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Abstract

In this thesis a problem, presented by ALCAN Iceland, is put forth. The problem, called
the bus route problem, examines the pickup of employees on route to an aluminium plant.
Therefore a depot is defined and also a set of pickup locations. A bus must navigate through the
points choosing only the most important locations. The problem is presented mathematically
and a meta-heuristic, simulated annealing, is used to solve the problem. The are a number of
tests put forth. A good cooling schedule is calculated. A matrix determining the probability of
a neighborhood is constructed. The best method of node insertion into the solution is found.
The algorithm calculated structured solutions provided with non-randomly generated data
sets. The simulated annealing algorithm was then vompared to a GAMS program, returning
values between the upperbound and the objective value calculated with GAMS. Comparison
between tabu search algorithm for TOP and the simulated annealing algorithm showed that
the former is faster for small data sets and nearly always returns better objective values.
Finally a constraint forcing a bus to travel for a ceratain amount of time before stopping
again was implemented.
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Chapter 1

Introduction

1.1 Status Description and Motivation

This exam project is done by Einar Leif Nielsen for ALCAN in Straumsvik, Iceland. Main
supervisor on this project was Jesper Larsen, at IMM DTU. Co supervisors were Min Wen,
PhD student at IMM DTU, and Pall Jenson, professor at the University of Iceland. In the
middle of the project Jesper Larsen had to leave for New Zealand, for a few months, in the
meantime Professor Jens Clausen took over Jespers duties on the project.

This project deals with the pickup of employees for the ALCAN aluminium plant at Straumsvik
Iceland. ALCAN is the second largest aluminium manufacturer in the world. Its name is de-
rived from the words ALuminium and CANanda. It has over 470 facilities in 55 countries’.
The aluminium factory in Iceland is the 11th [5], largest, in the corporation. It is located in
Straumsvik, which is a just out side of Hafnarfjordur, a suburb of Reykjavik. Aluminium oxide
is imported from Australia and manufactured into aluminium. The metal is then transported
overseas for further work. ALCAN Iceland employees a around 470 persons [5] and was the
first aluminium plant constructed in Iceland. There are now three and more are planned.

ALCAN’s bus system, which picks up employees, was first taken into use 30 years ago. That
system has since grown and new pickup points have been added without calculating their
location. Now the system is very complicated and has grown very expensive. A newly im-
plemented tax on diesel fuel, by the Icelandic government, has lincreased the cost even more.
Therefore ALCAN decided to see if a more economical method for picking up employees exists.

The goal of this project is to find more economical bus routes and to see if the number of
buses, and thereby routes, can be decreased. ALCAN hopes to decrease the cost of the system
by at least 10-15%. This can be achieved by inspecting the location of pickup points to see if
all current pickup points are necessary. Also new pickup points can be introduced that would
be better located than those currently in use. New areas? will not be added to the current
system. ALCAN also hopes that this will decrease travel time for the employees as some em-
ployees spend nearly an hour on the bus.

'http://en.wikipedia.org/wiki/ Alcan
*Neighborhoods and suburbs.

11



12 CHAPTER 1. INTRODUCTION

ALCAN prefers a general solution as it receives a large work force during the summer months
that relieve other employees during summer vacations. This does not mean that special solu-
tions should be excluded. They will be looked into and their importance estimated. ALCAN
has requested that various types of solutions are to be inspected.

The current number of employees at ALCAN is 467 divided on three shifts. A day shift, 08-16;
an afternoon shift, 16-00; and a night shift, 00-08. There are also three types of employees.
Those who work the day shift, those who work the day shift and the afternoon shift and those
who work on all three shifts. Also there are those who work weekends and those who do not.
As is the case with most workplaces, that use a shift system, at no time is all the workforce
present at the plant. So the largest work force is present during the day shift on the weekdays
while the smallest workforce is present during night time on the weekends.

