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Abstract. Crouzon syndrome is characterised by the premature fusion
of cranial sutures. Recently the first genetic Crouzon mouse model was
generated. In this study, Micro CT skull scannings of wild-type mice and
Crouzon mice were investigated. Using nonrigid registration, a wild-type
craniofacial mouse atlas was built. The atlas was registered to all mice
providing parameters controlling the deformations for each subject. Our
previous PCA-based statistical deformation model on these parameters
revealed only one discriminating mode of variation. Aiming at distribut-
ing the discriminating variation over more modes we built a different
model using Independent Component Analysis (ICA). Here, we focus on
a third method, sparse PCA (SPCA), which aims at approximating the
properties of a standard PCA while introducing sparse modes of varia-
tion. The results show that SPCA outperforms both ICA and PCA with
respect to the Fisher discriminant, although many similarities are found
with respect to ICA.

1 Introduction

Crouzon syndrome was first described nearly a century ago when calvarial defor-
mities, facial anomalies, and abnormal protrusion of the eyeball were reported
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in a mother and her son [1]. Later, the condition was characterised as a con-
stellation of premature fusion of the cranial sutures (craniosynostosis), orbital
deformity, maxillary hypoplasia, beaked nose, crowding of teeth, and high arched
or cleft palate. Identification of heterozygous mutations in the gene encoding fi-
broblast growth factor receptor type 2 (FGFR2 ) have been found responsible for
Crouzon syndrome [2]. Recently a mouse model was created to study one of these
mutations (FGFR2Cys342Tyr)[3]. Incorporating advanced small animal imaging
techniques such as Micro CT, allows for detailed examination of the craniofa-
cial growth disturbances. Studying the craniofacial shape differences in detail
contributes to the understanding of the syndrome, surgery planning and diag-
nosis in humans. A recent study, performing linear measurements on Micro CT
scans, proved the mouse model applicable to reflect the craniofacial deviations
occurring in humans with Crouzon syndrome [4]. Previously, we have extended
this study to assess the local deformations between the groups by construct-
ing a deformable shape and intensity-based atlas of wild-type (normal) mouse
skulls. Deforming this atlas to all mice, the craniofacial shape differences can be
analyzed [5].

To analyse and interpret these deformations in a meaningful way, it is desirable
to reduce the large number of dimensions and at the same time localise the growth
deviations with respect to the atlas. This leads us to statistical deformation mod-
els (SDMs). These are closely related to statistical shape models but the fact that
the whole correspondence field is modelled makes them more powerful. A stan-
dard PCA has been a popular approach to build SDMs (e.g. [6,7,8]) but recently
different techniques have been applied, e.g. wavelet-based PCA [9].

With respect to the mouse study, PCA was previously performed [10]. This
analysis revealed only one discriminating mode of variation, mainly reflecting
global differences between the groups. This kind of variation can be hard to
interpret and in a recent study, we showed that applying Independent Compo-
nent Analysis (ICA) to the deformation fields resulted in several discriminat-
ing modes, revealing the local differences between the groups. Sparse Principal
Components Analysis (SPCA) [11] has proven successful when applied in shape
modelling [12]. In this paper we introduce the use of SPCA to build a Sparse
Statistical Deformation Model and provide a comparison to a standard PCA
and ICA with focus on the discriminative ability. We believe this is the first
time SPCA is applied to statistically model deformation fields.

2 Data Material

Production of the Fgfr2C342Y/+ and Fgfr2C342Y/C342Y mutant mouse (Crouzon
mouse) has been previously described [3]. All procedures were carried out in
agreement with the United Kingdom Animals (Scientific Procedures) Act, guide-
lines of the Home Office, and regulations of the University of Oxford.

For three-dimensional (3D) CT scanning, 10 wild-type and 10 Fgfr2C342Y/+

specimens at six weeks of age (42 days) were sacrificed using Schedule I methods
and fixed in 95% ethanol. They were sealed in conical tubes and shipped to the
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(a) (b) (c)

Fig. 1. (a) Photo of a Crouzon mouse (left) and a wild-type mouse (right). Skulls
Extracted from CT images of (b) a Crouzon mouse, (c) wild-type mouse.

Micro CT imaging facility at the University of Utah. Images of the skull were
obtained at approximately 46μm × 46μm × 46μm resolution using a General
Electric Medical Systems EVS-RS9 Micro CT scanner. Fig. 1 shows an example
of the living mice and the imaging data appearance.

3 Methods

The steps taken to automatically assess the local shape deviations between
groups, statistically, from the Micro CT images are the following.

