

Prototype for a IEC 61400-25 Compliant Generic Server

Supervisors:
Bjarne Poulsen, DTU-IMM
Knud Ole Helge Pedersen, DTU-CET

Students:
Andreas Kargård Olsen - s022104
Baris Özdil - s041945

Kongens Lyngby 2006
IMM-MSc-2006

 2

Technical University of Denmark
Informatics and Mathematical Modeling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk
Thesis number 96

 3

Summary

IEC61850 has defined a family of standards for the power grid. E.g. the new IEC 61400-
25 defines protocols for communication, control, and monitoring of wind power plants
(WPP). This standard includes a wide range of mandatory and optional elements, ranging
from security, communications interface, and system speed. This enables control and
monitoring to be handle communication in a standardized and secure way. An analysis
focusing on isolating the necessary requirements of IEC61400-25 has been carried out to
create a generic prototype which can be used by WPP vendors where main
communications interface of the prototype utilizes web services. The prototype is
comprised of several independent modules to allow the possibility of choosing a fully
customizable setup by the end user. Configuration of the system need to be done in an
easy way, ensuring a flexible and reusable system, where different choices for the system
can be added or left out depending on user specifications. From the requirements a
prototype with the purpose of examining the key aspects of these definitions has been
elaborated.

 4

Resume

IEC61850 har defineret en familie af standarder til brug i el systemet. IEC 61400-25
definer de data modeller og protokoller som kan benyttes til at kommunikere, kontrollere
og overvåge en vind mølle. (Wind Power Plant - WPP). Denne standart består af en lang
række obligatoriske og frivillige elementer, som strækker sig over områder så som
sikkerhed, kommunikations interface, og system hastighed. Disse sørger for at kontrol og
overvågning kan blive udført på en standardiseret og sikker måde. En analyse er
foretaget, med henblik på at afdækkende de nødvendige krav som IEC61400-25 har til et
sådan system. Fra disse krav kan en generisk prototype bygges som en vindmølle kan
anvende ved hjælp af et hovedinterface som benytter web services. Prototypen består af
flere uafhængige moduler, som tillader fuld frihed i opsætningen for slutbrugeren.

Opsætningen af systemet skal være let tilgængeligt, således at slutbrugeren kan tilføje
eller fjerne moduler efter afviklings krav.

En prototype er blevet udviklet med det formål at undersøge disse aspekter.

 5

Preface

This thesis was prepared at Informatics Mathematical Modeling, the Technical University
of Denmark in partial fulfillment of the requirements for acquiring the M.Sc. degree in
engineering.

The thesis deals with the different aspects of creating a generic server for a common wind
power plant standard. The main focus is on evaluating possible solutions that can be used,
in order to achieve a good and flexible system, without compromising the final
requirements for the whole system and the different modules it is comprised of. The final
system has been designed with configuration in mind.

Andreas Kargård Olsen
Baris Ozdil

 6

Papers included in the thesis
Proceedings paper for 2nd International Conference on Integration of Renewable and
Distributed Energy Resources

 7

Acknowledgements
First of all we would like to thank our main supervisor Bjarne Poulsen and Knud Ole
Helge Pedersen for many insightful conversations during the development of the ideas in
this thesis, and for helpful comments on the thesis. We would also like to thank the
following persons for sharing their knowledge with us.

Knud Johansen Q-TECHNOLOGY, IEC Gamesa,
Claus Bjerge E2 DONG Energy,
Aksel Kargård Olsen,
Jacob Østergård.

 8

 INDEX

Summary ... 3
Resume.. 4
Preface... 5
Papers included in the thesis ... 6
Acknowledgements... 7
INDEX .. 8

Chapter 1... 11
INTRODUCTION... 11
1.1 Historical view & Motivation ... 11
1.1 Vision.. 13
1.2 Project Description ... 13
1.3 Time Table .. 16
1.4 Prerequisites.. 16
1.5 Report Outline... 16

Chapter 2... 18
ANALYSIS OF THE STANDARD.. 18
2.1 Analysis .. 18

2.1.1 Information Models – IEC 61400-25-2 ... 19
2.1.1.1 Logical Device .. 20
2.1.1.2 Logical Node... 22
2.1.1.3 Data Classes .. 22

2.1.2 Information Exchange Models – IEC 61400-25-3... 23
2.1.3 Abstract Communication Service Interface (ACSI) .. 24

2.1.3.1 Reporting... 25
2.1.3.2 Logging ... 28

2.1.4 Mapping to communication profile– IEC 61400-25-4 28
2.2 Challenges and design requirements for the system. .. 28

2.2.1 Module based components in a framework. .. 29
2.2.1.1 Configuration .. 30

2.2.2 Data processing and data storage... 32
2.2.3 Security .. 33
2.2.4 Traffic security... 34
2.2.5 Access control and management functionalities.. 35
2.2.6 Reliability... 35

2.3 Proposal for system architecture... 37
2.4 Summary... 39

Chapter 3... 40
SOA AND OTHER TECHNOLOGIES.. 40
3.1 Introduction to Service Oriented Architecture, and why to use it the IEC 61400-25

prototype. .. 40
3.1.1 What advantages are there by using SOA in implementing the IEC61400-25
prototype? ... 46
3.1.2 What are the disadvantages of using SOA for the prototype? 49

 9

3.1.3 Choice of SOA as a development strategy for the server prototype................ 50
3.2 State of the art: SOA... 52

3.2.1 WS-I... 52
3.2.2 WS-Policy .. 52
3.2.3 WS-Metadata Exchange (WS-MEX)... 53
3.2.4 WS-ReliableMessaging.. 53
3.2.5 Data compression... 53
3.2.6 Code first or Contract first ... 54

3.3 Choose of platform and language for the prototype ... 56
3.3.1 Comparing .NET to Java for the development platform.................................. 57
3.3.2 Windows Communication Foundation and how it address web services........ 59
3.3.3 Endpoint ... 60

3.3.3.1 Binding.. 61
3.3.3.2 Service contract... 62
3.3.3.3 Data contract ... 63
3.3.3.4 Message contract... 65

3.3.4 Pipeline in the communication... 65
3.3.5 Custom encoders.. 65
3.3.6 Define the policies using WCF .. 66
3.3.7 Hosting... 67
3.3.8 Security .. 67

3.3.8.1 Message and transport level security. ... 68
3.4 Summary... 70

Chapter 4... 71
IMPLEMENTATION AND CASE STUDIES ... 71
4.1 System Description ... 71

4.1.1 Service Interface - Communication Module.. 71
4.1.2 Data exchange between communication module and the server 73
4.1.3 Device Interface ... 73
4.1.4 Server Configuration.. 74

4.2 Case study 1 .. 76
4.2.1 Java client, C# Client and DLL as a client... 80
4.2.2 Presentation of data.. 82
4.2.3 General decisions in securing the system .. 83

4.3 Case study 2 .. 85
4.3.1 Secure connection .. 86
4.3.2 Offline scenario.. 86
4.3.3 Access control (AC)... 87
4.3.4 Ensuring module exchangeability.. 90
Minimizing traffic ... 90

4.4 Case study 3 .. 92
4.4.1 Speed test of different bindings ... 96

4.5 Case Study 4 ... 101
Chapter 5... 104

CONCLUSION AND FUTURE WORK .. 104
5.1 Chapter summery.. 104

 10

5.2 Conclusion .. 105
5.3 Future work... 107
5.4 Overall Conclusion ... 108

A TESTING .. 110
B CERTIFICATE.. 113
C VERSIONING AND WEB SERVICES.. 117
D REFERENCES.. 119
E BOOKLIST AND SITES... 121
F GLOSSARY... 122
G JAVA FRAMEWORKS FOR WEB SERVICES 126
H AC ... 127
I RISØ WPP .. 130
J USEFUL PROGRAMS AND EXAMPLES ... 133
K TEST RESULTS ... 134
L PROCEDINGS PAPER ... 137

 11

Chapter 1
INTRODUCTION

In this chapter an introduction to power plants and the arguments behind the need

for a common communications standard will be presented. The IEC 61400-25 [IEC]
standard that is used for communication with a power plant will be described. The visions
for the project is presented together with a project description, this includes defining the
overall scope for the project.

Wind power plants have through the years steadily gained a bigger and more dominant
position in the power generation industry. Each vendor has their proprietary solutions on
controlling and monitoring of the products supplied. In today’s ever changing and rapidly
growing energy market, monitoring and easy communication is essential. Through this
communication the current state of the individual power plant can be controlled and
monitored when required, and counter measurements can be enforced if needed in order
to supply the demand for energy and keep the stability of the distribution system. It is
vital that the overall dispatching systems are able to control the energy generation from a
wind farm on demand in order to meet the fluctuations in the energy consumption. A
common way to achieve this is a vendor independent approach.

1.1 Historical view & Motivation

Since the early days of electric power, distribution, standardization and
integration has been an important issue to overcome the complexity and manageability of
power networks with many sometimes multiple providers and many consumers.
Historically, many networks were composed of huge energy suppliers like coal fired
power plants and nuclear power plants which excessive production capability in order to
secure that peek energy demands could be fulfilled. Today the energy production
facilities are composed of various distributed generation units with different capabilities
For example the output of the wind farm is dependent on the strength and frequency of
prevailing winds, whereas the burning of fossil fuels is dependent on their availability
and price. In today’s competitive market, excessive production capability is not
economical favorable due to the running cost on the spare capability and related
environmental issues. This includes the overproduction of unnecessary pollutants.
However, fixing the production to an estimated average consumption does not solve the
problem. Transmission bottlenecks will appear, as the electric power consumption
increases and the delivered electric energy does not meet the demand. Bottlenecks will
increase the risk of blackouts and can in the worst case lead to a total collapse of the
entire power grid. This happened in the North Eastern United States in the summer of
2003 where millions were left without power, and key infrastructures were shut down.
Another vital part of preventing these blackouts according to José Delgado [JDAT03] is:

 12

“For a standard set of actions deemed necessary to maintain the stability

(reliability of supply) of the power grid and the entities responsible for those actions.”

What this means is that a standard way to communicate essential parameters and

related issues is needed.

In order to maintain a stable power grid with adequate capacity when needed,
various power generating entities must be able to regulate their production. The
regulation should be done in response to other entities in the power grid or to the power
system as a whole. What is rational for one entity may not be so for the complete system
or the energy market as a whole. Distributed power generation systems become highly
complex and calls for careful regulation.

As the complexity of power distribution network increases, methods for efficient
analysis, monitoring and coordination of the network control becomes very essential.
This in turn demands a highly efficient and dynamic control strategy for the power
system network. Several organizations have addressed this issue in manners where the
main objective has been to develop communication standards for interconnecting electric
power generation systems.

Enabling efficient and stable communication between power generation units is
not the only major reason to develop communications standards. Besides the historical
motive, another important aspect is to obtain a vendor independent communication. This
of course would cut the price for maintenance and management, meaning lower total cost
of energy generated. [IntelliGrid]

One important effort towards standardization has been launched by the IEC
(International Electrotechnical Commission)1. IEC is the leading global organization who
prepares and publishes international standards for all electrical, electronic and related
technologies. Their focus on communication within substations has led to the IEC 61850
communication standard. IEC 61850 is a standard for information modeling, information
exchange services, and a mapping to MMS and GOOSE protocol stacks applied for
monitoring and control of substation components. Several standards for distributed power
generation are under development using the structure of the IEC 61850 standard. e.g.
splitting the information modeling from the information exchange services and the
transmission given by the mapping to protocol stacks. [IEC],

The IEC 61400-25 standard is based on the same basic structure and are focusing
on the communications needs for wind power plants, which is one of the base elements
for this thesis project. Many of the major vendors are involved in the process of
developing the IEC 61400-25 standard where Energy E22 and Gamesa are among them.
Both Energy E2 and Gamesa are involved as a business partners for this thesis project.

1 UCA has done some similar work, but the projects has been combined under IEC.
2 Energy E2 is a part of DONG energy.

 13

They are both active contributor of the standard which is still under development and
close to be finalized.

1.1 Vision

Energy E2 wants research conducted for a software system to be designed for
monitoring and control of wind power plants based on the IEC 61400-25 standard.
Currently no system has been developed complying with the 61400-25 standard except
for a rudimentary demo system. The current demo system is only implementing a subpart
of the standard without processing any actual data but only exposing a minor part of the
web service stubs.

The goal of this thesis is to evaluate the standard and end up with a working
system implementation, covering the major parts of the standard. By doing this essential
work on evaluating the standard, and using it in a real world system, it will be possible to
spread its use and make it become a widely accepted industry standard.

1.2 Project Description

In this thesis a prototype of a system are to be developed relying on the IEC
61400-25 standard which describes the information and the information exchange models
and the mapping to protocol stacks. Wrapped around this prototype are several other
applications servicing the system and making it usable. Evaluation of different solutions
must be made during the design of the system, describing the approach used, and why it
was used.

The system developed is comprised of the following major parts which are illustrated in
Figure 1

• A Server process communicating with a wind power plant gathering data and
storing the data. The information model used is specified in the IEC 64100-25-2
describing the conceptual information model for the system. This server process
will act as a bridge between the data source (power plant) and the database.

• A Server acting as an interface to the database with proper functions in order to

alter and communicate data. IEC 64100-25-3 defines the information exchange
model used to communicate the data through corresponding services. A Major
task for this server is to exchange data through the specified model, and keeping
track of who needs what, and when.

• A server exposing web services described in IEC 64100-25-4. This is the actual

realization of the data communication where the information exchange model is
mapped to a communication profile.

 14

• Client application to consume the web services and demonstrate the
functionalities exposed by the server.

Figure 1
Communication model according to IEC 61400-25

The system must make use of web services as a communication technology together with
a suitable architecture which in this case is Service Oriented Architecture (SOA).

 In developing this system there are a number of important issues which must be
addressed. The concepts introduced by the IEC 61400-25 standard must be investigated
carefully in conjunction with real implementation techniques and technologies. This will
help designing the system and make it possible to end up with a suitable reusable
architecture The aim is to develop the system as a generic, configurable and extendable
framework, abstracting away the complexities from the users and presenting the
functionalities in an easy to use manner. To achieve this, the entire system domain must
be analyzed very carefully where afterwards a fine grained solution to all issues must be
provided. In the next chapter a detailed analysis of the important parts of the system will
be provided.

Communication model of IEC 16400-25

Actor
e.g.
SCADA

Application

Information
exchange
Model(get, set,
report, log,
control, public/
subscribe, …)
Defined in
IEC 61400-25-3

Wind power
plant

information
model

defined in
IEC 61400-25-2

Wind power
plant
information
model
(roto speed,
breaks status,
total power
production,…)
Defined in IEC
61400-25-2

Wind power
plant
component
e.g. wind
turbine

Application

Messaging
through mapping
to communication
profile (Read,
Write,…message)
Defined in
IEC 61400-25-4

Information
exchange
Model (get, set,
report, log,
control, public/
subscribe, …)
Defined in
IEC 61400-25-3

Client Server

Outside
scope

Outside
scope

Communication model IEC 61400-25

 15

The following list summarizes the major issues which must be addressed and solved
within the scope of this thesis.

• Evaluation of the standard. Whenever the standard proposes ideas or
suggestions there might have some implications, unwanted side effects, or would
have a better alternate solution, an improved suggestion has to be presented,
describing the details the implications of implementing the change(s). Whenever
possible, the solution should conform to well-known software design patterns.

• Making a framework encapsulating the system as a configurable module.

Even though a standard communication protocol would make it easier to
communicate between wind power plants from different vendors, the success of
the standard is still measured by whether it is easy and feasible to use. A
framework encapsulating the standard must be designed. This framework should
expose the methods offered and taking care of all communication. The meaning of
trivial means that the framework invokes the different methods. On top of this
communication is added security, reliable messages or what ever is needed for the
system. The framework should be transparent, meaning that a user can change the
configuration of the framework. The approach for adding different layers to the
communication must be done on top of the communication model, to ensure that
different approaches can be used, for instance to secure communication, and the
framework will do most of the work involved in the transition automatically.

• Service Oriented Architecture (SOA) This kind of system is comprised of many

different devices, distributed over a great physical space and requiring a variety of
functionalities. SOA is for one a system architecture where a network is
comprised of nodes exposing services to each other in order to complete at greater
common task. The system will take advantage of this architecture whenever
suitable.

• Security. The aspect of security is a major part of a system communicating data

over the network. This includes,
o Reliability (a system you can trust, in all aspects.)
o Confidentiality (information is only shared between the right people.)
o Integrity (The information is guaranteed to stem from a specific person

and has not been altered by a third person)
o Availability (The information is accessible whenever it is needed. This

also include aspects where the system is able to recover incase of a failure,
and bring it self back in an operating state as smoothly as possible.)

o Non-repudiation (Method by which the sender of data is provided with
proof of delivery and the recipient is assured of the sender's identity, so
that neither can later deny having processed the data.)

The system must address the security aspect making sure that the listed rules
are satisfied.

 16

• Configuration. For the time being there has not been specified a common way to
configure the system or its constituting devices. In the future an extension to basic
parts of standard will be released describing a configuration language. The system
must be designed in a way where everything can later be configured through a
common interface. Included in this topic are also the problems of managing and
maintaining the system.

• Data handling. A massive amount of data is collected. This data has to be

analyzed, filtered, and made accessible to clients as fast as possible. This leaves a
lot of constraints on the storage device according to access time, storage size and
stability and so forth. In reflection of this, a great deal of work must be put into
the design of the storage structure making sure that it can meet the specifications
that a system like this demands. The Main focus being on fast data retrieval for
the clients.

• Clients. The system should include a proposal for client systems.

o A web client being able to display data
o An application client. Not all of the functionality the system offers is

suitable to display in a web based client. This includes the possibility for
the client to subscribe to a service. (The system must keep track of all
subscribing clients sending data as it occurs.)

1.3 Time Table
Please refer to Appendix L.

1.4 Prerequisites

To run and understand this thesis there are a number of prerequisites that has to be
fulfilled.

Installed software:

Net framework 3.0 runtime components and/or Microsoft windows SDK
Internet Information server, or other server capable of hosting WCF web services.

Basic knowledge of:

• The C# programming language.
• XML Web Services and Windows Communication Foundation. (WCF).
• General knowledge on system design and software development.

1.5 Report Outline
 This report is organized as follows.

Chapter 1 – Introduction

 17

Provides an introduction to the project and explains the background. It includes a
project description together with an overview of the system.

Chapter 2 – Analysis and design
Provides an analytical discussion based on the standards and architectural

properties of the system. A major part of this chapter will be of describing different
possibilities for solving the tasks. It is mainly divided into three sections described below.

1. The analysis of the standard and models described in it.
2. Provides system design possibilities based on the analytical discussions. The

design will form the basis for the implementation.
3. Propose a conceptual model for the system based on the previous analysis.

This will be the basis for the implementation for the prototype

Chapter 3 - Service oriented architecture and standards used
An analysis on Service Oriented Architecture (SOA) in conjunction with the

standard will be presented. A detailed discussion of Windows Communication
Foundation (WCF) is presented.

Chapter 4 – Case study Implementation and Test
Gives an overview of how the system is implemented with what technologies. The

solutions to key problems are discussed including security aspects different client system
and on/off communication.

Chapter 5 – Conclusion and future work:
This chapter provides a chapter wise summary of the project, A conclusion of

what has been accomplished, and the ideas for future extensions and improvements to the
system.

 18

Chapter 2
ANALYSIS OF THE STANDARD

This chapter can be categorized into three parts where in the first one, a

description of the IEC 61400-25 standard, will be given in order to give a clear view of
its scope and the general problem domain, and what the requirements in the domain are.

In the second part, the main problems and challenges are identified and described
in detail. The approach is to give a clear analysis which outlines the important problems
of the system being implemented.

The last part will propose a solution addressing the identified problems. The
proposal will suggest a system architecture containing the solutions for the identified
problems, in a platform, and language independent manner.

2.1 Analysis

The IEC 61400-25 series is a specialized version for defining and standardizing a
unified communication for monitoring and control of wind power plants. The aim is to
enable systems from different vendors to communicate mutually.

The IEC 61400-25 series is an extension of the previous IEC 61850 series of
standards which in general defines the communication networks and systems in
substations. IEC 61400-25 does not simply replicate IEC 61850 but reuses the definitions
which in general apply to all power systems. IEC 61400-25 extends the IEC 61850 by
defining specialized information models in order to describe the specific Wind Power
Plant components such as rotor, turbine and the like.

The view and approach of the standardization expands over the information
modeling of the target system and the communication protocol for communicating the
data encapsulated in the information model. As a result of this approach, the standard
addresses the domain by separating it into three main categories of interest which
together encompass all the important aspects of the communication and control of wind
power plants.

The three different categories are as follows:

1. Wind power plants information models.
2. Information exchange models.
3. Mapping to communication profile.

 19

In these series the information model is the base for defining the communication
related aspects of the standard, since it should be possible to communicate the data
instances of the types defined.

The IEC 61400-25 mainly defines a client-server architecture with the three

aspects mentioned above. This is illustrated in the figure below.

Figure 2

Communication model defined in IEC 61400-25

2.1.1 Information Models – IEC 61400-25-2

The information model makes use of an Object Oriented approach for modeling
the wind power plant components and data in general. It defines an exact model of the
wind power plant (WPP) which contains the components and data of interest. This data
will be made available to access for monitoring and control purposes. The information
model constitutes a precisely defined set of reusable data classes which will make it
possible to build up a logical model being able to represent a specific WPP which is to be
modeled.

The WPP is abstracted as a logical device encapsulating different types of classes

being able to represent different parts of a real wind power plant device. The data classes
defined to represent parts of a WPP is grouped and located under units named logical
nodes where each node represents a component on the real WPP device. This will make it

Wind
Power
Plants

 Outside scope

Communication
Profile
IEC 61400-25-4
(Section 2.1.3)

Server

Information
Model
IEC 61400-25-2
(Section 2.1.1)

Information
exchange model
IEC 61400-25-3
(Section 2.1.2)

Client Interface

 20

possible to group related operations on data closely related to each other. For instance,
the wind turbine residing in a WPP is modeled as a single specific logical node where it
will be possible to embed all data and related operations in it. Closely related data will
most probably reside on the same logical node. This will make it easier to carry out
operations on related data since the data is located in the same container so that data
referencing is not complex and thereby making it easy to fetch it. It will be easier to
implement and to capture an overview of the device being modeled because its logical
structure closely resembles the real world. The sections below will go through each
modeling concept used in the information model.

2.1.1.1 Logical Device

As stated previously, a logical device is defined as an abstract model being able to

fully represent a power plant device, which is in IEC 61400-25, a wind power plant. The
Logical Device (LD) encapsulates all the logical nodes necessary to contain all the data
for the WPP device.

Figure 3

Information model hierarchy

Server
Logical Device (LD)

Logical Device (LD)
Logical Device (LD)

Name Type

Logical Node (LN)
Logical Node (LN)

Logical Node (LN)

Data class

Common Data Class (CDC)

CDC Attribute

 21

1. A LD residing on a server is assigned to a specific WPP which must be able to
fully represent it with all its data and attributes. It must contain a collection of
specific Logical Nodes (LN) which will further contain data instances reflecting
the physical state of the real WPP.

2. Beside the Logical Nodes specific for a WPP, a logical device also contains data

about its own condition and the physical device (server) that is hosting the logical
device. This common information is contained in specific Logical Nodes serving
only for this purpose. For instance, the logical node LPHD (Logical node physical
device) represents common data of the physical device hosting the logical device.
These logical nodes are described in Clause 8 of IEC 61850-7-1

Briefly, a Logical Device is a container for all WPP related data together with self

descriptive meta-data describing the physical host and the device itself. The hierarchical
structure of a logical device residing on a server together with logical nodes and data
classes is depicted in the Figure 3 above.

The Figure 4 below illustrates the relation of the model to the real world.

H
id

es
/e

nc
ap

su
la

te
s

re
al

 W
or

ld

M
ap

pi
ng

...

(Virtual World)

LN
LNLNLN

Speed
mapping to
protocol
stack

TCP/IP
Network

Prot.

61400-25
Services

logical device

Position

WROT

61400-25 logical node
(Rotor)

61400-25
WROT data
(Rotor Speed)

virtualisation

Real
component in
wind turbine

Figure 4

Modeling approach (IEC 61400-25-1)

 22

2.1.1.2 Logical Node

It has been mentioned that a WPP is decomposed into smaller information units
where they are distributed to different containers. Each such container is defined as a
logical node (LN). The modeling approach uses the logical nodes as building blocks to
construct all the information of a WPP which is subject to a service. The modeling
approach is stepwise decomposition and composition for WPP and the information model
respectively. An example of a logical node could be WTUR3 which represents the
general information of and wind turbine. This logical node encapsulates information such
as net active energy production and net reactive energy production.

1. A logical node consists of a collection of related data, defined as data classes
(DC). All the information in a logical node is contained in respective data classes.
The structure of all logical nodes is similar and has a standardized form where
different types of logical nodes can be constructed through the combination of
different optional data classes they may contain.

All the logical nodes used in modeling the WPP inherit their structure from the

abstract logical node class defined in IEC 61850-7-2. From an implementation point of
view the implementation of these different logical nodes will be similar since the
structure is based on a common definition and follows a common pattern.

2.1.1.3 Data Classes

The data class is the actual component of the information model which is used to

define any data contained in logical nodes. It is a generic template to define specific data
classes which encapsulates the information. These specific classes are called common
data classes, which are precisely defined classes inherited from the general data class.
These classes are defined according to similar needs for different systems in order to have
a reusable data class repository. The common data classes used to model a wind power
plant device can mainly be categorized under two groups. Common data classes defined
specifically for wind power plants and logical nodes inherited from IEC 61850-7-3. A
complete listing of these common data classes is provided in IEC 61400-25-2 clause 7.

1. The level of data classes is where the information exchange services operate when
retrieving real WPP data. The values of data instances can be written and read
depending on their configuration.

2. Similar to logical devices and logical nodes a data class instance must have a

unique name among data instances at the same level in the information hierarchy.
This will make it possible to have a unique path from the top level logical device
to the instance itself. Therefore each data class has a data reference attribute
making it possible to reference it from the top level instance of the information

3 Wind turbine general information. This is information about turbine status, power generation and total net
reactive energy production. What the node contain depend upon the specific vendor.

 23

hierarchy. This is important since there is no other way to specify which values on
the server/WPP one will retrieve.

3. Each data class has a set of data attributes which are all related to store and

describe the data in various means. This includes the type, functional constraints,
explanation of the data and trigger conditions that may be associated with the
data. Each of these attributes will be used to model the data specifically as needed
to reflect the actual data on the wind power plant device

4. The server must be capable of representing the information model with all its

instances from logical devices and all the way down to specific data attributes.
The hierarchical structure must be preserved so that each data instance can be
referenced in a standard manner as defined in the information model.

5. A server may host one or more logical devices depending on the number of WPP

which must be controlled by that server. Therefore it must be possible to uniquely
reference a specific logical device representing a specific WPP. Each logical
device must have a unique reference/name within the server/namespace it resides.

6. The server must be capable of representing a logical node contained in a specific

logical device and to refer to it uniquely. Each logical node has a unique reference
name which makes it possible to locate it directly in conjunction with unique
reference name of the logical device containing the logical node. This is important
since a single server instance can have more than one logical device residing on it.
This means that the server can have different logical devices containing logical
nodes with identical names. The naming convention used in the standard prevents
unambiguous references to any device or data instance.

The data model is defined in an object oriented manner, and must be reflected as

such in the data Model.

2.1.2 Information Exchange Models – IEC 61400-25-3

This part of the standard describes the information exchange model which is
implemented on the server enabling client’s systems to access and modify data in the
information model. Each information model instance has a service interface describing
the operations available on that particular instance. The services described in the
information exchange model are designed according to the specific information model
instances. Each information model object has a specific set of services making it possible
to read or write from/to it. For instance, a logical device instance is associated with a
service GetLogicalDeviceDirectory which will retrieve all the references to logical nodes
contained in the device.

