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Abstra
tIn this thesis a problem, presented by ALCAN I
eland, is put forth. The problem, 
alledthe bus route problem, examines the pi
kup of employees on route to an aluminium plant.Therefore a depot is de�ned and also a set of pi
kup lo
ations. A bus must navigate through thepoints 
hoosing only the most important lo
ations. The problem is presented mathemati
allyand a meta-heuristi
, simulated annealing, is used to solve the problem. The are a number oftests put forth. A good 
ooling s
hedule is 
al
ulated. A matrix determining the probability ofa neighborhood is 
onstru
ted. The best method of node insertion into the solution is found.The algorithm 
al
ulated stru
tured solutions provided with non-randomly generated datasets. The simulated annealing algorithm was then vompared to a GAMS program, returningvalues between the upperbound and the obje
tive value 
al
ulated with GAMS. Comparisonbetween tabu sear
h algorithm for TOP and the simulated annealing algorithm showed thatthe former is faster for small data sets and nearly always returns better obje
tive values.Finally a 
onstraint for
ing a bus to travel for a 
eratain amount of time before stoppingagain was implemented.
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Chapter 1Introdu
tion1.1 Status Des
ription and MotivationThis exam proje
t is done by Einar Leif Nielsen for ALCAN in Straumsvík, I
eland. Mainsupervisor on this proje
t was Jesper Larsen, at IMM DTU. Co supervisors were Min Wen,PhD student at IMM DTU, and Páll Jenson, professor at the University of I
eland. In themiddle of the proje
t Jesper Larsen had to leave for New Zealand, for a few months, in themeantime Professor Jens Clausen took over Jespers duties on the proje
t.This proje
t deals with the pi
kup of employees for the ALCAN aluminium plant at StraumsvíkI
eland. ALCAN is the se
ond largest aluminium manufa
turer in the world. Its name is de-rived from the words ALuminium and CANanda. It has over 470 fa
ilities in 55 
ountries1.The aluminium fa
tory in I
eland is the 11th [5℄, largest, in the 
orporation. It is lo
ated inStraumsvík, whi
h is a just out side of Hafnarfjördur, a suburb of Reykjavík. Aluminium oxideis imported from Australia and manufa
tured into aluminium. The metal is then transportedoverseas for further work. ALCAN I
eland employees a around 470 persons [5℄ and was the�rst aluminium plant 
onstru
ted in I
eland. There are now three and more are planned.ALCAN's bus system, whi
h pi
ks up employees, was �rst taken into use 30 years ago. Thatsystem has sin
e grown and new pi
kup points have been added without 
al
ulating theirlo
ation. Now the system is very 
ompli
ated and has grown very expensive. A newly im-plemented tax on diesel fuel, by the I
elandi
 government, has lin
reased the 
ost even more.Therefore ALCAN de
ided to see if a more e
onomi
al method for pi
king up employees exists.The goal of this proje
t is to �nd more e
onomi
al bus routes and to see if the number ofbuses, and thereby routes, 
an be de
reased. ALCAN hopes to de
rease the 
ost of the systemby at least 10-15%. This 
an be a
hieved by inspe
ting the lo
ation of pi
kup points to see ifall 
urrent pi
kup points are ne
essary. Also new pi
kup points 
an be introdu
ed that wouldbe better lo
ated than those 
urrently in use. New areas2 will not be added to the 
urrentsystem. ALCAN also hopes that this will de
rease travel time for the employees as some em-ployees spend nearly an hour on the bus.1http://en.wikipedia.org/wiki/Al
an2Neighborhoods and suburbs. 11



12 CHAPTER 1. INTRODUCTIONALCAN prefers a general solution as it re
eives a large work for
e during the summer monthsthat relieve other employees during summer va
ations. This does not mean that spe
ial solu-tions should be ex
luded. They will be looked into and their importan
e estimated. ALCANhas requested that various types of solutions are to be inspe
ted.The 
urrent number of employees at ALCAN is 467 divided on three shifts. A day shift, 08-16;an afternoon shift, 16-00; and a night shift, 00-08. There are also three types of employees.Those who work the day shift, those who work the day shift and the afternoon shift and thosewho work on all three shifts. Also there are those who work weekends and those who do not.As is the 
ase with most workpla
es, that use a shift system, at no time is all the workfor
epresent at the plant. So the largest work for
e is present during the day shift on the weekdayswhile the smallest workfor
e is present during night time on the weekends.For the day shift pi
kup ALCAN uses 68 pi
kup points and approximately another 15 areadded for the night and afternoon pi
kup (during these times some of the other pi
kup pointsare ex
luded). New pi
k up point will be added to the system, these points 
an be lo
al busstops or other strategi
ally 
hosen points, while others will be removed. The 
urrent routes areof di�erent lengths the longest taking approximately 52 minutes, driven in the morning duringweekends and holidays; and the shortest approximately 29 minutes, driven in the morning onweekdays.Currently Hópbílar supply the buses used in pi
king up employees for the aluminium plant inStraumsvík. Hópbílar is a privat bus 
ompany and one of the biggest in its �eld in I
eland.They have served ALCAN well and both 
ompanies want to 
ontinue that 
ooperation.Other transportation possibilities mentioned in this report are: the lo
al bus system, run bya 
ompany 
alled Strætó; and the lo
al taxi servi
es, whi
h are many.1.2 Outline of the ThesisThere are �ve 
hapters in this thesis ex
luding the �rst, this one. Ea
h of these �ve 
hapetersexamin a di�erent part of the problem that has been introdu
ed.The se
ond 
hapter annalysis the problem presented, de�nes it and presents a mathemati
almodel. There is also a review of relevant problems. The �nal se
tion in the �rst 
hapter ex-amins methods that have been implemented on similar problems and their results.The third 
hapter looks at the theory of the algorithm used for solving the problem. Alsoimplementation of this algorithm is explaind.The fourth 
hapter looks at various tests, or 
ompuational experiments. In this 
hapter thebest parameters are 
al
ulated and implemented. Various data sets were generated and otherdata sets obtained.The �fth and �nal 
hapter summarises the 
on
lusions rea
hed in this proje
t. The �fth 
hap-ter also posses questions regarding further work, su
h as: Is there any further development ofthe problem, or method, possible? Are results useful and other questions?



1.2. OUTLINE OF THE THESIS 13There is also a large appendix in this report 
ontaining various results from experiments,analysis and the algortihm used.
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Chapter 2Bus Route ProblemIn this se
tion a number of di�erent solutions for solving this problem, are explored. ALCAN'sbus route problem will from now on simlpy be re�ered to as the bus route problem.2.1 Analysis of the Realisti
 PossibilitiesFor this problem there are many possible solutions, these types of solutions have been 
ate-gorized in two types.1. First type of solutions only rely on one transportation possibility. That is only one
ompany will transport employees to and from the aluminium plant.2. The se
ond type of solutions are 
ombinations of two transportation possibilities.It was 
onsidered and reje
ted to use 
ombinations of more than two transportation possi-bilites. The reason for this is that solutions of the se
ond type 
overed all hours of the day,365 days a year. Therefore a new more 
omplex 
ombinations would o�er no improvementover the solutions of type 2. Also 
ombinations of more than two transportation possibilitiesare likely to be too expensive.In total there are 8 solutions of the �rst type and 25 
ombined solutions. Solutions of typeone are de�ned in table 2.2.2.1.1 SWOT AnalysisStrength, weakness, opportunity and threats analysis, or SWOT analysis, was used to deter-mine whi
h solution would be best suited in solving the bus route problem. This is a methodoften used to de�ne the pros and 
ons. In this method:strength represents helpful internal fa
torsweakness represents harmful internal fa
torsopertunities represents helpful external fa
torsthreats represents harmful external fa
tors15



16 CHAPTER 2. BUS ROUTE PROBLEMWhen using SWOT analysis one has to de�ne internal and external fa
tors. In the 
ase of thebus route problem internal fa
tors were de�ned as: The author of the proje
t, ALCAN andthe proje
t supervisors.External fa
tors were de�ned as: The employees of ALCAN, transportation 
ompanies andthe general publi
 of the greater Reykjavík area.After internal and external fa
tor have been de�ned a table is 
onstru
ted. An example of aSWOT analysis table 
an be seen in Table 2.1.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solu-tion that takes into a

ountemployee turnover. Worksall year round, 24 hours aday. This solution is not toosimple to be 
onsidered aexam proje
t.
Not ALCAN's desired solu-tion. In this solution newnodes without a prede�ned lo-
ation 
annot be used. Hardto estimate the general popu-lation of an area.External De
reases travel time. De
reases pro�t for Hópbílar.De
reases the 
urrent amountof servi
e provided by AL-CAN.Table 2.1: This table show how solution of type 1 was analysed. SWOT analysis of all solutions
an be viewed in appendix B.

2.1.2 Combined SolutionsAll possible 
ombined solutions are shown in table 2.3. Although due to the number of pos-sible 
ombinations more information 
ould not be in
luded in the table. Therefore a shortexplination, of Table 2.3, is in order for example look at 
ombination 1(Combo 1). This is a
ombination of solutions of type 4 and type 1, both are de�ned in table 2.2. This 
ombinationproposes the use of Strætó, the lo
al bus system, when possible and Hóbílar, a private bus
ompany, when Strætó is 
losed. This is useful as the lo
al bus system is 
losed during nighttime and during holidays su
h as Christmas.A di�erent 
ombination type, is 
ombination 15(Combo 15). This 
ombination uses solutionsof type 2 and 5. Note though that the 
ombination uses an extreme solution of type 2. Anextreme solution tries to limit the number of routes and travel time of a single route as mu
has possible. So the solution would provide a few pi
kup points were Hópbílar would stop.Employees however would have to get to these pi
kup points by themselves.In appendix B all 
ombination solutions are de�ned and analyzed with the SWOT method.



2.1. ANALYSIS OF THE REALISTIC POSSIBILITIES 17
Table 2.2: Possible solutions for the problemName Des
ription TransportationType 1 Use 
urrent pi
kup points along with new ones(prede�ned, su
h as lo
al bus stops). Estimatethe importan
e of ea
h pi
kup point by thenumber of people living 
lose to it, the amountof parking and 
onne
tion to lo
al transit sys-tem. Buses from Hópbílar are used to pi
k upemployees.

Hópbílar
Type 2 Same as type 1 ex
ept importan
e of pi
kuppoints is de
ided by the number of employeesthat live 
lose to them. Buses HópbílarType 3 Same as type 2 ex
ept a software, su
h asShorTre
 from AGR hf., is used to determinethe bus routes. A new route 
an be 
al
ulatedas often as ALCAN desires. Buses HópbílarType 4 Uses the lo
al bus system, buses, to pi
kup em-ployees and return them. StrætóType 5 Car pooling. Ea
h 
ar will be given a drivingdiary and re
eive a payment for gas used atthe end of the month. It would be ne
essaryto write a program that would put �ve peopletogether as a part of a 
ar pooling team. Employees
Type 6 Driving grant. Ea
h employee would re
eive anin
rease in pay to 
ompensate for the la
k ofbuses. The employees would then drive them-selves to work. EmployeesType 7 Car pooling with taxis. A taxi would pi
kupemployees and return them. Ea
h taxi wouldbe �lled with passengers. A program would tellthe taxi servi
e where and when to pi
k up anemployee. Taxi servi
e
Type 8 Same as type 1 ex
ept the pi
kup points wouldbe 
al
ulated so that there lo
ation was goodand not from predetermined points. Buses Hópbílar
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Table 2.3: Possible solutions for the problemName Des
ription TransportationCombo 1 Type 4 and type 1. Hópbílar and StrætóCombo 2 Type 2 and type 4. Hópbílar and StrætóCombo 3 Type 3 and type 4. Hópbílar and StrætóCombo 4 Type 5 and type 4. Employees and StrætóCombo 5 Type 6 and type 4. Employees and StrætóCombo 6 Type 7 and type 4. Taxi servi
e and StrætóCombo 7 Type 8 and type 4. Hópbílar and StrætóCombo 8 Type 5 and type 6. Hópbílar and StrætóCombo 9 Type 7 and type 6. Hópbílar and StrætóCombo 10 Extreme solution using type 1 and then use type 4. Hópbílar and StrætóCombo 11 Extreme solution using type 2 and then use type 4. Hópbílar and StrætóCombo 12 Extreme solution using type 3 and then use type 4. Hópbílar and StrætóCombo 13 Extreme solution using type 8 and then use type 4. Hópbílar and StrætóCombo 14 Extreme solution using type 1 and then use type 5. Hópbílar and employeesCombo 15 Extreme solution using type 2 and then use type 5. Hópbílar and employeesCombo 16 Extreme solution using type 3 and then use type 5. Employees and HópbílarCombo 17 Extreme solution using type 8 and then use type 5. Employees and HópbílarCombo 18 Extreme solution using type 1 and then use type 6. Employees and HópbílarCombo 19 Extreme solution using type 2 and then use type 6. Employees and HópbílarCombo 20 Extreme solution using type 3 and then use type 6. Employees and HópbílarCombo 21 Extreme solution using type 8 and then use type 6. Employees and HópbílarCombo 22 Extreme solution using type 1 and then use type 7. Taxi servi
e and HópbílarCombo 23 Extreme solution using type 2 and then use type 7. Taxi servi
e and HópbílarCombo 24 Extreme solution using type 3 and then use type 7. Taxi servi
e and HópbílarCombo 25 Extreme solution using type 8 and then use type 7. Taxi servi
e and Hópbílar



2.2. PROBLEM DEFINITION AND DESCRIPTION 192.1.3 Chosen SolutionFrom the SWOT analysis it was determined that solution of type 2 was best suited. The reasonfor this 
hoi
e is that this solution is relatively simple to program and therefore a good pla
eto start the proje
t. Also this would provide a solution for ALCAN. Although not as generalas they may have preferred but ga ood spe
ial solution. The de�nition of solution type 2 
anbe seen in table 2.2. Small 
hanges have been made to this solution to better suite the needsof ALCAN. Solution of type 2 was de�ned as:Use 
urrent pi
kup points along with new ones (prede�ned, su
h as lo
al bus stops).Estimate the importan
e of pi
kup points by the number of employees that live
lose to them, the amount of parking and 
onne
tion to lo
al transit system.Buses from Hópbílar are used to pi
k up employees.2.2 Problem De�nition and Des
riptionThe problem as presented by ALCAN gives a geographi
al set, a set of employees, a set ofbuses and a set of lo
ations(pi
kup points). The aluminium plant also has a prede�ned lo
a-tion and all buses must �nish their route there.Let us �rst look at the geographi
al set. Within this set are the possible lo
ations of pi
kuppoints, as ALCAN has de�ned some areas outside of there routes and they do not intend toin
rease this area. Therefore new pi
kup points must be lo
ated within the geographi
al set.The travel between all points in a set is 
alled the travelling salesman problem or TSP. In thisproblem one must navigate trhough a number of points and then return to the point of origin,via the shortest travel distan
e.The set of employees in
ludes all employees at ALCAN. Although some employees live outsideof the geographi
al set and are therefore not relevant to the problem. This set is not very 
ru
ialto the problem but 
an be useful in determining the importan
e of a single pi
kup point. Trav-eling through a set of points ea
h assigned a pro�t is similar to the pri
e 
olle
ting travelingsalesman problem, PCTSP. In that problem one must navigate trhough a set of points leavingfrom a sour
e point and return having 
olle
ted a minimum number of pro�t on the way, viathe shortest route. Note though that one does not have to visit all points, in the set, in PCTSP.The set of buses is important as the number of buses 
urrently in use, in the system, 
annotbe ex
eeded. The set of buses will from now be re�ered to as the set of routes. If a single busis in use, that bus will be 
alled an a
tive route or a route in use. The 
apa
ity of a bus isnot important as the number of people working at ALCAN ar not that many. Therfore the
apasity of a single bus is unimportant. A problem dealing with more than one route is 
alleda vehi
le routing problem or VRP. In VRP one must navigate more than one route leavingfrom a depot, visiting all points in the set, and the returning again to the sour
e, via theshortes possible routes.Lo
ations are 
ru
ial to this proje
t. The 
hoi
e of where a bus should stop or not is importantin determining the 
ost of the system. The only fa
tor 
on
erning this set is that the lo
ationsbe within the geographi
al set. How to 
hoose a lo
ation will depend on how pro�table a
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ation is. To determin this pro�t the number of employees living within a 
ertain radius,available parking, 
onne
tion to lo
al transit and other fa
tors 
an be inspe
ted. To simplifyfor now we will assume that the importan
e of a node is determined by the number of people,within the set of employees, that are living inside a 
ertain radius from the lo
ation. Theselo
ations will now be referred to as nodes. Nodes in use 
an also be 
alled an a
tive nodes. Theare many possibiltiees to add nodes to the ex
isting set of lo
ations as long as those nodesare within the geographi
al set. As time is more of an issue than distan
e the travel timebetween individual nodes will be inspe
ted, not the distan
e. This problem, as it has beende�ned, is very similar to the team orienteering problem, TOP. There a team of moutaineersmust navigate, ea
h on his own, though a number of nodes, therby 
olle
ting pro�t. The goalof TOP is to 
olle
t as mu
h pro�t as possible and it is not ne
essary to visit all nodes in theset. Also in TOP one must return to the point of origin.Another problem, regarding the nodes, 
on
erns the distan
e, or travel time, between twonodes. If two nodes are situated very 
lose to one another the may have overlapping pro�t.This means that some of the people living within a 
ertain radius from node one also livewithin said radius from node two. Therefore a 
onstraint for
ing the bus to travel a 
ertaintime before stopping again 
an be implemented. Another solution regarding this problemwould involve not 
hoosing two nodes too 
lose to one another.It is the wish of ALCAN to de
rease the 
ost of the bus sytem. This 
an be a
hived in twoways. First by de
reasing the number of routes in use or se
ondly by de
reasing the numberof a
tive nodes. These are therefore de�ned as the two main fa
tor in ALCAN's problem, theproblem will from now on be re�ered to as the bus route problem. ALCAN's whishes are tolimit the number of nodes and/or routes while pi
king up as many employees as possible. Thismeans that not all nodes have to be visited, only those who are deemed important enough.Also as the buses themselves are not owed by ALCAN, but by an outside 
ontra
tor, the busestherefore do not have to start at the plant. This means a if a route is used it will originatefrom the �rst node it visits and then make its way to the aluminium plant. The open vehi
lerouting proble, OVRP, is simlar to this. In OVRP one must navigate a number of routes, allleaving from the same depot, though a set of nodes. All nodes must be visited but the routesdo not have to return to the depot. The aluminium plant will from here on be referred to asa depot.By 
ombining 
ertain elements of the methods des
ribed one 
an formulated a mathemati
almodel of the bus route problem. Alternative methods than those previously des
ribed 
an beused to solve the problem. For example one 
ould assign all employees to 
ertain bus stopsand then one would add those bus stops to a bus route. If the route is too long one wouldthen de
rease the number of bus stops and reassign the employees to fewer pi
kup points. Thiswould be done as often as ne
essary. After employees have been assigned to the bus stops theproblem be
omes a OVRP.This method will most likely have a shorter 
al
ulation period than the bus route problem. Itwould take into a

ount the 
apa
ity of ea
h vehi
le and there is no 
han
e that a bus will stopat two points with overlapping pro�t. On the other hand the bus route problem is more likelyto 
hoose the best possible routes, it is a more general solution and might possibly 
hoose tostop at points with small pro�t. In 
on
lusion these are both good methods but the bus route



2.3. A MATHEMATICAL MODEL FOR BRP 21problem seems to �t more to the wishes of ALCAN and therefore is a better 
andidate forsolving the problem presented.To determine the lo
ation of nodes a population fun
tion for the area 
an be 
onstru
ted. Thisfun
tion would map out the most populated areas and the points with the highest population,hot spots, would de�ne nodes and there pro�t. The reason this will not be done is that
onstru
ting a population fun
tion of a 
ity is outside the s
ope of this proje
t, even thoughit would give a very general solution. Therefore the method of prede�ned pi
kup points isdeemed better in 
omparison.2.3 A Mathemati
al Model for BRPThe problem de�ned is the bus route problem, BRP, and it has been 
ompared to variousmethods su
h as PCTSP, TOP and OVRP. It has been shown that the bus route problem hasalot in 
ommon with these other problems but is not the same as any of them.In this model there are a few sets whi
h need to be de�ned. L is the set of n lo
ations,nodes, where pi
kup of employees is possible. Not all of these lo
ations have to be visited.
V = L ∪ {0, n + 1} is the set of all nodes, {0} represents fa
tory out and {n + 1} representsfa
tory in. Travel time from node 0 to any other node is none, 0. This is be
ause the bus routeproblem is an open problem, like the OVRP, and it is not ne
essary for the busses to startthere route at the depot, plant. A is the set of ar
s between nodes and K is the set of busses,
K = {1, 2, ..., N}.To 
onstru
t a model of the bus route problem, three variables have to be de�ned.
Name Des
ription

xk
i,j The ar
 between i and j, equal to 1 if the ar
 is driven, by bus k, else it is equal to0.
yi A binary number equal to 1 if node i is visited else it is 0
sk
i This is the stopping time for bus k at node i.The time, sk

i , is de�ned as the time when bus k stops at node i and is therefore dependanton previous sk
j if the bus stopped at node j ∈ L. Also there are a few 
onstants that need tobe de�ned before the model is presented. Constants are all represent with the Greek sympolsex
ept for the upper.
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ription
τi,j The travel time between nodes i and j.
φi The pro�t for stopping at node i.
δi Indi
ates penalty for stopping at any given node, i.e. the time it takes to stop at anygive pi
k up point. In most 
ases there is no penalty for stopping at the sour
e andsink.
α This is a bonus fa
tor for pro�ts, a bonus re
eived when a pi
k up point is 
hosen.
β This is a bonus fa
tor for not using a bus.
M An upper time limit is put on ea
h route, so that travel time for a single employeeis not greater than this number.
N Maximum number of buses. It is not desired to use more buses than are 
urrently inuse.Note that τ0i = 0, when i ∈ V , be
ause it is not ne
essary for a bus to drive from node 0,but it helps to start there when 
onstru
ting the routes. Pro�t 
an be determined by lookingat: population of area, number of employees living 
lose to the node, parking, bus stops or
ommer
e in the area. Some or all of these fa
tors will be used when determining the pro�t ofa node. The solution will try to maximize the pro�t 
olle
ted, while minimizing the numberof buses used. Time will be a 
onstraint rather than part of the obje
tive fun
tion, this is alsodone in TOP.A pro�t, of β is gained by not using a bus. Therefore when a bus is not used it travels straightform sour
e to sink, xk

0,n+1 = 1.The bus route problem might be appli
able in other 
ases. In these other appli
ations someof these 
onstants might be unne
essary, or others might need to be added. This will dependentirely on the problem the model is applied to. Also 
ost may vary depending on time ofday, or if there is a holiday. This is be
ause a 
ost of using a bus 
an have many fa
tors. Thegreatest of these is probably the start up 
ost for a single bus. Costs 
an be 
onsidered asmany things for example maintenan
e, driver salary and bus 
ompany pro�t. Also in some
ases 
ompanies may 
harge for ea
h kilometer or ea
h liter of gasoline used.2.3.1 Obje
tive Fun
tionThe obje
tive fun
tion for the bus route problem is now put forth.
max Y = α

∑

i φiyi + β
∑

k xk
0,n+1There are two fa
tors in the obje
tive fun
tion. The �rst half of the equation shows the pro�tsgained stopping at a 
ertain node and that is then multiplied with a bonus fa
tor. The se
ondis a positive 
ontribution for every bus not used, xk

0,n+1 = 1 and all other xk
ij = 0, that is thenmultiplied with a bonus fa
tor. The bonus fa
tor represents for ex
ample the 
ost of a singlebus, β, or the importan
e of a single pro�t point, α.2.3.2 ConstraintsHere are the 
onstraints 
onstru
ted for the bus route problem.
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∑

k∈K

∑

j∈V \{i}

xk
ij = yi ∀i ∈ V (2.3.1)

∑

k∈K

∑

i∈V \{j}

xk
ij = yj ∀j ∈ V (2.3.2)These two 
onstraints (2.3.1) and (2.3.2) say that if yi = 1, for i ∈ L, then the node is enteredand exited.

xk
0,j(s

k
0 + τ0,j) ≤ sk

j ∀k ∈ K and j ∈ V (2.3.3)
xk

ij(s
k
i + δj + τij) ≤ sk

j ∀k ∈ K,i ∈ L and j ∈ V (2.3.4)These 
onstraints (2.3.3) and (2.3.4) ensures that if a bus travels between i and j, on route k,then the stopping time on lo
ation i is 
onstraint to the previous time the bus has travelled.
sk
n+1 ≤M ∀k ∈ K (2.3.5)Constraint (2.3.5) does not allow any route to have a travel time greater than M .

∑

k∈K

∑

j∈V

xk
ij ≤ 1 ∀i ∈ L (2.3.6)Constraint (2.3.5) restri
ts more than one bus driving between i and j.

∑

j∈V

xk
0j = 1 ∀k ∈ K (2.3.7)Constraint (2.3.7) ensures that a bus drives out of the fa
tory.

∑

i∈V

xk
ih −

∑

j∈V

xk
hj = 0 ∀h ∈ L, k ∈ K (2.3.8)Here in equation (2.3.8) it is made sure that if a bus drives into a node it is required to driveout of it as well, if the node is in the set of lo
ations (pi
kup points).

∑

i∈N

xk
i,n+1 = 1 ∀k ∈ K (2.3.9)Constraint (2.3.9) requires all buses to end there routes at the fa
tory.

xk
i,j ≤

τij

a
∀k ∈ K, i ∈ V, j ∈ V (2.3.10)In (2.3.10) s bus must travel for a 
ertain amount of time, a, before stoping at a new pi
kuppoint.



24 CHAPTER 2. BUS ROUTE PROBLEM2.3.3 LinearityThe model, as presented in the previous se
tion, is not linear and therefore some 
hanges haveto be made if it is to be solved in GAMS1. The non-linearity 
an be found in equations (2.3.3)and (2.3.4), where two variables are multiplied. To ensure linearity the 
hanges listed belowhave to be applied, to the model.
sk
0 = 0 ∀k ∈ K (2.3.11)

sk
0 + τ0,j − sk

j = (1− x0,j)W ∀k ∈ Kj ∈ V (2.3.12)
sk
i + δ + τij − sk

j = (1− xij)W ∀k ∈ K, i ∈ Lj ∈ L (2.3.13)
sk
i + τi,n+1 − sk

n+1 = (1− xi,n+1)W ∀k ∈ Ki ∈ V (2.3.14)Here W is a large number and W > |V |. Other 
onstraints are the same as in the previousse
tion. Although when dealing with a GAMS model other 
onstraints have to be added:
∑

i∈V

∑

k∈K

xk
i,0 = 0 (2.3.15)

∑

j∈V

∑

k∈K

xk
n+1,j = 0 (2.3.16)

∑

i∈V

∑

k∈K

xk
ii = 0 (2.3.17)These 
onstraint ensure that a node does not visit itself, that no one 
an return to the sour
eand that no one 
an leave the sink.2.3.4 Upper BoundsFirst and the most obvious upper bound to the problem is to let one route visit all the points.

UB =
∑

i∈V

φi + β(|K| − 1) (2.3.18)This upper bound requirs one bus to 
olle
t all the pro�ts froom every node. All pro�tsare represented by the �rst half of equation (2.3.18) and if only one bus is used then a pro�tof β(|K| − 1) is 
olle
ted from the unused buses.Relaxations to travel timeThe upper bound in (2.3.18) is the same for all values of M . Let us now in
orporate M intothe upper bound. It is known that traveling further than M from the depot is impossible. Letus now de�ne VM as the set of all nodes 
loser than M to the depot. The new upper bound is
∑

i∈VM

φi + β(|K| − 1) (2.3.19)1GAMS is a programming language used to solve linear models in operation resear
h.



