
The Train Driver Recovery Problem –
a Set Partitioning Based Model and

Solution Method

Natalia J. Rezanova
Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads 1, Building 305, DK-2800 Kgs. Lyngby, Denmark

e-mail: njr@imm.dtu.dk

David M. Ryan
The Department of Engineering Science, Faculty of Engineering

The University of Auckland
Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand

e-mail: d.ryan@auckland.ac.nz

IMM-TECHNICAL REPORT-2006-24

Abstract

The need to recover a train driver schedule occurs during major disruptions in the
daily railway operations. Using data from the train driver schedule of the Dan-
ish passenger railway operator DSB S-tog A/S, a solution method to the Train
Driver Recovery Problem (TDRP) is developed. The TDRP is formulated as a
set partitioning problem. The LP relaxation of the set partitioning formulation
of the TDRP possesses strong integer properties. The proposed model is there-
fore solved via the LP relaxation and Branch & Price. Starting with a small set
of drivers and train tasks assigned to the drivers within a certain time period, the
LP relaxation of the set partitioning model is solved with column generation. If
a feasible solution is not found, further drivers are gradually added to the prob-
lem or the optimization time period is increased. Fractions are resolved with a
constraint branching strategy using the depth-first search of the Branch & Bound
tree. Preliminarily results are encouraging, showing that nearly all tested real-life
instances produce integer solutions to the LP relaxation and solutions are found
within a few seconds.

i



1 Background for the Project
While the disruption management applications within the airline industry have
been addressed by many Operations Research practitioners during the last decade,
the subject of recovery from daily disruptions of the railway crew and rolling stock
is not as well-studied. A limited competition among railway operators, govern-
mental subsidies to the railway industry and lower costs associated with railway
disruptions compared to the costs of airline disruptions are some of the main rea-
sons for the fact that the need for optimization within the railway industry has not
been as vital as within the airline industry.

Every railway operator experiences disruptions during the daily operation due
to external influences and internal failures. The disrupted operation causes crew
and passenger dissatisfaction, ending up in extra expenses and revenue losses.
The Danish railway operator DSB S-tog A/S (hereinafter referred to as S-tog) is
no exception. Disruptions in the daily train schedule disturb the train driver sched-
ule, forcing the dispatchers to manually re-schedule the driver duties. A Decision
Support System (DSS), which is able to find train driver recovery solutions auto-
matically, may help train driver dispatchers in their work. Building a prototype
for the Train Driver Recovery DSS is a part of a Ph.D. study at the Department of
Informatics and Mathematical Modelling of the Technical University of Denmark
in a cooperation with S-tog.

The rest of the paper is organized as follows. An introduction to the train driver
schedule and recovery methods at S-tog and a literature review are presented in
Section 2. The set partitioning formulation of the problem, integer properties
of the problem and the chosen solution method are outlined in Section 3. Data
structure and a dynamic programming algorithm for recovery duty generation are
presented in Section 4. The Branch & Price approach for solving the TDRP is
described in Section 5. Test results are presented in Section 6. The research
presented in this report is summarized in Section 7.

2 Introduction

2.1 The S-train Network
DSB S-tog A/S operates on the S-train network, which covers the Greater Copen-
hagen area. S-tog is a part of the Danish State Railways (DSB), the largest train
operator in Denmark. The S-train network is shown on Figure 1. It consists of
170 km double tracks and 85 stations. Each segment of the network is covered
by at least two train lines with a cyclic schedule and a frequency of 3 trains per
hour in each direction. A line is either a main line, running from approximately

1



5 am to 1 am next morning, or an extra line, operating during the daytime hours,
from about 6 am to 7 pm. A main line is indicated by a colour and a capital letter,
e.g., a line between Hundige and Hillerød is the light-blue A line. An extra line
is indicated by a colour and a capital letter with a “+” or an “x” after the letter,
e.g., the green B+ runs between Høje Taastrup and Holte, while the purple Ex
runs between Køge and Østerport. A combination of main lines and extra lines at
each segment of the network allows a higher departure frequency at almost every
station of the network during the daytime hours.

Figure 1: The S-train Network 2006

Train lines F and F+ are the only two lines, which do not pass København H
(Copenhagen Central Station). This part of the network is called a circular rail
segment. The other parts of the network are called the fingers. The bottleneck of
the network is between København H and Svanemøllen station north of Copen-
hagen. This segment is the busiest part of the network. Since all trains, excluding

2



the trains on the circular rail segment, run through this part of the network, it de-
fines the minimum headways for the trains. Currently, the minimum headways
is set to 2 minutes, giving a possibility for 10 train lines to traverse the central
segment in each direction.

2.2 Introduction to S-tog’s Train Driver Schedule
A daily S-tog schedule is covered by approximately 270 drivers on a workday and
less than 200 drivers on a weekend day, excluding reserve drivers. Each driver is
able to operate all types of the rolling stock owned by S-tog and only one driver
is required to operate a train. A driver’s duty starts with a check-in and ends
with a check-out at one of the three check-in depots, located at København H,
Hillerød station in the north and Køge station in the south. Each duty consists
of a sequence of tasks, i.e. train drives, meal breaks, preparing a train to the first
daily drive, riding as a passenger on a train (a passengering task), driving empty
trains to the maintenance depot, etc. The length of a daily duty is between 6 and
8 hours. Longer duties are allowed on weekends (approx. 8 hours and 40 minutes
on Saturdays and 8 hours and 20 minutes on Sundays).

A duty contains either one full break or two half-breaks between train tasks.
The length of a full break is 30 minutes. The length of a half-break is either 20 or
25 minutes. The total duration of the two half-breaks in a duty must be at least 45
minutes, so two short half-breaks are not allowed. A break is held at one of the
two crew depots, placed at København H and Hellerup stations. The crew depot
at Hellerup station serves the drivers assigned to the circular rail, while the rest
of the drivers hold their meal breaks at the main crew depot at København H. A
driver is entitled to a break after at most 3 hours of work, with the 3 hours and 30
minutes exception for drivers assigned to lines H and H+, where the return drive
between end-stations Farum and Frederikssund takes 3 hours and 20 minutes.

A train task in a schedule is a train drive between two terminal stations. All
end-stations of S-tog train lines (e.g. Farum station for lines H and H+) and the
central station København H are terminal stations. A subsequence of a train task
v is another train task w, which is the next (subsequent) task following v in a
train driver duty. Check-in depots and crew depots are relief terminal stations,
i.e. stations, where a driver can hand over a train to another driver and go on a
break or to a check-out. In an undisturbed schedule, the driver arriving on a train
at a non-relief terminal station is the one assigned to the first departure of the
line back from that station. Lines B and B+ constitute an exception from this
rule: the driver arriving on a train of the line B to a terminal station is the one
assigned to the first departure of the line B+ back from the station and vice versa.
Therefore the subsequence of a train task arriving at a non-relief terminal station is
unique. Earliest trains of the lines departing from non-relief stations are assigned

3



to drivers, who arrive at the station as passengers on a train of another line (if there
is one) or in a taxi. Likewise, at the end of the day, the driver assigned to the last
train of a line takes a passengering task or a taxi back from the non-relief station.

The regular duties are constructed such that each driver has a high variation in
tasks during the day. For instance, a driver is not allowed to drive back and forth
between two terminal stations during the whole duty period. Rather, different lines
must be assigned to each driver during the day. Variation in duty tasks implies
that many drivers are assigned to each line during the day. An example of a train
driver duty is shown on Figure 2. The driver is assigned to three different train
lines during the duty: E (Hillerød - København H - Køge - København H), H+
(København H - Frederikssund - København H) and A (København H - Hillerød).

