used in finding
the solution, and finally the name of the input file. These results are used in
parts of the tests described in Section 6.7.

6.7 Testing

The testing of the GAMS program is conducted in three steps: first a number
of test files are constructed to evaluate the time-related behaviour of the three
countermeasures. Second a number of flights are generated from two scenarios.
This is done to find the time it takes for GAMS/CPLEX to find the optimal
solution depending on the number of time steps given in the flight. In the third
and final step of the testing the optimal survivability to a number of different
scenarios are found.

The scenarios described by the test files used in the first step of testing the
mathematical model have very little resemblance with real world scenarios. To
each time step described in these files fixed values for the distance and angle
parameters are used. These values have been found to invoke responses from
each of the countermeasures if no other constraints restrain them, and they are
used to create a need for each countermeasure for a given period of time. Table
6.2 shows the pairs of parameter values used in the files, and the reductions
given by each of the countermeasures using these values.

144 The Mathematical Modelling Approach

α = 20◦ α = 120◦ α = 90◦

ρ = 95% ρ = 70% ρ = 20%
RJammer 0.93 · 0.80 = 0.74 0.30 · 0.77 = 0.23 0.28 · 0.18 = 0.05
RDecoy 0.43 · 0.70 = 0.30 0.77 · 0.83 = 0.64 0.70 · 0.20 = 0.14
RChaff 0.05 · 0.01 ≈ 0.00 0.75 · 0.10 = 0.08 0.80 · 0.80 = 0.64

Table 6.2: Reductions for each of the three countermeasures at fixed angles and
distances.

To test the time-related behaviour of the countermeasures 14 test files are con-
structed. Four of these files (named jamtest1.dat to jamtest4.dat) test the
behaviour of the jammer, the towed decoy is tested by five files (dectest1.dat
to dectest5.dat), four are used to test chaff (chftest1.dat to chftest4.dat),
and a single file (mixtest1.dat) describes three threats, each of which may be
countered by one of the three countermeasures.

The need for a countermeasure is described by the lethality it may counter. For
most of the files this lethality is set to 50% in the time steps where there is a
need for the countermeasure, and 0% where the countermeasure is not needed.
For the files dectest5.dat and chftest4.dat the lethality of the time steps
where the countermeasure is needed is set to either 5%/50% or 3%/30%. This
is done to test whether the countermeasure will be allocated for the time steps
where it will offer the highest reduction of lethality. Table 6.3 shows descriptions
of the 14 files and the results found running the GAMS program with the files as
input. For every file an illustration of the lethality for each time step is given.
This illustration also shows when the appropriate countermeasure is turned on
and when it becomes active. It can be noted that if enough countermeasures
are available they will be active when the lethality requires it.

Description: Behaviour:
File: jamtest1.dat

Leth.

A
J
t

O
J
t

Time

5 8 10 12

The duration of the need for the jammer is
long enough to test the constraints given
by TJA = 3 and TJS = 2.

Table 6.3: Descriptions of 14 files used for testing the mathematical
model. Continues...

6.7 Testing 145

Description: Behaviour:

File: jamtest2.dat

Leth.

A
J
t

O
J
t

Time

4 6 8

The jammer is needed for less than TJS = 2
time steps.

File: jamtest3.dat

Leth.

A
J
t

O
J
t

Time

5 8 9 11

The distance between two jammer requests
is less than TJA + TJS = 5 time steps.

File: jamtest4.dat

Leth.

A
J
t

O
J
t

Time

5 8 10 15 18 20

The distance between two jammer requests
is more than TJA + TJS = 5 time steps.

File: dectest1.dat

Leth.

A
D
t

O
D
t

Time

6 8 12

The duration of the need for the towed de-
coy is longer than TDA = 2.

Table 6.3: Descriptions of 14 files used for testing the mathematical
model. Continues...

146 The Mathematical Modelling Approach

Description: Behaviour:

File: dectest2.dat

Leth.

A
D
t

O
D
t

Time

6 8

The towed decoy is needed for less than
TDA = 2 time steps.

File: dectest3.dat

Leth.

A
D
t

O
D
t

Time

6 8 11

The distance between two towed decoy re-
quests is less than TDA + TDR = 3 time
steps.

File: dectest4.dat

Leth.

A
D
t

O
D
t

Time

6 8 16 18

The distance between two towed decoy re-
quests is more than TDA + TDR = 3 time
steps.

File: dectest5.dat

Leth.

A
D
t

O
D
t

Time

10 20 30 40

More requests for towed decoys than de-
coys available (KD = 2). Lethality varies.

Table 6.3: Descriptions of 14 files used for testing the mathematical
model. Continues...

6.7 Testing 147

Description: Behaviour:

File: chftest1.dat

Leth.

A
C
t

O
C
t

Time

5 7 9

Chaff is needed for a single time step.

File: chftest2.dat

Leth.

A
C
t

O
C
t

Time

4 6 8 11

Chaff is needed for more than TCD = 3
time steps.

File: chftest3.dat

Leth.

A
C
t

O
C
t

Time

5 7 9 11 13 15

More chaff dispensings requested.

File: chftest4.dat

Leth.

A
C
t

O
C
t

Time

8 12 16 20 24 28 32

Requests for more chaff than available
(KC = 5). Lethality varies.

Table 6.3: Descriptions of 14 files used for testing the mathematical
model. Continues...

148 The Mathematical Modelling Approach

Description: Behaviour:

File: mixtest1.dat
Leth1.

A
J
t

O
J
t

Leth2.

A
D
t

O
D
t

Leth3.

A
C
t

O
C
t

Time

A combination of the three files:
jamtest3.dat, dectest3.dat, and
chftest3.dat. Each file represents a
threat.

Table 6.3: Descriptions of 14 files used for testing the mathematical
model. These files test the time-relations of the three countermea-
sures and they have very little resemblance to real-world scenarios.

Running the 14 files described in Table 6.3 shows that the time relations for
the three countermeasures are satisfied with the constraints given in the mathe-
matical model. For the jammer-related test files it is shown that the jammer is
turned on TJA time steps before becoming active, and it will remain active for
at least TJS time steps, or for as long as it is needed. If it can not be turned
down and turned back on again between two requests it will remain turned on.
If time allows, it will turn off between two jammer requests.

Similar results are found for the towed decoy. It is also shown that if there are
more requests for a towed decoy than there are decoys available the decoys will
be assigned to the request where they will offer the best reduction of lethality.

Testing the chaff relations show that a chaff cloud will be formed for as short
a period of time as possible. As with the towed decoy the available amount of
chaff will be assigned to the requests, where they yield the best reduction of
lethality if more requests are present. Running the mixtest1.dat shows that

6.7 Testing 149

the three countermeasures are assigned to the three threats in the same way as
if each threat was described in a file by itself.

The next part of the test is concerned with the relation between the number of
time steps in a flight description and the time it takes to find an optimal solution
to the deployment of countermeasures for that flight using GAMS/CPLEX. To
do this a number of flights are generated from two of the scenarios, sc1 and sc2,
shown in Table 6.4. For each flight the distance and angle between the aircraft
and a threat are sampled at a number of equidistant points in time. If it is
assumed that the aircraft will maintain the same airspeed independent of the
number of time steps in the description of a flight the time-related parameters,
TJA, TJS , etc., must be adjusted according to the number of time steps in a flight
and the distance the aircraft has to fly. To keep the generation of flights and
the comparison of results easy it is chosen to keep the time-related parameters
fixed for all runs. The results of this part of the test are illustrated in Figure
6.16.

The graphs in Figure 6.16(a) show that the time it takes to find an optimal
sequence for a flight increases with the number of time steps in the problem.
The time axis has a logarithmic scale and even though the points in the graphs
do not describe two perfect lines it is a reasonable conclusion that the running
time for finding the best use of countermeasures is an exponential function of
the number of time steps in the problem description.

The constraints in the model determine that the NoCM dummy countermeasure
is chosen whenever the aircraft is not within the range of any threat. The main
part of the problem solving remains when the aircraft is within range of one
or more threats. To avoid boundary problems all the scenarios described in
Table 6.4 are constructed so approximately the first third of a flight is flown
outside the range of any threats. For the two scenarios used in constructing the
graphs in Figure 6.16 the last third of the flight is also flown outside the range
of threats. The time it takes to find an optimal solution for these two scenarios
then largely depends on approximately one third of the number of time steps in
the flight description. When sampling the flight with different numbers of time
steps the number of time steps where the aircraft is outside the range of threats
will vary. This is considered to be the explanation of the fluctuations within the
time it takes to find an optimal solution.

Intuitively it may seem that the more time steps used in describing a flight the
higher a survivability can be found. The graphs in Figure 6.16(b), showing sur-
vivability found as a function of the number of time steps in a flight, contradict
this. When sampling a flight smaller threats or requests for certain counter-
measures may fall in between sample points. Re-sampling the flight with more
sample point may then reveal the before hidden threats and countermeasure

150 The Mathematical Modelling Approach

10,000

1,000

100

10

 20 25 30 35 40

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Number of time steps

Scenario: sc1
Scenario: sc2

(a) Running time.

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.90
 20 25 30 35 40

S
su

m
,n

or
m

Number of time steps

Scenario sc1
Scenario sc2

(b) Average survivability.

Figure 6.16: The running time as a function of the number of time steps in a
scenario is shown in Figure 6.16(a). Note the logarithmic scale on the time axis.
Figure 6.16(b) shows the value for Ssum,norm as a function of the number of time
steps in the flight.

6.7 Testing 151

requests, providing the pilot with better chances to counter the threats. Since
new threats will introduce an increase in lethality the survivability found using
the mathematical model is likely to fall when the sample rate is increased. This
does not mean that the survivability for the pilot in the real world will decrease
when knowledge of more threats is added to the problem description.

For the two scenarios, sc1 and sc2, the increase in time steps does not reveal any
new threats. For sc1 the survivabilities seem to be almost constant regardless of
the number of time steps. The survivabilities found for sc2 has more fluctuations
which can partly be explained by the changes in the number of time steps in
which the aircraft is within the range of a threat. When more samples of the
flight are taken these changes will become less critical and the survivability will
tend to level out. This seems also to be the case for the survivabilities found for
sc2.

In the last part of the test the optimal survivability is found for flights in six
different scenarios. These scenarios, named sc1 to sc6, are constructed to
represent the following cases: dense sampling (sc1, sc2, sc3, and sc4), sparse
sampling (sc5 and sc6), more than KD requests for towed decoy (sc5 and sc6),
more than KC requests for chaff (sc4), and a ”worst case” scenario (sc6). The
scenarios are shown in Table 6.4.

The survivabilities found running the mathematical model using GAMS/CPLEX
are listed in Table 6.5. When comparing the results in this table to the scenarios
depicted in Table 6.4 it can be seen that increasing the number of time steps
in where the aircraft is within range of one or more threats will decrease the
average survivability for the flight. This is not surprising since the aircraft being
within range of a threat will give an increase in the scenario lethality.

Another observation that comes as no surprise is that when the number of
time steps where the aircraft is within range of a threat increases so does the
penalty value found. The penalty value depends on the number of steps in
which countermeasures are applied, and they will be so when the aircraft is
within range of a threat.

The last column of Table 6.5 contains the most notable results. Here it can be
seen that while finding an optimal solution to the sc1 and sc2 flights can be
done within a few seconds, it will take more than six hours to find the optimal
solution to the sc3 flight, although the number of time steps in these three
flights are identical. One of the differences between the scenarios is that while
sc1 and sc2 each contains a single threat only the sc3 scenario contains two
threats. Finding results to the flights in sc4 and sc5 takes approximately an
hour and a half, even though these scenarios contain three threats each. From
this it can be seen that estimating the time it takes to find the optimal solution

152 The Mathematical Modelling Approach

sc1 - Passing a single threat sc2 - Turning at an IP

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

0 1 2 3 4 5 6 7

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

sc3 - Two threats sc4 - Three threats, many chaff

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

x 10
4

sc5 - Three threats, many decoys sc6 - Many threats

−1 0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

x 10
4

−1 0 1 2 3 4 5 6 7 8 9

x 10
4

0

1

2

3

4

5

6

7

8

x 10
4

Table 6.4: The six scenarios used in the final part of the test. The flight in
each scenario has 20 steps, and they all start outside the range of any threats
to avoid boundary conditions.

6.8 Discussion 153

Scenario: Ssum,norm: Penalty: Running time:
sc1 0.98211 0.0016 2
sc2 0.91419 0.0027 6
sc3 0.91214 0.0037 22326
sc4 0.83773 0.0065 5858
sc5 0.83773 0.0065 5708
sc6 - - 37916

Table 6.5: Results of solving flights for six different scenarios. Running time
is measured in seconds. The process of finding a solution to the sc6 flight is
terminated by the solver, and no solution is found.

to a flight is not trivial, as it apparently depends on more than the number of
time steps in the flight, the number of time steps within range of a threat, and
the number of threats in the flight scenario.

6.8 Discussion

In both the Prolog approach (Chapter 4) and the BN approach (Chapter 5) the
focus was on finding the appropriate use of countermeasures at each point in
time. With the approach described in this chapter it is assumed that the process
of finding the best countermeasures to use at any given time can be reduced to
a simple table lookup. In a real-world implementation of this approach the best
countermeasure to apply at any time may be found by consulting e.g. a Prolog
program or a BN.

If a countermeasure is to be active during the first few time steps of the time
frame, solving the model will make the countermeasure being turned on before
the start of the time frame. As this is not considered a correct answer, the flights
are constructed in such a way that no threats are imminent in the beginning
of the time frame. Doing this the model does not need to be concerned with
boundary issues.

The aircraft can be protected by a countermeasure at any time. If neither towed
decoys nor chaff are available an active jammer may always offer some reduction
of lethality. This is only prevented if the jammer can not be turned on some
time ahead. This happens only if the jammer is still active from a previous
deployment interval. Extending this interval to fulfil the new requirements will
solve the problem. Here boundary issues are neglected and it is assumed that
the jammer can be turned on in any time step, even if this time step lies before
the start of the time frame.

154 The Mathematical Modelling Approach

Compared to dispensing chaff the fiscal cost of deploying and releasing a towed
decoy is very high. Even if the towed decoy offers only a slightly better pro-
tection than chaff, solving the model described in this chapter will select the
towed decoy over chaff, not taking the cost of this into account. If the cost was
incorporated in the objective function, such that chaff dispensing were preferred
even if this results in a slightly worse reduction of lethality than using a towed
decoy, the solutions found might be closer to what a fighter pilot will choose
when in the same situation. Determining the allowable decrease in survivability
to save the deployment of towed decoys is considered outside the scope of this
work.

A large part of the work on the mathematical model is spend on determining the
constraints describing the relations between the time steps in where a counter-
measure is turned on and the time steps in where it is active. The survivability
of the fighter aircraft depends only on when countermeasures are active, and
not on when they are turned on. It may therefore be beneficial to leave the vari-
ables describing the latter out of the model. The period in which the jammer is
turned on without being active sets a limit to how close jammer deployment in-
tervals can be. It is assumed that this can be described using fewer and simpler
constraints than the ones describing relations between the OJ

t and AJ
t variables.

For the towed decoy the time between deployment intervals is set by the sum
of the time it takes to settle after a decoy has been released, and the time it
takes to unreel a new decoy. Here the need of a variable describing when a
decoy is deployed is not evident either. Since chaff can be dispensed while the
cloud from a previous dispensing is still formed, it may be that describing the
time-relations for chaff can not be done by a single variable only. Still, omitting
a large number of variables and constraints for the jammer and the towed decoy
is likely to decrease the total computation time for finding an optimal solution.

According to Section 6.4.3 a total of 1500 time steps may be needed for de-
scribing a mission with a duration of up to five minutes, if the resolution of the
description is set to five time steps per second. While this resolution may seem
adequate, a coarser resolution can be acceptable. For the six scenarios used for
testing the mathematical model, the number of time steps was chosen without
considering the length of the flight and the time it will take to fly this. The
flight in sc1 is one of the shortest of the six flights. From start point to target
this flight is approximately 64 km. With a speed of Mach 2 (2,124 km/h) a
fighter aircraft will fly this distance in little more than 100 seconds. Decreasing
the proposed resolution by a factor of 10, the time steps are set two seconds
apart. With this the description of the sc1 flight will require approximately 50
time steps; more than twice the number of time steps used in the tests described
in this chapter. Descriptions of the other flights, with the sc3 flight as an ex-
ception, will require even more time steps. Since GAMS/CPLEX in the default
configuration can not be expected to solve larger problems within a reasonably

6.9 Conclusion 155

time, it may be necessary to use other configurations, or to split the problems
into subproblems, that may be solved separately.

6.9 Conclusion

This chapter shows that for a simple model of a scenario containing ground based
radar threats a survivability measure for fighter aircraft can be described. From
this a mathematical model can be formulated to describe how a set of coun-
termeasures influence the survivability. Both the survivability and the counter-
measure influence are based upon the use of RF based threats only. Broader
descriptions, e.g. including both IR and RF based threats, are likely to be sig-
nificantly more complicated than the survivability measure and countermeasure
influence described here.

A large part of the mathematical model describes the time relations of coun-
termeasures. If other countermeasures are to be added to the model it is likely
that some of the constraints constructed can be adaptable to work for these
countermeasures as well. As described in Section 6.8 some of these constraints
may not be necessary.

The use of GAMS/CPLEX described in this work will not allow for solutions
to larger problems to be found within a reasonably time. Even for small and
simple scenarios, as the six test scenarios described in this chapter, finding a
solution takes a very long time. Using non-uniform time steps and weighting as
described in Section 6.4.3 may relieve this issue. If the solving method can itself
be optimized, so that problems in a real-world scenario can be solved in real-
time, the success of this approach still relates to the availability of knowledge
about the scenario. If the system has no knowledge about a threat prior to
entering its lethal range, an optimal solution for the entire mission can not be
guaranteed.

Even if solving the mathematical model can never meet the real-time require-
ment, the model may still have a number of useful applications. If a real-world
scenario has a fixed number of threats reported by intelligence, a solution found
pre-mission can be applied. A number of standard scenarios may also be de-
fined, and the optimal sequence of applying countermeasures in these can be
applied when needed. Chapter 7 describes the use of metaheuristics to find
good solutions to the CMOP. Optimal solutions found using GAMS/CPLEX can
be used in improving the performance of such a metaheuristic.

156 The Mathematical Modelling Approach

Chapter 7

The Metaheuristics Approach

A heuristic is an algorithm that uses some knowledge about a concrete problem
in the process of finding a solution to it. Usually it can not be guaranteed that a
heuristic finds the best solution to the problem, or even that the solution found
is feasible. A metaheuristic is an algorithm framework that describes how to find
solutions without being concerned with problem-specific considerations. These
considerations must, naturally, be made when implementing a metaheuristic for
solving a given type of problems. As a tailored metaheuristic is a heuristic the
feasibility and optimality of the solutions found can not always be guaranteed.
Metaheuristics are often applied for problems within the field of combinato-
rial optimisation, where they usually provide good, but not necessarily optimal,
solutions. They have proven successful when no exact method for finding a
solution is known, or when only a limited amount of computing time is avail-
able. Throughout this text the word ”algorithm” refers to the metaheuristic it
describes.

The choice of the metaheuristic to use in solving a problem, and setting up pa-
rameters for this, depends on several factors. These factors include the type of
problem to solve, how close to optimum the solutions must be, and how fast the
metaheuristic has to provide solutions. This chapter gives a general introduc-
tion to metaheuristics, some details on the Simulated Annealing metaheuristic,
and comments on an implementation of this algorithm. Readers familiar with
metaheuristics in general, and the Simulated Annealing specifically, may skip to

158 The Metaheuristics Approach

Section 7.4, where an implementation of the Simulated Annealing metaheuris-
tic for solving the Countermeasure Optimisation Problem (CMOP) derived in
Chapter 6 is described.

7.1 Motivation

With the CMOP the goal is to find the deployment scheme that provides the best
survivability for a fighter aircraft during a mission. It is possible to calculate the
total survivability for all possible instances of the deployment scheme, and then
select the deployment scheme yielding the highest survivability. Unfortunately,
this approach is infeasible for problems with more than a minimum number of
time steps in the deployment scheme since the generation and evaluation of all
the schemes will simply take too long.

In Chapter 6 solutions to the CMOP is found using mathematical programming.
Using GAMS/CPLEX shows that an optimal solution can be found to some
problems, and even though this can be done very fast compared to the time
it takes to generate all possible deployment schemes, the time it takes to find
an optimal solution is still too long. Therefore a solution is sought using a
metaheuristic.

The fact that a metaheuristic can not be guaranteed to find an optimal solution
is not considered important for finding a solution to the CMOP. The description
of a battlefield scenario will often be so deficient that there is no way of deciding
whether the exact optimal solution found is in reality superior to any other good
solution. To the pilot any solution that significantly increases the chances of
survival may be considered a good solution.