2.4. REVIEW OF RELEVANT PROBLEMS 25This upper bound, equation (2.3.19) does not allow pro�t outside the radius of maximumroute length. All pro�t within that radius, of maximum route length, is 
olle
ted with a singlebus.2.4 Review of Relevant ProblemsThe bus route problem fo
uses on routes that make there way through a number of pi
k uppoints before �nally stopping at the last point, known as the depot. This is similar to a wellknown problem 
alled the travelling salesman problem or TSP.2.4.1 TSPTSP tries to �nd the optimal, shortest, route from a sour
e through a number of nodes andba
k to the sour
e. A travelling salesman leaving from New York and visiting all the major
ities on the east 
ost, of the USA, has to �nd the best route to travel and then return homeagain, hen
e the name travelling salesman problem.This problem is, perhaps, the best known problem in operations resear
h. For this problem abinary matrix is de�ned, xij.
xij =

{

1 If one travels from node i to node j
0 If one does not travel from node i to node jAlso a 
ost, cij , is de�ned. This is the 
ost of travelling from node i to node j. The set ofnodes is V and A is the set of all ar
s. A model, as de�ned in Wosley [15℄ is:min∑

i∈V

∑

j∈V

cijxij (2.4.1)s. t. ∑

j:j 6=i xij = 1 ∀i ∈ V (2.4.2)
∑

i:i6=j xij = 1 ∀j ∈ V (2.4.3)
∑

i∈S

∑

j /∈S xij ≥ 1 for S ⊂ V , S 6= ∅ (2.4.4)
xij ∈ {0, 1} ∀i ∈ V,∀j ∈ V (2.4.5)

cij ≥ 0 ∀i ∈ V,∀j ∈ V (2.4.6)Constraints (2.4.2) and (2.4.3) ensure that every node is both entered and exited. The most
ompli
ated 
onstraint is (2.4.4) for it is a sub tour elimination 
onstraint. The number ofsub tour elimination 
onstraints raises dramati
ly with the number of nodes assigned to theproblem.The number of possible solutions for TSP, with n nodes, is (n−1)!. Half that for the symmetri
problem. The TSP problem is NP-hard [6℄ Wosley [15℄ de�nes NP-hard in the follwoing way:"NP is a 
lass of de
ision problems with the property that: for any instan
e for wi
h the an-swer is YES� there is a "short" (polynomial) proof of the YES." Heuristi
s su
h as Lagrangianheuristi
 and meta heuristi
s, su
h as tabu sear
h, are often used to solve TSP. The largestTSP problem solved, to date, found the shortest path between 24,978 
ities in Sweden [6℄. To
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utting plain and bran
h-and-
ut pro
esses were used and it took almost ayear to �nd the �nal solution [6℄.As 
an be seen there are 
ertain similarities between the travelling salesman problem andthe bus route problem. Although in the latter it is not ne
essary to stop at all points but thatis the 
ase with TSP. Therefore in the bus route problem one must determine whi
h pi
k uppoints are important and whi
h are not. A variation of the travelling salesman problem 
alledthe pri
e 
olle
ting travelling salesman problem, PCTSP, deals with this problem.2.4.2 PCTSPIn PCTSP, ea
h node is assigned a prize, or pro�t, gained when the node is visited. Not allnodes have to be visited in PCTSP but a penalty is paid for every node skipped. As in TSP
V is the set of all nodes.Name Des
ription

xij Is equall to 1 if the path between i and j is used otherwise it is 0.
yi A binary number equal to 1 if node i is visited else it is 0
γi Penalty to be paid if node i is not visited.
pi Prize gained from visiting node i.
cij Cost of travelling from i to j.
B A minimum amount of 
olle
ted prizes.The PCTSP problem as presented2 in Dell'Ami
o [8℄:min∑

i∈V

∑

j∈V \i

cijxij +
∑

i∈V

γi(1− yi) (2.4.7)s. t. ∑

j∈V \i xij = yi ∀i ∈ V (2.4.8)
∑

i∈V \j xij = yj ∀j ∈ V (2.4.9)
y1 = 1 (2.4.10)

∑

i∈V piyj ≥ B ∀j ∈ V (2.4.11)
∑

i∈S

∑

j∈V \S xij ≥ yh ∀h ∈ V \ 1 and ∀S ⊂ V : 1 ∈ S, h ∈ V \ S (2.4.12)
xij ∈ {0, 1} ∀i ∈ N,∀j ∈ N (2.4.13)
yi ∈ {0, 1} ∀i ∈ N (2.4.14)(2.4.15)Constraints (2.4.8) and (2.4.9) ensure that if a node is entered it is also exited. Constraint(2.4.10) for
es the depot to be in
luded in the 
y
le. In (2.4.11) a 
ertain amount of prizes hasto be gathered, a goal is de�ned, and (2.4.12) is a sub tour elimination 
onstraint.PCTSP was introdu
ed by Balas and Martin in 
onne
tion with operations of a steelrolling mill. A variant of PCTSP is the pro�table tour problem, PTP. When a PTP model is2Similar mathemati
al presentations were presented in Balas [1℄ and Dell'Ami
o [9℄, but a slightly di�erentmodel was presented in Chaves [4℄
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onstru
ted it is essentially the same as PCTSP ex
ept (2.4.10) and (2.4.11) are removed and
γi = 0 for all i ∈ V [9℄.Many methods have been used to solve PCTSP for example Lagrangian heuristi
 [8℄ or hybridalgorithms [4℄.In 
omparison the bus route problem and PCTSP are similar but PCTSP only allows a singleroute to visit pi
k up points. The problem presented by ALCAN 
an have up to �ve routes.A well know problem in operations resear
h deals with multiple routes, that problem is 
alledthe vehi
le routing problem or VRP.2.4.3 Vehi
le Routing ProblemAllo
ating more than one route to a number of nodes, is generally 
alled the vehi
le routingproblem.Name Des
ription

xk
i,j Is equal to one if route k travels from i to j and 0 otherwise.
γi Penalty to be paid if node i is not visited.
pi Prize gained from visiting node i.
cij Cost of travelling from i to j.
B A minimum amount of 
olle
ted prizes.Routing problems are 
hara
teristi
ally di�
ult to represent 
on
isely in optimization models[12℄. These problems are often very useful in the real world. A mathemati
al model is presentedin the following way: min ∑

k∈K

∑

i∈V

∑

j∈V

cijx
k
ij (2.4.16)Here K is the set of routes and |K| = N while V is the set of nodes were |V | = n. In thisproblem the depot is presented by sour
e node, i = 0, and a sink node, i = n.

∑

i∈V xk
ih −

∑

j∈V xk
hj = 0 ∀h ∈ V \ {0, n}, k ∈ K (2.4.17)

∑

k∈K xk
ij = 1 ∀i ∈ V \ {0},∀j ∈ V \ {n} (2.4.18)

∑

i∈V xk
i,n = 1 ∀k ∈ K (2.4.19)

∑

j∈V xk
0,j = 1 ∀k ∈ K (2.4.20)

∑

k∈K

∑

i∈S

∑

j∈V \S xij ≥ 1 ∀S ⊂ V : 0 ∈ S, n ∈ S (2.4.21)
xk

ij ∈ {0, 1} ∀i ∈ V,∀j ∈ V, k ∈ K (2.4.22)The �rst 
onstraint (2.4.17) ensures that all nodes entered are exited. The se
ond 
onstraint(2.4.18) restri
ts more than one vehi
le visiting any node. Then 
onstraints (2.4.19) and(2.4.20) for
e all routes to leave the sour
e and enter the sink. The subtour elimination 
on-straint is presented in (2.4.21) and lastly (2.4.22) gives xk
ij a binary value.



28 CHAPTER 2. BUS ROUTE PROBLEMThe VRP is widely used in the real world. The best example is the delivery of goods fromsuppliers to 
ustomers. Here the number of vehi
les and 
apa
ity of vehi
les 
an be a fa
tor.These problems are usually solved with a tabu sear
h or other heuristi
s.The VRP allows the use of more than one routes but the method requires ea
h route to havethe same point of origin, 
alled a sour
e. The routes visit all points in V but must end at thesame point they started from. When the routes return the sour
e point is sometimes 
alled asink, this is the same lo
ation but it has two names, sour
e and sink. In the bus route problemthis is not the 
ase, a bus 
an start at any node and then make its way to the depot. Avariation of VRP uses the same prin
iple. That variation of VRP is 
alled the open vehi
lerouting problem or OVRP.2.4.4 Open Vehi
le Routing ProblemOVRP, is similar to the vehi
le routing problem ex
ept when drivers have visited all nodesthey do not need to return to the depot. This is similar to the bus route problem ex
ept therethe bus starts at the last node and makes its way ba
k to the depot. OVRP uses a set ofHamiltonian paths while VRP uses a Hamiltonian 
y
les [3℄. Both a Hamiltonian 
y
le and aHamiltonian path are de�ned in [14℄ as follows:Before de�ning a path or a 
y
le a walk must �rst be de�ned. G is a graph, a walkin G is a sequen
e of nodes and ar
s. A path is a walk with no repeated nodesand a trail is a walk within repeated ar
s. Note that all paths are trails but notall trails are paths. A 
ir
uit is a 
losed trail but not a path. A 
y
le is de�ned asa 
ir
uit with at least one ar
 and has one repeated node is node1 = noden.In OVRP the drivers start at the depot and then �nish at the last 
ustomer node. Thereare normally 
ertain 
onstraints applied to this problem. A vehi
le has usually a maximumpredetermined 
apa
ity and this 
apa
ity 
annot be ex
eeded by the demand of the 
ostumernodes, on the route. Other 
onstraints may also apply, for example a maximum number ofvehi
les or the maximum length of any single route. The OVRP has not been as extensivelystudied as VRP [3℄. It was �rst mentioned, a

ording to [3℄, in 1981 by S
harge in an arti
lededi
ated to the des
ription of realisti
 routing problems. The mathemati
al formulation ofOVRP is the same as for VRP ex
ept c0j = 0, ∀j ∈ V .OVRP is used for a number of problems, for example the s
hool bus problem [17℄. In thatproblem a route for s
hool buses is determined. In [17℄ tabu sear
h is used to solve the prob-lem. Other algorithms, a

ording to [16℄, that have been used in
lude: list-based thresholda

epting, BoneRoute meta heuristi
 and re
ord to re
ord travel heuristi
. The last one is adeterministi
 variant of simulated annealing.The OVRP has similarities with the bus route problem but it has to visit all points in V .In the bus route problem one is allowed to skip some nodes, pi
k up points, but this is notpossible in the OVRP. The bus route problem does not have to visit all nodes, it does not haveto begin at the sour
e and it has to 
hoose nodes for there importan
e. A problem similar tothis is the team orienteering problem, or TOP.



2.4. REVIEW OF RELEVANT PROBLEMS 292.4.5 Team Orienteering ProblemThe team orienteering problem, or TOP, is a 
ombination of PCTSP and VRP. The problemde�nes a set of nodes V , a set of ar
s A and a set of routes K, were |V | = n and |K| = N . Inthis problem N routes visit n points, but does not have to stop at all points; ea
h point has aservi
e time and a pro�t.Name Des
ription
xk

i,j The number of times edge (i, j) transverses with vehi
le k.
yik A binary number equal to 1 if node i is visited by route k otherwise it is 0, i ∈ Vand k ∈ K
dij As the distan
e between two points and (i, j) ∈ A.
si Servise time ate vertex i, i ∈ V .
pi The pro�t re
eived for node i, i ∈ V .
M The total duration of ea
h tour.This is in many ways similar to the bus route problem as a pro�t is needed for every node todetermine whi
h are to be visited. The TOP problem as presented in [13℄:max n−1

∑

i=1

N
∑

k=1

piyik (2.4.23)s. t. ∑n−1
j=1

∑N
k=1 xk

0j = 2N (2.4.24)
∑

i<j xk
ij +

∑

i>j xk
ij = 2yik ∀j ∈ V \ {n}, k ∈ K (2.4.25)

∑n−2
i=0

∑

j>i dijx
k
ij +

∑n−1
i=1 siyik ≤M k ∈ K (2.4.26)

∑N
k=1 yik ≤ 1 ∀i ∈ V \ {0, n} (2.4.27)

∑

i,j∈U,i<j xk
ij ≤ |U | − 1 U ⊂ V \ {0}, n − 2 ≥ |U | ≥ 2, k ∈ K(2.4.28)

xk
ij ∈ {0, 1, 2} ∀i ∈ V \ {0, n}, j ∈ V, k ∈ K (2.4.29)
xk

0,j ∈ {0, 1} ∀j ∈ V \ {n}, k ∈ K (2.4.30)
yik ∈ {0, 1} ∀i ∈ N (2.4.31)(2.4.32)The �rst 
onstraint (2.4.24) ensures that N tours leave the sour
e node and then return. Toensure 
onne
tion of sele
ted nodes is (2.4.25) and (2.4.26) limits the length of any singletour. The 
onstraint (2.4.27) prevents more than one route going through a single node, otherthan the depot. The sub-tour elimination 
onstraint is (2.4.28). The last three 
onstraint showallowed values for the variables.The TOP lets one 
onstru
t N routes through n − 1 nodes and the depot. Stopping at anysingle point gives a penalty or servi
e time. This 
ould for example be used for routing te
h-ni
ians to servi
e 
ustomers at geographi
ally distributed positions.The TOP is a NP-hard problem as it is a varition of the sele
tive traveling salesman prob-lem [13℄. Methods used to solve TOP in
lude tabu sear
h [13℄, greedy 
onstru
tion pro
edure



30 CHAPTER 2. BUS ROUTE PROBLEMand 5-step heuristi
. A single route TOP, 
alled the orienteering problem or sele
tive travelingsalesman problem, has been solved with up to 500 nodes. This was done using bran
h-and-bound and bran
h-and-
ut [13℄. Some times TOP is referred to as multiple tour maximum
olle
tion problem. Of all the di�erent problems presented the TOP is most similar to the busroute problem.2.5 Review of Methods2.5.1 A Lagrangian heuristi
 for the Prize Colle
ting Travelling SalesmanProblem [8℄An arti
le inspe
ting how to solve PCTSP with a Lagrangian heuristi
 by M. Dell'Ami
o, F.Ma�oli and A. S
ioma
hen. A good introdu
tion to the PCTSP. The underlying 
unstru
-tion of the bus route problem, presented in the report, is based in partially on the PCTSPmodel in this arti
le. The problem presented in the arti
le is minimized. Therefore to assist indetermining the valitity of 
al
ulated solutions a lower bound was also 
al
ulated. This lowerbound is found in [9℄. A feasible solution is found by using Adding-Nodes Pro
edure wheretwo rules, R1 and R2, are 
ompared. From these 
omparisons R2 was shown to be better inthis instan
e. This feasible solution is then de�ned as an upper bound as no feasible soultionwith a lower value obje
tive value is know.To improve upon feasible solutions two methods are 
ombined. The �rst was the so 
alledExtension phase tries to improve the overall pro�t of the 
urrent 
y
le. The se
ond method was
alled Collapse phase and it tries to remove the most expensive node ea
h time. Together themethod was 
alled Extension and Collapse. Lastly a Lagragian heuristi
 was developed so thatExtension and Collapse was applied in ea
h 
omputation of the Lagrangian multiplier. Thismethod was then used on a few 
omputational experiments. The 
on
lusion of the experimentswas that with in
reased pro�t, that needs to be 
olle
ted, the 
omputational time requiredin
reased while the quality of the solutions de
reases. This quality of solutions was mesuredas the ratio between upper bound and lower bound.2.5.2 Pri
e Colle
ting Travelling Salesman Problem [1℄This is an arti
le by E. Balas 
on
erning the pri
e 
olle
ting travelling salesman problem. Itwas Balas who, along with Martin, �rst introdu
ed the PCTSP. There is an introdu
tion toPCTSP in its �rst se
tion. After this the arti
le be
omes very mathemati
al and 
ompli
ated.The main fo
us of this arti
le is to dis
uss the stru
tural properties of the PCTSP polytope,the 
onvex hull of the solutions to the PCTSP.2.5.3 On Prize-Colle
ting Tours and The Asymmetri
 Travelling SalesmanProblem [9℄An arti
le by M. Dell'Ami
o, F. Ma�oli and P. Värbrand. The arti
le 
ontains a short in-trodu
tion to PCTSP and a model is presented. There is also a de�nition for PTP, pro�tabletour problem; and APTP, asymmetri
 pro�table tour problem. This arti
le featured a good



2.5. REVIEW OF METHODS 31se
tion on tests whi
h proved to be helpful in 
ondu
ting tests for the model inspe
ted in thisreport. Test were randomly generated.The arti
le de�nes PTP by removing 
ertain 
onstraints from PCTSP and allowing the emptysolution. A simple heuristi
 is de�ned to solve PTP. It is also dis
ussed how the PTP 
an bepolynomialy redu
ed to Asymmetri
 TSP on a large diagraph. Three previously dis
overedlower bounds for PCTSP are presented and also a new lower bound for PCTSP is put forth.For asymmetri
 PTP two lower bounds are presented by removing 
onstraints. The arti
le endswith a se
tion on 
omputational experiments both for PTP and PCTSP. Were all instan
eswere solved in less than one minute of CPU time. It was also 
on
luded, by inspe
ting ratiosbetween lower bounds, that solutions to large asymmetri
 PTP problems were good.2.5.4 Hybrid algorithms with dete
tion of promising areas for the prize
olle
ting travelling salesman problem [4℄This arti
le by Agusto and Lorena on PCTSP presents some ideas of 
lustering, using evolu-tionary 
luster sear
h and a hybrid approa
h 
alled CS*. This hybrid approa
h was 
onstru
tedfrom Greedy Randomized Adaptive Sear
h Pro
edure, or GRASP, and Variable neighbour-hood sear
h. The methods are given a short des
ription and how they 
an solve PCTSP isexplained. These ideas 
ould be useful in further development of insert moves or bus moves.The arti
le starts with an introdu
tion where PCTSP is introdu
ed and a short history of theproblem is given. The next se
tion puts forth a mathemati
al model of PCTSP, this model isa little di�erent from the one in [8℄. In the third se
tion ECS, evolutionary 
luster sear
h, andits 
omponents, evolutionary algorithm, intera
tive 
lustering, analyzer module and a lo
alsear
h; are explained. Then a se
tion des
ribes how ECS is applied for PCTSP. The hybridapproa
h 
alled CS* is then applied to PCTSP. In this se
tion a few interesting moves arede�ned. These 6 moves were di�erent from the ones used in this proje
t. One move 
alled m4,is 
omparable with insert move 133. Other moves were similar but often used more nodes, forexample m1 inserted 2 nodes instead of one. The last se
tion is on 
omputational results andshow solution from ECS and CS*. The results from these two are also 
ompared to resultsfrom a CPLEX 7.5 solver. In 
on
lusion the authors �nd that CS* returns better solutionsand use of these methods is validated.2.5.5 A tabu sear
h algorithm for the open vehi
le routing problem [3℄This arti
le by Brandao 
ontains a good introdu
tion to OVRP and 
ompares it to VRP.Most of the information in the se
tion on OVRP 
ame from this sour
e. There is also a shortintrodu
tion on the history of OVRP and relatively few, 
ompared to VRP, have studiedit. The meta-heuristi
 used in the arti
le is tabu sear
h. The importan
e of a good initialsolution is dis
ussed and how to attain su
h a solution, the methods used for this are nearestneighbour heuristi
, or NNH, and a solution based on a pseudo lower bound. The pseudo lowerbound is a method based on minimum 
ost spanning tree with degree k subje
t to relaxations.Initial solutions given with an insertion heuristi
 and a lower bound were experimented upon.Before applying the tabu sear
h to this initial solution the solution is submitted to one of twomethods: nearest neighbour or unstringing and stringing method. This was done to improvethe solution. In the tabu sear
h swap and insert moves are used. The goal of the algorithm was3The moves and neighborhoods are de�ned in the next se
tion.



32 CHAPTER 2. BUS ROUTE PROBLEMto minimize the number of routes and therefore new routes 
ould not be 
reated. A methodwas in
luded that tried to join the two routes with the lowest demand. This is 
lever and
ould be implemented to the algorithm used in the report in the future. In 
on
lusion it isstated that the algorithm gave good solutions for a very short 
omputing time, outperformingformer algorithms su
h as the one proposed by Sariklis and Powell. For example the methodof using psuedo lower bound gave an average travel time of 416.1 while Sariklis and Powellalgorithm had an average travel time of 488.2. These are from 
al
ulations with 50 point datasets and the di�eran
e in running times was 88.6 se
onds, Sariklis and Powell method solvedthe problem in 0.22 se
onds.2.5.6 Open Vehi
le Routing Problem with Time Deadlines: SolutionsMeth-ods and Appli
ation [17℄This arti
le, by Aksen, Aras and Özyurt; fo
used on the OVRP with time deadlines, or OVRP-TD. Clarke-Wright parallel saving algorithm modi�ed for OVRP was implemented along withgreedy nearest neighbour algorithm and a tabu sear
h heuristi
. The arti
le also 
ontains ashort des
ription for most of these methods. The arti
le explained how Clark-Wright, CW,is modi�ed for OVRP-TD, mostly by setting 
ertain distan
es to in�nity. Then CW and thenearest neighbour algorithm were used to �nd an initial solution. There neighbourhood 
on-sisted of three moves, whi
h were 1-0 move, 1-1 ex
hange and 2-Opt move. These three movesare the same as the swap moves des
ribed in this report. Lo
al sear
h with these moves isin
orporated into TS as a tool of lo
al post optimization, LPO. The 
hapter on 
omputationalresults solving �ve random results and one real problem , a s
hool bus problem in Istanbul. In
on
lusion it was apparent that CW initial solution performed better than 
lassi
al heuristi
swith LPO. Overall this is a very short arti
le that does not go mu
h into details.2.5.7 A general heuristi
 for vehi
le routing problems [11℄This arti
le, by Pisinger and Ropke, is a large, extensive and takes on various vehi
le routingproblems. VRP with time windows, 
apa
itated VRP, multi-depot VRP, site dependant VRPand OVRP are all dis
ussed and solved by transforming ea
h instan
e into a single typeof model. The model is 
alled Ri
h Pi
k up and Delivery Problem with Time windows, orRPDPTW. There is a mathemati
al presentation of this model that is a little 
onfusing, ona

ount of the number of sets involved. All the models RPDPTW solves are VRP models andtherfore have to visit all nodes presented in the system, whi
h means the RPDPTW 
an notbe appplied to the bus route problem. Next there is a se
tion on how one transforms these�ve di�erent VRP problems into a RPDPTW. This arti
le and the model presented are goodreading material when presented with a problem as dis
ussed in this report. The arti
le alsoexplains di�erent obje
tives of its model. The �rst obje
tive is to minimize the number ofvehi
les while the se
ond obje
tive is to minimize the travel distan
e. This is in a

ordan
ewith the problem presented in this report where the �rst obje
tive is to visit as many nodesas possible, with given travel 
onstraints, while using as few buses as possible and the se
ondobje
tive is to minimize the travel distan
e/time. The heuristi
 used to solve RPDPTW isadaptive large neighbourhood sear
h, ALNS, a method that uses two, a 
onstru
tive and adestru
tive, neighbourhoods to �nd an optimal solution. It is explained how one applies theALNS to RPDPTW and then there is a large se
tion on 
omputational results. In 
on
lusion



2.5. REVIEW OF METHODS 33it is stated that the ALNS should be 
onsidered as one of the standard frameworks for solvinglarge-sized optimization problems, as the method is very general and gave good results.2.5.8 Open vehi
le routing problem with driver nodes and time dead-lines [16℄This arti
le looks at a parti
ular variant of the OVRP where the vehi
les, routes, start at thedepot and visit a number of nodes but all routes are required to end at 
ertain types of nodes
alled driver nodes, this problem also has time deadlines that have to be kept. A mathemati
almodel is presented for this parti
ular type of problem. The problem is quite di�erent from theone presented in this report but as with arti
les on similar subje
ts it is worth a look to geta better understanding on OVRP.The introdu
tion se
tion in this arti
le, by Aksen, Aras and Özyurt, 
ontains an ex
ellenthistori
al overview of OVRP. Instrumental arti
les and methods used are mentioned. Theauthors also state that they know of no other arti
le where a similar problem, OVRP usingdriver nodes, is ta
kled. To solve the problem a new heuristi
 
alled open tabu sear
h is used.It makes use of three move operators in generating the solutions in the neighbourhood of the
urrent solution. These moves are the same as de�ned in [17℄. The initial solution is foundwith a nearest insertion heuristi
 and a Clark-Wright parallel saving algorithm. The problem
alled OVRP-d is mathemati
ally presented as a mixed integer problem in the se
ond se
tion.This is 
learly presented and not 
ompli
ated. The next se
tion is on the tabu sear
h algorithmpreviously des
ribed. The forth se
tion is on 
omputational results where the open tabu sear
h,OTS, is 
ompared to various 
lassi
al heuristi
s. Then in 
on
lusion it is determined that thenew heuristi
, OTS, gives higher quality solutions then the 
lassi
al heuristi
s.2.5.9 A TABU Sear
h Heuristi
 for the Team Orienteering Problem [13℄This arti
le, by Tand and Miller-Hooks, on the team orienteering problem was very useful forthe proje
t. The team orienteering problem, TOP, is very similar to the model presented inthis report. Also the authors supplied data so 
omparison tests, between their results and thealgorithm in this proje
t, 
ould be performed.The arti
le starts out with a good introdu
tion to TOP. The 
onne
tion between TOP andseveral other problems is dis
ussed. Also the method that have be inspe
ted when solvingTOP are listed, simulated annealing is not one of them. The next se
tion puts forth themathemati
al model in a very straight forward manner. The arti
le explains how the initialsolution is 
al
ulated with a method known as adaptive memory pro
edure, AMP. This is anex
ellent method for 
al
ulating an initial solution, although might in some 
ases be prob-lemati
 if the best solution is using no routes4. Interestingly the tabu sear
h algorithm usesintermediate infeasible solutions to aid in the sear
h pro
ess, by moving solutions out of lo
aloptimums. Other methods like small and large neighbourhood sear
h and methods used fortour improvement are also dis
ussed. The se
tion on 
omputational results shows 
omparisonbetween TABU sear
h, 5-step heuristi
 and a version of the Tsiligirides heuristi
 extended forTOP by Chao. In 
on
lusion it is noted that AMP and its me
hanism, alternating betweensmall and large neighbourhoods stages and using both random insertion and greedy pro
eduresled to an e�e
tive tabu sear
h algorithm.4For example in the algorithm used in this proje
t.
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Chapter 3
Simulated Annealing for the BRP
3.1 Simulated Annealing AlgorithmNow the model for the bus route problem has been put forth, similar problems explored andsolution methods for those methods dis
ussed. The other problems, that were 
ompared toBRP are solved with a heuristi
 or a meta-heuristi
 methods. Also in [13℄ it is shown thatTOP is NP-hard as it is a spe
ial 
ase of the sele
tive travelling salesman problem1. Now if, inthe bus route problem, β = 0 the we have the TOP problem with τ0,j = 0, ∀j ∈ V . Therforethe bus route problem is NP hard as well. In light of this it is ne
essary to 
hoose a heuristi
 ormeta heuristi
 to solve the problem. In 
omputer s
ien
e one strives to �nd as good a soltutionas possible using as short a running time as possible. A heuristi
 is an algorithm that sa
ri�
esone or both of these goals.Meta-heuristi
 is a method used for solving a 
lass of 
omputational problems, whi
h are 
om-mon in operations resear
h. To �nd the best method suited for solving the BRP a simple bute�e
tive meta-heuristi
 was needed. Simulated annealing is one su
h method and it has givengood results in the past, when dealing with similar proje
ts. Therefore simulated annealingalgorithm was used to solve the BRP.The idea of simulated annealing is to look at di�erent solutions and 
ompare them and a

eptthe better solution, ex
ept in 
ertain instan
es a worse solution may be a

epted. A pseudo
ode of simulated annealing is given in [15℄ and it is presented below:

1Sele
tive TSP is a variation of PCTSP. 35



36 CHAPTER 3. SIMULATED ANNEALING FOR THE BRPPseudo Code1. Get an initial solution S.2. Get an initial temperature, T0, and a redu
tion fa
tor, r, with
0 < r < 1.3. While not yet frozen do the following:(a) Perform the following loop L times.i. Pi
k a random neighbor S′ of S.ii. Let ∆ = f(S′)− f(S).iii. If ∆ ≥ set S′ = S.iv. If ∆ < 0 set S′ = S with probability e−∆/T .(b) Set T ← rT . Redu
e temperature.4. Return the best solution found.The value of T is used to 
al
ulated e−∆/T , this is the probability that determines if a worsesolution will be a

epted or not. The redu
tion fa
tor, r, determines how fast the values of

T will drop in ea
h iteration. This along with a frozen value and stopping 
riteria is 
alled a
ooling s
hedule. There are many di�erent types of 
ooling s
hedules and some of them aredis
ussed in [10℄. The basi
 idea of the 
ooling s
hedule is to minimize the likelihood of theoptimal value being a lo
al optima and not a global optima.The 
ooling s
hedule 
hosen in this proje
t is the one des
ribed in Wosley [15℄. Most 
oolings
heduls would be e�e
tive for this problem, therefore the 
hosen s
hedule is just as good.3.1.1 NeighborhoodsIn the des
ription of the simulated annealing algortim a solution S′ is de�ned as a neighborof S. This means that a similar solution to S, 
ontaining almost all the same nodes as S. Thissimilar solution S′ is there fore de�ned in the neighborhood of S. In problems su
h as theBRP there are a few 
ommon neighborhoods. These are:1. The insert move: One, or more, nodes are added to a possible solution. That is if thealgorithm 
hooses to add nodeh, h ∈ V , then nodeh is in S′ but not in S. Therefore
nodeh has been inserted into the possible solution. In this report this move is re�ered toas insert move 11,12,14 and 15.(a) insert move 11: Randomly sele
ts an unused node into the solution.(b) insert move 12: Sele
ts the highest pro�t unused node with the lowest possiblenode number2.(
) insert move 14: Sele
ts the highest pro�t node farthest from the depot.(d) insert move 15: Sele
ts the highest pro�t node 
losest to the depot.2Nodes have number ranging from 0 to |V |.



3.1. SIMULATED ANNEALING ALGORITHM 372. 1-1 move: Two sele
ted nodes, that are in S, are swaped by preserving there originalpositions. In this report this move is re�ered to as swap move 11.3. Insert and Remove: One sele
ted node is removed from the route and another unusednode is inserted into the route. In this report this move is referred to as insert move 13.Other possible neighborhoods are:1. Swap move 21: Here two sele
ted nodes, in two separate routes, are randomly 
hosenand ex
hanged, preserving their original possition.2. Swap move 31: Here a sele
ted node is removed from a route and inserted randomlyinto another separated route.3. Bus move: If there exists a route 
ontaining no nodes then a random number of unusednodes will be sele
ted and inserted into that route.These six moves form the neighborhood used in the simulated annealing algorithm. The �rstthree were 
hosen as they are often used in the literature. The di�erent types of insert moveswere devised as it is one of the, if not the most, important moves. This is manly be
ausethe initial guess is the empty solution, no a
tive routes, and therfore the algorithm has to
onstru
t the routes. Insert moves add new nodes to routes thereby in
reasing there pro�tand the value of the obje
tive fun
tion.When de�ning insert move 14 one 
ould have de�ned two parameters determining what ishigh pro�t and what is far from the depot. Instead a more linear approa
h was 
hosen, simplyas it was more straight forward and easier to program. This linear appro
h de�ned the pro�tof a node as φi and the distan
e between nodei and the depot was de�ned as τ0,i. To determinewhi
h node to 
hoose insert move 14 inspe
ted φiτ0,i.Similarly two parameters 
ould have been de�ned for insert move 15, determining what ishigh pro�t and what is 
lose to the depot. A linear approa
h was also used in this 
ase as itwas logi
al and easy to program. The values inspe
ted by insert move 15, to determin whatnode to 
hoose, was the ratio φi/τ0,i.In insert move 13 the lowest pro�t node was removed from a randomly sele
ted route. Thenanother node, 
hose randomly, was inserted into the sele
ted route. It might be wiser to re-move a random node rather than one with low importan
e, but this was not implemented dueto time 
onstraints.The bus move may be a bit 
rude but it was devised to speed things along in the �rst iter-ations of simulated annealing. By using the bus move entire routes were added and therebyde
reasing the number of iterations needed to 
onstru
t them simply by using insert move.The swap move 31 was deemed ne
essary. None of the other moves 
ould assist in the removalof a route so this one was 
onstru
ted. Other possibilities were inspe
ted, for example remov-ing a whole route and distributing its nodes to the remaining routes. This was not 
onsideredoptimal and 
ould potentially do more harm than good.



