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Abstract
This paper describes a comparison of the well known Active Shape Model (ASM) and the new More Active Shape
Model (MASM). It is the first time MASM has been implemented and thus also the first time it has been compared
to ASM. Both implementations were done in Matlab and the comparison were done on a real case of finding the
metacarpals in x-ray images of the left hand. The paper also introduces the idea of using three different regression
matrices in MASM, which improves both the search range and final convergence of the model.
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1 Introduction

This project deals with the problem of locating a shape
in a digital image. Two methods are compared against
each other:

• The Active Shape Model (ASM) [2]

• The More Active Shape Model (MASM) [1]

As their names indicate there are several similarities
between the two methods. They are both based on a
statistical shape model and on statistical information
about the edge profiles. Both models are iterative
and need a rough initial estimate of the desired image
structure. However the algorithms for searching are the
same but the information extracted from search is used
in different ways to update the model parameters. The
purpose of this project is thus to explore the limitations
and robustness of the two methods and to compare
them against each other in various tests.

1.1 Data

The comparison is conducted using a real case consist-
ing of 24 x-ray images of left hands, where the four
metacarpals in the hand are to be located.

The images have a resolution of 300 dpi, but have been
blurred using a gaussian kernel. To avoid correlation
between the pixels only every fourth pixel is used when
sampling from the image. The resulting resolution is
thus 75 dpi, but by using the 300 dpi image it is possi-
ble to quickly obtain image profiles by using the pixel
values which are closest to the sample points.

The metacarpals in all 24 images have been annotated
with 400 points (figure 1). These are used as references
for the search results and also to build the models.

Figure 1: Example of an annotated x-ray image.

2 Active Shape Model

A short description of ASM will be given as it is
compared to the MASM method.

The model consists of points which define the
outline of the object. The model is based on the 24 x-
ray images where the correct points of the metacarpals
have been annotated. The shapes are then alligned
using Procustes algorithm and the model shape and
variation are described using ”Principle Component
Analysis” (PCA). The analysis results in a model
which includes a statistical model of edge profiles and
a statistical model of shape.

To find the object using ASM the mean shape is placed
on the approximate correct position in the picture. The
algorithm is then supposed to fit the shape to the object
edges. This is done by finding the best Mahalanobis
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fit within the edge profile of each point. The shape
points are then moved to the best fit of the edge. This is
done for all points in the shape and thereby generating
a new shape. The model parameters of the new shape
are constrained to be at most 3 standard deviations (see
section 2.2). The search for the edge is done in a profile
as seen in 2 [2].

Figure 2: An edge profile is created at each model point

This iterative process is repeated until convergence or
an certain number of times. In our implementation
ASM iterates 21 times. One could also reduce the
search area after each iteration which also damps
the process. The shape model has four euclidian
parameters and a number of PCA shape scores.

2.1 Mahalanobis Distance

Figure 3: The model is fitted to the sampled profile with
the lowest cost of fit

Fitting the model to the edges is done by using Ma-
halanobis distances. The best fit is found within m
pixels (100 px in our implementation) on either side
of the shape point. A profile is created by creating a
line perpendicular to the model point which has 2m
+ 1 samples which are put in a vector g. We sample
the derivative along the profile, rather than the absolute
grey-level values, this is done to reduce the effects of
global intensity changes. The vector is then normal-
ized by dividing with the sum of the absolute element
values.

gi → 1
∑ j |gi j |gi

This is repeated for each image to get a set of normal-
ized samples gi for each model point. It is assumed that
these are distributed as a multivariate gaussian, and the
mean g and the covariance Sg are estimated. This is
done for each point and gives a statistical model of the
profile about the point. There is constructed one model
for each point. To evaluate a fit of a new sample, gs, to
the model the following expression is given:

f (gs) = (gs −g)T S−1
g (gs −g)

This is the Mahalanobis distance from the point gs to
the model mean. Minimizing this value is equivalent
to maximizing the probability that gs belongs to the
distribution. The profile (width 2k+1) is fitted on the
sample of m pixels of either side of the point. The best
of the 2(m-k) possible fits is the one with the lowest
f(gs) see figure 3. This is done for all points, and the
euclidian and shape parameters are updated.

2.2 Principal Component Analysis

A principal component analysis is conducted on the
procrustes aligned shapes resulting in a series of prin-
cipal components. In the implementation 17 principal
components (PC) are used to describe 95% of the shape
variation. Moreover 4 euclidian parameters place the
shape in the image. In figure 4 it can be seen that the 1st
PC describes the variation in length of the metacarpals
and especially the left most. The 2nd PC describes
the rotation of the left most metacarpus the 3 other
metacarpals have almost no variation. In the 3rd PC
the variation is very hard to describe as it has almost no
visible variation.
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Figure 4: The first 3 principal components

2.3 Weaknesses

The points in ASM are only allowed to move perpen-
dicular to the shape. This can be a problem if there
for instance are few normals in a particular direction.
Then the shape will have difficulties in moving in this
direction. The problem is worsened if the boundary is
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badly defined in the edge profile. This is in fact the case
with the x-ray images in the vertical direction.

