
A 1.5 GFLOPS Reciprocal Unit
for Computer Graphics

Alberto Nannarelli, Morten Sleth Rasmussen and Matthias Bo Stuart

Dept. of Informatics & Math. Modelling, Technical University of Denmark, Kongens Lyngby, Denmark

Abstract— The reciprocal operation 1/d is a frequent operation
performed in graphics processors (GPUs). In this work, we
present the design of a radix-16 reciprocal unit based on the
algorithm combining the traditional digit-by-digit algorithm and
the approximation of the reciprocal by one Newton-Raphson
iteration. We design a fully pipelined single-precision unit to be
used in GPUs. The results of the implementation show that the
proposed unit can sustain a higher throughput than that of a
unit implementing the normal Newton-Raphson approximation,
and its area is smaller.

I. INTRODUCTION

Reciprocal is an arithmetic operation used in scientific
computations and in computer graphics, and it is usually
implemented in hardware in microprocessors.

There are several alternatives for the implementation of the
reciprocal (see [1] for details): 1) digit-by-digit algorithms, 2)
quadratic convergence algorithms, and 3) polynomial approx-
imations. Methods 2 and 3 converge with less iterations, but
require a dedicated parallel multiplier and additional tables.
Method 1 is a cost effective alternative with a low hardware
overhead.

An algorithm for the computation of the functions 1/d and
1/
√

d, which consists of a digit-by-digit part followed by a
linear approximation, is described in [2]. Moreover, in [2] the
radix-4 implementation of a combined 1/d and 1/

√
d unit is

also presented.
In this work, we apply the algorithm of [2] to a radix-16 1/d

unit. With respect to the radix-4 reciprocal unit, the radix-16
converges in a reduced (halved) number of iterations at cost
of additional hardware (area).

A single-precision radix-16 1/d unit for use in computer
graphics is implemented by unrolling the sequential algorithm
and by pipelining the unit to reach a good throughput-area
tradeoff. The unit is compared with a different 1/d unit based
on the Newton-Raphson algorithm.

The results of the implementations show that the proposed
1/d unit can sustain a higher throughput and has a reduced
area with respect to the unit based on the Newton-Raphson
approximation.

II. ALGORITHM

We now describe the algorithm of [2] for the computation of
the reciprocal. The scheme is illustrated in Figure 1. The total
delay is reduced by implementing the linear approximation as
a digit-recurrence which is performed in an overlapped fashion
with the digit-by-digit part. Because the linear approximation

has quadratic convergence, roughly half of the iterations
are required as compared to a conventional digit-recurrence
algorithm.

For the reciprocal computation, the digit-by-digit part of
the algorithm produces an approximation k of 1/d. Then, as
described by the Newton-Raphson iteration a better approxi-
mation is given by

E = k(2 − kd)

The relative order of convergence of this iteration is quadratic,
that is, if the relative error of k is δ, then the relative error of
E is ε = δ2.

The algorithm of [2] can be summarized as follows:
• Obtain the approximation k using a digit-recurrence al-

gorithm and performing g iterations, roughly half of final
required precision.

• Since k is obtained digit-by-digit in most-significant digit
first mode, perform the computation of E = k(2 − d k)
by means of a digit recurrence. In this way, there is a full
overlap of the computation of k and the computation of
the approximation (see Figure 1).

The radix-r 1/d algorithm, described in detail in [2], is
implemented by the two recurrences

w[j + 1] = rw[j] − qj+1d
E[j + 1] = r2E[j] + qj+1(2rw[j] − qj+1d)

with j = 0, 1, . . . ,m
(1)

The residual w[j] and the approximation E[j] are initialized
to rw[0] = 1.0 and E[0] = 0. The quotient digit is computed
at each iteration by the selection function

qj+2 = SEL(r̂w[j + 1], d̂)

and the approximation E[j + 1] for n-bit operands converges
after g � �n/ log2 r�

2 iterations to 1/d.
For the radix-16 (r = 16) implementation, we define the

quotient digit qj = 4qH + qL, with qH = qL ∈ [−2, 2] and
qj ∈ [−10, 10]. As usually done for radix-16 [3], the selection
function is implemented by overlapping two radix-4 stages, as
shown in Fig. 2. Moreover, the recurrence w[j +1] is retimed
[4]. Summarizing, the recurrences (1) for radix-16 are

w[j + 1] = 16w[j] − (4qH + qL)d
E[j + 1] = 256E[j]

+(4qH + qL)(32w[j] − (4qH + qL)d)
(2)

16821­4244­0785­0/06/$20.00

d −1

qj+1Algorithm for Digit−recurrence

NR Approximation

Digit−by−digit
E

Result digits

D−D Rec.