 24

2.1.3 Abstract Communication Service Interface (ACSI)

The basic services that are used to mediate between the outside world and the real
wind power plant device are referred to as Abstract Communication Service Interface
(ACSI). The basics of these services described in details in IEC 61850-7-1 and IEC
61850-7-2. The figure below illustrates the various components of the ACSI models.

Time SynchronisationAuthorisation

Server

Logical Node

Control

Report Control Block
values on

change, event,
periodic

Logical Device
nameplate, health

Get/Set

Get/Set

Get

Query

Data
Data

Data
SetData

Set

Log

reference

Data Values

Log Control Block

Subscribe

values on
change, event,

periodicReport

bidirectional information exchange

unidirectional information exchange

Logical Node
Data

Figure 5

Information exchange model for wind power plants (IEC 61400-25-1)

A physical device with a communication interface is represented on a server as a
logical device. The server is accessible over the network making it possible to accept
client system connections and support services to the client following authentication.

The logical device(s) contain(s) logical nodes that represent the various
components and functionality of the logical device. Logical nodes can respond to control
inputs, provide reports configured by the client, and contain logs which can be queried by
the client. The logical nodes contain data objects which can be written to or read. Read
and write operations are done through the services provided at the level of the logical
node and downwards. The client can create data sets of an arbitrary number of data
objects and read or write to these data objects as a group as well as being as being able to
read and write individually named data values.

 25

Services are provided which enables a client to create, delete, list, read or write to

data sets. This arbitrary grouping lets the client system define collections of data
attributes that are commonly needed and retrieve them with a single read operation using
a single name referring to the data set.

In the ACSI models, the information that gets reported or logged is represented by
data sets. This permit specifying the rules for reporting and logging to be defined in a
more compact manner applying to a group of data.

2.1.3.1 Reporting

The reporting services must make it possible to subscribe to spontaneous data

reports on specific conditions for data values. Conditions such as change of value or
change of attribute values will trigger a preconfigured reporting subscription and start
dispatching the values. It should also be possible to cancel a report subscription.

1. In the reporting mechanism, the server must make available the data for the
client to read and write. As mentioned above the data subject to retrieval can
be configured by the client as a group of data objects named data sets. Since it
is not common practice in client server architecture for a server to contact a
client offering data, the server should buffer the values to deliver it later to the
client, whenever a client request is made. Otherwise the server has to contact
the client and deliver the data to it, which turn upside down the client server
architecture.

2. In order to achieve buffering mechanism so that the server does not have to
notify the client for the available new data, some sort of a server side session
must be implemented for the reporting interaction between client and server.
The server must have an internal state making it possible to keep track of
which step in the reporting process it is in and which data have been sent and
which is still in the buffer. However, the standard also specifies that it must be
possible to configure the reporting mechanism such that data is not buffered in
case of a connection interruption, meaning that the client only can access the
data available at the time it makes its service request.

The reporting mechanism is controlled by an REPORT-CONTROL class which

can be configured through its attributes. The REPORT-CONTROL references an instance
of a data set which groups the data in interest. The attributes of an REPORT-CONTROL
instance used to configure the reporting can be accessed through specific services made
available for the REPORT-CONTROL class. The details of the REPORT-CONTROL
class are defined in 14.2 of IEC 61850-7-2.

 26

Buffered Reporting

A client process can configure the behavior of buffered reporting through an
instance of a BUFFERED-REPORT-CONTROL-BLOCK (BRCB). This instance is
created through the AddSubscription service made available to client processes. A BRCB
instance has a set of attributes used to control the behavior of the reporting mechanism. It
also has a DATA-SET reference for which the reporting is applied to. Whenever a BRCB
instance is enabled an Event-Monitor should monitor all the data instances referenced by
the report-control-block DATA-SET. The Event-Monitor must send event notification
instances to the Report-Handler which will further delegate it to the respecting BRCB
instance.

Whenever the BRCB instance receives an event notification it will generate a
report and push it onto the report buffer stack, making it available for client retrieval. In
case of a client thread blocked on a buffer event, the BRCB instance must notify the
client thread to pick up the generated report. The BRCB should generate a report even if
at that moment there is no client actively waiting for a report. The immediate delivery of
reports to clients requires a fine grained synchronization mechanism which will be
discussed later in this section.

Un-Buffered Reporting

A client process can configure the behavior of un-buffered reporting through an
instance of an UNBUFFERED-REPORT-CONTROL-BLOCK (URCB). Un-Buffered
reporting is similar to Buffered reporting with one important exception. As the name
implies, in Un-Buffered reporting the generated reports is not buffered on a report buffer.
If a previously generated report is not picked up by a client, this previous report will be
swapped with the new report. That is, the order of sequence or the loss of reports is not
considered by the server. A report can be retrieved by the client in the period until
another report is generated, otherwise it will be lost.

Report Handler

A report handler object should be able to maintain all the subscribed REPORT-
CONTROL-BLOCK instances together with the report buffers assigned to each client
process. The dispatching of report requests should also be controlled by the report
handler. It must be possible to enable a mechanism so that client processes can wait for a
specific amount of time to retrieve a generated report. Immediate delivery of generated
reports will be possible through such a mechanism which is required for an event driven
data retrieval model.

In order to have a wait/block mechanism for requesting clients, the report handler
must maintain a thread pool with reusable threads in order to make the process fast and
efficient. Creating a new thread for each report request will use unnecessary amount of
resources on the server side.

 27

Whenever a client requests for a report, the report handler must dispatch an
available thread to the client and make the assigned thread block on an event. By this, the
report request service will not return immediately but instead wait until it is released and
thereby return the response object to the client. Whenever a report is issued the report
handler will notify the awaiting thread and release the blocked request so that it will
continue its execution and thereby return available reports to the client if any. The
wait/block mechanism must have a suitable wait-time and release the block so that the
underlying service connection does not timeout. The two different cases in wait/block
mechanism are illustrated in the figure below.

Figure 6

 Wait/block mechanism

Each client is responsible of reconnecting to request and wait for new reports after
a report request service call has returned. The wait/block mechanism is a polling
mechanism extended with timeouts to achieve a similar behavior as in a connection
oriented interrogation. It is not possible to establish a pure connection oriented
interrogation when using communication technologies such as web services.

Event Monitor

Monitoring events is an important part of the reporting mechanism. It should be
possible to monitor the data instances referenced by RCB instances (through DATA-
SET) configured for each client. That is, only the data referenced by reporting will be
monitored. Whenever the state of a data instance alters, the event monitor must send an
event notification to the report handler. The event notification must contain a reference to
the subject data together with an indicator of the type of state change.

After notified by the event monitor, the report handler must identify the RCB(s)
referencing to that particular data and generate a report for each of the RCB. Depending
on the RCB the generated reports will be pushed to the report buffer or delivered directly
to an awaiting client.

Report Request

Reporting Response

Time out

Report Request

Reporting Response
Time out

Report
Notification

t t

 28

2.1.3.2 Logging

Logging like reports can be initiated upon the client’s request. Like reports the
data can be logged on the same criteria. (Change of value etc.) But in addition to this,
updates also must be logged.

The client must at any time be able to get a log stream for a given interval. Due to
the data storage amount it must be assumed that this time storage is limited concerning
the log available for the WPP itself. Reports reflect current data while logging reflect
longer term data, and system status.

2.1.4 Mapping to communication profile– IEC 61400-25-4

The services defined in the information exchange model are mapped to standard
web services. A detailed description of each service is provided together with the
corresponding WSDL document describing the exact structure of the service methods.
Each service defined for the various data models is mapped to SOAP services making it
possible transfer data with the correct types and structure defined in the information
exchange model.[WSA2004][IEC61400-25]

1. The server must resemble the web service description provided in the
communication profile mapping. It should be possible to communicate between
client and server accordingly as specified in the information exchange model.

2.2 Challenges and design requirements for the system.

In order to develop a good design for the system, it is important to focus at what is
required to build a stable and efficient system according to IEC 61400-25. A presentation
of the challenges in designing and implementing the system will be presented next,
together with a suitable solution strategy addressing the identified problems.

The following topics have been identified for the design:

1. Module based components. The standards does not provide a solution for every
single aspect in implementing the system, and in many places the standard leaves
several choices or decisions for the system designer to solve. The communication
with the client can be done in several ways, using web services or MMS etc. The
standard proposes a solution for some of the challenges, but it is only a proposal,
and therefore there are no guarantees that a vendor will use it. What the vendor
uses is totally independent. For instance security or optimization of the system
might not be solved in the same matter for every vendor. At the same time the
standard is “a work in progress”, and will most likely change in several places. As
a consequence, the system must be divided into easy replaceable modules.
Combining these modules will make a framework, which can be reused to make
development and further extensions easier.

 29

2. Configuration. The information model defined in IEC61400-25-2 has a lot of

optional nodes that can be implemented with optional data classes. The vendor
must have a way to configure what their WPP has implemented, and how the
communication is done. It should be easy to configure the server when deploying
when constructing a logical device to be made available for access. Providing
such a configuration option will make reuse of components much better and
efficient and it will be easy to set up a server being able to represent specific wind
power plants.

3. Data storing and handling Lots of data is flowing through the system. To make

a system which can handle the massive amount of data flow it is vital that data
can be processed in an efficient and secure way. The data must also be rapidly
retrievable and easy to store.

4. Security. Security is an important aspect of the system. Depending upon who you

ask you will get different answers to the question of what security is. The most
common security topics is concerned with

a. Data. Data is transported safe, and its integrity is protected.
b. Personal access and management security. Who can access what and

perform which operations.
c. Reliability. Can the system provide the service that it is supposed to when

it is supposed to?

For an easy to configure, secure and reliable system, each of the topics above must be
addressed. The following section will go through the more specific details.

2.2.1 Module based components in a framework.

No matter how ingenious a design is, it still rises and falls depending on whether
it is easy to deploy. By designing the system as a framework all the major and trivial
tasks of the communication according to the standards must be encapsulated. The
framework must take care of all the interaction with the protocol. And all the quality of
service aspects, security, transactions, sessions etc. must be implemented in a
standardized way. The framework must have a default setting for communication, but it
should still be possible to change the different settings if needed. Looking at end to end
communication, there are many single elements that must be easily changeable. For
instance each WPP might have its own way to supply the data. The framework must be
flexible. To achieve this all the major parts of the framework must be placed in a separate
dynamic linked library (DLL). The system must be a very-late binding architecture,
where one component’s runtime is integrated with another component’s runtime using
dynamic invocation. The components can then at runtime determine which components
of a specific class are available to it, and be independently able to load and use them,
through reflection.

 30

The system is to be designed using multiple modules that are to be changed on
demand. This implies that a common interface must be used. No matter how the mapping
in the transport is done, the resulting response must be the same. By designing some
standard test cases that looks at what goes in to the system and what comes out, the
system can test itself by running these tests. A Unit test does just this. Unit tests are
written before or during developing of the system, where the functionality of the systems
is in focus. The test frame should always be kept with the system, making it possible to
run the test at any given moment. By having a good test frame for the system, errors
introduced as a result of updates or legacy coding will be minimized. Changing device
connector to a WPP can be reduced to merely replacing a DLL in the application folder.

Proposal

The system must be module based, where each module is located in its own DLL. A
default setting must be supplied with the system, and testing must be done in a uniform
way.

Pros

• Easy to change access interface for the system.
• Easier to maintain.
• Possibility for reuse.
• Makes uniform testing possible.

Cons
• Adds overhead to the system.
• More work at design time.

2.2.1.1 Configuration

The job of the vendor is to customize the system configuration so it works with

the specific WPP. This should be done as simply as possible. The configuration contains
information about what in the information model (IEC 61400-25-2) has been
implemented by the vendor.

Configuration also includes information for how the interaction between the WPP

and the system must be performed, for instance how often can/must the data be pooled
from the WPP; or are there going to be used any security aspects for the communication.
There exists three major discrete moments for configuring the system.

• Design time
• Deployment time
• On the fly.

Design time

The configuration information can be put into the system at design time. The data
is entered into the program code for the system. If the system is not going to change over

 31

time, this would be the ideal way to do it (static data). Entering the information directly in
to the code would result in the system needing to be recompiled and reemployed if any
changes are to be introduced.

Deploy time.

The information about implemented nodes does not change for a WPP over time.
When the WPP has been installed there is no need to change the static information about
the system. Even if the system administrator wants to change what is stored, it would still
be the same data being pooled from the WPP. This indicates that the data could be
entered at design time; however it would be a better solution if the system did not have to
be coded specifically for each WPP. If the WPP provide the system a configuration file,
the system could set up itself when the WPP is installed. The application logic would be
the same for two different WPPs but the configuration file would be different.

On the fly

A third way to configure the system would be through dynamic storage. The time

between data pooling must be configurable in a fast and easy way. The same applies for
administrative information, like access rights. By adding the ability to change
configurations at runtime, the system is ensured to be flexible. It is not plausible to have
every configuration variable as a change on the fly variable. First of all, the system has to
have some logic to handle situations when a variable changes. If the variable is not very
likely to change there is no reason to spend a lot of time to make such a change possible.

Proposal

The information model does not contain information of how the WPP and the
system will communicate. It only states an abstract data format. Each vendor would have
to design an entire system from information model to exchange model. How data is
stored and how it is gathered it closely related. It is impossible to design autonomous
interchangeable modules as long as a common way to transfer data from the WPP to the
system does not exist.

The configuration must be done in two different ways. The configuration of the
WPPs implemented nodes is placed in a file. The first time a WPP is turned on it will
configure the system for that WPP; setting up data storage etc. This ensures that a module
can be reused without a lot of extra programming. Configuration of user rights and
manageable options (Access Control) must be configurable similarly through XML
configuration files.

Pros

• Easier to change and reuse the components of the system.
Cons

• A standard has to be defined of how the information is to be handled, so it must
be designed from the bottom.

 32

• No standard yet, and it will probably change in due time.

2.2.2 Data processing and data storage

On the server side, the information model must be represented reflecting the exact
hierarchical information structure. It is extremely difficult to represent the model using a
classic relational database. Besides the difficulty in representing the model, data retrieval
will also be extremely slow. This is because the server must execute a large number of
queries to retrieve data from the complex relations in the data hierarchy. Adding this
overhead to each client request will result in the server making database queries most of
the time when serving client requests, resulting in slow response times and low
throughput.

The complexity stems from the very nature of the WPPs components, not from
the choice of design technique being used in the information model. The information
model represents an object oriented model of the wind power plant which is a different
paradigm from that of a relational database. There is a mismatch between the models
used to represent information in an object oriented model and a relational database. This
problem could be overcome by using an object oriented database instead of a relational
database. Even so, performance and system throughput will remain a challenge.

Instead of storing the current data on a persistent storage for service retrievals, the
information model could be constructed on the server process itself making use of the
representational power of an object oriented language. The server process could
programmatically replicate the information model and store the data in its run-time with
suitable objects while running and servicing the client systems. This approach will make
the execution very fast since the data is already stored in main memory ready to be
fetched. And the modeling/representation of the information will be straightforward
through instantiating objects from class definitions resembling the class definitions in the
information model.

Each logical device made available for access on a server must be constructed
hierarchically reflecting the structure given in the information model. Since each logical
device could have different configurations because of different wind power plants they
each represent, it must be possible to configure the way the server process instantiates
these logical devices. When building logical devices, this approach will make the server
able to use the full power of the representational capabilities provided by the information
model.

To store the most current data and make it available to client processes, the server
must continuously interrogate with the WPP for new data made available. The data must
be swapped from the logical devices in the server process to a simple database to make
room for new data. The database used in this case need not be a complex database
reflecting the exact structure of the information model. The values could be stored
together with their object reference where it later will be possible to deduce where the

 33

data belongs in the information model. This database can be as simple as possible, since it
will not be used to store data that will be needed by the server process to service the
client requests all the time. It will only be used when retrieving data within a designated
time window. Most of the data needed by the server to perform the services it provides
will be stored in the server process itself.

Proposal

Only the current latest data is kept inside the system to speed up data handling.
Long term data is separated from the running system to cut down runtime challenges. The
information model is modeled in an object oriented way, to keep the implementation and
the information model close together.

Pros

• The object oriented model applies directly to the information model.
• The internal data handling can be done in a fast way. Only current data has to be

searched through.
• Splitting short term (current) and long term data handling.

Cons
• Construction of the internal data model (on the server) to represent the

information model can be programmatically complex.

2.2.3 Security

There is no doubt that security is an important issue to be addressed. IEC 61400-
25-3 defines the security aspects for the standard and how to solve it in general, but how
it is handled specifically is completely up to the individual supplier. One supplier might
simply use a secure line, and therefore remove any security aspects of the service itself,
while another might want to use a public ISP where the service related traffic must be
secured by the service itself. This calls for a solution where security is built on top of the
communication as a separate layer in a modular fashion easy to add, remove or change on
demand. Since security is a requirement, a default security profile must be provided.

The security aspects for the system which must be addressed are as follows:

• The security modules must be easy to add and remove.
• Have a default security taking care of the most common security aspects.
• Security should not be based upon a specific system or language.
• Security must not be protocol dependent.

Even though no formal security requirement has been defined, IEC61400-25-3 does
suggest some typical security aspects which should be addressed.

• Authentication. The client and the server can be sure that a message has been
produced by a by each other, and not a third party.

• Integrity. The messages are guaranteed not to have been modified or destroyed
by third parties (transactions).

 34

• Confidentiality. Only authorized people can read the messages in the system
• Non repudiation. The client and server can not deny having participated in

communication.
• Reliability. The system must guarantee functionality This includes assurance of

delivery of messages and guaranteed reply
• Authorization and access control. Clients can on view allowed logical nodes

and data through allowed service methods.
• Availability. The system must be available whenever the client needs the service.
• Quality of service.

The statements are related to different aspect of the system. The first one is security of
data. The first 3 are the most important ones, and are commonly known as CIA

2.2.4 Traffic security

In TC 57 [FC] a proposal has been presented in which a security model has been
suggested. In this thesis TCP/IP traffic is utilized, and are therefore to follow the IEC
62351-3 security standard. The standard recommend transport layer security (TLS) to
tackle the most common security threads. At the same time it specifies that security must
follow the progress and update to better solutions when available. Another possible
security solution is to use message level security. Here, security is applied at the message
level rather on the transport level. The next chapter describes the two different security
levels.

In any case the security must be transparent for the methods sending and receiving
messages. Both of these use public-key cryptography, and provide the same security
features such as confidentiality integrity and authentication. In both cases you have the
freedom to pick the features you want, and simply leave out those that are unnecessary
for the system. Server and client processes, of course have to use the same security
scheme.

Proposal

Proposing a secure system according to the standard, it is important that it can be
applied and removed at whenever required. The security is optional and must be
replaceable if another schema is better suited. In later chapters there will be a description
of how security can be implemented via the use of security profiles.

Pros

• Easy to specify the security elements needed.
• Standard way of defining security
• Future security profiles can be used.
• Independent upon the underlying functions.
• Protocol independent

Cons

 35

• Slower

2.2.5 Access control and management functionalities

Another aspect of the security is the access control. Access control has the duty of
ensuring that only authorized people can gain access to the data. How and what the security
includes is defined by the service mappings (SCSM)4.
The information exchange model proposes a conceptual authorization model. This
includes:

• Access control.
• Restrict access to class instances.
• Class instance attributes.
• Method restriction.

In IEC 61400-25 the minimum requirement for access control is only defined as the

need for supplying a valid username and password to gain access. This ensures that only
people with a valid password can gain access to the system. Different users might have
the rights to perform different actions. For instance one user might only view data, and
another might also write data.

The system only contains methods and data the client can access. The user either
has the right to run a method or not. Through the method the client can either read or
write data. Every client does not necessarily have the right to view all data but maybe
only a subset. Users can be granted read or write rights to specific nodes. In the same way
users can get clearance to invoke specific methods, each node or method must have lists
of what each user can and cannot do. Different models exist to accomplish this task. No
matter how it is done the basic task is the same. First a user identifies him/her self to the
system. When the user tries to access a method or some data, it will be allowed only if the
user is allowed to perform the operation. Different access control patterns can have
different levels of access, however no matter how the check is performed; the system
must be able to complete the task from a user credential

2.2.6 Reliability

In enterprise architecture, businesses must be assured that the messages sent
actually do arrive at their intended destination. Without this assurance businesses would
not be able to use web services for industrial-strength business applications and for
mission-critical operations like control of a WPP. Business-to-business transactions or
real-time enterprise integrations would not be possible. Web services send messages over
an unreliable network connection, using different transport protocols. Therefore it is
essential that the reliable message layer is defined at a level higher than the underlying
transport protocols. This ensures that the reliability can be truly transport independent.

4- Specific Communication Service Mapping (this is a part of the IEC 61850-8-1 standard)

 36

There exist several ways to define reliable messages, but the most basic level of reliable
messaging simply refers to the ability of a sender to deliver a message once and only
once to the intended receiver. This can be defined as follows: [PY03]

1. Support carrying message traffic reliably in support of business processes whose

lifetimes commonly exceed the up times of the components on which these
processes are realized.

2. Support quality-of-service assertions such as:

1. Each message sent be received exactly once (once and only once), at most
once, at least once, and so on.

2. Messages be received in the same order in which they were sent

3. Failure to deliver a message be made known to both the sender and
receiver

3. Accommodate mobility of a reliable business process to different channels or
physical machines.

4. Support message transfer via intermediaries.
5. Leverage the SOAP extensibility mechanism to achieve reliable messaging.
6. Enable reliable messaging bindings to a variety of underlying reliable and

unreliable transport protocols together with the Message Routing Protocol.
7. Compose with other protocols to support security and other message delivery

services.

When dealing with WPPs, monitoring and controlling it is very important that the
messages sent do arrive at their destinations. If the WPPs are going to be controlled
remotely, the messages must also arrive at their destinations. For this reason the system
must have reliable messaging properties.

 37

2.3 Proposal for system architecture

To make the system generic, different elements in the system must be isolated.
Figure 7 below shows a proposal for the system architecture.

Figure 7

Proposal for system architecture

1. Client The client consumes the service. Clients can be web clients, applications etc.
(The client is outside the scope, and should simply consume the service through
the WSDL file)

2. Client communication interface. The client can use different methods to conduct
the communication with the service. In this thesis the web services are the
preferred solution, but the core system must be ready for other methods like MMS
etc. The interface is defined in IEC 61400-25-4

MAIN Server

WPP supplier interface.

11.

Configuration
contract
12.

Client
communicat
ion
interfaces

2.

Policy
contract
3.

13.1.

WS

MMS

Service
interface
IEC
61400-
25-4
Facade

4.

Data handling
Logic

8.

Supplier
interface

Supplier
interface

Common
wind
power
plant
Facade

10.

 Client

handling

6.

 WPP Device

connector

9.

Access
control
5.

Data storage
7.

 38

3. Policy files define communication specific information for the communication.
This include security information, use of transport protocol etc. By using policy
file, what (data) and how (binding) things are communicated are completely
separated. This ensuring an easy changes in how data is transported between the
service and the client

4. Service interface. A common interface for acquiring the services of the
system. Common interface assures that the service can always be
reached through the client communication interface as long as it
obligates itself to use the interface defined in IEC61400-25-4.

5. Access control. Checks the client’s right to access a specific method or

dataset. This should be a separate module in order have different access
control modules.

6. Client handler. When communicating with the service the client can ask

for specific data. The client handler handles the connection between
different clients and the service. The service must at all time assure itself
that all its clients are online. The client might only need information if
an alert occurs, or a difference in data is detected. This goes against the
common client server model, and removes the possibility of having a
web client. The information exchange model defines how this is done in
IEC61400-25-3

7. Data storage. Stores the data for shorter or longer time.

8. Data handler logic. Keeps track of data, and the logic to run the service

generally.

9. WPP Device Connector. Different WPP suppliers produce different data. The
device connector gathers the necessary data from each WPP. The information
model in IEC 61400-2 defines this

10. Common supplier interface. There is no generally approved standard for how

the data must be supplied by the WPP, but by defining one, supplier modules are
easier to replace in the system.

11. Supplier interface. When connecting a WPP to the service, the supplier has to
create an interface file. The file has knowledge of the supplied nodes that a WPP
can expose, and how often pooling is necessary for the WPP.

 39

12. Configuration contract. The contract must contain information of the data each
WPP can deliver. Also the contract defines how often the data is to be pooled.
This must be done in compliance to the IEC 61400-25-2 information model

.
13. WPP. Each supplier exposes its capabilities to get and set data through their own

interface.

2.4 Summary

This chapter has provided a description of the problem domain and the
specifications to the framework which is being implemented. The modeling concepts of
the information model have been presented which is the very base of the system.

The analysis of the challenges in designing and implementing the system has been

made and a set of proposals have been discussed which addresses the problems identified.

The data processing and data storage have been discussed in detail ending up with
a solution which addresses an important problem on how to make the data available to
services. The solution was seen as the most appealing to the problems concerning the
processing of data.

The resulting overall strategy will be able to solve all the major problems

presented. An implementation based on the proposed architecture will result in a stable
and secure system being able to service multiple clients with access to the hosted devices.

In the next chapter, a technical description of how to solve the challenges with
existing technologies can be done. A detailed description of the use of Service Oriented
Architecture will be presented together with the important design and implementation
properties.

 40

Chapter 3

SOA AND OTHER TECHNOLOGIES

In the last chapter requirements were identified for what the system must do. Now
it must be established what is needed in order to realize this in a language and platform
independent way. The standard is centered on the use of web services.

In this chapter introduction to different standards and technologies will be
presented. This will lead to a greater understanding of the choices made in the design, and
what is gained form those choices.

In this chapter the following topics are covered:

• Service Oriented Architecture (SOA) is defined in a general way, followed by a
discussion in the context of the prototype. From this discussion it is concluded
that the benefit of using SOA for the prototype is greater than the drawbacks, and
for that reason SOA is chosen as a development strategy.

• A description of general terms used for SOA to provide essential security
functionalities for a web service.

• A discussion of web services and how Microsoft addresses them and their various
possibilities related to different design approaches are presented.

Much of the described solutions can be used on several platforms and languages,
but since MS C# .NET is chosen as the language and platform for the prototype to be
used later in this chapter, the main focus will be on the abilities that this choice provides.

In the end a Microsoft .NET and C# are picked as platform and language respectively.
SOA is chosen as the development strategy.

3.1 Introduction to Service Oriented Architecture, and why to use it the
IEC 61400-25 prototype.

When talking about SOA, one usually refers to the field of software, but the idea is better
explained in a real world scenario. A service can be defined in several ways. According
to dictionary.com, a service is defined as follows:

“The performance of work or duties for a superior or as a servant”

Or

 41

”an act of help or assistance”

A service can be defined as a subcontractor, performing a sudden job on the
initiative of another party who needs the job done. Architecture is defined in several
ways, and can just as a service be defined in a general or a more software specific way. A
crude, but still accurate way to describe it is done by Fowler [Fow02]:

"'Architecture' is a term that lots of people try to define, with little agreement. There are
two common elements: One is the highest-level breakdown of a system into its parts; the
other, decisions that are hard to change."

A more software related definition would be [BCK03]

"The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them. Externally visible”
properties refer to those assumptions other elements can make of an element, such as its
provided services, performance characteristics, fault handling, shared resource usage,
and so on."

Software architecture defines all the pieces a system is comprised of. It defines
how the different parts are related to each other, and how these parts are connected
together. Having a software architecture, all questions and considerations about
communication and component interfaces should be established, and this should be done
at the earliest stage possible.

If the system doesn't manage to make the individual components as independent
as possible of all other components, the system is said to be tightly coupled. Having a
tightly coupled architecture reduces the flexibility of the system, and as a result limits its
means for reuse.

In a Service Orientated Architecture the system is comprised of several services.
Each service supplier exposes one or more services (methods) to a network, ready to be
invoked. The system invokes the service on demand, and the connections between the
components and the client are done through technology neutral messages defined in a
standard way. This results in a more flexible and loosely coupled system, in contrast to
traditional system architectures. [MPP2003].

Each service can have different resources and methods associated with it, and can
have different ways for realizing the communication. One of the must used once are web
services. Figure 8 below shows a client using two different web services. In this case each
service is illustrated as a WPP because the goal of the IEC 61400-25 is to isolate them as
an autonomous service.