38 CHAPTER 3. SIMULATED ANNEALING FOR THE BRPOther swap moves were also used, 
alled swap move 11 and 12. They moved nodes around inthe routes thereby attempting to de
rease travel time.3.1.2 Adapting SA for BRPIn simulated annealing one inspe
ts the obje
tive value, always a

epting a better solutionand with a probabilty of e−∆/T a

epting a worse solution. In the BRP the obje
tive fun
tionis not the only thing inspe
ted. Let us de�ne ωi as the 
ombined route lengths of all routesin a solution at iteration i. Then if ∆ = 0 there is a 
han
e that ωnew < ωold. This newsolution S′, with travel time ωnew, may not return a higher obje
tive value but is none the lessa better solution. Therefore small 
hanges were made to the simulated annealing algorithm.This update was introdu
ed late in the proje
t and therefore not implemented in all tests,before this was programmed the algorithm used a simulated annealing algorithm with onlyone ∆. This updated version of the algorithm is from here on 
alled the updated simulatedannealing algorithm.Pseudo Code1. Get an initial solution S.2. Get an initial temperature, T0, and a redu
tion fa
tor, r, with
0 < r < 1 .3. While not yet frozen, maximum number of iterations is not rea
hed,do the following:(a) Perform the following loop L times.i. Pi
k a random neighbor S′ of S. Where one of theneighborhoods is 
hosen.ii. Let ∆ = f(S′)− f(S).iii. If time 
onstraints are not broken then do the following:A. If ∆ > 0 set S′ = S.B. If ∆ = 0 and ωold > ωnew set S′ = S.C. If ∆ = 0 and ωold ≤ ωnew set S′ = S with probability

e−∆2/T .D. If ∆ < 0 set S′ = S with probability e−∆/T .(b) Set T ← rT . Redu
e temperature.4. Return a solution.The 
ooling s
hedule used in this pseudo 
ode is the one used in Wosley [15℄. The initial valuesof parametere, of the 
ooling s
hedule, were set to T0 = 3000, r = 0.5 and the stopping 
riteria
F = 0. The author had little experien
e with this to begin with that led to this bad 
hoi
e.In Wosley [15℄ it says that the redu
tion fa
tor is a positive number less than one, 0 < r < 1.Therfore an average of r = 0.5 was 
hosen.
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Figure 3.1: Shows how 
lasses 
all other 
lasses.3.2 Implementation DetailsProgramming was done in the Java programming language, as the author had previous expe-rien
e with the language. It was de
ided that using CPLEX3, appli
able with C and C++,would not be an option as ALCAN did not have the program and a 
ommer
ial li
ense isexpensive.The algorithm is divided into a number of 
lasses. Of the 
lasses there are two most important:SimulatedAnnealing.java and moves.java. These two 
lasses are the 
ore of the algorithm. One
an see how the 
lasses are 
alled in Figure 3.2.3CPLEX is an optimization software pa
kage.



40 CHAPTER 3. SIMULATED ANNEALING FOR THE BRP3.3 ClassesAll the 
lasses have di�erent roles in the whole algorithm, they 
an all be seen in appendix
C.2.3.3.1 Run.javaThis 
lass is the main �le, it is used when the algorithm is to be run. In this 
lass infor-mation de�ned from input �les, using GetDataFrom*.java; the initial guess is de�ned, in Ini-tialguess.java; and simulated annealing is performed, in SimulatedAnnealing.java. The wholerun of the algorithm is timed to see how long a 
al
ulation takes. Many of the 
onstants usedin the program are de�ned in Run.java and therefore it is 
ru
ial to 
hange the �le if a di�erentdata set is being tested.The initial guess generated in this proje
t was an empty set, all buses driving from sour
eto sink. There are other possibilities for generating this guess, for example in [13℄ a method
alled adaptive memory pro
edure is used to �nd initial guesses.3.3.2 SimulatedAnnealing.javaThis 
lass is the 
ore of the algorithm as it performs the simulated annealing. This 
lass 
allsmoves.java, Cal
ulateOpt.java and CalulatedTime.java. All of the time 
onstraint are handledin this 
lass. The temperature, redu
tion fa
tor, frozen fa
tor, maximum number of iterationsand the maximum travel time are de�ned in this 
lass.3.3.3 Moves.javaThis 
lass 
alls the neighborhood 
lasses, UnvisitedPoints.java and NumberOfBuses.java. Inthis 
lass the probabilities of 
ertain neighborhoods are determined. This is done by using aprobability matrix, P .3.3.4 Neighborhood ClassesThere are six previously de�ned neighborhoods.In BusMove.java a bus move is implemented. If the new proposed solution is infeasible, forexample the route too long, SimulatedAnnealing.java will reje
t it.The three types of swap moves are 
alled in SwapMove11.java, SwapMove21.java and Swap-Move31.java. As with the bus move if any of the solutions 
al
ulated by the swap moves areinfeasible SimulatedAnnealing.java will reje
t it.There are four di�erent insert moves (11, 12, 14 and 15). These are de�ned in InsertMove11.java,InsertMove12.java, InsertMove14.java and InsertMove15.java. As with the othe moves if a solu-tion is infeasible the soltuion is reje
ted. Whi
h insert move is best suited for the algorithmis determined in tests.



3.3. CLASSES 41InsertMove13.java was 
reated for a 
ertain 
ase. If an unimportant node was added to thesolution there would be a 
han
e that this node would be removed and repla
ed with a moreimportant node.3.3.5 Other ClassesTwo 
lasses 
alled 
al
ulateTime.java and 
al
ulteOpt.java 
al
ulate the travel time of the routesand the obje
tive fun
tion. In 
al
ulatedOpt.java both 
onstants in the obje
tive fun
tion, αand β, are de�ned.NumberOfBuses.java is used to determine how many routes are 
urrently a
tive. This has tobe used for example in BusMove.java, be
ause adding an already a
tive route is impossible.UnvisitedPoints.java is de�nitely the bottle ne
k of the program. It uses a triple for loop to
onstru
t a ve
tor of unused points. This is ne
essary in the program, for one 
annot add apoint that is 
urrently in use. The 
lass uses the two dimentional matrix route to determinewhi
h points are not in use. Route is a |K| × |V | matrix that shows the all the routes and thepoints they visit. In an earlier version of UnvisitedPoints.java a ve
tor 
alled Y was used. Thisversion was simpler and faster but unfortunatetly be
ause of inheritan
e fa
tors in Java thisdid not work. Future inspe
tions of the program might �x the problem but in this proje
t toomu
h time had been spent on the problem so it was left as is.A se
ond version of UnvisitedPoints.java was 
onstru
ted that removed all points within a 
er-tain radius of a 
hosen node from the set of usable nodes.Very late in the proje
t's pro
ess an important 
lass was 
reated 
alled De
rease.java. Theobje
tive of this 
lass was to inspe
t whi
h points where within radius M from the depotand remove all other points. As it is impossible for a route to travel further than M , maxi-mum route length, be
ause all points at a further distan
e are unimportant. This 
lass was agreat su
sess de
reasing runtime from over 100 se
onds to under 10 se
onds in one instan
e4.This 
lass also provided better solutions. Unfortunatetly the 
lass was introdu
ed late in theproje
t so so it was not in
luded in all tests, those test that used this 
lass indi
ate so in thereintrodu
tion.Programs were also 
onstru
ted, during experiments, to run a number of tests 
onse
utively.These were all simple programs only 
onstru
ted for optimal use of time.
4Data set 50a, M = 20
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Chapter 4Tests4.1 Data SetsThere were 25 data sets and of those 22 were 
onstru
ted. The other three were obtained datasets from Tang and Miller-Hooks [13℄.To verify the algorithm, used for solving the bus route problem, tests were implemented. Notein this 
hapter τij are always Eu
lidian distan
es, also note that τ0,i = 0, foralli ∈ V whendealing with generated data sets. Also δi, penalty for stopping at a single node, 
an havedi�errent values for all i ∈ L. In the test performed for 
onstru
ted data sets δi = 1,∀i ∈ L.In test using obtaind data sets δi = 0 for all i ∈ L. For the depot δ0 = 0 and δn+1 = 0 in alltests.4.1.1 Constru
ted Data setsThe 
onstru
ted data sets are 
atagorized in to two types, the non-randomly 
onstru
ted anddata sets and the randomly 
onstru
ted data sets.The non-randomly 
onstru
ted data sets were situated in a graph of the s
ale 100× 100. Thedepot was de�ned as the 
enter, (50, 50), and had a number of routes in a 
ertain dire
tion.The possible number of these routes was 3 and 4. A typi
al data set with three routes 
anbe seen in Figure 4.1. Ea
h node was situated so that it had the 
oordinates (mx,my), where
mx ∈ Z+ and my ∈ Z+ (both positive integer numbers). This means that when using threeroutes, originating from the depot, the Eu
lidian distan
e between a point and its 
losestneighbor was either 1 or √1 + 1. In the 
ase were there were four routes, originating from thedepot, the distan
e between a point and ist 
losest menighbor was always 1.Of the non-randomly generated data sets six had 50 points and six sets had 100. As thesedata sets where supposed to be simple, to inspe
t if the algorithm works for the simple 
ases,the pro�t of every node was the same, with a value of 10. This was perhaps a bit to simpleso a number of nodes had to be removed or have there pro�ts de
reased, otherwise the datasets would ahve been to simple. Therefore a small number, 10%, of points were 
hosen. thereason for 
hoosing 10% is that 10% is su�
ently small to 
hange the data set but still retainthe original simpli
ity. This means that in a 100 points data set 10 were sele
ted. Of theseten points �ve were removed and �ve had there pro�ts de
reased to 1. When dealing with43
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Figure 4.1: This is a test, type 1, with three routes and n points on ea
h route.



4.2. COOLING SCHEDULE 4550 point data sets �ve points were sele
ted, of these three were removed and two had therepro�ts de
reased to 1.The non-randomly generated data sets were named by three parameters. First was the numberof routes, se
ond was the number of points and third was the data sets number among similardata sets. Therefore a three route 50 point data set generated se
ond, among other 50 pointthree route data sets, was named: 3_50_b. There were only three similar data sets a,b and 
.The randomly generated data sets were devided into two subgroups, the 50 point data setsand the 100 point data sets. The 50 point data sets were generated on a 50 × 50 graph, aswith the non-random data sets ea
h 
oordinate 
onsists of two positive integere numbers. Inthe data sets the depot was de�ned in one 
orner, (50, 50). This is similar to the lo
ationof ALCAN aluminium plant with 
on
ern to Reykjavík. Of these 50 points ea
h was givena pro�t ranging from one to ten, One representing an node of unimportan
e and ten a nodeof great importan
e. This s
ale was used be
ause it has, in the past, been used in similarsituations with good result. These pro�ts were randomly generated in Java.The 100 point randomly generated data sets were situated on a 100×100 graph. The depot forthe 100 point data sets is de�ned as the point (50, 50). As with other data sets the 
oordinates
onsisted of two positive integer numbers. Pro�ts ranged from one to ten.The randomly generated data sets were named a

ording to there rank among similar datasets and the number of points in them. The ranks were de�ned as a,b,
,d and e where a wasgenrated �rst and e last. Therefore a 100 point data set genrated fourth was 
alled data set 50c.A subset of data set 50a was also 
onstru
ted. This subset 
onssited of the 20 �rst points inthe data set 50a. The set was named data set 20.4.1.2 Obtained Data SetsWhen 
onstru
ting 
omputational experiments it is ne
essary to 
ompare your results toother similar methods. In this proje
t the TOP was most similar to the BRP and thus idealfor 
omparison. The authors of [13℄ were kind enough to send supply data sets so that a
omparison 
ould be done. The three data sets used had 102 points, 32 points and 33 points.All of these were randomly generated and had pro�ts ranging from �ve to 501.4.2 Cooling S
heduleIn Simulated Annealing a 
ooling s
hedule with three parameters, must be implemented. Thesethree parameters are the temperature, T ; redu
tion fa
tor, r; and the de�nition of frozen2,
F . To �nd the best 
ombination of these three parameters they must be tested. In one test
T0 = 3000 and r = 0.5 along with the forzen value of F = 0 was used. This 
ooling s
heduleis very fast as 
an be seen in Figure 4.2, so fast in fa
t it has nearly the same qualities as no
ooling s
hedule what so ever. Fortunatly it was only used in one test and unfortunatly due1The was no reason given in [13℄ for the 
hoi
e of these pro�ts.2A stopping 
riteria.
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Figure 4.2: Shows the 
ooling s
hedule with T0 = 3000 and r = 0.5, note that T100 = 4.7332 ·
10−27.to time 
onstrants that test 
ould not be repeated.Now the initial solution to this problem is f(S) = |K|β and if the �rst iteration is a insertmove, that 
hooses a node with pro�t φ∗, then the new solution is f(S′) = φ∗ + (|K| − 1)β.Now ∆ = f(S′) − f(S) = φ∗ − β. It is know that for all nodes in L, 
onstru
ted data sets,the pro�t pi ∈ {1, 2, 3, ..., 10}. If values ∆ are inspe
ted, see Figure 4.3, φi = 5, for i ∈ L, isthe most 
ommon value for pro�t, therfore ∆ = −10 is the most 
ommon value for ∆. This isonly be
ause φi = 5 is the most 
ommon value.Somtimes, when a bus move is implemented, −5 ≤ ∆ ≤ 0. The reason for this is that busmove inserts more the one node into the solution.An initial test with data set 50a determined a 
ooling she
ule. That s
hedule was then retunedwith data set 50a and then again with data set 3_50_a.In most test a value 
alled residual ratio was inspe
ted. This is now de�ned. Let us say that
Obji is the result given by a single run and that the best known value is z. Then the residualsare de�ned as:

ri = z −Obji ∀i ∈ THere T is the set of trials, for ea
h individual M . So the residual ratio for ea
h M is de�nedas:
∑

i∈T (z −Obji)

|T | (4.2.1)
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Figure 4.3: Histograms for 50 points and 4 routes. Shows how many negative values, verti
alaxis, of ∆, horizontal axis, were 
al
ulated.Where |T | is the number of trials for ea
h individual M .4.2.1 First Trials for Cal
ulating a Cooling S
hedule using Data Set 50aTo �nd the best T0 a set of possible T0 was 
onstru
ted and tested on data set 50a. To beginwith the redu
tion fa
tor was set to 1 − 10−9 and the stopping 
riteria set to 1, so when thetemperature goes below 1 the algorithm will start using stri
tly lo
al sear
h. The values of T0tested were 28 and ranged from 6 to 10,000.These initial values for r and F were found in a dis
ared test using data set 50a. There 20trials were used for ea
h M .After the �nding a good initial temperature a good redu
tion fa
tor was 
al
ulated. The newbetter T0 = T ∗
0 was used and the stopping 
riteria was still kept at 1. There were 14 di�erentvalues of r tested ranging from 0.99 to 1− 10−14 along with r = 0.5.To �nd good stopping 
riteria a test was performed inspe
ting di�erent values of the fa
tor
alled frozen3. In this inspe
tion the better values of T0 = T ∗

0 and r = r∗ were used. Therewere 17 values inspe
ted ranging from 10 to 10−10.Ea
h value was tested for 9 values of M , maximum route length, in these trials and ea
h test3The stopping 
riteria.



48 CHAPTER 4. TESTSwas performed 50 times. The maximum number of routes was 3. In these test the updatedsimulated annealing was used.Results for Initial Temperature, T0To �nd the best initial temperature residual ratio was inspe
ted. The reason is so that somereferan
e of the performan
e 
ould be established. This was done by 
omparing all resultsfound from the data set 50a while M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}. At this time thebest known obje
tive for these values of M and using three routes are shown in Table 4.2.Table 4.1: Best known values for the data set 50aM 10 20 40 50 70 80 100 130 160OPT 45 49 102 128 172 194 241 258 258Table 4.2: Shows the best known obje
tives for data set 50a. For M = 130 and M = 160theobje
tive value is 258, whi
h is the 
ombined pro�t of all nodes in the data set.Now to 
ompare di�erent temperatures plots were made of ea
h. In these plot of the bestknown obje
tive value was 
ompared to the average obje
tive value obtained, with that ini-tial temperature, and the residual ratio was also inspe
ted. These �gures 
an be viewed inappendix D.2.1. As always the results with the result whi
h gave the smallest residual ratiowas the one 
onsidered best. Four di�erent temperatures and their results 
an be viewed inFigure 4.4.When these four graphs are 
ompared it may be hard to see whi
h one gives the best results.So all residual ratio values were summed and the result giving the lowest value, for the sum,is the best result. This, the sum with the lowest value, was found when T0 = 15. When alltemperatures were 
ompared the solution was by far the lowest. The se
ond lowest sum, ofresidual ratios, was found when T0 = 19. If residual ratios, for all values of M , are summedup then one 
an inspe
t how they 
hange in 
onne
tion with temperature in Figure 4.5. Thevalue for T0 = 15 is 
onsiderably lower than the other values and outside of the 10% interval.The ±10% intervale, from the mean, is to show more 
learly whi
h T0 stand out. Other plotsthat show the same graph with the mean of all residual sums and a plot of all the residualsums 
an be seen in the appendix.For further trials, inspe
tinge the 
ooling s
hedule, T0 = 15 is used unless otherwise spe
i�ed.Results for Redu
tion Fa
tor, rAll results from the test be seen in appendix D.2.2. Figure 4.6 shows the four best results,these four have the lowest average value for there residual ratios. Of the four, and all otherinspe
ted r values, the value r = 1− 10−13 gives the lowest values of residual ratio.Let us now inspe
t Figure 4.7. This shows the total sum of the residual ratios for ea
h instan
eand all M . The instan
es are {0.5, 1− 10−2, 1− 10−3, 1− 10−4, ...1− 10−13, 1− 10−14}. Whenthis plot is 
ompared to the one in Figure 4.5 one 
an see that they are not the same when
T0 = 15 and r = 1−10−9, that is instan
e 7 in �gure 4.7. This is due to the fa
t that there area lot of random fa
tors in the algorithm. In Figure 4.7 the �rst instan
e of redu
tion fa
tor
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Figure 4.4: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the 
al
ulated obje
tives, the red line is the best known obje
tive and the green lineis the residual ratio.
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Figure 4.6: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the 
al
ulated obje
tive values, the red line is the best known obje
tive and thegreen line is the residual ratio.is r = 0.5. One 
an see, from Figure 4.7, that it gives worse results than other instan
es ofredu
tion fa
tor.The redu
tion fa
tor is now set to r = 1− 10−13 until a better value of r is found.Results for Stopping Criteria, FAll results from the test 
an be seen in appendix ??. The four best results 
an be seen inFigure 4.8 and the single best result found is the residual sum of 2.4320 when F = 2. Againthough the random fa
tors in the algorithm led to di�erent results. If not then values 
al
u-lated for F = 1 should have given the same results as the ones 
al
ulated previously, whenideal temperature and redu
tion fa
tor were determined. This was not the 
ase.In Figure 4.9 a plot of the di�erent residual sum 
ompared with the di�erent instan
es 
an beseen. The instan
es are: F ∈ {10, 8, 6, 5, 4, 3, 2, 1, } and F ∈ {10−1, 10−2, 10−3, ...10−9, 10−10}.In Figure 4.9 there is a drop in the values of residual sums in instan
es 5 and up. This meansthat F ≤ 4 are better stopping 
riteria than F > 4. Therefore the average value for instan
eshigher than 5 was inspe
ted. As 
an be seen, from the plot, the values, of residual sum, arevery similar for instan
es higher than 5, F ∈ {2, 1, 0−1, 10−2, 10−3, ...10−9, 10−10}.The stopping 
riteria is now set to F = 2 until otherwise spe
i�ed. This means that whenthe tamperature rea
hes the value F a sri
t lo
al sear
h will begin, ending the possibility ofa

epting worse solutions. Now better values for all three parameters of the 
ooling s
hedule
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Figure 4.8: Shows results for four di�erent temperatures. Blues line and dots is the averagevalue and the 
al
ulated obje
tives, the red line is the best known obje
tive values and thegreen line is the residual ratio.
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tors, blue line. The bla
k line is the averageresidual sum for instan
es 6 to 18, green lines are mean±10%.have been identi�ed. This s
hedule is T0 = 15, r = 1− 10−13 and F = 2.4.2.2 Se
ond Trials for Cal
ulating a Cooling S
hedule using Data Set 50aAfter a better 
ooling s
hedule had been determined a se
ond run was 
onstru
ted. This wasdone to retune the s
hedule with the new values. In these trials the same set for M wasused but a 100 runs were done for ea
h value, of M . The updated simulated annealing andDe
rease.java were both used.As previously, a new, set of possible T0, was 
onstru
ted and tested on data set 50a. Theredu
tion fa
tor was set to 1− 10−13 and the stopping 
riteria set to 2, both 
alulated values.The values of T0 tested were 33 and ranged from 10000 to 6.After the �nding a good initial temperature a new redu
tion fa
tor was 
al
ulated. The new
T0 = T ∗

0 was used and the stopping 
riteria F = 2. There were 13 di�erent values of r testedraging from 0.99 to 1− 10−14.Next to �nd good stopping 
riteria a test was performed inspe
ting di�erent values of thefa
tor 
alled frozen. In this inspe
tion the better values of T0 = T ∗
0 and r = r∗ were used.There were 17 values inspe
ted ranging from 4 to 10−10.
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Figure 4.10: Shows results for four di�erent temperatures. Blues line and dots are the averagevalue and the 
al
ulated obje
tive values, the red line are the best known obje
tive values andthe green line is the residual ratio.Results for Initial Temperature, T0, using Data Set 50aIn the se
ond run for inspe
ting possible values for T0, ea
h 
ombination ofM ∈ {10, 20, 40, 50, 70, 80, 100, 130, 1and T0 ∈ {6, 7, 8, ..., 32, 33} ran 100 times. This was done to limit the random fa
tors in thealgorithm. The four best results are shown in Figure 4.10. Note that individual results fromthis test 
an be seen in the appendix D.2.4.The residual sum for all values of T0 was then plotted in Figure 4.11. The best value a

ordingto this test was T0 = 6, the old value T0 = 15 is marked on Figure 4.11 with a red dot. Inthe �rst trials T0 = 6 gave a rather high residual sum, see Figure 4.5, but in
reased numberof test for ea
h 
ombination should limit the e�e
ts of random fa
tors. In the previous test
T0 = 9 and T0 = 19 gave good results, in this test both initial temperatures perform betterthan average. This 
an be seen by inspe
ting the bla
k line displaying the average results, forall T0, in Figure 4.11.Individual result for ea
h possible T0 
an be seen in the appendix.The initial temperature is now set to T0 = 6 until otherwise spe
i�ed.Results for Rredu
tion Fa
tor, r, using Data Set 50aThe se
ond run for the redu
tion fa
tor gave di�erent result than the �rst one. The value of
r giving the lowest residual ratio sum was r = 1 − 10−5. The four best results are shown inFigure 4.12. The four results are the four highest values, of redu
tion fa
tor, tested.
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Figure 4.12: Shows results for four di�erent temperatures. Blue line and dots are the averagevalue and the 
al
ulated obje
tive values, the red line are the best known obje
tive values andthe green line is the residual ratio.
Let us now inspe
t Figure 4.13. As previously the plot is of instan
e of redu
tion fa
tors versusthe residual sum. The only instan
e removed from the trial set was r = 0.5 as it gave the worstresults. Therefore the instan
es are {1− 10−2, 1− 10−3, 1− 10−4, ...1− 10−13, 1− 10−14}. Theplot 4.13 shows that the highest values tested resulted in the lowest sum of residual ratio.Compared to the previous test, of redu
tion fa
tor, r = 1− 10−10 is the only of the previoustop four results to preform better than average. Note that all other results from this test 
anbe seen in the appendix D.2.5.The redu
tion fa
tor is now set to r = 1− 10−5 until otherwise spe
i�ed.Results for Stopping Criteria, F , using Data Set 50aThe four best results, the ones with the lowest residual sum, 
an be seen in Figure 4.14 andthe single best result found is the residual sum of 1.9757 when F = 1− 10−6, this is the resultdisplayed in the bottom right 
ourner of Figure 4.14. Other results from this test 
an be seenin the appendix D.2.5.In Figure 4.15 a plot of the di�erent residual sum 
ompared with the di�erent instan
es 
an beseen. The instan
es are: F ∈ {4, 3.5, 3, 2.5, 2, 1.5, 1, 0.58, } and F ∈ {10−1, 10−2, 10−3, ...10−9, 10−10}.In this plot, Figure 4.15, it is apperant that there are two lo
al minimum values and of thoseone is the global minimum value. This global minimum value is found when F = 10−6. In the
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k line is theaverage residual sum for all instan
es, green lines are mean±10%.
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Figure 4.14: Shows results for four di�erent temperatures. Blue line and dots are the averagevalue and the 
al
ulated obje
tive values, the red line are the best known obje
tive values andthe green line is the residual ratio.
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InstanceFigure 4.15: Shows the residual sum for all frozen fa
tors, blue line. The bla
k line is theaverage residual sum for all instan
es, green lines are mean±10%.�rst trials F = 10−6 also gave good results.The frozen fa
tor is not set as F = 10−6 until otherwise spe
i�ed.4.2.3 Cooling S
hedual Trials for Data Set 3_50_aTo ensure that the 
ooling s
hedule 
al
ulated is the best one available a new data set was usedin 
ooling s
hedule experiments. This data set was 3_50_a. After a new value T0 or r hadbeen 
al
ulated that same value was used to determine the remaining values of r or F . Theset maximum route lengths was M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}. Ea
h 
ombinationof the tested fa
tor (T0, r or F ) and M was run 50 times and ea
h run had 50,000 iterations.The values in the obje
tive fun
tion where α = 1 and β = 15.The results from tests with 3_50_a were only 
ompared to the results from the se
ond trialsof test using data set 50a, as that 
ooling s
hedule was 
onsidered a better s
hedule be
auseit had been retuned.Results for Cooling S
hedual Trials for Data Set 3_50_aIndividual results for ea
h trial, inspe
ting ea
h fa
tor (T0, r and F ) 
an be seen in appendixes
D.2.6, D.2.7 and D.2.8.The 
ooling s
hedule should return good results for any number of data sets. Therefore the
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Figure 4.16: Shows the s
aled residuals ratios for di�erent temperatures for data sets 50a and
3_50_a.results from the se
ond trials using data set 50a and the trials using data set 3_50_a were
ompared. It is known that data set 3_50_a is simpler, or its routes are easier to 
onstru
t,than data set 50a. This leads to lower residuals sums for data set 3_50_a. To 
ompare theresults the two the residuals needed to be s
aled. This is done in a few steps. First let usde�ne the set of residuals as A (for 50a) and B (for 3_50_a). To even things out a little bita logaritmi
 fun
tion 
al
ulated for ea
h set, ln(A) and ln(B). This gives equal importan
eto the high values residuals 
alulated with data set 50a and the high value residals 
al
ulatedwith 3_50_a. After this is done the average value of ea
h logarithmi
 set, mln(A) and mln(B),were withdrawn from the set. This ensures that both sets are distributed around zero. The�nal values of residual sums expolered were ln(A)−mln(A) and ln(B)−mln(B).The results from all this 
an be seen in Figure 4.16. This �gure shows that the best startingtemperature, T0, for both of these data sets is T0 = 21. This temperature was then used todeterminie the best r and F , the two remaining tests in this se
tion.The same method was then applied to the sets of results from di�erent redu
tion fa
tors. Thes
aled residual plot from that 
an be viewed in Figure 4.17. From that plot it is seen thatinstan
e number 4 gives the best redu
tion fa
tor for these two data sets. The instan
es arethe same as in the se
ond trials with data set 50a, meaning that the best redu
tion fa
tor is
r = 1 − 10−5. This is the same result as the se
ond trials with data set 50a determined. Theredu
tion fa
tor used to determine F is r=1− 10−5.The results from tests, used to determine the frozen fa
tor, were s
aled as previously explained.Theses s
aled results 
an be seen in Figure 4.18. The �gure shows the best rusults found atinstan
e 14 were F = 10−6, whi
h is the best stopping 
riteria for data sets 50a and 3_50_a.
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Figure 4.17: Shows the s
aled residuals ratios for di�erent redu
tion fa
tors for data sets 50aand 3_50_a.
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Figure 4.18: Shows the s
aled residuals ratios for di�erent frozen fa
tors for data sets 50a and
3_50_a.
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IterationFigure 4.19: Shows the 
hange in obje
tive fun
tion in ea
h iteration step, blue line. Also theproposed solution, red dots, is also shown.In Figure 4.19 the obje
tive value and suggested solutions 
an be observed. The 
ooliing s
hed-ule used in Figure 4.19 is T0 = 21, r = 1 − 10−5 and F = 10−6 and the data set is 50a, thenumber of iterations was 100,000.The best 
ooling s
hedual found for data sets 50a and 3_50_a is T0 = 21, r = 1− 10−5 and
F = 10−6.4.3 Determining the Probability MatrixIn the 
lass moves.java it is determined what a
tion will be taken in the 
urrent iteration.The a
tions are de�ned as moves4. Now in ea
h iterations there are di�erent s
enarios. Inone s
enario there might be no unused routes and therefore it would be impossible to 
allBusMove.java, in another there might be no unused points left then one 
annot 
all an insertmove or a bus move. This means that in some s
enraios one is only possible to use 
ertainmoves, while in other s
enarios one might be able too 
all all moves. If a move that is infeasibleto use in a 
ertain s
enario is 
alled, in that pati
ular s
enario, the result will be a 
al
ulationerror in the algorithm. Overall there are seven s
enarios and in ea
h 
ase, ex
ept one5, thereare di�erent odds for di�erent moves. To represents these odds a matrix, P , was 
onstru
ted.Where:4InsertMove11.java, InsertMove13.java, SwapMove11.java, SwapMove21.java, SwapMove31.java and Bus-Move11.java5In s
enario 5 one 
an only 
all SwapMove11.java
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P =





















p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66

p71 p72 p73 p74 p75 p76



















The s
enarios are:
Scenario Description1 More the one route in use, but not all, and no available points.2 All buses in use and available points.3 All buses in use and no available points.4 More the one route in use, but not all, and available points.5 One route and no available points.6 One route and available points.7 No routes and available points.The numbers of the s
enarios re�e
t the way they were programmed and is not important inany other way. It should be noted that after De
rease.java was 
onstru
ted a new s
enario wasdis
overed. This would be referred to as s
enario 8, in that 
ase no routes are a
tive and nounused points are available. In this s
enario the only possible solution is the empty solutiongiving the obje
tive value as β|K|.The moves are:

Number Type of move1 SwapMove21.java2 SwapMove11.java3 InsertMove11.java4 BusMove.java5 SwapMove31.java6 InsertMove13.javaSo in some s
enarios it is impossible to 
all 
ertain a
tions, moves. Therefore to update Pthese indesable moves are repla
ed with zero, in the matrix.
P =





















p11 p12 0 0 p15 0
p21 p22 p23 0 p25 p26

p31 p32 0 0 p35 0
p41 p42 p43 p44 p45 p46

0 p52 0 0 0 0
0 p62 p63 p64 0 p66

0 0 p73 p74 0 0



















When test on the matrix, P , are 
ondu
ted there is no need to look at line number 5 as:
∑6

j=1 pij = 100 ∀i ∈ {1, 2, 3, 4, 5, 6, 7}
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P =





















p11 p12 0 0 p15 0
p21 p22 p23 0 p25 p26

p31 p32 0 0 p35 0
p41 p42 p43 p44 p45 p46

0 100 0 0 0 0
0 p62 p63 p64 0 p66

0 0 p73 p74 0 0



















Before the test are started an initial guess for p must be 
onstru
ted:
P1 =





















40 40 0 0 20 0
30 30 20 0 10 10
40 40 0 0 20 0
30 20 25 10 10 5
0 100 0 0 0 0
0 30 50 10 0 10
0 0 90 10 0 0



















The matrix, P1, was 
onstru
ted entirely with logi
al guess as no other methods were available.This was done by guessing what moves would be important in ea
h s
enario. For example ifthere are no unused points left it is a given that swap moves are important. Of these threeswap moves 11 and 21 work faster than swap move 13 this is be
ause the former two movetwo nodes while the latter only moves one node. Therefore the odds in s
enario one featurean equal possibilty of 
hoosing 11 or 21 but a slightly smaller possibility of 
hoosing 31. Thiskind of logi
 was implemented for all s
enarios. The s
enarios are independent of ea
h otherin any single iteration. They may though be 
onne
ted when many iterations are put together.In order to �nd the best odds for ea
h a
tion, move, ea
h s
enario will be looked at separately6.So in order to �nd the best odds in line 3, in P , the rest of the matrix will be lo
ked in theinitial guess while all possibilities for line 3 are inspe
ted. The same was then done for allother lines of the matrix, P .There were two tests 
onstru
ted to determine the di�erent values of P for di�erent data sets.The data set used for �rst experiment was 3_50_a with M = 20, T0 = 3000, r = 0.5, F = 0and there were 10 trials for ea
h possibility. The maximum number of routes was 3.The se
ond data set used was 50a with M = 100, T0 = 3000, r = 0.5, F = 0, and there were10 trials for ea
h possibility. The maximum number of routes was 3. Note the in this test,using this data set, a se
ond test was 
ondu
ted for s
enario one. M = 160 and the maximumnumber of buses was 5 for the se
ond test of s
enario one. The reason for this is that thes
enario 
annot o

ur unless all the points are visited without using all the routes.Note that the �rst test, involving s
enario one and data set 50a, used P1 to try to determinethe best value of P , for this s
enario, but the results were not usable. Therefore a se
ondtest using P2, as a referen
e while inspe
ting possible values, was 
ondu
ted and gave usableresults. The value of P2 is de�ned in the results se
tion.6Looking at all the s
enarios together may is to 
ompli
ated as there are to many possibilities.