D−D Rec.

NR Approx.

(alone)

Latency of conventional digit−by−digit algorithm

Latency of proposed algorithm

Fig. 1. Algorithm.

III. APPROXIMATION ERROR

In order to evaluate the algorithm for radix-16 and the per-
formance of the resulting unit, we compare the approximation
error obtained by (2) with that obtained from the Newton-
Raphson (NR) approximation of 1/d

R[j + 1] = R[j](2 − dR[j]) j = 0, 1 . . . (3)

where R[0] is the initial approximation of 1/d [1].
We performed an exhaustive simulation for single-precision

(223 values of d) and computed the error for both the algorithm
of (2) and the NR approximation of (3).

To ensure the convergence of the digit-recurrence algorithm,
d is pre-shifted a few positions to the right to obtain n = 26
bits. Consequently, for the algorithm of (2)

�n/ log2 r�
2

=
�26/ log2 16�

2
= 3.25 < 4

4 iterations are needed.
For the NR algorithm, by using the initial approximation

R[0] described in [5], 2 iterations are needed for single-
precision 1/d.

The approximation errors resulting from the simulation of
the two alternatives are reported in Table I as the difference
between the correctly rounded single-precision result and
the obtained approximation. Both round-to-zero (truncation)
and round-to-the-nearest rounding modes were simulated. For
both algorithms the maximum difference is −2 unit in last
position (ulp), and for the Newton-Raphson method the error
is smaller. However, for application in which a precision of
2−21 or smaller is required, such as computer graphics, the
two methods can be considered as equivalent.

IV. ARCHITECTURE

The first step in the design of the reciprocal unit is to find
a suitable arrangement of the adders and multipliers in the
two recurrences. Because of the chosen digit set for qH and
qL, multipliers are implemented as multiplexers. Moreover,
we want to keep the residual and the approximation in a
redundant (carry-save) format to speed up the iteration time.

SEL SEL SEL SEL SELSEL

CSA CSA CSA CSA

mult

CSA 3:2

CSA 3:2

mult/muxmult/mux

WS [j] W [j]C

WS [j+1] WC[j+1]

qL

qH

qH

MUX

d̂

d

Lq[j+1] [j+1]

[j] [j]

<< 2

Selection Function

Fig. 2. Implementation of w[j + 1] recurrence with detail of the selection
function.

The approximation recurrence, E in (2), is rewritten in carry-
save representation as

ES [j + 1] + EC [j + 1] = 256(ES [j] + EC [j])+
+(4qH + qL){32(wS [j] + wC [j]) − (4qH + qL)d}

(4)
By expanding the term in { } of (4), and defining an interme-
diate value A

AS + AC = 32(wS [j] + wC [j]) − (4qH + qL)d
= 32wS [j] + 32wC [j] − 4qHd − qLd

we obtain
ES [j + 1] + EC [j + 1] = 256ES [j] + 256EC [j]

+(4qH + qL)(AS + AC)

which expands to

ES [j + 1] + EC [j + 1] = 256ES [j] + 256EC [j]
+ 4qHAS + 4qHAC

+ qLAS + qLAC

The corresponding architecture is depicted in Fig. 3.
First, we consider a sequential implementation of the algo-

rithm. The sequential reciprocal unit is obtained directly by
the scheme of Fig. 3 and by placing registers at the bottom of
the figure to latch qj+1, w[j + 1] and E[j + 1]. If the number
of bits required in the digit-recurrence is n, the number of bits
required for E[j + 1] is p � 2n.

The unit is completed either by an on-the-fly convert-and-
round unit, or by a carry-propagate adder that from the carry-
save representation of E computes the reciprocal 1/d =
ES [g] + EC [g].

As a second step, we design the unit for high-throughput
computer graphics applications. This is a single-precision fully
pipelined unit based on the approximation error simulations of
Table I. Consequently, the unit is implemented by unfolding
4 iterations of the sequential algorithm (4 stages of Fig. 3 as
shown in Fig. 4) and by adjusting the bit-width of the datapath
to minimize the area.