For the day shift pickup ALCAN uses 68 pickup points and approximately another 15 are
added for the night and afternoon pickup (during these times some of the other pickup points
are excluded). New pick up point will be added to the system, these points can be local bus
stops or other strategically chosen points, while others will be removed. The current routes are
of different lengths the longest taking approximately 52 minutes, driven in the morning during
weekends and holidays; and the shortest approximately 29 minutes, driven in the morning on
weekdays.

Currently Hopbilar supply the buses used in picking up employees for the aluminium plant in
Straumsvik. Hoépbilar is a privat bus company and one of the biggest in its field in Iceland.
They have served ALCAN well and both companies want to continue that cooperation.
Other transportation possibilities mentioned in this report are: the local bus system, run by
a company called Streaetd; and the local taxi services, which are many.

1.2 Outline of the Thesis

There are five chapters in this thesis excluding the first, this one. Each of these five chapeters
examin a different part of the problem that has been introduced.

The second chapter annalysis the problem presented, defines it and presents a mathematical
model. There is also a review of relevant problems. The final section in the first chapter ex-
amins methods that have been implemented on similar problems and their results.

The third chapter looks at the theory of the algorithm used for solving the problem. Also
implementation of this algorithm is explaind.

The fourth chapter looks at various tests, or compuational experiments. In this chapter the
best parameters are calculated and implemented. Various data sets were generated and other
data sets obtained.

The fifth and final chapter summarises the conclusions reached in this project. The fifth chap-
ter also posses questions regarding further work, such as: Is there any further development of
the problem, or method, possible? Are results useful and other questions?
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There is also a large appendix in this report containing various results from experiments,
analysis and the algortihm used.
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Chapter 2

Bus Route Problem

In this section a number of different solutions for solving this problem, are explored. ALCAN’s
bus route problem will from now on simlpy be reffered to as the bus route problem.

2.1 Analysis of the Realistic Possibilities

For this problem there are many possible solutions, these types of solutions have been cate-
gorized in two types.

1. First type of solutions only rely on one transportation possibility. That is only one
company will transport employees to and from the aluminium plant.

2. The second type of solutions are combinations of two transportation possibilities.

It was considered and rejected to use combinations of more than two transportation possi-
bilites. The reason for this is that solutions of the second type covered all hours of the day,
365 days a year. Therefore a new more complex combinations would offer no improvement
over the solutions of type 2. Also combinations of more than two transportation possibilities
are likely to be too expensive.

In total there are 8 solutions of the first type and 25 combined solutions. Solutions of type
one are defined in table 2.2.

2.1.1 SWOT Analysis

Strength, weakness, opportunity and threats analysis, or SWOT analysis, was used to deter-
mine which solution would be best suited in solving the bus route problem. This is a method
often used to define the pros and cons. In this method:

strength represents helpful internal factors
weakness represents harmful internal factors
opertunities represents helpful external factors
threats represents harmful external factors

15



16 CHAPTER 2. BUS ROUTE PROBLEM

When using SWOT analysis one has to define internal and external factors. In the case of the
bus route problem internal factors were defined as: The author of the project, ALCAN and
the project supervisors.

External factors were defined as: The employees of ALCAN, transportation companies and
the general public of the greater Reykjavik area.

After internal and external factor have been defined a table is constructed. An example of a
SWOT analysis table can be seen in Table 2.1.

Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-
travel time. A general solu- | tion. In this solution new
tion that takes into account | nodes without a predefined lo-
employee  turnover. Works | cation cannot be used. Hard
all year round, 24 hours a | to estimate the general popu-
day. This solution is not too | lation of an area.

simple to be considered a
exam project.

External | Decreases travel time. Decreases profit for Hopbilar.
Decreases the current amount
of service provided by AL-
CAN.

Table 2.1: This table show how solution of type 1 was analysed. SWOT analysis of all solutions
can be viewed in appendix B.

2.1.2 Combined Solutions

All possible combined solutions are shown in table 2.3. Although due to the number of pos-
sible combinations more information could not be included in the table. Therefore a short
explination, of Table 2.3, is in order for example look at combination 1(Combo 1). This is a
combination of solutions of type 4 and type 1, both are defined in table 2.2. This combination
proposes the use of Straetd, the local bus system, when possible and Hobilar, a private bus
company, when Straeté is closed. This is useful as the local bus system is closed during night
time and during holidays such as Christmas.