 42

Figure 8

Service oriented architecture. Each service is running on its own platform using its own language.
This is possible because of the common agreement of message format.

For many years the most used approach to solving a software problem was

through object-oriented thought processes. Here the communication was done by sending
language-specific objects within the system. This made a tightly coupled system, because
the data could not be shared between languages or platforms. Having a SOA, the external
communication is done sending messages in a neutral format, rather than passing native
objects around. This implies that a system can still be designed using well-known and
tested object oriented design ideas internally, as long as the external communication is
done by messages having a standard format. SOA is ideal for cross-platform sharing,
because of the looser binding to specific technologies. In SOA the business logic has the
possibility of being distributed onto different computers in a network, because a computer
in a SOA is a node that exposes resources for other nodes in the network to use. For the
end user though, it must be completely transparent if a method is running locally or
remotely.

Messages in a service should be non-vendor specific, making the service available

to anyone who has the rights to use it. For several years, attempts have been made to
design SOA based systems, some of which include java RPC5 and DCOM6. Both of these
are tightly coupled to a specific programming language or platform, which of course did
limit the use for everybody in the field. But other and better attempts do provide SOA a

5- Remote procedure call for java, it is build on top of XML-RPC. The message is a HTTP-POST request
with an XML body. It can be compared to a simple SOAP Message, but it lacks the possibility of defining a
contract for the services like the WSDL provided for web service operations.
6- Distributed Component Object Model. This is an extension of the Component Object Model (COM).
DCOM allows components to communicate across network boundaries. For most of the time the inter-
process communication in COM is done within the boundaries of the same machine. DCOM however
creates a transparent interface for COM, and uses the RPC to send and receive information between COM
components on a network. DCOM is restricted to Microsoft platforms.

Service2 UNIX
JAVA

Invoke
service

Internet

 43

greater chance of becoming really big. According to Ziff Davis [IBM04] the future for
SOA is bright. He wrote:

“During the next few years, service-oriented architecture will likely expand to all corners
of the corporate universe: from auto manufacturers to pharmaceutical firms; from
electronics companies to consumer goods.”

This, Davis continues, is due to the fact that the technology has achieved
widespread acceptance from all major players in the field, and the acceptance of the key
standards. This of course is closely related to the use of web services.

Web services utilize a plethora of different commonly agreed XML protocols.

This assures that any system supporting XML can invoke these services. Web services do
not guarantee good and reusable software components in it self. Accordingly, a few
guidelines should be followed when designing web services.
These guidelines address the following issues:
b

• Loose coupling
• Autonomous
• Share contracts
• Share policies

A service is loosely coupled and has explicit boundaries.

The service should be loosely coupled. There should not exist any or only very
little platform or data specific information in a call. This implies that the service should
keep its own data records, and any new information must be supplied by the caller. The
logic of the service should be completely separated from the external interface, and
therefore no prior knowledge should be required in order to utilize the service. In order
for the client to use the service it must be transparent how the connection is achieved.
Whether the service is running locally or on a remote machine, no adaptation should be
necessary for the client. This does provide the system with a great amount of flexibility,
but the very different environments in which the services can operate do add a great
aspect of non-guarantied service performance. Depending on the network speed, security
aspects, or other choices, the system might perform with great variance. As a designer, it
is essential to keep the ‘cost’ (loss in performance) in mind when designing the finished
system, and aim at designing according to a worst-case scenario.

Main points

• Transparent access
• Contact to other services can be considered as crossing a boundary, crossing

this boundary has a non-guarantied price and consequence.

 44

A service must be autonomous.

Services should be autonomous. If one service in the system fails, it does not
imply that other services in the system will also necessarily fail. No central controlling
entity must be used. Deployment, maintenance and service operations must be done
locally. Each service still have the opportunity to use other services to perform a task,
however it is still the job of the initial service itself to ensure that any failure, domestic as
well as foreign, will not cause the system to crash, and any waiting clients will get a
response, even if the response is that the task could not be completed. For standard
exceptions this can be a trivial task but in order to communicate state information
between client and service, they must be defined. The IEC 61400-25 standard does not
provide that many standard state messages about the services, however extending the
standard with more state information could provide a good way to handle state
information in a common way.

A call to a service should not be dependent upon any prior information to
complete its task. The information should always be supplied by a client for a service to
complete its task. By having each service completely independent of each other, updates
can be performed upon a single service without losing the functionality of the others.7

Main points

• The service is self controlled.
• The service is responsible for all communication to and from the service.

A service shares formal contracts.

Types used in the service should not depend upon specific languages or platforms.
On of the most valuable aspects about SOA is the fact that service and clients can share
contracts about how and what is sent between them. Formal contract includes:

• Data contract. Data types used by the service.
• Service contract. Signatures for the methods the service exposes.
• Message contracts. Contracts about how the messages are passed between them.

By designing the messages first (contract first), both the service and the client are

forced to have the same data types, signatures etc. The contracts are defined in XML
ensuring that different platforms and languages can read and understand them.

Changes to a contract have influence upon both service and all the clients using
the service. For this reason contracts should be subject to changes as little as possible.
Necessary changes in a service should include the definition of the versioning of the
service, and when it is possible to define changes as new service instead of changing

7- Stateless services are not always a practical solution. In building a complex system, access is often
required to use a service. It's possible to exchange credentials with each call, but it doesn't utilize the
resources very well. In most cases you would simply place a token on the service side containing the
credentials information of the client

 45

existing ones. This does create a legacy system, however if many clients were depending
upon a service, it would probably not be wise to force all clients to implement the
changes. In appendix C a brief discussion about changing contracts is presented.

Main points

• Service and client share contracts
• Changes to an agreed upon contract should be considered deeply before enforcing

the change.

Transport and compatibility of the service is based upon policies.

Contracts describe the information that the service and the client must agree upon,
however it is also possible to have contracts about other aspects in the communication,
such as security information, or the transport protocol the service can use. These aspects
have something to do with the quality of service that the system provides. That is overall
performance of the system. Service and client must agree upon the policy in order to
work together. Policies deal with aspects of the communication where it is not guarantied
that any client can meet the requirements. Custom protocols can be placed upon the
transport, or different approaches from different vendors might restrict the use of the
service to a particular platform or language. Some common policies for the
communication do exist and can be used across platforms. The policies are “wrapped
around” the communication. This ensures that they can be changed without changing the
underlying service. Changes in the communication can be done simply by changing or
adding a policy to a service. A service can have many policies for different kinds of
communication. Two systems supporting the same kind of profile and contracts can
always communicate.

Main points

• Communication requirements can be defined as policy.
• Changing policy alters the requirements for the client on how communication is

performed.

 46

Figure 9

SOA

Figure 9 shows how policies and contracts can be used. Notice that they can be
shared at runtime where the information is read whenever the client tries to connect to the
service, or alternatively at design time where the contract and profile is built into both
service and client. Especially the feature of reading the policy at runtime is valuable. This
enables service to be changed without having to rebuild the system. For instance, the
transport protocol can be charged, or security can be added simply by changing a file
holding the policy for a service.

When implementing the system described in the previous sections, a number of
different technologies must be used. In the glossary a brief description of each of the key
technologies for a web service is described.

3.1.1 What advantages are there by using SOA in implementing the
IEC61400-25 prototype?

SOA can be used in many different environments. But in the case for this

prototype the amount of different vendors and individual requirements in the use of the
system places the scope of prototype as an enterprise. The following discussion therefore
will only look at SOA for WPP as enterprise architecture.

Service 1

Logic

Service 2

Policy

Logic

Contract

WPPs also has the
possibility to
communicate
among each other

User interface

Policy

Contract

User interface

Policy

Contract

 47

The purpose for designing a standard for controlling and monitoring WPPs is to
have a common way of performing certain actions. As the designers very well know, it is
hard to get a group of people with different interests to agree upon a common standard
unless it is flexible enough to suit their individual needs. This not only includes what is
communicated, but also how. IEC61400-25 uses web services as one of its
communication mapping profiles, defined in IEC 61400-25-4. Using web services
ensures that different clients and environments can be used. Each vendor can develop the
service or client in there favorite programming language and host system. The system
will still not be tightly bound, as long as only standard methods and data types defined in
the contract is used. Each vendor is not dictated to use a specific language or platform.

Other benefits include:

• Updating: Having a loosely coupled system comprised of services rather than a
tightly coupled system, provides the benefit of updating only subparts of the
system. This can be done without a system-wide shut down. Only the involved
services are turned off. If the system has several possible places to get a service
performed, the system might not even look any different to the end user. The
internal business logic can be optimized endlessly, and as long as the interface
remains the same, there is no need for rebuilding or taking the whole system
offline.

It is intended that a service control one or a couple of WPPs. The effect of

updating in one service will not affect other WPPs.

• Maintenance: In a system comprised of several fat clients8, changes to the system
would have to be introduced to every single machine in the system. By using rich
clients9 the functionality only has to be changed at one place. If each WPP has its
own web service it is still necessary to deploy changes to each individual WPP.
But if a service is used by several clients this would be a considerable advantage;
like a logging service used by several clients.

• Reuse: From the use of OOP we know how reuse of logic and components in a
system can reduce the development time drastically. These components are often
tightly coupled to other classes, or a specific environment. The contrast to this are
services where ideally there exists no binding to other components in the system.
This makes the service ideal for reuse across a variety of platforms and languages.
The different WPPs are not interchangeable, because they hold their own unique
data, however the logic used on each WPP can be reused on WPP with the same
configuration.

8 Fat client are systems where the main processes of a system are often relies upon a single backend
system, maybe with a database connection.
9 Rich client is a system where the client can use different services, and keeps track of its state information.

 48

• Scalability and availability One of the major problems facing a system is
frequently changing demands. The number of service calls changes, and the
hardware cannot handle the requirements anymore. To accommodate this, a good
system should be easy to up- and down-scale to meet demands. One strategy
might be to distribute services to different locations, having more machines doing
the tasks of the system, thereby balancing the load. In traditional operating
systems, it might not be easy to distribute the system. At least it would require
that some kind of redesign be made. This of course could be a costly affaire. By
using services, each service could simply be deployed on several machines. The
additionally offered services then just had to be registered in a Universal
Description Discovery and Integration (UDDI)10 directory. It would be possible to
split the service associated to a WPP into smaller parts, where each service only is
in charge of a subpart of the methods that the WPP exposes. How ever most of the
methods rely on having access to current data from one specific WPP. Here it
would not make sense to split the service. For logging and reporting it might be
plausible, if one service could not handle all the clients.

• Cheaper to change. If the system is designed in a tightly coupled manner,

changes might be very costly. Change of a supplier might not be as easy as in
theory. A lot of work might be involved in either converting the existing system to
the new supplier or some of the systems dependent objects might have to be
redesigned and implemented again. From a business point of view, the two major
reasons for not introducing new and possible better solutions to a system are the
time that it would take to implement the change or alternatively that the tasks are
simply demands to many resources to. The new functionality might be beneficial to
both customers and the firm in general, but it is not always economically feasible
to enforce the change. The total cost of the conversion must be smaller than the
short or long term cost of the change, to save money. Having a system comprised
of completely independent, interchangeable objects would resolve in far cheaper
restructuring of a given system. This opens the possibility of testing new and
possible better solutions or services to a system, making the overall value higher.
[KBS04] With the amount of players in the WPP field, using the standard opens
up for the possibility that the proportion of shelf services becoming available is
rising. This could be a far cheaper solution when the cost of designing and testing
a component from scratch would cost.

If a SOA system is designed in the right way, it assures that the system be agile,

where changes and maintenance can be done in an easy and cheap way.
It is very important for the system to be flexible, where changes can be administrated in a
cheap and easy way. If the system is designed in a way where functionality is too tightly
coupled, the cost of making a change might simply be too expensive to perform.

10 UDDI is a platform-independent XML-based registry for services to list themselves. UDDI is an open
industry standard, sponsored by OASIS. UDDI is a directory of services there can be used by others. It can
be compared to a phonebook advertising the existence of a service. UDDI is part of the Web Service
Interoperability (WS-I) standard and is considered a corner stone in the web services infrastructure.

 49

The most significant reason to use SOA for the IEC61400-25 prototype is the possibility
for each vendor to choose their own platform and language for their service or client, and at
the same time ensuring that other vendors can still communicate with them. This makes it a
lot easier as an owner to maintain the system, and data supplied by the WPP can be
compared directly. More players in the field will also benefit the cost of developing new
monitoring system, due to a more competitive marked.

3.1.2 What are the disadvantages of using SOA for the prototype?

• More costly to develop: Having the extra layer added to the communication does
make SOA a more expensive solution in the first place. In a smaller system where
the specifications are not subject to change, or there is no desire for reuse, SOA
should not be used. It is important to remember, though, that the longtime cost of
having a SOA system could be far lower when compared to the cost of
maintenance and update of a non-SOA system.

• Speed critical application: Having all communication done over SOAP does add

an overhead on the execution of an application. The data amount is far greater
than by using regular methods. This implies that limited bandwidth or a very time
critical system might need another solution. Also depending on how to deploy
web services, today one might require basic security requirements to be fulfilled.
Adding this extra security layer also adds an extra overhead. The parsing of the
XML and the time used to assure security ads to the system overhead. (It is always
possible to upscale the system to handle the extra bandwidth or processing time
needed. This would make the system more expensive though). Some of the WPP
does reside in locations where communication relies on a modem. In this case, the
data amount is the critical resource compared to the speed of the connection.
Further, the system does have something to gain from compressing the data being
sent. This will be disused in later sections. The prototype for the IEC standard is
prone to producing a system that relies heavily on high-volume data transmittal.
At the same time storage and bandwidth-critical hardware demands that the
design addresses these problems one way or the other. In the initial proposal of
the standard it is not intended that the WPP should be able to be controlled on a
time critical level, and a such this point is not that important, however if WPPs are
suppose to be an variable node in the overall power grid, it is essential that it is
possible to regulate it real-time. In the future this will properly be addressed
through various research projects.

• Offline scenario. SOA depends deeply upon the availability of a network

connection. In the case where these services are unreachable, the system is useless.
To make a usable system even in this scenario, additional measurements must be
taken to assure a working system. This of course adds to the development time and
the total cost. From time to time, a WPP might loose its connection to the main
server. In this case, the data must be delivered at a later time, once the connection is
reestablished if the data still has a value to the client. If the WPP is being controlled,

 50

and it is solely depending upon the information it gets from a central control unit,
some kind of redundant communication path must be established. As a result of this,
the development price goes up.

• Vendor is no longer in charge of what to implement .Each vendor is depending

upon a standard to define data classes and information that can be send. It is
possible to define customary messages, but the usage will remove the vendor
independent aspect of the communication, not completely, but it could force a
client to use specific software in order to utilize special services.(This is solely
seen from the vendors point of view where they would like to keep product
control of their own WPP. From the perspective of the client having a common
standard will be a great thing.)

All of the described performance disadvantages can be solved by adding more
hardware and design time into the project. On the bottom line this means that SOA will
be more expensive to develop up front, but still the longtime cost might be lower. Also it
is important to keep in mind that the relative extra cost is rather small compared to the
cost of the WPP itself, or the cost of going offline with the WPP.

3.1.3 Choice of SOA as a development strategy for the server prototype

The major communication mapping defined in IEC 61400-25 is based on web
services. By using web services, the necessary platform and language independency
requirements can be met. Numerous clients are going to communicate with each WPP,
and it is essential that effective communication can be achieved. By having a service or
an entry point for each WPP, new WPPs can be added to the overall system (WPP farm)
simply by adding it to the UDDI. This will easily notify the client of the new WPP. The
cost of implementing a standard of this size should compensate for the extra people
adopting the standard. If the standard can be commonly accepted the cost of developing
new components can be reduced drastically due to large number of players sharing the cost
of developing new and better components.

Unfortunately, maintenance of the service must be done on an individual basis
because each service is not interchangeable with any other service due to the unique data
each WPP holds. This goes for the update and security aspects of the WPP. A protocol for
managing the WPPs in a centralized manner can be made, but there is currently no
standard way of doing this.

The vendors of the WPP might have very different approaches to how the control
structures of the WPPs are done. SOA can be used on many different devices. By having
the distributed nature, the system resources needed for end clients can be kept at a
minimum by unloading some of the work onto the fastest machines in the system. This
ensures that even systems with limited resources can be used, like a PDA.

 51

The speed requirements are not easy to analyze for the system. Depending upon the
individual vendor and supplier, the amount of data (how many nodes are monitored), and
the interval in which the data is gathered varies a great deal. For this reason, it is not possible
to say anything specific about the implication that the use of web service will have on the
system. A great amount of data must be collected, but how to optimize it surely depends
upon the particular requirements of the end user. Different measures can be taken to address
a particular problem for instance adding more computer power, or compression of data.
Given the nature of web service though, up scaling can be done in an easy way. Controlling
the power systems is big business with a great budget. Adding off the shelf hardware for an
up scaling would be considered a minor expense compared to the total budget. Therefore
this should not be seen as a reason for not using web service in this case.

The biggest negative side to using SOA is the offline scenario, which is a connection
interruption between then client and the WPP. It is vital to have a stable and reliable
connection to the WPP. No suggestion has been directly made on how to avoid this problem.
However, using intercommunication between WPPs, the communication path could change
so that a virtual identical connection could be established through a neighboring WPP to
connect to the target WPP. This might not be the best solution though. Most likely, the
connection will be lost to the wind farm in general, and not to an individual WPP. For this
reason, it would be good to have several ways to transfer data, for example a wired internet
or a satellite connection. In any case Data must not be lost due to failure. This calls for the
system to buffer the available data on the WPP until it is fetched by the client (a client seen
from the WPP). The WPP must at all time be independent form control information,
however if it is preferable always to have control contact, and the WPP can not wait until it
gets online, the alternative communication form is a must.

The use of SOA for implementing the standard is a wise choice. First of all because
the most vital reason to create the standard in the first place is vendor independent
communication. This also includes the freedom for a vendor to choose the preferred
environment and languages for the implementation. The higher cost in development is
considered a minor expense compared to the benefits the use of SOA provides to the system.

 52

3.2 State of the art: SOA

Web service and SOA have been around for a long time. For SOA to be a success

several aspects of the communication, concerning everything from security to
compression, must be addressed in a standardized fashion suitable to most people. A
great deal of work has been put into creating industry standards for all kinds of aspects of
web services. The following section will describe some relevant aspect need for the
prototype.

3.2.1 WS-I

WS-I is an open industry organization which gathers common web service
scenarios, and defines a standard for solving common problems.
They promote interoperability among services created in different languages and on
different platforms. Many different aspects are addressed by WS-I, chiefly among them
are guidelines for use, security, requirements, et cetera.

WS-I has defined the basic profile. Stating that a service conforms to this profile
is not a guarantee of interoperability, but a common way of addressing problems. The
profile simply ties the different standards and their versions together. To conform to a
profile, only the standards accepted in that profile can be used. Having different profiles
also ensures that a service can be backward compatible, and still allowing new features to
be added. A great number of profiles have been defined, each of them addressing new
problems, located in different places in the communication stack.

When dealing with web services it is possible through profiles to configure traffic.

This is a great advantage because different issues can be addressed without having to
change the code as long as the client and the service share a common profile. [WSI]

The different policies is all called something starting with “WS-“ followed by a
word describing what the policy is addressing. The profiles are known under the common
name WS-*. Some of the most important profiles are described next.

3.2.2 WS-Policy

This is a standard for defining a policy for a service. The policy describes several
things such as security quality of the service et cetera. The policy defines how the binding
is done for the service.

A WSDL file can be extended with policies defined using WS-policy standard.
This enables the consumer of a service to also get the policy necessary for using the
service. Another way is to have a policy file for the service. This file can define different
aspects needed in communication with the service. For this thesis the service and the
profile has been separated in order to keep configuration easy.

 53

3.2.3 WS-Metadata Exchange (WS-MEX)

Using metadata exchange enables a service or a client to get WSDL information
dynamically. The metadata exchange is used for getting information about a service
whenever possible. WS-MEX is very important if the client want to create a proxy for the
communication. This exposes the WSDL to the client, enabling him to create the proxy. It
also enables information about policy data schema, in turn enabling versioning of the
service. Later policies are described. Changing them enables a service to change
operational conditions at runtime.

3.2.4 WS-ReliableMessaging

Reliable messaging or reliable sessions guarantee that any message send between
two endpoints is delivered exactly-once and in the right order. It is done in a transport
neutral way, and is not restricted to specific protocols. At the same time it is not restricted
to a point to point connection, but can be used across different transport connections.
Reliable sessions are part of some of the standard bindings, and can be included in a
custom binding. The system has been configured to use reliable sessions. Communication
do not have to be monitored managed in the implementation of the IEC server, but it can
be completely separated from the system it self.

3.2.5 Data compression

Even though SOAP is a great human readable protocol it does add a lot of
overhead to a system that can get precisely the same information out of binary data.
Today the network connections are getting faster and more efficient. For this reason, one
might neglect to look at the amount of data transported over a connection, and what
implications it might have on the overall performance of the system. Several ways exist
to reduce the overall data amount transported. If the web service is to serve many
individual clients, compression would have a tremendous impact upon performance since
performance is dependent upon compression and serialization speed.

A test conducted using zLib compression can reduce the message size about 50 to 70
percent, but at the same time it does add computing time to a roundtrip call, hence
reducing the number of calls handled. ZLib is a text compression algorithm widely used
in HTTP servers.

If the system is to serve many individual clients, compression could slow the
system down resulting in low performance. However, if the service is servicing a single
WPP connected to limited bandwidth connection, compression would limit the data
needed to be transferred, but at the cost of the central server paying the added workload.
[CKRS2003] Zlib is a Zip based compression. Zip is an open standard, and for that
reason it does not limit the use of it to a specific platform. Unfortunately there is not
defined a standard like WS-Compression for the time being. But compression is part of

 54

the HTTP 1.1 protocol. In this prototype a custom filter has been used doing the
compression.

Another data format is Message Transmission Optimization Mechanism
(MTOM); this is a W3C controlled format placing binary data direct inside the SOAP as
MIME objects. MTOM compress some of the XML data, but not all of it. MTOM is
mainly for compressing binary data like executable files or image files, for this reason it
does not prove a good solution for simple XML/text transfer as test shows later on I the
case studies

3.2.6 Code first or Contract first

When working with web services, service and a client share different documents
defining a contract for the service WSDL and policy files. The program code and these
files must always reflect the same idea. There are two main ways in which this can be
achieved. “Code First” and “Contract First”.

In the code first approach the classes is coded in a conventional fashion. Some
attributes are added to the code, telling the compiler to interpret it as web service related
code. When the code is compiled, a resulting WSDL file is generated. The focus of the
approach lies in the methods and not the messages which are to be exchanged. This
usually has a positive effect on the development speed. The downside to this is that it is up
to the compiler vendor to specify how the data is exchanged. This could result in messages
that are depending upon a specific language or platform, as described later on.

 55

Figure 10

Contract first and code first approach

In a Contract First approach you write the WSDL/XSD file from scratch. From the
WSDL file or the XSD file you can then get the basic code generated for your preferred
programming language. The tool generates a stub that can be used for calling and
receiving data from the methods. By using a Contract First approach you minimize the
dependency upon platform dependent types. (This of cause is dependent upon the vendor
performing the XSD conversion in a manner conforming to standard data types.)

Giving the whole idea of web services you should in an ideal world care less if you
use one or the other. Everything should work just as fine, regardless of language or
platform. However, this is not always the case. A developer writing a service should
consider if other platforms and programming languages are supposed to consume the
service. A system designer has the possibility to specify via attributes, more specifically
how the serialization must be done. If no attributes are associated with the code, the
serialization of the data is done implicitly, meaning that the compiler may decide how the
serialization is done. This will be reflected in the SOAP message, and can lead to
problems if dealing with language specific types without serialization attributes specified.

When choosing an approach, one must decide what the most valued attribute of the
system is; the messages and interoperability, or methods and productivity. From this
choice either a Code First or a Contract First approach can be chosen.

IEC 61400-25-4 defines the WSDL and SOAP messages which are to be used.
This implies that contract first must be used. On the other hand, the defined messages take

Code First approach

Contract

[webmethod]
Object
doSomething()
{
 Return foo;
}

To client

Contract first approach

[webmethod]
Object
doSomething()
{
 Return foo;
}

Contract

To client

Computer
generates
contract

Computer
generates
stubs

 56

for granted that no additional information is passed inside the methods. When security is
added, or some "must support" things are added, the SOAP message will contain more
data than the one described in IEC61400-25-4. The WSDL file will reflect the choices
made. As a result of this, it is not possible to directly generate a stub for the web service
from the supplied WSDL file. And in this way consume a service using the same WSDL.
The structures, signatures and data types defined must be used, but how the precise SOAP
message looks depends on the profile used11. A proxy must be generated from the
generated WSDL created by the service.

Regarding the choice between Contract First or Code First approaches, both have

their advantages and disadvantages, but for the time being you simply can not just use one
or the other, you need to be aware of what happens all the way through the message stack.

3.3 Choose of platform and language for the prototype

In choosing the platform and language it is important to establish how and what
the system is to be used for. The main idea of a web service is that it is supposed to be
completely platform and language independent. No matter what language or platform is
chosen as the service language, the client can be in any other language. For the time
being, there are some differences in how the individual language vendors implements and
uses the standards. Their number of standard features described above is also different.
The fact that a language support web service doesn’t guarantee that it supports things like
the WS-*. To make sure that any language is working with the prototype will require
some research. For the purpose of this thesis, only research of inter-compatibility has
been done for a couple of languages.

The two most used enterprise level platforms for web services are for the time
being Java and .Net. The nature of .Net implies that any languages used under it will be
able to work together. The language uses the same objects, and for this reason has the
same web service features no matter which .Net Language is chosen. .Net works with all
the most common languages for windows such as C/C++, J#, C# and Visual Basic, to
name but a few. All of these require the use of Windows-based systems. It is possible to
find frameworks for running .NET on UNIX derived operating systems (MONO);
however they are still in their early stage and not mature enough for production.

Java however is not a .Net language, but it is platform independent. In the design

it must be considered what can be done to keep the possibility to have Java and a .Net
Language work together. To do so it is essential that the input and return parameters of the
service operation are interoperable. The underlying technologies, however, do not have

11 In theory a client and a service should be able to take the same WSDL file and generate
serializing data, and be able to talk together. But for the time being this can not be
guarantied, because all languages should then support a one-on relationship with SOAP
data types. Restrictions are not supported very well.

 57

direct relation between their data types. When data is sent or received as SOAP, the data is
serialized to and from XML data, and conversion between native types is inevitable.

Language specific data structures can not simply be passed on, even though it
might be possible to pass it to SOAP. The XSD guarantees that the send type can be
reproduced at the other end, but for the data to really be compatible, the languages need to
have a one-to-one relation between their data types and structures.

There are three main problems that must be considered when designing a system
there are to work with both java and C#. If an array is passed across as a SOAP message,
C# emits any null elements, removing them from the SOAP call, while Java does pass a
null element. This would in the best case only influence the size of the array, but it also
might result in missing elements if position in an array is important or a null value has a
meaning in the context of the implementation. The standard do have arrays, but it does not
call for position based information to be passed on as a mandatory feature.

Primitive data types can also cause problems. For the data types to be safe, a one-
to-one translation between that language and the XSD used to transport the data through
SOAP must exist. Java does not support unsigned numerical types, while C# does. Either
the conflicting data types should not be used or a wrapper class is needed. There also
exists different ways of representing precision types in different languages. This could
result in loss of accuracy of a data type.

The last thing is native types. Both java and c# contain an ArrayList class. Even
though the names of these classes are alike, the way they represent data is not alike. Using
ArrayList will not flag an error, because all the compiler needs is information about how
the class is to be serialized. In C#, ArrayList implements ISerilizable, and can therefore be
serialized. To avoid conflicts, a program should only use simple data types, but still the
programmer must be aware on how conversions are done. [WY05]

A more general problem is that even though the standard spends a lot of time in

defining new data types, it is still up to both client and server to check these restrictions.
When send data is send at ASCII characters, and as of such the data should be checked for
validity. When generating a proxy it is very limited what kinds of checks are automatically
generated.