Figure 2: S-tog’s Train Driver Duty Example

Up to 19 drivers are scheduled to be in reserve on a workday and up to 12 are
scheduled for reserve on a weekend day. Most of the reserve drivers are located at
København H, but there are a few who are located at check-in depots in Hillerød
and Køge. Most reserve drivers are in reserve for the whole duty, while a few are
in reserve only for a shorter period during the day, being assigned to train tasks
during the remaining duty time.

2.3 Recovery from Daily Disruptions
The daily operation of S-tog suffers from disruptions caused by speed limitations
due to track conditions, signalling problems, delays due to passenger boarding,
accidents etc. Train delays caused by minor disruptions are recovered by re-
establishing the original plan using the slack time build into the timetable, de-
laying other trains, making arriving trains wait if a platform at the station is oc-
cupied by a delayed train or using different platforms for delayed trains. Major
disruptions in the train schedule are recovered by re-routing or cancelling trains.
A train is re-routed if it is for instance turned back before reaching the end termi-
nal station in the finger segment or if it is driven through some stations without
stopping. A cancellation is applied either to a single train task, i.e. when only
one train between two terminal station is cancelled, or to a whole train line, re-
sulting in cancellations of all train tasks of a particular line for a certain period of
time. Sometimes several lines are cancelled for a few hours or even for the rest of
the day. Most often, extra lines are cancelled in order to maintain operations by

4



covering the segments affected by cancellations with main lines. Train schedule
recovery decisions are taken by the network traffic control center of the Danish
railway infrastructure manager Banedanmark.

When a train is delayed, re-routed or cancelled, a driver might be late for the
scheduled break or the scheduled train task. Since the time of the break cannot be
shortened, the driver is also late for the assigned train task after the break. If the
driver delay is severe, the train task is re-assigned to another driver. If there is no
available driver to take the train task, the train is significantly delayed or cancelled,
causing further disruption in the schedule. A combination of train line cancella-
tions and delays is damaging with respect to the train driver schedule. When a line
is cancelled, the excess rolling stock is shunted to depot tracks available along the
network segments of the line. For example, if line H+ is cancelled, the rolling
stock assigned to the line is shunted to depot tracks at Frederikssund, Ballerup,
København H and Farum stations. The drivers assigned to the cancelled train
tasks then end up at terminal stations, which do not coincide with the departure
stations of their next scheduled tasks.

In a regular schedule, the drivers are usually assigned to change trains only
at terminal stations of the line. In a recovery schedule, a driver can be assign to
change a train at an intermediate station, where several lines meet, e.g., Lyngby
or Buddinge stations. For instance, a driver arriving to Lyngby station with the
line A, which goes from København H to Hillerød, can be asked to swap trains
with a driver, arriving to Lyngby station with the line B, which goes from Holte
to København, if trains arrive at about the same time at adjacent platforms. Task
variation rules are not very strict in recovery situations. A driver can be assigned to
drive the same line for the rest of the day, if it is found appropriate for a recovery
solution. A driver can also be asked to postpone his break or to take one long
break instead of two scheduled short breaks, or vice versa. In extreme situations,
a driver can be asked to work overtime or to skip a break. However, recovery
schedules involving the latter solutions must be avoided if possible.

Train driver dispatchers responsible for re-scheduling driver duties often work
under a tremendous pressure. Every decision has to be communicated to each
train driver involved in the recovery solution. The size of the schedule and the un-
predictability factor makes it hard for operators to find a good recovery solution
fast. Decisions are often based on previous experience, and the quality of each re-
covery schedule depends on the particular dispatcher. In the worst case drivers are
assigned to tasks on the “first in first out” basis without considering their original
duties.

5



2.4 Literature Review of Train Driver Re-Scheduling Solutions
Crew disruption management within the railway industry has not been given much
attention by operations researchers, unlike the research within the airline crew
recovery (for a recent review refer to [3]). Only two applications within railway
industry related to the present research have appeared in the literature.

An integer programming approach to a simultaneous train timetable and crew
roster recovery problem is presented in [11]. Starting with an integrated train and
driver scheduling model, the authors develop an approach for disruption recov-
ery in realtime. The objective of the model is to minimize the deviation from the
existing schedule while minimizing the cost of the adjusted crew shifts. Limit-
ing the time period for which the schedule is resolved, the problem size is kept
small enough to produce optimal solutions fast. The problem is modelled as a
set partitioning problem with additional constraints ensuring the time consistency
of the pieces of work within driver shifts and the maximum duration of shifts.
The problem is solved with a Branch & Bound algorithm with column and con-
straint generation. The linear programming relaxation of the problem at each node
of the Branch & Bound tree is solved using the primal revised simplex method.
Hot-starting from a solution, which was feasible prior to the disruption, the op-
timization starts with pricing out variables, which represent pieces of work and
idle time for train tasks. When the train variables are priced out, the driver shift
variables are considered, constructing columns from initially constructed poten-
tial driver shifts, inserting a personal needs break to each shift. Fractions are
resolved using constraint branching. Illegal train crossings and overtakes of trains
are resolved by adding constraints as these are needed. The model is tested on
a one day timetable for the Wellington Metro line in New Zealand, covered by
36 trains. The train services were split into 564 pieces of work at possible relief
points. Delays of different duration were introduced on 3 trains in order to disrupt
the schedule. Optimal solutions were produced in reasonable time, ranging from
about 26 seconds to under 2 minutes.

Other work related to the present research is reported by [5] on the Crew Re-
Scheduling Problem for train driver duties disrupted due to the maintenance work
on train tracks. The data from NS Reizigers, the largest passenger railway oper-
ators in the Netherlands, is used to test the model. The model is formulated as
a set covering problem, allowing each train task to be covered more than once,
representing the deadheading of the crew. For each original duty, a large set of
“look-alike” duties is generated, replacing parts of the original duties with differ-
ent pieces of work. The Lagrangian relaxation of the model is solved with column
generation, pricing out “look-alike” duties with negative reduced cost. If the set of
“look-alike” duties is not sufficient to find an optimal (or near optimal) solution,
other duties with negative reduced cost are generated as simple shortest paths on

6



the direct graph, where each vertex represents a piece of work, i.e. the sequence
of train tasks on the same rolling stock. The problem is solved to integrality using
the heuristic approach for the set covering problem of the crew scheduling pack-
age TURNI. Test results from two real-life cases are presented. The first case with
586 duties and 5 683 train tasks generates 8 767 “look-alike” and 184 420 other
duties. The problem is solved within 9 hours. The second case with 773 duties
and 7 740 train tasks generated 169 974 “look-alike” and 203 961 other duties.
The problem is solved within 16 hours.

3 Problem Formulation
The objective of a recovery is to “get back” to the original train driver schedule
after a disruption as soon as possible by means of re-scheduling the original train
driver duties. The Train Driver Recovery Problem (TDRP) aims at finding the op-
timal set of feasible train driver recovery duties in a disturbed schedule, such that
all train tasks within a certain recovery period are covered and the driver duties
outside the recovery period are unchanged. Even though the TDRP can be viewed
as a feasibility problem, it is important to reflect the stability (or robustness) of
the recovery solution by minimizing the number of modification from the orig-
inal schedule, involving as few drivers as possible in the recovery solution and
eventually introducing extra slack time between tasks in recovery duties.

We formulate the Train Driver Recovery Problem as a set partitioning prob-
lem. Let K be the set of train drivers involved in the recovery and N be the set
of train tasks belonging to drivers in K within the chosen recovery period. Let
P k be the set of feasible recovery duties for a driver k ∈ K. Each recovery duty
p ∈ P k contains either a subset of train tasks in N or does not contain any tasks,
corresponding to the driver spending the time as stand-by.