4.3. DETERMINING THE PROBABILITY MATRIX 634.3.1 Results for Data Set 3_50_aTo limit the running time, of the tests, the probabilities did not run on a single per
ent,
{1%, 2%, 3%. . . .}, in line 3 alone there would be over 125,000 possibilities7. Rather on tenper
ent,{0%, 10%, 20%, 30%. . . .}. This de
reased 
al
ulation time enough to run the tests.S
enario Obje
tive Value Iteration Travel Time1 231.3 26,391 57.60832 231.6 22,061 57.56823 229.2 28,904 58.15044 231.4 31,025 57.79116 231.4 29,622 58.25047 229.1 28,963 57.4555232The table above shows the average obje
tive value, the average iteration where the obje
tivevalue was found and the total travel time for all the routes. In the last line of the table one
an see the best known obje
tive value. This test then gave a new probability matrix, P2,viewable below:

P2 =





















50 30 0 0 20 0
0 10 10 0 30 50
60 30 0 0 10 0
0 10 10 60 20 0
0 100 0 0 0 0
0 0 0 70 0 30
0 0 70 30 0 0



















The probability matrix8 P2 was 
onstru
ted by inspe
ting not nearly all possible solutions, asthat would have taken to long9. Therefore to inspe
t if single per
entage values are important
P ∗

2 was 
onstru
ted. The test was very similar to the one used to 
onstru
t P2 but imple-mented an updated simulated annealing. The solutions 
lose to the one 
al
ulated in P2 werethe only ones inspe
ted.S
enario Obje
tive Value Iteration Travel Time1 231.9 19,956 56.90002 231.8 25,712 57.00003 231.9 22,506 56.90004 232 18571 57.00006 231.8 21,686 56.80007 231.8 23,397 56.5000232The 
hanges in average obje
tive a relatively small, 
an be 
ontributed to the random fa
torin the algorithm10, for most s
enarios. Although the greatest 
hanges seen in average obje
tivevalues are found in s
enarios 3 and 7.7This would then have a runtime of more than a 1000 hours, given an average runtime of about 30 se
onds8The probability matrix used in tests for the 
ooling s
hedule was P2.9Approximately 120 days, at the time.10All nodes are inserted randomly into the soltuion.
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P ∗

2 =





















53 34 0 0 13 0
0 7 10 0 25 58
59 34 0 0 7 0
2 7 6 55 16 14
0 100 0 0 0 0
4 5 0 72 0 19
0 0 74 26 0 0



















It is ne
essary for ea
h line of the probability matrix to have a total sum of 100%. Thereforewhen the se
ond trials, determining P ∗
2 , were 
onsru
ted a fail safe was put into the testalgorithm to ensure 
onstraint was met. Therefore some values in P ∗

2 , and later in P ∗
3 , di�ermore than 5% from there 
onterparts in P2 and P3.4.3.2 Results for Data Set 50aThe result in the table below show the obje
tive value 
al
ulated, the iteration the value wasfound and the 
ombined travel time for all the routes.S
enario Obje
tive Value Iteration Travel Time1 105.6 21294.1 107.732 105.8 18187 118.003 121.2 23580.9 145.234 125.7 22051.9 146.056 96.6 19821.3 106.367 213.8 28945.6 294.83241 293.24When the table above is inspe
ted it is obvious that the probability values for s
enario 7 arethe most important. Big 
hanges in those values result in a mu
h higher average 
al
ulatedobje
tive value. The results in other s
enarios are mu
h lower the best known obje
tive, shownin the bottom line. The value of P = P3 is shown below.

P3 =





















30 70 0 0 0 0
10 50 20 0 10 10
0 10 0 0 90 0
0 50 0 20 10 20
0 0 100 0 0 0
0 60 0 20 0 20
0 0 20 80 0 0



















The results from the test used to re-evaluate s
enario one are seen in the table below. Remem-ber that this test used P2 as an inital guess not P1.S
enario Obje
tive Value Iteration Travel Time1 262.5 21384 263.4273
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p1,i =

(

70 10 0 0 20 0
)So a

ording to this the value of P best suited for solving problem de�ned with data set 50ais:

P3 =





















70 10 0 0 20 0
10 50 20 0 10 10
0 10 0 0 90 0
0 50 0 20 10 20
0 0 100 0 0 0
0 60 0 20 0 20
0 0 20 80 0 0



















A se
ond trial was done to determine the single per
ent values of P3. The new matrix 
on-stru
ted was 
alled P ∗
3 . These new trials gave the following results. Note though that anupdated version of the simulated annealing algorithm was used along with De
rease.java and

P3 was used as the old matrix when evaluating P ∗
3 . All other fa
tors are the same as when P3was 
al
ulated. S
enario Obje
tive Value Iteration Travel Time1 258 48008 417.92732 220.8 35292 293.73 216.1 30787 2944 222.6 32150 296.26 217.9 37688 291.97 216.6 36484 294.1241 293.24

P ∗
3 =





















72 5 0 0 23 0
7 46 18 0 7 22
0 24 0 0 76 0
3 452 17 7 26
0 0 100 0 0 0
0 55 0 22 0 23
0 0 18 82 0 0



















The two matrixies P2 and P3 were 
ompared. This is shown in later se
tions. Of the two P2provided better results and was then 
ompared to P ∗
2 . Be
ause P3 provide worse results P ∗

3was not inspe
ted further.4.4 Exploring Di�erent Insert MovesIn this proje
t there were four insert moves 
onstru
ted 11, 12, 14 and 15. Another insertmove, 
alled 13, is also used but is di�erant from the other four as it removes a node beforeinserting a new one. Therefore 13 will not be put in the same 
atagory as 11, 12, 14 and 15.Tests using data set 3_50_a were preformed 10 times for ea
h 
ombination of insert move and
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M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 50}. For ea
h test several values were inspe
ted. First the ob-je
tive value was inspe
ted, it was the most important value in the test. If the best known obje
-tive value, the obje
tive 
al
ulated by hand, was rea
hed then for M ∈ {5, 10, 15, 20, 25, 30, 35}the route was also inspe
ted, for some M to �nd maximum pro�t the algorithm had to �ndthe best route, this 
an also be 
al
ulated due to the stru
ture of the dat set. For M ∈ {40, 50}the maximum pro�t 
ould be a
hieved without using the best route. The iteration value whenthe obje
tive value was rea
hed was inspe
ted. All tests preformed 50,000 iterations, the initialtemperature was set to 11, T0 = 11, the redu
tion fa
tor was set at 1−10−13, r = 1−10−13 andfrozen fa
tor at 2, F = 2. Also an updated version of simulated annealing and De
rease.javawere implemented in these tests. In the obje
tive fun
tion α = 1 and β = 15, the beta valuewas 
hosen su
h that more than one node had to be added to a new route. The probabilitymatrix P was set to P2.Note that all fa
tors in the program remained un
hanged ex
ept insert moves 11, 12, 14 and 15;when these experiments were 
arried out. One 
ould still 
hoose a swap move if the algorithmand the s
enario at hand demanded it.4.4.1 ResultsLet OPT be the returned obje
tive given by the program. Let z be the best known obje
tivevalue, 
al
ulated by hand, for the given problem. Then de�ne:

Z =

N
∑

i=1

OPTi

N
N are the number of runs for a given M. (4.4.1)So the Table 4.3 shows z/Z for all M and the four insert moves.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 1 0.99009 0.94678 0.99914 0.99302 0.95651 0.96983 0.95579 0.98611 0.97747InserMove12 1 0.77477 0.74854 0.72414 0.71429 0.78947 0.78589 0.91111 0.93796 0.82069InserMove14 1 0.67568 0.88246 0.92672 0.67409 0.70305 0.73942 0.90602 1 0.83416InserMove15 1 0.94595 0.99415 0.94828 0.91694 0.99723 0.85742 0.9375 0.97824 0.95286Table 4.3: Shows the ratio between the returned obje
tive value and the best known obje
tivevalue 
al
ulated by hand for ea
h M .If Table 4.3 is inspe
ted one 
an see that insert move 11 returns on average the best obje
tivevalues. Also in most 
ases it has the highest ratio for any given M . although in two 
ases in-sert move 15 performed better. Of the four insert move 11 is the only one that performed wellfor all M , insert move 12 tends too give the worst performan
e. Insert move 12, shows poorresults for most M, ex
ept when M ∈ {40, 50}. In those 
ases M is greater than the maximumroute length and insert move 12 returns a

eptable results. The reason for these results maybe that insert move 12 always 
hooses the highest pro�t node with the lowest node number.Therefore if two nodes had equal importan
e, say node12 and node41, then InsertMove12.javawould always 
hoose node12.



4.4. EXPLORING DIFFERENT INSERT MOVES 67Another insert move showed poor results for all M ex
ept those values that are longer thanthe longest possible route and this was insert move 14. In 
ases where M = 50 insert move 14returns ex
ellent results. This is be
ause the method always 
hooses the node with the highestpro�t farthest from the depot. Therefore when this node is outside the maximum route length,insert move 14 
annot �nd any node to insert into the routes.The only other insert move to return good results is insert move 15. It always 
hooses thehighest pro�t node 
losest to the depot. Therefore InsertMove15.java always �nds nodes toinsert into its routes as long as there are high pro�t nodes inside the range of the maximumroute. The main problem with InsertMove15.java is if there is a low pro�t node that one 
an�t into the route, then insert move 15 will not add that node to the route. Still the methoddid often produ
e a

eptable results.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 21 , 456 17,120 14,640 20,142 15,669 24,152 29,122 44,513 10,752 21,951InserMove12 24,513 13,202 3 , 419 3 , 297 5 , 176 16 , 720 22 , 707 30,749 35,755 17,282InserMove14 49,038 29,027 17,481 18,776 24,930 37,997 37,664 22 , 143 8 , 654 27,301InserMove15 24,358 7 , 716 5,327 6,578 11,703 34,121 34,174 55,155 24,703 22,648Table 4.4: Shows the number of iterations used to �nd the returned obje
tive value.Table 4.4 shows the average number of iterations it took for the program to �nd the obje
tivevalues returned for ea
h value of M . The values are not that di�erent but insert move 12 wasfastest and insert move 14 used the most iterations to �nd an optimum value. The resultsshow that insert move 11, the most e�e
tive of the four, does not require an extraordinaryamount of iterations to return an obje
tive value.M 5 10 15 20 25 30 35 40 50 AverageInserMove11 21 , 456 17,129 15,699 21,375 16 , 075 24 , 342 30 , 203 62,276 47,628 28,464InserMove12 24,658 13,631 5 , 261 12,496 17,374 27,190 44,066 48,681 89,509 31,429InserMove14 49,227 31,193 18,560 20,985 25,934 43,857 42,236 40 , 727 40 , 715 34,825InserMove15 24,358 7 , 716 5,465 7 , 033 12,833 34,884 40,145 63,851 62,832 28,790Table 4.5: Shows the number of iterations used to �nd the returned path.Table 4.5 above shows the average number of iterations it took for the program to �nd thereturned route for ea
h value of M . Here insert move 11 and insert move 15 use the fewestiterations. This still shows that insert move 11 is an a

eptable method when 
onsidering theamount of iterations needed to �nd a good route. Note that in most instan
es, espe
ially when
M ∈ {5, 10, 15, 20, 25, 30, 35}, the number of iterations needed to �nd an obje
tive value andthe number needed to �nd an returned route are often similar.In Table 4.6 the number of 
ases, for ea
h M , found were the best known obje
tive was rea
hedusing the best known path are listed. If a 
ertain run returned the best known obje
tive value,
al
ulated by hand, taking and the best known route the test was marked with a Boolean
true if this was not the 
ase then the run returned a Boolean false. Of the four insert moves



68 CHAPTER 4. TESTSM 5 10 15 20 25 30 35 40 50 AverageInserMove11 10 9 5 8 7 6 1 3 1 5.0InserMove12 10 0 0 0 0 0 0 3 0 1.3InserMove14 10 0 0 0 0 0 0 2 0 1.2InserMove15 10 0 0 0 0 0 0 2 0 1.2Table 4.6: Shows the numer of times best know obje
tive value is rea
hed using best knownpath.
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IterrationFigure 4.20: Shows a example of the obje
tive fun
tion, for all insert moves, in ea
h iteration,blue line. The red line represents the best known obje
tive value.the �rst, insert move 11, gives the highest values of true. The reason insert move 15 does notreturn good results, as it did with the obje
tive value, be
ause of the method it uses.In Figure 4.20 one 
an see the obje
tive value 
hanging with regards to the iterations. In the�gure M is set to 25, note that none of the methods rea
h the best known obje
tive value,the red line. Of the four methods insert move 15 is 
losest to the best known obje
tive valueand insert move 14 is furthest from the best known obje
tive value.In Figure 4.21 one 
an 
learly see the di�eren
e between methods. The residual ratio is 
on-sistently low for insert move 11. Both insert move 12 and insert move 14 give bad results andinsert move 15 a

eptable results but not as good as insert move 11.In 
on
lusion one 
an see, from tables 4.3, 4.4, 4.5 and 4.6; and Figure 4.21, that of the four
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Figure 4.21: Shows 
al
ulated results in 
omparison with the best known obje
tive value. Theblue line is the average results, the blue dots are ea
h 
al
ulated result and the red line is thebest known obje
tive value. The green line is the residual ratio and is represented on the righty-axis.



70 CHAPTER 4. TESTSinsert move 11 gives the best results and does so in an a

eptable amount of iterations.From this one 
an see that the insert move 11, a random insertion into routes, returns thebest results. Therefore it will be the only insert move used here after, unless otherwise spe
i�ed.4.5 Non-Randomly Generated Data SetsThe twelve non-randomly generated data sets were tested on the algorithm in this se
tion.The 
ooling s
hedule used was T0 = 15, r = 1 − 10−13 an F = 2. De
rease.java was usedalong with the updated version of simulated annealing. The number of iterations for ea
h testwas 50,000 and the runs for ea
h possible 
ompnation of M and |K| was ten. In all testsusing non-randomly generated data sets α = 1 and β = 15 in the obje
tive fun
tion. In thethese data sets one 
ould 
al
ulate the best known obje
tive value by hand. This was possiblebe
ause of the stru
ture of the data sets.4.5.1 Results Data Set 3_50_aThe test performed on data set 3_50_a used |K| = 3 and M ∈ {5, 10, 15, 20, 25, 30, 35, 40, 50}.As the use of De
rease.java will remove points from the data set the number of points usedfor ea
h M is shown in Table 4.7, these points are 
alled feasible. Note that the maximumnumber of points is 45, not 50, be
ause 10% of points have been removed, to in
lude an equalamount of nodes in ea
h route the number of points 
ould not be 47, 47/3 = 15.667 and thedepot then 
ounts as an additional two points. Also in Table 4.7 are displayed the 
al
ulatedbest known obje
tive values. These are known best obje
tive values as the unique stru
tureof the data sets allows one to 
al
ulated, by hand, the best obje
tive values and paths.M 5 10 15 20 25 30 35 40 50
3_50_a 10 22 33 41 45 45 45 45 45Best 60 111 171 232 301 361 411 432 432Table 4.7: Shows the number of points feasible for ea
h M and the best known obje
tive value,
al
ulated by hand.In Figure 4.22 the stru
ture of the data set is displayed.To determine whi
h probability matti
es are the best it was ne
essary to 
ompare them.Table 4.8 shows the results from 
al
ulations using P1, Table 4.9 shows results from 
al
ula-tions using P2 and Table 4.10 shows results from 
al
ualtions using P3. If the best 
al
ulatedvalues in the three tables (4.8, 4.9 and 4.10) are 
ompared to the best known obje
tive values,
al
ulated by hand, in Table 4.7 one 
an see that the best known obje
tive value is found bythe algorithm in most 
ases. Of the three possabilities matri
es P2 returns the best solutions.Noti
e that neither P1 or P3 found the best known obje
tive value when M = 35. This isbe
ause of the uniqueness of the solution, displayed in Figure 4.23. The solution for M = 35
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Figure 4.22: Shows the data set 3_50_a, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.M 5 10 15 20 25 30 35 40 50Avrage 51.5 101.3 150.6 228.1 282.8 341.1 360.6 380.8 429Best 60 111 171 232 301 361 401 432 432Ratio 0.85833 0.91261 0.8807 0.98319 0.93953 0.94488 0.89925 0.88148 0.99306CPU 4101.5 5785.5 7840.4 9499 10253 9873.4 9773.2 9555 9220.7Table 4.8: Results from 
omputations using P1. The values shown are the average 
al
ulatedvalue, the best 
al
ulated value, the ratio between those two values and 
al
ualtion time inmilli se
onds.M 5 10 15 20 25 30 35 40 50Avrage 59 102.8 168 231.8 286.9 361 394.4 424.8 430Best 60 111 171 232 301 361 411 432 432Ratio 0.98333 0.92613 0.98246 0.99914 0.95316 1 0.95961 0.98333 0.99537CPU 4482.7 6377.9 8565 10623 11628 11268 10987 10325 10065Table 4.9: Results from 
omputations using P2. The values shown are the average 
al
ulatedvalue, the best 
al
ulated value, the ratio between those two values and 
al
ualtion time inmilli se
onds.is not straight forward but uses a remainder of a path to rea
h the best known obje
tive value.



72 CHAPTER 4. TESTSM 5 10 15 20 25 30 35 40 50Avrage 58.5 109.8 166.8 221.5 271.1 324.5 376.9 402.9 415.9Best 60 111 171 232 301 361 402 432 432Ratio 0.975 0.98919 0.97544 0.95474 0.90066 0.89889 0.93756 0.93264 0.96273CPU 4316.8 5967.1 7644.8 9889.2 10869 10282 10004 9755.3 9529.8Table 4.10: Results from 
omputations using P3. The values shown are the average 
al
ulatedvalue, the best 
al
ulated value, the ratio between those two values and 
al
ualtion time inmilli se
onds.In tables 4.8, 4.9 and 4.10 average run times for the algorithm is displayed. Of the threematri
es P2 appears to have the longest run time. The di�eran
es between run times 
an beexplained by the odds of invoking a 
ertain move. For example an insert move in very simpleand uses few 
al
ulaltions where a bus move uses methods similar to a single insert movemore than on
e. Therefore di�erent moves have di�erent run times and the three matri
esgive di�erent average run times.4.5.2 Results for Data Sets 3_50_a, b and cAfter looking at ea
h result individually11, for the data sets 
ontaining 50 points and 3 routes,the results were looked at as a whole. In Figure 4.24 these results 
an be viewed. They showthe best known obje
tive value, the results 
al
ulated by the algorithm and the residual ratio.The feasible points for ea
h M and the best known obje
tive values, 
al
ulated by hand, fordata sets 3_50_b and 3_50_c are shown in Table 4.11.M 5 10 15 20 25 30 35 40 50
3_50_b 9 22 32 41 45 45 45 45 45Best 55 120 180 250 301 361 411 432 432
3_50_c 10 22 32 42 45 45 45 45 45Best 55 111 181 240 300 360 411 432 432Table 4.11: Shows the number of points feasible for ea
h M and the best known obje
tivevalue for data sets 3_50_b and 3_50_c.When inspe
ting Figure 4.24 it is obvious that P = P2 returns the best results. One 
an seethis by 
omparing the graphs in the 
enter 
olumn to the other graphs in Figure 4.24. Theresidual ratio, green line, is 
onsiderably lower for graphs in the 
enter 
olumn than the graphssituated on the right and left 
olumns of Figure 4.24. This shows that on average the individ-ual results of the algorithm, when using P = P2, are mu
h 
loser to the best known obje
tivevalues, 
al
ulated by hand, than results 
al
ulated using P1 or P3. It should be noted that theobje
tive fun
tion is in reality a step fun
tion and not a 
ontinuous fun
tion as displayed inFigure 4.24. The �gure is set up this way to demonstrate how 
losely the tests follow the best11Individual results for data sets 3_50_b and 3_50_c 
an be viewed in appendix D.1.1 and D.1.2.
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Figure 4.23: Shows results for the data set 3_50_a when M = 35 and the an obje
tive valueof 411. Note this solution was found with P = P2 in moves.java, although it took 22 runs toprodu
e the result. Also 
ompare with Figure 4.22 to see if all point of low pro�t are in
luded.
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Figure 4.24: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.known obje
tive values.In Figure 4.25 the run times for every test and there average fun
tion 
an be viewed. Note howthe run times in
rease with M , rea
h a high point, when M = 25, and then de
rease slightlyfor M > 25. The reason for this is that M = 25 allows for all points to be in
luded, whi
hmeans they are all feasible. Although all points are feasible this does not mean that all pointswill be in
luded in the solution. M = 25 has the lowest obje
tive value, 
al
ulated by hand,with the highest number of points at feasible points. This means all other solutions either havefewer feasible points or higher obje
tive values, 
al
ulated by hand. Therefore M = 25 shouldhave the largest number of 
la
ulations12.In 
on
lusion it is apperant that P2 gives the best results for data sets 3_50_a, 3_50_b and
3_50_c. This 
an be seen by 
omparing the residual ratios in Figure 4.24. The run time ofthe algorithm also is the greatest when the highest number of feasible points yields the lowestobje
tive values. This is obtained by 
omparing Figure 4.25 and Table 4.114.5.3 Results for Data Sets 3_100_a, b and cA graph displaying the individual results for 3_100_a, b and c was 
onstru
ted and 
an beviewed in Figure 4.26. The 
enter 
olumn of Figure 4.26 show lower residual ratios than thegraphs in the left and right 
olumn. This means that when P2 is used it gives, on average,better results than when P1 or P3 is used. If 
ompared with 4.24 it appears that the results12For example uses UnvistedPoints.java most often.
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Figure 4.25: Shows how long ea
h run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.
using 100 point give higher residual ratios on average. This means that the algorithm performsbetter when using smaller data sets than when using larger ones. This is most likely be
ausethe number of iterations is the same in both 
ases and therefore it is normal that obje
tivefun
tion of larger data sets are more di�
ult to 
al
ulate. This 
an also be seen when in-spe
ting the residual ratios on any single graph in Figure 4.26. Noti
e how the residual ratiosin
reases as the values of M gets larger.In Table 4.12 the number of feasible points and the best known obje
tive values, 
al
ulatedby hand, are displayed. If Table 4.12 and Figure 4.27 it 
an be seen that the run time of thealgorithm rizes till it rea
hes M = 50 and the falls slightly. This is be
ause M = 50 gives thelowest obje
tive value while having the largest set of feasible points. This is when M = 50and allows all 94 points to be in
luded in the 
al
ulation but the best known obje
tive valueis lower than with M = 60 or M = 75.In 
on
lusion it 
an be seen from Figure 4.26 that P2 is the best probabilty matrix for datasets 3_100_a, b and c. When Figure 4.26 was inspe
ted it was observed that residual ratiosrize as the values of M get larger. Also for data sets 3_100_a, b and c the algorithm gives thehighest run times when the set of feasible points is the largest while the 
al
ulating the lowestobje
tive value.
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Figure 4.26: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.27: Shows how long ea
h run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.



4.5. NON-RANDOMLY GENERATED DATA SETS 77M 10 20 30 35 40 45 50 60 75v3_100_a 21 45 67 77 85 90 94 94 94Best 121 240 370 431 500 562 620 740 863
3_100_b 22 45 67 77 85 90 94 94 94Best 130 250 380 430 500 560 630 740 873
3_100_c 21 42 66 76 84 90 94 94 94Best 110 240 350 420 480 542 602 732 880Table 4.12: Shows the number of points feaslable for ea
h M and the best known obje
tivevalue for data sets 3_100_a, 3_100_b and 3_100_c.4.5.4 Results for Data Sets 4_50_a, b and cAs with previous data sets graphs were 
onstru
ted to 
ompare 
al
ulated results with thebest known obje
tive values and also to inspe
t the residual ratio. These graphs 
an be seenin Figure 4.28. The best performan
e is again a
hived by using P = P2 and it is 
onsiderablybetter the that of P1 and P3. Results 
al
ulated with P2 are displayed in the 
enter 
olumn andthey have a 
onsiderably lower residual ratio than the graphs in the left and right 
olumns.This data set was allowed to plateau, best know obje
tive for M ∈ {24, 28, 30, 35} is 432, the
ombined pro�t of all the nodes.Plots of the running times were also done, see �gure 4.29. The sharp in
rease in run timesresults in the highest values when M = 12, whi
h is the lowest obje
tive value, 
al
ulated byhand, in 
on
ern with the number of feasible points. This is the same for all three data setsand 
an be seen in Table 4.13M 4 8 12 16 20 24 28 30 35
4_50_a 14 33 45 45 45 45 45 45 45Best 70 131 201 281 361 432 432 432 432
4_50_b 15 34 45 45 45 45 45 45 45Best 70 150 211 290 370 432 432 432 432
4_50_c 16 34 45 45 45 45 45 45 45Best 80 160 231 291 372 432 432 432 432Table 4.13: Shows the number of points feaslable for ea
h M and the best known obje
tivevalue for data sets 4_50_a, 4_50_b and 4_50_c.In 
on
lusion it is apperant that 
al
ulations with P2 give better solutions than those using

P1 or P3 for data sets 4_50_a, 4_50_b and 4_50_c. This 
an be observed in Figure 4.28 by
omparing the 
enter 
olumn graphs to other graphs in the �gure. Run times for the algorithmare also the highest when looking at the lowest best known obje
tive value, 
al
ulated by hand,in 
on
ern with the largest amount of feasible points. This is observed by 
omparing Figure
4.29 and 4.13.
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Figure 4.28: Shows the the best known obje
tive values red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.29: Shows how long ea
h run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.
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Figure 4.30: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.4.5.5 Con
lusion in Data Sets 4_100_a, b and cGraphs displaying the results for 4_100_a, b and c 
an be found in Figure 4.30. If the three
olumns in Figure 4.30 are 
ompared it 
an be seen that the graphs in 
enter 
olumn give thelowest residual ratio. These results, the ones displayed in the 
enter 
olumn of Figure 4.30,were 
al
ulated using P2 whilst the the other results were found using P1 or P3. If 
omparedwith results in Figure 4.28 it is apparent that the graphs displayed in Figure 4.28 give lowerresidual ratios. Although when Figure 4.30 is inspe
ted the residual ratios do not in
rease, onaverage, as M gets larger. This does though o

ur in some graphs in Figure 4.30, observe theright 
olumn. M 10 20 25 30 35 40 45 50 60
4_100_a 34 73 95 95 95 95 95 95 95Best 190 380 471 560 670 752 861 905 905
4_100_b 34 72 95 95 95 95 95 95 95Best 190 380 470 570 660 751 831 905 905
4_100_c 34 73 95 95 95 95 95 95 95Best 190 390 470 580 661 762 851 905 905Table 4.14: Shows the number of points feaslable for ea
h M and the best known obje
tivevalue for data sets 4_100_a, 4_100_b and 4_100_c.
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Figure 4.31: Shows how long ea
h run of the program took, blue dots; and the average runningtime, blue line; with regards to maximum route length.Table 4.14 shows the feasible points for ea
h M and the best known obje
tive values, 
al
u-lated by hand. If Table 4.14 and Figure 4.31 are 
ompared it 
an be seen that the largest runtimes are the result of the sets with large sets of feasible points but a low obje
tive value. Thisis when M = 25 allows for all 95 points to be in
luded in the 
al
ulation. This results in thelowest obje
tive value for all values M giving 95 feasible points.In 
on
lusion from Figure 4.30 it was observed that P2 was best suited for 
al
ulations withdata sets 4_100_a, b and c. Also table 4.14 and Figure 4.31 showed that the largest run timesare found when the largest set of feasible points result in the lowest best known obje
tivevalue.4.6 Randomly Generated Data SetsIn these test the randomly 
onstru
ted data sets were used. There were 10 of these tests 
on-stru
ted, 5 with 50 points and 5 with 100 points. As the points are randomly distributed therewas only a need to 
onstru
t one pro�t ve
tor for 50 points and one for 100 points. Thesepro�t ve
tors 
an be viewed in appendix D.3.3.In table 4.15 the number of feasible points for a 
ertain M is displayed for randomly generateddata sets.