7.2 Metaheuristics

The search space of a problem is the set of all possible solutions to that problem.
For a combinatorial optimisation problem the search space will consist of all
combinations of values for the variables included in the problem. A problem
suitable for a metaheuristic will usually have a search space that is too large to
be searched completely. A metaheuristic will search parts of the search space in
the pursuit of the optimal solution.

In general a metaheuristic first finds an initial solution, and in iterations better
solutions are found, until it comes to a stop. In every iteration the current best

7.2 Metaheuristics 159

solution is known as the incumbent, and the solution being the incumbent at
the end of the run is returned by the metaheuristic. In the search for improved
solutions a number of candidate solutions are compared to the incumbent. New
candidates are chosen from the neighbourhood of the incumbent. These candi-
dates are also known as neighbours.

The metaheuristic runs for a number of iterations, and the incumbent may be
replaced by a better solution in each of the iterations. The number of iterations
is determined by one or more stopping criteria. The run may be stopped if the
total number of iterations exceeds some preset limit, or if the incumbent has
not been replaced for a fixed number of iterations. Also, reaching a maximum
amount of computation time may be used as a stopping criterion.

In this work three metaheuristics are investigated: Local Search, Steepest As-
cent, and Simulated Annealing. The three metaheuristics have been chosen for
their simplicity, which makes them easy to implement. Steepest Ascent and Sim-
ulated Annealing can both be considered special cases of a general Local Search
metaheuristic, and this makes the comparison of the three even easier, since
the comparison can be done using the same program with only minor changes.
Other metaheuristics such as Genetic Algorithms or Tabu Search may provide
solutions of a quality equal to or better than those found using Local Search,
Steepest Ascent, or Simulated Annealing. The intention of the work described
in this chapter is to evaluate the use of metaheuristics for solving the CMOP. It
is estimated that this can be done by implementing the three countermeasures
mentioned, and therefore no other metaheuristics have been chosen.

7.2.1 Local Search

In the Local Search metaheuristic candidates from the neighbourhood of the
incumbent are selected at random. If a candidate solution is proven better than
the incumbent it becomes the new incumbent. The algorithm continues until
no improving neighbour can be found, or until a maximum number of iterations
have been run. The Local Search metaheuristic for maximising the objective
function is given in Algorithm 1. Here f(s) is the objective function that returns
a value for the solution s.

This metaheuristic will search for the optimum local to the initial solution. If
this optimum is reached, i.e. there is no neighbouring solutions that will improve
the solution, the metaheuristic will stop. Applying the algorithm a number of
times on the same problem may find a number of local optima from which the
best optimum found can be selected.

160 The Metaheuristics Approach

Algorithm 1: The Local Search metaheuristic.

Find an initial solution s0

inc← s0 ; . Initialise the incumbent

repeat
s← neighbour(inc) ; . Random neighbour

if f(s) > f(inc) then
inc← s

until stopping criterion is met
return inc;

If the search space of the algorithm consisted only of local optima, instead of
solutions leading to a single local optimum, the optimum found may be closer
to the global optimum, depending on the stopping criterion. This is the essence
in Iterated Local Search, as described in [27]. Here a metaheuristic, e.g. Local
Search, is applied to a starting point in the search space and a local optimum
is found. The neighbourhood of this local optimum is then broadened and a
new solution is found. From this solution a new local optimum is found. The
difference between Iterative Local Search and just applying the Local Search
numerous times with a random initial solution for each run is that the initial
solutions for each new run of the Local Search algorithm within Iterative Local
Search depends on the previously found local optimum.

The definition of the broader neighbourhood is essential to the success of the
algorithm. If the relation between a local optimum and the starting point for
the next iteration is too loose the effect would be the same as just applying the
Local Search a number of times with randomly chosen initial solutions. If the
relation is too rigid the starting point for the next iteration would likely lead to
the local optimum the metaheuristic is trying to escape.

7.2.2 Steepest Ascent

The Steepest Ascent metaheuristic is very similar to the Local Search meta-
heuristic. The difference is that in Steepest Ascent all neighbours of the incum-
bent are evaluated, and the one offering the highest increase in the objective is
chosen as the next incumbent. If no neighbour offers a better solution, a local
optimum is found, and the algorithm stops. Algorithm 2 describes the Steepest
Ascent, and f(s) is again the objective function. A similar metaheuristic can
be used in minimising the objective. This is known as the Steepest Descent
metaheuristic.

7.2 Metaheuristics 161

Algorithm 2: The Steepest Ascent metaheuristic.

Find an initial solution s0

inc← s0 ; . Initialise the incumbent

repeat
best← inc
forall neighbours ∈ neighbourhood(inc) do

s← next neighbour(inc) ; . Next neighbour

if f(s) > f(best) then
best← s

inc← best
until stopping criterion is met
return inc;

As with the Local Search the Steepest Ascent algorithm may be run multiple
times from different starting points to at least find the best of a number of local
optima, or it can be used as the metaheuristic in Iterative Local Search that
will find local optima.

7.2.3 Simulated Annealing

The Simulated Annealing metaheuristic is described in e.g. [15, 35]. The algo-
rithm is inspired by the physical annealing process of e.g. metals. In physical
annealing the energy of a substance will decrease as the temperature of that
substance falls. The lowest energy state for a metal is found when the atoms
of the metal form a perfect crystal. However, when the metal is quenched, the
atoms might settle in a non-optimal order, where the energy is not the lowest
possible.

The laws of thermodynamics state that during the annealing of e.g. a metal,
the probability of a an increase in energy, δE, at temperature T is given by
P (δE) = e−δE/kT , where k is Boltzmann’s constant, k = 1.38 J/K. In the
Simulated Annealing metaheuristic the neighbourhood of the incumbent is once
again searched to find a solution better than the incumbent. If such a solution
is found it replaces the incumbent, and the search continues. The analogy to
the thermodynamical annealing is that a candidate solution that is not better
than the incumbent may still replace it with a probability depending on how
much worse this solution is. In this comparison a virtual temperature is also
introduced. A starting temperature is given at the beginning of the metaheuris-
tic run, and it decreases with the number of iterations. When the temperature
decreases so does the probability of accepting a candidate solution worse than

162 The Metaheuristics Approach

the incumbent. The Simulated Annealing metaheuristic is shown in Algorithm
3, where f(s) is again the objective function. This variant of the metaheuristic
is first described by Metropolis, and it is explained in e.g. [15].

Algorithm 3: The Simulated Annealing metaheuristic.

Input: T0 is the the start temperature
γ is the temperature projection function

Set start temperature T ← T0

Find an initial solution s0

inc← s0 ; . Initialise the incumbent

repeat
for i← 0, niter do ; . Number of iterations per temperature

s∗ ← neighbour(inc) ; . Random neighbour

if f(s) > f(inc) then
inc← s

else
δ ← f(inc)− f(s)
Select x, x ∈ [0, 1]
if x < exp(−δ/T) then ; . Accept if x is low enough

inc← s

T ← γ(T) ; . Find next temperature

Adjust niter
until stopping criterion is met
return inc;

The niter variable in the algorithm gives the maximum number of iterations at
each temperature. This number can be adjusted during the run of the algorithm
to find the best solution using the least computation time. More details on the
use of this variable is given in Section 7.3.1.

In difference to the Local Search algorithm it is possible to escape a local op-
timum with Simulated Annealing, and it is thus possible to cover a larger area
of the search space. In the beginning of a run the metaheuristic will allow for
many solutions to become the incumbent, while it towards the end will almost
only accept improving solutions.

7.2 Metaheuristics 163

7.2.4 Choosing a Metaheuristic

In implementing a metaheuristic most of the work is spend in defining con-
straints and variable relations, determining what constitutes the neighbourhood
of a given solution, and how a neighbour is selected at random. Since these con-
siderations are almost identical for the three metaheuristics described in this
section, they alone do not suggest which metaheuristic to choose. In solving the
CMOP the proper metaheuristic should provide a good solution within a very
short time span. For every iteration of the Steepest Ascent metaheuristic it
needs to generate and evaluate every neighbour solution. Since every solution
may have a large neighbourhood, the Steepest Ascent algorithm may have per-
formed a few iterations only, before it is stopped by a given maximum running
time, and the best solution found may not differ substantially from the initial
solution. The Local Search algorithm may perform a little faster, since it gen-
erates only the amount of neighbour solutions necessary for it to improve its
best solution. The drawback of the Local Search is that it may spend most of
its time on finding the optimum local to the initial solution, without any search
for a better solution. The Simulated Annealing mends this, as it is designed to
escape local optima at the beginning of a run. For large neighbourhoods it per-
forms faster than the Steepest Ascent, and while it is deemed to be slower than
the Local Search, it may escape local optima, and it thus have the possibility of
finding better solutions.

Figure 7.1 shows the progress of improving the survivability for each of the
metaheuristics. It can be seen that Local Search will reach a steady state after
a relatively short time. The Steepest Ascent keeps improving its solution and
no steady state is reached within the time given. In the first part of the time
given, the survivability found by the Simulated Annealing fluctuates. It finds
a steady state later than the Local Search, and the survivability found here is
higher than that of either of the other metaheuristics.

According to [15] Simulated Annealing offers the best results on uniform data,
i.e. data where very few clusters are present in the search space. This is in
contradiction to a typical solution for the CMOP where each countermeasure
will be active only within a number of deployment intervals, and these intervals
often occur only when the aircraft is close to a threat. Both the deployment
intervals and the presence of a threat can be considered as clusters in the solution
space, and therefore Simulated Annealing may not show the best performance
solving the CMOP.

In the literature on Simulated Annealing [15] the algorithm has been shown to
give good results for most of the problems it has been applied to, albeit more
specific heuristics usually perform better. If the problem at hand has too many

164 The Metaheuristics Approach

 650

 700

 750

 800

 850

 0 10000 20000 30000 40000 50000 60000

S
su

m

Elapsed time (milliseconds)

Steepest Ascent
Local Search

Simulated Annealing

Figure 7.1: The survivability as function of time elapsed for Local Search, Steep-
est Ascent, and Simulated Annealing. The metaheuristics have been applied to
a scenario sc6 flight with 1000 time steps. A description of this scenario is found
in Section 6.7 repeated in Section 7.5.

facets, e.g. many degrees of freedom, or many inter-variable relations, it may
be difficult to design an efficient heuristic to solve the problem. In situations
as this Simulated Annealing is relatively powerful. It has been shown that the
algorithm has its best performance if given enough time. If it needs to find
solutions fast, the best results are often found having only a single iteration at
each temperature and a temperature decrease that is relatively small.

7.3 Using Simulated Annealing

In implementing a metaheuristic for solving a specific problem one has to decide
on a number of details. These decisions can be split into two categories: the
generic decisions which relate to the overall behaviour of the algorithm, and
the problem-specific decisions that are concerned with finding solutions for the
relevant type of problems [15]. Decisions within the two categories are discussed
in this section.

In making decisions on the implementation of the algorithm, one may prioritize
options that reduce the running time of the algorithm over options that improve

7.3 Using Simulated Annealing 165

the objective value. The structure of the algorithm gives that converging toward
a local optima is referred to the latter part of the algorithm run, and the success
of the algorithm depends on the number of iterations it can perform. To perform
a high number of iterations within a very short period of time requires that the
parts of the code that are to be executed within every iteration must be written
so it takes the shortest time possible to execute them.

7.3.1 Generic Decisions

The general decisions in implementing the Simulated Annealing are concerned
with how the cooling is done, the parameters defining it, and how these affect the
acceptance of solutions worse than the incumbent. These decisions are described
here, together with criteria for stopping the metaheuristic running.

Algorithm Variant. In Algorithm 3 the metaheuristic performs a number of
iterations at each temperature. In other variants a single iteration is done
at each temperature. To get to the same amount of iterations the cooling is
often slower when only a single iteration is performed at each temperature.
While this cooling has the best resemblance to the physical annealing it is
not evident which of these algorithm variants that offers the best results.

Cooling Schedule. In Simulated Annealing a cooling schedule describes the
progress of the temperature decrease. In [15] a number of different cooling
schedules are discussed, and here two of these are described. In the first
schedule a geometric temperature reduction function, γG, is introduced.
The temperature Ti in the i’th iteration is calculated from the temperature
Ti−1 at the previous iteration by Ti = γG(Ti−1) = Ti−1 · a. Here a is
the reduction factor, and it will usually have a fixed value between 0.8
and 0.99. For a slower cooling the γS reduction function is suggested:
Ti = γS(Ti−1) = Ti−1/(1 + b · Ti−1). Here b is chosen sufficiently small to
ensure a slow cooling. The graphs in Figure 7.2 shows the behaviour of
γG and γS .

It should be noted that in adjusting the reduction factor a and the small
value b the two cooling schedules can come to display very similar be-
haviour. If this behaviour satisfies the requirements one may have to
solution quality within a fixed period of time, or within a given number
of iterations, the schedule that requires the least number of arithmetical
calculations can be selected to save computation time. Since γG involves a
single multiplication it has a slight advantage compared to the combined
addition and division of γS .

The history of using Simulated Annealing shows that in general it is less

166 The Metaheuristics Approach

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

T
em

pe
ra

tu
re

Time step

Geometrical temperature reduction
Slow temperature reduction

Figure 7.2: The behaviour of two different cooling schedules.

important how the cooling is done, and more important for how long the
algorithm is allowed to search for improving solutions. The best parameter
settings for the cooling schedule chosen are problem dependent, and they
must be found in trials with representative problems [15].

The higher the reduction factor, the faster the metaheuristic will tend to
dismiss solutions worse than the incumbent. This means that the meta-
heuristic will sooner focus on finding the local optimum. The reduction
factor must be chosen in such a way that a sufficiently large amount of
local optima can be explored.

The Metropolis formulation of the algorithm suggests that a number of
iterations are performed at each temperature, before the temperature is
reduced. The number of iterations can be fixed, or it may vary according
to the temperature so that more neighbours are tested at lower tempera-
tures where the probability of finding an improving solution is at its lowest.
Varying the number of iterations can e.g. be done using geometrical or
arithmetical projections, or by using a feed-back function. In finding the
number geometrically the new number of iterations, i′ is found by multi-
plying the old number of iterations, i, with a number b: i′ = i · b, b > 1. In
the arithmetical approach the new number of iterations is found adding a
fixed number to the old number of iterations: i′ = i + b. If the number of
iterations is to be found using feed-back, a limit can be set to the number
of iterations where no improvement is done. Doing this the number of
iterations at each temperature adapts to the solutions found. The num-

7.3 Using Simulated Annealing 167

ber of idle iterations allowed may itself depend on the temperature; thus
adding to the complexity of finding the best parameter settings for the
algorithm.

Start Temperature. The behaviour of the algorithm during the start of the
run depends highly on the start temperature given. The higher this tem-
perature is the more solutions will get accepted during the start phase. If
it is too high each new solution will be accepted, and the iterations of the
metaheuristic will behave like a number of random solutions picked from
the search space. If the start temperature is too low the ability to escape
local optimum by accepting non-improving solutions will be decreased.

End Temperature. Choosing the end temperature is one way of selecting a
stopping criterion. The faster the temperature reaches the end temper-
ature the faster the algorithm is halted. On the other hand, if the end
temperature is set too low, the algorithm may have many iterations at the
end where there is no improvement in the solutions found.

Acceptance Probability. The difference between the incumbent and a can-
didate solution is used in determining if the candidate can be accepted.
Letting the Boltzman probability, P (δE) = e−δE/kT , decide whether a
solution worse than the incumbent can be accepted as the new incumbent
will keep the analogy to the physical annealing intact. While this proba-
bility may work in an implementation of Simulated Annealing, it may not
be the best choice of acceptance probability.

Some implementations have shown that evaluating a new solution using
the exponential function may use as much as one third of the total exe-
cution time [15]. Therefore it may be appropriate to find an acceptance
probability not using the exponential function. In [15] two alternative ac-
ceptance probabilities are suggested. The first is P (δE) = 1−δE/T . This
probability approximates the exponential function with less computation
time. The other suggested probability is found in a look-up table where
the index idx is an integer value given by idx = round(δE/T). These two
acceptance probabilities, as well as the original Boltzmann probability, all
display similar behaviour. Therefore the choice of acceptance probability
can be reduced to finding the probability that may be calculated in the
shortest period of time. Since the combination of rounding off a floating
point number and using it as an index in a table is probably more time con-
suming than a single integer subtraction the first alternative acceptance
probability suggested is preferred.

Stopping Criteria. The stopping criteria determine when the algorithm is
stopped. A number of criteria can be defined, and the algorithm can
come to a stop if either of these is met. If the algorithm is required to give

168 The Metaheuristics Approach

a solution within a fixed time the calculation time itself may be a stopping
criteria.

The total number of iterations can also be used as a stopping criterion. In
general the more iterations performed by a metaheursistic, the closer the
returned solution will be to the optimum. On the other hand, having the
metaheurstic running for a very long time may allow only few changes in
the objective towards the end, thus having only minor improvements in
the survivability. The number of iterations in which the solution has not
improved may also be used as a stopping criterion.

7.3.2 Problem-specific Decisions

Three guidelines to making problem-specific decisions are mentioned in [15]:
First of all, the algorithm should remain valid. Second, computation time must
be used effectively, so as many iterations as possible can be executed, and im-
provements can be found throughout the execution. Finally the solution re-
turned by the algorithm must be close to the optimal solution. This can be
ensured by tuning parameters and comparing the solutions found to optimal
solutions found using an exact mathematical solver. Some problem-specific de-
cisions are described here.

The Objective Function. The objective function should preferably be easy
and fast to calculate, since it is to be done in every iteration in compar-
ing the incumbent with a candidate solution. If calculating the objective
function is very time consuming, it can be beneficial to introduce a func-
tion that approximates the objective function, if this approximation is
faster to calculate. To ensure that the algorithm is converging towards
the optimum of the objective function, and not only the optimum of the
approximation, the value of the objective function can be used for evalu-
ating both the incumbent and the candidates at a given interval.

For some problems it is possible to calculate the change in the objective
value by the differences between the incumbent and the candidate solution
without having to calculate the complete objective function for the can-
didate. For Ssum and Ssum,norm, as defined in Section 6.4.2, the updated
objective function can be found by calculating the contribution from the
time steps that is different between the incumbent and the candidate, sub-
tract this amount from the objective value, and then add the contribution
from the candidate.

If it is hard to find feasible solutions, some of the constraints that make
most solutions infeasible can be relaxed. This means that new solutions

7.3 Using Simulated Annealing 169

can be generated without complying with these constraints, and a penalty
for violating the constraints are subtracted from the objective function.
Since solutions that violate the excluded constraints may not give as good
results as the ones not violating the constraints, due to the subtracted
penalties, the probability of these being accepted will drop towards the end
of the run. The use of penalty values was also introduced in Section 6.5.1
to regulate the behaviour of some of the involved variables. The objective
function to choose is then composed of two parts. If the objective is to
maximise the objective function, the first part represents a relevant value
which is to be maximised, and the second part is the penalty that will
be minimised, or hopefully disappear, when the algorithm approach the
global optimum.

Neighbourhood. The success of the algorithm highly depends on the defini-
tion of the neighbourhood, and how a neighbour solution is chosen. In [15]
it is mentioned that changing the definitions of the neighbourhood during
the run may also improve the results of the algorithm. In the beginning
of a run the probability of accepting a worse solution is high. In much the
same way the neighbourhood may be defined broader in the beginning,
to allow for a larger part of the search space to be investigated. In the
last part of the run, where the algorithm focus on finding the optimum
local to the incumbent, the neighbourhood needs to be more narrow. Only
solutions in the vicinity of the local optimum will then be evaluated.

A solution might have more neighbour solutions than possible to evaluate
within a reasonable amount of time, and therefore a neighbour solution is
often chosen at random. Since the functions to find a solution at random
are often very time consuming, [15] suggests that neighbours are taken in
order to avoid the use of randomness.

Initial Solution. The choice of initial solution may influence the solutions
found by the algorithm. With an appropriate initial solution the meta-
heuristic may converge towards a good solution very fast. On the other
hand, a good initial solution may trap the metaheuristic in a local opti-
mum that can be difficult to escape.

If the parameter settings are chosen so that almost any candidate solution
is accepted in the beginning of a run, the choice of initial solution is less
important. With a good initial solution the parameters can be set so
that fewer candidates are accepted, and the algorithm can find a local
optimum fast. Doing this will make the Simulated Annealing behave like
an ordinary Local Search algorithm.