The cost ck
p reflects the unattractiveness of the recovery duty p ∈ P k for the

driver k ∈ K in the recovery schedule according to the defined objective for the
recovery. A binary decision variable xk

p equals 1 if the duty p ∈ P k for the driver
k ∈ K is included in the recovery solution and equals 0 otherwise. A binary
parameter ak

ip is used to define whether or not the task i ∈ N is covered by the
duty p ∈ P k.

(TDRP) min
∑

k∈K

∑

p∈P k

ck
px

k
p (1)

subject to

7



∑

p∈P k

xk
p = 1 ∀k ∈ K (2)

∑

k∈K

∑

p∈P k

ak
ipx

k
p = 1 ∀i ∈ N (3)

xk
p ∈ {1, 0} ∀p ∈ P k, ∀k ∈ K (4)

The objective function (1) of the model minimizes the total cost of the re-
covery solution. The train driver constraints (2) ensure that each train driver is
assigned to exactly one recovery duty in the schedule. The train driver constraints
have a generalized upper-bounded (GUB) structure, since the constraints are dis-
joint and each column contributes to exactly one driver constraint. The train task
constraints (3) have a set partitioning structure and ensure that each train task
in the recovery schedule is covered exactly once. Constraints (4) are the integer
constraints of the model.

The TDRP model (1) - (4) has the pure set partitioning problem structure of a
crew rostering problem. The generalized set partitioning formulation of the crew
rostering problem is used in real-life applications within the airline industry for
e.g. Air New Zealand [2] and Air France [4]. It is observed in [9] that the linear
programming relaxation of the set partitioning formulation of the crew rostering
problem possesses strong integer properties due to the existence of the general-
ized upper-bound crew constraints, which contribute to the perfect structure of the
submatrix, corresponding to each crew member. This observation implies that the
linear programming relaxation of the Train Driver Recovery Problem (TDRP-LP)
also possesses strong integer properties addressed in the next section.

3.1 Integer Properties of the Problem
Let A be a zero-one matrix corresponding to the constraints (2) and (3) of the
problem. Let Ak be a submatrix of A corresponding to columns belonging to the
driver k. A is an m × n matrix, where m = |K| + |N | is the number of rows in
the problem and n =

∑
k |P k| is the number of columns. Ak is an m×nk matrix,

where nk = |P k| is the number of columns in the problem belonging to the same
driver k and m = |K| + |N | is the number of rows in the problem. An example
of a matrix A for a TDRP involving |K| = 4 drivers who are to be assigned to
|N | = 3 train tasks is shown on Figure 3.

According to Theorem 3.16 in [7], an m × n matrix A is perfect if and only
if it does not contain any m × l submatrices Al, where 3 ≤ l ≤ n, with the
following property Πβ,l: Al contains an l × l nonsingular submatrix Bl with row
and column sums all equal to β ≥ 2, while each row of Al, which is not in Bl, is
either componentwise equal to a row in Bl or has a row sum strictly less than β.

8



Figure 3: Structure of an A-Matrix of the TDRP

In order to demonstrate the theorem, let us examine a 4 × 4 matrix A1 on
Figure 4. A1 is a submatrix of A from Figure 3, which belongs to the driver
k = 1. Rows with only zero entries are neglected. All m × l submatrices of A1

for 3 ≤ l ≤ 4 are shown on Figure 5. According to the theorem, the five matrices
shown on Figure 5 must not contain any l × l nonsingular submatrices with the
Πβ,l property, where β ≥ 2 and 3 ≤ l ≤ 4, in order for A1 to be perfect. As an
example, let us induce all nonsingular l × l submatrices Bl for l = 3 from the
4 × 3 submatrix A1

3. The four induced 3 × 3 submatrices are shown on Figure 6.
All matrices are nonsingular.

The only one matrix among the four B3 matrices with equal sums of rows and
columns is B3

3 with β = 2. The only row of A1
3, which is not in B3

3 , is row 1,
which is a crew constraint represented by a vector (1, 1, 1). The row sum of row
1 is 3 > β. Hence, A1

3 does not contain any submatrices with the Πβ,l property.
The procedure of nonsingular matrix induction of l× l matrices with l = 3, 4 and
equal sums of rows and columns is applied to A2

3, A
3
3 and A1

4. None of the matrices
contains any submatrices with the Πβ,l property. Hence, the matrix A1 is perfect.

Figure 4: Driver k = 1 Submatrix A1 of A.

Every submatrix Ak of A has a row corresponding to the train driver constraint
(2). The sum of the row is either larger than the sum of any row in Ak or compo-
nentwise equal to a row in Ak. As observed in [9], the row corresponding to the

9



Figure 5: All m× l Submatrices of A1 with l = 3, 4.

Figure 6: All l × l Submatrices of A1
3 with l = 3.

crew constraint in the SPP formulation of the crew rostering problem is a “dom-
inant” row in the submatrix of the crew member k, which prevents the existence
of the Πβ,l property and ensures that each Ak is perfect. Indeed, none of the m× l
submatrices Al, where 3 ≤ l ≤ n can induce a nonsingular submatrix Bl with the
row sum strictly larger than the dominant row corresponding to (2). Therefore,
due to the existence of the dominant train driver constraint, every driver subma-
trix Ak of A is perfect.

A zero-one matrix is called perfect if the polytope of the associated set parti-
tioning problem has integral vertices only. Hence, fractional solutions will never
appear within one driver’s block of recovery duties. Any fractions in the TDRP-
LP can therefore only occur between blocks of columns, belonging to different
drivers. In other words, if a fractional solution occurs, it means that two or more
drivers compete for one or more train tasks in their recovery duties. Two drivers
can only compete for the same train task, if both drivers are available at the de-
parture station prior the time of the train departure. As mentioned in Section 2.2,
in the regular S-tog’s train driver schedule, the train tasks arriving at non-relief
terminal stations have unique subsequences due to the geographical position of
the stations and the train line pattern in the S-train network. Hence the number
of train tasks each driver competes for with other drivers in the S-tog schedule
is very limited. There is a high probability that solutions to many TDRP-LP are
naturally integer.

10



3.2 Solution Approach
The strength of the LP relaxation of the TDRP is the reason for choosing the
solution approach based on solving the set partitioning formulation of the the
Train Driver Recovery Problem with an LP-based Branch & Price algorithm. In
the best case the solution to the TDRP-LP is integer. Under any circumstances
lower bounds in the Branch & Price algorithm are very tight. There is therefore
a good chance that the integer problem is solved with only a few iterations of the
Branch & Price algorithm.

The size of the TDRP grows exponentially with the number of drivers and
the number of train tasks, which are used to generate recovery duties for the set
partitioning problem. In order to be able to solve the TDRP in realtime, the size
of the problem must be kept reasonably small. When a disruption occurs, only
a small number of drivers is directly affected. These drivers comprise the initial
set of drivers K. There is no reason to involve all train drivers in the optimization
problem, since a large part of the original train driver schedule will not be modified
in the recovery solution. The number of train tasks used in the recovery duty
generation is limited by the length of the recovery period, i.e. the time window,
which bounds the part of the train driver schedule to be recovered. The recovery
period must be sufficiently long to be able to achieve a feasible solution, but still
as short as possible in order to limit the time period of re-scheduling and get back
to original schedule as soon as possible. Train tasks assigned to the initial set of
drivers within the recovery period define the initial set of train tasks N involved
in the recovery. If the initial number of drivers is not enough to cover all train
tasks in N , the TDRP is expanded by gradually involving other drivers to the
problem. If no duties can be generated for one or more drivers, the recovery
period is extended.