In the future, we must assume that a common standard for how things can be
serialized is developed, but until then we must remember to take these incompatibilities
into account when designing our services.

3.3.1 Comparing .NET to Java for the development platform

C# is part of the Microsoft .NET and as such runs using the latter Common
Language Runtime (CLR). This is like the Java virtual machine, an interpreter running on
the host machine reforming the operation of the code. Both of these runtime

 58

environments have the advantage of "write once, run anywhere" portability for their code.
Code written for such a runtime should run unchanged on any version of that runtime.
Part of Java's appeal has been the availability of the JVM on numerous platforms such as
Windows, UNIX and Mac etc. However, .NET comes for Windows, and as an open
source project named Mono.12 This gives Java and C# the same level of platform
independency. C# and .Net however do have great advantage in the way the language
handles the use of Web services. Web service in Java still involves writing a lot of the
SOAP messages on the XML level, but initiatives has been taken in order to move way
from this. Since the first web service implementation, Microsoft has extended the
programming model several times. This has been done through their Web Service
Enhanced packages (WSE). WSE wraps up and automates several of the described
technologies. For instance, using WSE, End-to-End security is possible. Sometimes WSE
has simplified the use of web services greatly by analyzing the most common problems
programmers have been facing using web services, and placing them into common easy
to use profiles.

With the advent of Microsoft's Windows Vista, a great leap has been taken
towards integrating XML in many of the aspects of the system. Vista ships with the new
.NET 3.0 in which the new Windows Communication Foundation (WCF) has been
integrated. As the name implies, this is a new communication structure for running and
connecting distributed systems. The cornerstone of WCF is web services, and WCF like
WSE has advanced support concerning many of the elements described by WS-I, and
Oasis. WCF also connects all of the prior distributed technologies that Microsoft used, like
COM, DCOM, COM+, Enterprise Services, MSMQ, and .NET Remoting. All of these
are united under a single programming model. WSE 3.0 and WCF do provide most of the
same features, but WCF provides a new way of isolating different aspects of the service
into more logical units. MS promises that they will keep WCF 100% backward compatible
with WSE3.0 through service packs, but by moving forward the integration of older
described technologies can be introduced much more smoothly. Some Java projects are
being developed right now, but .Net has a great head start, and is therefore the most logical
and sane choice as a development platform. This choice does not mean that Java can be
forgotten as a language. If MS is the only entity implementing the standards it would limit
the use of WCF until others languages support the standards. Some initiatives are for the
moment implementing something similar to WSC for java. In appendix G some of these
initiatives are described.

12- To some extend the MONO project do provide a cross platform environment for .NET. MONO is an
open source project, whose goal is to provide a cross platform .Net development and deployment
environment.
Mono is running on all major platforms like Linux, Solaris, UNIX and MAC, and like .Net it support
several languages. However, benchmark tests show that the speed of MONO compared to .NET is quite
slow. Performance test of MONO 1.1.3 http://www.shudo.net/jit/perf/
Current version 1.1.13 (no newer performance test has been found)

 59

3.3.2 Windows Communication Foundation and how it address web services

The following is a description of how MS has solved the different problems identified
earlier on. Only the most common ways, or the specific ones to be used in this thesis are
described here.

As already described, WCF is part of Microsoft’s new development framework
.NET 3.0. This is a new managed code programming model for Windows. It combines
the well known powers already known from .NET 2.0, but it brings four exciting new
technologies to the table.

Figure 11

Microsoft .NET 3.0

Windows Presentation Foundation (WPF): This is a completely new way to interact
with the user. It takes care of the Graphical User Interface (GUI). It is an XML based
programming environment which enables 3D desktop programs and user controls.
Multimedia context and documentation is also a vital part of the foundation, and it can
harness the power of the computer’s graphical adapter and thereby better utilize the
capabilities of the computer. The main goal of WPF is to build applications providing a
great experience for the end user.

Windows Communication Foundation (WCF): This refers to technologies connecting
the system. WCF is built as a service oriented programming model. For this thesis, only
WCF is important.

Windows Workflow Foundation (WF): It is the programming model engine and tools for
quickly building workflow enabled applications on Windows.

Windows CardSpace: It is a component that provides the consistent user experience required
by the identity meta-system. Its greatest task is to provide secure interactions with the end
user.

Windows
Presentation
Foundation
(WPF)

Windows
CardSpace
(WCS)

Windows
Communication
Foundation
(WCF)

Windows
Workflow
Foundation
(WF)

.NET FRAMEWORK 2.0

 60

3.3.3 Endpoint

In a distributed system, an endpoint is defined as a node where the
communications start or end. Having a WCF service, one or more end points are exposed
to the world. The client and the service are each defined as endpoints. The traffic route
might contain some intermediate points, only passing the message on.

To use an endpoint some basic information is required. The information is a
contract between the service and the client. To use the service of an endpoint, the client
must conform to a commonly agreed contract. WCF has a pattern for the endpoint called
ABC. This defines everything needed for the communication.

Figure 12

ABC for WCF

The unfolding of ABC:

• Address. The address specifies the URI that the service is located on; this can be
any URI, either global or local. The address can be a server hosted service using
different protocols. (HTTP, TCP, HTTPS etc.)

• Binding .The binding is the way the communication is performed. Binding
information includes the chosen protocol (e.g. HTTP TCP) encoding (text,
binary.) security requirements (transport level security like SSL, or message level
security like SOAP security.) Several binding elements can be added to a service.
Each element is added on top of a communication stack. And do not influence the
business logic. Several standard bindings are defined such as security reliable
communication and session safe communication, but there is always the freedom
to add a custom binding layer if deemed necessary. WCF comes with several
predefined standard bindings with different attributes. The binding has great
influences on the quality/performance of the communication.

Client

Endpoint

 Address Binding Contract

 C B A

Service

 A B C

 61

• Contract. It specifies what the service and the client can communicate. A service

contract defines the operations supported. A data contract defines the data types
exchanged. The semantic properties for the messages exchange can also be
defined according to known patterns such as one-way, duplex and request/reply.
Each contract type can have numeral attributes defining special behaviors for how
the communications are to be conducted during communication scenarios. Each
contract is split into three subcontracts defining different things about the
communication.

The great strength of this pattern is that each element can be defined either in code

or in a dedicated configuration file.

3.3.3.1 Binding

Different bindings contain different attributes. Below is table showing the nine

standards. The list is not complete. All the listed protocols support security except the last
two ones.

As the table shows, five of the nine bindings use a .Net profile. For this reason
they are well suited for platform independent communication. This leaves the basic
profile, the WS profile and a custom defined profile. However, the other profiles should
not be forgotten, they can still provide a valuable service. Notice the possibility to use
MTOM as encoding. This is a W3C standard for binary packing XML. MTOM can also
be used for sending attachments with the message. This will be useful if a binary file has
to be sent to a WPP. This could for instance be a file containing updates for the WPP.
This will lead to smaller SOAP messages, and might be valuable in modem connections.
It is also possible to use binary13 encoding for the data. The choice of encoding will have
great implications for system performance. Under profile, a discussion of this is
presented.

13- For the time being binary coding is only possible between a WCF service and client.

 62

Binding Name Interoperability Encoding Transport Datagram Request-
Reply

reliable Duplex

BasicHttpBinding Basic Profile Text HTTP,
HTTPS Yes Yes no No

WSHttpBinding WS Profile Text,
MTOM

HTTP,
HTTPS Yes Yes Yes* No

WSDualHttpBinding WS Profile Text,
MTOM HTTP Yes Yes Yes Yes

NetTcpBinding .Net Profile Binary TCP Yes Yes Yes* Yes
NetDualTcpBinding .Net Profile Binary TCP Yes Yes Yes Yes

NetNamedPipeBinding .Net Profile Binary Named
pipe Yes Yes Yes Yes

NetMsmqBinding .Net Profile Binary MSMQ Yes No

If
transactional
query are
used

Yes

MsmqIntegrationBindinMSMQ Text MSMQ Yes No

Guarantied
by
underlying
transport

No

IntermediaryBinding N/A N/A

HTTP,
TCP,
named
pipe

N/A N/A

Yes

N/A

Figure 13
Profiles and their standard support features

3.3.3.2 Service contract

The service contract defines the service that is supported. In other words, this is

the method interface that clients and service must agree upon. It also defines what is
required in order to talk to a service. For instance it is possible to define that the binding
must use a specific type of security.

Information about sessions, debugging information, and running condition can
also be set either on method level or on interface level. In C# code, the declaration of a
service contract is done through the use of attributes.

 63

Figure 14

Service Contract

A service contract contains two major parts:

The ServiceContract tag is immediately followed be an interface defining the
name of the contract. Each Method in the interface that is to be exposed must have an
OperationContract tag. Omitting this tag will not make the method available as a web
service method14.

A very useful feature is the possibility of associating something with a method
call. In the service contract above Session is set to true. This enables the use of session
variables in the system. With the session attribute the operation contract parameter
IsInitiating and IsTerminating are both set to true in Logon and Logoff respectively. This
automatically creates a session variable and terminates it when either logon or logoff is
called.

A system that wants to consume a service must implement the interface defined
by the service contract.

3.3.3.3 Data contract

The data contract defines how the data is transported between client and server.

The data contract holds information about serialization, either as implicit types where
simple data types are used, or by attributes associated with the classes defining how
serialization is done. If a class implements the interface ISerializabel, the attributes can be
used for serialization. As described earlier on, it is important to keep in mind what is
transmitted on the line through serialization. This concerns both the name used and the
type of the data. WCF comes with a new serializer ‘DataContractSerializer’. MS defines
this as a Contract First system, but actually attributes the WSDL inside the code.
DataContractSerializer can not be used in this case because it does not meet the mapping
constraints defined in the WSDL (for instance the maxlength attribute). The

14- It is also possible to define the operation contract inside a class, however by having an interface, the
contract and the implementation of the methods can be separated completely.

[ServiceContract(Session=true)]
 interface IECWCFInterface
 {
 [OperationContract(IsInitiating=true)]
 LogonReply Logon(LogonRequest inp);

 [OperationContract(IsTerminating=true)]
 LogoffReply Logoff(LogoffRequest inp);
 …
 …
 [OperationContract]
 GetLogStatusValuesReply GetLogStatusValues();
 }

 64

DataContractSerializer handles only a subset of XSD types. To have better control over
the serialization, XMLSerializer must be used instead15.

Figure 15

Data contract

Figure 15 shows how it is possible to customize serialization. Items can be either
a tDataSetValueResult element or a tServiceError. XmlElementAttribute defines what the
name for the element will be in either case. If several elements are to be serialized order
can define what the order of the elements is going to be.

For the element UUID only XmlAttributeAttribute is used, in this case the SOAP
elemet will use the variable name.

Depending on the serializer used, the default behavior varices, both in relation to
what is serialized by default (public/private) and what the order of the elements are
(alphabetical/order of occurrence). For this reason it might not be possible to change
serializer unless every important aspect to the communication has been explicitly defined.

15- Studies have shown that this serializer also lags complete control over the messages, and
DataContractSerializer would not be a poor choice. The way control is done differs for the two.

Using System.Xml.Serialization;
 [System.SerializableAttribute()]
 [XmlTypeAttribute(AnonymousType=true)]
 [XmlRootAttribute(

Namespace="http://iec.ch/61400/ews/1.0/",
IsNullable=false)]

 public class SetLCBValuesReply {

[XmlElementAttribute(
ElementName="AccessResult",
Type=typeof(tSetDataValueResult),
Order=0)]
[XmlElementAttribute(
"ServiceError",
typeof(tServiceError),
Order=0)]

 public object[] Items {
 get {…}
 set {…}
 }

 [XmlAttributeAttribute()]
 public string UUID {
 get {…}
 set {…}
 }

 65

3.3.3.4 Message contract

Through the use of message contracts it is possible to control how and what is put
into the SOAP message, and where. This is an improvement for instance in the cases
where some of the data elements are to be serialized as attributes rather than as
independent data elements.

Message contracts can be useful in some cases where compatibility with other
systems requires that the SOAP message constructed in a specific way.

With all this information WCF is able to create Metadata information for the
consumer of the service to use. This can be done either in the regular way where a WSDL
is exposed to the client over the web, or the client gets a copy in another way.

3.3.4 Pipeline in the communication

When building a service, the communication from the service to the client and
back again is built of elements in a stack. Depending on what elements are placed onto
the stack, you can get different attributes for the communication. Elements can be
changed, removed or added as needed. This ensures the most flexible communication
system possible. Service and client always have to mirror each other’s pipeline. When
creating a binding for a service, this is where these choices are defined. From a given
binding the service can be configured at runtime.

Figure 16

Show the pipeline concerning security, transport encoding and custom filter channel

3.3.5 Custom encoders

Even though there are many standard defined bindings, there might be the chance
that an additional one is needed. This is not a problem though. It is always possible to add
a custom filter to the pipeline. Of course the filter has to be added to both the sides of the
communication to work, but adding custom encoders does restrict the re-usability of the
service, because both sides must have the logic for the encoder. Is only possible to specify
one binding class in the configuration file, but in code different encoders can extend each
other, and encode the message in several ways.

Windows
Security
Channel

TCP
Transport
Channel

Custom
Filter
Channel

 Custom
Filter
Channel

 66

3.3.6 Define the policies using WCF

A WCF service exposes three different ways to accomplish the task

• Code.

• Attributes.

• Policy files.

Code

Usually an instance of a binding is associated with the service. An instance of a
class is created and passed as a transport class. This choice gives the programmer
complete control over the communication, but it is not a good solution if changes are to
be introduced. The code will then need to be recompiled and redeployed.

Attribute

Using attributes, the programmer gets an extremely easy way to add functionality
to the code. When a service is working, adding security is simply a matter of adding some
attributes to the methods involved. Still the code needs to be recompiled and redeployed,
however no actual code manipulation is needed. The main advantage over code is that it
is easier to read, and it often requires less lines of code.

Attributes can be involved in many aspects of the code. They are often used to
define more specifically how data should be serialized to and from a method in a service.
The use of attributes makes the developer’s job easier, but because the settings are design
time settings, it is not that easy to have more choices.

Policy files

Policy files are XML files defining certain attributes a service should have. The
policy file simply contains information about for example the security choices for a
service. Both the service and the client can have a policy file. Policy files are a very easy
way to change runtime settings for a service. Using policy files separate the behavior of
the service from the constraints for accessing the service.

The policy file defines how the environment for a service is used. If the service is
moved to another environment or it is decided that the security for accessing the service
should be changed, the policy file is changed, but the behavior of the service remains the
same. The policy will affect the SOAP messages sent between the service and the client.

In designing the framework, it is possible to build the profiles into it. This would
ensure that only allowed profiles according to the standard could be used. On the other
hand, incorporating the profile inside the framework would limit the use of other profiles
to be introduced later on.

 67

Over time new and better security frameworks are designed, or the security scheme

might have to be changed upon the system. It is therefore essential that the secure
changes can be implemented in a flexible and easy to use manner. Policy files fulfill this
requirement perfectly, and will be used in the prototype.

3.3.7 Hosting

A web service in WCF can be hosted in two different ways. Either it can create a
socket and listen for an incoming request from a client, or it can be hosted on a server.

A web service hosted on the Microsoft Internet Information Server (IIS) can
benefit from all the built in functionality for handling web applications. For instance IIS
has extensive use of security, logging and check on health of the running service. In a
large environment with many web applications this will probably be the best solution
because the configuration can be managed in an easy way. On the downside an IIS has to
be installed on the host machine and of course be maintained.

Self hosting enables the service to run in almost any managed code environment
like a consol application or a form application. Self hosting is great for testing or custom
applications. To have a service run as a self hosting system will take longer time to
develop than a server hosted service. This is because of all the code needed in order to
host the service, thread pool, security and service logging. For this thesis it is hosted in an
IIS, and self hosting has been used for the tests conducted in case study 3.

3.3.8 Security

Security is an integrated part of WCF and web services. Without security it would
be hard to use web services unless you did not care who could read you messages, and
who you were communicating to. In a business operation this is usually not the case. At
the same time security must be easy to use ensuring that the programmers can concentrate
on what they are paid for; to design business related programs.

WCF provides a number of out-of-the-box security features that can be used.
Actually, when setting up a standard wsHttpBinding, security is turned on by default.

WsHttpBinding and NetTcpBinding both uses message level security by default

according to WS-Security and WS-Secure Conversation, ensuring CIA16 for the message.
Credentials is by default set to windows credentials, that identifies the user logged in
using Kerberos or NTLM, however, other methods can be used as well. A service can

16Confidentiality Integrity Authentication.

 68

have as may connections as needed; each schema simply needs an endpoint exposing it to
the world. [KB2006]

The basicHttpBinding do not support the described security features, but that does
not mean that the binding can not be secured. In order to have CIA for this binding, it
must be deployed over the HTTPS protocol. If the service is hosted under IIS all that is
needed is to turn on SSL support for the virtual directory holding the service, and making
sure that transport level security is used. Using SSL is a transport based security, and as
such it is restricted to an end-to-end scenario instead of a point-to-point security. This
makes it hard to reuse the security channel for other transport protocols like TCP, SMTP
or MSMQ. At the same time HTTPS do not supply a way to ensure non-repudiation, for a
message going through several channels. (Data tampering)

By default an anonymous client is used. This will not tell the server who the client
is but it will ensure the transportation is secure through the use of the web servers’
certificate. This is the most used pattern for secure web communication today.

WCF provides many security features, and configurations of these securities.
These security properties can be changed through the configuration file.

3.3.8.1 Message and transport level security.

Securing the messages for a web service, there exist two major methods.

Transport level and Message level .Transport level security uses the underling network
protocols for the security. One of the transport level protocols is the well known https
protocol. The web service constructs a SOAP message and passes it to the network.
Before the message is sent to the network, it is encrypted by the known encryption key.
SSL uses a mixture of public and private key encryption, which makes it fast and still
secure. Figure 17 shows transport level security.

Figure 17

Transport security

SOAP message

SOAP SOAP

 69

The entire SOAP message is encrypted in this way. At the receiving end the
message are decrypted and delivered as the original SOAP message. The transport pipe
the message goes through protects the message whilst inside the pipe. In a scenario where
the message is to be re-routed it has to be opened and re-send on the intermediate base.
This of course leaves the message exposed at that intermediate point, making it readable.

In message level security only parts of the message would be encrypted. This
would only be the payload. The information about where the message is going to be sent
to is completely readable to anyone, but the data is kept secret. In that case the message
could be passed freely around the network without any dangers. Only when the message
arrives at its destination could it be read. This opens for the possibility of sending the
message through several channels. The final receiver of the message is the only one who
has the right key to open and understand the message and thus has exclusive access.
Message level security therefore reduces the exposure time for a message. Transport level
is restricted to certain protocols, while message level can be distributed with any
available protocol. Message level security is sometimes referred to as end-to-end security.

Message level security is a newer way to handle the problem, and therefore it
support more features for web services security. It is better integrated with the standards
for web services, but it comes at a price. The performance for transport level security still
surpasses message level security. If performance is an issue, transport level security is
then still to prefer. Whenever possible, message level makes for a much better approach
concerning the web service standard.

Figure 18

Message level security

SOAP message

SOAP
SOAP

 70

3.4 Summary

Different technologies and techniques have been explained throughout this chapter.
Especially the new developments in web services and SOA have been introduced and the
main advantages of making use of these technologies have been clarified. SOA is to be
used in the prototype because of the great cross platform and language inter-communicable
properties.

The final product will make use of both WCF and standard web services through a
modularized interface. However the main focus will be on WCF since it is a new and
enhanced architecture for web services. Because of the way that WCF support WS-I
standards it maintains the possibility of incorporating new standards and features in a
seamless and easy way.

In the next chapter, a case study for the prototype will be presented where the
requirements and the technologies described in this and the previous chapters will be tested.

 71

Chapter 4

IMPLEMENTATION AND CASE STUDIES

The purpose of this chapter is to try out some of the different scenarios that the
system is supposed to work under. The system must be able to work under very different
configurations, so some of the case studies are of a more general type. The overall design
of the system has been built in order to have the same basic design for all the challenges,
and then make minor changes in order to add or remove functionalities to the system.

Before studying each case, the setup, overall architecture and the internal
workings of the server system will be described in the following section.

4.1 System Description

For developing a good system it is important that all the main aspects of how the
system is put together are addressed. For most of the work done in the design, there is not
a single perfect solution. No matter what has been chosen as a solution for a problem,
several others will have been rejected, maybe not because they were bad choices, but
because the overall benefits that they brought to the system was evaluated and found less
valuable than other solutions. In this part, different solution for solving the problems, and
descriptions for how the system parts have been built to achieve flexibility and stability is
presented.

The core unit of the system is a server process hidden behind the service interface
where device data and client requests are handled. It has two important interfaces through
which it accomplishes its tasks. These are the interface to the communication service
which acts as a bridge between client processes and the server, and a second interface
which can be configured to pool live data from wind power plant devices. The data
retrieved from the configured device(s) is kept in an internal, in-memory data model for
fast retrieval and processing when client requests are being handled.

IEC 61400-25 defines an event driven service model for monitoring wind power
plant devices. Especially in the reporting process, various conditions have to be
monitored continuously as new data arrives, so that proper actions can be taken in order
to satisfy each report configuration which will serve the client process with information.

4.1.1 Service Interface - Communication Module

 72

The Service is supposed to work with different client protocols. One of these is
Web services, but the system should also be able to work with other protocols like MMS.
The service can be thought of as a server communicating the data to clients through
several types of communication interfaces.

One solution would be to create a complete, tightly coupled system for each of
these protocols. The communication protocol would then be implemented directly into
the main server unit, and would make the communication fast because direct access
would be granted to the communication layer. On the other hand, this would result in a
server bound to a fixed communication protocol. Different clients would then have to
communicate with separate servers. Each server would then need to have access to the
same data, or would need to have their own copy of such data. This would take up more
resources, and changes to the overall model would have to be implemented to each of the
servers separately resulting in redundancy.

An alternative method is to have a common server to serve the different
communication modules through at well known protocol. A facade presenting a common
interface can be created. Each protocol then has to implement a module that takes care of
getting information from the client and returning the server reply to the client. This is
illustrated in the figure below.

Figure 19

Communication module

In the developed prototype, access to the server is available through .NET
remoting. The web service listening for client requests will pass the request to the server
and retrieve the response and pass it back to the requesting client process. This approach
enables a more modular architecture for the system. The type and structure of the data
communicated between server and the web service through remoting is compatible with
the services described for each data class defined in IEC61400-25-3. The web service
exposing the services of the main server to client processes can be replaced by any
communication service using a specific protocol being capable of implementing .NET
remoting. That is, the web service is not tightly coupled with the main server which

MMS

Server

Web
service

 73

allows the system to be extended with modules implementing communication protocols
different than web services e.g. MMS.

4.1.2 Data exchange between communication module and the server

One major challenge was to make the exchanged data types compatible; not as a
structure but on how the different data types are being represented on the different layers
from client to the main server unit.

The communication is defined with a WSDL, and is therefore defined as a web
service. The different methods in the server and the service are identical, as are the
service reply and the response objects. There is however a difference that makes it
impossible to use the same data types/classes. In order for the communication to take
place using web services, serialization information about the classes must be specified.
Unfortunately this requires that all the data must be converted back and forth between
reply and response objects.

This is done on the respective communication/service module before passing the
data to the main server unit and when a reply is returned from the server. Briefly said, the
data being exchanged between the communication module and the main server unit is
typecasted so that both the service and the main server can handle data in the types
known locally.

4.1.3 Device Interface

The communication interface to wind power plant devices from the main server is
out of scope for the IEC61400-25 series. No specification is given on how to handle the
communication with the devices that are supposed to be monitored and controlled.
However, in order to be able to test the server prototype a simple simulator is
implemented and connected to the system. The simulator acts as a device continuously
generating data for a specified set of data objects, for a pre-specified logical device data
model defined on the server. The data is extracted from log files which contains real-time
stamped wind power plant device data. The data entries contained in the log files are
mapped to data types defined in IEC61400-25 where suitable.

The simulator process is only capable of producing data; it does not model and
simulate a complete wind power plant device with all its components and functions.
Therefore the simulator is not capable of representing any data being set by the client
process at the other end of the system. The server only assumes that data is sent and
committed by the device simulator. That is, the data sent from the client process will
update the internal data model on the server where the server assumes the data has been
passed to the wind power plant successfully.

 74

Communication between the device simulator and server is implemented with
.NET remoting. The simulator is set up with a server role, reading log files and passing
the data over to requesting clients through .NET remoting. The server acts as a client with
respect to the simulator. At startup initialization the server will connect to the configured
simulators through device connectors and periodically request for available data and
update its internal data model, and make the data available to client processes.

This part of the implementation is merely a solution to be able to test the
functionality of the server. It is not a proposed solution for a real life problem where wind
power plant devices have to be connected to a system both for data retrieval and remote
controlling.

4.1.4 Server Configuration

Initially at startup, the server must be configured in order to work properly and
interact with devices and communication services attached to it. At startup it will
configure itself through an XML configuration database. The information model
reflecting device data, device connections, pre-configured data sets and access control
configurations are all made through XML files dedicated for each specific configuration.

Configuring the information model

At startup the server will first create the data structures reflecting each specific
device attached to it in order to be able to house the data and make it available to client
systems. The XML configuration file makes it possible for a server administrator to
create data structures for logical devices with its logical nodes, data objects and data
attributes. Initially the configuration file defining the data structure with their default
values is parsed where afterwards the object instances are created on the server according
to the structure defined in the configuration file. It is possible to initiate data structures
for several logical devices in the same configuration file.

The configuration file resides on the server’s directory which implies that the server
administrator must know the exact data structure of the physical devices which are to be
attached to the server, before composing the configuration file. In the future the
configuration could be done dynamically by retrieving configuration information directly
from the physical device itself. The figure below shows a short snippet of the XML file
used to configure the data structure on the server.

 75

Figure 20

Server configuration – data model

Configuring device connectors

Currently only device simulators can be attached to the server through device
connectors which will be described later in this chapter. The server makes use of .NET
remoting technology in order to communicate with the device simulators. The XML
configuration file defines all the device simulators which will be attached to the server.
At startup the server will parse the configuration file and establish connections to each of
the configured device simulators. The figure below shows a short snippet of the XML file
used to setup device connectors.

 76

Figure 21

Server configuration - device connectors

4.2 Case study 1

The case study will cover:

• Deployment of 2 different WPP data suppliers
• Securing data
• Securing access
• Cross language access.

In this case study a small community has put their savings into a couple of WPPs.

They have had one WPP for some years now, and have now decided to buy a new one of
a different kind because the old model is not produced anymore. When they got their first
WPP they also got a simple client system for monitoring purposes. The owners are not
interested in getting a new fancy system, they just want to continue to use the same client
system they have been using for a long time. Of course they would like to view the
features that the new WPP supplies, but the most important thing to them is that they can
keep on using the system they know.

They will have two different kinds of WPPs, but because both models support the
IEC 61400 standard, they know that the new kind will still work with their old client
system and vice versa.

The owners view the data over the public internet, and are using several kinds of
security techniques. The standard client is running on an Internet Information Server (IIS)
which makes it possible to inherit standard security features.

Aeolus is one of the owners, and he is interested in computer science. He would
like to create his own client. The standard server came with a DLL encapsulating the
communications interface with the service. But he prefers to use java instead of .NET. He
decides to create his own Java client for communication with the service.

 77

Figure 22

Communication between service and client using different platforms

Multiple device connectors

The server is running and has been configured for the two WPPs. The server
needs to retrieve data. This is done through device connectors. The device connector has
to collect data from the WPP and convert it into a format the server can understand. The
IEC61400-25 series does not specify a protocol for device communication, Therefore a
simple protocol must be designed for the WPP simulator.

One possible solution would be to send the data XML as it is defined in the
example in IEC 61400-25-4 on page 24. The logic for this would be clear, but this will
send a lot of redundant data. To store the data, either it would have to be converted into a
more compact format, or it would take up a large amount of space.