170 The Metaheuristics Approach

7.3.3 Parameter Tuning

Both the generic decisions and the problem-specific decisions require settings
for a number of parameters to be found. Finding the best parameter settings is
itself a combinatorial problem, since every parameter may have many different
values possible, and the set of parameters found for one problem may not be
the best set to use on another problem; especially if the two problems are very
different. Therefore the problems need to be divided into classes, e.g. based on
the size of the state space, and the set of parameters must then be tuned for
each of these classes.

Parameter tuning is best done on a selected set of problems representing their
class. If optimal solutions are known to these problems the parameters must be
tuned so that the algorithm will return values as close to these as possible. Since
solutions found by the metaheuristic will not be better than the known optimal
solutions the process of parameter tuning can be stopped when the solutions
found by the algorithm are considered close enough to the optimal solutions.

The best solutions can be expected if the Simulated Annealing is allowed to run
for a very long time. This may not always be possible, and often the algorithm
can be stopped earlier with no significant decrease in the quality of the solution
returned. If the algorithm is allowed to run for a limited period of time only
it must be able to improve the solution as much as possible within the limited
time. To ensure this, parameters describing other stopping criteria, such as the
end temperature or the maximum number of iterations, must be set so that the
algorithm is not stopped unless a good solution is found.

In [15] it is suggested that the start temperature is found using a heat up process.
This means that the algorithm is run a number of times with increasing start
temperatures. When the increase in start temperature does no longer improve
the solutions found by the algorithm, the start temperature to use has been
found. In a similar way the end temperature can be found by a cool down
process.

Parameters such as the start temperature and the reduction factor may be tested
in combination. A high start temperature and a low reduction factor, making
the temperature reduce fast, may show to have the same effect as a relatively
low start temperature and a high reduction factor. The best combination of
these parameters may be found by running the algorithm with a selection of
combinations. This selection may be based on experiments in where an interval
of interesting parameter values is found. If these experiments show e.g. that the
reduction factor must have a value in the interval from 0.85 to 0.90 it will not
be necessary to test for combinations where the reduction factor is set outside

7.4 Implementing Simulated Annealing 171

this interval.

In [15] it is encouraged to display a graphical representation of the intermediate
solutions from the algorithm during or after the run. Seeing which obstacles
that stop the algorithm from improving solutions may help the metaheuristic
programmer in deciding on the parameter settings. For the CMOP a text based
representation can show the deployment scheme of the incumbent. If this scheme
is too big to fit on a computer screen, it can be minimised so that each time
step is represented by a single pixel only, the colour of which indicate the status
of the countermeasures. If this minimised version is overlaid a map showing the
threats in the scenario the status of each countermeasure can easily be related
to the position of the aircraft relative to the threats.

7.4 Implementing Simulated Annealing

This section describes an implementation of the Simulated Annealing algorithm
to solve instances of the CMOP described in Chapter 6.

7.4.1 The Objective Function

Some constraints may be relaxed to ease the process of finding feasible solutions.
For the CMOP the constraints to relax can be the maximum number of decoy
deployments or chaff dispensings in a solution. The penalty for violating these
constraints may depend on the degree of violation, so having four deployment
intervals for the towed decoy, when only three are allowed, has one penalty,
while having five intervals will result in a more severe penalty, etc. The penalty
for each interval above the limit must be larger than the maximum increase in
survivability for an interval, so an infeasible solution will not be preferred to a
feasible solution.

With the survivability function chosen it is possible to calculate the change in
the objective function between the incumbent and a neighbour solution by in-
specting the differences between the solutions only. Toggling the status of one
of the countermeasures in the deployment scheme will result in changes in a lim-
ited amount of time steps surrounding the time step in where the toggling takes
place. The number of involved time steps depends on the definition of the neigh-
bourhood and on the time-related parameters for the selected countermeasure.
Finding the new objective value is done in these steps:

172 The Metaheuristics Approach

1. Toggle the status of the countermeasure at the selected time step. Do the
necessary synchronizations related to this.

2. Determine the interval of time steps involved in the synchronization.

3. Calculate the contribution of these time steps to the objective value of
the incumbent, and the contribution from the same steps in the neighbour
solution.

4. Subtract the contribution from the time steps in the incumbent, and add
the contribution from the candidate.

If the aim is to only find the change in the objective value, e.g. to see if the
candidate improves the solution found, the last step may be omitted.

7.4.2 An Initial Solution

For any scenario it is possible to find a feasible solution, since not applying any
countermeasures at any given time will always be feasible, although the surviv-
ability from this solution may be far from the optimal value. Another initial
solution can be found by deploying random countermeasures at random time
steps throughout the time frame. For this solution to be feasible the number
of deployment intervals for the towed decoy and chaff should be limited to the
numbers available. This can be done by eliminating a number of intervals at
random, if the number exceeds the expendables available. A more suitable vari-
ant of this initial solution can be found by limiting the time steps for assigning
countermeasures to the time steps where the aircraft flies within range of one
or more threats.

An even better initial solution can be found by first finding the countermeasure
yielding the best reduction of the lethality for each threat at any time step, and
then make this solution feasible. The following steps will result in a feasible
initial solution:

1. Find the best countermeasure to every time step t during the mission. If
for a given time step the aircraft is out of range of each threat, and none
of the countermeasures thus provide an increase in survivability, none is
selected.

2. Introduce timing constraints. If a countermeasure is needed to time t, it
should be turned on ahead of t, and it should be turned off afterwards.
Make sure that countermeasures are active for a minimum of time steps.

7.4 Implementing Simulated Annealing 173

3. The feasibility of the solution found in the first two steps must be ensured.
Infeasibility occurs if either the towed decoy or chaff is deployed more times
than possible. If e.g. the towed decoy can be deployed three times only,
and the solution found in the first two steps requires four deployments,
two neighbouring deployment intervals are merged, or one of the intervals
are removed. The two intervals to be merged can be chosen as e.g. the first
two instances in the deployment scheme, or they can be chosen as the two
deployments with the smallest distance in between. The same technique
can not be used to reduce the number of chaff dispensings, since each chaff
cloud formed will last for a fixed period only. Here the relevant number
of dispensings are simply removed from the deployment scheme, until a
feasible amount is reached.

7.4.3 Neighbourhood

In implementing the Simulated Annealing algorithm the choice of neighbour-
hood is essential to the results found. The definition of neighbourhood must
not prevent any feasible solutions from being investigated, and with the ac-
ceptance of solutions worse than the incumbent any feasible solution must be
reachable from any other feasible solution. This will ensure that the optimal
solution can be found regardless of the initial solution chosen.

A neighbour solution can be found in numerous ways. One way is to pick a
countermeasure and a single time step at random, and then invert the state of
the incumbent for that countermeasure in that time step. To investigate larger
parts of the search space one may select a larger number of contiguous time
steps for each neighbour. When the algorithm approaches the end temperature
it is likely that a neighbour very different from the incumbent will have an
objective value much worse than that of the incumbent. Since this neighbour
is unlikely to be accepted a neighbourhood only containing neighbours close
to the incumbent is preferred in the end of the run. Therefore the number of
contiguous time steps defining a neighbour can be decreased as the temperature
falls.

When the countermeasure is chosen at random the probability of choosing one
can be different from the probability of choosing another. These probabilities
may depend on e.g. the current threat scenario, the amount of expendable
countermeasures available, or the cost of deploying a given countermeasure. In
a similar way the time steps can be selected so that e.g. time steps that will
split a towed decoy deployment interval will have a lower probability of being
selected, since they will result in more deployment intervals, i.e. increase the
number of towed decoys used.

174 The Metaheuristics Approach

Searching a solution for an appropriate interval of time steps may prolong the
time it takes to find a neighbour. This has to be considered when choosing the
neighbourhood definition. If the algorithm is to run for a limited time only a
slow neighbour selection will decrease the number of iterations that can be done.
On the other hand, carefully choosing a neighbour may increase the probabil-
ity of the neighbour being accepted. For this implementation of the Simulated
Annealing algorithm the countermeasures will have equal probabilities of be-
ing picked. For every neighbour found a single time step is chosen, and the
probabilities for choosing each of the time steps are equal.

The states of each countermeasure are described by two variables, one indicating
if the countermeasure is on/deployed/dispensed and one indicating if it is active.
In choosing a neighbour one has to decide which of these variables to invert
when countermeasure and time step have been found. When a variable has
been inverted the solution needs to be synchronized to become feasible. In the
synchronization a number of on and active is set to make the solution feasible.
It is assumed that the synchronization is done so that variables for a minimum
number of time steps are affected. Synchronizing a solution after e.g. the
jammer is set to be on at a given time step will have the jammer being on until
it becomes active, and it will remain so for a minimum number of time steps.
For the towed decoy there is no minimum time span in which it must remain
active after being turned on. This means that if the decoy is turned on it will be
on for a fixed length period of time, only to have the on status stopped before
ever becoming active. For this reason it is chosen that only the active variable
for each countermeasure can be inverted when finding a neighbour.

In relation to the synchronization an island is a deployment interval that is
too short for the solution to be feasible. Since the jammer has to be active for
at least TJS time steps a deployment interval shorter than this is considered
an island for the jammer. If the distance between two contiguous deployment
intervals is too short for the solution to be feasible this interval is called a gap.
When a towed decoy is released at least TDR +TDA time steps must pass before
a new towed decoy can become active. This can not be achieved if the time
elapsed between two deployment interval is too short.

Synchronizing the solution when the active status of a countermeasure is in-
verted depends on the countermeasure chosen. For the jammer this is done in
four steps as illustrated in Figure 7.3. For the towed decoy and chaff similar
steps are performed during synchronization. The four steps for synchronizing
the jammer are:

Extend introduced islands and gaps. If the period in which the jammer is
set active is shorter than TJS it may form an island. For the island to be

7.4 Implementing Simulated Annealing 175

O
n

A
ctiv

e

× ×
×
×

×

(a) Active in
single step.

O
n

A
ctiv

e

× ×
×
×

×
×

(b) Period
extended.

O
n

A
ctiv

e

× ×
×
×
×
×
×

(c) Gap
removed.

O
n

A
ctiv

e

×
×
×
×
×
×

(d) On status
removed.

O
n

A
ctiv

e

×
×
×
×

×
×
×
×
×
×

(e) On status
replaced.

Figure 7.3: The steps required to synchronize the jammer part of the deployment
scheme when the status of the jammer is set to on.

formed no time step surrounding the period must have the status set to
active. If an island is found the period is extended until a minimum size
of TJS time step is reached. Similar actions are taken if the active status
is removed during the period. Here the active status must be removed for
at least TJA time step.

Close gaps and remove islands. When a period of active is introduced gaps
may occur before or after the period. If gaps are found they will be closed
by setting the status to active. In a similar way islands may appear when
the active status is removed. These islands are removed by removing the
active status for each time step in the islands.

Remove on status Since changing the active status of a number of time steps
will change when the jammer has to be turned on the on status is first
removed from all affected time steps. This is done whether the synchro-
nization is done after setting the jammer active or after removing the
active status.

Set on status For all affected time steps the active status is checked. If the
jammer is set active the on status in previous time steps are set appropri-
ately.

176 The Metaheuristics Approach

7.4.4 Parameter Settings

The implementation of the Simulated Annealing algorithm offers a number of
parameters to be set. The parameter settings will influence the performance of
the algorithm and the solutions found. The parameters include the start tem-
perature, the temperature reduction factor, generation of a non-empty initial
solution (see Section 7.4.2), and the description of four different stopping crite-
ria. The algorithm will stop when a maximum number of iterations is reached,
if the current temperature gets lower than a preset end temperature, if the in-
cumbent has remained unchanged for a number of iterations (referred to as idle
iterations), or if a maximum running time has elapsed.

In determining the parameter settings two of the six scenarios used for testing
the mathematical model (see Section 6.7) are used. The sc1 scenario contains
a single threat only, and it is chosen for determining the parameter settings
as it is likely that finding solutions to flights in this scenario is relatively fast.
This is explained by the fact that the time it takes for the implementation of
the algorithm to calculate the objective value in each iteration depends on the
number of threats given in the scenario, and the sc1 scenario contains a single
threat only. The second scenario for determining the parameters is the sc5

scenario. This is chosen since it contains three threats, and it is thus likely
that finding solutions to flights in this scenario will take an increased amount
of time compared to finding solutions to flights in sc1. Since a valid optimal
solution to the flight in scenario sc6 is not found solving the mathematical
model using GAMS/CPLEX, this scenario is not used in tuning the parameters
for the algorithm. Short descriptions of the six scenarios are repeated in Table
7.2.

It is essential that the algorithm provides good results within a very short period
of time. Therefore the algorithm is first run with varying values for the max-
imum running time. The time limit is set to vary from 10 milliseconds to 120
milliseconds. To ensure that most of the runs are terminated by the maximum
running time stopping criterion, parameters describing the other three stopping
criteria are set to refrain these from stopping the run. To perform the tests the
start temperature is set to 1,000,000, the maximum number of idle iterations is
100,000, the end temperature is fixed at 10−20, and the reduction factor is set
to 0.995. The survivabilities found for varying time limits are shown in Figure
7.4.

For flights in scenario sc1 runs with maximum running times above 65 mil-
liseconds are stopped as the end temperature is reached before the maximum
running time has elapsed. None of the flights show an increase in survivability
when the maximum running time is set higher than 85 milliseconds. To leave a

7.4 Implementing Simulated Annealing 177

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120

S
ur

vi
va

bi
lit

y

Maximum running time

Scenario: sc1
Scenario: sc5

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100 120 140

S
ur

vi
va

bi
lit

y

Actual running time

Scenario: sc1
Scenario: sc5

Figure 7.4: The survivabilities found for flights in scenarios sc1 and sc5. The
graphs show the survivabilities found as functions of the maximum running time
and the actual running time, respectively.

178 The Metaheuristics Approach

margin for finding solutions to more complex scenarios the maximum running
time is set to 100 milliseconds. This value is well within the 200 millisecond
limit given in Section 3.3.

For a given start temperature the reduction factor must be set so that a good
solution is found before the maximum running time has been reached. If the
reduction factor is set too low, i.e. the temperature decreases too fast, the
algorithm will not get to search larger parts of the search space before converging
towards a local maximum. For the sc1 and sc5 flights the search spaces are
relatively small, and large parts of them can be evaluated within relatively few
iterations. Here the problem of having a small reduction factor is that it will
make the algorithm reach the end temperature before the maximum running
time is reached. This limits the number of iterations in which the solution
can be found. Since it is assumed that having the algorithm run for as many
iterations as possible will in general increase the objective value it is preferred
that the algorithm is not stopped by other stopping criteria than the maximum
running time. Setting the reduction factor too high will keep the temperature
high throughout the execution of the algorithm. At high temperatures almost
any candidate solutions will be accepted to replace the incumbent, and no good
final solution can be guaranteed.

Combinations of start temperatures and reduction factors are tested on the sc1

and sc5 flights. These tests show that varying the parameter values have very
little effect on the survivabilities found. For the sc5 flight a reduction factor
of more than 0.997 gives a decrease in survivability, while reduction factors
below 0.993 will make the algorithm stop as it reaches end temperature. There
are no apparent differences in neither the survivabilities found nor the stopping
criterion evoked when the temperature is varied between 100 and 5,000,000. For
the sc1 flights having start temperatures below 500,000 result in the maximum
time being reached only when the reduction factor is above 0.997. Increasing
the start temperature to 5,000,000 does not change this. From these results the
start temperature is chosen at 500,000. The reduction factor must be set to a
value between 0.993, where the solving of the most time consuming problem is
stopped at the end temperature, and 0.997, where the quality of the solutions is
decreasing. The reduction factor is set at 0.995, even though finding a solution
to the sc1 flight is not stopped by the maximum running time criterion at this
value. It is assumed that values above 0.995 is likely to decrease the quality of
the solutions found, and it is assessed that better solutions are preferred even
though they are found without invoking the maximum running time stopping
criteria.

In determining the parameter settings an empty initial solution is being used.
Section 7.4.2 describes another initial solution where the countermeasures offer-
ing the best reduction of lethality are set active at each time step. Solutions

7.5 Testing 179

Parameter: Setting:
Start temperature 500,000
Reduction factor 0.995
Non-empty initial solution No
Maximum number of iterations 100,000
End temperature 10−20

Maximum idle iterations 10,000
Maximum running time 100 milliseconds

Table 7.1: The parameter settings used in testing the results found by the
implementation of the Simulated Annealing metaheuristic.

to the sc1 and sc5 flights are found both with and without the non-empty ini-
tial solution. It is found that there are no significant differences between the
solutions found when the initial solution is empty and when a non-empty initial
solution is introduced.

The parameter settings are listed in Table 7.1.

7.5 Testing

The implementation of the Simulated Annealing algorithm has been exhaus-
tively tested to ensure that it provides solutions that fulfil the constraints de-
scribed in Section 6.5. The tests described in this section compare the solutions
returned by the implementation of the metaheuristic to the optimal solutions
found using GAMS/CPLEX as described in Section 6.7. The tests are performed
on flights from the six scenarios described in Table 7.2

For each of the scenarios a 20 step flight is generated. Besides the 20 step flight
for the sc6 scenario a 1000 step flight is also generated. The parameter settings
given in Table 7.1 are applied in finding solutions to each of the flights generated.
For the 1000 step flight a different set of parameter settings is also applied. For
each flight and set of parameter settings the implemented metaheuristic is run
ten times. The results of these runs are given in Table 7.3.

Running the metaheuristic on flights from sc1 to sc4 finds only survivabilities
similar to those found by solving the mathematical model. The ten runs for
the sc5 flight return two different values, and therefore the average survivabil-
ity found here is lower than the optimal survivability found from solving the
mathematical model.

180 The Metaheuristics Approach

sc1 - Passing a single threat sc2 - Turning at an IP

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

0 1 2 3 4 5 6 7

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

sc3 - Two threats sc4 - Three threats, many chaff

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

0 1 2 3 4 5 6 7

x 10
4

1

2

3

4

5

6

x 10
4

sc5 - Three threats, many decoys sc6 - Many threats

−1 0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

x 10
4

−1 0 1 2 3 4 5 6 7 8 9

x 10
4

0

1

2

3

4

5

6

7

8

x 10
4

Table 7.2: The six scenarios used in the final part of the test. The flight in
each scenario has 20 steps, and they all start outside the range of any threats
to avoid boundary conditions.

7.6 Discussion 181

Scenario / Optimal Average Best Idle iterations
time steps: surv.: surv.: surv.: (average):

sc1/20 0.982 0.982 0.982 8403.4
sc2/20 0.914 0.914 0.914 8369.0
sc3/20 0.912 0.912 0.912 5140.8
sc4/20 0.837 0.837 0.837 644.3
sc5/20 0.837 0.833 0.837 887.6
sc6/20 - 0.813 0.817 1.9
sc6/1000 - 0.675 0.679 1.7
sc6/1000∗ - 0.792 0.804 77.2

Table 7.3: Results of running the implemented Simulated Annealing metaheuris-
tic on flights from the six scenarios described in Table 7.2. The values in the
second column are found solving the mathematical model described in Section
6.5. The ∗-marked problem has been run with an alternative set of parameter
settings.

The sc6 scenario has more threats than any of the other scenarios. Since the
time it takes to perform a single iteration depends on the number of threats
in the scenario, fewer iterations can be performed for sc6 flights, before the
algorithm is stopped by the maximum running time criterion. This can be seen
in the difference between the average survivabilities and the best survivabilities
for the sc6 flights. These runs have very few idle iterations before the algorithm
is stopped, indicating that a good solution can not be guaranteed.

The sc6 flight with 1000 steps is solved using both the same parameter settings
as for solving the other flights, and with an alternative set of parameter settings.
In the different parameter settings the maximum number of idle iterations is set
to 1,000,000, the start temperature is set to 50,000,000, and the algorithm is
allowed to run for 10,000 milliseconds. While these settings are in no way
tuned to the solving of problems of this size, the results show that allowing
the algorithm for more iterations will increase the survivability found. This
illustrates the claim stated in Section 7.3.3 that the set of parameters must be
tuned for each class of problems.

7.6 Discussion

The three metaheuristics described in Section 7.2 are all rather simple to imple-
ment. For finding a good solution to the CMOP it is not necessary to use more
complicated algorithms, since the uncertainties on the input are substantial,
and hence the difference between the solution in a local optimum and the global

182 The Metaheuristics Approach

optimum may be ”lost” in uncertainties. Using simulated annealing offers an
acceptable trade-off between solution quality and computing time.

Each iteration will include an evaluation of a new candidate. When reaching low
temperatures very few of these candidates will be accepted. To save computation
time in this part of the algorithm, the probability of accepting a new candidate
can be estimated, and then be used in accepting or rejecting candidate solutions,
without performing the time consuming evaluation of each of these. Estimating
the probability depends on both the function for calculating the probability and
on the current candidate. This is not a trivial task to do.