1. Build a craniofacial wild-type mouse atlas from the Micro CT’s using non-
rigid image registration

2. Match atlas to all 20 cases (wild-type and Crouzon mice) using nonrigid
image registration

3. Use the resulting deformation parameters as input to a SPCA

3.1 Atlas Building and Registration

The first two steps of the procedure were presented in [5]. The nonrigid regis-
tration algorithm based on B-splines [13,14] was applied. This algorithm uses a
transformation model which is a combination of a global and a local transfor-
mation model, T(x) = Tglobal(x) + Tlocal(x). The global transformation model
consists in our case of a rigid transformation matrix (with 6 degrees of freedom).
The local transformation model describing the nonrigid part of the model is
written by the tensor product of the 1D cubic B-splines,

Tlocal(x, y, z) =
3∑

l=0

3∑

m=0

3∑

n=0

Bl(u)Bm(v)Bn(w)ci+l,j+m,k+n (1)

where c are the parameters of the B-splines ordered in a px ×py ×py lattice. u, v
and w are the (x, y, z) image coordinates translated into the lattice coordinates.
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3.2 A Sparse Statistical Deformation Model

The third step of the procedure listed above is the main focus of this paper. The
control points (parameters) of the B-splines in Equation 1 provide a compact
representation of the correspondence fields. As shown in [6] it is sufficient to
perform a statistical analysis on these control points to obtain a compact de-
scription of the deformations. Using a common reference frame, e.g. an atlas, as
the origin of the registrations, the control points for a subject reflect its local
deviation from this reference frame. Concatenating the 3D control points for
subject i into a row vector Ci = [c1, ..., cp], where p = 3pxpypz, gives the ith row
of the n × p data matrix to analyse (n is the number of observations).

SPCA approximates the properties of a standard PCA while introducing spar-
sity in the modes of variation. Zou et al. [11] take advantage of formulating PCA
as a regression problem leading to the SPCA criterion

(Â, B̂) = argminA,B
∑n

i=1 ||xi − ABT xi||2 + λ
∑k

j=1 ||bj ||2 +
∑k

j=1 δj ||bj ||1
s.t. AT A = I

(2)
Here xi denotes the ith column of XT . This formulation assumes k modes to be
retained in the model. The columns of B represent the principal axes (loading
vectors bj , j = 1, ..., k) and B projects observation i onto those axes. The
matrix A takes the observation back to the original space. Hence, the first term
measures the reconstruction error of the model. The second term, the L2 penalty
is included to ensure a unique solution, also in cases where p > n, and the third
term, L1 penalty, introduces sparsity. These two latter terms are adopted from
Elastic Net regression [15]. The constraint weight, λ, must be chosen beforehand,
and has the same value for all PCs, while δ may be set to different values for
each PC, providing good flexibility.

The problem in Equation 2 is usually solved iteratively by fixing A in each
iteration, solving for B using the LARS-EN algorithm [15] and recalculating A.
However, when we have p � n as in our case, Zou et al. have shown that by
letting λ → ∞, B can be determined by soft thresholding1

bj = (|aT
j XT X| − δj

2
)+ · sign(aT

j XT X), j = 1, 2, ..., k (3)

where k is the number of modes and aj is the jth column of A. This approach
was taken here enforcing the same fixed level of sparsity in each loading vector
by dynamically changing (δj) in each iteration. To maximise the total adjusted
variance [11] explained by the SPCA, the modes were ordered allowing for per-
turbations as suggested in [12].

Since the aimof our sparse deformationmodel is to discriminate between the two
groups of mice the final ordering of modes was defined with respect to the Fisher
discriminant.That is, the observationswereprojectedonto theprincipaldirections,

1 (z)+ denotes that if z < 0, z is set to 0 and if z >= 0, z is kept unchanged. The
term is denoted hinge-loss.
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the Fisher discriminant between the groups calculated for each mode and the
principal directions orderedwith respect todecreasingFisherdiscriminant score. In
general, for class 1 and 2, the Fisher discriminant is defined as

F =
(μ1 − μ2)2

σ2
1 + σ2

2
, (4)

where μi is the mean of class i and σ2
i is the variance of class i.

4 Experimental Results

The accuracy of the image registration algorithm (registering the atlas to each
of the 20 cases) is essential for the deformation model to be valid. In [5], the
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Fig. 2. Projection of observations into the space of the first six components (ordered
by Fisher discriminant) using (a-c) SPCA, (d-f) PCA and (g-i) ICA. Crosses denote
Crouzon cases while circles denote wild-type cases. (a,d,g) Mode 2 vs. mode 1; (b,e,h)
Mode 4 vs. mode 3; (c,f,i) Mode 6 vs. mode 5.
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Fig. 3. The Fisher discriminant plotted vs. deformation mode number for PCA, ICA
and SPCA. The values are obtained in a leave-one-out experiment providing the error
bars (one standard deviation).

manual annotations from two observers were used to assess the registration accu-
racy. Using the optimal transformations from the image registrations, landmarks
were obtained automatically. The landmark positions were statistically compared
to those annotated by the human observers. This showed that the automatic
method provided as good accuracy as the human observers and, moreover, it
was more precise, judged from the significantly lower standard deviation.