3 More Active Shape Model

The More Active Shape Model is an extension to the
original Active Shape Model. MASM and ASM share
the statistical shape model and the edge profile. The
extension in MASM is the ability to recognize patterns
in the overall movement.

3.1 ASM and more

MASM uses the same model parameters as ASM. The
17 shape parameters found by PCA and 4 euclidian
parameters.

b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

b17

θ
s
tx
ty

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

b17

b18

b19

b20

b21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

MASM uses the same search algorithm as ASM.
Search along the normal and find the best fit using
Mahalanobis distance to the edge profile. The
difference is that MASM doesn’t move the shape to
the best fit. It stores the movement in s and uses the
overall movement to change the model parameters.

MASM uses the signed distances to the previous
shape stored in (s) to evaluate its change in parameters.
A way of explaining its strength is that it matches
certain patterns of s with a specific change in model
parameters.

Figure 5: The Signed Distances s - Taken from [?].

Our implementation of the MASM algorithm uses 21
iterations and has no measure of convergence. The
algorithm will continue for the 21 iterations without the

ability to stop during the iterations. It is thus the same
as in the implementation of ASM.

The training consists of teaching the model what a
given sequence of signed distances correspond to in
change of model parameters.

The change in parameters is evaluated using the follow-
ing equation: δb = B · s. The regression matrix B is the
objective in the training.

3.2 Training

The training is done to determine the B matrix. The
more experiments put into the evaluation of B - the
more efficiently the model will act.

One experiment in the training consists of the mean
model aligned to an annotated shape. The aligned
mean shape is varied in each model parameter
randomly from a uniform distribution and the signed
distances are found using the Mahalanobis search.
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In our implementation we use different B matrices
- One for large, one for normal and one for small
variations of the model parameters. In the next section
a more detailed explanation is found.

The matrix trained on large variations is used in the 7
first iterations. The algorithm then shifts to the normal
and the last 7 iterations are done using the matrix based
on small variations.

3.3 Principal Component Regression

The model parameters are varied in different ways to
build three different regression matrices. The 3 differ-
ent variation schemes are shown below.

Wide Normal Narrow
±Rotation π/8 π/16 π/64
±Scale 500 100 10
±Transx 60 30 5
±Transy 60 30 15

The shape parameters are varied ± 3 standard
deviations at random.

For every scheme 50 experiments are performed in ev-
ery image and the signed distances and the change in
parameter are stored. As a result of this each B matrix
is based on 1200 experiments.
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In the Principal Component Regression [2] 300 eigen-
vectors are included in order to describe above 90% of
the variation.

3.4 The regression matrices

Below is a plot of the correlation between the true vari-
ation in the 21 model parameters and the ones predicted
by the matrices. Every column corresponds to one ma-
trix and every row is a variation scheme.
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Figure 6: Comparison of the matrices.

In the first row the large variations are predicted by the
3 different matrices. It can be seen that the BWide ma-
trix predicts the model parameters better and especially
the euclidian parameters are predicted very well. The
BNormal is not able to handle rotation and y-translation
that well.

In the second row the medium variations are predicted.
Here the BWide matrix fails on the shape parameters and
rotation. The BNarrow predictions almost correspond
to the BNormal in shape parameters however in rotation
BNarrow is significantly lower.

In the third row the small variations are predicted. In
this variation scheme the focus should be on the shape
parameters. The BNarrow predicts the shape parameters
with high accuracy and it can be seen that the other
matrices predicts worse.

The idea is to use the regression matrices where
they are trained and where they also perform the best
(corresponding to the diagonal in the figure 6).

The BWide is in the beginning to efficiently locate the
metacarpals. However it will never converge using
BWide but instead fluctuate around the metacarpals.

This is dealt with by shifting to the BNormal regression
matrix. The result is improved euclidian parameters
without fluctuation and a better determination of the
shape parameters. Finally the BNarrow is used to fine
tune the shape parameters.

4 Comparison of ASM vs. MASM

The comparison of the two methods will concentrate
on robustness towards the initial guess of the shape.
Moreover the speed and how they converge are also
investigated.

The annotated shapes are used as reference for the
search results. A measure of the quality of the search
result is obtained by calculating the point to curve
distance (PTC) between the search result and the
annotated shape. The PTC is the distance from each
point in the search result to the curve defining the
annotated shape. The PTC can thus be looked upon
as a cost of fit to be minimized by the two search
methods.

Our experimentation with the images has shown that a
PTC less than 100 indicates a good fit and a PTC less
than 200 indicates a fair fit. If the PTC is greater than
200 the metacarpals were not found.

To make the comparison fair the two methods are given
the same search conditions. The search range for each
point is 100 pixels on both sides of the shape and the
methods iterate 21 times, which should be more than
enough to converge.

4.1 Euclidian transformations

The initial guess of the shape is created by an euclidian
transformation of the mean shape. The optimal euclid-
ian parameters for the initial guess can be found by an
alignment of the mean shape to the annotated shape.