It has been proven that the Simulated Annealing algorithm will converge towards
a global optimum given the right circumstances [40]. First, the Metropolis vari-
ant of the algorithm is to be used, i.e. a number of iterations are performed
at each temperature. If the temperature is decreased cautiously, and the num-
ber of iterations at each temperature is large enough, the solutions found at
each temperature will reach a thermal equilibrium. This means that while the
optimal solution may not have been reached, the sum of signed fluctuations in
the objective values will be close to zero. If thermal equilibrium is obtained
at each temperature, and the Simulated Annealing is given unlimited time, the
probability of achieving one of the optimal solutions is one. For this to be true
the neighbourhood must be chosen in such a way that any feasible solution is
reachable from any other feasible solution.

Although it is theoretically possible for the Simulated Annealing algorithm to
converge towards a global optimum, it can not be assumed to do so solving
the CMOP. One of the reasons for this is the real-time requirement that any
system solving the CMOP must fulfil. The 200 milliseconds time limit for finding
a threat response (see Section 3.3) does not match the unlimited time required
for the Simulated Annealing to converge towards a global optimum.

While it is possible to reach all feasible solutions from all other feasible solutions
it may not always be easy to do so. If for instance the incumbent contains a
number of deployment intervals for the towed decoy equal to the number of
decoys available, another deployment interval can only be introduced if one of
the existing intervals gets eliminated. Removing a decoy deployment interval
requires it to be removed step by step from either end. Toggling the state of the
decoy at a time step within the interval will split the interval into two intervals.
If the number of intervals is already at the maximum number allowed, this
solution is not feasible. Having a neighbourhood where candidate solutions can
eliminate an entire deployment interval completely will make it easier for the
metaheuristic to escape local optima.

In the mathematical model, described in Chapter 6, the penalty for having a

7.6 Discussion 183

countermeasure turned on or active in a given time step is ε = 0.0001. The
small value is used because the optimal value, disregarding the penalty, would
be relatively close to the value returned by GAMS/CPLEX. For the metaheuristic
this small value may not be an advantage. In the first part of the run a solution
with countermeasures turned on without being necessary, e.g. when the aircraft
is outside the range of any threat, will only present a slightly worse solution
than the incumbent, and the probability of it being accepted is relatively large.
This may result in the introduction of unnecessary deployment intervals, and as
explained above these may not easily be removed.

As with the mathematical model a large part of the effort in implementing
the metaheuristics has been focussed on synchronizing the time steps where a
countermeasure is active with the time steps where it is on. While this syn-
chronization seems to work, it has not been tested for all possible combinations,
and situations may exist in which the synchronization will return a non-feasible
solution. Leaving out the variables describing when the jammer is turned on
and when the towed decoy is deployed, as suggested in Section 6.8, will make
the synchronization both easier to implement and faster to run.

The Simulated Annealing algorithm can be used in combination with other
algorithms and metaheuristics. An example of this is the algorithm described
in Section 7.4.2 for finding an initial solution. The Steepest Ascent algorithm
can be used in a post-processing stage of the results given by the Simulated
Annealing. If the Steepest Ascent algorithm is run long enough it is ensured
that at least a local optimum is found.

Since no countermeasures should be deployed outside the range of threats in
the scenario, omitting most of the time steps where the aircraft is outside all
ranges from the problem description would reduce the size of the problem, thus
improving the efficiency of the algorithm. Removing all these time steps can
effect the solution found since a countermeasure may need to be turned on/de-
ployed/dispensed ahead of the period in which it is within the range of a threat.
Due to the limited amount of towed decoys aboard the aircraft it may also be
necessary to keep a decoy deployed when the aircraft flies between the ranges
of two threats. Care should therefore be taken if it is decided to reduce the
problem size by omitting part of these steps.

During flight the solutions found at a given time step can be shifted one time
step and be used as initial solution for a run in the following time steps. Doing
this may lessen the time it takes to find good solutions for the following time
steps and hence the allowed running time can be decreased. When shifting the
solution one time step at each run, already found deployment intervals can be
shifted out of the deployment scheme. When this happens to a decoy deployment
or a chaff dispensing the total number of allowed deployments/dispensings must

184 The Metaheuristics Approach

be increased accordingly.

The tests described in Section 7.5 show how the number of threats influences
the number of iterations that can be performed within a limited amount of time.
This influence is caused by the calculation of the objective function, since this
is the only part of the algorithm where the number of threats has an impact. If
finding the objective value was done more efficiently, e.g. by following the steps
described in 7.4.1, the effect of multiple threats will decrease.

7.7 Conclusion

With the implementation of the Simulated Annealing it is shown that it is
possible to find good solutions to the CMOP within short time. To flights with
no more than 20 time steps the solutions found will often be either optimal,
or close to an optimum. For problems involving more time steps or threats
than the ones tested in Section 7.5 the current implementation of the Simulated
Annealing algorithm may still be too slow. No actions have been taken to
improve the solutions for these problems within the time limit.

For the flights constructed good solutions are found within 100 milliseconds. It
is believed that good solutions may also be obtained for larger problems if the
parameter settings were optimised according to the size of these problems.

It is concluded that Simulated Annealing is an appropriate choice of metaheuris-
tic for solving the CMOP. It is, however, not evident that it is the metaheuristic
best suited to perform the task. To find the metaheuristic that will find the
best solutions within a limited time will require more metaheuristics to be im-
plemented, and more tests to be performed.

Chapter 8

Comparing Approaches

The four approaches described in this work represent four different technologies
that can be used in designing a DSS for fighter pilots. In this chapter the four
approaches are compared, and pros and cons of each technology are described.
The approaches are compared with regards to five of the six design requirements
described in Section 3.3: real-time, hardware, updateable, trustworthy, and us-
able. For each of these requirements the approaches are marked from one to five
where five is the best. These marks are the result of a subjective assessment by
the author, and from the marks the approach best suited for further develop-
ment is found. The sixth design requirement, a usable user interface, has been
omitted in this comparison, since no effort has been done to develop a suitable
interface to either of the systems developed.

8.1 The Approaches

In Section 3.3 it is estimated that a DSS must be able to suggest evasive actions
to the pilot within 200 milliseconds from the time a change in the scenario
occurs. It is assumed that this response time is obtained running the DSS on an
aircraft computer. Since neither of the systems developed in this work has been
run on such a computer all the response times reported are estimates based on

186 Comparing Approaches

the computation times found using the computer systems described in Appendix
E.

For all approaches it is assumed that uploading mission data and updates to
the systems can be easily done during the pre-flight preparation of the aircraft.
How this is done is beyond the scope of the work.

8.1.1 Prolog

The Prolog program described in Chapter 4 uses a set of rules for a pilot to
follow to perform evasive actions in a hostile environment. These rules are
combined with a knowledge base containing descriptions of threats and how
they are mitigated. Descriptions of the current scenario are also used by the
program for suggesting actions.

Real-time. Traditionally the execution of Prolog programs is considered slow.
This is due to the way a Prolog interpreter will compare every state ob-
tained to a number of rules to see whether a rule can be matched. The
program described in Chapter 4 has been run using B-Prolog on the laptop
PC described in Appendix E. With this configuration neither of the runs
was registered to take more than 150 ms. To this period of time the time
it takes to register data about the current scenario must be added, as must
the time it takes to present the output of the program to the pilot. In this
chain of actions running the Prolog program is considered to be the most
time consuming. It should be noted that adding to the complexity of the
scenario or to the size of the knowledge base will increase the time used
by the Prolog interpreter. This may influence the ability for the Prolog
program to give real-time performance and hence it is rated the mark 4.

Hardware. Although it is unlikely that a Prolog interpreter is currently in-
stalled on an aircraft computer it is assumed that writing such an inter-
preter is relatively easy (see Section 4.1). Input to the Prolog system will
come from either onboard systems, such as the MWS and the RWR, or it
will be given pre-mission. The developed system requires data to be writ-
ten to Prolog files which may be consulted at a fixed interval. Converting
data from devices attached to the aircraft data bus to either a Prolog file
or directly input to the Prolog interpreter is assumed a minor task. All in
all the Prolog approach receives the mark 4 for fulfilling the requirements
set by the aircraft computer and hardware.

Updateable. The Prolog program was developed in a relatively short time.
This suggests that both minor updates and major rewrites can also be

8.1 The Approaches 187

done in a short time. If it can be assumed that the logic behind the
Prolog program does not change, the updates necessary will be limited
to the knowledge base and the programs for dispensing expendables. In
the Prolog program these data are kept in separate files and the updates
concern these files only. The Prolog approach is rated the mark 5 for
fulfilling the updating requirement.

Trustworthy. The Prolog based DSS will suggest every feasible solution to all
problems presented to it. Whether these problems are the results of real-
world threats, or merely stems from false alarms from e.g. the MWS, is of
no concern to the program. Input can come from different sources, each
of which has a probability of supplying erroneous information and false
alarms. If input from one source is erroneous the output from the program
is likely to be erroneous too. The probability of the program suggestion
actions that does not match the real-world scenario is thus bigger than it
is for each of its input sources to deliver erroneous input. This problem
has been described in [52].

The experienced pilot will have a perception of how reliable each of the
on-board sensor system is, and he will respond to the warnings given by
such a system according to this reliability. With the introduction of the
Prolog program the sources of warnings will be hidden from the pilot, and
the perception of reliability will be gone. For fulfilling the requirement of
a DSS to be trustworthy the Prolog program is rated the mark 3.

Useful. The program will find all feasible actions to scenarios given. There is
no ordering of the solutions, and the task of finding the best applicable
solution is left to the pilot. The more threats the system needs to find
actions for the more actions it will probably find. Since more threats in the
scenario will increase the pilot’s workload, an increase in the information
presented to him by the system is not beneficial.

The Prolog system will register if a previously deployed countermeasure
may currently have an effect on threats in the scenario. Also the amount
of expendables is registered for the system to see if a given countermeasure
program can be executed. Knowledge about threats that the aircraft will
encounter in the near future is not used by the program. Thus neither the
best sequence of deploying countermeasures, nor the probability of having
enough expendables for the rest of the mission is found.

The Prolog program is basically categorical, and although any relations
can be described with some uncertainty, it does not take the uncertainty
on the observations into account. Unlike the other three approaches the
Prolog program may improve the probability of the survival of the aircraft
without giving an estimate of the improvement. If the notion of surviv-
ability was introduced in the program it may help in ordering the solutions

188 Comparing Approaches

found at each time step. The overall usefulness of the Prolog program is
rated the mark 3.

8.1.2 Bayesian Network

For the EW domain the variables in a BN refer to e.g. the presence of radar
radiation, approaching missiles, or warnings issued by sensor systems on-board
the aircraft. For each relation between a variable and the variables it depends
directly upon the dependencies are described using a dependency table. When
chances to the probability of a variable being in a given state is changed the
BN is updated, and all related dependencies are re-calculated. For the BN the
survivability is the probability of the variable Survive being in the Survive state.
The best action yields the highest survivability.

Real-time. The time it takes to update a BN depends on the number of vari-
ables and dependencies in the BN. Therefore expanding the BN to be able
to accommodate more scenarios and a broader range of actions is likely
to slow down the execution. Speeding up the execution may be done by
writing a program that is dedicated to finding the best combination of
actions with the model developed, and not be dependent on the HUGIN
tool.

For finding the best combination of actions to a given scenario each com-
bination is set using the HUGIN user interface and the survivability from
this combination is then calculated. Each of these calculations is done in
what appears to be real-time. The number of combinations to evaluate is
fairly small and it is assumed that the total time it will take to calculate
the survivabilities for all combinations is well below one second, and prob-
ably within the 200 ms limit. This can be verified by writing a program
that interacts with HUGIN and performs all the survivability calculations;
this has not been done. Overall the BN approach is rated the mark 3 for
the ability to fulfil the real-time requirement.

Hardware. The HUGIN software may not easily be ported to an aircraft com-
puter. If HUGIN, or another PC-based BN tool, is used for the develop-
ment of a BN, the model itself may be ported to an aircraft computer.
Writing a program for this computer than can read the ported model and
maintain and update a BN may be just as easy as the implementation of
a Prolog interpreter as previously mentioned. The mark 4 is given to the
BN approach for fulfilling the hardware requirement.

Updateable. Developing and maintaining a BN has proven to be very cum-
bersome. The dependency tables involved may become very large, and

8.1 The Approaches 189

updating these by hand is difficult. If statistical data about the relations
between variables in the BN are available it may be possible to update the
BN, or parts hereof, using Structural Learning.

Introducing new threats or countermeasures to the BN is done by intro-
ducing new variables or new states in existing variables. This can not
be done without updating large parts of the BN since all variables being
directly influenced by the changes must also be changed. All in all the BN

approach gets the mark 2 for the ability to be updated.

Trustworthy. One of the advantages with the BN developed is that it is de-
signed to manage the probabilities of sensors reporting false alarms. Even
if the probability of a sensor issuing a warning is 100%, the probability
of this being wrong is incorporated in the model. As long as the model
used for the BN can be considered trustworthy so can the results found.
For this the BN approach is given the mark 5. One may argue that the
BN developed is not entirely trustworthy, and that the mark should be
no more than 3 or 4. It is deemed that the model is as trustworthy as
the domain knowledge upon which it is build, and therefore the mark 5 is
obtainable if sufficient data are given.

Useful. For every scenario presented to the BN examining combinations of pos-
sible actions will result in the combination of actions yielding the highest
survivability. This offers an improved usability compared to the Prolog
program since the workload of the pilot is not increased by the DSS if the
number of threats in the scenario increases.

Since expanding the BN is cumbersome, the number of e.g. missiles that
is known by the BN is very limited. This means that the probability of
the pilot encountering threats not known by the BN is relatively high.
While this will not prevent the system from finding a good combination
of actions, the pilot may not be convinced that this combination is in fact
the best. The number of actions in the BN is also very limited, and this
too will influence the usefulness of the BN.

When a manoeuvre is necessary for the aircraft to obtain a break lock the
system will not describe this manoeuvre. Adding this functionality to the
system would clearly improve its usefulness. Without it the usefulness of
the BN-based DSS receives the mark 3.

8.1.3 Mathematical Model

The mathematical model is implemented to solve a problem different from the
problem solved using the Prolog program or the BN model. Where the focus in
the first two approaches is on providing solutions to the current threat scenario

190 Comparing Approaches

the focus with the implementation of the mathematical model is on finding the
best sequence of countermeasure deployments during an entire mission. Finding
the best solution to any given time is considered trivial and is basically done by
simple table look-ups. It is assumed that some knowledge about threats that will
be encountered by the aircraft in the near future is known. The mathematical
model is written in the GAMS language and it is solved using the CPLEX solver.

Real-time. Using GAMS/CPLEX solving problems with approximately 20 time
steps will take from a few seconds to several hours, depending on the
complexity of the scenario. This suggests that solving the mathematical
model to optimality with currently available hardware and software can
not be guaranteed in real-time. For this the approach gets the mark 1.

Hardware. Using the newest computer technology for running the GAMS/
CPLEX software the computation times experienced in this work may
be reduced substantially. It is unlikely that this technology will reduce
the computation time enough for the system to become real-time, and it
is equally unlikely that the technology will soon be implemented in exist-
ing fighter aircraft. For meeting the requirement that a DSS must be able
to run on an aircraft computer this approach gets the mark 1.

Updateable. Changing the lethality of the involved threats, or adding new
types of threats to the scenario, is relatively easy, as long as the new
threats behave similar to the existing threats. Also changing the reduction
functions for each countermeasure can be done with a minimum of effort
since these functions are described using simple look-up tables.

Adding more countermeasures to the mathematical model will result in
the addition of constraints to the model. As long as the added counter-
measures have time relations comparable to those of the already included
countermeasures this is a trivial task. This kind of countermeasures can
either be described using the five-phase description from Section 6.5.1, or
if they are expendables the constraints can be compared to those related
to chaff dispensing. Another very important requirement to new counter-
measures is that they work on RF based threats. If that is not the case
the lethality will need to be redefined. The related reductions of lethality
will also need to be computed as functions of the electromagnetic band in
which they work.

Since updating the mathematical model with new threats and threat sce-
narios is likely to be the most frequent updates to the system the approach
using the mathematical model gets the mark 4 for the ability to be up-
dated.

Trustworthy. If it is assumed that knowledge about the type and positions of
enemy threats are the results from intelligence reports, the solutions found

8.1 The Approaches 191

using the mathematical model will not suffer from the dependency of on-
board sensors as e.g. the Prolog program does. As long as the description
of threats used to find the optimal sequence of actions matches the real
world the results can be trusted. As this can not always be guaranteed
and information from e.g. the RWR is needed to update the threat scenario
the system becomes less trustworthy and the mark is set to 3.

Useful. Since the performance of a system based on finding the optimal solution
to the mathematical model is far from real-time the usefulness of such a
system appears as quite small. It is assumed that positions of threats
are known before the aircraft embarks on the mission. If this information
is available long enough for GAMS/CPLEX to provide a solution before
the mission is initiated this solution may still be useful to the pilot. The
optimal solutions found solving the mathematical model can also be used
in tuning the parameters for use in the metaheuristic. The mathematical
model thus proves its usefulness in other areas as well.

In Section 2.3 it is mentioned that IR guided missiles may be considered
the greatest threat towards aircraft. Since the mathematical model does
not find solutions to scenarios including IR guided missiles the usefulness
of the mathematical model diminishes.

The results from the system will describe when a countermeasure needs to
get deployed, and which threat it is mitigating. How this deployment is
to be done, and which manoeuvres that must accompany it is not given.
This brings the usability of the mathematical model down to the mark 2.

8.1.4 Metaheuristics

The implemented Simulated Anneling metaheuristic will solve the same prob-
lems as solved by the mathematical model. The differences between these meth-
ods are mainly found in the value of the solutions, and the time it takes to find
them. Where GAMS/CPLEX will use a long time to find the optimal value to
a problem, the metaheuristic will often find a suboptimal solution to the same
problem in much less time. As mentioned in Section 7.1 the description of a
battlefield scenario will often be so deficient that the optimal solution found
by the GAMS/CPLEX method may not be any better than any solution found
using the Simulated Annealing metaheuristic.

Real-time. One of the advantages of a metaheuristic such as Simulated An-
nealing is that the time it is allowed to find a good solution can be used
as a stopping criterion, and when stopped the currently best found solu-
tion is returned. This means that Simulated Annealing can probably be

192 Comparing Approaches

used to find good feasible solutions within the 200 ms limit set in Section
3.3. Since the solution to the problem at a given time can build upon the
solution found at the previous time step, the time it takes to find a good
feasible solution will be even less than the times found in Chapter 7. For
this the mark for the real-time requirement is set to 4.

Hardware. The success of the Simulated Annealing depends on the number
of iterations it is allowed to perform before being stopped. For a fixed
running-time this number of iterations depends on both the program im-
plementing the metaheuristic and the hardware on which it is run. Even
if an aircraft computer does not perform as fast as the laptop PC used for
running the implementation described in Chapter 7 it will not render the
use of the metaheuristic impossible; only the quality of the solutions found
may be deteriorated. The mark for matching the hardware on-board the
aircraft is set to 3.

Updateable. Updating the scenario for the metaheuristic can be done by up-
dating the files that describes the scenario and the reduction of lethality
by the countermeasures. The format of these files is the same for the im-
plementation of the metaheuristic as for the files that are included in the
GAMS program. Updating the program itself to include other countermea-
sure or to be able to counter IR guided missiles will require parts of the
program running the metaheuristic to be rewritten. Since the updating of
the implementation of the metaheuristic is similar to updating the system
using the mathematical model it too gets the mark 4 for the ability to be
updated.

Trustworthy. Compared to the system using the mathematical model the
metaheuristic system can, due to its ability to deliver real-time solutions,
respond to changes in the scenario as they occur. This will bring the mark
for trustworthiness up to 4.

Useful. This system suffers from the same drawbacks as the system solving
the mathematical model. That it may operate in real-time increases the
usability of the system and it receives the mark 3 for this.

8.2 Comparison

The marks given for each of the five design requirements to the four approaches
are collected in Table 8.1. Comparing the approaches can also be done by
studying the web plots in Figure 8.1. Generally the best approach will be the
one with the largest area in the web plot.

8.2 Comparison 193

Requirement: Prolog: Bayesian
Net-
work:

Math.
Model:

Meta-
heuristic:

Real-time 4 3 1 4
Hardware 4 4 1 3
Updateable 5 2 4 4
Trustworthy 3 5 3 4
Useful 3 3 2 3

Table 8.1: The marks given for each approach with regards to the design re-
quirements formulated in Section 3.3.