A different combination type, is combination 15(Combo 15). This combination uses solutions
of type 2 and 5. Note though that the combination uses an extreme solution of type 2. An
extreme solution tries to limit the number of routes and travel time of a single route as much
as possible. So the solution would provide a few pickup points were Hopbilar would stop.
Employees however would have to get to these pickup points by themselves.

In appendix B all combination solutions are defined and analyzed with the SWOT method.



2.1. ANALYSIS OF THE REALISTIC POSSIBILITIES

Table 2.2: Possible solutions for the problem

Name | Description ‘ Transportation

Type 1 | Use current pickup points along with new ones Hoépbilar
(predefined, such as local bus stops). Estimate
the importance of each pickup point by the
number of people living close to it, the amount
of parking and connection to local transit sys-
tem. Buses from Hopbilar are used to pick up
employees.

Type 2 | Same as type 1 except importance of pickup Hépbilar
points is decided by the number of employees
that live close to them. Buses

Type 3 | Same as type 2 except a software, such as Hépbilar
ShorTrec from AGR hf., is used to determine
the bus routes. A new route can be calculated
as often as ALCAN desires. Buses

Type 4 | Uses the local bus system, buses, to pickup em- Straeto
ployees and return them.

Type 5 | Car pooling. Each car will be given a driving Employees
diary and receive a payment for gas used at
the end of the month. It would be necessary
to write a program that would put five people
together as a part of a car pooling team.

Type 6 | Driving grant. Each employee would receive an Employees
increase in pay to compensate for the lack of
buses. The employees would then drive them-
selves to work.

Type 7 | Car pooling with tazis. A taxi would pickup Taxi service
employees and return them. Each taxi would
be filled with passengers. A program would tell
the taxi service where and when to pick up an
employee.

Type 8 | Same as type 1 except the pickup points would Hépbilar
be calculated so that there location was good
and not from predetermined points. Buses
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Table 2.3: Possible solutions for the problem
Name | Description | Transportation

Combo 1 Type 4 and type 1. Hopbilar and Straeto
Combo 2 Type 2 and type 4. Hopbilar and Straet
Combo 3 Type 3 and type 4. Hopbilar and Straeto
Combo 4 Type 5 and type 4. Employees and Straetd
Combo 5 Type 6 and type 4. Employees and Streeto
Combo 6 Type 7 and type 4. Taxi service and Straet
Combo 7 Type 8 and type 4. Hopbilar and Straeto
Combo 8 Type 5 and type 6. Hopbilar and Straetd
Combo 9 Type 7 and type 6. Hopbilar and Straeto
Combo 10 | Extreme solution using type 1 and then use type 4. Hopbilar and Straeto
Combo 11 | Extreme solution using type 2 and then use type 4. Hopbilar and Straeto
Combo 12 | Extreme solution using type 3 and then use type 4. Hopbilar and Straeto
Combo 13 | Extreme solution using type 8 and then use type 4. Hopbilar and Straeté
Combo 14 | Extreme solution using type 1 and then use type 5. Hopbilar and employees
Combo 15 | Extreme solution using type 2 and then use type 5. Hoépbilar and employees
Combo 16 | Extreme solution using type 3 and then use type 5. Employees and Hépbilar
Combo 17 | Extreme solution using type 8 and then use type 5. Employees and Hoépbilar
Combo 18 | Extreme solution using type 1 and then use type 6. Employees and Hépbilar
Combo 19 | Extreme solution using type 2 and then use type 6. Employees and Hoépbilar
Combo 20 | Extreme solution using type 3 and then use type 6. Employees and Hépbilar
Combo 21 | Extreme solution using type 8 and then use type 6. Employees and Hépbilar
Combo 22 | Extreme solution using type 1 and then use type 7. Taxi service and Hépbilar
Combo 23 | Extreme solution using type 2 and then use type 7. Taxi service and Hopbilar
Combo 24 | Extreme solution using type 3 and then use type 7. Taxi service and Hopbilar
Combo 25 | Extreme solution using type 8 and then use type 7. Taxi service and Hopbilar
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2.1.3 Chosen Solution