Another solution is to send the data as plain-text reference-value pairs where a
timestamp is attached. This will reduce the amount of data being transferred, and still be
able to transfer data values with the correct semantic.

Device
Connector

Java Client

I’m Aeolus

Web service

Web server

Web
service

interface
DLL

I’m the
server

Device
Connector

I’m …

Internet

 78

Device
Connecter

Server DLL

Device
Connecter

Server

Figure 24
Device connecter and server on the same

computer

Figure 23

Reference path and values

Data is still readable, and does give a much quicker overview of what it actually
contains in contrast to a huge XML file. This is by far the best approach, and this has
been chosen.

In order to design how the information is exchanged on the message level it must
be specified how the architecture of the system is defined and set up.

There exist at least two different solutions for how the architecture can be defined.
Figure 25 shows the first case where the server and device connector are located on
different machines. The WPP has a system running under .NET, where the data is
exchanged over a network. One of these is through distributed objects using .NET
remoting object. This is a transparent object interface where distributed objects hosted
from different application domains can be accessed (similar to the Java RMI technology).
.NET remoting is similar to web services; however it is using non-standard binary
communication, and is therefore restricted to the .NET platform. In this case remoting has
been used in implementing the device connectors. Different communication protocols
could be used by replacing the server’s device connector module.

In another case the server is placed at the WPP as shown in Figure 24. In this case

the server has direct access to the data. The device connector could be compiled into a
DLL which is directly capable to communicate with the device.

The Prototype uses the first solution, because the server is considered as a central
unit able to manage several WPPs.

Timestamp Wpp1/WGEN.Spd.mag=value
Timestamp Wpp1/WGEN.Spd.mag=value
.
.
.
Timestamp Wpp1/WMET.MetAlt1.HorWdSpd.mag=value

Figure 25
Device connecter and Server separated

 79

Building the device connectors

Figure 26

Class diagram of device connector classes

The device connector follows a common pattern no matter how data is retrieved
from the WPP. A communication line between the server and the WPP must be created,
in this case where remoting is used, this is comprised of setting up a remoting stub that
can be posted to it clients. The device connector must also take care of a data storage
buffer that can be accessed by both the connector itself and the server connected to the
device.

DeviceConnector is an abstract base class setting up the remoting and the internal
storage. RisoeReader and RoedeSandeReader each inherits from this class. When some
data has been produced it is placed in the storage for later consumption of the server.

It is not clear if each WPP should have its own data connector. The data connector
can gather data from many WPPs but for the time being, the server takes for granted that
each connector represents one WPP.

WppDataPacketHolder holds data in a list. The server asks for data within a
specified time interval. All the data in the buffer is delivered on a request, where it is
ensured that data is not lost in case of a connection failure.

 Both the data connector and the server are trying to access the storage at the same
time. This is a classic producer consumer problem, and the access to the data storage is
blocked by the process that is either reading or writing data to the data buffer, to ensure
that the integrity of the data is not compromised.

DeviceConnector

RisoeReader RoedeSandeReader

WppDataPacketHolder

Remoting

 80

The Diagram shows the functionality of the data pooling system in a generalized

way. Please note that the diagram shows two processes sharing a synchronized data
storage device.

Figure 27

Flow for device connector

4.2.1 Java client, C# Client and DLL as a client

The Java client is a simple terminal application where the user can type in the
commands (mapped to service calls) and view the results sent back from the main server
via the web service. The Java client is implemented using Apache AXIS. This is a Java
API to develop and deploy web service applications. The purpose of implementing a Java
client is to prove that the service is able to interact with clients developed for other
platforms than .NET. The client is not intended as a fully functional client, but merely as
a proof that the communication is possible. Therefore the Java client does not contain all
the available methods, and is not tested as extensively as the windows client.

Independent of how the clients are going to communicate with the web service,
they must have a copy of the contracts. Either a copy is retrieved from the server, copied
to the host, or retrieved at runtime. Information about the service location and contract
can either be known beforehand, or a UDDI can relay this information to the client. To
interact with the service a proxy class must be created. The most common way is to
create a static proxy; however a proxy can also be generated on the fly. In this case the
proxy is statically generated by retrieving meta information form the web service.

 81

In WCF, metadata exposure is not enabled by default. An endpoint using the

mexHttpBinding binding exposing the contract IMetadataExchange must be created. A
call from the client can retrieve the WSDL for the service, from where the proxy can be
generated. The internal construction and how it is done depends upon the tool used, but
the overall construction is based on the same pattern. AXIS generates a proxy class for
the contracts interface, each request, and reply type in reference to the methods. Data
types used in the methods are placed in classes. These classes specify how the data are to
be serialized and de-serialized as SOAP objects.

In order to establish a connection a class IEC641400_25ServiceLocation is
created, this class contains the logic for creating the binding. The class has different
methods for each endpoint the web service contains. If the contract changes, the methods
and the data types used must be changed as well.

Calls to the service are done by creating an instance of the proxy object, and
calling the service method through it.

Figure 28

Class in the proxy

The way the Java client was created is very similar to the way a WCF client can
be created in .NET. A proxy is created and is used for the communication.

Unlike the Java client, WCF shows its strength here. Setting up the bindings and
other attributes for the service and the client can be done in their respective configuration
files. The proxy is compiled into a DLL, which can be distributed to different clients. To
use the service, all that is needed is to include the DLL into the application runtime and
create an instance of the proxy class. For the prototype the configuration file is used for
setting up the binding for the client. Even though the logic of the methods is encapsulated
in the DLL, using the configuration file still enables specifying different settings for the
client. The information and settings could be embedded in the DLL by using a facade
pattern, but having it in a separate configuration file ensures flexibility for changing the

Reply Response
classes

tDatatypes

Client
callService
createDataset
deleteDataset
getDataDir
getDataValues
getDatasetDir
getLdDir
getLnDir
getServerDir
logoff
logon
setDataValues
setDatasetValues
…

 82

settings whenever needed. An important point is that changes to the client’s configuration
file must be reflected on the server configuration; otherwise the connection will be
rejected.

The implemented WCF client is a simple windows console application making
use of all the available service methods exposed through the proxy instance.

4.2.2 Presentation of data

A terminal client might be a fast way to present data to the user; however it is not
suited for end users. To demonstrate the capabilities of the prototype a web client making
use of visual components would be more suitable.

An ASP.NET project has been running in parallel with this thesis, where a web
client for the prototype has been developed. The communication between the web server
and the web client is outside the scope of this project, and no measurement has been
taken to secure the data communication.

Figure 29

Client communication through a web server

Web service

Web
browser

Device
Connector

Server

I’m the
server

Device
Connector

Web service
interface

DLL

I’m …

(Outside
scope)
For this to be
secure, server
must take care
of security

Internet

 83

4.2.3 General decisions in securing the system

Setting up a secure system is not a simple task. Many different approaches can be
used, each of them having a different impact on the systems performance and different
implementation issues. The system is built up of a number of small modules, which
communicates across boundaries in several places. A boundary is defined as
communication between processes not sharing the same application domain/runtime.
Some of these boundary crossings include communication over a network protocol. Both
inter-machine and inter-process communication can use network protocols for their
communication. For the system to be secure, every one of these communication lines
must be secured. The system as a whole is only as secure as the weakest link. A single
insecure line of communication could render all other security aspects useless. The
different combinations of the modules located on different machines would have different
implications on the overall security of the system. .NET remoting might not be a security
problem if it is used between processes running on the same machine. Otherwise if it runs
over an open network, the communication should be secured properly. This can be done
by filtering traffic and encrypting the communication as discussed in 3.3.8.

In this thesis the focus is on web services, and security has not been dealt with
from end to end, but more on a level showing some of the possible approaches which can
be taken. Depending on the deployment of the system different approaches must be taken
to ensure secure end-to-end communication. For this reason analyses must be conducted
every time the system is deployed in a new module configuration. And measurements
must be taken for each boundary crossed. Figure 30 shows all the possible points at
which security must be addressed. If the communication is done on the same local
computer the list can be reduced.

Figure 30

Worst case scenario of boundary communication

For the developed prototype, security includes the basic CIA (Confidentiality –
Integrity - Authentication) for the communication.

As described earlier, WCF supports several standard security schemes. Most of

the cases are centered on exchanging key(s) securely.

One of the widely used scenarios involves a certificate(s) (Cert) for the key
exchange. In this test case mutual certificate exchange is done for both client and service.
The client must present some credentials identifying itself to the system and the server
must identify itself to the client. When this is done the system must make sure that the

IECServer WS service
module

Web
Browser

Data pooler Web service
client and
web server

 84

communication upholds confidentiality (encryption), integrity (not tampering with
information by malicious persons), and authentication (ensures that claim of identity is
true) for the information transport. This can be done in several ways, but the combined
package comes together in a Certificate, which can be exchanged in a standard way using
the International Telecommunication Union (ITU) standard X.509. A certificate contains
information about an owner and a keyset used for asymmetric encryption. WCF supports
mutual X509 certification by supporting both WS-security 1.0, and WS-Security 1.1.

The use of mutual certificate exchange ensures that both client and server know
who they are communicating with. The data exchange will take place only if both parties
accept the presented credentials. The certificates used for this case study are signed by a
mutually trusted certificate authority (CA). For the use of the prototype server this proves
to be a valuable approach because it will restrict access to the service to authorized
parties only, and at the same time it proves to be able to perform fast communication.
However it does require more work in order to set up the system. The lighter versions of
this scenario are single certificate exchanges (as in SSL). This provides the same features
concerning traffic security. However, both server and client must be identified in an
alternative way.

The appendix holds a short explanation of how to set it up and use certificates in

WCF. The glossary contains a description about the content of a certificate.

Case Summary

This case has shown that web service clients in both Java and WCF can be
connected to the web service, and retrieve the information gathered for different WPPs. It
is also shown that a web client can gain access to the service though the use of a web
server.

The device connectors could act on their own or represent several WPPs. The
gathered data could be collected and managed through one central server.

Security in the system must be addressed on many levels, and must be analyzed

for each case.

 85

4.3 Case study 2

Deployment of a wind farm

In this case study the focus is on a virtual major corporation owning a big wind
farm. Combined of offshore and land based power plants. They operate many WPPs and
are monitoring the system from one or more locations. The offshore WPPs are connected
using a modem. For this reason it is important to get the most out of the bandwidth by
compressing the data transmitted. In this scenario, the communication line between the
WPPs and the server can be lost. In case of connection loss it must be possible to recover
the data produced during the connection loss.

Some of the WPPs have their own device connectors and others have a joint
connector. Within the corporation many people must be able to view the data at the same
time. The corporation has a dedicated secure private line for their communication. No
security is needed concerning the securing of the traffic. However, data must be protected
internally. Not everyone in the corporation is allowed to access data, and even if they are
allowed, not everyone (or application) is allowed to run all service methods on the WPP
devices.

Key points:

• Many WPPs on a service.
• Multiple clients.
• Avoiding data loss during offline period.
• Compression for smaller bandwidth restrictions.
• Role based access control.

 86

Figure 31

Multi WPP and clients

4.3.1 Secure connection

Because the communication is done on a secure line, no additional measurements
must be taken in order to assure traffic safety. Having a secure line actually reduces the
possibility of one of the boundaries leaking information, because security can be wrapped
around the entire system. Virtual private networks among others provide a closed secure
line.

4.3.2 Offline scenario

Data must be delivered to the server one way or the other. In the case of loss of

connection, data must be stored until the client can retrieve it. An extra or redundant
server connection could provide an alternative way to upload data, but since WPPs are
supposed to be autonomous and recover from critical situations independently, it must be
concluded that information is not time critical at a level where it will justify the extra cost
of maintaining several communication lines. A much cheaper method is to use the
hardware already placed at the WPP. In such a case each device connector keeps a buffer
of data, which can be retrieved on demand. However, if the data is not retrieved by the
client, the list will keep on growing in memory and eventually consume all of the
memory resources.

Web server

Web service
Interface

DLL
Device

Connector
Device

Connector

Device
Connector

Server

Web server

Web service
Interface

DLL

Web server

Web service
Interface

DLL

 87

To overcome this problem data, must be swapped to disk on regular intervals.
This will not only reduce the memory usage, but it will also assure that data is not lost if
the machine hosting the data connector crashes.

The device connector works with time stamped packages. If the buffer holds more
than a given number of entries, the data will be saved to disk, and the stack will be
emptied. On the next attempt by the server to retrieve data, the retrieved object will
contain a flag telling the server that buffered data exists. The server can retrieve this data
on demand.

This solution is extended in order to avoid problems in some cases. First of all
every new addition to the file requires that the whole file is read and written, due to the
way serialization works in C#. With small files this is not a big challenge, but if the file
becomes really big, the task will be time consuming. A new file must be created if one
file gets too big. Another potential problem is if the data set is too big for the service to
serialize it. In the binding it is possible to specify that data should be either streamed or
buffered, which would solve the problem. However, if the device connector has gathered
data over a longer period of time, the server must be able to retrieve the data in smaller
chunks. For the device connector it is possible to define the desired file and buffer size.

If the connection is poor but do exist, reliable sessions is a great addition to the
quality of the communication. “Reliable sessions” or “reliable messaging” assures that a
message will be resent if the communication is disrupted. It will keep on trying until the
message has been delivered, but at the same time uphold an assurances of exactly-once
and in-order delivery of the messages. Reliable messages is part of several of the standard
bindings, and can be turned on and off on demand. Like other attributes this can be done
either in code or in the configuration, by enabling reliable sessions. Reliable messaging is
turned on for the prototype.

Using reliable sessions alone does not guarantee end-to-end reliability; it merely
takes care of the web service traffic. Additional measurements must be taken between the
server and the WPP to assure traffic reliability.. How this is going to be done depends
upon the communication between the two are done and is as such out of scope for this
project.

4.3.3 Access control (AC)

To ensure that only the right people have access to data, an access control system
is needed. The standard proposes an access control system, but for the time being it is not
in its final stage, and will most likely change when the standard is finalized. For the
purpose of the prototype, a simple system for controlling the access to the system has
been implemented. This is built as a role base access system.

Instead of providing rights to every single user; each user gets assigned to one or
more groups instead. Users are members of one or more groups, and can be granted
access to a node or method through rights assigned for groups. Whenever a user tries to

 88

gain access to a service or a data instance, the system will check if the user has the
required privileges.

The user can also have personal access rights assigned. It is always the personal
rights that have the precedence over rules given to a role. User rights can be both positive
and negative. This is done in order to remove rights for an individual, who had elsewhere
been granted access to a resource by a role he is in.

The user identifies himself to the system where a principal object is created. This
object is initialized with access rights for a user. The user is identified through the use of
a username and a password, but any other claim authorization technique could be used.
When the user tries to access a node or service, the name of the node or service is
checked against the user’s principal object. A positive answer will allow access. Nodes
are checked in the same manner.

Figure 32

Class diagram for AC

SimpleAccess Controlling object, containing a list of all

the active users and dispatches security
questions

GroupeRules Class holding permissions assigned to a
group

 89

GroupeAccessRules Class holding access rules for each group
UserID Class holding id for user
Principal Class creating a principal object for a user
UserPrincipalRules

For this test, two XML files contain the users, roles and access information. For
the final system, this information could be moved to a relational database. But for the
prototype it is faster and more illustrative to edit an XML file. Description of the files can
be found in the appendix.

Figure 33

Node access permissions

The sequence diagram in Figure 33 shows the order of the access checks. A user
must have personal access rights to the node, and he must not be disallowed access to the
node. If neither of the checks resolves to a positive result, each group the user belongs to
is checked for access rights.

Figure 34

Method Permission

Access for a service is done in the same way as with node access. Service
permissions are shown in Figure 34

Method Permission. The AC can be expanded when more precise rules have been
defined.

 90

4.3.4 Ensuring module exchangeability

The modules in the system should be interchangeable. For instance the AC
module uses a specialized way to figure out if a user has access to a node or not. The
described AC uses a role based schema using XML files. But what is needed in order to
replace the module with a schema getting its information from a database. The module is
accessed from many different methods in the server, and as such it is incorporated deeply
in the system. The solution lays in linking the object during startup rather than under
compilation. The principal is described by Martin Fowler as a plug-in pattern.
[MFPEAA]

The AC module is placed in a separate compiled module, ensuring that other
types of security can be used if preferred. As long as the access module uses the access
control interface supplied, different security schemes can be used by simply replacing a
single file.

When the server is started, it looks at the assembly of DLLs in the runtime
directory via reflection. If one of the modules implements the interface an instance can be
created and imported into the current assembly, and have runtime binding.

This pattern is one of the corner stones in order to have interchangeable dynamic
modules. Negative effect is that DLL access is a little slower than if the linking was done
at compile time. But this is a minor expense compared to the big flexibility it provides for
the system.

The downside to this approach is that all modules must conform to the same
module interface, and therefore the interface must be finalized and take into account that
different security patterns need different access methods. For the prototype the interface
has been designed for a username and password authorization pattern. On the other hand
if the module was incorporated directly into the server, the code would also have to be
rewritten and recompiled in order to execute the change. For this reason the interface
choice does provide a better solution.

The plug-in approach should also be incorporated into the device communicator,
removing the need for tying the system on a specific communication technology. Also the
storage module is a candidate for this pattern.

Minimizing traffic

SOAP is not a good format when considering the amount of traffic generated. It is
in plain-text format and contains lots of meta-data. This makes SOAP a perfect candidate
for compression.

For web services using WCF there are three main ways to encode the data for
transport. These are text, binary and MTOM. Text is plain SOAP in ASCII encoding; this

 91

of course is the most compatible way to send the data, but also the most expensive in
terms of bandwidth consumption. MTOM is a WS standard, and compresses the body of
the message. MTOM can also be used for transporting binary data between services. This
comes in handy if files should be transported from a server to a client, but since it still
have to be transformed to base64 encoded data and still uses SOAP wrapping, alternative
methods like FTP transport would probably be a better solution for this. Different
bindings or compressions do reduce the traffic drastically, but they do slow down the
system because of the extra computation needed.

Binary traffic is the most optimal way to transport the data, but is restricted to
windows-to-windows communication. However if the communication is restricted to a
Windows-to-Windows environment, this is the best choice. In Case 3 a study of the byte
amount passed on the wire has been conducted.

The last approach for reducing traffic is to create a custom encoding schema. For
instance, the traffic could be encoded using one of the commonly used compression
libraries, like ZIP or RAR. This of course will demand that both the client and the service
are able to encode and decode the traffic. Case 3 takes a look on a custom encoding
stream using GZIP. This is a custom binding created for test purpose, however, it can be
used in the communication.

Simulating the wind farm

As described in the previous case study there was designed two different device
connectors. The first one produced data for several WPPs while the other only produced
data for a single WPP. In order to test systems capabilities to manage several WPPs, a
number of device connectors have been initiated in separate threads. In the server’s
configuration file, each WPPs device connector was registered under its URI address that
the connector is exposing its remote objects on. According to the configuration, the server
will periodically ask the WPP (through the device connector) for available data.

In the other end, clients were created in threads to invoke service methods and
retrieve data form the system.

Case Summary

This case showed how a device connector module is able to store data for later
retrieval from the server. The module provides a way to get data whenever possible, in
manageable data packages. This ensures data delivery, and at the same time reduces peek
loads on both the device connector module and the server. No standard is defined for how
the data is conveyed from the physical device to the server, but the connector (device
simulator) did provide some basic cases that all connector should address no matter how
they are designed internally. The lack of a standard for a WPP communication makes it
hard to reuse the system between different vendors, because the module will be
incorporated into the server, unless a common interface is defined.

 92

As described with the AC module it is essential to define an interface if the
module is going to be separated from the server. However, with a defined interface at
hand, the system would be very flexible and have opportunities for changing the modules.

The case was a proof of concept test. The simulation showed that it was possible
to have several clients and multiple WPP simulators gathering data at the same time.
Feather studies should be made in order to establish the performance of the system;
however this has not been conducted due to the lag of real data.

4.4 Case study 3

This case study looks at some of the different bindings and protocols that can be
used in the communication. This is split into two main cases, the first one looks at the
number of times a method can be called in a time span of 10 seconds where the other
looks at the amount of data sent. This can be used as an indication of what the different
choices entail in relation to speed and throughput of the system. For instance, is the
number of handled calls a service can be called much smaller if the communication is
encrypted, and how many fewer bytes is sent by using binary encoding compared to plain
text/SOAP encoding. The test also has the very important task to prove that it is possible
to create and use different endpoints for the same service, where the configuration differs.

It is worth remembering that most of the bindings support the same basic features
like security, reliable messaging, different encoding schemes, and as such the basic
features can be kept no matter which binding is chosen.

How to design an implication test

If the tests are to be comparable it is essential to be able to control the system
parameters individually. Tests with the same parameters are conducted, where one
parameter at the time is changed. This will give a clear indication on how the different
configurations will affect the system performance.

Dealing with a system comprised of web services, it can be hard to give a specific
answer to how much a given choice influence the entire system. First of all it is not
possible to control precisely what goes out on the wire, and how fast the communication
will be done. Packets might be lost and re-sent, different routes might be used, etc. Even
if the transport is only done within a local network, different parameters in the transport
still have influence on the speed.

Testing the system as a whole and defining throughput is even harder to do. Not
only does the network setup influence the throughput, but overall performance will vary
as a function of hardware, configuration of RAM and CPU speed, among others. The
deployment of the system will also have a great influence on the throughput. Placing
individual modules on different computers as shown in Figure 30

 93

Worst case scenario of boundary communicationwill slow down the system.
External network communication is much slower than internal communication where no
network boundaries are crossed. For this reason, a precise number for the system can not
be given, however similar repeated tests will give an indication of the range the test
results will fall inside. If the system falls outside the predefined range, some kind of
counter measures must be introduced in order to keep the system stable and running. The
best approach would be to look at small subparts of the communication, and concentrate
on optimizing those parts.

Given the fact that the system is depending heavily upon web services and hence
SOAP, it is a logical step to look at the amount of data that is sent out on to the network.
The size of the raw SOAP packages can be compared to different kinds of encodings, for
instance, MTOM, ZIP compression and binary encoding. Encoding is the process of
transforming a message into a sequence of bytes. Decoding is the reverse process. It is
not possible to be sure on how much data is sent from a computer, unless the package is
inspected right before it is sent out on the wire, and subsequently once it is received
again.

A test is constructed where a custom filter is placed on the communication stream.
This will count the number of bytes sent, and the number received. At the same time a
timestamp will measure the time it takes for a message to have a round trip in the system.
Different package sizes must be sent in order to have an indication of the impact on data
size on different protocols.

The encoding measurements will indicate what the requirements for the network
system will be. However, the time will also indicate the impact an extra applied filter will
have on the system. For instance how much extra time will it take for a round trip if using
encryption in the system? Will the compression make the overall system faster due to the
smaller data amount needed to be transported on the wire? Etc.

WCF provides a way to place filters inside the communication stream, and hence
monitor the data send and received. Of course the filter will add a little overhead on the
system, but taken all the other sources for error, this is considered a minor issue.

To create a custom filter, three classes must be inherited for the encoding and
another one if the class must be configurable from a configuration file.

Class Description
BindingElementExtensionElement Class returning a custom binding.

Configuration of the class can be set
through the configuration file, for example
the encoding style of the binding, can be
set when creating the
MessageEncoderFactory

MessageEncoder Base class for encoding messages. Contains
methods WriteMessage and ReadMessage

 94

Class Description
taking a stream and converting it to a
message object and visa versa

MessageEncoderFactory Abstract class that makes it possible to
implement a factory object for the encoder.
It is possible to have several
MessageEncoders inside each other, but
this can only be done in code.

MessageEncodingBindingElement Binding element specifying the message
version used to encode the message.

The custom encoder can be used for any insertion into the message transport, it

counts the bytes sent on the wire, and at then creates a zip compression filter for the
traffic. The compression can be turned either on or off. In the encoders ReadMessage and
WriteMessage, a message is received and converted to a byte array. Compression is
achieved by creating a GZipStream. The stream compresses the data using the GZIP
industry standard available form RFC 1952. Because this is a standard available in
different platforms, non-WCF clients can still grab the stream and decompress it using its
native GZIP library. The stream takes an array of bytes and returns a compressed version.

Compression to uncompressed

0

2000

4000

6000

8000

10000

12000

tex
t c

om
pre

ss

MTOM co
mpre

ss

bin
ary

co
mpre

ss

tex
t c

om
pre

ss

MTOM co
mpre

ss

bin
ary

co
mpre

ss

tex
t c

om
pre

ss

MTOM co
mpre

ss

bin
ary

co
mpre

ss

Encoding type (Smaller is better)

by
te

s

uncompressed compressed

Figure 35

Compression of bytes

The test is run with 3 kinds of calls. The first service call is a simple one which
retrieves the logical node directory from a logical device on the system. The server is not
spending much time while creating a response, so the most of the time is spent on the
web service traffic. The medium call issues a logon followed with a logoff service call.

 95

Here the traffic sent is at a minimum level where the server processing time is slightly
higher than the first call. The last example issues a GetDataValues service call where it
can be regulated to send more or less data. Each method is called repeatedly for 10
seconds where the number of bytes and calls for each session is counted.

There is no doubt the compression can reduce the data amount sent on the line,
however the price of this can be seen in the number of calls that the system is able to
manage. For instance for the text call transferring 9kb is reduced by 87%, but with a
reduction in numbers of calls by 8% If the bandwidth is limited this is definitely a thing
that could be considered. However, it does reduce the overall flexibility of the system.
Figure 36 shows the numbers of bytes sent during 3 different types of calls together with
the compressed versions of the same service calls.

Christopher Kohlhoff and Robert Steel [CKRS2003] conducted a study on SOAP
for high performance business applications. They conclude that if the goal is a reduced
number of calls, then the speed of the compression is the predominant factor in a fast
network, while it is the message size that matters most with a slow connection. Their tests
also show that the system environment can make the results vary considerably.

Before making the decision of using compression, the amount of data sent and
bandwidth requirements must be specified first, then proper tests will uncover if it is a
good idea or not.

MTOM is intended for encoding binary data and do not provide any benefits on

the contrary for plain-text encoding. MTOM could be used effectively in file transfers.

Speed in cutom filter tcp http

0
500

1000
1500
2000
2500
3000
3500
4000
4500

tex
t c

om
pr

es
s

MTO
M co

mpre
ss

bin
ar

y c
om

pre
ss

tex
t n

o c
om

pr
es

s

MTO
M no

 co
mpr

es
s

Bina
ry

no
 co

mpr
es

s
tex

t c
om

pr
es

s

MTO
M co

mpre
ss

bin
ar

y c
om

pre
ss

tex
t n

o c
om

pr
es

s

MTO
M no

 co
mpr

es
s

Bina
ry

no
 co

mpr
es

s
tex

t c
om

pr
es

s

MTO
M co

mpre
ss

bin
ar

y c
om

pre
ss

tex
t n

o c
om

pr
es

s

MTO
M no

 co
mpr

es
s

bin
ar

y c
om

pre
ss

Encoding type (Higher is better)

ca
lls

tcp http

Figure 36

 96

Bytes send for compressed and uncompressed messages by changing the transport protocol

On the network transport layer the transport can also be changed. Figure 38 shows
how changing the transport protocol form HTTP to TCP effects the system by 3-20%.
Please refer to the Appendix for the test results.

4.4.1 Speed test of different bindings

In this test the focus lies on choices made for the transport. The test will not focus
on the speed on the system itself, but on choices made in order to effect the transport.
Different transport protocols’ security settings are changed where a test program call a
predefined service method as many times as possible within 10 seconds.

Because the data sent and received per call is the same, it is possible to compare
the results. However, it will only be an indication because the more time that the program
spends inside a method, the less important the choice will be compared to the overall
performance. To give a more precise result, different service methods are used for the
test. The methods are rated according to how much work the server has to do to fulfill the
request.

The table below shows the number of calls with different protocols and a
comparison of the number of calls to the TCP protocol, the one able to complete most
service calls17.

17 All tests are executed on the same computer, retrieving data from another computer in the same network.
The test results should not be seen as an absolute speed of the system.