The unit is pipelined to achieve a reasonable tradeoff
throughput/area. For this reason, each of the stages of Fig. 3

1683

Algorithm of (2) Newton-Raphson
Difference round-to-zero round-to-nearest round-to-zero round-to-nearest
-2 ulp 1508455 18.0% 42961 0.5% 65632 0.8% 5529 0.1%
-1 ulp 6523113 77.8% 5258594 62.7% 4731276 56.4% 657627 7.8%
0 357040 4.3% 3087044 36.8% 3591700 42.8% 7725452 92.1%
+1 ulp 0 0.0% 9 0.0% 0 0.0% 0 0.0%

TABLE I
ERRORS FOR THE TWO APPROXIMATIONS IN ROUND-TO-ZERO AND ROUND-TO-NEAREST MODES.

Selection
Function

mult/muxmult/mux

CSA 4:2

CSA 4:2

mult/muxmult/mux

mult/muxmult/mux

CSA 4:2
qH qL

qH

qL

qH

−qL−qH

qL

CSA 3:2

CSA 3:2
A S cA

<<3
<<2

<<2

<<2

<<8

E [j+1]c

sE [j]

sE [j+1]W [j+1]s

W [j]s E [j]c

W [j+1]c

W [j]cd

j+1
q

d̂

10

4 n4

3 10

n

p p

n

n+5

n+10

n+5

n+10 p

p

recurrence
approx.digit

recurrence

Fig. 3. Architecture of radix-16 reciprocal.

is broken down into two pipeline sub-stages as explained in
Section V.

V. IMPLEMENTATION AND COMPARISONS

The implementation of the 1/d unit (single-precision un-
folded and pipelined) is compared in terms of throughput, la-
tency and area with a unit implementing the Newton-Raphson
approximation. The two units have been synthesized using the
STM 90 nm CMOS standard cells library [6] and Synopsys
Design Compiler.

A. Digit-Recurrence and Approximation (DRA) unit
To achieve a reasonable tradeoff throughput/area in the

digit-recurrence and approximation (DRA) unit, we first
determined the critical path of the sequential unit, obtained
by the direct implementation of Fig. 3. The critical path is
through the digit-recurrence part:

mult CSA 3:2 CSA 3:2 SELr16 qj+1 reg. (qL)
0.10 0.05 0.09 0.62 0.12 = 0.98 ns

and the minimum clock period TC , including set-up time, is
about 1.1 ns. To increase the clock frequency, we need to
introduce pipeline latches to reduce the critical path.

The radix-16 selection function (boxed area in Fig. 2)
consists of 6 radix-4 selection functions (indicated as SEL
in Fig. 2). The quotient digit qj+1 = 4qH + qL is computed
speculatively by selecting qL among the 5 possible combina-
tions of

qL = SELr4

(
4̂w[j] − 4̂qHd, d̂

)
for qH ∈ [−2, 2]

once qH is known.
To avoid placing latches into the radix-4 selection functions,

we have chosen a clock period such that TC � tSEL + treg ,
where tSEL is the maximum delay through the slowest of
the radix-4 selection functions of Fig. 2 and treg is the sum
of the propagation delay through the pipeline latches and the
set-up time. The resulting clock period is TC = 0.66 ns and
the pipeline register placement is shown with the horizontal
dotted lines in Fig. 5, and in Fig. 2 for the radix-16 selection
function.

In the last pipeline stage the result is rounded by performing
a carry-propagate addition: 1/d = ES [4] + EC [4] + 1

2ulp.

1684

recurrence
approx.

digit
recurrence

recurrence
approx.

digit
recurrence

recurrence
approx.

digit
recurrence

recurrence
approx.

digit
recurrence

stage 1

stage 2

stage 3

stage 4

24−bit CPA

Fig. 4. Unit obtained by unrolling four iterations.

B. Newton-Raphson (NR) unit
We proceeded in a similar manner to design the Newton-

Raphson (NR) unit.
First, we designed a sequential unit implementing the algo-

rithm of (3)
R[j + 1] = R[j](2 − dR[j])

with the initial approximation R[0] implemented by a look-up
table with values derived from [5]. To obtain the approxi-
mation error of Table I, two iterations of (3) are necessary.
Each iteration requires two multiplications: dR[j] and, by
defining T [j] = (2 − dR[j]), R[j]T [j]. Because dR[j] � 1,
T [j] = 2 − dR[j] is simply obtained by the complement of
dR[j]. Therefore, the critical path of a sequential implemen-
tation of (3) is given by the following contributions:

tR[0] + tmult + tcompl + tmult

where:
tR[0] is the delay of the approximation table. Its value is
0.19 ns in our implementation.
tmult is the delay of a 24 × 24 multiplier implemented as a
radix-4 recoded tree multiplier. The delay to obtain the product
in carry-save format is tmult−CS = 0.73 ns plus an additional
0.30 ns for the carry-propagate addition.
tcompl is the delay for the complementation, that can be done
by inverting the bits of T [j] and adding the ’1’ later in the
multiplier’s tree.