4.6. RANDOMLY GENERATED DATA SETS 81M 10 20 40 50 70 80 100 130 16050a 1 4 27 38 50 50 50 50 5050b 3 4 21 39 50 50 50 50 5050
 1 3 20 38 50 50 50 50 5050d 1 4 21 37 50 50 50 50 5050
 3 7 27 40 50 50 50 50 50100a 2 11 51 78 100 100 100 100 100100b 3 13 49 77 99 100 100 100 100100
 4 10 49 79 100 100 100 100 100100d 4 11 47 77 100 100 100 100 100100
 2 12 49 75 100 100 100 100 100Table 4.15: Show the number of feasible points for a 
ertain M in a data set of randomlygenerated points.4.6.1 Test with data sets 50a,b,
,d and e with 450,000 iterationsIn tests with non-randomly 
onstru
ted data sets it was determined that P2 gave better solu-tions than P3 and P1. Be
ause P3 was 
al
ulated using randomly generated data set and P2was 
al
ulated using a non-randomly 
onstru
ted data set a se
ond 
omparison was deemedne
essary. Therefore these two probability matri
es were 
ompared again using randomly gen-erated data sets.The 
ooling s
hedule used in these tests was T0 = 15, r = 1 − 10−13 and F = 2. AlsoDe
rease.java and the updated simulated annealing was used. In these test a large number ofiterations was used or 450,000. The initial solution was the empty solution. Ten runs wereperformed for ea
h possible 
ombination for M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160}, |K| ∈
{3, 4, 5} and p ∈ {P2, P3}.Results from data sets 50a,b,
,d and e with 450,000 iterationsPlots for ea
h data set 
an be viewed in the appendix. As previously the residual ratios areimportant. So for ea
h data set and ea
h value |K| ∈ {3, 4, 5} the residual ratios were aggre-gated. From this tables 4.16 and 4.17 were 
onstru
ted.M 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0.1600 0.3075 0.7020 1.3472 1.2314 0.9670 0.2031 0.0006 0.5465|K|=4 0 0.1550 0.4850 0.6800 1.3972 0.9501 0.5440 0.5400 0.4596 0.5790|K|=5 0 0.1700 0.7550 0.8440 1.2044 1.0225 0.6990 1.0501 0.8438 0.7321Table 4.16: Shows values of residual ratios 
al
ulated with P2 for ea
h M and |K|. Individualtables for ea
h dat ser (50a,b,
,d and e) wher ussed to 
onstru
t this table.The values form Table 4.18 are plotted in Figure 4.32. As values from Table 4.17 are with-drawn from values in 4.16 Table 4.18 is 
onstru
ted. It is apparent that if more values, in



82 CHAPTER 4. TESTSM 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0.1600 0.6775 0.5240 1.6657 1.3713 1.1860 0.3609 0.0106 0.6618|K|=4 0 0.1350 1.2800 0.7540 1.3043 0.9237 0.5920 0.5500 0.4033 0.6603|K|=5 0 0.1300 1.5000 1.8300 1.1043 0.7373 0.7200 0.9577 0.7126 0.8547Table 4.17: Shows values of residual ratios 
al
ulated with P3 for ea
h M and |K|. Individualtables for ea
h dat ser (50a,b,
,d and e) wher ussed to 
onstru
t this table.M 10 20 40 50 70 80 100 130 160 AVE|K|=3 0 0 -0.3700 0.1780 -0.3185 -0.1399 -0.2190 -0.1578 -0.0100 -0.1152|K|=4 0 0.0200 -0.7950 -0.0740 0.0929 0.0264 -0.0480 -0.0100 0.0563 -0.0813|K|=5 0 0.0400 -0.7450 -0.9860 0.1001 0.2852 -0.0210 0.0924 0.1312 -0.1226Table 4.18: Is 
onstru
ted from tables 4.16 and 4.17 by withdrawing values in the latter tablefrom values in the former table.Table 4.18, are positive, then P3 is better else P2 gives better obje
tive values. If Figure 4.32is inspe
ted it is apparent that more values are less than zero, negative. Therefore one 
anassume that P2 gives better obje
tive values.The reason this was done instead of just 
omparing plots is that results were to similarin 
omparison, using plots like those 
onstru
ted for non-randomly generated data sets. In
on
lusion it is apparent that P2 gives better results than P3 for randomly generated datasets.4.6.2 Comparing Probability matri
es P2 and P ∗
2After determining that the probability matrix P2 gives better obje
tive values than P3 and P1it is ideal to see if P ∗

2 gives better or equally as good results. Tests were performed on datasets 100a,b,
,d and e using a |K| = 3. For ea
h M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160} tentrials were run. The 
ooling s
hedule used was T0 = 15, r = 1− 10−13 and F = 2. The testsused the updated simulated annealing and De
rease.java.Results in Comparing Probability matri
es P2 and P ∗
2In Figure 4.33 the results from the tests 
an be observed. From that �gure one 
an see thatthere is little di�eran
e between using P2, left 
olumn, and P ∗
2 right 
olumn.To 
ompare further a residual plot was 
onstru
ted to inspe
t the di�eran
e between the twomatri
es further. This plot 
an be seen in Figure 4.34. The residual ratio results, 
al
ulatedwith P ∗

2 , were withdrawn from the residual ratios 
al
ulated with P2. In Figure 4.34 moreof the results are negative and thereby the residual results for P ∗
2 were greater than those
al
ulated with P2.In 
on
lusion we have seen from Figure 4.33 that the di�eran
e between results 
al
ulatedwith P2 and P ∗

2 are not great. Furhter inspe
tion, seen in Figure 4.34, showed that P2 tended
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Figure 4.32: Show the residual sums for P2, P3 and P2 − P3
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Figure 4.33: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.34: Show the result when residual sums for P ∗
2 are removed from the residual sumsof P2.to give better results on average.4.7 Comparison to GAMSA 20 point subset data set was 
onstru
ted from data set 50a. This was done in e�ort to 
om-pare solutions from the algorithm to solutions from a di�errent program. Thit other programwas written in GAMS.The model used in GAMS is the linear model presented in the se
tion on the model.The 
ooling s
hedule used in these tests was T0 = 15 and r = 1 − 10−13 and stopping
riteria F = 2. Ea
h run inspe
ted 9 possible values for maximum route length, M ∈

{10, 20, 30, 40, 50, 60, 70, 80, 90}, and there were 20 trials for ea
h M . The initial guess is theempty solution where no routes are a
tive. The maximum amount of pro�t available from thenodes was 110.These tests also used De
rease.java along with the improved simulated annealing. In the ob-je
tive fun
tion α = 1 and β = 15.4.7.1 Results Comparison to GAMSIn Table 4.19 all solutions from GAMS and the simulated annealing algortihm are 
ompared.The solutions presented by gams had the best 
al
ulated obje
tive, an ubber bound and thegap between the two. The best 
al
ulated obje
tiv will be 
alled the lower bound as GAMS



4.7. COMPARISON TO GAMS 85has proven that the obje
tive fun
tion is at least this value. If Table 4.19 is inspe
ted it 
anbe seen that the best values presented by the simulated annealing algorithm are all in betweenthe lower bound and the upper bound, 
al
ulated by GAMS. Although in all 
ases the upperbound proposed by GAMS is:
∑

VM

φi + |K|β (4.7.1)This is an upper bound that was shown in the se
tion on upper bounds.M 10 20 30 40 50 60 70 80 90 |K|Best 45 49 49 59 69 76 95 107 110 3AVE 45 48.2 49 50.45 64.55 73.3 89.05 99.2 107.45 3LB 45 49 49 59 59 61 92 78 92 3GAP 9 20 20 45 69 65 63 68 63 3UB 54 69 69 99 123 139 155 155 155 3Best 60 64 64 74 84 92 109 119 125 4AVE 60 63.6 63.8 65.9 80.75 86.55 101.65 111.3 113.35 4LB 60 64 64 74 74 76 107 102 107 4GAP 9 20 20 40 64 65 63 68 63 4UB 69 84 84 114 138 141 170 170 170 4Best 75 79 79 89 99 106 124 129 138 5AVE 75 79 78.8 80.45 95.85 101.15 118.85 122.85 125.85 5LB 75 79 79 89 89 91 122 117 122 5GAP 9 20 20 40 64 78 63 77 63 5UB 84 99 99 129 153 156 185 185 185 5Table 4.19: Shows the average results from the simulated annealing algorithm and its maximum
al
ulated values. This is 
ompared with values 
al
ulated by GAMS, the upper limit proposedby GAMS and the gap between the two.A plot of the results 
an be viewed in Figure 4.35. The greatest variation found between av-erage value and the best known obje
tive value is under 20%. This is not perfe
t but a

eptable.The 
omparison between GAMS and the simulated annealing algorithm show that the bestvalue 
al
ulated with simulated annealing is always 
loser to the best known obje
tive, thanthe value 
al
ulated with GAMS. Also simulated annealing mu
h faster as a single 
al
ulationin GAMS more then a day �nish but took only se
onds using the simulated annealing algo-rithm.The GAMS 
ode performed well for M ≤ 50, this is most likely be
ause when M = 50 thereare only 12 points within the maximum route length, this in
reases to 17 for M = 60 and 20for M ≥ 70. This shows that with in
reasing number of points the GAMS program has moredi�
ulty 
al
ulating the obje
tive value, whi
h was expe
ted. There fore the GAMS does givesto low values when 
al
ulating for M ≥ 60.The simulated annealing algorithm also has worse average values for high values of M . This
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Figure 4.35: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line. These arethe results when using simulated annealing for both time and pro�t, used De
rease.java and anew 
ooling s
hedule.is also due to larger number of available nodes and 
an be seen in �gure 4.35.From this, Table 4.19 and Figure 4.35, one 
an 
on
lude that the simulated annealing algorithmis performing a

aptably weel in 
omparison with GAMS and using data set 20.4.7.2 Results Comparison to De
rease.java with New Cooling S
heduleA 
omparision between using De
rease.java and not was done. Also when De
rease.java wasnot used an older 
ooling s
hedule was still in use. There T0 = 3000, r = 0.999 and F = 0. Re-sults from using De
rease.java, and the new 
ooling s
hedule, 
an be seen in Figure 4.35 whileresults from not using it are seen in Figure 4.36. Note that both trials used an updated versionof the simulated annealing algorithm. When these two �gures are 
ompared it is apparent thatresults are better with De
rease.java and the new 
ooling s
hedule. A table 
ontaining resultsfrom the older version 
an be seen in appendix D.4.Also run times were 
ompared to see whi
h method was faster. These results are seen in tables
4.20 and 4.21.As 
an be seen in tables 4.21 and 4.20 run times for low values of M are lower when De-
rease.java is used. In that 
ase, using the new version of the algorithm, the run time is greatesfor M = 60 were all points are feasible but the obje
tive value is the lowest with 
omparison
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Figure 4.36: Shows the best known obje
tive values, red line; the di�erent results and thereaverage value, blue dots and blue line; also the residual ratio is plotted, green line. These arethe results when using simulated annealing for both time and pro�t.M 10 20 30 40 50 60 70 80 90 |K|mean 3208 3520 3588 4711 5418 6194 5484 5448 4991 3max 4068 6156 6257 6459 8222 9479 8899 8541 6304 3min 3009 3227 3208 4425 4406 5091 5036 5035 4505 3mean 7433 8147 8134 11384 13195 17023 14649 12603 11389 4max 10362 11848 10585 16854 18304 27887 21553 17612 16120 4min 5172 5797 5572 8168 9264 11974 9775 8142 7686 4mean 6619 7148 7275 10591 12669 16453 13278 10898 9772 5max 9404 9787 9855 14740 18074 26861 20284 15144 14207 5min 5156 5828 5611 8394 10073 13374 8211 7198 7657 5Table 4.20: Shows run times for tests using the new 
ooling s
hedule and using De
rease.java,results are in milli se
onds.to other sets with the same number of points. For the older version of the algorithm highrun times are re
orded when M ∈ {20, 30}. In that 
ase there is a large number of infeasi-ble solutions proposed by the algorithm, De
rease.java removes a majority of these infeasiblesolutions. Average run times in both 
ases were 
ompared and no 
on
lusive result 
ould berea
hed. The old version performed better on average of 0.3 se
onds. In 
on
lusion the newversion gave better solutions on similar run times whi
h are good results.



88 CHAPTER 4. TESTSM 10 20 30 40 50 60 70 80 90 |K|mean 7779 10278 19730 13120 7464 6413 5186 5050 4733 3max 22591 23881 29952 25254 15219 16555 7544 5525 5398 3min 6873 6858 10446 7132 5002 4998 4873 4849 4239 3mean 8196 10742 10898 12113 9301 7946 6833 5664 5107 4max 8674 15341 12453 21734 12262 10533 9089 7106 6739 4min 7950 7812 7791 8131 8216 5492 5436 4854 4318 4mean 8870 11683 12274 12721 9827 9008 6635 5695 5198 5max 9233 13504 13371 13471 12987 12287 9384 8349 8483 5min 8719 8793 8765 8763 8833 7861 4756 4755 4731 5Table 4.21: Shows run times for tests using the older version of the algorithm, results are inmilli se
onds.4.8 Obtained Data SetsThese previously 
ondu
ted tests were used in [13℄. There were 3 data sets tested ea
h indi�erent size. The sets sizes are |V | = 102, |V | = 32 and |V | = 33. There names are respe
tivelydata set 102, 32 and 33. To be 
omparable with the problem presented in [13℄ β was set tozero. This means that the only 
ontributing fa
tor in the obje
tive fun
tion is ∑

i∈V piyi, as
α = 1. Now the number of possible routes was |K| ∈ {2, 3, 4}. The 
ooling s
hedule was set to
T0 = 15, r = 1− 10−13 and F = 2. The number of iterations was 50,000 and the probabilitymatrix used was P2. Ea
h test with all possible 
ombination was done 10 times. The maximumroute lengths di�ered for ea
h test.4.8.1 Results for Data Set 32The results for the 
omparison between the tabu sear
h algorithm presented in [13℄ and thesimulated annealing algorithm presented in this thesis 
an be seen in table 4.22. The tabuesear
h algorithm performs better in most 
ases, although the simulated annealing performsequally well in a few 
ases and better in one (|K| = 3 and M = 13.3). In the one 
ase wherethe simulated annealing algorithm performs better it �nds the best known obje
tive value. It isstated in [13℄ that the best known obje
tive value for that pati
ular 
ase, when M = 13.3 and
|K| = 3, is 75. Overall the simulated annealing algorithm performs su�
ently well 
omparedto the tabu sear
h.The run times of the two methods are also dispayed in Table 4.22, these time are mesuredin se
onds. The 
omputer used in the tabu sear
h experiment was a DEC Alpha XP1000Computer and the one used to 
al
ulated the simulated annealing was a Dell Inspiron 5150(Pentium 4). When the two methods are 
ompared it is obvious that the tabu sear
h is mu
hfaster than the simulated annealing, somtimes faster by as mu
h as 15 se
onds. The valuesshown are both maximum 
al
ulations time re
ored in there trials.In 
onslusion one 
an see, by inspe
ting Table 4.22 that the tabu sear
h algortihm returnsbetter soltutions faster than the simulated annealing algorithm, when daeiling with the 32point data set. Although the simulated annealing algorithm does not return as good solutions,
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|K| M Average Max Min CPU Max CPU4 18.8 151 165 135 13.011 175 1.54 18.2 145.62 155 130 12.708 165 1.34 12.5 72.75 75 70 11.964 75 0.83 25 188.75 220 135 11.737 220 1.53 24.3 177.88 195 140 11.395 205 2.63 21.7 147.62 165 125 10.208 170 1.43 13.3 73.0 75 70 11.712 70 0.82 23 122.25 135 95 15.860 135 1.3Table 4.22: Show the 
omparison between a tabu sear
h algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.as the tabu sear
h, it gives resonalby good results in some 
ases even �nding the best knownobje
tive value.4.8.2 Results for Data Set 33In Table 4.23 a 
omparison between a tabu sear
h algorithm, persented in [13℄, and the sim-ulated annealing used in the thesis is displayed. The tabu sear
h performs better on average.The simulated annealing in some 
ases give equally good values as the tabu sear
h but neverbetter values. Though the tabu sear
h performs better overall the simulated annealing tendsto �nd obje
tive values 
lose to the best known obje
tive values, persented by the tabu sear
halgorithm.The run times, displayed in table in Table 4.23, are 
ompared it is apparent that tabu sear
his mu
h faster than the simulated annealing algorithm. The 
omputer used in the tabu sear
hexperiment was a DEC Alpha XP1000 Computer and the one used to 
al
ulated the simulatedannealing was a Dell Inspiron 5150 (Pentium 4). The di�eran
e between runtimes is 
onsi-darble with tabu sear
h out performing the simulated annealing algorithm by as mu
h as 12se
onds. In both 
ases the run time are maximum numbers re
orded over a few trials.Overall tabu sear
h out performs simulated annealing both in 
on
ern to the obje
tive valuesand run time, seen in Table 4.23, when 
ompared with data set 33. Although simulatedannealing does return good obje
tive values but not always the best known obje
tives.4.8.3 Results for Data Set 102Comparison with the 102 point data set 
an be viewed in Table 4.24. In most instn
es thetabu sear
h algorithm returns better obje
tive values the the simulated annealing algorithm.There are also 
ases where the two algorithms return the same best obje
tive values. In one
ase,M = 93.3 and |K| = 3, simulated annealing returned a better obje
tive than the tabusear
h algorithm. In this 
ase the best known obje
tive values, a

ording to [13℄, is 813.The run times are also 
ompared in Table 4.24. Values displayed are the maximum re
orded
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|K| M Average Max Min CPU Max CPU4 22.5 481.5 520 400 12.233 560 0.74 15 259.25 280 220 11.388 310 0.84 10 190 190 190 10.008 190 0.63 36.7 686.25 720 620 10.840 750 3.33 31.7 610.75 650 540 11.818 680 3.13 30 574 620 470 10.447 640 2.13 28.3 534.75 570 420 11.562 590 2.03 25 471.75 500 430 14.083 510 2.02 47.5 697.5 740 630 8.907 760 5.42 42.5 619.25 660 540 9.775 690 6.62 30 425.75 490 290 10.973 490 1.52 27.5 386.75 430 280 9.512 460 3.82 25 360 390 270 11.092 410 3.12 20 261.75 290 180 10.296 290 1.22 17.5 212.5 250 170 9.132 250 0.82 12.5 176 180 110 11.354 180 1.2Table 4.23: Show the 
omparison between a tabu sear
h algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.run times. The 
omputer used in the tabu sear
h experiment was a DEC Alpha XP1000Computer and the one used to 
al
ulated the simulated annealing was a Dell Inspiron 5150(Pentium 4). In most 
ases the simulated annealing algorithm uses shorter runtimes but forlow values of M the tabu sear
h is qui
ker.In 
on
lusion the simulated annealing algorithm returns good results but not always the bestpossible and 
al
ulates them in short times 
ompared to other methods, when dealing withlarge data sets.4.9 Distan
e ConstraintWhen dealing with routes one does not want the bus to drive a short distan
e and beforestopping again. Two nodes 
lose to one another share mu
h of the same pro�t. Therefore asmall 
hange was implemented to one of the java 
lasses, UnvisitedPoints.java. This ensuredthat the bus had to drive either for some time or a 
ertain distan
e before stopping again,whether it was distan
e or time depends on the input. The new 
lass UnvisitedPoints2.javamade it impossible for any route to stop within a 
ertain radius a, from an already pi
kednode. Test that were 
ondu
ted with UnvistedPoints2.java also used De
rease.java and the up-dated version of simulated annealing. The data sets tested were 50a,b,
,d and e. Ea
h testlooks at nine possible maximum route lengths M ∈ {10, 20, 40, 50, 70, 80, 100, 130, 160} andhad a maximum of three vehi
hles, |K| = 3. Values of the radius were a ∈ {1, 2, 3, 4, 5, 10}.All possible 
ombinations of data sets, maximum route lengths and radiuses were tested 10times and ea
h test used two initial guesses the se
ond being the solution from the �rst test.
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Maximum route lengthFigure 4.37: Shows the best known obje
tive values, red line; and the di�erent results andthere average value, blue dots and blue line.
The 
ooling s
hedule used in these tests was T0 = 15, r = 1 − 10−13 and F = 2. Number ofiterations was 50,000.4.9.1 Results for the Distan
e ConstraintAll data sets showed a de
rease in obje
tive fun
tion as the radius a in
reased. This 
an beseen in the table blow and in Figure 4.37. Similar �gures for data sets 50b,
,d and e were
onstru
ted and are viewable in appendix D.4.1.The Table 4.25 and Figure 4.37 shows that as a in
reases the average obje
tive values de
rease.For example the best known obje
tive value for M = 20 is 49 for all values of a ∈ {1, 2, 3, 4, 5}but when a = 10 the obje
tive value de
reases to 45. For other values of M the de
rease ismu
h more obvious.All points in V for data set 50a are shown in Figure 4.38. When a = 3 and M=160 the routes
hosen 
an be seen in Figure 4.39, routes 
onstru
ted for the same M and a = 10 is shown inFigure 4.40. Other similar �gures for data set 50a 
an be seen in appendix D.4.1.To 
ompare between a route with a = 0 and a route with a = 5. This 
an be seen in �gures
4.41 and 4.42. In Figure 4.41 blue points reprsent nodes not 
hosen. When 
ompared to 4.42one 
an determin nodes that were left out be
uase they are to 
lose to there neighbor.These results 
on�rm that the se
ond version of UnvisitedPoints.java works and returns solu-
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Figure 4.38: Shows all points in data set 50a.
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Figure 4.39: Shows the routes 
onstru
ted when a = 3 and M = 160. The 
ir
les are the areawhere that must be travelled before another pi
k up point is 
hosen.
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Figure 4.40: Shows the routes 
onstru
ted when a = 3 and M = 160. The 
ir
les are the areawhere that must be traveld before another pi
k up point is 
hosen.
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Figure 4.41: Shows the routes 
onstru
ted when a = 5 and M = 100. The 
ir
les are the areawhere that must be travelled before another pi
k up point is 
hosen.
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Figure 4.42: Shows the routes 
onstru
ted when a = 0 and M = 100. The 
ir
les are the areawhere that must be travelled before another pi
k up point is 
hosen.tions where a bus is prohibited from visiting any points within radius a of a 
hosen node.
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|K| M Average Max Min CPU Max CPU4 100 876.3 972 672 42.110 1067 86.64 95 859.8 1008 768 48.770 1019 84.34 90 813.9 906 672 47.007 966 101.04 85 729.9 810 552 79.156 905 95.24 80 681.6 756 558 47.383 832 82.04 75 660.3 738 540 47.741 776 71.34 70 592.2 696 516 51.924 726 54.44 65 543.3 600 462 53.606 643 68.84 60 483.6 528 432 56.333 576 31.84 55 418.8 456 342 64.727 503 44.94 50 382.2 414 336 69.247 462 23.64 45 346.8 359 336 83.772 359 20.63 133.3 911.7 1032 774 30.927 1098 143.23 126.7 1895.5 972 816 32.517 1061 99.83 120 863.4 942 702 33.138 1011 93.63 113.3 790.8 900 612 32.271 966 98.83 106.7 781.5 858 714 32.503 922 74.03 100 723.6 840 606 34.229 874 102.83 93.3 677.4 792 420 33.218 789 126.53 86.7 608.1 738 486 34.962 756 121.23 80 543.9 660 360 34.602 681 69.53 73.3 529.2 632 414 40.395 632 94.43 66.7 445.2 552 300 39.312 563 107.73 60 394.2 438 336 42.797 481 36.03 53.3 327 390 270 43.955 416 34.03 46.7 312.6 330 282 56.311 344 21.02 200 951 1062 810 26.023 1165 290.62 190 1932.1 1050 798 23.908 1116 215.62 180 1885.6 972 780 23.946 1067 432.62 170 852.9 978 750 26.709 1017 239.62 160 826.5 894 750 39.186 987 272.12 150 769.8 894 648 25.499 914 202.82 140 695.1 792 534 30.222 864 224.32 130 630.9 744 456 26.995 817 174.12 120 579.9 702 450 27.055 767 217.52 110 579 642 450 30.544 702 120.12 100 495 600 324 26.256 638 118.72 90 420.6 564 282 28.611 578 84.42 80 417.3 480 258 29.395 521 52.02 70 337.2 384 234 31.648 459 74.62 60 298.2 336 222 35.746 382 42.72 50 263.7 276 246 41.383 290 37.7Table 4.24: Show the 
omparison between a tabu sear
h algorithm persented in [13℄ and thesimulated annealing algorithm persented in this thesis.
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M 10 20 40 50 70 80 100 130 160Best 45 49 102 128 172 194 241 258 258
a = 1 45 49 98.90 117.7 155.2 177.9 222.3 245.05 258
a = 2 45 49 98 117.8 156.7 171.7 212.5 246.70 249.4
a = 3 45 49 92.20 108 151.5 165.6 201.9 222.10 224.4
a = 4 45 49 82.85 103.5 137.2 154.3 194.5 214.80 215.4
a = 5 45 49 82.40 101.9 125.3 155.5 182.6 191.80 192.6
a = 10 45 45 52 64.1 80.7 84.9 86.3 86.80 83.8Table 4.25: Compares the average 
al
ulated obje
tive values, limited by a radius a and 
om-pared to the best known obje
tive value. All this is then done for multible value of M .