 97

Figure 37

Speed test for different endpoints18

The test shows that depending on the protocol, the number of calls can decrease
by up to 260% if WsHttpBinding is used compared to TcpNetBinding. This is remarkable
because WSHttpBinding is the most flexible choice, but also one of the slowest!

The call revealing the high percentage is not sending very much data, but also the
big call has over 110% better performance. It is worth noting that the last case uses
mutual certification of the traffic. It has better performance than the basic WsHttp call.
By default WsHttpBinding uses message security with windows login credentials.

Multi bindings test

The test has a client and a server. Both client and the server are configured
through their individual configuration files. Each test process gets an endpoint for the
service. The endpoint has the possibility to define every aspect of the communication, by
defining behaviors for the endpoint.

18 Small call GetServerDirectory
Medium call Logon Logoff
Big call GetdataValues for 7 tFCDA

 98

The key attribute for the appSettings can be read from the application, and can be
used for specifying the URI that the service is listening on. Each endpoint will be used by
the client machine to run the same tests.

Figure 38

Multi endpoint setup in the configuration file

Please notice that the use of endpoints is an easy way to build a service where
different client types are supposed to use it. For instance it is possible to have different
encodings for different clients.

This test shows that what is transmitted impacts heavily on the round trip time of
a call. The most important point in designing this web service is that it be capable of
communicating with the end user. But if it is known from the start that the system will
only be communicating with a WCF client, then there is no reason to keep using text as
the encoding, or for that matter to only use the WS compatible protocols. NetTcpBinding
would be much faster, and increase the overall throughput of the server.

Figure 39 shows how it is possible to choose a protocol out of some simple
questions. To get the best performance and still have a flexible system, multiple
endpoints exposes a great solution. A client should always look for the most optimal
available endpoint in order to maximize performance and if the optimal solution is not
possible get the next possible endpoint.

 <appSettings>
 <add key="WsHttp" value="http://host:8000/" />
 <add key="Tcp" value="net.tcp://host:8001/" />
 <add key="Pipe" value="net.pipe://host/" />
 </appSettings>

 <system.serviceModel>
 <services>
 <service
 name="IECServer.IEC61400_25Service">
 <!-- use base address provided by host -->
 <endpoint name="WsHttpBinding"
 address="HTTP"
 binding="wsHttpBinding"
 contract="IECServer.IECInterface" />

 <endpoint
 address="TCP"
 binding="netTcpBinding"
 contract="IECServer.IECInterface"
 name="NetTcpBinding" />
.
.

 99

Figure 39

Binding choice

Figure 39 shows how the decision about binding protocol can be made. It is not
suggested that every possible endpoint is exposed, all the implications that a binding
entails must be considered. But an important point in this is that the design does not have
to be centered on the lowest common denominator for all clients to be able to
communicate with the service. Different endpoints can be created for different clients.

Case Summary

According to Bauyssounouse and Sifakis, Quality of Service is;

“…function mapping [of] a given system instance with its full behaviour into some
quantitative scale.”

This is usually associated with the error rate, response time, bandwidth and
system usage such as CPU and RAM peak. Usually quality of service (QoS)
measurements depends upon both environment and service behaviour. For this reason it is
hard to provide a clear number for what the test shows.

It should be noticed that the different standard encodings did have an influence
upon both speed and data amount sent. It is hard to conclude something generally on the
test. The configuration of the test and the system on which the test is running has so many
parameters that many more tests could be conducted. For this to make any sense, a clearer
goal for the system must be established. The test did show that the system reacted to
different configuration parameters, for this reason it must be concluded that if the
working condition of the system requires something special, the configuration does
provide boundaries that can be tweaked for better performance for a special case, and
thereby change the overall QoS.

 100

No matter how the system is configured it will impact the overall operation of the
system. In regular applications, the flexibility of the system was limited. However, due to
the nature of web services and the way they are configures by using WCF, it is easy and
cheap to provide several ways for clients to communicate with the system. No additional
code is needed by just adding the endpoint to the configuration file. Not all clients
support all possible choices by which the service can communicate. By exposing multiple
endpoints each client can choose the most efficient one. This ensures that the system does
not have to operate only under conditions designed for a worst case scenario, but it can
provide different levels of service. This maximises flexibility for both client and service
providers.

 101

4.5 Case Study 4

Part 5 of the IEC61400-25 series is dedicated to conformance testing. Lots of tests
are involved when developing a complete system until it is running properly and
satisfying the specified requirements. Testing a complete system involves several kinds
of tests. Some of the tests can be completed during the development process, while others
must be performed upon completion of the system. The completed system should be
tested successfully against all the proposed tests. What to test for varies a greatly but the
most common attributes a system should have include capability, reliability, efficiency,
portability, maintainability, compatibility and usability. This thesis is about a prototype,
and as such it is not intended as a complete system. The prototype is mainly to test
aspects of a complete system. In order to create a final system more formal requirements
must be specified, and the system should be designed in order to meet those specific
requirements.

Part 5 proposes various test procedures in order to make sure the system operates
properly according to the IEC61400-25 standard. However, all the procedures involved in
the conformance tests are not conducted under the development cycle of this project. This
would be far too unrealistic with the limited resources available.

The tests conducted for the developed prototype are limited to the functional
testing of the services offered and general unit testing during development of the
prototype. The aim of functional testing was to test whether the service methods operated
as they should with proper request and reply objects.

Functional tests applied on the service methods also reflect the inner state of the
server which makes it possible to trace behaviors of the system under certain conditions
which will lead to further structural testing procedures. However the main focus is on
functional testing.

In Part 5 of the IEC61400-25 series abstract test cases are defined to test a server.
The structure of the server test cases is as follows:

a) Documentation and version control
b) Data model (IEC61400-25-2)
c) Mapping of ACSI models and services (IEC61400-25-3); the corresponding sub

clauses that define the abstract test cases are listed below:
• Application association.
• Server, logical device, logical node, and data model.
• Data set.
• Reporting.
• Logging.
• Control.
• Time and time synchronization.

 102

The tests conducted for the prototype mostly covers part b) and c) of the list above. The
service methods through which the tests are conducted are listed below.

• Logon
• Logoff
• GetServerDirectory
• GetLogicalDeviceDirectory
• GetLogicalNodeDirectory
• GetAllDataValues (Not implemented)
• GetDataValues
• SetDataValues
• GetDataDirectory
• GetDataDefinition
• GetDataSetValues
• SetDataSetValues
• CreateDataSetValues
• DeleteDataSetValues
• GetDataSetDirectory
• Report
• AddSubscription
• RemoveSubscription
• GetBRCBValues
• SetBRCBValues
• GetURCBValues
• SetURCBValues
• GetLCBValues
• SetLCBValues
• QueryLogByTime (not implemented)
• QueryLogAfter (not implemented)
• GetLogStatusValues (not implemented)

Each test clause is divided into two groups as Positive and Negative test cases.

Tests grouped under Positive are test cases where the result is successful whereas
negative test cases results in non successful responses. Please refer to the appendix for the
relevant test results.

The service tests conducted show that the implemented service methods can
generate the expected responses with the correct data types defined for the services. This
implies that the business logic executed on the server is correct as well.

 103

Chapter Summary

In this chapter different case studies have been conducted. This is done to make
sure that the system meets the requirements defined in Chapter 2.

In the system a wide range of things have been addressed, and a proposal has been
presented. It is hard to say if the choices will meet requirements in a real system, unless
more formal requirements have been defined, however the case studies do show
preliminary success at the conceptual level.

 104

Chapter 5
CONCLUSION AND FUTURE WORK

The goal of this thesis was to implement and test an IEC 61400-25 compliant

generic server which will be used to monitor and control wind power plants. During the
development of the server there has been no opportunity to test and develop against a real
wind power plant device. Instead of working against a real device, a basic device
simulator has been created to create a minimum environment to develop a prototype and
test it.

 The evaluation of the standard is made through the degree on how successful the
developed system is working. That is, only the developed communication system has
been considered as a base when evaluating the standard. Specific details within the
general wind power plant domain are not considered since that is beyond the scope of this
thesis. For example, the real behavior, constraints and limitations of a WPP are not
reflected in this study.

 The main focus has been on the server system and its interaction with clients
through the specified web services defined in IEC 61400-25-4. When developing the
server system, general considerations such as security and modularized software
architecture have been taken into account and implemented, wherever applicable.

From the requirements outlined in chapter 2, a prototype has been implemented
and four case studies have been conducted in order to verify that the system meets the
specified requirements.

5.1 Chapter summery

Chapter 1
Chapter 1 presents the motivation for having a platform neutral communication and
control system for wind power plants. At the same time it argues that such an approach
has value in order to communicate without vendor boundaries. It is shown that this is one
of the main building blocks towards a large scale monitoring and control of the power
grid.

Chapter 2
Chapter 2 presented the architecture of the system and the data model that the system
should be in conformance with together with a conceptual model defining the modules
constituting the system. Through the analysis it was specified that the system must
provide the following features:

 105

• It must represent the wind power plant information model as defined in IEC
61400-25-2

• It must be comprised of replaceable modules.
• It must exhibit secure web service communication between client-server and the

different modules the prototype is comprised of.
• It should be an easy to configure, modular architecture.
• It should have the capability to handle data in a way that ensures maximum

throughput.
.
Chapter 3
Chapter 3 presents the arguments for using SOA and web services for the prototype
implementation. Then a description of what can be expected from the use of today’s
standard web services is presented followed by a discussion on how it is handled by
Windows Communication Foundation (WCF). WCF was chosen a development platform
using .NET C#.

Chapter 4
Chapter 4 presents case studies, where it is demonstrated that the prototype system is
capable to work under different conditions. This chapter also describes how the involved
modules are implemented together with their capabilities.

5.2 Conclusion

The goal was to implement a functioning prototype of a generic server. However,
there are still many aspects that must be dealt with in order to say that everything has
been implemented. Almost all the services defined in the standard have been
implemented using web services. This includes the mapping and representation of the
data on the server side and the communication of the data to client systems.

The IEC 61400-25 standardization series is still work in progress, and during this
project several updates have been released. The new releases of the standard were mainly
on ACSI service mappings to a communication profile. This is part-4 of the series
defining the web service interface with its data types. After some time this project had to
be closed for changes in order to continue the implementation from a fixed point.
Otherwise, continuously modifying the system would slow down the implementation.
Because of this, not all changes made to the communication mapping are reflected in the
implementation. However, services implemented earlier have been changed to
conformance with the later versions of the mappings.

Examples of services implemented according to the older versions are the Logon
and Logoff services used to authenticate and associate a client system. In later versions of
the mapping these services have been replaced with similar services making it possible
for a client to participate in more than one client-server association. Currently the server
only recognizes the Logon and Logoff services when associating with a client system.

 106

Some of the services are not implemented because their WSDL definition was not
complete or erroneous. One example to these services is the GetAllDataValues which was
not associated with a suitable return type.

The list below outlines the main requirements which have been implemented in
this project.

• Information Model: On the main server a suitable data structure has been

established which can store data as defined in IEC 61400-25-2. It is an in-memory
data structure making data manipulation and retrieval very fast and efficient.
When building logical devices from logical nodes and data instances, the exact
hierarchical structure can be presented on the server. The information model on
the server is initialized through an XML file which makes it possible to alter the
data models of the different devices easily.

• Service interface: A web service interface has been implemented through which

the service methods are communicated. The web service is implemented from the
WSDL given in IEC 61400-25-4. WCF has been used for the web service in order
to benefit from latest improvements within web services.

o Different endpoints providing different communication features can be set

up for the service so that client systems can choose the best suitable
endpoint. Tests in case study 3 shows that different choices regarding the
communication (encoding, encryption, transport protocol) will result in
big performance variations.

• Services: The server logic for the services has been implemented. Business logic

within the different modules has been isolated from the server. It is possible to
send service requests with the correct data types defined in the standard and
retrieve the corresponding response.

• Module based architecture: The server components have been implemented as

separate modules making it easy to configure and change the system. For example
the service interface is not tightly coupled with the central server itself.

o It is possible to attach another service interface using another protocol than

SOAP/web services.
o The change of the AC module is only a matter of replacing a DLL in a

directory. It is not even necessary to provide any configuration changes,
the system will automatically recognize that a module containing AC
information is present, and it will automatically be loaded.

• Reporting: The reporting service has been implemented according to the event

driven data retrieval model defined in the standard. A client system can subscribe
to reports which are generated by the report control blocks initialized by the

 107

subscription service. Both buffered and un-buffered reporting has been
implemented.

• Access Control: An access control mechanism is implemented making it possible

to create a specific view of the data and services applied to it. The access control
module can be configured so that different views of the system can be assigned to
different client systems.

• Device simulators/connectors: In order to be able to test the system, device

simulators capable of generating data have been implemented. The simulators use
log files from real wind power plants when generating data. Different scenarios
have been studied which are most likely to appear in a real world case such as
connection loss and lost data packages.

• Configuration: The server and its modules are implemented such that they can be

easily configured. For example the access control mechanism can be configured
through XML files in order to create different views of the system.

o The server can be configured to handle different WPP simulators with

different data models. The structure of each simulator attached to the
system can be defined separately.

o The device connectors can be configured so that the server can locate the
simulators and associate it with the respective data model defined on the
server.

o The security and transport features of the system can be easily configured
through configuration files.

• Client: A web based client has been developed to test and demonstrate the

services implemented. The implemented communication module for the server is
based on web services. Any client capable of consuming web services can connect
to the server and perform its tasks through the web services made available.

5.3 Future work

At the end of this thesis project, all work is far from done. The system contains many
aspects that would benefit from continued work. During this thesis project the standard has
not been finalized, though it is expected to be so in the near future. When this is done a
complete implementation can be realized. The server must be tested in accordance to the
complete standard and some of the methods must be re-implemented.

• Logging: The implementation of the logging features of the server is not fully
completed. It is only possible to configure the log control blocks (LCB) and retrieve
their data directory. However, the logging is very much similar to the reporting
mechanism. Both mechanisms make use of a handler object which is controlled by
the control blocks which works in conjunction with an event monitor. Since the

 108

reporting mechanism is working, it will not be unrealistic to conclude that the
logging mechanism can be implemented easily by reusing some of the important
techniques used in the reporting mechanism. However, one important difference in
the logging mechanism is the log database. Instead of short term buffers the logging
must be implemented together with a relational database so that clients can retrieve
historical data which has been logged. The service methods to retrieve log data have
not been implemented.

• Test in real life: From the WPP to the client, the data has to be passed through

many levels of transportation, each level placed in separate modules or execution
threads. The fact that the system is split into so many modules provides flexibility,
but having many communication lines will slow the system, and at the same time
expand the list of places where something can go wrong. Future work should
include a study into what is needed for each boundary cross, both in relation to
security, stability and performance. The prototype provides a proof of concept
showing that is possible to implement the standard and have a running system.
The next step should include a real case study, where a scenario is designed, and
the system is employed for a real wind power plant. With these requirements a
more formal test could be conducted evaluating the performance of the system.
This should lead to optimization of the individual modules in order to have the
best throughput for that particular case.

• Security aspects: Security must be looked upon in depth before the system can be

accepted as a completed final system. The focus has been on implementing as much
of the standard as possible. In the communication a lot of boundaries are crossed. In
order to have a user-stable and friendly system, more work should be put into
analyzing the possible failures that each module can experience, and a common
model for distributing information about other module states could be designed.

• Stability and robustness: Currently the server maintains an in-memory internal

data model for holding the device data. The data and overall state of the devices are
not stored for later recovery, including reports stored in internal buffers. The server
should implement features that make it possible to recover from an unexpected
failure.

5.4 Overall Conclusion

The main focus was on creating a system to implement a server system compliant
with IEC 61400-25 standardization series, a system that was not tightly bound to specific
technologies and easy to configure. The resulting implemented server system has shown
that such a system is possible.

The system covers most of the major parts defined in the standard. All topics in
the requirements has been addressed one way or the other, and we believe this thesis

 109

should provide a good basis for future work and efforts toward the goal of creating a
vendor independent communication environment for all wind power plants in the world.

 110

APPENDIX

A TESTING

TESTCASE

Testing a complete system involves several kinds of tests. Some of the test can be

completed along the way while development process is in progress, while other requires
that the system as a whole is completed. For the system to be completed all of these test
should be run and passed. What to test for varies a great deal but the most common
attributes a system should have includes capability, reliability, efficiency, portability,
maintainability, compatibility and usability.

This thesis is about a prototype, and as such it is not intended as a complete
system. The prototype is mainly to test aspects for a complete system. In order to create a
final system more formal requirements must be specified, and the system should be
designed in order to meet those specific requirements.
A common conception about test is that they should reveal errors; however, more recent
thinking is adopting the notion that a good test is one which reveals information of
interest to someone within the project.

Unit test

Unit test is small automated test that the system can run on demand. As the name
implies a unit test is suppose to test one unit in the system, or one small operation. Unit
test is usually combined in test groups called sockets.
The tests are created by specifying methods, and associate the [test] attribute with it.
The some code set up the test the data there is to be tested. In this case it is a test for
testing the conversion of the data between the server class and the WCF class called
ConvertToWCF.

The initial object is created and the method is called. The reply object is the tested
to make sure that it contains what is expected of it.

The assert object contains many method for testing the result. In this case it looks
for equality in the reply.

 111

Figure 40

Unit test setup (some code has been removed)

When running the unit test, reflection is used to call all methods containing a test
attribute. Each test must be completed without any error in order to be a success. If all
tests are completed without errors the test is a success, else an error indicating the
problem will be displayed.

What unit test can do and not do.

The great advantage of unit test is that if a method is altered the unit test might
identify errors introduced in the change. Unit test do not replace common sense. It is not
an automated test. Unit test is not any better then the programmer who wrote them.
They can tell if the system works correctly, but only is an operation within the system is
working correctly. Of cause having as many of the operations covered by unit test as
possible will provide a good indication if the system is working or not. The test can not
be used for testing internal states or operations, they simply chain a specific input
together with an expected output, for instance if a test on setDataValue is performed, the
test will not reveal if this has been done or not, this kind of testing is known as black box
testing. In order to check the internal state the data must be retrieved by GetDataValue,
this is known as white boxing test.

Unit test should only be used for non time critical tests, and not to test
performance issues of the system.

Acceptance testing

The purpose of an acceptance test is to make sure that the system meets the
requirements that are specified in the requirements specifications. This system is a
prototype and for that reason there are no formal The prototype has not been subdued to
acceptance test because no formal requirements has been presented for the final system.

User Testing

[Test]
public void AddSubscriptionReply() {

//create test object
AddSubscriptionReply initWCFObject =
new AddSubscriptionReply();
//fill object with data
.
.
//call method
AddSubscriptionReply ReturnObjServer =
AddSubscriptionReply.ConvertToWCF(initWCFObject);
.
.,
//check respone
Assert.AreEqual(ReturnObjServer.Items[0], setData);

}

 112

User test is not relevant for the main scope of this project. A user test is conducted in
order to establish if the system is usable for the end user. Client programs should be
submitted to user test.

Additional possible test

In Visual Studio Team Suite it is possible to get an indication of how much of the
code was covered by the unit test, it is also possible to obtain information about the time
the running application spend inside different part of the program. This is a great tool for
optimizing code and get the most out of the time spend in tweaking the system. If the
system spends a lot of time inside a special subpart of the program this would properly be
a good place to look for optimizations in the code. In order to run these tests the system
must be deployed and running under normal circumstances. No such test has been
performed, because no data about normal circumstances is available, and the test
computers do not have Visual Studio Team Suite installed on them.

 113

APPENDIX

B CERTIFICATE

Access to the WPPs data must be restricted to approved parties only. Mutual
knowledge of identity must be established, in order to removing a possible traffic relay to
another server (relay or man-in-the-middle attack) or people masquerading as a legitimate
client

Both the service and client must have there identity verified by the other party,
one way to do this is by the use of a certificate. When the client contacts the server,
certificate information is exchanged together with a mutual encryption key. Both client
and the service must be able to verify the claim of identity for the communication to take
place. The most common ways of this is if the certificate is signed by a certification
authority, or the certificate is in a trusted key store of the machine checking the claim. If
the certificate is signed by a root authority or it is located in the key store the certificate is
trusted.

Getting a certificate signed commercially can be a costly affair. In a closed
community like a corporation where a finite number of users exist, there is no reason to
have a commercial authority to sign the certificates. A root cert is created and placed on
the server. Each user gets a certificate signed by the root cert. When a user presents a
claim of identity it can be verified by the signature.

For the test 3 certificates has been created for the system

• Root cert
• IECServerCert (named localhost)
• IECClient

The cert is placed on the local computers proper key store make sure that the

process running the applications has appropriate access rights to the files the cert is
located in. On an IIS (Internet information server) this is the standard the user ASPNET,
and the rights can be set by using the utility certkeyfiletool.exe distributed together with
IIS.

In the servers configuration file the following lines must be included.

 114

Figure 41

Service setup for certificate.

Inside the security tag it is specified that the security is message based opposed to
transport based, and the client must present a valid certificate as credientials. Credientials
can also be established as Basic19, Digest20, windows21, NTLM22, but certificates are
based on open standards, and are therefore the most flexible choice. The
certificateValidationMode is set to ChainTrust. Telling the computer that the cert must
have been signed by a trusted authrity.

19 This corresponds to the Basic authentication method in IIS. When using this mode, the IIS server must
be configured with Windows user accounts and appropriate NTFS permissions.
20 Digest authentication is similar to Basic authentication, but offers the advantage of sending the
credentials as a hash, instead of in clear text.
21 This corresponds to Integrated Windows Authentication in IIS. When set to this value, the server is also
expected to exist on a Windows domain that uses Kerberos as its domain controller. If the server is not on a
Kerberos-backed domain, or if the Kerberos system fails, you can use the NTLM value below.
22 This allows the server to use NTLM for authentication if Kerberos fails. For more information about
configuring IIS in IIS 6.0

<endpoint address=""
binding="wsHttpBinding"
bindingConfiguration="Binding1"
contract="IECServer.IECWCFInterface"/>

.

.
<binding name="Binding1">
 <security mode="Message">
 <message clientCredentialType="Certificate"/>
 </security>
</binding>
.
.
<behavior name="IECServiceBehavior" returnUnknownExceptionsAsFaults="False">
<serviceCredentials>
 <serviceCertificate

findValue="IECService"
storeLocation="LocalMachine" storeName="My"
x509FindType="FindBySubjectName" />

 <clientCertificate>
 <authentication

certificateValidationMode="ChainTrust"/>
 </clientCertificate>
 </serviceCredentials>
</behavior>

 115

Figure 42

Client setup for certificate

The client is set up in the same way as the service. Please notice that the
certificatValidationMode is set to PeerOrChainTrust. The system will look for the cert in
the local key store of the current user; if it is not found here it will look for the signers’
certificate. Having the peer to check is not as safe as checking against a signer, because
anyone can in theory add a certificate to a key store, but it is not everyone that can sign
the certificate with the right key. The use of certificates fulfills the requirements of
security for case study 1. It takes some efforts to set up the system, but it should still be
worth the effort by the extra security added.

The certificate assures the traffic between the web service client and the web
service itself is secured. If the communication stub is shared by many users, the
identification of them must be established elsewhere. If the client is a DLL used by a web
server it will not identify the end user, to do this a simpler security approach must be
taken between the web client and the server.

Running the demo

Even though the use of certificates for security is a great thing for the system, it is
not that easy to setup a system that runs on any system. Information in the certificate
must correspond to that of the host machine, and be proper installed into the host systems

<endpoint name=""
address="http://localhost/cert/service.svc"
binding="wsHttpBinding"
bindingConfiguration="Binding1"
behaviorConfiguration="ClientCertificateBehavior"
contract="IECServer.IECWCFInterface " />
.
.
<binding name="Binding1">
 <security mode ="Message">
 <message clientCredentialType="Certificate" />
 </security>
</binding>
.
.
<behavior name="ClientCertificateBehavior">
 <clientCredentials>
 <clientCertificate findValue="IECClient"

storeLocation="CurrentUser" storeName="My"
x509FindType="FindBySubjectName" />

 <serviceCertificate>
<authentication

certificateValidationMode="PeerOrChainTrust"/>
</serviceCertificate>

 </clientCredentials>
</behavior>

 116

trusted key-store. In order to run the demo this must be done, otherwise the system will
not be able to run properly.

 117

APPENDIX

C VERSIONING AND WEB SERVICES

The lifecycle of a system contains maintenance, in which the system is submitted
to modification and/or additions. To make a flexible system it is vital that changes can be
introduced in an easy way where the possibility of introducing errors is limited to
minimum. A common challenge for software designers is how to add or change
functionality with out resulting into much conflict and still be working for the running
system. Changes might include change in data types or functionality.

For regular applications, where the whole code is developed and controlled the
same company, changes can be enforced, and every system using the module must be
adapted to the new convention. With web services this is not so easy. It might not even be
known how many users a service has. Changing the WSDL does not necessarily result in
the client not being able to use the service; however it can result in unexpected replies.
Changes can be either backward-compatible or non-backward-compatible.

Backward compatible changes include:

• Addition of new operations to an exciting WSDL,
• Addition of new schema types in the WSDL.

Non backward compatible changes:

• Removal of an operation
• Renaming of an operation
• Changes of parameters including data types and order for an operation
• Changes of the structure of a complex data types.

Backward compatible changes can be implemented without that many restrictions.
Running services will not be affected by changes because they still hold a valid
communication contract for the service.

To be backward compatible the involved data types and method names must not

change. It is always possible to add data or methods, but not to omit them entirely. No
backward compatible contract need to have a way for the client to determine if a change
has been made.

In web services there is no standard way determining the method version. This
leaves the problem up to the developer to solve the problem through patterns and best
practice schemas. A common way to deal with this problem is to have a version number
assigned for a method. In this way different versions can be supported depending of the
version number a client is able to use.

 118

In any case it would be a good idea to have a policy on the field. This will inform
the clients about what to expect for changes. In that way the clients has the possibility to
design there client system in a way where versioning will not result in major problems.
[KBME2004]

 119

APPENDIX

D REFERENCES

[JDAT03] José Delgado, President & CEO American Transmission Co.
The Blackout of 2003 and its Connection to Open Access

[IEC] IEC 61400-25 Communications for monitoring and control of wind
power plants

[IBM04] SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES:
CREATING FLEXIBLEENTERPRISESFOR A CHANGINGWORLD October 2004
Ziff Davis Media Custom Publishing.

[Infoworld] http://www.infoworld.com/article/05/11/03/HNjavanet_1.html?
WEB%20SERVICES%20INFRASTRUCTURE

[CKRS2003] Evaluating SOAP for High Performance Business Applications: Real-Time
Trading Systems http://www2003.org/cdrom/papers/alternate/P872/p872-kohlhoff.html

[WY2005] Improve the interoperability between J2EE and .NET, Part 2. wangming Ye
Software engineer IBM 2005. http://www-128.ibm.com/developerworks/java/library/ws-
tip-j2eenet2.html

[WSI] http://www.ws-i.org/

[BRJ99] Booch, Grady, James Rumbaugh, and Ivar Jacobson . Unified Modeling
Language User Guide. Addision-Wesley, 1999.

[Fow02] Fowler, Martin . Patterns of Enterprise Application Architecture. Addision-
Wesley, 2002.

[BCK03] Bass, Clements, Kazman; Software Architecture in Practice (2nd edition),
Addison-Wesley 2003.