It is alluring to choose the best approach for building a DSS by simply selecting
the approach with the best average mark for the five requirements. Using a
weighted average may give a better impression of the strength of the different
approaches. Finding this weighting is not trivial: to the DSS programmer it may
be important that the system can offer real-time performance while working on
an aircraft computer; the crew responsible for preparing the aircraft before a
mission may find the ability to update the system to be important, while the
pilot may prefer the system to be both trustworthy and useful. For the web plots
in Figure 8.1 weighting the requirements differently is equivalent to scaling the
axes for the requirements thus adjusting the area of the web plot.

Finding the best approach for a continuance of this work may depend on a re-
quirement not previously mentioned: potential. Which of the four approaches
has the highest potential of being a success with further development? Fur-
ther development with the Prolog program may improve the usability of the
program. This may also expand the number of predicates necessary to explore
when finding a solution, thus possibly leading to increased computation time.
For the BN approach the success depends on the possibility of updating depen-
dency tables. If data for a Structural Learning (SL) procedure can be provided,
this approach is likely to succeed. Although computers and algorithms for find-
ing solutions to mathematical programs keep improving it is unlikely that the
GAMS/CPLEX approach in near future will be able to perform real-time for
problems of a relevant size. Since results from GAMS/CPLEX can be used to
improve the performance of the metaheuristic the potential of the approach
lies in increasing the number of time steps in the problems solvable. With the
metaheuristic implementation the major disadvantages are that it will not find
solutions to scenarios involving IR based threats, and finding the appropriate
countermeasure at every time step is done by a simple table look-up. If these
disadvantages can be alleviated the potential of the approach is improved.

It is the opinion of the author that a combination of the four approaches may

194 Comparing Approaches

(a) Prolog (b) Bayesian Network

(c) Mathematical Model (d) Metaheuristic

Figure 8.1: Web plots illustrating the distribution of the marks given to the four
approaches.

give the system best suited for further development. The time requirements
renders the mathematical model per se useless as the technique applied in a
DSS. The combination of solving the mathematical model to optimality and
using the results to tune parameters for the metaheuristic seems viable, and the
metaheuristic will be the best choice of technique for allocating countermeasures
over time. Both the Prolog program and the BN amend the disadvantages with
the metaheuristic implemented: they find solutions to scenarios involving IR

based threats, and they find a solution to each time step by scrutinizing the
descriptions of the scenario. If a sufficient amount of data can be established
to build the BN using SL this is the preferred technique for finding the best
combination of actions to each time step. This is due to the fact that actions
suggested by the BN is based on the probability of input data being wrong. If
data for building the BN can not be obtained a Prolog program will find the
best actions to each time step. As stated earlier a Prolog program may be used
to construct data for building the BN.

Chapter 9

Further Work

This chapter suggests further work for improving the results from the four ap-
proaches previously described. Also methods for testing the results from the
approaches are described, and finally a few approaches which may be good can-
didates for further investigation are suggested.

9.1 Current Approaches

The work with the four approaches has been focussed on providing enough ma-
terial to evaluate the concept of each approach as the technology to use in a DSS

for fighter pilots. To fully understand the potential of these approaches further
work needs to be done for each of them. Besides improving the understand-
ing the tasks described will either improve the usefulness of each approach or
lessen the time it takes to suggest actions to the pilot. Some of these tasks are
described here.

196 Further Work

9.1.1 Prolog

In Chapter 4 it is mentioned that defining the set of rules to build the Prolog
program upon is best done in iterations, where an implementation of the current
set of rules is evaluated, new rules can be added, and old rules may be removed or
changed. Conducting these iterations will require the co-operation of a number
of experts within the EW domain.

The Prolog program returns every feasible solution to any scenario described
to it. The solutions are composed of combinations of manoeuvres and counter-
measures. In performing the proper evasive actions the pilot will benefit from
these combinations being prioritized. The prioritization can be done by either
the increase in survivability given by the combinations, or by how easy they are
to perform given the current status of countermeasures and direction of flight.
On a graphical display the solutions can be presented in such a way that the
person testing the system will see which threat each combination is mitigating.

The Prolog program does not take advantage of any knowledge about threats
that will be encountered in the near future. Doing so will require a set of rules
describing this to be formulated. Even though this formulation is not a trivial
task, it can be introduced as part of the iterative improvement of the set of
rules.

9.1.2 Bayesian Network

The time it takes for HUGIN to propagate evidence throughout the network
depends on the number of nodes in the network. Section 5.3.2 explains that 36
combinations of states within four action nodes must be tested to find the one
giving the highest survivability for a threat scenario. Since these combinations
are mutually exclusive a single action node with 36 states can be constructed
instead. This reduces the number of evidence propagations for each change in
the BN from 36 to just one, which will result in a decrease of the total running
time.

The BN model lacks the ability to determine the manoeuvre resulting in the
best survivability. As it is any manoeuvre is preferred since deploying a coun-
termeasure will almost always require a manoeuvre. If angles are introduced into
the model the manoeuvre providing the best survivability can be found. The
drawback of introducing angles is that the time it takes to propagate changes
throughout the network is likely to increase.

9.1 Current Approaches 197

The model includes only three types of countermeasures: flares, chaff, and jam-
mer. If more countermeasures are included, and both new and existing coun-
termeasures are described by a number of programs, the model will be closer to
describing the situation for a fighter pilot. This will make it easier for e.g. a
fighter pilot to perform an evaluation of the abilities of a BN approach.

Large parts of the BN model can be build using Structural Learning (SL). The
learning feature offered by HUGIN seems to provide good results and it is thus
a good candidate for performing the SL, although other tools for doing this may
be investigated. Doing SL requires statistical data to be available. Statistical
data from trials and real-life experience may be sufficient for the task, but
the nature of these data makes them difficult to acquire. Synthetic data, e.g.
provided by the Fly-In tool, may have the same characteristics as data from
real aircraft. Gathering synthetic data can be a time-consuming task depending
on the number of parameters included in the simulations. It will require more
in-depth analysis to determine the parameters and the values of these to base
the simulations on. Writing a Prolog program for delivering parts of these data
may prove to be a viable approach; for instance in deciding proper angles for
manoeuvres in conjunction with countermeasure deployments.

9.1.3 Mathematical Model

In Chapter 8 it was ascertained that solving the mathematical model using the
GAMS/CPLEX approach is unlikely to produce usable results in real-time. An-
other use of the model is to find optimal solutions for problems that can be used
in tuning parameters for the metaheuristic approach. Since parameter tuning
is best done on problems similar to those which must be solved using the meta-
heuristic the implementation of the mathematical model must be able to solve
these problems. In Section 6.4.3 it is estimated that a time frame may include
up till 1500 time steps. Since finding the optimal solution to the CMOP with
20 time steps may take several hours with the GAMS/CPLEX approach, finding
an optimal solution to a problem with 1500 time steps can not be done within
reasonable time. Introducing more advanced OR techniques may be helpful in
finding solutions to problems of this size faster, as relaxing the integer require-
ments may also prove to be beneficial.

The mathematical model is used to optimise the survivability for the aircraft
flying a route defined by a set of IPs. A similar model may be developed to find
IPs describing the route providing the optimal survivability. As route planning
is a task that is most often carried out before a mission is initiated, finding a
solution in real-time is no requirement.

198 Further Work

9.1.4 Metaheuristic

As mentioned in Section 7.6 the initial solution to all but the first run of the
Simulated Annealing may be a modification of the solution found at the previ-
ous run. The implementation of the metaheuristic may take advantage of this
possibility. This initial solution might need to be modified if new threats have
occurred, or if the battlefield scenario has otherwise changed.

In [40] the techniques for accelerating Simulated Annealing are classified into
three categories: designing a faster algorithm by improving the cooling sched-
ule, the neighbourhood, or the objective function; using hardware acceleration
where time consuming parts of the algorithm is implemented in hardware; and
finally parallelising the algorithm to take advantage of multiple processors. The
Simulated Annealing implementation in this work has been evaluated using only
a single neighbourhood definition and a single definition of the objective func-
tion. Experimenting with more implementations of these, as well as a variety
of cooling schedules, may result in better performance within the fixed time
interval given.

Since this work is of an exploratory nature implementing parts of the Simulated
Annealing in hardware is considered beyond the scope. If a DSS is being im-
plemented, and the choice of technique to use for this is a Simulated Annealing
implementation, experiments using hardware acceleration need to be carried
out. The aircraft computer running a DSS will probably be dedicated to this
and having hardware running parts of the Simulated Annealing algorithm in
this computer may thus be feasible. A disadvantage by having parts of the DSS

implemented in hardware is that updating the DSS is likely to be more difficult.

According to [15, 40] parallelising the Simulated Annealing has been the subject
of several studies. The parallelisation can be done in different ways, three of
which are described here. The simplest way is to run an instance of the algorithm
on each available processor. The instances would be stopped at the same time
due to the fixed running time allowed, and the best solution is chosen. The
immediate advantage of this approach is that it is relatively easy to implement
since a minimum of synchronization between the processors is involved. If the
instances are given the same initial solution and a very limited time to improve
it, they may all explore the same part of the search space. It is not unlikely that
the solutions found will be close, and there will little benefit from an increase
in the number of available processors.

Introducing communication between the processors may result in better results.
Each instance of the algorithm may search for solutions near the incumbent
and report to the other instances when an accepted solution is found. This

9.2 Testing with Flight Data 199

solution will then be the incumbent for all instances in the continued search.
This parallelisation will search larger parts of the search space during the fixed
computation time allowed and the results is likely to be improved.

Having each processor working on a subproblem instead of the full problem may
improve the solution found to each subproblem. For n processors the problem
solved by the first processor may then contain only the first 1/n time steps, the
next problem will describe the next 1/n time steps, and so on. The solutions
found by each instance of the algorithm is reported in due time and every
processor will have the fixed computation time allowed for solving only 1/n’th of
the problem. While the quality of the solutions to each of these subproblems will
hopefully improve it can not be guaranteed that the combination of solutions
to the subproblems constitute a good solution to the entire problem. Which
parallelisations best suited for improving the results found using the Simulated
Annealing may be the subject of further work.

With the implementation of the Simulated Annealing reported here the choices
of cooling schedule, neighbourhood, and objective function may be subject for
re-evaluation. Also the choice of metaheuristic may be re-evaluated. In Section
7.2.4 it is mentioned that the Simulated Annealing performs at its best if given
enough time and if data describing the problem are uniform. Since the nature
of the CMOP and the environment in which it needs to be solved offers neither
optimal time conditions nor uniform data the choice of Simulated Annealing
as metaheuristic may not be the best and other metaheuristics needs to be
considered as well.

9.2 Testing with Flight Data

The four approaches have all been tested using synthetic data from scenarios
fabricated to this purpose only. The Prolog program has been tested using
warnings issued from the RWR and the MWS in well defined scenarios. These
warnings are all caused by threats in the scenarios and the possibility of false
warnings has not been exploited. Testing both the mathematical model and
the metaheuristic implementations are done using a high-level description of
scenarios where interaction with sensors on-board the aircraft is ignored. Testing
with flight data instead of data constructed for test only may reveal flaws in the
design of each of the approaches. It is recommended that this type of testing is
carried out before further development is commenced.

200 Further Work

9.2.1 Flight Simulator

At DDRE there has been some experience using the PC-based Falcon 4.0 flight
simulator for supplying data to a tactical trainer [18]. These data can also
be used for testing a PC-based DSS, where data may either be fed live to the
system, or it may be recorded for later off-line data processing. With the live
data feed the flight simulator will deliver flight data at a given frequency. The
DSS then finds the combination of actions with the highest survivability given
the flight data and these actions can be displayed on a monitor adjacent to the
one showing the flight simulator.

If the DSS is run on the PC also running the flight simulator it might be difficult
to meet the 200 milliseconds response time requirement. Therefore a two-PC
setup is suggested; one running the flight simulator and one running the DSS.
The connection between the computers can be established using an ordinary
computer network cable. The delay in the transmission of data between the
flight simulator and the DSS can be ignored since finding solutions to the scenario
will still be the time consuming part of the process.

Falcon 4.0 will only supply the DSS with RWR data and the current amount
of chaff and flares. While this is a drawback for testing the influence by MWS

warnings and jammer data the connection between the Falcon 4.0 flight simu-
lator and a DSS is still considered a good approach for performing flight data
tests.

9.2.2 Flight Recorder Data

For some aircraft an on-board flight data recorder may deliver input to the test
of a DSS. These data may consist of frequently collected aircraft positions and
orientations, airspeed, sensor warnings, etc. An advantage with these data is
that they carry the uncertainties experienced by the sensors aboard a real-life
aircraft. A drawback is that the effect of actions suggested by the DSS will not
be part of the data. While it may be possible to infer actions taken by the
pilot, mapping these to possible actions suggested by the DSS may prove to be
difficult.

9.3 Other Techniques 201

9.2.3 Live Data Feed

The best way to test the actions suggested by a DSS will be to present the
results to the fighter pilot during flight. Since the space in most fighter aircraft
is limited it may be difficult to fit a DSS prototype into the cockpit. The test
of a DSS does not require the aircraft to be a fighter aircraft, and it might as
well be installed in a larger aircraft, e.g. in a military transport aircraft. Here
data can be acquired from a MIL-STD-1553B (see Section 3.5.1) bus in much
the same way as in a fighter aircraft1. A transport aircraft may be equipped
with largely the same countermeasures as a fighter aircraft and although the
speed and manoeuvrability of the transport aircraft is different from those of
the fighter aircraft it is still possible to measure the effects of actions suggested
by the DSS.

To ensure input data from on-board warning system such as RWR and MWS the
testing of the system needs to be performed flying over threats. Flying a trans-
port aircraft over enemy territory can not be regarded as optimal conditions for
doing countermeasure or DSS tests. For this the NATO Air Force Armaments
Group organise a series of tests with the participation of equipment and air-
craft from different NATO countries. Here the aircraft overfly real or simulated
threats to test the effect of aircraft countermeasures. Two series are organised:
trial MACE covers RF based threats and trial EMBOW covers testing against
electro-optical systems including IR threats [43].

9.3 Other Techniques

Other techniques than the four described in this work may be viable for the con-
struction of a DSS for fighter pilots. Some of the candidates that were discussed
during the work are described in this section.

9.3.1 Constraint Logic Programming

Constraint Logic Programming (CLP) is a combination of two declarative pro-
gramming paradigms: logic programming and constraint solving. With logic
programming variables have the scope of the current predicate only. In CLP

constraints are introduced to represent relations between variables throughout

1Not all military transport or fighter aircraft are equipped with the MIL-STD-1553B
databus. Acquiring data from a non-standard databus may be inconvenient but still pos-
sible.

202 Further Work

a given domain such as trees and sets. Handling these constraints is done using
a programming language that adds to the functionality of Prolog [56]. Generally
there is a strong connection between Prolog and CLP, and many Prolog inter-
preters offers some degree of CLP, while compilers dedicated to CLP will often
be able to compile Prolog programs.

CLP can be used for adding functionality to the Prolog program described in
Chapter 4, and according to e.g. [56] it may enhance both the productivity of
software development and software maintainability. Several CLP systems can be
investigated for this, e.g. the B-Prolog system introduced in Chapter 4 and the
ECLiPSe system [2].

9.3.2 Artificial Neural Net

Using an Artificial Neural Net (ANN) a number of neurons can represent the
same set of variables as introduced in the BN approach. While the results with
a BN is found by propagating probabilities throughout the entire network, the
results from a ANN is found using a number of functions integrated with the
relevant sequences of neurons from the input to the output.

Updating the dependency tables in the BN has shown to be a disadvantage with
this approach. Learning the structure and dependency tables using SL requires
representative data for all combinations of states within the variables of the BN.
If only parts of this set of data is available SL will come short of providing a
usable BN. If a learning ANN is used instead the setup of functions and weighs
within the network will be adjusted according to the data it can be trained with.
If this training is done using e.g. data from a flight simulator it may show that
data representing all combinations of states are not necessary to train the ANN

to provide good solutions.

In [38] an ANN is taught to play poker without knowing any expert strategies.
The ANN here showed the ability to play and win a poker game where knowledge
of cards held by the opponents was unavailable. A similar teaching scheme can
be applied to an ANN for finding actions to be performed by a pilot when ground-
based threats emerge. Here the opponent represent the enemy, the card held by
the opponent are hidden to the system in much the same way as the number
and positions of threats, and finally information about approaching missiles can
be compared to the revealed community cards in Texas Hold’em poker.

Exploring the ANN approach can be done by either developing relevant software
or by using commercial software such as the Neural Net Toolbox in MATLAB.

9.3 Other Techniques 203

9.3.3 Stochastic Programming

Stochastic Programming is a framework for modelling uncertainty involved in
optimisation problems. The mathematical model described in Chapter 6 de-
scribes a deterministic optimisation problem where the parameters describing
both the threats and the effects of countermeasures are known. In a real-world
scenario each of these parameters can be subject to uncertainty and a Stochas-
tic Programming approach will include these uncertainties when suggesting a
combination of actions to the pilot. As with the BN it is not a trivial task to
determine the uncertainties to include in the model.

204 Further Work

Chapter 10

Conclusion

Describing the problematics involved in deciding the optimal response to enemy
threats is a rather complex task that involves many facets. For each of the
models developed in this work a large part of these facets are left out while others
have been simplified to obtain a working model. For domain experts within the
field of EW these omissions and simplifications may seem unnecessary and the
solutions found using the models may be too simple to have any practical value.

Early on in the work with this project it was decided to focus the work on
ground-based threats only. This was done to eliminate the number of facets
involved in the models, and the assumption was that ”raising” the threats into
the air was probably only a matter of introducing an altitude to the description
of each threat. During the work it has been shown that besides modelling
the problem another critical issue was to obtain responses from the systems
in real-time. While this is a cornerstone in the requirements for a DSS finding
mitigating actions to ground-based threats it is even more important if the
threats are airborne. Here the pilot alone does not determine e.g. the distance
to an enemy aircraft and any manoeuvres performed to avoid missiles may
be countered by the enemy. Since there may be little risk of a fighter aircraft
engaging in a dogfight, focussing on ground-based threats only is still considered
a good decision.

A large part of the time spent on this project has been used on the construction

206 Conclusion

of data for the development and testing of the models. This construction has
been necessary since real-world data have not been available. Although the
constructed data have some resemblance to data that may be gathered in real-
world scenarios they must be considered with great caution. One must exercise
great care when executing decisions based on the models build or tested using
constructed data since these data may give a poor representation of the world
surrounding a real-world aircraft. If representative data had been available
throughout the project less time had been spent on the construction of data and
data generating models, and more time had been dedicated to improving the
results of the four approaches. It is likely that this had improved the usability
of the systems developed.

With the approaches chosen for this work it has been shown that it is possible
to find usable results to different formulations of the situation for a fighter pilot.
Whether one of these approaches, or perhaps a combination of them, will provide
the best results possible has not been shown. Determining the best approach
for the development of a real-world DSS requires further work.

Appendix A

Threats

A.1 Guidance Systems

A number of guidance systems are described in Table A.1. To each guidance
system an illustration of the parties and radiations involved is given.

Semi-Active Radar (SAR) Missile
Guidance
In a semi-active radar guided system,
the nose of the missile contains a radar
receiver which receives radar reflections
from a target illuminated by an associ-
ated target tracking radar platform. In
the illustration the missile is fired at a
helicopter from a ground based vehicle.
The radar radiation (green) is emitted
from a radar platform, and echoed off
the aircraft (yellow).

Table A.1: Description of guidance systems. Continues...

208 Threats

Infrared (IR) Missile Guidance
In an IR guidance system the nose of the
missile contains a sensor that is sensi-
tive to the IR portion of the electromag-
netic spectrum. This sensor is capable
of detecting the IR radiation emitted
from a target. IR seekers can be of two
types, homing or imaging. This type of
missile is a ”fire-and-forget” system. In
the illustration the red radiation repre-
sents the IR radiation emitted by the
aircraft.

Active Radar Missile Guidance
In an active radar guidance system
the missile contains a complete radar
system which transmits radar radia-
tion and receives radar reflections from
the target. This type of missile is a
”fire-and-forget” system. The radiation
shown in the illustration is both the
transmitted and received radar radia-
tion.

Inertial Navigation System (INS)
Guidance
In an Inertial Navigation System
(INS)/Global Positioning System (GPS)
system, the missile is launched and nav-
igates to the designated target based
on its launch location and target lo-
cation. The course is computed using
flight data of the missile and/or GPS

data. Once in the target area, this type
of system often has an active radar or
IR imaging homing mode to increase the
accuracy of the weapon. In the illustra-
tion the target is a ship.

Table A.1: Description of guidance systems. Continues...