Chapter 5Con
lusionsThe simulated annealing algorithm has been put through a number of tests. The best known
ooling s
hedule, T0 = 21, r = 1− 10−6 and F = 10−6; was 
al
ulated in se
tion 4.2.The best known probability matrix was 
al
ulated in 4.3 and then 
ompared to a number ofother probability matri
es (see se
tions 4.5 and 4.6). This best probability matrix was:
P2 =





















50 30 0 0 20 0
0 10 10 0 30 50
60 30 0 0 10 0
0 10 10 60 20 0
0 100 0 0 0 0
0 0 0 70 0 30
0 0 70 30 0 0



















The best node insertion method, of those proposed, was random insertion. This was shown inse
tion 4.4.In 
omparison to a program written in GAMS the simulated annealing algorithm proovedsuperior, see se
tion 4.7. The algorithm returned obje
tives between the upper bound, 
al
u-lated by GAMS, and the obje
tive value suggested by GAMS, used as a lower bound. Thegap between the upper and lower bound proposed by GAMS was always large and thereforequality of solutions 
ould not be shown. The simulated annealing algortihm was also mu
hfaster than the GAMS program.The simulated annealing algorithm was then 
ompared to a tabu sear
h algorithm used forTOP, see se
tion 4.8. In most 
ases the tabu sear
h algorithm outperformed the simulatedannealing algorithm by returning better obje
tive values. There were though a few 
ases theresimulated annealing found better sobje
tives. For small data sets the tabu sear
h algorithmwas also faster but for larger data sets simulated annealing had shorter run times. In all 
asessimulated annealing returned obje
tives 
lose to the best known obje
tive values.A 
onstraint ensuring that a bus must travel for a 
ertain amount of time was implemented.This 
onstraint worked a returned routes that did not violate the 
onstraint.97



98 CHAPTER 5. CONCLUSIONSThe simulated annealing algorithm designed to solve the bus route problem has been 
on-stru
ted. In has a good 
ooling s
hedule and a good probability matrix. Furthermore a 
on-straint for
ing a 
ertain time to pass between stops is present if needed. The algorithm returnsgood results but not always the best obje
tive values when 
ompared to other algorithms.5.1 Further Work5.1.1 Real World Appli
ationDue to time 
onstri
tions and la
k of easily a

essible data the proje
t was not su

essful inproviding a good bus routes for ALCAN I
eland. In the future a travel time matrix, in
ludingall possible pi
k up point will have to be 
onstru
ted. This matrix is estimated in size atleast as 200x200 and 
ould possibly be larger. This matrix would be 
onstru
ted using travelplans of lo
al buses, an algorithm 
onstru
ted for measurments of travel time inside Reykjavíkand real world trials. After the travel time matrix has been 
onstru
ted, pro�ts have to beassigned to ea
h possible pi
k up point. These pro�ts 
an be in�uen
ed by fa
tors determinedby ALCAN, for ex
ample the number of employees living 
lose by or a

ess to the lo
al bussystem. Finally the ve
tor determing in the time penalty for stopping at a 
ertain node willhave to be 
onstru
ted. This fa
tor is easily estimated by assigning ea
h node, ex
ept thesour
e an sink, the same penalty. If 
onsidered ne
essary a stopping penalty dependant on thenumber of people pi
ked up 
an be implemented.5.1.2 Algorithm ImprovementAs has been dis
ussed in the report there are many things that may be improved and in-spe
ted. The upper bound using time restri
tions always assumes that one bus drives to allthe nodes, in many 
ases this is not possible. An improvement might add a nearest neighbouralgorithm to determine some sort of route lengths, or travel times. This 
ould then be usedto estimate how many buses are needed to visit the nodes sele
ted in the upper bound.Also in Java the inheritan
e of variables is a bothersome. This led to the removal of the ve
tor
y. By doing this a double for-loop in Unvisitedpoints.java was repla
ed with a triple for-loop.In future versions of the algorithm inserting y into the 
ode 
ould redu
e the run time of theprogram, although this 
ould be 
ompli
ated as it 
hanges mu
h of the algorithm.In this report the initial guess introdu
ed into the simulated annealing algorithm was theempty set, or a previously returned solution from the algorithm. There are other methodsavailable in 
hoosing good initial guess, for example adaptive memory pro
edure dis
ussedin [13℄. These methods 
ould in most 
ases de
rease run time dramati
ally. Although insome 
ases, when the best obje
tive is an empty solution, these initial guesses result in worsesolutions. This 
an happen in some theorati
al 
ases but is unlikly to matter in real worldappli
ation. This 
ould be 
ountered by implementing a new move that would remove a singlenode, without adding a new.The neighbourhood, moves, 
ould also be improved. Linking InsertMove11.java, BusMove.javaand InsertMove13.java would be useful. In that 
ase InsertMove13.java and BusMove.java woulduse InsertMove11.java to add points to routes. Other methods su
h as evolutionary 
luster
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h dis
ussed in [4℄. Methods su
h as that would although lead to longer run times, sim-pler methods need fewer 
al
ulations.BusMove.java 
ould be improved be removing a node if the new route is too long, this is doneuntil the travel time is less than M . This would also lead to more 
al
ulations. As proposedin [3℄ one 
ould also in
lude a fun
tion that would try to joint the two routes with the lowestpro�t or travel time.5.2 A Learning Experian
eDoing su
h a large proje
t is a great learning experien
e that 
an bene�t one in future work.A mu
h better understanding of basi
 methods su
h as simulated annealing, and its 
oolings
hedule; 
omputational experiments and report writing. Also understanding of 
ompli
atedoperations resear
h methods su
h as PCTSP, VRP, OVRP and TOP was attained. New in-sights into organizational skills, 
ondu
ting produ
tive meetings, 
ommuni
ating with personsabroad, 
riti
izing on
e own work and navigating through time 
onstri
tions was gained.Einar Leif Nielsen
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104 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU50a 3 10 16 16 16 2265.53 20 25.1 31 21 2132.43 40 108.4 112 102 4364.73 50 136.1 141 130 6033.63 70 172.6 189 149 8300.93 80 202.9 220 184 8231.33 100 240.8 252 220 8065.73 130 257.5 258 253 7869.13 160 258 258 258 7900.550b 3 10 12.1 17 9 2054.23 20 24.6 27 24 2100.63 40 73.6 79 69 3666.93 50 106.3 115 96 6327.43 70 171.2 181 141 8383.73 80 193.8 209 160 8285.83 100 239 252 228 8135.53 130 257.6 258 256 7943.53 160 258 258 258 7955.550
 3 10 4 4 4 2361.13 20 11.9 16 7 2381.83 40 77 84 64 38143 50 104 113 97 6489.93 70 177.9 204 149 8638.23 80 210.5 220 199 85613 100 239.4 252 233 8286.53 130 256.8 258 255 83983 160 258 258 258 842250d 3 10 5 5 5 2132.93 20 25 25 25 2345.43 40 73.2 79 68 3721.23 50 102.6 107 93 6015.93 70 163 180 149 84773 80 189.8 212 173 84393 100 229.5 248 207 8224.63 130 256.1 258 241 8098.33 160 258 258 258 8061.950e 3 10 9.1 11 6 2164.33 20 31.9 33 28 2396.73 40 80.6 88 69 4538.23 50 98.6 108 80 65833 70 175.1 191 149 8544.83 80 203.1 214 195 84093 100 240 252 216 8294.53 130 257.6 258 254 8147.73 160 258 258 258 8118Table A.1: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



105Data set |K| M Average Max Min Average CPU50a 4 10 16 16 16 2302.54 20 24.9 31 21 2182.14 40 121.7 130 106 5118.74 50 155.4 164 145 7269.84 70 207 221 194 103374 80 237.4 249 214 101504 100 256.6 258 251 9999.44 130 258 258 258 9929.94 160 258 258 258 9940.450b 4 10 13.2 17 9 2170.94 20 23.7 27 19 2339.84 40 82.8 90 77 4246.64 50 124.8 133 114 7683.74 70 204.7 224 191 104594 80 236.6 252 222 103494 100 257.5 258 255 101864 130 258 258 258 100844 160 258 258 258 1013050
 4 10 4 4 4 2374.94 20 11.7 13 7 24924 40 89.3 98 76 4237.44 50 136.6 147 126 7782.54 70 212.3 228 183 106164 80 235.3 252 228 107304 100 255.2 258 252 103834 130 258 258 258 103774 160 258 258 258 1029350d 4 10 5 5 5 2181.14 20 21.5 25 15 2247.94 40 84.2 88 80 4228.44 50 117.8 123 110 7117.54 70 191.9 203 177 104184 80 229.8 244 203 103384 100 254.9 258 236 101444 130 258 258 258 100614 160 258 258 258 1161850e 4 10 9 11 6 2233.34 20 31.2 33 28 2484.74 40 93.3 98 87 5178.24 50 128 138 113 7865.44 70 210.9 221 202 105634 80 235.2 246 227 103494 100 258 258 258 101514 130 258 258 258 101164 160 258 258 258 10156Table A.2: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



106 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU50a 5 10 16 16 16 2362.85 20 27.6 31 21 2324.85 40 129.8 135 124 5790.25 50 170 177 158 84495 70 229 239 213 120685 80 252.8 257 241 121025 100 258 258 258 118185 130 258 258 258 118265 160 258 258 258 1185150b 5 10 14.1 17 9 2294.55 20 23.7 27 19 2360.65 40 89.9 92 88 4677.85 50 146 157 134 8964.35 70 238.2 249 225 124735 80 255.2 258 251 122925 100 258 258 258 121245 130 258 258 258 120715 160 258 258 258 1207750
 5 10 4 4 4 2297.15 20 11.2 16 7 2168.85 40 99.3 103 89 4575.15 50 148.5 158 132 8635.35 70 233.1 247 227 123075 80 249.4 255 242 122255 100 257.7 258 255 121465 130 258 258 258 121445 160 258 258 258 1203750d 5 10 5 5 5 2247.35 20 21.6 25 20 2287.35 40 91.3 93 90 4824.45 50 133.1 140 113 8480.95 70 226.4 235 215 124575 80 245.6 255 234 123925 100 258 258 258 122405 130 258 258 258 121785 160 258 258 258 1218950e 5 10 8 11 6 22415 20 29.9 33 26 2532.95 40 100.7 102 97 5875.85 50 142.4 154 133 9308.65 70 230.2 238 222 123395 80 252.6 258 234 122605 100 258 258 258 121465 130 258 258 258 121395 160 258 258 258 12070Table A.3: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



107Data set |K| M Average Max Min Average CPU100a 3 10 11 11 11 2398.93 20 35.5 38 34 3003.33 40 89.6 102 66 9508.33 50 116.8 126 90 190743 70 152.6 174 133 282353 80 181.6 195 165 277643 100 230.8 266 210 265203 130 266.4 304 218 257253 160 335.5 379 301 25165100b 3 10 17.5 23 13 3381.53 20 43.1 47 40 4202.53 40 97.7 106 86 72833 50 113.1 130 98 125933 70 156.1 171 140 174133 80 183.9 197 168 182243 100 221.9 245 200 169833 130 278.5 325 235 165223 160 327.2 376 284 15356100
 3 10 28 30 20 4146.93 20 53.3 54 47 4493.63 40 98.8 104 93 7775.13 50 128.5 143 115 129663 70 178 201 143 175803 80 205.4 233 173 166593 100 242.5 282 210 166183 130 295.5 340 248 151923 160 352.9 392 316 15150100d 3 10 20.3 22 12 3925.13 20 43.5 45 40 4427.83 40 83 91 68 6736.53 50 96.7 111 83 124873 70 145.6 163 115 173243 80 172.6 182 142 179783 100 215.9 232 198 165673 130 265.8 306 228 157953 160 314.3 335 255 15609100e 3 10 8 8 8 4633.43 20 37.7 38 35 4814.93 40 96.5 109 86 9371.83 50 123.3 141 105 127093 70 160.7 185 107 187823 80 195.1 215 175 188143 100 232.4 258 207 172163 130 288.6 315 242 160743 160 354.8 377 336 16341Table A.4: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



108 APPENDIX A. RESULTSData set |K| M Average Max Min Average CPU100a 4 10 11 11 11 2404.54 20 42.7 44 38 3196.84 40 115.2 126 102 116314 50 155 170 140 236274 70 206.9 227 181 356114 80 224.8 246 191 346324 100 277.3 316 235 335604 130 362.6 380 314 319084 160 411.7 452 370 31406100b 4 10 16.8 23 13 3518.74 20 50.6 54 45 4461.54 40 118 131 107 8125.34 50 142 159 125 148344 70 206.6 223 168 206744 80 209.8 243 182 209794 100 273.3 300 234 202224 130 345.9 373 301 185154 160 404.1 433 383 17062100
 4 10 25.8 30 20 3683.44 20 61.5 63 54 4353.64 40 118.1 134 111 8298.94 50 154.2 174 132 149584 70 232.5 256 213 212814 80 261.1 284 221 191164 100 296.1 334 246 187894 130 378.8 435 333 177204 160 436.8 455 402 16923100d 4 10 16.9 21 12 3631.54 20 51.6 52 51 4367.44 40 99.5 115 89 75174 50 129.2 136 111 147424 70 186.7 203 162 208724 80 215.1 249 188 214404 100 281.5 307 249 193574 130 352.3 378 325 182774 160 413.9 448 372 17440100e 4 10 8 8 8 4694.24 20 44.4 46 41 56694 40 120.4 130 112 9416.64 50 154.8 176 107 154864 70 218.9 245 198 219224 80 250.8 271 230 224764 100 282.8 307 254 197844 130 366.1 402 342 199784 160 415.7 439 395 17509Table A.5: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



109Data set |K| M Average Max Min Average CPU100a 5 10 11 11 11 4114.65 20 45.2 46 44 4704.75 40 139.9 151 125 100745 50 180.2 204 162 175285 70 237.7 259 210 268685 80 273.6 301 255 244305 100 333 366 299 229195 130 429.4 446 406 209145 160 470.7 502 416 20513100b 5 10 17.3 23 13 3973.55 20 56.5 59 52 4989.35 40 141.7 152 119 9463.75 50 164.8 185 143 176035 70 249.5 276 226 249865 80 276.6 301 255 257925 100 335.7 358 298 224615 130 408.3 431 378 214815 160 465.7 494 433 20413100
 5 10 24.6 30 20 3588.45 20 65.4 71 63 4402.75 40 131.6 152 109 8891.55 50 183.2 197 173 174265 70 265.9 283 242 253055 80 302.2 327 274 236385 100 362 404 321 224665 130 433.9 459 420 210355 160 488.3 504 459 19577100d 5 10 17 21 12 3532.45 20 53.7 55 52 4388.15 40 113.8 125 108 8386.25 50 150.1 169 134 181065 70 231.8 246 208 274035 80 265.3 288 239 248105 100 331.3 355 296 232085 130 422.7 451 395 209825 160 479.9 502 455 19146100e 5 10 8 8 8 48145 20 53 56 49 53145 40 140.3 148 127 101345 50 182.2 200 137 179485 70 245 273 211 272325 80 294.7 309 285 253935 100 342.8 372 321 243425 130 417.9 432 357 220185 160 476 502 457 22587Table A.6: Results using α = 1 and β = 0. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.



110 APPENDIX A. RESULTS
Data set |K| M Average Max Min Average CPU
3_50_a 3 5 59 60 50 4482.73 10 102.8 111 90 6377.93 15 168 171 141 85653 20 231.8 232 231 106233 25 286.9 301 222 116283 30 361 361 361 112683 35 394.4 411 371 109873 40 424.8 432 371 103253 50 430 432 412 10065
3_50_b 3 5 55 55 55 4833.63 10 117 120 100 6275.63 15 171 180 140 8560.73 20 249 250 240 109933 25 292.9 301 230 120223 30 356.9 361 330 115703 35 401.8 411 370 111253 40 428.9 432 401 103173 50 423 432 372 10403
3_50_c 3 5 55 55 55 4843.83 10 104.5 111 90 6605.63 15 179 181 171 8756.93 20 228.1 231 222 115173 25 299.2 300 292 120293 30 359 360 350 117603 35 402.9 411 370 117303 40 428 432 392 114123 50 429 432 402 10319Table A.7: Results using α = 1 and β = 15. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.
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Data set |K| M Average Max Min Average CPU
4_50_a 4 4 72.5 75 65 6816.44 8 129.6 131 120 9613.74 12 190.8 201 171 170744 16 272 281 211 149324 20 359.9 361 351 144404 24 423 432 352 135354 28 431.9 432 431 127804 30 430.9 432 421 124274 35 426 432 392 12669
4_50_b 4 4 71.5 75 60 7025.34 8 144 150 120 9696.44 12 206.9 211 191 163314 16 273.4 290 241 146734 20 364.1 370 331 140504 24 423.9 432 372 128644 28 423.7 432 400 130074 30 417.9 432 341 124354 35 430.9 432 421 12172
4_50_c 4 4 75 80 60 6975.34 8 156 160 140 9060.54 12 229.9 231 220 158124 16 286.4 292 261 140744 20 361.5 372 320 131124 24 423.9 432 401 125424 28 428 432 412 122644 30 428.9 432 412 123234 35 432 432 432 11720Table A.8: Results using α = 1 and β = 15. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.
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Data set |K| M Average Max Min Average CPU
4_100_a 4 10 183 190 170 116104 20 362 380 300 444464 25 462.6 471 430 697664 30 544.8 561 431 574754 35 628 661 600 530554 40 697.2 750 563 479694 45 742.3 814 582 447914 50 835.2 904 713 447774 60 875.3 905 814 41065
4_100_b 4 10 182 190 150 117574 20 377 380 360 396824 25 440 470 370 657344 30 566.6 571 551 588354 35 651.2 670 621 566394 40 684.5 751 540 473374 45 790.2 841 750 444034 50 842.5 904 795 420634 60 882.2 905 834 41686
4_100_c 4 10 190 190 190 117024 20 378 390 310 429014 25 463 470 450 691214 30 548 580 450 608384 35 644.3 661 580 531204 40 681.4 761 590 474794 45 793.6 841 721 462244 50 820.8 904 721 436294 60 883.2 905 853 41369Table A.9: Results using α = 1 and β = 15. Average obje
tive, best 
al
ulated obje
tive, worst
al
ulated obje
tive and average run times in mille se
onds are displayed.
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Data set |K| M Average Max Min Average CPU
3_100_a 3 10 118 121 111 6121.43 20 231.1 240 161 127293 30 358.1 370 281 230023 35 414.7 431 331 309983 40 492.1 500 480 347713 45 521.3 560 410 410773 50 587.4 620 520 437303 60 691.7 732 631 418733 75 805.6 863 713 38226
3_100_b 3 10 130 130 130 6071.33 20 246 250 220 120233 30 359 380 290 230783 35 410 430 340 289143 40 475 500 390 369203 45 540.2 560 411 377473 50 594 620 550 445923 60 681.8 741 622 402273 75 784.3 874 690 34663
3_100_c 3 10 112 120 100 5802.63 20 237 240 230 110833 30 328 350 270 227023 35 411 420 380 275483 40 456 480 340 353223 45 526.3 551 400 393223 50 563.5 601 440 389533 60 685.4 732 622 395093 75 811.2 881 753 34580Table A.10: Results using α = 1 and β = 15. Average obje
tive, best 
al
ulated obje
tive,worst 
al
ulated obje
tive and average run times in mille se
onds are displayed.
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Appendix BSolution Types
A few types of solutions are presented here and then analyzed with SWOT analysis. Thereinternal benefa
tors of the proje
t are: the student, ALCAN and the professors. The externalbenefa
tors are:The employees of ALCAN, Hópbílar (or other transport 
ompanies) and thegeneral publi
.Type 1: Use 
urrent pi
kup points along with new ones (prede�ned, su
h as lo
al bus stops).Estimate the importan
e of ea
h pi
kup point by the number of people living 
lose to it, theamount of parking and 
onne
tion to lo
al transit system. Buses from Hópbílar are used topi
k up employees. Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solu-tion that takes into a

ountemployee turnover. Worksall year round, 24 hours aday. This solution is not toosimple to be 
onsidered aexam proje
t.

Not ALCAN's desired solu-tion. In this solution newnodes without a prede�ned lo-
ation 
annot be used. Hardto estimate the general popu-lation of an area.External De
reases travel time. De
reases pro�t for Hópbílar.De
reases the 
urrent amountof servi
e provided by AL-CAN.Transportation in this solution is provided by Hópbílar.Type 2: Same as type 1 ex
ept importan
e of pi
kup points is de
ided by the number ofemployees that live 
lose to them. 115



116 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. Works all yearround, 24 hours a day. Notto simple to be 
onsideredan exam proje
t. Relativelysimple to program and therefore a good 
andidate for the�rst solution.
This is a spe
ial solution thatdoes not take into a

ount em-ployee turnover. In this so-lution new nodes without aprede�ned lo
ation 
annot beused. Not ALCAN's desiredsolution.External De
reases travel time. De
reases pro�t for Hópbílar.De
reases the 
urrent amountof servi
e provided by AL-CAN.

Transportation in this solution is provided by Hópbílar.Type 3 Same as type 2 ex
ept a soft wear, su
h as ShorTre
 from AGR hf., is used todetermine the bus routes. A new route 
an be 
al
ulated as often as ALCAN desires.
Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. Works all yearround, 24 hours a day. A gen-eral solution that takes intoa

ount employee turnover. This solution depends on a 3party program. This solutionis too simple to be 
onsideredan exam proje
t unless the 3party soft wear is programmedby the student. Not ALCAN'sdesired solution.External De
reases travel time. In-
reases the pro�t for theprovider of the new soft wear. De
reases pro�t for Hópbílar.De
reases the 
urrent amountof servi
e provided by AL-CAN.

Transportation in this solution is provided by Hópbílar.Type 4: Uses the lo
al transit system, buses, to pi
kup employees and return them.



117Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. This solutiongives good publi
ity for AL-CAN by in
reasing the use ofthe lo
al bus system. A gen-eral solution that takes intoa

ount employee turnover.Solves overtime problem.
This solution is too simple tobe 
onsidered an exam proje
t.Doesn't work all year round,24 hours a day. Not ALCAN'sdesired solution.External De
reases travel time. No em-ployee will have to walk furtherthan 600m. Possible for em-ployees to use outside of work-ing hours. In
reases use of thelo
al bus system.
Removes Hópbílar from thepi
ture. De
reases the 
urrentamount of servi
e provided byALCAN. Strætó will have toput up a new bus stop inStraumsvík.Transportation in this solution is provided by Strætó.Type 5 : Car pooling. Ea
h 
ar will be given a driving diary and re
eive a payment forgas used at the end of the month. It would be ne
essary to right a program that would put�ve optimal people together as a part of a 
ar pooling team.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. Might solve over-time problem. Not to simpleto be 
onsidered an examproje
t. This solution worksall year round, 24 hours a day.
A spe
ial solution that doesnot take into a

ount employeeturnover. Might be misused byemployees, who 
ould log morekilometers than they a
tuallydrove. Not ALCAN's desiredsolution.External De
reases travel time. No em-ployee will have to walk,they are pi
ked up at theredoorstep. Removes Hópbílar from thepi
ture. De
reases the 
urrentamount of servi
e provided byALCAN. Employees dependon one another to be at workon time. Not every one owns a
ar.Transportation in this solution is provided by Employees.Type 6 : Driving grant. Ea
h employee would re
eive an in
rease in pay to 
ompensatefor the la
k of buses. The employees would then drive themselves to work.



118 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A spe
ial solu-tion that takes into a

ountemployee turnover. Solvesovertime problem. This solu-tion works all year round, 24hours a day.
Too simple to be 
onsidered anexam proje
t. Not ALCAN'sdesired solution.

External De
reases travel time. In-
reases employee pay (whi
h isalways popular). Removes Hópbílar from thepi
ture. De
reases the 
urrentamount of servi
e provided byALCAN.Transportation in this solution is provided by Employees.Type 7 : Car pooling with taxis. A taxi would pi
kup employees and return them. Ea
htaxi would be �lled with passengers. A program would tell the taxi servi
e where and whento pi
k up an employee.
Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Possiblysolves overtime problem. Thissolution works all year round,24 hours a day. Not too sim-ple too be 
onsidered an examproje
t.

A spe
ial solution that doesnot take into a

ount employeeturnover. Cost of this solutionis unknown. Not ALCAN's de-sired solution.External De
reases travel time. Servi
eis in
reased as all employ-ees are pi
ked up on theredoorstep. Pro�t for taxi servi
eis in
reased. Removes Hópbílar from thepi
ture.
Transportation in this solution is provided by a taxi servi
e.Type 8 : Same as type 1 ex
ept the pi
kup points would be 
al
ulated so that therelo
ation was optimal and not from predetermined points.



119Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solutionthat takes into a

ount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Not too simple too be
onsidered an exam proje
t.ALCAN's desired solution.
Hard to estimate general pop-ulation of an area. Of all thesolutions likely to be the most
ompli
ated to formulate.

External De
reases travel time. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.Transportation in this solution is provided by a Hópbílar.B.0.1 Combined solutionsCombo 1 : Type 1 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 1 when type 4 is not available.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solutionthat takes into a

ount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Not too simple too be
onsidered an exam proje
t.Solves the overtime problemduring day/evening on nonholidays. Good publi
ityfor ALCAN as the publi
transport system gains moreusers.

Not ALCAN's desired solu-tion. In this solution newnodes without prede�ned lo
a-tions 
an not be de�ned. Hardto estimate general populationof an area.
External No employee will have towalk further than 600m dur-ing day/evening on non hol-idays. De
reases travel time.Employees 
an use the pub-li
 buses when they are not atwork. More users for the publi
transport system.

Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.Strætó will have to build a newbus stop in Straumsvík.
Transportation in this solution is provided by a Hópbílar and Strætó.



120 APPENDIX B. SOLUTION TYPESCombo 2 : Type 2 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 2 when type 4 is not available.
Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general andspe
ial solution that takes intoa

ount, during day/eveningon non holidays, employeeturnover. This solution worksall year round, 24 hours a day.Not too simple too be 
onsid-ered an exam proje
t. Partlysolves the overtime problem.Good publi
ity for ALCAN asthe publi
 transport systemgains more users.

A general and spe
ial solutionthat does not take into a
-
ount, during night or on hol-idays, employee turnover. NotALCAN's desired solution. Inthis solution new nodes with-out prede�ned lo
ations 
annot be de�ned.
External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.

Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 3 : Type 3 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 3 when type 4 is not available.



121Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general andspe
ial solution that takes intoa

ount employee turnover.This solution works all yearround, 24 hours a day. Partlysolves the overtime problem.Good publi
ity for ALCAN asthe publi
 transport systemgains more users.
Not ALCAN's desired solu-tion. This solution is too sim-ple to be 
onsidered an examproje
t unless the 3 party softwear is programmed by the au-thor of the proje
t.

External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.
Combo 4 : Type 5 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 5 when type 4 is not available.



122 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general andspe
ial solution that takes intoa

ount, during day/eveningon non holidays, employeeturnover. This solution worksall year round, 24 hours aday. Partly (even 
ompletely)solves the overtime problem.Good publi
ity for ALCAN asthe publi
 transport systemgains more users.
A general and spe
ial solu-tion that does not take intoa

ount, during night or onholidays, employee turnover.Not ALCAN's desired solu-tion. Might be misused by em-ployees, who 
ould log morekilometers than they a
tuallyhave driven.External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays.
Servi
e is de
reased. RemovesHópbílar from the pi
ture.Strætó will have to build a newbus stop in Straumsvík. Em-ployees depend on one anotherto be at work on time. Not ev-ery one owns a 
ar.

Transportation in this solution is provided by a Employees and Strætó.
Combo 5 : Type 6 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 6 when type 4 is not available.



123Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solutionthat takes into a

ount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Solves the overtimeproblem. Good publi
ityfor ALCAN as the publi
transport system gains moreusers.
Not ALCAN's desired solu-tion. This solution is too sim-ple to be 
onsidered an examproje
t.

External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. Employ-ees re
eive an in
rease in pay.No employee will have towalk further than 600m duringday/evening on non holidays.
Servi
e is de
reased. RemovesHópbílar from the pi
ture.Strætó will have to build a newbus stop in Straumsvík. Notevery one owns a 
ar.

Transportation in this solution is provided by Employees and Strætó.
Combo 6 : Type 7 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 7 when type 4 is not available.



124 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Ageneral solution,duringday/evening on non holi-days, that takes into a

ountemployee turnover. This solu-tion works all year round, 24hours a day. Solves the over-time problem. Good publi
ityfor ALCAN as the publi
transport system gains moreusers. Not too simple to be
onsidered an exam proje
t.
A spe
ial solution, at nightand on holidays, that doesnot take into a

ount employeeturnover. Not ALCAN's de-sired solution. Cost is an un-known fa
tor.

External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the publi
transport system. Servi
e is in-
reased during night and holi-days. No employee will have towalk further than 600m duringday/evening on non holidays.In
reased revenue for the taxiservi
e.
Servi
e is de
reased duringday/evening on non holidays.Removes Hópbílar from thepi
ture. Strætó will have tobuild a new bus stop inStraumsvík.

Transportation in this solution is provided by a taxi servi
e and Strætó.
Combo 7 : Type 8 and type 4.Des
ription : Use solution type 4 when it is possible, during daytime on non holidays, andsolution type 8 when type 4 is not available.



125Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. A general solutionthat takes into a

ount em-ployee turnover. This solutionworks all year round, 24 hoursa day. Partly solves the over-time problem. Good publi
ityfor ALCAN as the publi
transport system gains moreusers. Not too simple to be
onsidered an exam proje
t.
Hard to estimate general pop-ulation of an area. Not AL-CAN's desired solution. Likelya 
ompli
ated solution.

External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. No em-ployee will have to walk furtherthan 600m during day/eveningon non holidays .
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.Strætó will have to build a newbus stop in Straumsvík.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 8 : Type 5 and type 6.Des
ription : Type 5 but instead of using the driving diaries, employees would re
eive anin
rease in pay, type 6, for driving there fellow 
oworkers to work.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases 
ost. De
reasestravel time. This solutionworks all year round, 24hours a day. Could solve theovertime problem. Not toosimple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. A spe
ial solution thatdoes not take into a

ount em-ployee turnover.External De
reases travel time. Employ-ees are pi
ked up at theredoorstep. Employees re
eivepay in
rease. Servi
e provided by ALCANis de
reased. Hópbílar are re-moved from the pi
ture. Em-ployees depend on one anotherto be at work on time. Not ev-ery one owns a 
ar.Transportation in this solution is provided by a Hópbílar and Strætó.Combo 9 : Type 7 and type 6.Des
ription : Solution type 7 would be used but instead of ALCAN paying the taxi servi
e itwould in
rease workers pay. Employees would then use that pay in
rease to pay for the taxies.



126 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. This so-lution works all year round,24 hours a day. Could solvethe overtime problem. Not toosimple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. Cost is unknown, likelyhigh. A spe
ial solution thatdoes not take into a

ount em-ployee turnover.External De
reases travel time. Employ-ees are pi
ked up at theredoorstep. Employees re
eivepay in
rease. Servi
e is in-
reased. In
reased revenue forthe taxi servi
e.
Hópbílar are removed from thepi
ture.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 10 : Extreme solution using type 1 and type 4.Des
ription : Solve solution type 1 with as few routes and pi
kup points as possible. Em-ployees then use lo
al buses to get to those points, type 4.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. A gen-eral solution that takes intoa

ount employee turnover.Good publi
ity for ALCAN asthe publi
 transport systemgains more users. Not too sim-ple to be 
onsidered an examproje
t.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be de
reased. Inthis solution new nodes with-out prede�ned lo
ations 
annot be de�ned. Hard to esti-mate general population of anarea.External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the publi
transport system. No employeewill have to walk further than600m.
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 11 : Extreme solution using type 2 and type 4.Des
ription : Solve solution type 2 with as few routes and pi
kup points as possible. Em-ployees then use lo
al buses to get to those points, type 4.



127Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. A gen-eral and spe
ial solution thattakes into a

ount employeeturnover. Good publi
ity forALCAN as the publi
 trans-port system gains more users.Not too simple to be 
onsid-ered an exam proje
t.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be de
reased. Inthis solution new nodes with-out prede�ned lo
ations 
annot be de�ned.External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the publi
transport system. No employeewill have to walk further than600m.
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 12 : Extreme solution using type 3 and type 4.Des
ription : Solve solution type 3 with as few routes and pi
kup points as possible. Em-ployees then use lo
al buses to get to those points, type 4.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. A gen-eral and spe
ial solution thattakes into a

ount employeeturnover. Good publi
ity forALCAN as the publi
 trans-port system gains more users.
Depend on a third party pro-gram. Too simple to be 
on-sidered an exam proje
t, un-less the third party programis program by the author ofthe proje
t. Not ALCAN's de-sired solution. Does not workall year round, 24 hours a day.Cost might not be de
reased.External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the pub-li
 transport system. No em-ployee will have to walk furtherthan 600m. In
reased revenuefor the taxi servi
e.
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 13 : Extreme solution using type 8 and type 4.Des
ription : Solve solution type 8 with as few routes and pi
kup points as possible. Em-ployees then use lo
al buses to get to those points, type 4.