Since disruptions might occur one after another during the day, the prototype
for the Train Driver Recovery DSS is based on solving TDRP instances sequen-
tially. The changes caused by the first disruption are applied to the undisturbed
schedule. The first TDRP is resolved over a defined set drivers and trains. As the
solution is achieved, the driver schedule is modified according to that solution.
When another disruption occurs, the changes caused by the second disruption are
applied to the “new” schedule, which contains the solution to the previous TDRP.
The new instance of the TDRP is resolved over a new set of trains and drivers.
The schedule is again modified accordingly. The continuous recovery process is
illustrated in Figure 7.

Since the instances of the TDRP are solved sequentially whenever a new dis-
ruption occurs, the term original schedule refers to the train driver schedule ob-
tained by solving the previous instance of the TDRP or, in case of the first daily
disruption, to the regular schedule employed at the beginning of the day. Likewise,

11



Figure 7: The Continuous Train Driver Recovery Process.

the original duty of a driver is the duty generated for the driver in the previous so-
lution of the TDRP or the unchanged duty from the regular schedule.

4 Recovery Duty Generation

4.1 Duty Graph Construction
Recovery duties for each driver k ∈ K are generated by assigning train tasks
from the set N , which contains non-cancelled train tasks originally scheduled for
drivers in K within the recovery period. A recovery duty must start and end only
at a relief station, because the subsequences of train tasks arriving to the non-
relief stations are unique and hence not interesting from the optimization point
of view. Therefore, the recovery period determines both the time and the station,
where the driver k must be available at the end of his recovery duty. The recovery
period is very likely to cover one or two originally scheduled breaks for drivers in
K. A recovery duty is feasible only if all originally scheduled driver’s breaks are
held, each break starts no later than originally scheduled and the duration of the
break corresponds to the originally scheduled duration. The break can be held at
either of the two crew depots, no matter which crew depot the driver is originally
assigned to.

In order to generate recovery duties, a directed acyclic duty graph Gk =
(V k, Ak) is constructed for every driver k ∈ K. The set of vertices V k contains
the source vertex ok, the sink vertex dk and a set of train task vertices Nk. The
source vertex ok ∈ V k represents the last task in the original duty of the driver k
before the start time of the recovery period or the check-in task of k, if the driver’s
duty starts within the recovery period. The sink vertex dk ∈ V k represents the
check-out task of the driver k if the driver’s duty ends within the recovery period
or the first train task in the driver’s original duty after the end of the recovery pe-

12



riod. Train tasks in the vertex set Nk ⊂ V k are collected from the train task set
N . A train task i ∈ N is included in Nk, if the departure time of i is larger than
or equal to the arrival time of the driver’s source vertex ok and if the arrival time
of i is less than or equal to the departure time of the sink vertex dk of driver k.

The set of arcs Ak represents connections to feasible train task subsequences.
The task w is a feasible subsequence of v if the departure time of w is later than or
equal to the ready time of v and if the departure station of w coincides either with
the arrival station of v or the arrival station of the passengering task taken by the
driver from the arrival station of v to the departure station of w. The ready time
tready(v, w) is subsequence-dependent and is calculated as the arrival time of v
plus a certain time span, which is necessary for the driver to conduct intermediate
actions after finishing the task v in order to begin the task w. As an example
shown on Figure 8, if the driver holds a full break between the train task v and the
train task w and the arrival station of v is the same as the departure station of w, a
time for handing the train over to another driver (abbreviated PIF), walking from
the platform to the crew depot (BEV), holding the full break (PAU), walking from
the crew depot back to the platform (BEV) and taking over the train from another
driver (PIT) is added to the arrival time of the train task v in order to calculate
tready(v, w).

Figure 8: Feasible Subsequence Without Deadheading

An example on Figure 9 shows the ready time tready(v, w) of the check-in task
v, where the subsequent train task w departs from a different station than the
check-in depot station of v and w is the earliest morning task of the particular
train unit. The driver needs to walk from the depot to the platform of the passen-
gering train task or to a taxi stand (BEV), ride as a passenger on a train or in a
taxi to the departure station of w (PAS), walk to the departure platform (BEV) and
make the train ready for driving (KLG). Since platforms on some stations are sit-
uated further away from the depot and each other than platforms on other stations,
minimum required durations of BEV and PIT are station-dependent.

13



Figure 9: Feasible Subsequence With Deadheading

The difference between the departure time tdep(w) and the ready time tready(v, w)
is called the idle time. A feasible subsequence without any idle time is very tight
and non-robust with respect to even small delays. On the other hand, a very long
idle time is not very attractive either, particularly on terminal stations without crew
facilities. In order to control the tightness of the schedule and the unwanted idle
time, a minimum required idle time τmin

idle and a maximum allowed idle time τmax
idle

are defined. For example, by setting τmax
idle = 15 min, situations where the driver

waits for his next assignment for more than 15 minutes are avoided and many un-
necessary arcs are not constructed. An arc (v, w) is only feasible if the departure
time of w satisfies the inequality (5).

tready(v, w) + τmin
idle ≤ tdep(w) ≤ tready(v, w) + τmax

idle (5)

The arcs in Ak reflect the majority of allowed task in the S-tog train driver
schedule. The overview of arcs which do not require a deadheading is presented
in Table 1.

14



Arc Type Ready Time tready(v, w) Special Requirements
Immediate Subse-
quence

tarr(v) w is first train of same line
after v, in opposite direc-
tion from end stations.

Train Change tarr(v) + τPIF +
τBEV(v.ArrSt)
+τPIT(v.ArrSt)

Break Opportunity tarr(v) + τPIF +
τBEV(v.ArrSt)
+τbreak + τBEV(v.ArrSt)
+τPIT(v.ArrSt)

v.ArrSt is a crew depot.
Short half-break: τbreak =
20 min, long half-break:
τbreak = 25 min, full break:
τbreak = 30 min.

Check-In tarr(o
k)+τBEV(ok.ArrSt)

+τPIT(o
k.ArrSt)

ok is a check-in task.

Check-Out tarr(v) + τPIF +
τBEV(dk.DepSt)

dk is a check-out task.

Reserve tarr(v) τmin
idle = 20 min, τmax

idle = ∞
Table 1: Arcs Without Deadheadings.

If the arrival station of v is different from the departure station of w, a dead-
heading is required. A passengering arc exists if there is a non-cancelled train
u in the schedule, which can transport the driver from one station to another.
Overviews of passengering and taxi arcs and their ready times are presented in
Table 2 and Table 3 respectively. Special requirements outlined for arcs without
deadheadings in Table 1 are also applied to passengering and taxi arcs. In the
current version of the prototype for the Train Driver Recovery DSS it is however
refrained from adding taxi arcs in the graph construction.

15



Arc Type Ready Time tready(v, u) Ready Time tready(u,w)
Passengering tarr(v) + τPIF +

τBEV(v.ArrSt)
tarr(u)+ τBEV(w.DepSt)
+τPIT(w.DepSt)

Passengering To Break tarr(v) + τPIF +
τBEV(v.ArrSt)

tarr(u)+ τBEV(w.DepSt)
+τbreak+τBEV(w.DepSt)
+τPIT(w.DepSt)

Break To Passengering tarr(v) + τPIF +
τBEV(v.ArrSt)
+τbreak + τBEV(v.ArrSt)

tarr(u)+ τBEV(w.DepSt)
+ τPIT(w.DepSt)

Check-In Passengering tarr(o
k)+τBEV(ok.ArrSt) tarr(u)+ τBEV(w.DepSt)

+ τPIT(w.DepSt)
Passengering Check-Out tarr(v) + τPIF +

τBEV(v.ArrSt)
tarr(u)+τBEV(dk.DepSt)

Passengering Reserve tarr(v) + τBEV(v.ArrSt) tarr(u)+ τBEV(w.DepSt)

Table 2: Passengering Arcs.