A.1 Guidance Systems 209

Electro-Optical (EO) Missile
Guidance
In an Electro-Optical (EO) guidance
system, the nose of the missile contains
a seeker that is sensitive to the IR or
optical portion of the electromagnetic
spectrum. The missile guides to the
target by tracking the EO reflections off
a target. Target illumination can be ac-
complished by the launching platform
or secondary source. In the illustration
the target is illuminated by the heli-
copter at low altitude while the missile
is launched from the second helicopter.

Track-Via-Missile (TVM) Guid-
ance
A TVM system is very similar to the
SAR system. A receiver in the nose
of the missile receives radar reflections
from the target and downlinks the data
to a ground station. Course correc-
tions are computed at the ground sta-
tion based on local radar data on the
target and the downlinked data from
the missile. Once computed, course
corrections are uplinked to the missile
enabling a high degree of accuracy in
course intercept between the target and
missile. The green radiation in the illus-
tration represents the radiation emitted
by a ground based radar system. The
yellow is the radiation echoed off the
aircraft. The missile is guided towards
the aircraft.

Table A.1: Description of guidance systems. Continues...

210 Threats

Command Guidance
In a command guidance system, the
missile is datalinked via radio to typ-
ically a ground station. The ground
station computes trajectory corrections
based on radar/IR/optical inputs from
both the target and missile. These
course corrections are then uplinked to
the missile to ensure intercept. In some
systems, both the target and missile
must stay within the launcher’s field
of view - this type of systems is called
a Command-Line-of-Sight (CLOS) sys-
tem.

Beam Rider Guidance
In a beam riding missile system, the
missile contains a radar receiver in its
tail, and ”rides” the radar beam to the
target. In the illustration the missile is
fired and guided from the helicopter.

Anti-Radiation Missile (ARM)
Guidance
In an ARM based guidance system,
the missile contains a radar receiver,
which homes in on electromagnetic en-
ergy emitted by the target, i.e. its own
radars or jamming equipment. In the il-
lustration the missile is guided towards
the ground based radar.

Table A.1: Description of guidance systems. (Source: RIA4 Missile
Guidance Series, Set 1)

A
.1

G
u
id

a
n
c
e

S
y
ste

m
s

2
1
1

A.2 Surface-to-Air Missile Reference Guide

The table below show some known threats and their association to different radars.

Name Type Length Guidance Max speed Max range Min range Max alt. Min alt. Launcher

SA-2 Strategic med -high 20’0” Command M 3.5 19-27 NM 3.5 NM 90,000’ 295’ Single rail

SA-3 Strategic low -med 20’0” Command M 3.5 14 NM 1.3 NM 60,000’ 150’ Double or four rail

SA-5 Strategic med -high 35’3” SARH M 4+ 170 NM 25 NM 100,000’ 984’ Single rail

SA-6 Strategic low - med 19’0” SARH M 2.5 13 NM 2.0 NM 47,000’ 100’ TEL with 3 missiles

SA-8 Strategic low - med 10’6” Command M 2.0 6.6 NM 0.9 NM 42,600’ 33’ TELAR with 6 missiles

SA-10 Strategic low, high 23’4” Command or QAS/TVM M 6.0 49 NM 2.6 NM 88,500’ 80’ TEL with 4 missiles

SA-11 Mobile low - med 18’4” SARH M 3.0 16 NM 1.6 NM 72,000’ 50’ TELAR with 4 missiles

SA-12 Mobile low - high 26’11” Inertial Command SARH 43.2 NM TELAR with 4 missiles

SA-12B Mobile low - high 34’5” Inertial Command SARH 81 NM TELAR with 2 missiles

SA-13 Mobile low 7’3” IR M 1.5 4.4 NM 0.25 NM 10,500’ 33’ TELAR with 4 missiles

SA-15 Mobile low 11’6” Command and active M 2.5 6.5 NM 1.3 NM 19,700’ 33’ TLAR with 3 missiles

SA-16 MANPAD low 4’7” IR M 1.8+ 3.5+ NM 0.3-33 NM 18,000’ 30’ Shoulder fired

SA-19 Mobile low 8’2” ACLOS or SACLOS Hypersonic 4.3 NM 1.3 NM TELAR with 3 missiles

ASPID Mobile low - med 12’3” SARH M 2.5 8.1 NM 20,000’ 50’ TELAR with 4 - 8 missiles

CROTALE Mobile low - med 9’6” Command and optical M 3 5.5 NM 0.3 NM 18,000’ 50’ TELAR with 4 missiles

I-HAWK Strategic low - med 16’6” SARH M 2.5 21.6 NM 0.9 NM 48,000’ 90’ Launcher with 4 missiles

RAPIER Point low 7’4” Command and optical M 2+ 4 NM 0.3 NM 10,000’ 50’ TEL with 4 missiles

RBS-70 MANPAD low 4’2” Laser beam rider M 1+ 3.3 NM 0.1 NM 13,000’ LOS MANPAD with 2 missiles

ROLAND Mobile low - med 8’6” Command and optical M 1.6 3.5 NM 0.4 NM 18,000’ 66’ TELAR with 2 missiles

STINGER MANPAD low 5’0” IR/UV M 2.2 2.5 NM 0.1 NM 12,500’ LOS Shoulder fired

212 Threats

Appendix B

The Prolog Program

B.1 Rules

1. Probable threats are determined pre-mission.

2. Environment hostility depends on the number of anticipated threats.

3. Number of anticipated threats is based on intelligence.

4. A transport aircraft experience hostile environment during take-off and
landing.

5. Data is collected real-time via datalink and warning systems.

6. The breaklock zones for chaff are at 4 o’clock and at 8 o’clock.

7. In case of a missile warning there is no time to deploy the towed decoy.

8. Dispense chaff and flares only when the distance to the threat is right.

9. For chaff the distance to the threat should be less than 5 km and more
than 500 m.

10. If flares are to be used reactively, the distance to the threat should be less
than 1 km and more than 100 m.

214 The Prolog Program

11. If flares are to be used pre-emptively they should be dispensed as soon as
possible, regardless of any distance.

12. Flares are to be used if the aircraft is in very hostile environment and
flying in an altitude below 1000 m.

13. Chaff has no effect against a Doppler radar. Use the jammer instead.

14. At altitudes above 20,000 ft MANPADS is not posing a threat. Use only
chaff.

15. At altitudes below 1,000 ft RF guided missiles are not posing a threat.

16. Chaff and flares can be used as responses to missile warnings.

17. For timing issues jammer and towed decoy can not be used as responses
to warnings, unless they are already in use.

18. If the MWS indicates a missile in a given direction, and the RWR does not,
the missile is IR guided.

19. Dispense flares if an approaching missile is IR guided.

20. If both the MWS and the RWR indicate a missile in a given direction, the
missile is RF guided.

21. Dispense chaff if an approaching missile is RF guided.

22. If a missile is approaching select the proper countermeasure and manoeu-
vre.

23. Manoeuvres are determined by the breaklock zones of the proper counter-
measure.

24. The plumes from other aircraft, e.g. wingman and coalition forces, may
cause false alarms by the MWS.

25. The positions of other aircraft may be continuously updated, e.g. via
datalink.

26. When the jammer is in ’auto’ mode, it will jam the RF sources detected.

27. Jamming will not commence before the power of the RF source is above
detection level.

28. The jammer mode is set to ’auto’ when the aircraft fly over hostile envi-
ronment.

29. When the jammer is jamming it may influence the RWR and jammers of
other aircraft.

B.2 dss.pro 215

30. The jammer will reveal the position of the aircraft.

31. When flying at high altitudes, the surrounding air is thinner than when
flying at low altitudes.

32. To maintain the effect of flares, when flying in thin air, the amount of
flares should be increased.

33. Chaff and flare programs depend on the remaining amount of chaff and
flares.

34. Chaff and flare programs depend on the estimated TTG.

35. Flare programs depend on the type of an approaching missile and the
altitude.

36. The types of missiles to anticipate depend on intelligence, and are given
as pre-mission support.

37. The jammer and the towed decoy should not be used simultaneously, un-
less they cover different threats.

38. The use of a towed decoy may limit the aircraft manoeuvrability.

39. The RF countermeasure to use may depend on table lookups.

40. The MWS can not distinguish between different types of IR threats

B.2 dss.pro

%−−−−−−−−−−−−−−−−−
% Inc lude a d d i t i o n a l f i l e s .
%−−−−−−−−−−−−−−−−−
:− i n c lude (’ t h r e a t s . pro ’) .
:− i n c lude (’cm . pro ’) .
:− i n c lude (’ miss ion . pro ’) .
:− i n c lude (’ cu r r en t . pro ’) .
:− i n c lude (’ warnings . pro ’) .
:− i n c lude (’ u t i l . pro ’) .

%−−−−−−−−−−−−−−−−−
% The main entry . ’ go ’ w i l l r e turn the t o t a l execu t i on time ,
% measured in mi l i s econds .
%−−−−−−−−−−−−−−−−−
go :−

s ta t i s t i c s (runtime , [S tar t |]) ,

216 The Prolog Program

what to do ,
s ta t i s t i c s (runtime , [End |]) ,
T i s End−Start ,
nl , write (’ Execution time i s ’) ,
write (T) , write (’ m i l l i s e c on d s ’) , nl .

%−−−−−−−−−−−−−−−−−
% Warnings are handled and responses to the environment are

found .
%−−−−−−−−−−−−−−−−−
what to do :−

%−−− Handle warnings
(

s e t o f ((Warner , WarnInfo) , warning (Warner , WarnInfo) ,
Warnings) ,

s e t o f (, (memberof (W, Warnings) , handle warning (W)) ,
) , !

;
true

) ,

%−−− Environment responses
(

ir mode (preemptive) ,
a l t i t u d e (Alt) ,
Alt < 6000 ,
(

a v a i l a b l e (f l a r e s) ,
not (cm has e f f e c t (f l a r e s)) ,
write cm (f l a r e s , f l a r e s d e f) , !
;
a v a i l a b l e (dircm) ,
not (cm has e f f e c t (dircm)) ,
write cm (dircm , auto) , !

)
;
true

) , (
r f h o s t i l i t y (high) ,
a l t i t u d e (Alt) ,
Alt > 300 ,
(

cm has e f f e c t (jammer) , !
;
cm has e f f e c t (towed decoy) , !
;

B.2 dss.pro 217

cm has e f f e c t (cha f f) , !
;
a v a i l a b l e (jammer) ,
write cm (jammer , auto) , !
;
a v a i l a b l e (towed decoy) ,
write cm (towed decoy , auto) , !
;
a v a i l a b l e (cha f f) ,
write cm (cha f f , c h a f f d e f) , !

)
;
true

) .

%−−−−−−−−−−−−−−−−−
% Find ac t i on s to each warning , and wr i te them to the screen .
%−−−−−−−−−−−−−−−−−
handle warning ((Sensor , (Angle , WarnData))) :−

(
Sensor = rwr
;
Sensor = mws,
not (f r i e n d (Angle))

) ,
recommend action ((Sensor , (Angle , WarnData)) , Cm, Man,

Prog) ,

%−−− Write r e s u l t s
wr i t e t h r e a t ((Sensor , (Angle , WarnData))) ,
write manoeuvre (Man) ,
write cm (Cm, Prog) .

%−−−−−−−−−−−−−−−−−
% Recommend ac t i on (countermeasure , manoeuvre , and programme)
%−−−−−−−−−−−−−−−−−
recommend action (Warning , Cm, Man, Prog) :−

recommend cm(Warning , Cm) ,
recommend man (Warning , Cm, Man) ,
prog (Cm, Prog) .

%−−−−−−−−−−−−−−−−−
% Which countermeasures shou l d be recommended to m i t i g a t e
% t h r e a t s at Angle?

218 The Prolog Program

%−−−−−−−−−−−−−−−−−
recommend cm ((, (Angle ,)) , Cm) :−

app r op l i s t (Angle , Cms) ,
memberof (Cm, Cms) ,
a v a i l a b l e (Cm) ,
not (cm has e f f e c t (Cm)) ,
m i t i ga t e s (Phys , Cm) ,
not (s a f e a l t i t u d e (Phys)) ,
(

%−−− I f a d i s t ance to the t h r ea t i s known ,
%−−− i s i t then a l e t h a l d i s t ance ?
warning (mws, (Angle , Dist)) ,
l e t h a l d i s t (Cm, Dist) , !
;
true

) .

%−−−−−−−−−−−−−−−−−
% Recommend a manoeuvre f o r the t h r ea t and countermeasure .
%−−−−−−−−−−−−−−−−−
recommend man ((, (ThreatAngle ,)) , Cm, (Direct ion , Steps)) :−

break lock (Cm, BreakAngle) ,
manoeuvre (BreakAngle , ThreatAngle , Direct ion , Steps) .

%−−−−−−−−−−−−−−−−−
% When f l y i n g at a sa f e a l t i t u d e , c e r t a i n types o f
% guidance does not pose a th r ea t
%−−−−−−−−−−−−−−−−−
s a f e a l t i t u d e (i r) :−

a l t i t u d e (Alt) ,
Alt > 6000.

s a f e a l t i t u d e (uv) :−
a l t i t u d e (Alt) ,
Alt > 6000.

s a f e a l t i t u d e (r f) :−
a l t i t u d e (Alt) ,
Alt < 300 .

%−−−−−−−−−−−−−−−−−
% Letha l d i s t ance s and sa f e a l t i t u d e s f o r d i f f e r e n t
% guidance systems
%−−−−−−−−−−−−−−−−−
l e t h a l d i s t (cha f f , Dist) :−

Dist > 500 ,

B.2 dss.pro 219

Dist < 5000.
l e t h a l d i s t (f l a r e s ,) :− % Always in l e t h a l d i s t ance

ir mode (preemptive) .
l e t h a l d i s t (f l a r e s , Dist) :−

ir mode (r e a c t i v e) ,
Dist > 100 ,
Dist < 1000.

%−−−−−−−−−−−−−−−−−
% Make l i s t o f appropr i a te countermeasures .
%−−−−−−−−−−−−−−−−−
app r op l i s t (Angle , Cms) :−

s e t o f (Cm, proper cm (Angle , Cm) , Cms) .

%−−−−−−−−−−−−−−−−−
% Find appropr i a te countermeasures .
%−−−−−−−−−−−−−−−−−
proper cm (Angle , jammer) :−

(
warning (rwr , (Angle ,)) ,
warning (mws, (Angle ,)) ,
jammer mode (auto)

) ; (
warning (rwr , (Angle ,)) ,
warning (mws, (Di f fAngle ,)) ,
Angle \== Dif fAngle

) ; (
warning (rwr , (Angle ,)) ,
not (warning (mws, (,)))

) .

proper cm (Angle , towed decoy) :−
(

warning (mws, (Angle ,)) ,
warning (rwr , (Angle ,)) ,
decoy mode (deployed)

) ; (
warning (rwr , (Angle ,)) ,
warning (mws, (Di f fAngle ,)) ,
Angle \== Dif fAngle

) ; (
warning (rwr , (Angle ,)) ,
not (warning (mws, (Angle ,)))

) .

220 The Prolog Program

proper cm (Angle , ch a f f) :−
warning (rwr , (Angle , Threat)) ,
not (doppler (Threat)) .

proper cm (Angle , dircm) :−
(

warning (rwr , (Di f fAngle ,)) ,
warning (mws, (Angle ,)) ,
Angle \== Dif fAngle ,
dircm mode (auto)

) ; (
not (warning (rwr , (,))) ,
warning (mws, (Angle ,)) ,
dircm mode (auto)

) .

proper cm (Angle , f l a r e s) :−
warning (mws, (Angle ,)) ,
not (warning (rwr , (Angle ,))) .

%−−−−−−−−−−−−−−−−−
% Determine IR mode .
%−−−−−−−−−−−−−−−−−
ir mode (preemptive) :−

a l t i t u d e (Alt) ,
Alt < 1000 ,
i r t h r e a t (seve re) , ! .

ir mode (preemptive) :−
ac type (t ran spor t) ,
f ly mode (t a k e o f f) , ! .

ir mode (preemptive) :−
ac type (t ran spor t) ,
f ly mode (land ing) , ! .

ir mode (r e a c t i v e) .

%−−−−−−−−−−−−−−−−−
% I f RF t h r e a t s are known , the environment i s h o s t i l e .
%−−−−−−−−−−−−−−−−−
r f h o s t i l i t y (high) :−

t h r e a t p r obab l e (T) ,
guidance (T, B) ,
phys gu idance (B, r f) , ! .

r f h o s t i l i t y (low) .

B.3 util.pro 221

%−−−−−−−−−−−−−−−−−
% Estimate IR th r ea t s t a t u s .
%−−−−−−−−−−−−−−−−−
i r t h r e a t (none) :−

c ou n t i r t h r e a t s (N) ,
N = 0 , ! .

i r t h r e a t (moderate) :−
c ou n t i r t h r e a t s (N) ,
N > 0 , N < 3 , ! .

i r t h r e a t (seve re) :−
c ou n t i r t h r e a t s (N) ,
N > 2 .

%−−−−−−−−−−−−−−−−−
% Count IR t h r e a t s to es t imate the environment h o s t i l i t y .
%−−−−−−−−−−−−−−−−−
c ou n t i r t h r e a t s (N) :−

f indal l (Threat ,
(t h r e a t p r obab l e (Threat) ,
guidance (Threat , Guidance) ,
phys gu idance (Guidance , i r)) ,

Threats) ,
count (N, Threats) .

B.3 util.pro

%−−−−−−−−−−−−−−−−−
% Writing the r e s u l t s to the screen .
%−−−−−−−−−−−−−−−−−
wr i t e t h r e a t ((Sensor , (Angle , WarnData))) :−

(
Sensor = rwr ,
write (’RWR: ’) ,
write (WarnData) ,
write (’ at ’) ,
write (Angle) ,
nl , !

) ; (
write (’MWS: M i s s i l e at ’) ,
write (Angle) ,
write (’ , d i s t an c e ’) ,
write (WarnData) ,
write (’ meters ’) ,
nl

) .

222 The Prolog Program

write manoeuvre ((Direct ion , Steps)) :−
(

Steps == 0 ,
write (’ Stay on cour se ’) ,
nl , !

) ; (
write (’Turn ’) ,
write (D i r ec t ion) ,
write (’ , ’) ,
write (Steps) ,
write (’ s tep (s) ’) ,
nl

) .

write cm (Cm, Prog) :−
write (’Use ’) ,
write (Cm) ,
write (’ , program ’) ,
write (Prog) ,
nl ,
nl .

%−−−−−−−−−−−−−−−−−
% Angles .
%−−−−−−−−−−−−−−−−−
t u rn r i gh t (one o c lock , two o c lock) .
t u rn r i gh t (two o c lock , t h r e e o c l o c k) .
t u rn r i gh t (t h r e e o c l o ck , f o u r o c l o c k) .
t u rn r i gh t (f ou r o c l o ck , f i v e o c l o c k) .
t u rn r i gh t (f i v e o c l o c k , s i x o c l o c k) .
t u rn r i gh t (s i x o c l o c k , s ev en o c l o ck) .
t u rn r i gh t (seven o c lock , e i g h t o c l o c k) .
t u rn r i gh t (e i gh t o c l o ck , n i n e o c l o c k) .
t u rn r i gh t (n in e o c l o ck , t en o c l o ck) .
t u rn r i gh t (t en o c l o ck , e l e v e n o c l o c k) .
t u rn r i gh t (e l e v en o c l o ck , twe l v e o c l o ck) .
t u rn r i gh t (twe lv e o c lock , on e o c l o ck) .

t u r n l e f t (X, Y) :−
t u rn r i gh t (Y, X) .

%−−−−−−−−−−−−−−−−−
% Manoeuvres .
%−−−−−−−−−−−−−−−−−

B.4 cm.pro 223

manoeuvre l e f t (Same , Same , Steps) :−
Steps i s 0 .

manoeuvre l e f t (From , To , Steps) :−
t u r n l e f t (From , NewAngle) ,
manoeuvre l e f t (NewAngle , To , MoreSteps) ,
Steps i s MoreSteps + 1 .

manoeuvre r ight (Same , Same , Steps) :−
Steps i s 0 .

manoeuvre r ight (From , To , Steps) :−
t u rn r i gh t (From , NewAngle) ,
manoeuvre r ight (NewAngle , To , MoreSteps) ,
Steps i s MoreSteps + 1 .

manoeuvre (From , To , Direct ion , Steps) :−
manoeuvre l e f t (From , To , S tep sLe f t) ,
manoeuvre r ight (From , To , StepsRight) ,

(S t ep sLe f t < StepsRight , Steps i s StepsLeft , D i r ec t ion =
l e f t , ! ;

Steps i s StepsRight , D i r ec t ion = r igh t , !) .

%−−−−−−−−−−−−−−−−−
% Li s t f unc t i on s .
%−−−−−−−−−−−−−−−−−
%−−− Number o f members
count (0 , []) :− ! .
count (N, [| Tai l]) :−

count (N1 , Ta i l) ,
N i s N1 + 1 .