128 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. A gen-eral solution that takes intoa

ount employee turnover.Good publi
ity for ALCAN asthe publi
 transport systemgains more users. Not too sim-ple to be 
onsidered an examproje
t.
Not ALCAN's desired solu-tion. Does not work all yearround, 24 hours a day. Costmight not be de
reased. Likelya 
ompli
ated solution.External De
reases travel time. Em-ployees 
an use the publi
buses when they are not atwork. More users for the publi
transport system. No employeewill have to walk further than600m.
Servi
e is de
reased. Hóp-bílar's pro�t is de
reased.

Transportation in this solution is provided by a Hópbílar and Strætó.Combo 14 : Extreme solution using type 1 and type 5.Des
ription : Solve solution type 1 with as few routes and pi
kup points as possible. Em-ployees then use 
ar pooling to get to those points, type 5.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.Not too simple to be 
onsid-ered an exam proje
t. A general and spe
ial solutionthat does not takes into a
-
ount employee turnover. NotALCAN's desired solution. Inthis solution new nodes with-out prede�ned lo
ations 
annot be de�ned. Might be mis-used by employees who 
ouldlog more kilometers then theya
tually have driven. Hard toestimate general population ofan area. Cost might not be de-
reased.External De
reases travel time. Em-ployee pi
ked up at doorstep. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Em-ployees depend on one anotherto 
at
h the bus. Not every oneowns a 
ar.Transportation in this solution is provided by Hópbílar and employees.



129Combo 15 : Extreme solution using type 2 and type 5.Des
ription : Solve solution type 2 with as few routes and pi
kup points as possible. Em-ployees then use 
ar pooling to get to those points, type 5.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.Not too simple to be 
onsid-ered an exam proje
t. A spe
ial that does nottakes into a

ount employeeturnover. Not ALCAN'sdesired solution. Might bemisused by employees who
ould log more kilometers thenthey a
tually have driven. Inthis solution new nodes with-out prede�ned lo
ations 
annot be de�ned. Cost might notbe de
reased.External De
reases travel time. Em-ployee pi
ked up at doorstep. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Em-ployees depend on one anotherto 
at
h the bus. Not every oneowns a 
ar.Transportation in this solution is provided by Hópbílar and employees.Combo 16 : Extreme solution using type 3 and type 5.Des
ription : Solve solution type 3 with as few routes and pi
kup points as possible. Em-ployees then use 
ar pooling to get to those points, type 5.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours aday. A spe
ial solution thattakes into a

ount employeeturnover. This solution is nottoo simple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. Depends on a third partyprogram. Might be misused byemployees who 
ould log morekilometers then they a
tuallyhave driven. Cost might not bede
reased.External De
reases travel time. Em-ployee pi
ked up at doorstep.In
reases pro�t for the softwear provider. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Em-ployees depend on one anotherto 
at
h the bus. Not every oneowns a 
ar.Transportation in this solution is provided by employees and Hópbílar.Combo 17 : Extreme solution using type 8 and type 5.Des
ription : Solve solution type 8 with as few routes and pi
kup points as possible. Em-ployees then use 
ar pooling to get to those points, type 5.



130 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be 
onsidered an examproje
t. Not ALCAN's desired solu-tion. A general and spe
ial so-lution that does not take intoa

ount employee turnover.Might be misused by employ-ees who 
ould log more kilo-meters then they a
tually havedriven. Cost might not be de-
reased.External De
reases travel time. Em-ployee pi
ked up at doorstep. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Em-ployees depend on one anotherto 
at
h the bus. Not every oneowns a 
ar. Likely a 
ompli-
ated solution.Transportation in this solution is provided by employees and Hópbílar.Combo 18 : Extreme solution using type 1 and type 6.Des
ription : Solve solution type 1 with as few routes and pi
kup points as possible. Em-ployees then re
eive an in
rease in monthly pay to be used to get to said points, type 6.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours aday. A general solution thattakes into a

ount employeeturnover. This solution is nottoo simple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. New nodes without pre-de�ned lo
ations 
annot beused. Hard to estimate a gen-eral population of an area.Cost might not be de
reased.External De
reases travel time. In-
reases pay for employees. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Notevery one owns a 
ar.Transportation in this solution is provided by employees and Hópbílar.Combo 19 : Extreme solution using type 2 and type 6.Des
ription : Solve solution type 2 with as few routes and pi
kup points as possible. Em-ployees then re
eive an in
rease in monthly pay to be used to get to said points, type 6.



131Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.A spe
ial solution that partlytakes into a

ount employeeturnover. This solution is nottoo simple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. New nodes without pre-de�ned lo
ations 
annot beused. Cost might not be de-
reased.External De
reases travel time. In-
reases pay for employees. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Notevery one owns a 
ar.Transportation in this solution is provided by employees and Hópbílar.Combo 20 : Extrema solution using type 3 and type 6.Des
ription : Solve solution type 3 with as few routes and pi
kup points as possible. Em-ployees then re
eive an in
rease in monthly pay to be used to get to said points, type 6.

Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours aday. A spe
ial solution thattakes into a

ount employeeturnover. Too simple to be 
onsidered anexam proje
t, unless the thirdparty program is program bythe author of the proje
t. NotALCAN's desired solution. De-pends on a third party pro-gram. Cost might not be de-
reased.External De
reases travel time. In-
reases pay. In
reases pro�t forsoftware provider. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Notevery one owns a 
ar.Transportation in this solution is provided by employees and Hópbílar.Combo 21 : Extreme solution using type 8 and type 6.Des
ription : Solve solution type 8 with as few routes and pi
kup points as possible. Em-ployees then re
eive an in
rease in monthly pay to be used to get to said points, type 6.



132 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours aday. A general solution thattakes into a

ount employeeturnover. This solution is nottoo simple to be 
onsidered anexam proje
t.
Not ALCAN's desired solu-tion. Hard to estimate a gen-eral population of an area.Cost might not be de
reased.Likely a 
ompli
ated solution.External De
reases travel time. In-
reases pay for employees. Servi
e is de
reased. Hóp-bílar's pro�t is de
reased. Notevery one owns a 
ar.Transportation in this solution is provided by employees and Hópbílar.Combo 22 : Extreme solution using type 1 and type 7.Des
ription : Solve solution type 1 with as few routes and pi
kup points as possible. Em-ployees then use a taxi servi
e to said points, type 7.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be 
onsidered an examproje
t. A general and spe
ial solutionthat does not take into a

ountemployee turnover. Not AL-CAN's desired solution. Hardto estimate a general popula-tion of an area. Cost might notbe de
reased. New nodes with-out a prede�ned lo
ation 
an-not be used.External De
reases travel time. Em-ployee pi
ked up on doorstep.In
reases revenue for taxi ser-vi
e. Servi
e is in
reased. Hópbílar's pro�t is de
reased.

Transportation in this solution is provided by taxi servi
e and Hópbílar.Combo 23 : Extreme solution using type 2 and type 7.Des
ription : Solve solution type 2 with as few routes and pi
kup points as possible. Em-ployees then use a taxi servi
e to said points, type 7.



133Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.This solution is not too sim-ple to be 
onsidered an examproje
t. A spe
ial solution that doesnot take into a

ount employeeturnover. Not ALCAN's de-sired solution. Cost might notbe de
reased. New nodes with-out a prede�ned lo
ation 
an-not be used.External De
reases travel time. Em-ployee pi
ked up on doorstep.In
reases revenue for taxi ser-vi
e. Servi
e is in
reased. Hópbílar's pro�t is de
reased.
Transportation in this solution is provided by taxi servi
e and Hópbílar.Combo 24 : Extreme solution using type 3 and type 7.Des
ription : Solve solution type 3 with as few routes and pi
kup points as possible. Em-ployees then use a taxi servi
e to said points, type 7.Helpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round, 24 hours a day.A spe
ial solution takes intoa

ount employee turnover.This solution is not too sim-ple to be 
onsidered an examproje
t.

Depends on a third party pro-gram. Not ALCAN's desiredsolution. Hard to estimate ageneral population of an area.Cost might not be de
reased.New nodes without a prede-�ned lo
ation 
annot be used.External De
reases travel time. Em-ployee pi
ked up on doorstep.In
reases revenue for taxi ser-vi
e. Servi
e is in
reased. In-
reased pro�t for the providerof the new soft wear.
Hópbílar's pro�t is de
reased.

Transportation in this solution is provided by taxi servi
e and Hópbílar.Combo 25 : Extreme solution using type 8 and type 7.Des
ription : Solve solution type 8 with as few routes and pi
kup points as possible. Em-ployees then use a taxi servi
e to said points, type 7.



134 APPENDIX B. SOLUTION TYPESHelpful to a
hieving the ob-je
tive Harmful to a
hieving the ob-je
tiveInternal De
reases travel time. Worksall year round. 24 hours a day.This solution is not too sim-ple to be 
onsidered an examproje
t. A general and spe
ial solutionthat does not take into a

ountemployee turnover. Not AL-CAN's desired solution. Hardto estimate a general popula-tion of an area. Cost might notbe de
reased.External De
reases travel time. Em-ployee pi
ked up on doorstep.In
reases revenue for taxi ser-vi
e. Servi
e is in
reased. Hópbílar's pro�t is de
reased.
Transportation in this solution is provided by taxi servi
e and Hópbílar.



Appendix CAlgorithmC.1 Number of Possible SolutionsConsider a set of nodes V , the number of nodes in V is n, |V | = n. The sour
e node is j ∈ V .It is known for TSP that the number of possible solutions is:
(n− 1)! (C.1.1)If we relax relax 
onstraint saying all points must be visited and let i denote the number ofnodes visited in a 
ertain solution. All nodes are used ex
ept the sour
e, sin
e sour
e to sour
emoves are not allowed, although sour
e to sink route is allowed. Now the possible values for iare i ∈ {1, 2, ..., n − 1} = S.Next a number of sets, Ii, are de�ned where Ii ⊆ V,∀i ∈ S. So ea
h set Ii is a redu
edversion of N that in
ludes the sour
e and i nodes we i.e. have |Ii| = i+1. Next C.1.1 is appliedto ea
h Ii and all possibilities added up:

n−1
∑

i=1

(|Ii| − 1)! =

n−1
∑

i=1

i! (C.1.2)This sums up the possibilities for |S| TSP. Ea
h of the |S| TSP only uses i of the n − 1available points.For ea
h TSP, other than i = n − 1,there are more than one posssibility of
hoosing the i nodes used in the TSP. The possible 
ombination for 
hoi
e of i
an be expressedwith the binomial 
ee�
ient.
C(i) =

(

n− 1

i

)

=
(n − 1)!

i!((n − 1− i))!
(C.1.3)We now multiply C.1.2 and C.1.3. This gives the number of possible solutions for a TSPwhere you have n nodes to 
hoose from but are not restri
ted to use all, but have to use thesour
e.

n−1
∑

i=1

C(i)(|Ii| − 1)! =

n−1
∑

i=1

(n− 1)!

(n− 1− i)!
(C.1.4)If the distan
e matrix is symmetri
 then the number of possible solutions is135
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(n− 1) +

1

2

n−1
∑

i=2

(n− 1)!

(n− 1− i)!
(C.1.5)Be
ause when dealing with 2 points the solution is the same even if the distan
e matrix isasymmetri
. Therefore the solutions dealing with two points are symmetri
 and therefore donot need to be divided by 2. Now the equation C.1.7 
an also be written as

|S|+ 1

2

n−1
∑

i=1

|S|!
(|S| − i)!

(C.1.6)Where S = {1, 2, ..., n − 1} and |S| = n− 1. This applies for all problems where n > 1.Now let us assume that there are |K| routes and that ea
h route, k, in
ludes all nodes in theset Vk and the sour
e node, j, is in that set, j ∈ Vk. Now we know that k ∈ K = {1, 2, ...,N},let us now de�ne V0 = j. Next we de�ne Jk as the set of all nodes not visited by routes in
k∗, where k∗ = {1, 2, ..., k − 1}, and the sour
e node. So Jk = {V \ {V0 ∪ V1... ∪ Vk−1, j}. Itis known that the 
omplexity for ea
h route de
reases as a previous route has in
luded somenodes. Then the number of possibilities for a multiple route problem be
omes:

N−1
∑

k=0

∑

i∈Jk

(n− 1)!

(n − 1− i)!
(C.1.7)C.2 AlgorithmC.2.1 Run.javaimport java.util.Ve
tor;import java.util.Random;import java.io.*;import java.util.Date;import java.text.De
imalFormat;publi
 
lass Sudo10{//int K,V;int V1;int[℄[℄ y;int[℄[℄ Route;int[℄ NN;int OPT;//File Pro = new File("profit_3_50_a.txt");//File Tim = new File("dist_3_50_a.txt");//File Sto = new File("Stop_47.txt");int[℄ Profit; //profit matrixdouble[℄[℄ time;



C.2. ALGORITHM 137int[℄ Stop;long date1;long date2;long date;//String file = "3_50_a_p3test.txt" ;//String File = "route3_50_a_p3test.txt" ;String file1 = "test50a_10_p.txt";String file2 = "test50a_20_p.txt";String file3 = "test50a_40_p.txt";String file4 = "test50a_50_p.txt";String file5 = "test50a_70_p.txt";String file6 = "test50a_80_p.txt";String file7 = "test50a_100_p.txt";String file8 = "test50a_130_p.txt";String file9 = "test50a_160_p.txt";double Time;publi
 Sudo10(int K, int V, File Pro, File Tim, String File, String file, int[℄[℄ p) throws IOEx
eption{//date1= System.
urrentTimeMillis();//K=3;//V=47;Profit = new int[V℄;time = new double[V℄[V℄;Stop = new int[V℄;NN= new int[9℄;NN[0℄=10;NN[1℄=20;NN[2℄=40;NN[3℄=50;NN[4℄=70;NN[5℄=80;NN[6℄=100;NN[7℄=130;NN[8℄=160;FileWriter fw = new FileWriter(file);BufferedWriter bw = new BufferedWriter(fw);PrintWriter outFile = new PrintWriter(bw, true);FileWriter fw2 = new FileWriter(File);BufferedWriter bw2 = new BufferedWriter(fw2);PrintWriter outFile2 = new PrintWriter(bw2, true);



138 APPENDIX C. ALGORITHMSimulatedAnnealing7 Sim[℄ = new SimulatedAnnealing7[10℄;GetDataFrom1D ProData = new GetDataFrom1D(Profit,Pro);Profit=ProData.P;GetDataFrom2D TimeData = new GetDataFrom2D(time, V, Tim);time=TimeData.P;//GetDataFrom1D StoData = new GetDataFrom1D(Stop,Sto);//Stop=StoData.P;for (int i=0; i<V; i++){if (i==0 || i==V-1){Stop[i℄=0;}else{Stop[i℄=1;}}for (int k=0; k<1;k++){for (int i=0;i<9;i++){De
rease DD= new De
rease(V, Profit, time, Stop, NN[i℄);V1=DD.v;double[℄[℄ TT= new double[V1℄[V1℄;TT=DD.T;int[℄ profit=new int[V1℄;profit=DD.P;int[℄ stop =new int[V1℄;stop=DD.S;InitialGuess init = new InitialGuess (K, V1);Route=init.Route; //
onstru
ts the Route matrix 2Dfor(int j=0;j<9;j++){date1= System.
urrentTimeMillis();Sim[j℄ = new SimulatedAnnealing7(Route,K, V1, profit, TT, stop, file1, NN[i℄, p);OPT=Sim[j℄.S;Route=Sim[j℄.Route;



C.2. ALGORITHM 139date2= System.
urrentTimeMillis();date=date2-date1;Time=Sim[j℄.TotalT;outFile.println(date+" "+NN[i℄+" "+OPT+" "+Time);}}}}}C.2.2 SimulatedAnnealing.javaimport java.util.Ve
tor;import java.util.Random;import java.lang.Obje
t;import java.io.*;publi
 
lass SimulatedAnnealing7{int[℄[℄ Route;int S; //Solutionint 
ount, MAX=50000; //Maximum number of iterations//int MaxTime=5; //maximum travel time in a single routeint MRT=0;int AS=0;int JCVD=0;int[℄ SS;int iter1=0;int iter2=0;//String file = "test_3_50_a_5_1.txt";double T=15; //temperaturedouble r=1-Math.pow(10,-13); //redu
tion fa
tordouble Frozen =2;double[℄ SumTime; //time traveled for bus kdouble Delta, Delta2;double prop;double Num1;double[℄ SumTemp;double TimeTemp;double Time;double Maximum;double TotalT;float RandN;



140 APPENDIX C. ALGORITHM//---------------------------------------int Snew; //temporary variablesint[℄[℄ RouteNew;
al
ulateOpt 
alOpt[℄ = new 
al
ulateOpt[2℄;
al
ulateTime 
alT[℄ = new 
al
ulateTime[2℄;moves2 move[℄ = new moves2[2℄;publi
 SimulatedAnnealing7(int[℄[℄ route, int K, int V, int[℄ p, double[℄[℄ time, int[℄ Stop, String file, int MaxTime, int[℄[℄ PROP){Random generator = new Random();Route=route;
ount=0;//--------------------------------------------------
alOpt[0℄ = new 
al
ulateOpt(Route, K,V, p);S=
alOpt[0℄.OPT;//--------------------------------------------------
alT[0℄= new 
al
ulateTime(Route,time,K,V, Stop);SumTime=
alT[0℄.SumT;
ount=1;try{//--------------------------------------------------FileWriter fw = new FileWriter(file);BufferedWriter bw = new BufferedWriter(fw);PrintWriter outFile = new PrintWriter(bw, true);while(
ount<MAX){move[1℄=new moves2(K,V,Route, SumTime, MaxTime, time, p, PROP);RouteNew=move[1℄.route;//--------------------------------------------------
alOpt[1℄ = new 
al
ulateOpt(RouteNew, K,V,p);Snew=
alOpt[1℄.OPT;//--------------------------------------------------



C.2. ALGORITHM 141Delta=Snew-S;
al
ulateTime 
alTemp = new 
al
ulateTime(RouteNew, time, K, V, Stop);SumTemp=
alTemp.SumT;Maximum =0;TimeTemp=0;Time=0;MRT=move[1℄.temp;outFile.println("Move: "+MRT);AS=move[1℄.temp2;outFile.println("Instan
e: "+AS);JCVD=move[1℄.temp3;outFile.println("UsedBuses: "+JCVD);SS=move[1℄.UsedBuses;for(int i=0; i<K; i++){if (Maximum<= SumTemp[i℄){Maximum=SumTemp[i℄;}TimeTemp=SumTemp[i℄+TimeTemp;Time=SumTime[i℄+ Time;}if (Maximum <= MaxTime){if (Delta>=0){if (Delta==0){if(TimeTemp<=Time || (Time==0 && TimeTemp!=0)){S=
alOpt[1℄.OPT;Route=move[1℄.route;}else{Delta2=TimeTemp-Time;Num1=-Delta/T;prop= Math.exp(Num1);RandN=generator.nextFloat();if(Delta2 <0 && prop<=RandN && Maximum<= MaxTime){S=
alOpt[1℄.OPT;Route=move[1℄.route;



142 APPENDIX C. ALGORITHM}}//---------------------------if (TimeTemp<Time || (Time==0 && TimeTemp!=0)){iter2=
ount; //finding the iteration when the optimal value is found}//---------------------------}else{iter1=
ount; //finding the iteration wit
h returns the optimal valueS=
alOpt[1℄.OPT;Route=move[1℄.route;}}else{Num1=-Delta/T;prop= Math.exp(Num1);RandN=generator.nextFloat();if(Delta <0 && prop<=RandN && Maximum<= MaxTime){S=
alOpt[1℄.OPT;Route=move[1℄.route;}}}if (T> Frozen){T=r*T; //Cooling S
hedule}else{T=0; //Now we implement a lo
al sear
h}
alT[1℄= new 
al
ulateTime(Route,time,K,V, Stop);SumTime=
alT[1℄.SumT;
ount=
ount+1;//----------------------------------------------------try



C.2. ALGORITHM 143{//outFile.println(S+" " + (
ount-1));//outFile.println("iteration:" + (
ount-1));//outFile.println("Opt: "+iter1+" Time: " +iter2);//for(int k=0; k<K; k++)//{//for(int i=0; i<V; i++)//{//if(i==0 || Route[k℄[i℄!=0)//outFile.print(Route[k℄[i℄ +" ");//}//outFile.println();//}TotalT=0;for(int k=0; k<K; k++){//outFile.print(SumTime[k℄+" ");TotalT=SumTime[k℄+TotalT;}//outFile.println();}
at
h (NumberFormatEx
eption ex
eption){System.out.println ("NumberFormatEx
eption" );}}}
at
h (IOEx
eption ex
eption){System.out.println("IOEx
eption ");}}}C.2.3 moves.javaimport java.util.Random;import java.io.*;publi
 
lass moves2{



144 APPENDIX C. ALGORITHMint OPT;int[℄ UsedBuses; //number of buses in routeint[℄ U; // number of unvisited pointsint[℄[℄ route;int[℄ Prop;int RandProp;int[℄[℄ Rnew;int Neighbor=6; //number of possible Swapsint temp=0;int temp2=0;int temp3=0;double SumTravelNew=0;double SumTravel=0;double[℄ Travel;double[℄ TravelNew;
al
ulateTime 
alT[℄ = new 
al
ulateTime[2℄;publi
 moves2 (int K, int V, int[℄[℄ Route, double[℄ SumT, int MaxT, double [℄[℄ time, int[℄ profit, int[℄[℄ PROP){Random generator = new Random();Prop = new int[Neighbor℄;route = new int[K℄[V℄;UnvisitedPoints Unvi = new UnvisitedPoints(K,V,Route);U=Unvi.U;NumberOfBuses Num = new NumberOfBuses(K,V,Route);UsedBuses=Num.N;temp3=UsedBuses.length;//-----------------------------------------------------------------//If loop 
onstru
t the odds of insert or Swap moves happening//-----------------------------------------------------------------if (UsedBuses.length>1)//more the one route{if (U.length<1 && UsedBuses.length<K) //more then 1 route and no unused points and not all buses in use{ temp2=1;Prop[0℄=PROP[0℄[0℄; //SwapMove2_1 40%Prop[1℄=PROP[0℄[1℄; //SwapMove1_1 40%Prop[2℄=0; //a 
hosen insert move 0%Prop[3℄=0; //a 
hosen bus move 0%Prop[4℄=PROP[0℄[4℄; //SwapMove3_1 20%Prop[5℄=0; //Insert1_3 10%}



C.2. ALGORITHM 145else{if (UsedBuses.length==K) //all buses in use{if (U.length>0) //unused points available{ temp2=21;Prop[0℄=PROP[1℄[0℄; //SwapMove2_1 30%Prop[1℄=PROP[1℄[1℄; //SwapMove1_1 30%Prop[2℄=PROP[1℄[2℄; //a 
hosen insert move 20%Prop[3℄=0; //a 
hosen bus move 0%Prop[4℄=PROP[1℄[4℄; //SwapMove3_1 10%Prop[5℄=PROP[1℄[5℄; //Insert1_3 10%}else //U.length <=0{ temp2=22;Prop[0℄=PROP[2℄[0℄; //SwapMove2_1 40%Prop[1℄=PROP[2℄[1℄; //SwapMove1_1 40%Prop[2℄=0; //a 
hosen insert move 0%Prop[3℄=0; //a 
hosen bus move 0%Prop[4℄=PROP[2℄[4℄; //SwapMove3_1 20%Prop[5℄=0; //Insert1_3 0%}}else //not all buses in use{if (U.length>1) //unused points left{ temp2=3;Prop[0℄=PROP[3℄[0℄; //SwapMove2_1 30%Prop[1℄=PROP[3℄[1℄; //SwapMove1_1 20%Prop[2℄=PROP[3℄[2℄; //a 
hosen insert move 25%Prop[3℄=PROP[3℄[3℄; //a 
hosen bus move 10%Prop[4℄=PROP[3℄[4℄; //SwapMove1_1 10%Prop[5℄=PROP[3℄[5℄; //Insert1_3 5%}}}}else{if (UsedBuses.length>0) //only one route{if(UsedBuses.length>0 && U.length<1) //only one route and no unused points{ temp2=5;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=100; //SwapMove1_1 100%Prop[2℄=0; //a 
hosen insert move 0%



146 APPENDIX C. ALGORITHMProp[3℄=0; //a 
hosen bus move 0%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=0; //Insert1_3 0%}else //only one route and unused points{ temp2=6;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=PROP[4℄[1℄; //SwapMove1_1 30%Prop[2℄=PROP[4℄[2℄; //a 
hosen insert move 50%Prop[3℄=PROP[4℄[3℄; //a 
hosen bus move 10%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=PROP[4℄[5℄; //Insert1_3 10%}}else //no route{ temp2=7;Prop[0℄=0; //SwapMove2_1 0%Prop[1℄=0; //SwapMove1_1 0%Prop[2℄=PROP[5℄[2℄; //a 
hosen insert move 90%Prop[3℄=PROP[5℄[3℄; //a 
hosen bus move 10%Prop[4℄=0; //SwapMove3_1 0%Prop[5℄=0; //Insert1_3 0%}}//---------------------------------------------------------------------RandProp=Math.abs (generator.nextInt())%(100)+1;//generates an number between 1 & 100if (RandProp<Prop[0℄){ temp=1;swapmove2_1 swa= new swapmove2_1(V,K, UsedBuses, Route);route=swa.r;}else//-----------------------------------------------------------------{if(RandProp<Prop[1℄+Prop[0℄ && RandProp>=Prop[0℄ && Prop[1℄!=0){ temp=2;swapmove1_1 swa= new swapmove1_1(V,K, UsedBuses, Route);route=swa.r;}else//--------------------------------------------------------------------------{if(RandProp<Prop[2℄+Prop[1℄+Prop[0℄ && RandProp>=Prop[1℄+Prop[0℄ && Prop[2℄!=0){ temp=3;InsertMove1_1 ins = new InsertMove1_1(V,K,U,UsedBuses,Route, time, MaxT );//InsertMove1_2 ins = new InsertMove1_2(V,K,U,UsedBuses,Route, time, MaxT , profit);



C.2. ALGORITHM 147//InsertMove1_4 ins = new InsertMove1_4(V,K,U,UsedBuses,Route, time, MaxT , profit);//InsertMove1_5 ins = new InsertMove1_5(V,K,U,UsedBuses,Route, time, MaxT , profit);route=ins.r;}else{if (RandProp<Prop[3℄+Prop[2℄+Prop[1℄+Prop[0℄ && RandProp >= Prop[2℄+Prop[1℄+Prop[0℄ && Prop[3℄!=0 ){ temp=4;BusMove1_1 bus =new BusMove1_1(V,K,U,UsedBuses, Route,time, MaxT);route=bus.r;}else{if (RandProp<Prop[4℄+ Prop[3℄+Prop[2℄+Prop[1℄+Prop[0℄ && RandProp >= Prop[3℄+ Prop[2℄+Prop[1℄+Prop[0℄ && Prop[4℄!=0){temp=5;swapmove3_1 swa= new swapmove3_1(V,K,UsedBuses,Route);route=swa.r;}else{if (Prop[5℄!=0){temp=6;InsertMove1_3 ins = new InsertMove1_3(V,K,U,UsedBuses,Route, profit);route=ins.r;}}}}}}}}C.2.4 InitialGuess.javaimport java.util.Ve
tor;import java.util.Random;publi
 
lass InitialGuess{int [℄[℄ Route;publi
 InitialGuess(int K, int V){



148 APPENDIX C. ALGORITHMRoute = new int [K℄[V℄; //for(int k=0; k<=(K-1); k++){Route[k℄[0℄=0;Route[k℄[1℄=V-1; //V=L+2 but the number of nodes is V-1}}}
C.2.5 
al
ulateOpt.javaimport java.util.Random;import java.io.*;publi
 
lass 
al
ulateOpt{int alpha;int beta;int sumX;int sumY;int OPT;int R;publi
 
al
ulateOpt (int[℄[℄ route, int K, int V, int[℄ P){alpha=1;beta=15;sumX=0;sumY=0;for (int k=0;k<K; k++){for (int i=0;i<V;i++){sumY=sumY+P[route[k℄[i℄℄;}if(route[k℄[1℄==(V-1)){sumX=sumX+1;}}OPT=alpha*sumY+beta*sumX;}}



C.2. ALGORITHM 149C.2.6 
al
ulateTime.javaimport java.util.Random;import java.io.*;publi
 
lass 
al
ulateOpt{int alpha;int beta;int sumX;int sumY;int OPT;int R;publi
 
al
ulateOpt (int[℄[℄ route, int K, int V, int[℄ P){alpha=1;beta=15;sumX=0;sumY=0;for (int k=0;k<K; k++){for (int i=0;i<V;i++){sumY=sumY+P[route[k℄[i℄℄;}if(route[k℄[1℄==(V-1)){sumX=sumX+1;}}OPT=alpha*sumY+beta*sumX;}}C.2.7 UnvisitedPoints.javaimport java.util.Ve
tor;import java.util.Random;publi
 
lass UnvisitedPoints2{int[℄ U;int sum;int temp=0;int temp2=0;publi
 UnvisitedPoints2(int K, int V, int[℄[℄ route, double[℄[℄ dist, int MaxDist)



150 APPENDIX C. ALGORITHM{U = new int[0℄;sum=0;for (int i=1; i<V-1; i++){temp=0;for (int k=0; k<K; k++){for(int j=0; j<V; j++){if (route[k℄[j℄==i){temp=1;}}}if(temp==0){temp2=0;for (int k=0; k<K;k++){for (int j=1;j<V; j++){if (dist[route[k℄[j℄℄[i℄< MaxDist && route[k℄[j℄!=i && route[k℄[j℄!=0){temp2=1;}}if (temp2==0){U = addArrayElement(i);}}}}publi
 int[℄ addArrayElement(int n){int[℄ newarray = new int[U.length + 1℄;for (int i = 0;i < U.length;i++){newarray[i℄ = U[i℄;}newarray[U.length℄ = n;return newarray;}}