For the pipelined NR unit, we decided to place pipeline
registers across the tree multipliers latching the carry-save
product. In this way, the minimum clock cycle is

Tmin ≥ tmult−CS + treg + tset−up � 0.90 ns

By unfolding the two sequential iterations of the NR algorithm
and pipelining the unit we obtain the scheme sketched in
Fig. 6. It consists of 9 stages.

By synthetizing the unit with the register placement of
Fig. 6, it results TC = 0.93 ns.

C. Comparison
The results of the implementations in the 90 nm library of

standard cells for the DRA and NR units are shown in Table II.

W

W

E

Selection
Function

d̂
q[2]

E[3]
28

−q[2]d
24

Selection
Function

q[2]

E[2]

−q[1]d

q[1]
d̂

28

32

E[0]

Selection
Function

d̂

−q[0]d

q[0]

E[1]

q[1]
28

28

W[1]

32

30

W[2]

−q[3]d

q[3] 16

q[3]

22

W[3]

E[4]
27

Selection
Function

d̂ W[0]

q[0]
30

E

W

E

W

E

Fig. 5. Single-precision pipelined 1/d unit (overview).

The results show that the DRA unit has a shorter latency and
can be clocked at a higher rate (throughput) than the NR unit.
Furthermore the NR unit is more than twice as larger. On the
other hand, the precision achieved with the Newton-Raphson
algorithm is higher (Table I).

VI. CONCLUSIONS

In this work, we have designed a single-precision reciprocal
unit suitable for computer graphics. The unit is based on
the algorithm presented in [2] in which the digit-recurrence
division algorithm is overlapped with the approximation of
one Newton-Raphson iteration. Here, the algorithm has been
applied to radix-16. As a consequence, the reciprocal unit
computes 1/d with an maximum error of 2 ulp, a precision

1685

stage operation block
1 R[0] table
2 T [0] = 2 − dR[0] mult-CS
3 CPA + compl.
4 R[1] = R[0]T [0] mult-CS
5 CPA
6 T [1] = 2 − dR[1] mult-CS
7 CPA + compl.
8 R[2] = R[1]T [1] mult-CS
9 CPA (incl. round)

Fig. 6. Pipeline stages in NR unit.

considered sufficient for computer graphics, in 4 iterations.
The unit is pipelined and clocked at 1.5 GHz to reach a
throughput of 1.5 giga reciprocals per second.

The radix-16 digit-recurrence and approximation (DRA)
unit is compared with one implementing 1/d based on the
traditional Newton-Raphson approximation. The DRA unit can
sustain a higher throughput and its area is significantly smaller
than the NR unit.

TC latency Area
unit [ns] cycles [ns] [mm2] ND2 eqiv.
DRA unit 0.66 11 7.26 0.081 18K
NR unit 0.93 9 8.37 0.192 43K

TABLE II
RESULTS OF IMPLEMENTATIONS.

ACKNOWLEDGMENTS

We thank Tomás Lang for the insightful discussion and
comments.

REFERENCES

[1] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann
Publishers, 2004.

[2] E. Antelo, T. Lang, P. Montuschi, and A. Nannarelli, “Low latency digit-
recurrence reciprocal and square-root reciprocal algorithm and architec-
ture,” in Proc. of 17th Symposium on Computer Arithmetic. IEEE, June
2005, pp. 147–152.

[3] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementations. Kluwer Academic Publisher, 1994.

[4] A. Nannarelli and T. Lang, “Low-power division: Comparison among
implementations of radix 4, 8 and 16,” Proc. of 14th Symposium on
Computer Arithmetic, pp. 60–67, 1999.

[5] D. Das Sarma and D. W. Matula, “Measuring the accuracy of ROM
reciprocal tables,” IEEE Transactions on Computers, vol. 43, pp. 932–
940, Aug. 1994.

[6] STMicroelectronics. 90nm CMOS090 Design Platform. [Online]. Avail-
able: http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

1686