Arc Type Ready Time tready(v, w)
Taxi tarr(v) + τPIF + τBEV(v.ArrSt) +τtaxi(v.ArrSt, w.DepSt)

+τBEV(w.DepSt) +τPIT(w.DepSt)
Taxi To Break tarr(v) + τPIF + τBEV(v.ArrSt) +τtaxi(v.ArrSt, w.DepSt)

+τBEV(w.DepSt) +τbreak +τBEV(w.DepSt) +τPIT(w.DepSt)
Break To Taxi tarr(v) + τPIF + τBEV(v.ArrSt) +τbreak + τBEV(v.ArrSt)

+τtaxi(v.ArrSt, w.DepSt) +τBEV(w.DepSt)
+τPIT(w.DepSt)

Check-In Taxi tarr(o
k) + τBEV(ok.ArrSt) +τtaxi(o

k.ArrSt, w.DepSt)
+τBEV(w.DepSt) +τPIT(w.DepSt)

Taxi Check-Out tarr(v) + τPIF + τBEV(v.ArrSt) +τtaxi(v.Arr, dk.DepSt)
+τBEV(dk.DepSt)

Taxi Reserve tarr(v) + τBEV(v.ArrSt) +τtaxi(v.ArrSt, w.DepSt)
+τBEV(w.DepSt)

Table 3: Taxi Arcs.

16



4.2 Resource Constrained Path Generation
A directed path p from the source vertex ok to the sink vertex dk of the duty
graph Gk is called resource constrained, if for each meal break originally sched-
uled to be held within the recovery time in the original driver duty there exists at
least one break opportunity arc or one deadheading-to-break arc or one break-to-
deadheading arc (v, w), such that the arrival time of v is smaller than the originally
scheduled start time of the break, and the break arc (v, w) is suitable for the orig-
inally scheduled break type (a short half-break, a long half-break or a full break).
A resource constrained path p ∈ P k represents a feasible recovery duty for the
driver k ∈ K.

Resource constrained paths are generated with a duty generation algorithm
based on dynamic programming. The algorithm runs through the list of labels
Lk. Every label l(v) ∈ Lk stores sufficient information for backtracing a feasible
subpath pl(v) from the vertex v to the source vertex ok. A subpath is a directed
path from ok to the vertex v. A subpath is feasible if it is not in a conflict with
the break constraint within the time interval [tarr(o

k); tarr(v)]. A label l(v) contains
the cost of the subpath pl(v) represented by the sum of vertex and arc costs, the
pointer to the predecessor label l(u) of l(v) for backtracing and a set of outstand-
ing resources, representing the number, types and originally scheduled start times
of breaks that are still due after tarr(v).

Label in Lk are treated in a sequential order. During the label treatment of
l(v) feasibility checks are applied on outgoing arcs of the vertex v. The feasibility
check procedure determines if the subpath pl(v) can be extended along the arc
(v, w) to the subsequent vertex w. The feasibility check starts with determining
if a full break is still due after tarr(v) in the duty. If it is, the algorithm checks if
the arc (v, w) is a break opportunity arc corresponding to a full break. If the arc
provides a break opportunity for a full break, the subpath pl(w) = pl(v) + (v, w)
is feasible. If the arc does not provide a break opportunity for a full break and
the earliest scheduled break start time is due prior the arrival time of the train
task w, the subpath pl(w) = pl(v) + (v, w) is infeasible. However, if the earliest
scheduled break start time is not due before the arrival time of the train task w, the
subpath pl(w) is considered to be feasible. The feasibility of the arc (v, w) with
respect to the outstanding half-breaks is checked likewise. If no breaks are due
after tarrival(v) in the original duty, the subpath pl(w) is feasible.

If the subpath pl(v) can be extended along the arc (v, w) to the vertex w, a
new label l(w) is created, representing the subpath pl(w) = pl(v) + (v, w). The
label l(v) is the predecessor label of l(w). The set of outstanding resources in
l(w) is updated according to the resource use along the arc (v, w). The cost of the
subpath pl(w) is the cost of the predecessor subpath pl(v) plus the cost of the arc
(v, w) plus the cost of the vertex w. The label l(w) is added to the label list Lk

17



and is treated in turn.
Every label belonging to the sink vertex dk stores a subpath pl(d

k), which cor-
responds to a resource constrained path p from ok to dk and can be added to the
set of feasible recovery duties P k. The path p is backtraced from dk using pre-
decessor labels.Figure 10 shows an example of a small graph with an application
of the duty generation algorithm. All generated labels are shown next to vertices.
The index i of a label l(v)i

j indicates the label number in the label list, while the
index j points at the predecessor label of l(v)i

j .

Figure 10: Labelled Vertices in the Duty Generation.

There are three labels, which belong to the sink vertex dk. It means that there
are three directed paths from ok to dk, which represent feasible recovery duties.
The path ok → v → dk is backtraced from the label l(dk)4

1 to the label l(v)1
0,

which is in turn backtraced to the source label l(ok)0. The path ok → w → dk is
backtraced from the label l(dk)5

2 to the label l(w)2
0, which is in turn backtraced to

the source label l(ok)0. The path ok → v → w → dk is backtraced from the label
l(dk)6

3 to the label l(w)3
1, which is in turn backtraced to the label l(v)1

0, backtracing
to the source label l(ok)0.

The duty generation algorithm terminates when some termination criteria is
satisfied. If a total enumeration of feasible recovery duties is required, the al-
gorithm terminates when all labels in Lk are treated and hence all resource con-
strained paths from ok to dk are collected. If only a certain number of feasible re-
covery duties is required, the algorithm terminates when the number of collected
paths reaches the required number.

The path cost c(p) is a sum of vertex and arc costs as expressed in equation
(6). The sum of arc costs of the path p represents recovery duty cost ck

p. The cost

18



of an arc (v, w) in Gk reflects the unattractiveness of the subsequence w after a
task v in the recovery duty of the driver k. The objectives set for the Train Driver
Recovery Problem are expressed through the sizes of costs assigned to different
arcs in the duty graph.

c(p) = [c(ok) +
h∑

i=1

c(vi) + c(dk)] + [c(ok, v1) +
h−1∑
i=1

c(vi, vi+1) + c(vh, d
k)] (6)

In order to minimize the number of modifications from the original schedule,
an arc (v, w) is assigned a zero cost, if it appears in the original duty of the driver
k, i.e., if both train tasks v and w belong to the original driver duty. A slightly
less preferable is a semi-original arc (v, w), where the train task v is not in the
original duty of the driver, but the task w is originally scheduled in the duty of
the driver. Semi-original arcs are attractive since there is a chance that the driver
continues with his original duty after completion of the task w. Immediate subse-
quence arcs, which do not require changing the rolling stock, are attractive from
the recovery robustness point of view. In order to increase the robustness of the
recovery duties, the minimum required idle time τmin

idle is either set high, for exam-
ple to 10 minutes, or all arcs with a short idle time are given a high cost. In order
to avoid driver’s waiting time at terminal stations without crew facilities, either
the maximum allowed idle time τmax

idle is set low, for example to 15 minutes, or
arcs with a long idle time are given a high cost. In general, deadheading arcs are
not very attractive, since the time spent on deadheading is the time spent without
working. Taxi arcs are more costly than passengering arcs, since an extra expense
for a taxi ride is required.