From the SWOT analysis it was determined that solution of type 2 was best suited. The reason
for this choice is that this solution is relatively simple to program and therefore a good place
to start the project. Also this would provide a solution for ALCAN. Although not as general
as they may have preferred but ga ood special solution. The definition of solution type 2 can
be seen in table 2.2. Small changes have been made to this solution to better suite the needs
of ALCAN. Solution of type 2 was defined as:

Use current pickup points along with new ones (predefined, such as local bus stops).
Estimate the importance of pickup points by the number of employees that live
close to them, the amount of parking and connection to local transit system.
Buses from Hoépbilar are used to pick up employees.

2.2 Problem Definition and Description

The problem as presented by ALCAN gives a geographical set, a set of employees, a set of
buses and a set of locations(pickup points). The aluminium plant also has a predefined loca-
tion and all buses must finish their route there.

Let us first look at the geographical set. Within this set are the possible locations of pickup
points, as ALCAN has defined some areas outside of there routes and they do not intend to
increase this area. Therefore new pickup points must be located within the geographical set.
The travel between all points in a set is called the travelling salesman problem or TSP. In this
problem one must navigate trhough a number of points and then return to the point of origin,
via the shortest travel distance.

The set of employees includes all employees at ALCAN. Although some employees live outside
of the geographical set and are therefore not relevant to the problem. This set is not very crucial
to the problem but can be useful in determining the importance of a single pickup point. Trav-
eling through a set of points each assigned a profit is similar to the price collecting traveling
salesman problem, PCTSP. In that problem one must navigate trhough a set of points leaving
from a source point and return having collected a minimum number of profit on the way, via
the shortest route. Note though that one does not have to visit all points, in the set, in PCTSP.

The set of buses is important as the number of buses currently in use, in the system, cannot
be exceeded. The set of buses will from now be reffered to as the set of routes. If a single bus
is in use, that bus will be called an active route or a route in use. The capacity of a bus is
not important as the number of people working at ALCAN ar not that many. Therfore the
capasity of a single bus is unimportant. A problem dealing with more than one route is called
a vehicle routing problem or VRP. In VRP one must navigate more than one route leaving
from a depot, visiting all points in the set, and the returning again to the source, via the
shortes possible routes.

Locations are crucial to this project. The choice of where a bus should stop or not is important
in determining the cost of the system. The only factor concerning this set is that the locations
be within the geographical set. How to choose a location will depend on how profitable a
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location is. To determin this profit the number of employees living within a certain radius,
available parking, connection to local transit and other factors can be inspected. To simplify
for now we will assume that the importance of a node is determined by the number of people,
within the set of employees, that are living inside a certain radius from the location. These
locations will now be referred to as nodes. Nodes in use can also be called an active nodes. The
are many possibiltiees to add nodes to the excisting set of locations as long as those nodes
are within the geographical set. As time is more of an issue than distance the travel time
between individual nodes will be inspected, not the distance. This problem, as it has been
defined, is very similar to the team orienteering problem, TOP. There a team of moutaineers
must navigate, each on his own, though a number of nodes, therby collecting profit. The goal
of TOP is to collect as much profit as possible and it is not necessary to visit all nodes in the
set. Also in TOP one must return to the point of origin.

Another problem, regarding the nodes, concerns the distance, or travel time, between two
nodes. If two nodes are situated very close to one another the may have overlapping profit.
This means that some of the people living within a certain radius from node one also live
within said radius from node two. Therefore a constraint forcing the bus to travel a certain
time before stopping again can be implemented. Another solution regarding this problem
would involve not choosing two nodes too close to one another.