%−−− Membership
memberof (X, [X |]) .
memberof (X, [| Tai l]) :− memberof (X, Ta i l) .

B.4 cm.pro

%−−−−−−−−−−−−−−−−−
% Break−l o c k zones
%−−−−−−−−−−−−−−−−−
break lock (cha f f , f o u r o c l o c k) .
break lock (cha f f , e i g h t o c l o c k) .
break lock (jammer , on e o c l o ck) .
break lock (jammer , f i v e o c l o c k) .
break lock (jammer , s i x o c l o c k) .
break lock (jammer , s ev en o c l o ck) .

224 The Prolog Program

break lock (jammer , e l e v e n o c l o c k) .
break lock (jammer , twe l v e o c l o ck) .
break lock (Cm,) :−

(Cm = chaf f , ! , f a i l) ;
(Cm = jammer , ! , f a i l) ;
true .

%−−−−−−−−−−−−−−−−−
% Countermeasure programs
%−−−−−−−−−−−−−−−−−
%−−− Flare programs

prog (f l a r e s , f l a r e s 0 1) :−
f l a r e s l e f t (FL) ,
FL > 5 ,
a l t i t u d e (Alt) ,
Alt < 300 , ! .

prog (f l a r e s , f l a r e s 0 2) :−
f l a r e s l e f t (FL) ,
FL > 7 ,
a l t i t u d e (Alt) ,
Alt < 500 , ! .

prog (f l a r e s , f l a r e s d e f) :−
f l a r e s l e f t (FL) ,
FL > 7 , ! .

prog (f l a r e s , none) :− f a i l , ! .

%−−− Chaff programs
prog (cha f f , cha f f01) :−

c h a f f l e f t (CL) ,
CL > 6 ,
a l t i t u d e (Alt) ,
Alt < 500 ,
warning (rwr , (, sa2)) , ! .

prog (cha f f , cha f f01) :−
c h a f f l e f t (CL) ,
CL > 6 ,
a l t i t u d e (Alt) ,
Alt < 1000 ,
warning (rwr , (, sa6)) , ! .

prog (cha f f , c h a f f d e f) :−

B.5 threats.pro 225

c h a f f l e f t (CL) ,
CL > 5 , ! .

prog (cha f f ,) :− f a i l , ! .

%−−− Defau l t (at the end)
prog (, d e f au l t) .

%−−−−−−−−−−−−−−−−−
% Are the countermeasures cu r r en t l y m i t i g a t i n g ?
%−−−−−−−−−−−−−−−−−
cm has e f f e c t (towed decoy) :−

decoy mode (deployed) .

cm has e f f e c t (jammer) :−
jammer mode (auto) .

cm has e f f e c t (dircm) :−
dircm mode (auto) .

cm has e f f e c t (cha f f) :−
c h a f f d i s p (Time) ,
Time < 3 .

cm has e f f e c t (f l a r e s) :−
f l a r e s d i s p (Time) ,
Time < 1 .

B.5 threats.pro

%−−−−−−−−−−−−−−−−−
% Mi s s i l e systems
%−−−−−−−−−−−−−−−−−
guidance (sa2 , command) .
guidance (sa3 , command) .
guidance (sa5 , sarh) . % Doppler
guidance (sa6 , sarh) .
guidance (sa8 , command) .
guidance (sa10 , command) . % Doppler
guidance (sa10 , qas tvm) .
guidance (sa11 , sarh) .
guidance (sa12 , i n e r t i a l) .
guidance (sa12 , command) .
guidance (sa12 , sarh) .
guidance (sa12b , i n e r t i a l) .

226 The Prolog Program

guidance (sa12b , command) .
guidance (sa12b , sarh) .
guidance (sa13 , i r) .
guidance (sa15 , command) .
guidance (sa15 , a c t i v e) .
guidance (sa16 , i r) .
guidance (sa18 , i r) .
guidance (sa19 , a c l o s) .
guidance (sa19 , s a c l o s) .
guidance (aspid , sarh) .
guidance (c r o t a l e , command) .
guidance (c r o t a l e , o p t i c a l) .
guidance (ihawk , sarh) .
guidance (rap i e r , command) .
guidance (rap i e r , o p t i c a l) .
guidance (rbs70 , l a s e r b eam r id e r) .
guidance (roland , command) .
guidance (roland , o p t i c a l) .
guidance (s t i n g e r , i r) .
guidance (s t i n g e r , uv) .
guidance (manpads , i r) .

%−−−−−−−−−−−−−−−−−
% RF th r e a t s based on Doppler .
%−−−−−−−−−−−−−−−−−
doppler (sa5) .
doppler (sa10) .

%−−−−−−−−−−−−−−−−−
% The e l e c t r omagne t i c band used by the guidance systems .
%−−−−−−−−−−−−−−−−−
phys gu idance (command , r f) .
phys gu idance (sarh , r f) .
phys gu idance (qas tvm , r f) .
phys gu idance (i n e r t i a l , r f) .
phys gu idance (i r , i r) .
phys gu idance (ac lo s , i r) .
phys gu idance (sac lo s , i r) .
phys gu idance (op t i c a l , uv) .
phys gu idance (l a s e r b eam r id e r , uv) .
phys gu idance (uv , uv) .

%−−−−−−−−−−−−−−−−−
% Countermeasure m i t i g a t i n g in c e r t a i n bands .

B.6 mission.pro 227

%−−−−−−−−−−−−−−−−−
mit i ga t e s (i r , f l a r e s) .
m i t i ga t e s (i r , dircm) .
m i t i ga t e s (r f , c h a f f) .
m i t i ga t e s (r f , jammer) .
m i t i ga t e s (r f , towed decoy) .
m i t i ga t e s (uv , f l a r e s) .
m i t i ga t e s (uv , dircm) .

B.6 mission.pro

%−−−−−−−−−−−−−−−−−
% A/C type
%−−−−−−−−−−−−−−−−−
ac type (f i g h t e r) .

%−−−−−−−−−−−−−−−−−
% Countermeasures a v a i l a b l e
%−−−−−−−−−−−−−−−−−
av a i l a b l e (f l a r e s) .
a v a i l a b l e (cha f f) .
a v a i l a b l e (towed decoy) .
a v a i l a b l e (jammer) .
a v a i l a b l e (dircm) .

%−−−−−−−−−−−−−−−−−
% Probab le t h r e a t s
%−−−−−−−−−−−−−−−−−
t h r e a t p r obab l e (sa2) .
t h r e a t p r obab l e (sa3) .
t h r e a t p r obab l e (sa10) .
t h r e a t p r obab l e (sa13) .
t h r e a t p r obab l e (sa13) .
t h r e a t p r obab l e (sa13) .
t h r e a t p r obab l e (sa13) .
t h r e a t p r obab l e (sa13) .

B.7 current.pro

%−−−−−−−−−−−−−−−−−
% Ownship data
%−−−−−−−−−−−−−−−−−

228 The Prolog Program

a l t i t u d e (1600) .
f ly mode (c r u i s e) .
f l a r e s l e f t (10) .
c h a f f l e f t (10) .

%−−−−−−−−−−−−−−−−−
% Countermeasure modes
%−−−−−−−−−−−−−−−−
decoy mode (not dep loyed) . % deployed or no t dep l oyed
jammer mode (auto) . % auto , rece i ve , or o f f
dircm mode (o f f) . % auto , rece i ve , or o f f
c h a f f d i s p (100) . % Seconds s ince c h a f f was

d i spensed
f l a r e s d i s p (100) . % Seconds s ince f l a r e s were

d i spensed

%−−−−−−−−−−−−−−−−−
% Fri end l y a i r c r a f t
%−−−−−−−−−−−−−−−−−
%f r i end (one o c l o c k) .
%f r i end (f i v e o c l o c k) .

B.8 warnings.pro

%−−−−−−−−−−−−−−−−−
% Warning d e s c r i p t i o n s
%−−−−−−−−−−−−−−−−−
warning (mws, (s i x o c l o c k , 500)) .
warning (mws, (n in e o c l o ck , 500)) .
warning (rwr , (n in e o c l o ck , sa5)) .

Appendix C

Survival Score

C.1 Constructing a score system

In medicine score systems like Glasgow Coma Score [50] and Apgar Score [8] are
used to give the medical staff a fast overview of the conditions of a patient. The
advantage of score systems is that they will get this overview without the labour
and time it will take to do a more detailed examination. The score systems are
often used to make decisions on the treatment of the patient when there is no
time to do more examinations. A score may include scores from other score
systems.

Constructing a score system for the survivability of a fighter aircraft has much
the same use as a medical score system. A higher score indicates a higher
survivability for the aircraft. Optimising the score is another way of giving
the aircraft the best chances of surviving. A difference is the use of simplicity:
a medical score is often fast calculated by the medical staff based on a few
observations, and without any tools for doing the calculations. It therefore
has to be relatively simple and easy to calculate. The survival score can be
calculated with more complex parts since it will be calculated automatically.

230 Survival Score

C.1.1 Contributions to the score

The list below shows some of the aspects to be taken into account when calcu-
lating a survival score:

1. Threats contribute with a negative value. Probability of the threat is used
for weighing the value.

2. Multiple threats increase the threat value. The increase is not proportional
to the number of threats since applied countermeasures may influence more
than one threat.

3. Applying proper countermeasures should add a positive number of the
same magnitude as that of the threat being treated. Difference between
current aspect angle and the preferred angle is used as weight.

4. The score can have a temporal aspect, depending on the recent history.
If proper countermeasures have already been applied, and the effect of
these has not yet been registered, the threat contributes with a numerical
smaller value.

5. The score may also depend on the remaining amount of chaff and flares.
Having the possibility of using a proper countermeasure adds one value,
actually using it adds another.

6. Using the wrong countermeasure adds a penalty value, since this might
decrease the survivability later on in the mission.

7. The probability of emerging threats, depending on e.g. the territory, will
also have an influence on the score. This may make the altitude relevant.

Some of the contributing parts do not need to be included every time the score
is calculated. An example of this is the part concerning the altitude. Changing
the altitude is a relatively slow process, and even though a change in altitude
is in progress it is fair to assume that this part should not be considered more
often than once every two seconds or even more infrequently.

C.2 Optimising the score 231

C.1.2 Formalizing the score

S The survivability score
K = {IR, RF, ...} The domains of threat to consider
P (k), k ∈ K The probability of a threat k. Depends on sensor output
ak ∈ {0, 1} The applicability of the score from the k’th domain
sk Score for the k’th domain
Lk ∈ {0, 1} Countermeasures loaded/present
P (Ak) The probability of the countermeasure being applied
P (Wk) The probability of the countermeasure working as intended
Tk ∈ R− Maximal threat value
Ck ∈ R+ Maximal countermeasure value
pk(t) The penalty for using countermeasures at time t

The survivability score can be calculated as:

S =
X
k∈K

ak · sk (C.1)

sk = −P (k) · Tk (C.2)

+Lk · P (Ak) · P (Wk) · Ck (C.3)

−pk(t) · P (Ak) (C.4)

In the above (C.2) is the threat part of the survival score, (C.3) is the counter-
measure part, and (C.4) is the penalty part.

C.2 Optimising the score

Let us rewrite the equation (C.2) – (C.4) as:

sk = −Tk + Ck − Pk (C.5)

It is obvious from equation (C.5) that the maximum value for sk is found when
the threat part (Tk) and the penalty (Pk) are small and when the countermeasure
(Ck) is high. Of these the pilot can only directly influence the countermeasure
and penalty parts. If no threat is present the penalty part should have a value
numerical larger than that of the countermeasure part.

232 Survival Score

Tk = 0⇒ Pk > Ck

Tk 6= 0⇒ Pk � Tk

C.3 Further work

In deciding on the formulation of the survival score one must consider the fol-
lowing:

1. More countermeasures to same kind of threat

2. Threats without countermeasures

3. When is a score system ”good enough”?

4. How bad can a full description be, before it is too bad?

Appendix D

The GAMS Program

D.1 tempasp.gms

∗ use : gams tempasp u1=” f l i g h t . dat”

$eolcom //
opt ion i t e r l im = 999999999; // avoid l im i t on i t e r a t i o n s
opt ion r e s l im = 86400; // time l im i t f o r s o l v e r in

sec .
opt ion optcr = 0 . ; // gap t o l e r an c e
opt ion s o l p r i n t = ON; // inc lude s o l u t i o n p r i n t in

. l s t f i l e
opt ion limrow = 100 ; // l im i t number o f rows in

. l s t f i l e
opt ion l imco l = 100 ; // l im i t number o f columns in

. l s t f i l e
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

////////////////////
Sets

cm ’ Countermeasures ’ / ’ jammer ’ , ’ decoy ’ , ’ cha f f ’ ,
’noCm’/

ang ’ Angles o f Attack ’ / 0 ∗ 360 /

234 The GAMS Program

d i s t ’ Distances ’ / 0 ∗ 100 /
t ’Time steps ’
thr ’ Threats ’
;

////////////////////
Parameters

redAlpha (cm, ang) ’ Reduction o f l e t h a l i t y (Alpha) ’
redRho(cm, d i s t) ’ Reduction o f l e t h a l i t y (Rho) ’
flyAng (t , thr) ’ Angles during f l i g h t ’
f l yD i s t (t , thr) ’ Distances during f l i g h t ’
l e t h a l i t y (t , thr) ’ L e tha l i t y o f t h r e a t s during f l i g h t ’
probThreat (t , thr) ’ P r obab i l i t y o f threat ’
Rjmr(t , thr) ’ Reduction by jammer ’
Rjmra (t , thr) ’ . . . angle ’
Rjmrd (t , thr) ’ . . . d i s tance ’
Rdec (t , thr) ’ Reduction by decoy ’
Rdeca (t , thr) ’ . . . angle ’
Rdecd (t , thr) ’ . . . d i s tance ’
Rchf (t , thr) ’ Reduction by cha f f ’
Rchfa (t , thr) ’ . . . angle ’
Rchfd (t , thr) ’ . . . d i s tance ’
minDist (t , thr) ’ Distance to th reat (l e s s than 200) ’
;

$ in c lude ” reduct ion s . dat” // Inc lude reduct ion s
$ inc lude ”%gams . user1%” // Inc lude angles , d i s tance s , and

l e t h a l i t i e s

///////
// Find the reduct ion s
a l i a s (t , t1) ;
a l i a s (d i s t , d1) ;
a l i a s (ang , a1) ;
a l i a s (thr , thr1) ;

loop (t1 ,
loop (thr1 ,

loop (d1 ,
i f (ord (d1)−1 = f l yD i s t (t1 , thr1) ,

Rjmrd (t1 , thr1) = redRho (’ jammer ’ , d1)
) ;

) ;
loop (a1 ,

i f (ord (a1)−1 = flyAng (t1 , thr1) ,
Rjmra (t1 , thr1) = redAlpha (’ jammer ’ , a1)

D.1 tempasp.gms 235

) ;
) ;

) ;
) ;
Rjmr(t , thr) = Rjmrd (t , thr) ∗ Rjmra (t , thr) ;

loop (t1 ,
loop (thr1 ,

loop (d1 ,
i f (ord (d1)−1 = f l yD i s t (t1 , thr1) ,

Rdecd (t1 , thr1) = redRho (’ decoy ’ , d1)
) ;

) ;
loop (a1 ,

i f (ord (a1)−1 = flyAng (t1 , thr1) ,
Rdeca (t1 , thr1) = redAlpha (’ decoy ’ , a1)

) ;
) ;

) ;
) ;
Rdec (t , thr) = Rdecd (t , thr) ∗ Rdeca (t , thr) ;

loop (t1 ,
loop (thr1 ,

loop (d1 ,
i f (ord (d1)−1 = f l yD i s t (t1 , thr1) ,

Rchfd (t1 , thr1) = redRho (’ cha f f ’ , d1)
) ;

) ;
loop (a1 ,

i f (ord (a1)−1 = flyAng (t1 , thr1) ,
Rchfa (t1 , thr1) = redAlpha (’ cha f f ’ , a1)

) ;
) ;

) ;
) ;
Rchf (t , thr) = Rchfd (t , thr) ∗ Rchfa (t , thr) ;

///////
// Find minimum d i s t an c e to th reat
minDist (t1 , thr1) = min(199 , f l yD i s t (t1 , thr1)) ; // Keep

under 200

///////
// Find the p robab i l i t y o f a th reat
loop (t1 ,

loop (thr1 ,

236 The GAMS Program

i f (f l yD i s t (t1 , thr1) > 100 ,
probThreat (t1 , thr1) = 0 ;

e l s e
probThreat (t1 , thr1) = 1 ;
) ;

) ;
) ;

////////////////////
S ca l a r s

bigM Big number / 1000 /
Tja Time s t ep s f o r a c t i v a t i n g the jammer / 3 /
Tjs Time s t ep s f o r jammer to stop / 2 /
Tda Time s t ep s f o r a c t i v a t i n g the decoy / 2 /
Tdr Time s t ep s f o r r e l e a s i n g the decoy / 1 /
Tcf Time s t ep s f o r forming the cha f f c loud / 2 /
Tcd Duration o f the cha f f c loud / 3 /
Tcl Time s t ep s f o r cha f f l a t ency / 2 /
Kd Max number o f towed decoys / 2 /
Kc Max number o f cha f f d i sp en s i n g s / 5 /
ep s i l on Penalty value / 0.0001 /
;

////////////////////
Var iab l e s

ObjVal The ob j e c t i v e value
Ssum Sum of s u r v i v a b i l i t y over time
Rmax(t , thr) Maximum reduct ion o f th reat thr to time t
l e t h (t) Le tha l i t y to time t
Oj (t) Jammer i s turned on
Onj (t) Jammer get s turned on
O f f j (t) Jammer get s turned o f f
Aj (t) Jammer i s a c t i v e
Cj (t) Count f o r how long the jammer has been on
Od(t) Decoy i s deployed
Ond(t) Decoy get s deployed
Offd (t) Decoy get s r e l e a s ed
Ad(t) Decoy i s a c t i v e
Cd(t) Count f o r how long the decoy has been deployed
Oc(t) Chaff i s d ispensed
Ac(t) Chaff c loud formed
a (t , thr , cm) Countermeasure o f f e r i n g best r educt ion

aga in s t th reat thr at time t
;
Binary v a r i a b l e s Oj , Onj , Off j , Aj ,Od,Ond, Offd ,Ad,Oc ,Ac , a ;

D.1 tempasp.gms 237

////////////////////
Equations

obj Def ine ob j e c t i v e funct ion
surv Total s u r v i v a b i l i t y
totLeth (t) Total l e t h a l i t y to time t

maxJam(t , thr) Maximize r educt ion wrt . the jammer
maxDec(t , thr) Maximize r educt ion wrt . the towed decoy
maxChf(t , thr) Maximize r educt ion wrt . ch a f f
maxNoCm(t , thr) Maximize r educt ion wrt . the ’NoCM’ dummy

oneCm(t , thr) Only one countermeasure f o r each th reat
at a time

noCmOut(t , thr) Set ’noCm’ out s ide range o f a th r ea t s
noCmIn(t , thr) Set ’noCm’ i n s i d e range o f a th reat

jamOn(t) Turning the jammer on
jamOff (t) Turning the jammer o f f
jamKeepOn(t) Keep the jammer turned on in phase I I
jamCountMax (t) Counting jammer on−time − max in c r e a s e
jamCountMin (t) Counting jammer on−time − min in c r e a s e
jamCountLim (t) Counting jammer on−time − max value
jamCountPos (t) Counting jammer on−time − keep p o s i t i v e
jamOnLong(t) Keep the jammer turned on in phase I I I
jamOnAct (t) Keep jammer ac t i v e whi le on (phase I I I)
jamKeepAct (t) Keep jammer ac t i v e in phase IV
jamKeepOff (t) Keep jammer o f f in phase IV

decOn(t) Deploying the towed decoy
decOff (t) Re l eas ing the towed decoy
decKeepOn(t) Keep the decoy deployed in phase I
decCountMax (t) Counting decoy on−time − max in c r e a s e
decCountMin (t) Counting decoy on−time − min in c r e a s e
decCountLim (t) Counting decoy on−time − max value
decCountPos (t) Counting decoy on−time − keep p o s i t i v e
decOnAct(t) Keep decoy ac t i v e whi le deployed (phase

I I I)
decKeepOnAct(t) Keep decoy turned on in phase I I I
decKeepOff (t) Keep decoy o f f in phase IV
decMaxDepl Maximum number o f decoy deployments

chfCloudForm (t) The cha f f c loud i s formed
chfCloudDiss (t) The cha f f c loud i s d i s s o l v ed
chfLatency (t) Latency between cha f f d i sp en s i n g s
chfMaxDisp Maximum number o f cha f f d i sp en s i n g s