5 Solving TDRP with Branch & Price
Branch & Price is a method for solving large integer programming problems,
where the LP-relaxation of the IP problem is solved with column generation at
each node of the Branch & Bound tree. A general Branch & Price methodology
is described in [1]. Solving the TDRP-LP involves dynamic column and con-
straint generation. The solution process is illustrated on Figure 11. The column
generation part of the algorithm consists of solving two problems in turn. The re-
stricted master problem (RMP) is the TDRP-LP with a restricted set of variables
and the subproblem is the pricing problem, which generates columns with nega-
tive reduced cost. For a review of applications of dynamic column generation see
[6].

The initial set of columns for the RMP at the root node of the Branch & Bound
tree is generated as resource constrained paths on duty graphs Gk for all drivers

19



Figure 11: Solving the TDRP-LP.

in K using a limited subsequences strategy. The strategy is similar to the one
described in [8]. Feasible recovery duties for drivers are constructed under the
restriction that the number of choices for performing different tasks after finish-
ing a task in the duty is limited, even though many possibilities (i.e. many sub-
sequences) might exist. The limited subsequences strategy is represented by an
additional restriction in the duty generation algorithm, described in Section 4.2.
At every label treatment a feasibility check is applied only to a limited number of
outgoing arcs of the vertex v. The number of outgoing arcs is limited to η, which
is a small number compared to the number of outgoing arcs from v.

The outgoing arcs for a feasibility check can be chosen at random, but we
prefer to force the attractive recovery duties to be included to the optimization
problem at an early stage of the column generation. Outgoing arcs of every vertex
v ∈ V k are therefore sorted in an ascending order by their cost. Hence, at most η
cheapest arcs are investigated. The limited subsequences strategy allows to gather
a small set of attractive recovery duties fast.

A limited subsequences strategy is illustrated on Figure 12. The duty gener-

20



Figure 12: Vertices Labelled with the Limited Subsequences Strategy η = 1.

ation algorithm with a limited subsequences strategy, where η = 1, is applied on
the graph example from Figure 10, described in Section 4.2. The number of labels
is decreased from 7 to 4 compared to the total enumeration shown on Figure 10
and the number of paths is decreased from 3 to 1, so the only generated path is
ok → v → w → dk with the cost of 3. The cost ck

p of a column, represented by a
variable xk

p, is a linear sum of arc and vertex costs of the path p ∈ P k. The costs
of vertices are set to zero when the initial set of columns is generated.

The RMP is solved using the primal revised simplex solver of MOSEK Opti-
mization Software, version 4.0. In order to ensure feasibility of the linear prob-
lem, artificial variables are added to the RMP. One artificial variable fi is added
for each train task i ∈ N and one variable ek for each driver k ∈ K. The TDRP-
LP is formulated in (7) - (12). Due to the very large cost M the artificial variables
are only included in the optimal linear programming solution if their presence is
necessary for the problem feasibility.

(TDRP-LP) min
∑

k∈K

∑

p∈P k

ck
px

k
p +

∑

k∈K

Mek +
∑
i∈N

Mfi

(7)
subject to

∑

p∈P k

xk
p + ek = 1 ∀k ∈ K (8)

21



∑

k∈K

∑

p∈P k

ak
ipx

k
p + fi = 1 ∀i ∈ N (9)

xk
p ≥ 0 ∀p ∈ P k, ∀k ∈ K (10)

ek ≥ 0 ∀k ∈ K (11)
fi ≥ 0 ∀i ∈ N (12)

The values of the dual variables, corresponding to train driver constraints (8)
and train task constraints (9) are used in the pricing step of the column generation
algorithm. At every pricing step, described in details in Section 5.1, a set of
columns with negative reduced costs is constructed by a column generator written
in C#.NET. When the pricing problem cannot generate any negative reduced cost
columns, the optimal solution to the RMP is an optimal solution of the master
problem TDRP-LP.

5.1 Pricing Problem
Let λk be the dual variable corresponding to the k’th train driver constraint (8)
and let πi be the dual variable corresponding to the i’th train task constraint (9) in
the restricted master problem of the TDRP-LP. The reduced cost c̄k

p of the variable
xk

p, which represents a recovery duty p ∈ P k for the driver k ∈ K is:

c̄k
p = ck

p − λk −
∑
i∈N

ak
ipπi (13)

The value of the dual variable λk with an opposite sign is set as the cost of
the source vertex ok of the graph Gk: c(ok) = −λk. Values of dual variables
πi for i ∈ Nk with opposite signs are set as costs on train task vertices in Gk:
c(vi) = −πi for each vertex vi ∈ Nk

p , where Nk
p is the set of train vertices in the

path p. The cost of the sink vertex dk remains zero: c(dk) = 0. According to (6),
the cost of the resource constrained path p ∈ P k for the driver k ∈ K is:

c(p) = [c(ok) +
∑

i∈Nk
p

c(vi) + c(dk)] + ck
p

= [−λk +
∑

i∈Nk
p

(−πi) + 0] + ck
p

= ck
p − λk −

∑

i∈Nk
p

πi (14)

22



Using (14), the reduced cost c̄k
p is expressed as:

c̄k
p = ck

p − λk − (
∑

i∈Nk
p

1 · πi +
∑

i∈N\Nk
p

0 · πi)

= ck
p − λk −

∑

i∈Nk
p

πi − 0

= c(p) (15)

Hence, the reduced cost of the variable representing a recovery duty for a
driver k is the cost of the resource constrained path p generated on the duty graph
Gk with vertex costs represented by dual values with opposite signs. The pricing
problem identifies variables in the TDRP-LP with c̄k

p < 0 by collecting resource
constrained paths in duty graphs with c(p) < 0.

Following pricing strategies are implemented:

PS1 At each pricing iteration, scan all duty graphs until at most θ
columns with negative reduced cost are collected.

PS2 Partial pricing: Collect at most θ columns with negative reduced
cost from one duty graph at each pricing iteration. Each duty graph
is scanned in turn. If no negative reduced columns exist for a par-
ticular driver at a particular pricing step, the duty graph for the next
driver on the list is scanned.

PS3 Collect at most one column from each duty graph. Every collected
column represents the most negative reduced cost column in the
duty graph.

PS4 Collect the most negative reduced cost column among all columns
available.

PS5 Collect all negative reduced cost columns from all duty graphs.

PS3 and PS4 employ a resource constrained shortest path algorithm on a di-
rect duty graph Gk, which is implemented as a label setting algorithm, where
only a set of the dominating labels for each vertex v are kept, the other labels
are removed from the label list. A label l(v) dominates label l(w) if following
conditions are satisfied: the cost of l(v) is less than or equal to the cost of l(w),
the number of outstanding short half-breaks in l(v) equals to the number of out-
standing short half-breaks in l(w), the number of outstanding long half-breaks in
l(v) equals to the number of outstanding long half-breaks in l(w) and the number
of outstanding full breaks in l(v) equals to the number of outstanding full breaks
in l(w). This dominance criteria is week, since the fulfilment of a one type of
break constraint cannot substitute the other type. It means that not many labels

23



are removed from the label list during a run of the algorithm and the label set-
ting algorithm in the worst case corresponds to the total enumeration of recovery
duties. Hence, the two pricing strategies are not very efficient for this problem.

PS3, PS4 and PS5 correspond to full pricing strategies, where all are scanned
at each pricing iteration. PS5 is the worst of all implemented strategies. In the
beginning of the column generation algorithm many non-basic columns have neg-
ative reduced cost. However, they do not necessarily end in the optimal solution
to the TDRP-LP. Adding all negative reduced cost columns results in a huge size
of the RMP and the concept of dynamic column generation looses its essence. All
three full pricing strategies are also computationally expensive and are therefore
dismissed at an early stage of the project research.