It is the wish of ALCAN to decrease the cost of the bus sytem. This can be achived in two
ways. First by decreasing the number of routes in use or secondly by decreasing the number
of active nodes. These are therefore defined as the two main factor in ALCAN’s problem, the
problem will from now on be reffered to as the bus route problem. ALCAN’s whishes are to
limit the number of nodes and/or routes while picking up as many employees as possible. This
means that not all nodes have to be visited, only those who are deemed important enough.
Also as the buses themselves are not owed by ALCAN, but by an outside contractor, the buses
therefore do not have to start at the plant. This means a if a route is used it will originate
from the first node it visits and then make its way to the aluminium plant. The open vehicle
routing proble, OVRP, is simlar to this. In OVRP one must navigate a number of routes, all
leaving from the same depot, though a set of nodes. All nodes must be visited but the routes
do not have to return to the depot. The aluminium plant will from here on be referred to as
a depot.

By combining certain elements of the methods described one can formulated a mathematical
model of the bus route problem. Alternative methods than those previously described can be
used to solve the problem. For example one could assign all employees to certain bus stops
and then one would add those bus stops to a bus route. If the route is too long one would
then decrease the number of bus stops and reassign the employees to fewer pickup points. This
would be done as often as necessary. After employees have been assigned to the bus stops the
problem becomes a OVRP.

This method will most likely have a shorter calculation period than the bus route problem. It
would take into account the capacity of each vehicle and there is no chance that a bus will stop
at two points with overlapping profit. On the other hand the bus route problem is more likely
to choose the best possible routes, it is a more general solution and might possibly choose to
stop at points with small profit. In conclusion these are both good methods but the bus route
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problem seems to fit more to the wishes of ALCAN and therefore is a better candidate for
solving the problem presented.

To determine the location of nodes a population function for the area can be constructed. This
function would map out the most populated areas and the points with the highest population,
hot spots, would define nodes and there profit. The reason this will not be done is that
constructing a population function of a city is outside the scope of this project, even though
it would give a very general solution. Therefore the method of predefined pickup points is
deemed better in comparison.

2.3 A Mathematical Model for BRP

The problem defined is the bus route problem, BRP, and it has been compared to various
methods such as PCTSP, TOP and OVRP. It has been shown that the bus route problem has
alot in common with these other problems but is not the same as any of them.

In this model there are a few sets which need to be defined. L is the set of n locations,
nodes, where pickup of employees is possible. Not all of these locations have to be visited.
V = LU{0,n+ 1} is the set of all nodes, {0} represents factory out and {n + 1} represents
factory in. Travel time from node 0 to any other node is none, 0. This is because the bus route
problem is an open problem, like the OVRP, and it is not necessary for the busses to start
there route at the depot, plant. A is the set of arcs between nodes and K is the set of busses,
K ={1,2,..,N}.

To construct a model of the bus route problem, three variables have to be defined.

Name | Description
xf] The arc between ¢ and j, equal to 1 if the arc is driven, by bus k, else it is equal to
0.
Yi A binary number equal to 1 if node 7 is visited else it is 0
sf This is the stopping time for bus k at node 1.

The time, sf, is defined as the time when bus k stops at node ¢ and is therefore dependant
on previous s;? if the bus stopped at node j € L. Also there are a few constants that need to
be defined before the model is presented. Constants are all represent with the Greek sympols

except for the upper.
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Name | Description

Ti j The travel time between nodes ¢ and j.

0% The profit for stopping at node 1.

0; Indicates penalty for stopping at any given node, i.e. the time it takes to stop at any
give pick up point. In most cases there is no penalty for stopping at the source and
sink.

This is a bonus factor for profits, a bonus received when a pick up point is chosen.
This is a bonus factor for not using a bus.

An upper time limit is put on each route, so that travel time for a single employee
is not greater than this number.

Maximum number of buses. It is not desired to use more buses than are currently in
use.

Z Ewe

Note that 79; = 0, when ¢ € V, because it is not necessary for a bus to drive from node 0,
but it helps to start there when constructing the routes. Profit can be determined by looking
at: population of area, number of employees living close to the node, parking, bus stops or
commerce in the area. Some or all of these factors will be used when determining the profit of
a node. The solution will try to maximize the profit collected, while minimizing the number
of buses used. Time will be a constraint rather than part of the objective function, this is also
done in TOP.