C.2. ALGORITHM 151C.2.8 NumberOfBuses.javaimport java.util.Ve
tor;import java.util.Random;publi
 
lass NumberOfBuses{int[℄ N;publi
 NumberOfBuses(int K, int V, int[℄[℄ route){N = new int[0℄;//This double for loop finds all buses that are on routefor(int k=0; k<K; k++){if (route[k℄[1℄<V-1){N = addArrayElement(k);}}}publi
 int[℄ addArrayElement(int n){int[℄ newarray = new int[N.length + 1℄;for (int i = 0;i < N.length;i++){newarray[i℄ = N[i℄;}newarray[N.length℄ = n;return newarray;}}C.2.9 InsertMove11.javaimport java.util.Ve
tor;import java.util.Random;//------------------------------------------------------------//Inserts a random node into a random route, 
urrently in use.//If the route will then be
ome to long a new route (and node)//will be 
hosen. The 
urrent route will though be tested MaxTemp//times before it is abandond (it is possible to ad a node without//in
reasing travel time)//------------------------------------------------------------publi
 
lass InsertMove1_1{int LengthU;int RandI;int LengthK;



152 APPENDIX C. ALGORITHMint RandK;int RandAdd; //the spot where the new node is added into the routeint[℄[℄ r; //routeint NewNode; //the node to be addedint AddedTo; //the route to be in
reasedint NumVisitedPoints; //Number of nodes in 
hosen route (in
ludes sour
e and sink)int MAX=100; //maximum number of iterationsdouble[℄ SumT;//travel time for busses 0... K-1publi
 InsertMove1_1(int V, int K, int[℄ u, int[℄ UsedBuses, int[℄[℄ Route, double[℄[℄ time, int MaxT){Random generator = new Random();r = new int[K℄[V℄;//For loop ne
essary else epsilon and Y will follow ea
h other.for (int k=0; k<K; k++){for (int i=0; i<V; i++){r[k℄[i℄=Route[k℄[i℄;}}//-------------------------------------------------------------------//Finding a random node to be inserted//-------------------------------------------------------------------LengthU = u.length;RandI=Math.abs (generator.nextInt())%(LengthU); // Generates a random nodeNewNode= u[RandI℄;//-------------------------------------------------------------------//Finding the route the node will be inserted into//-------------------------------------------------------------------LengthK= UsedBuses.length;if (LengthK==0) //no bus in use or 
urrent routes are full{RandK=Math.abs (generator.nextInt())%(K);AddedTo=RandK;}else{RandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeAddedTo=UsedBuses[RandK℄;}//--------------------------------------------------------------------//Inserting the new node into the route//--------------------------------------------------------------------for (int i=0; i<V; i++)



C.2. ALGORITHM 153{if (r[AddedTo℄[i℄==V-1){NumVisitedPoints=i;// find the number of nodes in the 
urrent route}}//System.out.println(NumVisitedPoints);//System.out.println(AddedTo);RandAdd=Math.abs (generator.nextInt())%(NumVisitedPoints)+1; // Generates a random number so that a node 
an be added to the route//adding the new node into the 
urrent routeif (NumVisitedPoints==RandAdd)r[AddedTo℄[RandAdd+1℄=r[AddedTo℄[RandAdd℄;else{for (int i=NumVisitedPoints; i>=RandAdd; i--){r[AddedTo℄[i+1℄=r[AddedTo℄[i℄;}}r[AddedTo℄[RandAdd℄=NewNode;}}C.2.10 BusMove.javaimport java.util.Ve
tor;import java.util.Random;//------------------------------------------------------------//Inserts a random nodes into a random route, 
urrently not in use.//If the route will then be
ome to long a new route (and node)//will be 
hosen. The 
urrent route will though be tested MaxTemp//times before it is abandond (it is possible to ad a node without//in
reasing travel time)//------------------------------------------------------------publi
 
lass BusMove1_1{int LengthU;int RandI;int RandN, RandN2;int LengthK;int RandK;int Num; //number of points to be added to routeint M; //No more the this many points 
an be in the routeint bool=0; //Boolean number for while loopint RandAdd; //the spot where the new node is added into the route



154 APPENDIX C. ALGORITHMint[℄ Buses;int[℄[℄ r; //routeint[℄ NewNodes; //the nodes to be addedint AddedTo; //the route to be in
reasedint NumVisitedPoints; //Number of nodes in 
hosen route (in
ludes sour
e and sink)double SumT;//travel time for the bus routedouble T;int 
ount=0;publi
 BusMove1_1(int V, int K, int[℄ u, int[℄ UsedBuses, int[℄[℄ Route, double[℄[℄ time, int MaxT){Random generator = new Random();r = new int[K℄[V℄;Buses = new int[K℄;M=V-1;//Determinging the length of the new routeLengthU = u.length;RandI=Math.abs (generator.nextInt())%(LengthU)+1; // Generates a random numberif (RandI>M){Num=M;}else{Num=RandI;}NewNodes =new int[Num℄;//For loop ne
essary else epsilon and Y will follow ea
h other.for (int k=0; k<K; k++){Buses[k℄=k;for (int i=0; i<V; i++){r[k℄[i℄=Route[k℄[i℄;}}//-------------------------------------------------------------------//Finding the route the nodes will be inserted into//-------------------------------------------------------------------LengthK= UsedBuses.length;if (LengthK==0) //no bus in use or 
urrent routes are full{



C.2. ALGORITHM 155RandK=Math.abs (generator.nextInt())%(K);AddedTo=RandK;}else{for (int i=0; i<LengthK; i++){for(int j=0; j<Buses.length; j++){if(Buses[j℄==UsedBuses[i℄){Buses = removeArrayElement(j); //removing used buses from the fun
tion}}}RandK=Math.abs (generator.nextInt())%(Buses.length); //Generates a random busAddedTo=Buses[RandK℄;}//-------------------------------------------------------------------//Finding a random nodes to be inserted & inserting them//-------------------------------------------------------------------for (int i=0; i<Num; i++){RandN=Math.abs (generator.nextInt())%(LengthU);NewNodes[i℄= u[RandN℄;r[AddedTo℄[i+1℄=NewNodes[i℄;UnvisitedPoints Unvi = new UnvisitedPoints(K,V,r); //unused nodes redefinedu=Unvi.U;LengthU= u.length;}//-------------------------------------------------------------------r[AddedTo℄[Num+1℄=V-1;} /** Creates a new array from intarray skipping element n.*///For Buses Matrixpubli
 int[℄ removeArrayElement(int n){int[℄ newarray = new int[Buses.length - 1℄;for (int i = 0;i < Buses.length;i++){if (i < n){newarray[i℄ = Buses[i℄;} if (i > n){newarray[i-1℄ = Buses[i℄;



156 APPENDIX C. ALGORITHM}}return newarray;}// For NewNodes matrixpubli
 int[℄ removeArrayElement2(int n){int[℄ newarray2 = new int[NewNodes.length - 1℄;for (int i = 0;i < NewNodes.length;i++){if (i < n) newarray2[i℄ = NewNodes[i℄;if (i > n) newarray2[i-1℄ = NewNodes[i℄;}return newarray2;}}C.2.11 SwapMove11.javaimport java.util.Ve
tor;import java.util.Random;//------------------------------------------------------------//Swaps to nodes in the same route//Can only be entered if there is an a
tive route in the system.//A swap move will only de
rease traveling time and not profit//------------------------------------------------------------publi
 
lass swapmove1_1{int temp;int RandI;int LengthK;int RandK;int RandSwap1;int RandSwap2;int SwappedIn; //the spot where the new node is added into the routeint[℄[℄ r; //routeint NumVisitedPoints; //Number of nodes in 
hosen route (in
ludes sour
e and sink)int MAX=10;int 
ount=0;publi
 swapmove1_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;for(int k=0; k<K; k++ ){



C.2. ALGORITHM 157for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodeRandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedIn=UsedBuses[RandK℄;//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedIn℄[i℄==V-1){NumVisitedPoints=i;// find the number of nodes in the 
urrent route}}RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;RandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;while (RandSwap1==RandSwap2 && 
ount<MAX && NumVisitedPoints>2){RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1; // Generates a random number so that a node 
an be added to the routeRandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;
ount=
ount+1;}temp=r[SwappedIn℄[RandSwap1℄;r[SwappedIn℄[RandSwap1℄=r[SwappedIn℄[RandSwap2℄;r[SwappedIn℄[RandSwap2℄=temp;}}C.2.12 SwapMove21.javaimport java.util.Ve
tor;import java.util.Random;//------------------------------------------------------------//Swaps to nodes in the same route//Can only be entered if there are 2 our more routes a
tive////------------------------------------------------------------publi
 
lass swapmove2_1{



158 APPENDIX C. ALGORITHMint temp;int RandI;int LengthK;int RandK1;int RandK2;int RandSwap1;int RandSwap2;int SwappedBetween1; //the spot where the new node is added into the routeint SwappedBetween2;int[℄[℄ r; //routeint NumVisitedPoints1; //Number of nodes in 
hosen route (in
ludes sour
e and sink)int NumVisitedPoints2;publi
 swapmove2_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;for(int k=0; k<K; k++ ){for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodewhile (RandK1==RandK2){RandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeRandK2=Math.abs (generator.nextInt())%(LengthK);}SwappedBetween1=UsedBuses[RandK1℄;SwappedBetween2=UsedBuses[RandK2℄;//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedBetween1℄[i℄==V-1){NumVisitedPoints1=i;// find the number of nodes in the 
urrent route}}for (int i=0; i<V; i++){if (r[SwappedBetween2℄[i℄==V-1)



C.2. ALGORITHM 159{NumVisitedPoints2=i;// find the number of nodes in the 
urrent route}}RandSwap1=Math.abs (generator.nextInt())%(NumVisitedPoints1-1)+1; // Generates a random number so that a node 
an be added to the routeRandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints2-1)+1;temp=r[SwappedBetween1℄[RandSwap1℄;r[SwappedBetween1℄[RandSwap1℄=r[SwappedBetween2℄[RandSwap2℄;r[SwappedBetween2℄[RandSwap2℄=temp;}}C.2.13 SwapMove31.javaimport java.util.Ve
tor;import java.util.Random;//------------------------------------------------------------//Swaps one nodes from one route to anouther//Can only be entered if there is more then one a
tive route in the system.//A swap move will only de
rease traveling time and not profit//------------------------------------------------------------publi
 
lass swapmove3_1{int temp;int RandI;int LengthK;int RandK1;int RandK2;int RandFrom;int RandTo;int RandSwap;int RandLo
ation;int SwappedFrom;int SwappedTo;int[℄[℄ r; //routeint NumVisitedPoints1; //Number of nodes in SwappedFrom route (in
ludes sour
e and sink)int NumVisitedPoints2; //Number of nodes in SwappedTo route (in
ludes sour
e and sink)int MAX=50;int 
ount=0;publi
 swapmove3_1(int V, int K, int[℄ UsedBuses, int[℄[℄ Route){Random generator = new Random();r= new int[K℄[V℄;



160 APPENDIX C. ALGORITHMfor(int k=0; k<K; k++ ){for(int i=0;i<V; i++ ){r[k℄[i℄=Route[k℄[i℄;}}LengthK= UsedBuses.length;//This move is only feasible when there already some buses in route, visiting more the one nodeRandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedFrom=UsedBuses[RandK1℄;RandK2=Math.abs (generator.nextInt())%(LengthK); //Generates anouther bus that is on routeSwappedTo=UsedBuses[RandK2℄;while (RandK1==RandK2 && 
ount<MAX){RandK1=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on routeSwappedFrom=UsedBuses[RandK1℄;RandK2=Math.abs (generator.nextInt())%(LengthK); //Generates anouther bus that is on routeSwappedTo=UsedBuses[RandK2℄;
ount=
ount+1;}//Finding the number of nodes in route, they have to be at least 2for (int i=0; i<V; i++){if (r[SwappedFrom℄[i℄==V-1){NumVisitedPoints1=i;// find the number of nodes in the SwappedFrom route}if (r[SwappedTo℄[i℄==V-1){NumVisitedPoints2=i; // find the number of nodes in the SwappedTo route}}RandSwap=Math.abs (generator.nextInt())%(NumVisitedPoints1-1)+1; // Generates a random number determining whi
h node is removedRandLo
ation=Math.abs (generator.nextInt())%(NumVisitedPoints2)+1; // Generates a random number determining where the node is pla
edtemp=r[SwappedFrom℄[RandSwap℄; //the node to be moved//Adding the node to SwappedTo route//----------------------------------------------------------



C.2. ALGORITHM 161for (int i=NumVisitedPoints2; i>= RandLo
ation; i--){r[SwappedTo℄[i+1℄=r[SwappedTo℄[i℄;}if (RandLo
ation==NumVisitedPoints2){r[SwappedTo℄[NumVisitedPoints2+1℄=V-1;}r[SwappedTo℄[RandLo
ation℄=temp;//---------------------------------------------------------//Removing the node from SwappedFrom//---------------------------------------------------------for (int i=RandSwap; i<=(NumVisitedPoints1+1);i++){r[SwappedFrom℄[i℄=r[SwappedFrom℄[i+1℄;}}}
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Appendix DTestThis, the appendix, 
ontains additional information on many of the test, experimants andanalysis 
arried out in the report. In some 
ases p may represent the probabiltiy matrixinstead of P . This is due to 
hange lat in the proje
t wher P was denoted as the probabilitymatrix as p 
ould 
onfuse with the pro�t of a single node.D.1 Non-Randomly Generated Data SetsD.1.1 Results Data Set 3_50_bResults P252.5 105.5 168.1 211.6 279.5 334.7 374.2 400.6 419.955 120 180 250 301 361 411 432 4320.95455 0.87917 0.93389 0.8464 0.92857 0.92715 0.91046 0.92731 0.971993888.7 5790.6 7312 9762.7 10273 9784.4 9572.1 9388.6 9127.7Results P155 117 171 249 292.9 356.9 401.8 428.9 42355 120 180 250 301 361 411 432 4321 0.975 0.95 0.996 0.97309 0.98864 0.97762 0.99282 0.979174833.6 6275.6 8560.7 10993 12022 11570 11125 10317 10403Results P353.5 114 167.1 213.1 279.7 350.8 376.2 404.8 413.755 120 180 250 301 361 411 432 4320.97273 0.95 0.92833 0.8524 0.92924 0.97175 0.91533 0.93704 0.957644216.7 5843.1 7815.3 9982.5 10597 10098 9943.8 9878.2 9470.6D.1.2 Results Data Set 3_50_cResults P2 163
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Figure D.1: Shows the data set 3_50_b, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.
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Figure D.2: Shows the data set 3_50_c, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.
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Figure D.3: Shows the data set 3_100_a, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.51.5 94 166 208.9 275.7 341.9 371.5 398.7 42055 111 181 232 300 360 402 432 4320.93636 0.84685 0.91713 0.90043 0.919 0.94972 0.92413 0.92292 0.972223808.2 5724.8 7530.7 10032 10144 9506.1 9350.6 9352.9 9051.4Results P155 104.5 179 228.1 299.2 359 402.9 428 42955 111 181 231 300 360 411 432 4321 0.94144 0.98895 0.98745 0.99733 0.99722 0.98029 0.99074 0.993064843.8 6605.6 8756.9 11517 12029 11760 11730 11412 10319Results P355 109.8 171.9 218.4 254.2 341 364.4 410 41155 111 181 231 300 360 411 432 4321 0.98919 0.94972 0.94545 0.84733 0.94722 0.88662 0.94907 0.951394445.5 6130.9 7790.1 10633 10959 10435 10082 10139 10004D.1.3 Results Data Set 3_100_aResults P1111.2 216.5 342.2 378.5 447.4 494.4 552.2 657.2 663.5121 240 370 430 490 551 611 712 7350.91901 0.90208 0.92486 0.88023 0.91306 0.89728 0.90376 0.92303 0.902725288.2 10992 21209 25362 29351 30888 32924 31302 30864
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Figure D.4: Shows the data set 3_100_b, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.Results P2118 231.1 358.1 414.7 492.1 521.3 587.4 691.7 805.6121 240 370 431 500 560 620 732 8630.97521 0.96292 0.96784 0.96218 0.9842 0.93089 0.94742 0.94495 0.933496121.4 12729 23002 30998 34771 41077 43730 41873 38226Results P3115.4 225.5 343.4 409.6 455.9 514.9 544.5 639.9 687.2121 240 370 431 491 561 611 692 8230.95372 0.93958 0.92811 0.95035 0.92851 0.91783 0.89116 0.92471 0.834995431.9 11390 22847 26672 33301 38870 35621 33891 31432D.1.4 Results Data Set 3_100_bResults P1113.5 219 338.5 383 460 467.7 563.5 588.2 674.1130 240 380 430 500 541 611 640 8120.87308 0.9125 0.89079 0.8907 0.92 0.86451 0.92226 0.91906 0.830175521.1 10912 19956 29231 29985 34844 37307 32935 30440Results P2130 246 359 410 475 540.2 594 681.8 784.3
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Figure D.5: Shows the data set 3_100_c, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.130 250 380 430 500 560 620 741 8741 0.984 0.94474 0.95349 0.95 0.96464 0.95806 0.92011 0.897376071.3 12023 23078 28914 36920 37747 44592 40227 34663Results P3120 240 354 391 444.2 501.6 580.5 617.5 693.5130 250 380 440 500 541 621 671 7830.92308 0.96 0.93158 0.88864 0.8884 0.92717 0.93478 0.92027 0.88575617.7 11396 22569 26318 36042 40019 39442 33956 31535D.1.5 Results Data Set 3_100_cResults P1106.5 221 330 395.1 425.2 445.3 526.6 599.8 755.8120 240 350 420 471 550 601 671 8320.8875 0.92083 0.94286 0.94071 0.90276 0.80964 0.87621 0.89389 0.908415301.6 10011 18860 24295 30413 35980 37782 33728 30042Results P2112 237 328 411 456 526.3 563.5 685.4 811.2120 240 350 420 480 551 601 732 8810.93333 0.9875 0.93714 0.97857 0.95 0.95517 0.9376 0.93634 0.920775802.6 11083 22702 27548 35322 39322 38953 39509 34580
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Figure D.6: Shows the data set 4_50_a, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.Results P3111 223 343 407 455 503.7 531.1 627.1 698.5120 240 350 420 480 551 591 711 8040.925 0.92917 0.98 0.96905 0.94792 0.91416 0.89865 0.882 0.868785530.4 10180 24435 26076 33234 38273 42131 36049 33313D.1.6 Results Data Set 4_50_aResults for P = P162.5 109.4 174.1 262.1 342 402.7 417.9 416.8 42370 131 201 281 361 432 432 432 4320.89286 0.83511 0.86617 0.93274 0.94737 0.93218 0.96736 0.96481 0.979174790.1 8160.9 14217 12665 11754 11243 11168 11130 10886Results for P = P272.5 129.6 190.8 272 359.9 423 431.9 430.9 42675 131 201 281 361 432 432 432 4320.96667 0.98931 0.94925 0.96797 0.99695 0.97917 0.99977 0.99745 0.986116816.4 9613.7 17074 14932 14440 13535 12780 12427 12669Results for P = P370 127.6 182.8 264.5 331 407.8 403.9 397.8 42475 131 201 281 361 432 432 432 4320.93333 0.97405 0.90945 0.94128 0.9169 0.94398 0.93495 0.92083 0.981485608.3 8630.3 15744 13947 12237 11754 11528 11431 11284
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Figure D.7: Shows the data set 4_500_b, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.D.1.7 Results Data Set 4_50_bResults for P = P162.5 126.5 167.4 264.7 324 379 399.8 402.7 42170 150 211 290 360 432 432 432 4320.89286 0.84333 0.79336 0.91276 0.9 0.87731 0.92546 0.93218 0.974544928.6 8316.7 14414 12453 11638 11345 11129 11180 10942Results for P = P271.5 144 206.9 273.4 364.1 423.9 423.7 417.9 430.975 150 211 290 370 432 432 432 4320.95333 0.96 0.98057 0.94276 0.98405 0.98125 0.98079 0.96736 0.997457025.3 9696.4 16331 14673 14050 12864 13007 12435 12172Results for P = P369.5 142 205.9 275.6 333 417.8 406.8 428 42175 150 211 290 362 432 432 432 4320.92667 0.94667 0.97583 0.95034 0.91989 0.96713 0.94167 0.99074 0.974546052.4 8526.6 14891 13404 11996 11668 11728 11320 11697D.1.8 Results Data Set 4_50_cResults for P = P1
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Figure D.8: Shows the data set 4_50_c, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.64.5 146.5 191.6 271.2 343.1 408.5 406.5 424.8 427.970 160 221 292 372 432 432 432 4320.92143 0.91563 0.86697 0.92877 0.92231 0.9456 0.94097 0.98333 0.990515201.6 8204.9 14624 12352 11850 11494 11322 11218 11081Results for P = P275 156 229.9 286.4 361.5 423.9 428 428.9 43280 160 231 292 372 432 432 432 4320.9375 0.975 0.99524 0.98082 0.97177 0.98125 0.99074 0.99282 16975.3 9060.5 15812 14074 13112 12542 12264 12323 11720Results for P = P371.5 148.5 228.9 277.5 342.1 412.3 406.5 422.8 418.980 160 231 292 372 432 432 432 4320.89375 0.92812 0.99091 0.95034 0.91962 0.9544 0.94097 0.9787 0.969686096.6 8785.3 15063 12749 12204 11575 11507 11309 11194D.1.9 Results Data Set 4_100_aResults P1167.5 295.6 413.5 485.7 593.1 624.6 681.3 733.7 799.2190 370 471 560 633 712 793 845 8940.88158 0.79892 0.87792 0.86732 0.93697 0.87725 0.85914 0.86828 0.8939610836 39478 55322 47922 45993 42580 38845 40281 36454
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Figure D.9: Shows the data set 4_100_a, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.Results P2183 362 462.6 544.8 628 697.2 742.3 835.2 875.3190 380 471 561 661 750 814 904 9050.96316 0.95263 0.98217 0.97112 0.95008 0.9296 0.91192 0.92389 0.9671811610 44446 69766 57475 53055 47969 44791 44777 41065Results P3183 351.3 423.5 527.7 577.3 631.2 672.8 772.5 782.7190 380 471 561 660 712 763 873 8450.96316 0.92447 0.89915 0.94064 0.8747 0.88652 0.88178 0.88488 0.9262711258 43975 67787 63596 52416 49354 43542 42345 39519D.1.10 Results Data Set 4_100_bResults P1165.5 315 425.2 508 597.4 664.8 645.7 759.7 811.2190 360 470 550 641 751 761 855 8850.87105 0.875 0.90468 0.92364 0.93198 0.88522 0.84849 0.88854 0.9166110984 35607 55929 51928 47081 41341 38896 39172 35446Results P2
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Figure D.10: Shows the data set 4_100_b, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.182 377 440 566.6 651.2 684.5 790.2 842.5 882.2190 380 470 571 670 751 841 904 9050.95789 0.99211 0.93617 0.99229 0.97194 0.91145 0.9396 0.93197 0.9748111757 39682 65734 58835 56639 47337 44403 42063 41686Results P3182 361 426 532.3 625.8 668.3 688.6 700.1 805.1190 380 470 571 661 731 752 814 8730.95789 0.95 0.90638 0.93222 0.94675 0.91423 0.91569 0.86007 0.9222211515 44669 84627 62193 51611 48193 45368 45157 40774D.1.11 Results Data Set 4_100_cResults P1157.5 341 428.5 520.4 607.4 643.7 693.8 735.6 819.9190 380 470 570 660 700 780 835 8940.82895 0.89737 0.9117 0.91298 0.9203 0.91957 0.88949 0.88096 0.9171111248 35945 58997 54339 48585 42226 40935 38906 36097Results P2
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Figure D.11: Shows the data set 4_100_c, points in red mark the point with de
reased pro�tor the depot(
enter). One 
an also see whi
h point have been removed form the routes.190 378 463 548 644.3 681.4 793.6 820.8 883.2190 390 470 580 661 761 841 904 9051 0.96923 0.98511 0.94483 0.97474 0.8954 0.94364 0.90796 0.9759111702 42901 69121 60838 53120 47479 46224 43629 41369Results P3180 356 446 551.1 596.4 668.7 721.5 773.5 809.6190 390 470 580 661 731 802 905 9050.94737 0.91282 0.94894 0.95017 0.90227 0.91477 0.89963 0.8547 0.8945911513 49877 70498 52944 53646 46272 45828 41829 37563D.2 Cooling S
heduleD.2.1 Results for temperature, T , �rst run



174 APPENDIX D. TEST

0 10 20 30 40 50 60 70 80
2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
Residual plot

R
es

id
ua

l s
um

Temperature, T
0Figure D.12: This �gues shows the residual sum for some temperatures, blue line. The bla
kdots are the mean residual sum for all temperatues and green dots are mean±10%.
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Figure D.14: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.15: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.16: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.17: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.18: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.19: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.20: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.21: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.2 Results for redu
tion fa
tor, r, �rst run
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Figure D.22: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.23: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.24: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.25: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.3 Results for stopping 
riteria, F , �rst run
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Figure D.26: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.27: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.28: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



190 APPENDIX D. TEST

20 40 60 80 100 120 140 160
0

200

F=10−9

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

F=10−10

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure D.29: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.30: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.4 Results for temperature, T , se
ond run
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Figure D.31: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.32: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.33: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.34: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.35: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.36: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



198 APPENDIX D. TEST
20 40 60 80 100 120 140 160

0

200

r=1−10−6

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−7

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−8

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

r=1−10−9

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure D.37: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.5 Results for redu
tion fa
tor, r, se
ond runsubse
tionResults for stopping 
riteria, F , se
ond run
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Figure D.38: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.39: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.40: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.41: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



D.2. COOLING SCHEDULE 203

20 40 60 80 100 120 140 160
0

200

F=1−10−1

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

F=1−10−2

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

F=1−10−3

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

F=51−10−4

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

Figure D.42: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.43: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.44: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.45: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.6 Results for Temperature, T , Data Set 3_50_aD.2.7 Results for Redu
tion Fa
tor, r, Data Set 3_50_a
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Figure D.46: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.47: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



D.2. COOLING SCHEDULE 209

5 10 15 20 25 30 35 40 45 50
0

T
0
=21

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.05

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

T
0
=20

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.1

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

T
0
=19

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.1

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

200

400

T
0
=18

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

R
es

id
ua

l r
at

io

Figure D.48: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.49: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.50: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.51: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.52: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



214 APPENDIX D. TEST

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

r=1−10−6

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

r=1−10−78

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

r=1−10−8

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0.01

0.02

0.03

0.04

0.05

0.06

R
es

id
ua

l r
at

io

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

r=1−10−9

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

R
es

id
ua

l r
at

io

Figure D.53: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.54: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.



216 APPENDIX D. TEST

5 10 15 20 25 30 35 40 45 50
0

r=1−10−14

O
bj

ec
tiv

e 
V

al
ue

Maximum route length
5 10 15 20 25 30 35 40 45 50

0

0.1

R
es

id
ua

l r
at

io

Figure D.55: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.
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Figure D.56: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.D.2.8 Results for Frozen Fa
tor, F , Data Set 3_50_aD.3 Randomly Generated Data SetsD.3.1 50 point pro�t ve
tor0392493355765510106
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Figure D.57: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.845110723108569535238412
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Figure D.58: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.142102710281170D.3.2 100 point pro�t ve
tor056251
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Figure D.59: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.1096895510210165311369823
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Figure D.60: This �gues shows results for four di�erent tempratues. Blues line and dots isthe average value and the 
al
ulated optimas, the red lin is the best known optimum and thegreen line is the residual ratio.271081165358256195246101
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Figure D.61: Blues line and dots is the average values and the 
al
ulated optimums, the redline is the best known optimum and the green line is the residual ratio.105570D.3.3 Test with data sets 50a,b,
,d and e with 450,000 Iterations



224 APPENDIX D. TEST
20 40 60 80 100 120 140 160

0

200

Data set:3.100.a, P
1

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.2

0.4

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

Data set:3.100.a, P
2

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.2

0.4

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

Data set:3.100.b, P
1

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.5

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

Data set:3.100.b, P
2

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.2

0.4

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

Data set:3.100.c, P
1

O
P

T
 V

al
ue

Maximum route length
20 40 60 80 100 120 140 160

0

0.2

0.4

R
es

id
ua

l r
at

io

20 40 60 80 100 120 140 160
0

200

Data set:3.100.c, P
2

O
P

T
 V

al
ue

20 40 60 80 100 120 140 160
0

0.5

R
es

id
ua

l r
at

io

,Figure D.62: Blues line and dots is the average values and the 
al
ulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.63: Blues line and dots is the average values and the 
al
ulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.64: Blues line and dots is the average values and the 
al
ulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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Figure D.65: Blues line and dots is the average values and the 
al
ulated optimums, the redline is the best known optimum and the green line is the residual ratio.
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al
ulated optimums and thered line is the best known optimumD.4 Results Comparison to De
rease.javawith New Cooling S
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al
ulated optimums and thered line is the best known optimum
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al
ulated optimums and thered line is the best known optimum
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al
ulated optimums and thered line is the best known optimum
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Figure D.70: Shows the routes 
onstru
ted when a = 1 and M = 160. The 
ir
les are the areawhere that must be traveld before another pi
k up point is 
hosen.
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Figure D.71: Shows the routes 
onstru
ted when a = 2 and M = 160. The 
ir
les are the areawhere that must be traveld before another pi
k up point is 
hosen.
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Figure D.72: Shows the routes 
onstru
ted when a = 4 and M = 160. The 
ir
les are the areawhere that must be traveld before another pi
k up point is 
hosen.
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Figure D.73: Shows the routes 
onstru
ted when a = 5 and M = 160. The 
ir
les are the areawhere that must be traveld before another pi
k up point is 
hosen.