PS1 and PS2 are almost similar performance-wise. However, as the sizes of
TDRP’s grow, the partial pricing strategy PS2 demonstrates a better performance,
because it uses less time per pricing iteration by scanning one graph at a time un-
less no negative cost columns are collected from a particular graph. Even though
PS1 can settle with fewer pricing iterations, each pricing step takes longer time
and, as a general rule, more columns are added. The partial pricing strategy PS2
is therefore selected for further work.

5.2 Problem Extension
If an artificial variable fi remains present in the optimal solution to the TDRP-LP,
it implies that the train task i is not included in any generated feasible recovery
duty. Hence none of the present drivers in the set K can cover the train task i and
train task has to be assigned to a driver outside the set K. The obvious choice of
a new driver to be added to the problem is the one in reserve during the execution
of the train task i. If no reserve drivers are available, active drivers who happen
to be in the geographical “neighborhood” of the i’s departure station are added.
More than one driver may be added at the same time.

Introducing another driver k′ to the problem corresponds to adding a train
driver constraint (16) to the TDRP-LP and constructing a duty graph Gk′ . If the
driver k′ is active during the whole or part of the recovery period, the set of train
tasks N ′, which are assigned to the driver in his original duty within the recovery
period, is included in the set of train tasks N . A set of train task constraints
(17) are added to the TDRP-LP and all duty graphs are updated with vertices
corresponding to train tasks from the set N ′ as described in Section 4.1.

∑

p∈P k

xk
p + ek = 1 for k = k′ (16)

∑

k∈K

∑

p∈P k

ak
ipx

k
p + fi = 1 ∀i ∈ N ′ (17)

24



When the new constraints are added to the problem, the column generation
process continues until the problem is solved to optimality. If a driver k′ is not
able to cover the train task i either, the expansion problem is solved again by
adding another driver or drivers to the set K. Since the costs of original duties
are zero, all train tasks in the set N ′ will be covered by the driver k′. Hence,
the expansion problem does not contribute to more modifications of the driver
schedule than necessary.

If an artificial variable ek is present in the optimal solution the TDRP-LP, it
implies that no feasible recovery duty could be generated for the driver k within
the recovery period. If the sink vertex dk of the driver k corresponds to the check-
out activity, the infeasibility can only be eliminated by delaying the check-out
start time, which is acceptable if no other choice exists in a recovery situation. In
this case constraints corresponding to the driver k and train tasks, which belong
to the driver in the original schedule, are removed from the optimization problem.
If the sink vertex of the driver k is represented by a train task, the recovery pe-
riod is extended with a certain time period instead of delaying dk. The train task,
which corresponds to the sink vertex dk before the extension, becomes an ordi-
nary train vertex. The recovery period extension corresponds to adding train tasks
from original duties of drivers in K to the set N , which results in adding train
task constraints to the TDRP-LP. All duty graphs are updated for further pricing
iterations. In order to avoid recovery period expansion, the length of the recovery
period must be chosen carefully from the beginning.

5.3 Finding Integer Solutions
Any fractions which occur in the optimal solution of the TDRP-LP are resolved
by applying a constraint branching strategy originally proposed by [10], which
is very useful in the context of achieving integer solutions for set partitioning
problems. As shown in Section 3.1, the fractions occur in the TDRP-LP only
across train drivers’ blocks of columns. It is therefore sensible to force one driver
k to cover a train task i, which also appears in another driver’s optimal recovery
duty while forbidding other drivers to include i in their recovery duties.

We define J(r, s) as a set of variables from the optimal fractional solution to
the TDRP-LP, which cover the train driver constraint r and the train task constraint
s simultaneously and Π(r,s) =

∑
j∈J(r,s) xj as the sum of solution values of the

variables in the set J(r, s). The program identifies all constraint pairs {r, s}, for
which Π(r,s) lies strictly between zero and one:

0 <
∑

j∈J(r,s)

xj < 1 (18)

25



The 1-branch forces both constraints r and s to be covered together simulta-
neously, which is expressed through (19). The 0-branch expressed through (20)
implies that the driver constraint r must not be covered by the same variable as
the train task constraint s. ∑

j∈J(r,s)

xj = 1 (19)

∑

j∈J(r,s)

xj = 0 (20)

In the contest of the TDRP, the constraint r is a train driver constraint, while
the constraint s is a train task constraint. Hence, the 1-branch forces while the 0-
branch forbids the driver corresponding to r to cover the train task corresponding
to s in recovery duties. As suggested in [8], the pair of constraints with the largest
(i.e., closest to 1) sum Π(r,s) is to be chosen for branching. The larger the sum,
the stronger the inclination of the optimal solution to the TDRP-LP about assign-
ing the driver corresponding to the constraint r to the train task corresponding to
the constraint s. Therefore, if a depth-first search of the Branch & Bound tree
is implemented, there is a high probability for many 0-branches to be fathomed
because 1-branches are preferred by optimal LP solutions of parent nodes.

Branching constraints (19) and (20) are not explicitly added to the TDRP-LP.
Instead, in a 1-branch, the columns covering either the driver constraint r or the
train constraint s, but not both, are removed from the optimization problem by set-
ting the upper bounds of the violating variables in the RMP to zero. In a 0-branch,
all columns covering both constraints r and s simultaneously are eliminated.

The column generation continues in every node of the Branch & Bound tree.
The branching restrictions are applied to the column generator used in the pricing
problem. Since both branching decisions involve forcing and forbidding some
train tasks to be covered by some drivers, a set Nk

force of forced train tasks and a
set Nk

forbid of forbidden train tasks are generated for every driver k ∈ K. Both sets
are updated at each node of the Branch & Bound tree. On a 1-branch, a train task
i is added to the set Nk

force of a driver k, if i and k correspond to the set partitioning
constraint pair {r, s}. At the same time, a train task i is added to the set Nk′

forbid
of another driver k′, if i corresponds to the constraint s, but the driver k′ does not
correspond to the constraint r. On a 0-branch, a train task i is added to the set
Nk

forbid of a driver k, if i and k correspond to the constraint pair {r, s}.
During the duty generation algorithm on the graph Gk, an arc (v, w) is not

examined at the label treatment of l(v) if the train task represented by the vertex
w belongs to the set of forbidden train tasks Nk

forbid of the driver k. Hence, none
of the paths containing the train task w are generated in the duties of the driver
k. For example, none of the generated paths contains the vertex w from the graph
example on Figure 13. At the same time, if any train task represented by a vertex

26



u belongs to the set Nk
force of the driver, only paths containing u are returned to the

restricted master problem. On the graph example on Figure 13 the only generated
path is the one containing vertex u.

Figure 13: Graph Example with Forbidden and Forced Train Tasks.

6 Results
The prototype for the Train Driver Recovery DSS is implemented in C#.NET,
calling the .NET interface of MOSEK 4.0. All tests are run on a Pentium 4 PC
with 3,40 GHz and 1 GB RAM. All running times are measured in seconds. The
running time represents the real time elapsed from the beginning to the end of
the measured part of the program, i.e., CPU time consumed by other processes is
included in the measurement.

ID Recov. #Duties #N.-Canc. #Cancel. |K| |N | Graph
Period Trains Trains Time (sec)

09:00 3A+ 3h 141 326 36 14 9 00,09
09:00 4A+ 4h 168 434 48 19 19 00,22
09:00 5A+ 5h 196 544 60 24 29 00,41
09:00 6A+ 6h 204 652 72 27 41 00,75
09:00 7A+ 7h 206 760 84 30 71 02,42
09:00 8A+ 8h 214 868 96 34 88 04,59
12:00 3A+ 3h 123 326 36 14 16 00,16
12:00 4A+ 4h 125 434 48 17 40 00,81
12:00 5A+ 5h 133 542 60 21 54 01,89
12:00 6A+ 6h 141 647 72 25 89 06,41
12:00 7A+ 7h 164 743 84 27 112 11,61
12:00 8A+ 8h 183 825 86 28 123 14,26

Table 4: Test Scenarios.