The SPCA was applied to the matrix of control points (p = 21675). A thresh-
old of 2000 points was used to obtain equal sparsity in each mode of variation.
Fig. 2 (a-c) shows the observations projected onto the first six sparse principal
directions (ordered by Fisher discriminant score). To evaluate the ability of the
sparse SDM to assess the local group differences, it was compared to a standard
PCA and our previous approach [16] using ICA [17]. Fig. 2(d-i) shows scatter
plots of the first six modes for ICA and PCA, sorted with respect to the Fisher
discriminant.

The score plots already give an idea about the discrimination ability of the
different approaches. To give a more quantitative measure, the Fisher discrim-
inant was assessed in a leave-one-out fashion for all three approaches. This is
plotted with error bars for each of the approaches in Fig. 3.

With emphasis on the group differences, each mode of the sparse model was
visualised by selecting the extremes from each group in model space (Fig. 2) and
project back into the space of control points. This set of control points generated
from the model was then applied to the atlas to obtain the deformed volumes
of the two extremes. Subsequently the surfaces were extracted for visualisation.
Fig. 4 shows mode 1,3,4 and 6. Mode 2 was excluded from this visualisation due
to an overlap in variation with mode 1.

Deforming the atlas along the discriminating modes of the ICA model reveals
many similarities between ICA and SPCA. To give an example Fig. 5 shows IC 5
which is closely related to SPC 4.
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SPC 1, Wild-type SPC 1, Crouzon

SPC 3, Wild-type SPC 3, Crouzon

SPC 4, Wild-type SPC 4, Crouzon

SPC 6, Wild-type SPC 6, Crouzon

Fig. 4. Sparse Principal Deformation modes 1,3,4 and 6, visualised on surfaces after
deforming atlas to the extremes of each mode. The colors are intended to enhance the
regions where changes have occurred in the deformed surfaces. The colors denote dis-
placement with respect to atlas (in mm), with positive values (red) pointing outwards.
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IC 5, Wild-type IC 5, Crouzon

Fig. 5. Independent Deformation mode 5 visualised on surfaces after deforming atlas
to the extremes of the mode. The colors are intended to enhance the regions where
changes have occurred in the deformed surfaces. The colors denote displacement with
respect to atlas (in mm), with positive values (red) pointing outwards.

5 Discussion and Conclusions

The score plots in Figure 2 indicate that both SPCA and ICA are capable of
discriminating between the two groups in up to six deformation modes. The
standard PCA only discriminates between the groups in the first mode. Figure 3
confirms these speculations. It is evident that PCA is only capable of discrim-
inating between the groups in one mode of variation. SPCA performs slightly
better than the ICA, but the ICA seems to be more robust judged from the
error bars. Considering the low number of points in the sparse model, this is
understandable.

Visualising the sparse deformation modes in Figure 4 indicates that compared
to wild-type mice, the skulls of Crouzon mice are higher and longer (SPC 1),
are asymmetric with respect to zygoma and nose (SPC 3), have different shape
of the middle ear and back of the head (SPC 4), and have an angulated cranial
base (SPC 6). These observations correspond up to some degree with what has
previously been seen in humans using manual measurements (see e.g. [18]). The
asymmetric behaviour seen in SPC 3 can be explained by the full or partial fusion
of cranial sutures at different sides and different times. The different shape of the
middle ear and the increased angulation of the cranial base has not been reported
in humans to our knowledge and may therefore be an important contribution
to the understanding of the growth disturbances. The angulation was found in
mice both using ICA [16] and PCA (with global transformation model extended
to 9 DOFs) [10]. The difference in shape of the middle ear and back of the head
was also captured by the ICA approach as seen in Figure 5. In fact SPC 4 and
IC 5 are extremely similar, but SPCA seems to create slightly stronger evidence
for the group difference. In general, the ICA modes introduce more noise than
sparse PCA, since many elements are close to 0, while in SPCA, the sparsity
property avoids this. Another advantage of SPCA is that it is solely based on
second order statistics making it less committed than ICA, which uses higher
order statistics.

In conclusion, with respect to discriminative ability, SPCA and ICA give
similar results when applied to model deformations. Both of the approaches
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outperform a standard PCA. However, due to the simplicity and flexibility of
SPCA, it should be the preferred method for this type of analysis.
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