[WY05] IBM article Wangming Ye
http://www.128.ibm.com/developerworks/iava/librarv/author#author

[TPC06] Tpc website: http://www.tpc.org/tpcc/faq.asp

[KBS04] Dirk Krafzig, Karl Banke, Dirk Slama, Enterprise SOA: Service-Oriented
Architecture Best Practices, Prentice Hall PTR 2004, 0-13-146575-9-12

[CKRS2003] Christopher Kohlhoff, Robert Steel Evaluating SOAP for High
Performance Business Applications: real-time Trading Systems. 2003

http://www.infoworld.com/article/05/11/03/HNjavanet_1.html
http://www2003.org/cdrom/papers/alternate/P872/p872-kohlhoff.html
http://www-128.ibm.com/developerworks/java/library/ws-tip-j2eenet2.html
http://www-128.ibm.com/developerworks/java/library/ws-tip-j2eenet2.html
http://www.ws-i.org/
http://www.128.ibm.com/developerworks/iava/librarv/author#author
http://www.tpc.org/tpcc/faq.asp

 120

[PY03]Prasad Yendluri 2003
http://www.webpronews.com/webdevelopment/webapplications/wpn-27-
20030829WebServicesReliableMessaging.html

[JP2005]Joel Pobar 2005 MSDN magazine and
http://msdn.microsoft.com/msdnmag/issues/05/07/Reflection/

[MFPEAA] Patterns of Enterprise Application Architecture.2002

[KB2006] Keith Brown security Brifes
http://msdn.microsoft.com/msdnmag/issues/06/08/SecurityBriefs/default.aspx#S3

[KBME2004] Kyle Brown Michael Ellis Best pratices for web services versioning
http://www-128.ibm.com/developerworks/webservices/library/ws-version/

[FC] Frances Cleveland IEC TC57 Security Standards for the Power System’s
Information Infrastructure – Beyond Simple Encryption

http://www.webpronews.com/webdevelopment/webapplications/wpn-27-20030829WebServicesReliableMessaging.html
http://www.webpronews.com/webdevelopment/webapplications/wpn-27-20030829WebServicesReliableMessaging.html
http://msdn.microsoft.com/msdnmag/issues/05/07/Reflection/
http://msdn.microsoft.com/msdnmag/issues/06/08/SecurityBriefs/default.aspx#S3
http://www-128.ibm.com/developerworks/webservices/library/ws-version/

 121

APPENDIX

E BOOKLIST AND SITES

Name Author publisher ISBN
Programming
INDIGO

David Pollmann Microsoft Press Library of Congress
Control Number
2005925788

Programming
Microsoft Windows
with c#

Charles Petzold Microsoft Press
2002

0-7356-1370-2

Security in
computing

Charles P. Pfleeger,
Shari Lwrence
Pfleeger

Prentice Hall 2003 0-13-035548

Patterns of
Enterprise
application
architecture

Martin fowlser Matt
Foemmel, Edward
Hieatt, Robert Mee,
and Randy Stafford

Addison-Wesley
Professional 2002

0321127420

NUnits Bill Hamilton O’Reley Media 0-596-00739-6
Special edition
using c#

various 2002 que 0-7897-2575-4

Enterprise SOA:
Service-Oriented
Architecture Best
Practices

Dirk Krafzig,
Karl Banke,
Dirk Slama

Prentice Hall PTR
2004

0-13-146575-9

Site
In designing this project a lost of information was gardened from various sites concerning
demos and knowledge.

Forums and blocks was used a lost. It is not possible to credit every single forum writer,
but the most used sites are listed here.

http://msdn2.microsoft.com/en-us/default.aspx
www.Codeproject.com
http://blogs.msdn.com/drnick/
http://staff.newtelligence.net/clemensv/
http://www.douglasp.com/blog/default.aspx
http://blogs.msdn.com/yassers/
http://blogs.msdn.com/mfussell/
http://wcf.netfx3.com/content/BreakingChangesbetweenVistaBeta2andJuneCTP.aspx

http://blogs.msdn.com/mfussell/

 122

APPENDIX

F GLOSSARY

Description of terminologies used

In this section a brief description of some of the used technologies, and other
terms

Web services

A web service exposes an interface, and communicates through data types shared
in contracts. The communication in and out of the service is done in a common industry
agreed way, by using numerous XML protocols.

XML

XML is a self-describing, human readable language that is used to structure
information. Xml documents are written in ASCII23 characters. XML is simply a way to
format a document. Xml is not at tightly bound language, anyone can define their own
data types.

Because XML is based upon ASCII it is platform independent. At the same time it
is a text format, assuring that all standard protocols for exchanging text can be used. No
special measurement has to be taken when using XML. It can be passed through firewalls
without any problems, and there is no chance of getting malicious code, because it is only
comprised of text information. To use a XML document on simply has to follow the rules
defined in a schema.

SOAP (Simple Object Application Protocol)

Soap is a schema for XML. It defines a way to send a message over a network. In
environments where services are distributed among computers on a network, it is
essential to have good communication. Earlier on the communication was offend done in
a system specific way. For instance using RPC 24 or DCOM 25 the client were bound to
these technologies not only might be bound to a specific kind of system, but it also
required that the network was equipped for that kind of communication. For instance
using RPC special port had to be open in order to fulfill the requests. SOAP utilizes
standard web protocols like HTTP, which is supported by all browsers. SOAP is
completely platform and language independent of the application using the service.

WSDL (Web Service Definition Language)

This is an XML format used when publishing a web service. This file describe all
the basic essentials to communicate with a given web service. The file acts as a contract
of how the communication has to be done in order to use the service.

23 ASCII American Standard Code for Information Interchange. A Common schema for representing characters on computer systems.
Using ASCII makes sure that most computer systems understand the text.
24 Remote procedure call. Method to allow a programmer to call function located on a remote machine. Even though most people
relate RPC to Suns variant, it is a pattern for solving distributed method calls.
25 Distributed Component Object Model (DCOM). An extension of Microsoft’s Com objects, DCOM makes it possible to utilize
COM object across a network. COM is earlier MS attempt of making language independent object for programmers.

 123

A WSDL file contains four major elements.

• <porttype> :This describe the Operations there can be performed on a web
service, and how the messages is used to achieve this. The port type can be
compared to an interface for a class or function library in conventional
programming.

• <message> :This is the signatures of the data entering and leaving the methods. It
describes the data elements entering and leaving a method. Each method can have
one or more messages attached to it.

• <types> : describes the data types involved in the communication. To have as
much platform neutrality as possible XML Schema is used for defining the data
types.

• <binding> : Defines the message format and used protocols.

Given a WSDL file you have an abstract description of the operations and
messages involved, and a concrete binding to a URL and message format. WSDL files do
have information about the functionality of the service, but in today’s use of web
services, there should be added a layer of security, and flexibility. This is addressed later
when we talk about MS way of dealing with web services.

XSD

A XML format defining the rules/data types a given XML file can or must
contain. The WSDL is defined using the XSD standards.

UDDI (Universal Description, Discovery and Integration)

What good is it to have a brilliant service, if no one knows that it is there? UDDI
is a standard way to publish information about a web service on the internet. By
registering to a UDDI service you make sure that people can find your service, and get
the WSDL information necessary to consume it. Having a service like this is a
cornerstone in having agile software, because several of the same type of service can be
registered with a UDDI. This means that if one of the services has a denial of service, the
other one can take over.

W3C

W3C is one of the corner stones in web standards. They play a major role in the
standardization of protocol used for web services. This includes XML, WSDL, SOAP,
MTOM and the WS-*.

OASIS

Oasis is one of the major forces behind web service specifications, this include
Ws-security SAML. They are also involved in UDDI and WS-ReliabeExchange.

WS-I

WS-I group for open industry standard promoting web services and the
interoperability Ws-I has released the most widely adapted web service profiles like WS-
BasicProfile. They are also behind numerous tools for conformance testing..

 124

Encryption

Encryption comes from the Greek word Kryptos that means hidden or concealed
Encryption has the purpose to make information unreadable to anyone else then the
intended parties of the information. This is done by some kind of key there can be used
for unlocking the true meaning of the text. A good encryption algorithm has the following
properties:

• Easy and fast to convert plain text into cipher text. (Encrypt)
• Easy and fast to convert cipher text in to plain text. (Decrypt)
• Guessing the right key should be close to impossible in linearly time26
• The cipher text must not contain hidden information about the plaintext27. It must

hide information allover the cipher text.

In computer science there exist two major encryption methods commonly used
today, synchronic and asynchrony encryption.
Synchronic encryption uses the same key for both encryption and decryption. These are
usually the fastest encryption algorithms, but it has the big problem of sharing a common
key between parties without the key getting falling into the wrong hands.

Asynchrony encryption has a public key and a private key. (Two large prime
numbers). These keys are interchangeable and can decipher anything locked by its
counterpart. Anyone can encrypt a text using the public key, and only the owner of the
private key can read it. In the same way the private key can be used to encrypt or sign a
text.
By using the public key the text can be decrypted.
Signing is done by calculates a unique number for the text, a hash value, and encrypt it.
The client calculates the hash values, and the encrypted number must be equal to this.)
Usually the private key will not be used for encryption, because everyone can read the
text anyway, but signing is very useful. The signature does not only verify the identity of
a message, it can also guarantee the integrity of it. If someone changes the massage, the
hash value will not match, and the receiver will know that the data has been tamper with.
At the same time everyone is guarantied that it is indeed the person who claims to have
signed the document there has done it, because a wrong private key would make the text
unreadable by the public key. Asynchrony encryption takes advantage of the fact that it is
hard to factor large numbers.

26 |Brute force attack where the attacker tries to guess the key by trying every possible combination
possible.
27 If the cipher is a rotation cipher (substitution of letters) vital statistical information is still hidden in the
text about relation to other letters and frequency of use of each letter. For instance the letter E in the
English language is used much more frequently then the letter x, Statistical analyses could then give a good
idea of the substation letter.

 125

Certificate
A certificate holds a collection of data there identifies a computer or a user.

Everyone can create and distribute certificates, and for this reason create a certificate with
whatever information they would like. If the certificate is to be useful, it must be possible
to determine if the identification is from someone that can be trusted or not.
A certificate contains the following information.

• Public key information: This key is used by anyone who wants to communicate with

the owner of the cert.

• Certificate serial number: GUID there identifies the certificate uniquely.

• Certificate period of validity: When creating a certificate it must be specified for
how long it is valid. After the date the cert must be either removed or resigned, in
order to still prove the identity

• Server host address: The certificate must belong to the domain that the client is
trying to contact.

• Name of the authority who has certified the certificate. Authorities name or
domain: The client checks if the signer is a trusted authority. Every computer has a
list of trusted CA and there public keys.

The Certificate Authority’s signature

It can be confirmed that the certificate is valid by using the public key of the Cert
authority to check that he is who he says he is. For this to work the Certificate authorities
must be in the list of trusted authorities on the computer.

The certificate holds an asynchrony key pair, there and be used for encryption of data.

A common way to distribute certificates is through the x.509 this is a common way to
distribute certificates

 126

APPENDIX

G JAVA FRAMEWORKS FOR WEB SERVICES

JAVA initiative for supporting WS standards

In this thesis Microsoft products has been used, but it is vital that the service can
be used in other environments.

WCF is built upon WS-* standards and oasis standards. It is a new programming
model, with a lot of new features, so the question is if it is possible to create a client by
for instance using the Java technology. For the service to be consume the WSDL, there
are several things the java client must understand. Java do not in it self have good support
of the new web services, but several projects are in the making which will make it easy to
combine Java and WCF. In late 2005 Ashesh Badani, group marketing manager for SOA
at Sun announced that java will support many of the WS-* standards.28 [InfoWorld]
Two of the most interesting ones are:

• Wsit (Web service interoperability technology): It is a code base enabling
interoperability between the Java platform and WCF. It is distributed under
common development and distribution license.29. The project is still in its infancy,
and is for the time being not documented that well or tested. A demonstration at
the javaONE conference in San Francisco showed a functioning java -WCF
connection. More info can be found at:
http://www.opensource.org/licenses/cddl1.php

• SCA (Service Component Architecture30). This is the java answer to WCF. It
provides an environment for building web services in java. SCA like WCF rely
heavily on WS.* specifications. SCA can also be used from c++ and other similar
languages.

It must be concluded that WCF do not limit the reuse in other environments, like
java, as long as only common profiles are used.
This is also shown incase study 1 where AXIS are used for connection to the service.

28 The specifications include:WS-Addressing, MTOM, * WS-Policy, * WS-MetadataExchange ,* WS-
Security ,* WS-Trust ,* WS-SecureConversation ,* WS-ReliableMessaging ,* WS-Coordination
29CDDL http://www.opensource.org/licenses/cddl1.php
30 Created by IBM, BEA, Oracle, SAP, IONA, and others.

 127

APPENDIX

H AC

The AC is built on top of the path definition. Access can be granted or denied as either

absolute path, or as a wildcard ‘*’

Read and write information is not set in the AC, but inside the function constraint
settings.

Method must be granted explicitly.

Nodename eksample Description
wpp Absolute access to “wpp”
Wpp/node Absolute node “Wpp/node”
Wpp/node.subnode Absolute node “Wpp/node.subnode”
* All wpp and nodes
Wpp/* All nodes under wpp
Wpp/node.* All node under wpp/node

 128

Unit test AC

In creating unit test the AC was tested before integrating it into the big system. The test is
depending on the UserInformation.XML and GroupAccessRules.XML files located in the
bin dir of the test.
The unit test tests the following things:

• Login wrong username
• Login wrong password
• Logon ok username and password
• Check login for user GUID for login
• Check login for user GUID for not logged in
• Check login for random GUID

If confliction rules user rights has precedence
test Group rights User rights comment
Method access known ok Access
Method access Unknown ok Access
Method access Ok Deny noAccess
Method access Unknown unknown noAccess
Method access Unknown unknown noAccess
Node access Ok deny noAccess
Node access root Ok Unknown Access
Node access Unknown Ok Access
Node access path Ok Unknown Access
Node Access
Wildcard

Unknown Wildcard access Access

Node Access
Wildcard

Unknown Wildcard access Access

Node Access
Wildcard

Wildcard access Unknown Access

Node Access
Wildcard

Ok Wildcard deny noAccess

 129

Node Access
Wildcard

Unknown unknown noAccess

 130

APPENDIX

I RISØ WPP

The data from the WPP at Risø comes as a binary stream over 3 serial
connections. The data is placed in a text file contain a comma separated list. First a
timestamp followed by 3 x 24 integers values as strings. The first 24 comes from com 3
the next com4 and the last com5. The stream is synchronized for every run through. The
order of the numbers is important, and the calculation for then actual value depends on
the positions of the number.

Chan
nel

da
u col c_type type name Gain offset

mapping
(?? =
unknown
mapping)

Com
3

28 1 1
.analo
g Pconverter POA 200 0 WGEN.W

25 2 2
.analo
g SG MzTT 1136,1 840 mz??

26 3 3
.analo
g SG;EW MxTB 4982,5 -1549 mx??

27 4 4
.analo
g SG MyTB 5114,9 -1234 my??

2 6 6
.analo
g vane

WDRco
s 0,222 0 Use in dau 7

3 7 7
.analo
g vane

WDRSi
n 0,222 0

WNAC.WdSp
d

5 8 8
.analo
g termometer T03 25 -75

WMET.MetA
lt1.Tmp

6 9 9
.analo
g baromenter P03 92 600

WMET.MetA
lt1.Pres

1 17 17 .digital cup WS36 0,624 0,177
WMET.HorW
dSpd

29 18 18 .digital status Tip 1 0 Tip??
30 19 19 .digital status brake 1 0 brake??

31 20 20 .digital status gen 1 0
WGEN.GnOp
Mod

32 21 21 .digital status stall 1 0 stall??
7 22 22 .digital rain(1/0) Rain 1 0 rain??
Com
4

 131

121 1 25
.analo
g SG Mx12

-
143,63 -32 Mx12??

122 2 26
.analo
g SG My12 123,6 -17,2 My12??

123 3 27
.analo
g SG Mx22 332 3,7 Mx22??

124 4 28
.analo
g SG My22 115,8 -235,6 My22??

125 5 29
.analo
g SG Mx32 150 128 Mx32??

126 6 30
.analo
g SG My32 117,4 -177 My32??

20 7 32
.analo
g SG;torque MxNr 193,2 80,4 MxNr??

21 8 33
.analo
g SG MzNr 55,833 6,198 MzNr??

22 9 31
.analo
g SG MyTB 51,539 48,652 MyTB??

Com
5

8 1 49
.analo
g Nacellepos NP 72 103 WNAC.Dir

41 2 50
.analo
g Refvolt vane_ref 1 0

Used in
Dau 3

42 3 51
.analo
g SignalVolt vane_sig 1 0

WNAC.WdDi
r

12 17 65 .digital Cup WSN 0,627 0,319

WMET.MetA
lt1.HorWdSp
d

11 21 69 .digital
Rotspeedfas
t ssh 1 0

WROT.RotSp
d

10 22 70 .digital
Rotspeedslo
w ssl 1 0 WGEN.Spd

Formulas
If the value is analog it must be converted to a voltage -5V and 5V

Voltage = 5*65536
10 −inp

Com DAU FORMULA
Com5 1 V1 °−+ 3600;10372*1V
Com5 2 V2
Com5 3 V3

5,1357)(180 2
3 +− v

v

 132

Com5 17 V17 319,062676,0*17
32000 +V

Com5 21 inp21 60*21
16000
inp

Com5 22 inp22 60*22
16000
inp

Com3 6 V6
Com3 7 V7

°−+ 3600;25)7,6tan(180 VVArcπ

Com3 17 v17 1769,062359,0*17
32000 +V

Everything else offestgaininp +*

The numbers comes as DA values, and is calculated as described above. The
conversion to the standard is done by finding a node in the standard that matches the
provided node. It is not possible to find nodes for all the data. Unknown nodes are
removed by the device communicator.

 133

APPENDIX

J USEFUL PROGRAMS AND EXAMPLES

The .NET Sdk contains a number of useful tools.

svcConfigeditor used for setting up service

svctraceview for browsing service log files

svcutil. Generates stubs

WSDL generate stubs

xsd generate data contract

Some of the program snippets are self hosting, and will run out of the box, while others
must be hosted on a server. The main inspiration and code provider has been the
Microsoft SDK test case software. Unfortunately none of them worked without
adjustments.

 134

APPENDIX

K TEST RESULTS

call response rabindnding r response ocalls byte/call reduction calls more choice http
http
text compre 908 2101306 1316821 2314 569,07 37,33%
MTOM com 1512 3301734 1811503 2186 828,68 45,13%
binary com 564 1435856 1308696 2545 514,22 8,86%
text no com 908 2692414 2965 21,96%
MTOM no c 1512 4060758 2679 18,40%
Binary no c 564 1692476 3001 15,19%

text compre 767 1893803 1370313 2469 555,01 27,64%
MTOM com 1255 2708814 1665401 2161 770,66 38,52%
binary com 429 1103864 1174455 2573 456,45 -6,39%
text no com 767 2433771 3173 22,19%
MTOM no c 1255 3599864 2871 24,73%
Binary no c 429 1354400 3157 18,50%

text compre 9514 6623003 852601 655 1301,68 87,13%
MTOM com 9999 6220386 973539 623 1562,66 84,35%
binary com 5955 4024412 806842 673 1198,87 79,95%
text no com 9514 6765301 712 8,01%
MTOM no c 9999 6710337 672 7,29%
binary com 5988 4341776 726 7,30%

call response rabindnding r response ocalls byte/call reduction calls more choice http
tcp
text compre 1104 3198111 1838161 2897 634,51 42,52% 20,12%
MTOM com 1592 3987646 2144445 2507 855,38 46,22% 12,80%
binary com 571 1675226 1549330 2934 528,06 7,52% 13,26%
text no com 1104 4116639 3729 22,31% 20,49%
MTOM no c 1592 5154582 3240 22,62% 17,31%
binary no c 571 2146301 3759 21,95% 20,16%

text compre 1006,5 3117229 1817273 3097 586,78 41,70% 20,28%
MTOM com 1335 3655994 2192603 2741 799,93 40,03% 21,16%
binary com 436 1392195 1502164 3193 470,46 -7,90% 19,42%
text no com 1006,5 3978793 3953 21,65% 19,73%
MTOM no c 1335 4683944 3511 21,93% 18,23%
binary no c 436 1802035 4133 22,74% 23,61%

text compre 9594 6448095 892071 673 1325,51 86,17% 2,67%
MTOM com 10079 6502043 1024998 646 1586,68 84,24% 3,56%
binary com 5995 4202978 851515 702 1212,98 79,74% 4,13%
text no com 9594 7311555 763 11,80% 6,68%
MTOM no c 10079 7247889 720 10,28% 6,67%
binary no c 5995 4604643 769 8,71% 5,59%

 135

deadline/milestone running work Delivery
Month May June Juli August
Date Week 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28
Research

Webservice
Standards
Database
WCF
SOA
Design af framework rev 1
Paper creation

Report Writing
Chapter 1
Chapter 2 Tech description
Chapter 3
Chapter 4
Chapter 5
Chapter slag
General writing
Revisions

Implimentation
Webservice test
WCF test
Simple Webservice DEMO
Framework first itt
Configuration
Device Connector
Transactions
Security
JAVA client
Device Connector
dynamic modules
ACL
Server creation
Database Creation
Improvements
Case study 1
Case study 2
Case study 3
Case stydy 4

Test
Unit test
Functional testing
Structural testing

Time table continued

 136

August September Oktober
10 17 24 31 7 14 21 28 4 11 18 25 2 9 16 23 27

Research
Webservice
Standards
Database
WCF
SOA
Design af framework rev 1
Paper creation

Report W riting
Chapter 1
Chapter 2 Tech description
Chapter 3
Chapter 4
Chapter 5
Chapter slag
General writing
Revisions

Implimentation
Webservice test
WCF test
Simple Webservice DEMO
Framework first itt
Configuration
Device Connector
Transactions
Security
JAVA client
Device Connector
dynamic modules
ACL
Server creation
Database Creation
Improvements
Case study 1
Case study 2
Case study 3
Case stydy 4

Test
Unit test
Functional testing
Structural testing

 137

APPENDIX

L PROCEDINGS PAPER

PROTOTYPE OF GENERIC SERVER FOR WIND
POWER PLANTS USING IEC 61400-25 STANDARD

Andreas Kargård Olsen, Baris Ösdil, Bjarne Poulsen, Knud Ole Helgesen Pedersen, In-
formatics and Mathematical Modelling, Centre for Electric Technology .

Technical University of Denmark Building 322, office 007, DK- Kongens Lyngby:Denmark
Phone (45)4525 5274, Fax +4545255300

E-mail:bjp@imm.dtu.dk & khp@oersted.dtu.dk
Knud Johansen. Q-Technology

Keywords: IEC 61400-25 Standard, Communication, Generic Server, Web Service, Wind
Power Plant, Data Model, Service Oriented Architecture, Framework

ABSTRACT

IEC61850[1] has defined a family of standards for the power grid. For instance, the
new IEC 61400-25[2] defines protocols for communication, control, and monitor-
ing of wind power plants (WPP). This standard includes a wide range of mandatory
and optional elements in the defined models, ranging from interfaces for control
and monitoring to a standardized and secure way of handling communication. An
analysis focusing on isolating the necessary requirements has been carried out
based on the IEC61400-25 in order to create a generic prototype which can be used
by WPP vendors. The main communications interface of the prototype utilizes web
services and the prototype developed is comprised of several independent modules
to allow for the possibility of choosing a fully customizable setup by the end user.
Configuration of the system needs to be done in a simple way, ensuring a flexible
and reusable system, where different choices for the system can be added or left
out depending on user specifications. From the requirements a prototype with the
purpose of examining the key aspects of these definitions has been elaborated.

1. INTRODUCTION
Wind power plants have through the years steadily gained a bigger and more
dominant position in the power generation industry. Each vendor has their proprie-
tary solutions on controlling and monitoring of the products supplied. In today’s
ever changing and rapidly growing energy market, monitoring of and easy commu-
nication between different systems, is essential. Through this communication the
current state of the individual power plant can be controlled and monitored when
required, and counter measurements can be enforced if needed in order to meet the
changing demand for energy and keep the stability of the distribution system. It is
vital that the overall dispatching systems are able to control the energy generation
from a wind farm on demand in order to meet the fluctuations in the energy con-
sumption. A common way to achieve this is a vendor independent approach.

As the complexity of the power distribution network increases, methods for effi-
cient analysis, monitoring and coordination of the network control become essen-
tial. This in turn requires a highly efficient and dynamic control strategy for the
power system network. Several organizations have addressed this issue in manners
where the main objective has been to develop communication standards for inter-
connecting electric power generation systems.

One important effort towards standardization has been launched by the Interna-
tional Electrotechnical Commission, IEC. From the start IEC focuses on communi-
cation within substations has led to the IEC 61850 communication standard. Sev-
eral standards for distributed power generation are under development using the
structure of the IEC 61850 standard.

The vision of this project is to evaluate the new standard 61400-25 for the WPPs
and end up with a functional prototype implementation of the standard

A framework encapsulating and compliant to the standard must be designed. This
framework must expose the methods offered in the standard and taking care of all
communication. The framework should be transparent so that a programmer can
change the configuration of the framework. The approach for adding different lay-
ers to communication must be done on top of the communication model to ensure
that different approaches can be used, for instance to secure communication, the
framework will do most of the work involved in the transition automatically.

The power distribution system is comprised of many different devices, distributed
over a great physical space and requiring a variety of functionalities. SOA is a sys-
tem architecture where a network is comprised of nodes exposing services to each
other in order to complete a greater common task. The system will take advantage
of this architecture where appropriate. Every WPP will be modeled as a web ser-
vice taking care of the communication with different clients.

For the time being there has not been specified a common way to configure the
system base on 61400-25 standard or its constituting devices. In the future an ex-
tension to basic parts of standard will be released describing a configuration lan-

guage. The prototype must be designed in a way where everything can be config-
ured through a common interface.

The aspect of security is a major part of a system communicating data over the
network. Security must be a configurationally option.

A massive amount of data is collected form the WPPs. These data has to be ana-
lyzed, filtered, and made accessible to clients as fast as possible. This leaves a lot
of constraints on the storage device pertaining to access time, storage size and sta-
bility among others. In reflection of this, a great deal of work must be put into the
design of fast access to the data and the storage structure making sure that it can
meet the specifications that a system base on 61400-25 standard demands.

2. ANALYSIS OF THE STANDARD AND THE REQUIREMENTS
The IEC 61400-25 series is a specialized version for defining and standardizing a
unified communication for monitoring and control of wind power plants. One aim
is to enable systems from different vendors to mutually communicate.

The IEC 61400-25 series is an extension of the previous IEC 61850 series of stan-
dards, which in general defines communication networks and systems in substa-
tions. IEC 61400-25 does not simply replicate IEC 61850 but reuses the definitions
which in general apply to all power systems

The standardization expands over the information modelling of the target system
and the communication protocol for communicating the data encapsulated in the
information model. As a result of this approach, the standard addresses the domain
by separating it into three main categories of interest which together encompass all
the important aspects of the communication and control of wind power plants. The
three different main categories are as follows:

1. Wind power plants information models.(IEC 61400-25-2)

2. Information exchange models. (IEC 61400-25-3)

3. Mapping to communication profile. (IEC 61400-25-4)

2.1. Information Models – IEC 61400-25-2
The information model uses an Object Oriented approach for modelling the wind
power plant components and data in general. It defines an exact model of the wind
power plant (WPP) which contains the components and data of interest. This data
will be made available to access for monitoring and control purposes. The informa-
tion model constitutes a precisely defined set of reusable data classes which will
make it possible to build up a logical model of a specific WPP. The primary com-
ponent in the model is a Logical Device (LD) which is defined as an abstract model
able to fully represent a WPP. A LD residing on a server is assigned to a specific
WPP which must be able to fully represent it with all its data and attributes. It must

contain a collection of specific Logical Nodes (LN) which will further contain data
instances reflecting the physical state of the WPP. Logical Device is a container for
all WPP related data together with self descriptive meta-data describing the physi-
cal host and the device itself.

A logical node consists of a collection of related data, defined as Data Classes
(DC). All the information in a logical node is contained in respective Data Classes.
The structure of all logical nodes is similar and has a standardized form where dif-
ferent types of logical nodes can be constructed through the combination of differ-
ent optional data classes.

All the logical nodes used in modelling the WPP inherit their structure from the
abstract logical node class defined in IEC 61850-7-2. From an implementation
point of view these different logical nodes will be similar since the structure is
based on a common definition and follows a common pattern.

The hierarchical structure of a logical device residing on a server together with
logical nodes and data classes is depicted in the figure 1 below.

H
id

es
/e

nc
ap

su
la

te
s

re
al

 W
or

ld

M
ap

pi
ng

...