27



Twelve test scenarios of different sizes are presented in Table 4. Line cancel-
lations are used to disrupt the train driver schedule. The period of cancellation in
all test scenarios is equal to the length of the recovery period. Recovery periods
of 3 to 8 hours are tested. Identification (ID) names of test instances illustrate the
recovery start time, the length of the recovery period and the cancelled train line.
Even though the S-tog train schedule is periodical, the number of train drivers
at work vary during different time periods of the day. Scenarios with the same
lengths of recovery periods starting at two different times of the day are therefore
tested. The table presents the number of original duties and train tasks (cancelled
and non-cancelled) within the recovery period and the number of drivers and train
tasks in the initial sets K and N respectively. The last column of the table presents
the time used in the graph construction phase, where the disruption is applied to
the schedule, the train tasks and information about the duties within the recov-
ery period are collected, the initial sets of drivers and train tasks are identified
and all duty graphs are constructed. The running times are acceptable for all test
instances.

Table 5 shows results from the optimization phase of the program. The number
of nodes in the Branch & Bound tree, the total number of calls to the column
generator (i.e., the total number of pricing iterations), the number of variables and
constraints in the optimal integer solution and the running time of the Branch &
Price algorithm are presented in the table.

ID Integer LP #Nodes #ColGen #Var #Const B & P
in B&B Calls Time (sec)

09:00 3A+ TRUE 1 8 90 23 00,11
09:00 4A+ TRUE 1 7 145 38 00,11
09:00 5A+ TRUE 1 11 243 53 00,14
09:00 6A+ TRUE 1 17 311 68 00,19
09:00 7A+ TRUE 1 46 3 417 101 01,56
09:00 8A+ FALSE 13 135 6 848 122 36,08
12:00 3A+ TRUE 1 5 119 30 00,11
12:00 4A+ TRUE 1 19 589 57 00,23
12:00 5A+ FALSE 21 126 1 735 75 04,72
12:00 6A+ FALSE 5 86 20 584 114 37,84
12:00 7A+ TRUE 1 74 18 342 139 62,72
12:00 8A+ TRUE 1 86 30 354 151 101,02

Table 5: Branch & Price Results.

The test results of the solution approach to the set partitioning formulation of
the TDRP are very encouraging. Due to small initial problem sizes and the dy-

28



namic column generation approach the running times of the linear programming
optimization at every node of the Branch & Bound tree are very small. As ex-
pected, due to strong integer properties of the problem formulation, the majority
of test scenarios (9 out of 12) produced integer solutions to the TDRP-LP. The
constraint branching provides an integer solution only in a few iterations. The
structure of the Branch & Bound tree, shown on Figure 14, exposes the usefulness
of the constraint branching strategy described in Section 5.3, when the depth-
first search of the Branch & Bound tree is applied. All 0-branches in the tree of
09:00 8A+ are fathomed by bound. The numbering of nodes in the tree on Figure
14 gives the order in which the nodes are examined. The tree on the left shows
branching decisions. For instance, the root node is branched with the constraint
pair {r, s} = {222, 2312}. The tree on the right shows upper and lower bounds.

Figure 14: Branch & Bound Tree of 09:00 8A+.

The TDRP is often a feasibility problem. It is therefore not crucial to prove
the optimality of the solution. It might be chosen to terminate the Branch &
Price algorithm either as soon as the first integer solution is achieved or when the
gap between the global lower bound and the achieved upper bound of the integer
solution is less than a certain percentage, for instance 1-3%. An integer solution
is then achieved faster, since all 0-branch nodes are not examined.

Test scenarios which cover 6-8 hours of the train driver schedule are presented
in order to demonstrate how the problem size grows with the length of the recovery
period and in order to test the solution method on larger instances. In real-life
disruption situations, it is impossible to predict the disruption pattern that far into
the future. Therefore, it does not make sense to recover the schedule 6-8 hours

29



ahead. Instead, the recovery shall cover the near future (for instance, 3-4 hours) in
order to find an immediate re-scheduling of the drivers affected by the disruption.
TDRP for test scenarios which cover 3-5 hours of the schedule are resolved within
a few seconds. These running times are acceptable for employment of the Branch
& Price solution method to the TDRP in S-tog’s daily operations.

7 Conclusion
This report presents a set partitioning formulation of a Train Driver Recovery
Problem and a solution method based on solving the problem with a Branch &
Price algorithm. The problem is formulated over a small set of drivers and a
certain recovery period, which bounds a part of the drivers’ original duties. If
the initial problem size is not sufficient for reaching a feasible recovery solution,
other drivers are added to the problem or the recovery time is extended. The solu-
tion approach is tested on data from the Danish passenger railway operator DSB
S-tog A/S. In test scenarios, a train line is cancelled for the whole recovery period,
resulting in cancellation of all train tasks belonging to the line. Optimal integer so-
lutions to test instances with the recovery period of 3-5 hours are achieved within
5 seconds.

The computational results show that optimization techniques can be advanta-
geously applied to recovery problems. Exploiting the strong integer properties of
the set partitioning formulation of the problem, integer solutions to the LP relax-
ation of the problem are achieved in the majority of test instances. The constraint
branching strategy combined with a depth-first search of the Branch & Bound
tree resolves the fractional solutions within a few iterations. The future research
is focused on testing the prototype to the Train Driver Recovery Decision Support
System on historical disruption data from the S-train network and on continuous
improvement of data structures and algorithms of the system.

30



References
[1] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and

P. H. Vance. Branch-and-price: column generation for solving huge integer
programs. Operations Research Management Science, 46(3):316–329, 1998.

[2] E. R. Butchers, P. R. Day, A. P. Goldie, S. Miller, J. A. Meyer, D. M. Ryan,
A. C. Scott, and Ch. A. Wallace. Optimized crew scheduling at Air New
Zealand. Interfaces, 31(1):30–56, 2001.

[3] J. Clausen, A. Larsen, and J. Larsen. Disruption management in the airline
industry - concepts, models and methods. Technical Report 01, Informatics
& Mathematical Modelling, Technical University of Denmark, 2005.

[4] M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A column gener-
ation approach for large-scale aircrew rostering problems. Operations Re-
search Management Science, 47(2):247–263, 1999.

[5] D. Huisman. A column generation approach for the rail crew re-scheduling
problem. European Journal of Operational Research, 180(1):163–173,
2007.

[6] M. E. Lübbecke and J. Desrosiers. Selected topics in column generation.
Operations Research Management Science, 53(6):1007–1023, 2005.

[7] M. W. Padberg. Perfect zero-one matrices. Mathematical Programming,
6(2):180–196, 1974.

[8] D. M. Ryan. The solution of massive generalized set partitioning prob-
lems in aircrew rostering. The Journal of the Operational Research Society,
43(5):459–467, 1992.

[9] D. M. Ryan and J. C. Falkner. On the integer properties of scheduling set
partitioning models. European Journal of Operational Research, 35(3):442–
456, 1988.

[10] D M. Ryan and B. A. Foster. An integer programming approach to schedul-
ing. In A. Wren, editor, Computer Scheduling of Public Transport, pages
269–280. North-Holland Publishing Company, 1981.

[11] C. G. Walker, J. N. Snowdon, and D. M. Ryan. Simultaneous disruption
recovery of a trian timetable and crew roster in real time. Computers &
Operations Research, 32(8):2077–2094, 2005.

31