In order to investigate the robustness of the two meth-
ods towards the initial guess, the optimal initial guess
is varied in scaling, rotation and translation. The varia-
tions are conducted separately for the tree transforma-
tions to be able to conclude on the robustness towards
both scaling, rotation and translation.

• Scaling: app. ±40% with 40 sample points.

• Rotation: ±90◦ with 90 sample points.

• Translation: ±250px with 60 sample points.

All sample points are tested on 5 of the 24 x-ray images
chosen at random each time. Only the mean curves are
shown in the plots.

4.2 Scaling

The ability to handle variations in scale in the initial
guess is shown in figure 7. It can be seen that there are
no great differences between the search results from the
two methods.
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Figure 7: Plot of robustness towards scaling.

4.3 Rotation

From figure 8 is can be seen that MASM is much bet-
ter at handling rotation than ASM. MASM can handle
±50 ◦ whereas ASM only handles ±20 ◦.
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Figure 8: Plot of robustness towards rotation.

It can be seen that even rotation up to 70 ◦ (!) are in
some cases handled successfully by MASM.

4.4 Translation

The comparison with regards to translation are split in a
horizontal and vertical part. The vertical and horizontal
translation could also be varied together yielding a 3D-
plot, but since these are hard to visualize and compare
on paper it has not been done here.

The test on horizontal translation (figure 9) shows
almost equally good results for ASM and MASM.
They are both able to find the shape within ±100
pixels. This could also be expected since this is equal
to the search range. One could think that increasing
the search range would also increase the ability to
handle horizontal translation, but this is not necessarily
true, since if it is made just slightly larger it results in
problems with points moving to the wrong bone.

The test on vertical translation (figure 10) shows a dras-
tic difference. ASM starts having problems already
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Figure 9: Plot of robustness towards hor. trans.

around ±50 whereas MASM doesn’t have problems
before around ±200 pixels. This clearly shows the
great advantage of MASM over ASM. ASM can only
use the end points of the bone to move up and down.
Unfortunately there are few end points and the edge is
not very clear, which makes the ASM unable to make
large vertical movements. However, MASM uses the
information from from the residuals in all points in the
shape to determine the vertical translations. The exam-
ple here shows that MASM is a much more powerful
method.
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Figure 10: Plot of robustness towards vert. trans.

4.5 Convergence

The sections above have only dealt with analyzing the
final result of the two methods. However, it is also
interesting to look at how fast they converge.

To explore this a test using all 24 images is conducted.
On each image a random variation of the euclidian pa-
rameters is chosen and then used as the initialization of
the two methods. The random variation is limited in
order to make it possible for both methods to find the
shape. Figure 11 show the mean of these 24 experi-
ments.

The ASM converges smoothly whereas it for the
MASM is visible when the regression matrix (B)

400 Image and Vision Computing NZ



0 5 10 15 20 25
0

100

200

300

400

500

600

Iterations

PT
C

MASM
ASM

Figure 11: Plot of convergence.

changes at iteration 7 and 14. During the first
7 iterations it stabilizes around 150 with large
fluctuations. During the next seven it rapidly decreases
and during the last seven it is able to do a little more
fine tuning of the search result.

This clearly illustrates the power of using several re-
gression matrices. The first is trained and optimized
to locate the shape and the next two to optimize the
euclidian parameters and the shape parameters.

The plot of convergence also reveals information about
the quality of the search results by ASM and MASM.
When studying this together with the previous four fig-
ures in this chapter it can clearly be seen that MASM
tends to converge at a lower PTC when finding the
shape.

4.6 Speed

The algorithm for MASM requires fewer calculations
than the ASM algorithm. The search in the image is
directly transformed to an update of the 21 parame-
ters by multiplying it with the regression matrix. ASM
has to align the mean shape with the shape found by
searching the image and then use the shape parameters
to model the difference. However both methods look
up the image profiles and calculate the Mahalanobis
distances which requires the main part of the compu-
tational work, so the difference in speed between the
two will only be small.

To test whether or not this hold true the mean time of
100 searches with ASM and MASM has been found.

Search times with 21 iter.
ASM 32.457 sec.
MASM 31.567 sec.

This shows that MASM is slightly faster. It should be
noted, that our implementation of ASM and MASM
has been done in Matlab. Although it has been opti-
mized for Matlab, the search time is not in any way
comparable to the speed that can be achieved by mak-
ing an optimized implementation in a low level lan-
guage like C.

5 Conclusion

This paper documents the first time MASM has been
implemented and thus also the first time it has been
compared to ASM. Both implementations were done
in Matlab. Furthermore, it also introduces the idea of
using three different regression matrices, each trained
on wide, normal and narrow movements of the shape.

Disadvantages of MASM

The MASM contains more information about the
problem, which is stored in the regression matrix. The
generation of B naturally requires a little more effort
during the training of the model.

Advantages of MASM

During our work with the x-ray images of the
metacarpals, MASM has proved to be superior to
ASM. ASM is unable make large movements along the
bone, but this is solved using MASM. On top of this
MASM is also faster and gives a significantly better
search result.
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