(Virtual World)

LN
LNLNLN

Speed
mapping to
protocol
stack

TCP/IP
Network

Prot.

61400-25
Services

logical device

Position

WROT

61400-25 logical node
(Rotor)

61400-25
WROT data
(Rotor Speed)

virtualisation

Real
component in
wind turbine

Figure 1. Modeling approach (IEC 61400-25-1)

The data class is the actual component of the information model which is used to
define any data contained in logical nodes. These specific classes are called com-
mon data classes, which are precisely defined classes inherited from data classes.

The common data classes used to model a wind power plant device can mainly be
categorized under two groups. Common data classes a), defined specifically for
wind power plants and b), logical nodes that are inherited from IEC 61850-7-3. A
complete listing of these common data classes is provided in IEC 61400-25-2
clause 7.

The server must be capable of representing the information model with all its in-
stances from logical devices and all the way down to specific data attributes. The
hierarchical structure must be preserved so that each data instance can be refer-
enced in a standard manner as defined in the information model.

A server may host one or more logical devices depending on the number of WPP
which must be controlled by that server. Therefore it must be possible to uniquely
reference a specific logical device representing a specific WPP.

The server must be capable of representing a logical node contained in a specific
logical device and to refer to it uniquely. Each logical node has a unique reference
name which makes it possible to locate it directly in conjunction with unique refer-
ence name of the logical device containing the logical node. This is important since
a single server instance can have more than one logical device residing on it.

2.2. Information Exchange Models IEC 61400-25-3
This part of the standard describes the information exchange model which is im-
plemented on the server enabling client’s systems to access and modify data in the
information model. Each information model instance has a service interface de-
scribing the operations available on that particular instance. Each information
model object has a specific set of services making it possible to read or write
from/to it.

The basic services that are used to mediate between the outside world and the real
wind power plant device are referred to as Abstract Communication Service Inter-
face (ACSI). The basics of these services described in details in IEC 61850-7-1 and
IEC 61850-7-2

In the ACSI models, the information that gets reported or logged is represented by
data sets. In that way reporting and logging can be defined in a more compact
manner applying to a group of data.

The reporting services must make it possible to subscribe to spontaneous data re-
ports on specific conditions for data values. Conditions such as change of value or
change of attribute values will trigger a preconfigured reporting subscription and
start dispatching the values.

In the reporting mechanism, the server must make the data for the client available
for read and write. Since it is not common practice in client server architecture for
a server to contact a client offering data, the server should buffer the values to de-
liver them later to the client, whenever a client request is made.

In order to achieve buffering mechanism so that the server does not have to notify
the client for the available new data, some sort of a server side session must be
implemented for the reporting interaction between client and server. The server
must have an internal state making it possible to keep track of which step in the
reporting process it is in, and which data has been sent and which is still in the
buffer. However, the standard also specifies that it must be possible to configure
the reporting mechanism such that data is not buffered in case of a connection in-
terruption, meaning that the client only can access the data available at the time it
makes its service request.

Logging like reports can be initiated upon the client’s request. Like reports, the
data can be logged on the same criteria, but in addition to this, updates also must be
logged.

The client must at any time be able to get a log stream for a given interval. Due to
the data storage amount it must be assumed that this interval is limited. Reports
reflect current data while logging reflect longer-term data, and system status.

2.3. Mapping to communication profile IEC 61400-25-4
The services defined in the information exchange model are mapped to standard
web services. A detailed description of each service is provided together with the
corresponding WSDL [3][2] describing the exact structure of the service methods.
Each service defined for the various data models is mapped to SOAP services mak-
ing it possible transfer data with the correct types and structure defined in the in-
formation exchange model.

The server must resemble the web service description provided in the communica-
tion profile mapping. It should be possible to communicate between client and
server accordingly as specified in the information exchange model.

3. CHALLENGES AND DESIGN REQUIREMENTS
The standards do not provide a solution for every single aspect of implementation
and in many cases the standard leaves several choices or decisions for the system
designer to solve. A presentation of the challenges in designing and implementing
will be given next, together with a suitable solution strategy addressing the identi-
fied problems for the design of system based on 61400-25 [4].

3.1. A framework based on components
The framework must take care of all the interaction with the protocol. Security,
reliability, sessions et cetera. must be implemented in a standardized way. The
framework must have a default setting for communication, but it should still be
possible to change the different settings as needed. Looking at end-to-end commu-
nication, there are many single elements that must be easily changeable. For in-
stance, each WPP might have its own way to supply the data. The system must be a

very-late binding architecture, where one component’s runtime is integrated with
another component’s runtime using dynamic invocation.

The system is to be designed using multiple modules that can be changed on de-
mand. This implies that a common interface must be used. No matter how the
mapping in the transport is done, the resulting requests and responses must be the
same.

3.2. Configuration
The information model defined in IEC61400-25-2 has a lot of optional nodes that
can be implemented with optional data classes. The vendor must have a way to
configure what their WPP has implemented, and how the communication is done.
Providing such a configuration option will make reuse more efficient and it will be
easy to set up a server representing specific WPPs. Configuration also includes
information for how interaction between the WPP and the system must be per-
formed, for instance how often can/must the data be pooled from the WPP.

The information model does not contain information of how the WPP and the sys-
tem will communicate. It only states an abstract data format. Each vendor would
have to design an entire system from information model to exchange model unless
a common data input format is defined.

3.3. Data processing and data storage
To make a system that can handle the massive amount of data flow it is vital that
data can be processed in an efficient and secure way. The data must also be rapidly
retrievable and easy to store.

On the server side, the information model must accurately reflect the hierarchical
information structure. It is extremely difficult to represent the model using a classic
relational database. Besides the difficulty in representing the model, data retrieval
will also be extremely slow. This is because the server must execute a large num-
ber of queries to retrieve data from the complex relations in the data hierarchy.
Instead of storing the current data on a persistent storage for service retrievals, the
information model could be constructed on the server process itself making use of
the representational power of an object-oriented language. The server process
could programmatically replicate the information model and store the data in its
run-time with suitable objects while running and servicing the client systems. This
approach will make the execution very fast since the data is already stored in main
memory ready to be fetched. And the modelling/representation of the information
will be straightforward through instantiating objects from class definitions resem-
bling the class definitions in the information model.

To store the most current data and make it available for client processes, the server
must continuously pool the WPP for new data made available. Only the latest data
is kept inside the system to speed up data handling. Long-term data is separated
from the running system to cut down runtime challenges. The information model is

modelled in an object-oriented way, to keep the implementation and the informa-
tion model close together.

3.4. Security
IEC 61400-25-3 defines the security aspects for the standard and how to solve it in
general, but how it is handled specifically is completely up to the individual sup-
plier.

One supplier might simply use a secure line, and therefore remove any security
aspects of the service itself, while another might want to use a public ISP where the
service related traffic must be secured by the service itself. This calls for a solution
where security is built on top of the communication as a separate layer in a modu-
lar fashion easy to add, remove or change on demand

In TC 57 [5] a proposal has been presented in which a security model has been
suggested.

In this research TCP/IP traffic is utilized, and therefore has to follow the IEC
62351-3 security standard. The standard recommends transport layer security
(TLS) to tackle the most common security threats. At the same time it specifies that
security must follow progress and update to better solutions when available.

Another aspect of security is access control. Access control has the duty of ensur-
ing that only authorized individuals can gain access to the data. How and what the
security includes is defined by the service mappings (SCSM).

In IEC 61400-25 the minimum requirement for access control is only defined as
the need for supplying a valid username and password to gain access. This ensures
that only people with a valid password can gain access to the system. Different
users might have the rights to perform different actions.

The system only contains methods and data the client can access. The user either
has the right to run a method or not. Through the method the client can either read
or write data by functional constraints. Every client does not necessarily have the
right to view all data but maybe only a subset.

Users can be granted read or write rights to specific nodes. In the same way users
can get clearance to invoke specific methods. Each node or method must have lists
of what each user can and cannot do.

4. PROPOSALS FOR A GENERIC ARCHITECTURE
To make the system generic, different elements in the system must be isolated. The
figure below shows a proposal for the system architecture.

Figure 2. Proposal for a system architecture.

1. Clients can be web clients, applications et cetera. (The client is outside the
scope, and should simply be an end user of the service.)

2. The client can use different methods to conduct the communication with the
service. The main focus is on web services but it can equally be an MMS or others.
The interface is defined in IEC 61400-25-4

3. Policy files define specific information for the communication. This includes
security information, use of transport protocol, et cetera. Policy files are ideal for
custom configuration at Deploy time.

4. A common interface assures that the service can always be reached through the
client communication interface as long as the client obligates himself to use the
interface defined in IEC61400-25-4.

MAIN Server

WPP supplier
interface.

11.

Configuration contract

12.

Client
com-
muni-
cation
inter-
faces

2.

Policy contract

3.

13

1.

WS

MMS

Service
interface

IEC
61400-25-
4

Facade

4.

Data handling
Logic

8.

Supplier
interface

Supplier
interface

Common
wind power
plant
Facade

10.

 Client

handling

6.

 WPP Device

connector

9.

Access
control

5.

Data storage

7.

5. The access control checks the client’s right to access a specific method or data-
set.

6. When communicating with the service the client can ask for specific data. The
client handler manages the connection between different clients and the service.
The information exchange model defines how this is done in IEC61400-25-3

7. Stores the data for shorter or longer time.

8. Data handler logic keeps track of data, and the logic to run the service generally.

9. Different WPP suppliers produce different data. The Pooler gathers the neces-
sary data from each WPP. The information model in IEC 61400-2 defines this.

10. There is no generally accepted standard for how data must be supplied by the
WPP, but by defining one, supplier modules are easier to replace in the system.

11. Supplier interface. When connecting a WPP to the service, the supplier has to
create an interface file. The file has knowledge of the supplied nodes that the WPP
can expose, and how often pooling is necessary.

12. The contract must contain information of the data each WPP can deliver. Also
the contract defines how often the data is to be pooled. This must be done in com-
pliance to the IEC 61400-25-2 information model.

13. Each supplier exposes its capabilities to get and set data through their own in-
terface.

5. CASE STUDIES
The purpose of these case studies is to try some of the different scenarios that the
system is supposed to work under. The overall design of the system has been built
in order to have the same basic design for all the challenges, and then make minor
changes in order to add or remove functionalities to the system. Before studying
each case, the setup, overall architecture and the internal workings of the server
system are described. The prototype focuses on web services.

5.1. System Description
The core unit of the system is a server process hidden behind the service interface
where device data and client requests are handled. It has two important interfaces
through which it accomplishes its tasks. These are, respectively, first the interface
to the communication service which acts as a bridge between client processes and
the server, and second, an interface which can be configured to pool data from
WWP. The data retrieved from the configured device(s) are kept in an internal, in-
memory data model for fast retrieval and processing when client requests are being
handled.

IEC 61400-25 defines an event driven service model for monitoring WWP. Espe-
cially in the reporting process various conditions have to be monitored continu-
ously as new data arrives, so that proper actions can be taken in order to satisfy
each report configuration which will serve the client process with information.

Service Interface - Communication Module
The Service is supposed to work with different client protocols. One of these is
Web services, but the system should also be able to work with other protocols like
MMS. It is possible to implement the protocol directly in the server, but a more
flexible solution is to have one server to serve the different communication mod-
ules through a well known protocol. A facade presenting an interface can be cre-
ated. Each protocol then has to implement a module that takes care of getting in-
formation from the client and returning the server reply to the client. This conforms
to the data defined in IEC61400-25-3. This approach enables a more modular ar-
chitecture for the system

Device Interface
The communication interface to WWP from the main server is beyond the scope of
the IEC61400-25 series. No specification is given on how to handle the communi-
cation with devices that are supposed to be monitored and controlled. However, in
order to be able to test the server prototype, a simulator is implemented and con-
nected to the system. The simulator acts as a device continuously generating data
for a specified set of data objects, for a pre-specified logical device data model
defined on the server. The data is extracted from log files which contains real-time
stamped wind power plant device data. The data entries contained in the log files
are mapped to data types defined in IEC61400-25 where suitable.

Server Configuration
Initially at start up, the server must be configured in order to work properly and
interact with devices and communication services attached to it. At start up it will
configure itself through an XML configuration file. The information model reflect-
ing device data, device connections, pre-configured data sets and access control
configurations are all made through dedicated XML files for each specific configu-
ration.

Configuring the information model
At start up the server will first create the data structures reflecting each specific
device attached to it in order to be able to house the data and make it available to
client systems. The XML configuration file makes it possible for a server adminis-
trator to create data structures for logical devices with its logical nodes, data ob-
jects and data attributes. Initially the configuration file defining the data structure
with their default values is parsed, where afterwards the object instances are cre-
ated on the server according to the structure defined in the configuration file. It is
possible to initiate data structures for several logical devices in the same configura-
tion file.

The configuration file resides with the server. The server must know the exact data
structure of the physical devices which are to be attached to the server before com-
posing the configuration file. In the future the configuration could be done dynami-
cally by retrieving configuration information directly from the physical device
itself.

5.2. Case study 1
This case study has been focused on the following subjects:

 Development of a generic device communicator for acquiring data from
different WPP data suppliers

 Securing access and data across a web service
 Cross-language access, and different clients

This case has shown that web service clients in both Java and WCF can be con-
nected to the web service, and retrieve the information gathered for different
WPPs. It is also shown that a web client can gain access to the service though the
use of a web server.

The device connectors could act by it self or represent several WPPs. The gathered
data could be collected and managed in one central server.

Security can be addressed in a seamless and uncomplicated fashion following secu-
rity patterns.

5.3. Case study 2
In this case study, the focus is on a virtual major corporation owning a big wind
farm. They operate many WPPs and are monitoring the system from one or more
locations. Some of the WPPs are connected using a modem. For this reason it is
important to get the most out of the bandwidth by compressing the data transmit-
ted. In this scenario, the communication line between the WPPs and the server can
be lost. In case of connection loss it must be possible to recover the data produced
during the outage.

Some of the WPPs have their own device connectors and others have a joint con-
nector. Within the corporation many people must be able to view the data simulta-
neously. The corporation has a dedicated secure private line for internal communi-
cation. No security is needed concerning this of the traffic. However, data must be
protected internally. Not everyone in the corporation is allowed to access data, and
even if they are allowed, not everyone is allowed to run all service methods on the
WPP devices. Access control via a replicable module is included.

Key points:

 Many WPPs are hosted under one server.
 Multiple clients.
 Avoiding data loss during offline period.

 Compression for lower bandwidth usage.
 Role based access control.

Offline scenario
In the case of loss of connection, data must be stored until the client can retrieve it.
An extra or redundant server connection could provide an alternative way to upload
data, but since the WPP is supposed to be autonomous and recover from critical
situation itself, it must be concluded that information is not time critical at a level ,
and this solution is routed out, in order to not have the extra cost of maintaining
several communication lines. A much cheaper method is to use the hardware al-
ready placed at the WPP. In such a case each device connector keeps a buffer of
data which can be retrieved on demand. However, if the data is not retrieved by the
client, the list will keep on growing in memory and eventually consume all of the
memory resources.

To overcome this problem data must be swapped to disk on regular intervals. This
will not only reduce the memory usage, but it will also assure that data is not lost if
the machine hosting the data connector crashes.

The device connector works with time stamped packages. If the buffer holds more
than a given number of entries the data will be saved to disk, and the stack will be
emptied. On the next attempt by the server to retrieve data, the retrieved object will
contain a flag telling the server that buffered data exists. The server can retrieve
this data on demand. Both size of the stack, file size and transferral web service
transferral buffer must be configurable.

If the connection is poor, but do exist, reliable sessions are a great addition to the
quality of the communication. “Reliable sessions” or “reliable messaging” assures
that a message will be re-sent if communication is disrupted. It will keep on trying
until the message has been delivered, but at the same time uphold an assurance of
exactly-once and in-order delivery of the messages. Reliable messages are part of
several of the standard bindings, and can be turned on and off on by demand. Like
other attributes, this can be done either in code or in the configuration, by enabling
reliable sessions. Reliable messaging is turned on for the prototype.

Access control (AC)
To ensure that only the right people have access to data, an access control system is
needed. The standard proposes an access control system, but it has not yet been
fully specified. For the purpose of the prototype, a system for controlling the access
to the system has been implemented. This is built as a role base access control sys-
tem. (RBAC)

Ensuring module exchangeability
The modules in the system should be interchangeable Modules are accessed from
many different methods in the server, and as such they are incorporated deeply in
the system. The solution lies in linking the object during start-up rather than under
compilation. The principal is described by Martin Fowler as a plug-in pattern [6].
This pattern is one of the corner stones in order to have interchangeable dynamic
modules. A negative effect is that DLL access is slower than if the linking was
done at compile time. But this is a minor expense compared to the big flexibility it
provides for the system. The downside to this approach is that all modules must
conform to the same module interface, and therefore the interface must be final-
ized.

Minimizing traffic
SOAP is not a good format when considering the amount of traffic generated. It is
in plain-text format and contains lots of meta-data to describe the message. This
makes SOAP a perfect candidate for compression.

For web services using WCF there are three main ways to encode the data for
transport. These are text, binary and MTOM [7]. Text is plain SOAP in ASCII
encoding; this of course is the most compatible way to send the data, but also the
most expensive with respect to bandwidth consumption. MTOM is a WS standard,
and can compress the body of the message. MTOM can also be used for transport-
ing binary data between services. This comes in handy if files should be trans-
ported from a server to a client, but since it still has to be transformed to base64
encoded data, and still uses SOAP wrapping, alternative methods like FTP trans-
port would probably be a better solution for this. Different bindings or compression
do reduce the traffic drastically, but it does slow down the system because of the
extra computation needed [8][4]

Binary traffic is the most optimal way to transport the data, but is restricted to a
windows-to-windows communication. However if the communication is restricted
to windows-to-windows communication, this is the best choice

The last approach for reducing traffic is to create a custom encoding schema. For
instance, the traffic could be encoded using one of the commonly used compres-
sion libraries, like ZIP or RAR. This of course will demand that both the client and
the service are able to encode and decode the traffic. Compression is specified in
the HTTP 1.1 protocol.

Simulating the wind farm
Each device connector must be initialised at start-up. The server knows where and
how and when data must be retrieved, and will in turn collect it.

The clients contact the service through the Internet information server. This server
assures that multiple clients can interact with the service at the same time.

Case summary
A device connector module is able to store data for later retrieval from the server.
The module provides a way to get data whenever possible, in manageable data
packages. This ensures data delivery, and at the same time reduces peek loads on
both the device connector module and the server. No standard is defined for how
the data is conveyed from the physical device to the server, but the connector (de-
vice simulator) did provide some basic cases that all connector should address no
matter how they are designed internally. The lack of a standard for a WPP commu-
nication makes it hard to reuse the system between different vendors, because the
module will be incorporated into the server, unless a common interface is defined.
However, with a defined interface at hand, the system would be very flexible and
have opportunities for changing the modules as needed.

5.4. Case study 3
Case study 3 looks at some of the different bindings and protocols that can be used
in the communication.

The main aspects of the case study are:

 Tests different encoding with different security choices and compression.

 Relative speed

 Relative number of calls serviced

 Multiple end points for better flexibility and performance for the clients.

It is worth remembering that most of the bindings support the same basic features
like security, reliable messages, different encoding schemes, and as such the basic
features can be kept no matter which binding is chosen.

A test shows that the different standard encodings did influence both speed and
data amount sent. The test did show that the system did react to different configura-
tion parameters.

Due to the nature of web services and the way they are configured by using for
instance Windows Communication Foundation (WCF) [9][10], it is easy and cheap
to provide several ways for clients to communicate with the system.

Additional connection policies can be added simply by supplying an endpoint to
the configuration file. Not all clients support all of the possible choices the service
can communicate. By exposing multiple endpoints each client can choose that end-
point providing the highest efficiency for him. This ensures that the system does
not have to operate only under conditions designed for a worst case scenario, but it
can provide different levels of service. This maximises flexibility for both client
and service providers.

5.5. Case study 4
Part 5 of the IEC61400-25 series is dedicated to conformance testing. The com-
pleted system should be tested successfully against all the proposed tests. What to
test for varies a great deal but the most common attributes a system should have
includes capability, reliability, efficiency, portability, maintainability, compatibility
and usability.

The tests conducted for the developed prototype is limited to the functional testing
of the services offered and general unit testing during development of the proto-
type. The aim of functional testing was to test whether the service methods oper-
ated as they should with proper request and reply objects.

The service tests conducted shows that the implemented service methods can gen-
erate the expected responses with the correct data types defined for the services.
This implies that the business logic executed on the server is correct as well.

6. CONCLUSION
The goal was to implement and test an IEC 61400-25 compliant generic server
which can be used to monitor and control wind power plants. During the develop-
ment of the server there has been used real log data from wind power plants.

The main focus has been on the server system and its interaction with clients
through the specified web services defined in IEC 61400-25-4. When developing
the server system, general considerations such as security, modularized software
architecture has been taken into account and implemented, whenever applicable.

Almost all services defined in the standard have been implemented using web ser-
vices. This includes mapping and representation of data on the server side and to
communicate the data to client systems.

The IEC 61400-25 standardization series is still “work in progress”, and during this
research several updates have been released. The new releases of the standard were
mainly dealt with ACSI service mappings to a communication profile. This is part-
4 of the series defining the web service interface with its data types. At a certain
stage the project had to be closed for changes at some stage in order to finish the
implementation. However, services implemented lately are in conformance with
the later versions of the mappings.

The list below outlines the main requirements which have been implemented in this
project.

Information Model
On the main server, a suitable data structure has been set up which can store data as
defined in IEC 61400-25-2. It is an in-memory data structure making data manipu-
lation and retrieval very fast and efficient. When building logical devices from
logical nodes and data instances, the exact hierarchical structure can be presented

on the server. The information model on the server is initialized through an XML
file which makes it possible to alter the data models of the different devices easily.

Service interface
The web service interface, through which the service methods are communicated,
has been implemented. The web service is implemented from the WSDL given in
IEC 61400-25-4. WCF has been used for the web service in order to benefit from
latest improvements within web services.

Different end points providing different communication features can be set up for
the service so that client systems can choose the best suitable endpoint. Tests in
case study 3 shows that different choices regarding communication (encoding,
encryption, and transport protocol) will result in big performance variations.

Services
The server logic for the services has been implemented. Business logic within the
different modules has been isolated from the server. It is possible to send service
request with the correct data types defined in the standard and retrieve the corre-
sponding response.

Module based architecture
The server components have been implemented as separate modules which make it
easy to configure and change the system. For example the service interface is not
tightly coupled with the central server itself.

It is possible to attach another service interface using another protocol than
SOAP/web services.

The change of the AC module is only a matter of replacing a DLL in a directory. It
is not even necessary to provide any configuration, changes, the system will auto-
matically recognize that a module containing AC information is present, and it will
automatically load it into the running system.

Reporting
The reporting service has been implemented according to the event driven data
retrieval model defined in the standard. A client system can subscribe for reports
which are generated by the report control blocks initialized by the subscription
service. Both buffered and un-buffered reporting has been implemented.

Access Control
An access control mechanism is implemented making it possible to create a spe-
cific view of the data and services applied to it. The access control module can be
configured so that different views of the system can be assigned to different client
systems.

Device simulators/connectors
In order to be able to test the system, device simulators capable of generating data
have been implemented. The simulators uses log files from real wind power plants

when generating data. Different scenarios, which are most likely to appear in a real
world case, have been studied, such as connection loss and lost data packages.

Configuration
The server and its modules are implemented such that they can be configured eas-
ily. For example the access control mechanism can be configured through XML
files in order to create different views of the system.

The server can be configured to handle different WPP simulators with different
data models. The structure of each simulator attached to the system can be defined
separately.

The device connectors can be configured so that the server can locate the simula-
tors and associate it with the respective data model defined on the server.
The security and transport features of the system can easily be configured through
configuration files.

Clients
A web based client has been developed to test and demonstrate the services imple-
mented. The implemented communication module for the server is based on web
service. Any client capable of consuming web services can connect to the server
and perform its tasks through the web services made available.

Overall Conclusion
The main focus was on creating a system to implement a server system compliant
with IEC 61400-25 standardization series, a system that was not tightly bound to
specific technologies and easy to configure. The resulting implemented server sys-
tem has shown that such a system is possible.

The system covers most of the major parts defined in the standard. All topics in the
requirements has been addressed at some level, and we believe this research should
provide a good basis for future work and efforts toward the great goal of creating a
vendor independent communication environment for all wind power plants in the
world.

6. ACKNOWLEDGEMENT

We gratefully acknowledges the support from Claus Bjerge E2 part of
DONG energy for real data from wind farms and the contributing with
knowledge about Wind Power Plants. We would also like to acknowledges
Aksel Kargaard Olsen for reviewing and commenting on this document.

7. REFERENCES
[1] http://www.61850.com/

[2]http://www.iec.ch/cgi-
bin/procgi.pl/www/iecwww.p?wwwlang=E&wwwprog=sea22.p&search=iecnumb
er&header=IEC&pubno=61400&part=&se=&submit=Submit

[3]Web service description language http://www.w3.org/TR/wsdl20/

[4]Andreas K.Olsen, Baris Özdil Prototype for a IEC 61400-25 Compliant Generic
Server

[5] Frances Cleveland IEC TC57 Security Standards for the Power System’s In-
formation Infrastructure – Beyond Simple Encryption

[6] Martin fowler Patterns of Enterprise Application Architecture.2002

[7]SOAP Message Transmission Optimization Mechanism
http://www.w3.org/TR/soap12-mtom/

[8]Christopher Kohlhoff Evaluationg SOAP for High Performance Business Appli-
cations: Real-Time Trading Systems.

[9] Keith Brown security Brifes
http://msdn.microsoft.com/msdnmag/issues/06/08/SecurityBriefs/default.aspx#S3

[10]David Pollmann Programming INDIGO

	 Summary
	 Preface
	 Papers included in the thesis
	 Acknowledgements
	 INDEX
	Chapter 1
	Chapter 2
	2.1.1 Information Models – IEC 61400-25-2
	2.1.1.1 Logical Device
	2.1.1.2 Logical Node
	2.1.1.3 Data Classes

	2.1.2 Information Exchange Models – IEC 61400-25-3
	2.1.3 Abstract Communication Service Interface (ACSI)
	2.1.3.1 Reporting
	2.1.3.2 Logging

	2.1.4 Mapping to communication profile– IEC 61400-25-4
	2.2.1 Module based components in a framework.
	2.2.1.1 Configuration

	2.2.2 Data processing and data storage
	2.2.3 Security
	2.2.4 Traffic security
	2.2.5 Access control and management functionalities
	2.2.6 Reliability

	Chapter 3
	3.1.1 What advantages are there by using SOA in implementing the IEC61400-25 prototype?
	3.1.2 What are the disadvantages of using SOA for the prototype?
	3.1.3 Choice of SOA as a development strategy for the server prototype
	3.2.1 WS-I
	3.2.2 WS-Policy
	3.2.3 WS-Metadata Exchange (WS-MEX)
	3.2.4 WS-ReliableMessaging
	3.2.5 Data compression
	3.2.6 Code first or Contract first
	3.3.1 Comparing .NET to Java for the development platform
	3.3.2 Windows Communication Foundation and how it address web services
	3.3.3 Endpoint
	3.3.3.1 Binding
	3.3.3.2 Service contract
	3.3.3.3 Data contract
	3.3.3.4 Message contract

	3.3.4 Pipeline in the communication
	3.3.5 Custom encoders
	3.3.6 Define the policies using WCF
	3.3.7 Hosting
	3.3.8 Security
	3.3.8.1 Message and transport level security.

	4.1.1 Service Interface - Communication Module
	4.1.2 Data exchange between communication module and the server
	4.1.3 Device Interface
	4.1.4 Server Configuration
	4.2.1 Java client, C# Client and DLL as a client
	4.2.2 Presentation of data
	4.2.3 General decisions in securing the system
	4.3.1 Secure connection
	4.3.2 Offline scenario
	4.3.3 Access control (AC)
	4.3.4 Ensuring module exchangeability
	Minimizing traffic
	4.4.1 Speed test of different bindings