238 The GAMS Program

;

a l i a s (t , j) ;

// Object ive funct ion
obj . . ObjVal =e= Ssum − sum(t , ep s i l on ∗

(Oj (t)+Onj (t)+Of f j (t)+Aj (t)+Aj (t)+
Od(t)+Ond(t)+Offd (t)+Ad(t)+Oc(t)+Ac(t))) ;

surv . . Ssum =e= sum(t , 1− l e t h (t)) / card (t) ;
totLeth (t) . . l e t h (t) =e= sum(thr ,

probThreat (t , thr) ∗(l e t h a l i t y (t , thr) /100) ∗(1−Rmax(t , thr))) ;

// General c on s t r a i n t s
maxJam(t , thr) . . Rmax(t , thr) =l= Rjmr (t , thr) ∗

Aj (t) + bigM∗(1−a (t , thr , ’ jammer ’)) ;
maxDec(t , thr) . . Rmax(t , thr) =l= Rdec (t , thr) ∗

Ad(t) + bigM∗(1−a (t , thr , ’ decoy ’)) ;
maxChf(t , thr) . . Rmax(t , thr) =l= Rchf (t , thr) ∗

Ac(t) + bigM∗(1−a (t , thr , ’ cha f f ’)) ;
maxNoCm(t , thr) . . Rmax(t , thr) =l=

bigM∗(1−a (t , thr , ’noCm’)) ;

oneCm(t , thr) . . sum(cm, a (t , thr , cm)) =e= 1 ;
noCmOut(t , thr) . . a (t , thr , ’noCm’) =l=

f l yD i s t (t , thr) /100;
noCmIn(t , thr) . . a (t , thr , ’noCm’) =g=

(minDist (t , thr) /100) −1;

// Jammer c on s t r a i n t s
jamOn(t) . . Onj (t) =g= Aj (t+Tja) −

Aj (t+(Tja−1)) ;
jamOff (t) . . O f f j (t) =g= Oj (t−1) −

Oj (t) ;
jamKeepOn(t) . . sum(j$ (ord (j) >= ord (t) and ord (j) <=

ord (t)+Tja−1) , Oj (j)) =g= Tja∗Onj (t) ;
jamCountMax(t) . . Cj (t) =l= Cj (t−1) + 1 ;
jamCountMin (t) . . Cj (t) + card (t) ∗(1 − Oj(t)) =g= Cj (t−1) +

1 ;
jamCountLim (t) . . Cj (t) − card (t) ∗ Oj (t) =l= 0 ;
jamCountPos (t) . . Cj (t) =g= 0 ;
jamOnLong(t) . . Aj (t+Tjs) =l= 1−Of f j (t) ;
jamOnAct (t) . . card (t) ∗ Aj (t) =g= Cj (t) − Tja ;
jamKeepAct (t) . . sum(j$ (ord (j) >= ord (t) and ord (j) <=

ord (t)+Tjs−1) , Aj (j)) =g= Tjs ∗ Of f j (t) ;
jamKeepOff (t) . . sum(j$ (ord (j) >= ord (t) and ord (j) <=

ord (t)+Tjs−1) , Oj (j)) =l= Tjs ∗ (1−Of f j (t)) ;

D.1 tempasp.gms 239

// Decoy c on s t r a i n t s
decOn(t) . . Ond(t) =g= Ad(t+Tda) −

Ad(t+(Tda−1)) ;
decOff (t) . . Offd (t) =g= Ad(t−1) −

Ad(t) ;
decKeepOn(t) . . sum(j$ (ord (j) >= ord (t) and ord (j) <=

ord (t)+Tda−1) , Od(j)) =g= Tda ∗ Ond(t) ;
decKeepOnAct(t) . . Od(t) =g= Ad(t) ;
decCountMax (t) . . Cd(t) =l= Cd(t−1) + 1 ;
decCountMin (t) . . Cd(t) + card (t) ∗(1 − Od(t)) =g= Cd(t−1) +

1 ;
decCountLim (t) . . Cd(t) − card (t) ∗ Od(t) =l= 0 ;
decCountPos (t) . . Cd(t) =g= 0 ;
decOnAct(t) . . card (t) ∗ Ad(t) =g= Cd(t) − Tda ;
decKeepOff (t) . . sum(j$ (ord (j) >= ord (t) and ord (j) <=

ord (t)+Tdr−1) , Od(j)) =l= Tdr ∗ (1−Offd (t)) ;
decMaxDepl . . sum(t , Ond(t)) =l= Kd;

// Chaff c on s t r a i n t s
chfCloudForm (t) . . sum(j$ (ord (j) >= ord (t)+Tcf and ord (j) <=

ord (t)+Tcf+Tcd−1) , Ac(j)) =g= Tcd ∗ Oc(t) ;
ch fCloudDiss (t) . . Ac(t) =l= sum(j$ (ord (j)

>= ord (t)−Tcd−Tcf+1 and ord (j) <= ord (t)−Tcf) , Oc(j)) ;
chfLatency (t) . . sum(j$ (ord (j) >= ord (t)+1 and ord (j) <=

ord (t)+Tcl) , Oc(j)) =l= Tcl ∗ (1−Oc(t)) ;
chfMaxDisp . . sum(t , Oc(t)) =l= Kc ;

Model maxSurv ivab i l i ty / a l l / ;
Solve maxSurv ivab i l i ty us ing mip maximizing ObjVal ;

////////////////////
// Output
d i sp l ay Rjmr ;
d i sp l ay Rdec ;
d i sp l ay Rchf ;
d i sp l ay Rmax.L ;

d i sp l ay Onj .L ;
d i sp l ay O f f j .L ;
d i sp l ay Oj . L ;
d i sp l ay Aj . L ;
d i sp l ay Cj . L ;

d i sp l ay Ond .L ;
d i sp l ay Offd .L ;

240 The GAMS Program

d i sp l ay Od.L ;
d i sp l ay Ad .L ;

d i sp l ay Oc .L ;
d i sp l ay Ac .L ;
d i sp l ay a .L ;

d i sp l ay Ssum .L ;
d i sp l ay objVal . L ;

F i l e out The r e s u l t s / tempasp . r e s / ;
out . nd=5;
out . ap=1;
Put out ;
Put system . date ,

@10 system . time ,
@20 card (t) ,
@30 Ssum .L ,
@42 ObjVal . L ,
@62 system . e lapsed ,
@70 ’%gams . user1 % ’;

PutClose out ;

Appendix E

Software and Hardware

This appendix gives a short description of parts of the software and hardware
involved in the development of the models described in the work.

E.1 Software

This section describes the software that is used for main parts of the develop-
ment. Where extra information is available on the Internet relevant URLs are
given.

B-Prolog For the development and tests of the Prolog program described in
Chapter 4 the B-Prolog interpreter is used. This is chosen since it seems
robust, it has an easy to use prompt interface, it is fairly well documented,
and it is free for academic use.

B-Prolog can be downloaded from http://www.probp.com/.

HUGIN During development of the BN described in Chapter 5 version 6.3 of
HUGIN is used. The tests have been performed using HUGINTM version
6.7 (build 6702).

242 Software and Hardware

A limited version of HUGIN, known as HUGIN LiteTM, can be downloaded
for free from http://www.hugin.com/. Following platforms are covered:
Windows, Solaris Sparc, Solaris x86, Linux, Mac OS X 10.3, and Mac OS
X 10.4.

Fly-In The Fly-In 2000 GUI version 2.3.4 software is used to produce data for
the Structural Learning of a BN. The software comes with the following
message: ”The Fly-In software was produced and released to EWS 5/SCI-
067 by DSTL.”

MATLAB MATLAB is used for the construction of scenarios and the sampling
of time steps used in both the mathematical model (Chapter 6) and with
the metaheuristics (Chapter 7). Various versions of MATLAB are used in
the work. For the final work MATLABr version 7.1.0.183, R14, Service
Pack 3 is used.

See http://www.mathworks.com/ for more information on MATLAB.

GAMS In solving the mathematical model GAMS is run on a license given to
the Technical University of Denmark. The 140th revision, dated November
11th, 2004, has been used.

Information on GAMS can be found at http://www.gams.com/.

CPLEX GAMS uses CPLEX as solver. The name ”CPLEX” comes from the
combination of the letter ”C” for the programming language, and the
word ”simplex” for the simplex method for linear programming. Version
9.130 of the ILOG CPLEX software is run. It is licensed to the Technical
University of Denmark.

http://www.ilog.com/gives more information on the ILOG CPLEX soft-
ware.

E.2 Hardware

For most work a laptop PC with an Intel PentiumTM 4 1.79 GHz Mobile CPU
and 512 MB of RAM is used. The PC is running Microsoft Windows XP, and
it has been used to run B-Prolog, HUGIN, Fly-In, and MATLAB.

The mathematical model was developed and run on a SUN Fire 3800 1200 MHz
with 8 CPUs and 16 GB RAM running Solaris 9.

Implementing and running the metaheuristics is done using a stationary PC
with an AMD AthlonTM 64 X2 Dual Core Processor 4200+ 2.21 GHz and 2 GB
of RAM. It is running Microsoft Windows XP.

E.2 Hardware 243

The dissertation is written using WinEdt/MikTeX running mainly on the laptop
PC. Parts of the dissertation have been written on handheld devices such as a
Palm III, a Compaq iPaq, and a Sony Ericsson K510i mobile phone.

244 Software and Hardware

Bibliography

[1] Directional infrared counter measures. [http://en.wikipedia.org/wiki/DIRCM],
February 2007.

[2] ECLiPSe. [http://eclipse.crosscoreop.com/], March 2007.

[3] International Society for Bayesian Analysis. [http://www.bayesian.org/],
March 2007.

[4] MIL-STD-1553. [http://en.wikipedia.org/wiki/MIL-STD-1553], March
2007.

[5] OODA Loop. [http://en.wikipedia.org/wiki/OODA Loop], March 2007.

[6] The Missile Index. [http://missile.index.ne.jp/], February 2007.

[7] Stig K. Andersen, Kristian G. Olesen, Finn V. Jensen, and Frank Jensen.
HUGIN – a shell for building Bayesian belief universes for expert systems.
pages 332–337, 1990.

[8] Virginia Apgar. A proposal for a new method of evaluation of the newborn
infant. Current Researches in Anesthesia and Analgesia, pages 261–262,
July-August 1953.

[9] J.M. Arroyo and A.J. Conejo. Optimal response of a thermal unit to an
electricity spot market. IEEE Transactions on Power Systems, 15(3):1098–
1104, 2000.

[10] Robert E. Ball. The Fundamentals of Aircraft Combat Survivability Anal-
ysis and Design. AIAA Education Series. Naval Postgraduate School, 2
edition, 2003.

246 BIBLIOGRAPHY

[11] Sheila B. Banks and Carl S. Lizza. Pilot’s associate: a cooperative,
knowledge-based systemapplication. IEEE Expert, 6(3):18–29, June 1991.

[12] Ivan Bratko. PROLOG Programming for Artificial Intelligence. Addison-
Wesley, 2. edition, 1990.

[13] Bruce D’Ambrosio. Inference in Bayesian networks. AI Magazine, 20(2):21–
36, 1999.

[14] Danish Defence Research Establishment. Må̊aleradarsystemet mrs.

[15] Kathryn A. Dowsland. Modern heuristic techniques for combinatorial prob-
lems, chapter 2, pages 20–69. John Wiley & Sons, Inc., New York, NY,
USA, 1993.

[16] Morten Enevoldsen. Decision support for fighter pilots. Master’s thesis,
Informatics and Mathematical Modelling, Technical University of Denmark,
DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2003.

[17] Peter Haddawy. An overview of some recent developments in Bayesian
problem solving techniques. AI Magazine, Summer 1999.

[18] Jonas Lundbek Hansen, Steen Søndergaard, and Erik Thisen. FOFT EK
taktiske træner. FOFT Nyt, (3), December 2003.

[19] Hovland Harald. Optimisation of flare and chaff programs – an analyti-
cal approach. Technical Report 2006/01460, Norwegian Defence Research
Establishment, 2006.

[20] Clyde W. Holsapple and Andrew B. Whinston. Decision Support Systems
– A Knowledge-Based Approach. West Publishing Company, 1996.

[21] Finn Verner Jensen. An introduction to Bayesian networks. UCL Press,
1996.

[22] Finn Verner Jensen. Bayesian Networks and Decision Graphs. Springer
Verlag, 2001.

[23] Uffe Bro Kjærulff and Anders L. Madsen. Probabilistic Networks – An
Introduction to Bayesian Networks and Influence Diagrams. Aalborg Uni-
versity, 2005.

[24] E. C. Labatt, Jr., editor. Automated threat response recommendation in en-
vironments of high data uncertainty using the Countermeasure Association
Technique (CMAT), September 1991.

[25] Helge Langseth and Thomas D. Nielsen. Fusion of domain knowledge with
data for structural learning in object oriented domains. Journal of Machine
Learning Research, 4, 2003.

BIBLIOGRAPHY 247

[26] Steffen L. Lauritzen. The EM algorithm for graphical association models
with missing data. Comput. Stat. Data Anal., 19(2):191–201, 1995.

[27] H.R. Lourenço, O. Martin, and T. Stützle. A beginner’s introduction to
iterated local search. In Proceedings of the Fourth Metaheuristics Interna-
tional Conference, volume 1, pages 1–6, 2001.

[28] Anders L. Madsen, Michael Lang, Uffe B. Kjærulff, and Frank Jensen. The
Hugin tool for learning Bayesian networks. In Lecture Notes in Computer
Science, volume 2711, April 2004.

[29] Bruce A. McCarl. GAMS User Guide. Texas A&M University, 22.2 edition,
March 2006. Developed in cooperation with GAMS Development Corpo-
ration.

[30] Jamison Jo Medby and Russell W. Glenn. Street Smart: Intelligence Prepa-
ration of the Battlefield for Urban Operations. 2002.

[31] F. W. Moore. A methodology for missile countermeasures optimization
under uncertainty. Evolutionary Computation, 10(2):129–149, 2002.

[32] F. W. Moore and O. N. Garcia. A genetic programming methodology for
missile countermeasures optimization under uncertainty. Lecture Notes in
Computer Science, (1447):367–376, 1998.

[33] John H. Painter, III Wallace E. Kelly, Jeffrey A Tang, Kristopher A. Lee,
Paul A. Branham, John W. Crump, Donald T. Ward, Karthik Krishna-
murty, Disk L. Y. Woo, William P. Alcorn, Andrew C. Robbins, and Ren-
Jye Yu. Decision support for the general aviation pilot. In Proceedings of the
1997 IEEE International Conference on Systems, Man, and Cybernetics,
Orlando, FL, October 1997.

[34] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[35] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical recipes in FORTRAN: the art of scientific computing.
Cambridge University Press, New York, NY, USA, 2. edition, 1992.

[36] A. Quan, R. Crawford, H. Shao, K. Knudtzon, A. Schuler, D. Scott, S Hay-
ati, Jr Higginbotham, R., and R. Abbott. Automated threat response using
intelligent agents (ATRIA). Aerospace Conference, 2001, IEEE Proceed-
ings, 6:2721–2730, March 2001.

[37] Per Husmann Rasmussen. Feasibility-studie, Intelligente Systemer, chapter
4, ,,Beslutningsstøttesystem”, pages 15–19. Royal Danish Defence College,
March 2003.

248 BIBLIOGRAPHY

[38] Mathias Ravn and Lars Vadstrup Hansen. Neuroevolution af computer-
styrede pokerspillere uden anvendelse af ekspertstrategi. Master’s thesis,
University of Aarhus, November 2005.

[39] William B. Rouse, Normann D. Geddes, and John M. Hammer. Computer-
aided fighter pilots. IEEE Spectrum, 27(3):38–41, March 1990.

[40] Sadiq M. Sait and Habib Youssef. Iterative Computer Algorithms with Ap-
plications in Engineering: Solving Combinatorial Optimization Problems.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1999.

[41] D. Curtis Schleher. Introduction to Electronic Warfare. Artech House,
1986.

[42] M.I. Skolnik. Radar Handbook. McGraw-Hill, 1970.

[43] Steen Søndergaard. FOFT støtter flyvev̊abnet ved NATO forsøg. FOFT
Nyt, (2), August 1998.

[44] P. Spirtes, C. Glymour, and R. Schneies. Causation, Prediction, and
Search. Adaptive Computation and Machine Learning. MIT Press, 2 edi-
tion, January 2000.

[45] Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse
causal graphs. Social Science Computer Review, 9(1), 1991.

[46] G.W. Stimson. Introduction to Airborne Radar. SciTech Publishing, Inc.,
2. edition, 1998.

[47] Dan Strömberg. Decision-making using temporal reasoning. IJCAI’99
Workshop on Teams, 1999.

[48] Peter Svenmarck. Decision support in a fighter aircraft: From expert sys-
tems to cognitive modelling. HFA Report 1998-04, Linköpings Universitet,
Swedish Centre for Human Factors in Aviation, 1998.

[49] Peter Svenmarck and Sidney Dekker. Decision support in fighter aircraft:
From expert systems to cognitive modelling. Behaviour and Information
Technology, 22(3):175–184, 2003.

[50] G. Teasdale and B. Jennett. LANCET (ii), pages 81–83, 1974.

[51] Terma. AN/ALQ-213(V) Electronic Warfare Management System.
Brochure.

[52] Jim D. Titley. Integrated Defensive Aids Systems, a matter of definition.
DDRE Report F-13/2003, Danish Defence Research Establishment, 2003.

BIBLIOGRAPHY 249

[53] Thomas Verma and Judea Pearl. An algorithm for deciding if a set of
observed independencies has a causal explanation. In Proceedings of the
eighth conference on Uncertainty in Artificial Intelligence, pages 323–330,
San Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc.

[54] Patrick Henry Winston. Artificial Intelligence. Series in Computer Science.
Addison-Wesley, 2. edition, 1984.

[55] Fred Wright. Automated electronic warfare with threat response process-
ing. Georgia Tech Research Institute, May 2006.

[56] Neng-Fa Zhou. B-Prolog User’s Manual. Afany Software, December 2006.

	Summary
	Resumé
	Preface
	Acronyms and Abbreviations
	1 Introduction
	1.1 Contents
	1.2 Readers Prerequisites

	2 Electronic Warfare
	2.1 The Electromagnetic Spectrum
	2.2 Mission Scenarios
	2.3 Threats
	2.4 Electronic Support Measures
	2.5 Electronic Countermeasures
	2.6 Electronic Protective Measures
	2.7 The Fighter Aircraft
	2.8 Summary

	3 Decision Support System in a Fighter Aircraft
	3.1 Problem Description
	3.2 Survivability
	3.3 Design Requirements
	3.4 Mission Data Flow
	3.5 System Data Flow
	3.6 Models and Systems
	3.7 Summary

	4 The Prolog Approach
	4.1 Motivation
	4.2 Basic Theory
	4.3 Answering Questions with Prolog
	4.4 Using Prolog for Decision Support
	4.5 The Prolog Program
	4.6 Testing
	4.7 Discussion
	4.8 Conclusion

	5 The Bayesian Network Approach
	5.1 Motivation
	5.2 Basic Theory
	5.3 Building the Model
	5.4 Populating Dependency Tables
	5.5 Structural Learning
	5.6 Generating Data with Fly-In
	5.7 Testing
	5.8 Discussion
	5.9 Conclusion

	6 The Mathematical Modelling Approach
	6.1 Motivation
	6.2 Linear Programming
	6.3 The Framework
	6.4 Optimise Survivability
	6.5 Modelling the Problem
	6.6 The GAMS Program
	6.7 Testing
	6.8 Discussion
	6.9 Conclusion

	7 The Metaheuristics Approach
	7.1 Motivation
	7.2 Metaheuristics
	7.3 Using Simulated Annealing
	7.4 Implementing Simulated Annealing
	7.5 Testing
	7.6 Discussion
	7.7 Conclusion

	8 Comparing Approaches
	8.1 The Approaches
	8.2 Comparison

	9 Further Work
	9.1 Current Approaches
	9.2 Testing with Flight Data
	9.3 Other Techniques

	10 Conclusion
	A Threats
	A.1 Guidance Systems
	A.2 Surface-to-Air Missile Reference Guide

	B The Prolog Program
	B.1 Rules
	B.2 dss.pro
	B.3 util.pro
	B.4 cm.pro
	B.5 threats.pro
	B.6 mission.pro
	B.7 current.pro
	B.8 warnings.pro

	C Survival Score
	C.1 Constructing a score system
	C.2 Optimising the score
	C.3 Further work

	D The GAMS Program
	D.1 tempasp.gms

	E Software and Hardware
	E.1 Software
	E.2 Hardware