A profit, of §is gained by not using a bus. Therefore when a bus is not used it travels straight
form source to sink, x'&nH =1

The bus route problem might be applicable in other cases. In these other applications some
of these constants might be unnecessary, or others might need to be added. This will depend
entirely on the problem the model is applied to. Also cost may vary depending on time of
day, or if there is a holiday. This is because a cost of using a bus can have many factors. The
greatest of these is probably the start up cost for a single bus. Costs can be considered as
many things for example maintenance, driver salary and bus company profit. Also in some
cases companies may charge for each kilometer or each liter of gasoline used.

2.3.1 Objective Function

The objective function for the bus route problem is now put forth.

mar Y =ay ¢y + 0>, xlg,n+1

There are two factors in the objective function. The first half of the equation shows the profits
gained stopping at a certain node and that is then multiplied with a bonus factor. The second
is a positive contribution for every bus not used, x’&nﬂ =1 and all other xfj = 0, that is then
multiplied with a bonus factor. The bonus factor represents for excample the cost of a single
bus, 8, or the importance of a single profit point, a.

2.3.2 Constraints

Here are the constraints constructed for the bus route problem.
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S>> b=y Viev (2.3.1)

keK jeV\{i}

SN aki=y Viev (2.3.2)

keKieV\{j}

These two constraints (2.3.1) and (2.3.2) say that if y; = 1, for ¢ € L, then the node is entered
and exited.

2g(s§ +105) <sj  VkeKandjeV (2.3.3)
b (sF+0; +7j) < s VhkeKieLandjeV (2.3.4)

These constraints (2.3.3) and (2.3.4) ensures that if a bus travels between ¢ and j, on route k,
then the stopping time on location ¢ is constraint to the previous time the bus has travelled.

i <M VkeK (2.3.5)

Constraint (2.3.5) does not allow any route to have a travel time greater than M.

SN akhi<1 Viel (2.3.6)

keK jeV

Constraint (2.3.5) restricts more than one bus driving between ¢ and j.

S at;=1 VkeK (2.3.7)
jeVv

Constraint (2.3.7) ensures that a bus drives out of the factory.

doah, = af;=0 Vhel ke K (2.3.8)
i€V JjeEV

Here in equation (2.3.8) it is made sure that if a bus drives into a node it is required to drive
out of it as well, if the node is in the set of locations (pickup points).

> af, =1 VkeK (2.3.9)
1EN

Constraint (2.3.9) requires all buses to end there routes at the factory.

xﬁjg% VkeKicV,jeV (2.3.10)

In (2.3.10) s bus must travel for a certain amount of time, a, before stoping at a new pickup
point.
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2.3.3 Linearity

The model, as presented in the previous section, is not linear and therefore some changes have
to be made if it is to be solved in GAMS!. The non-linearity can be found in equations (2.3.3)
and (2.3.4), where two variables are multiplied. To ensure linearity the changes listed below

)

have to be applied, to the model.

s6=0 Vk € K
sttmy—si=(1-2)W VEkEKjeV
s;+0+T;— sk =(1—ay)W VkeK,ic€Ljel
SF At Tint1 — sh = (1= 2iny)W Vke KieV

Here W is a large number and W > |V|. Other constraints are the same as in the previous
section. Although when dealing with a GAMS model other constraints have to be added:

S afp=0 (2.3.15)

i€V keK
SO ak ;=0 (2.3.16)
JEV kEK
> ah=0 (2.3.17)
i€V keK

These constraint ensure that a node does not visit itself, that no one can return to the source
and that no one can leave the sink.

2.3.4 Upper Bounds
First and the most obvious upper bound to the problem is to let one route visit all the points.
UB=> ¢i+B(K|-1) (2.3.18)
eV

This upper bound requirs one bus to collect all the profits froom every node. All profits
are represented by the first half of equation (2.3.18) and if only one bus is used then a profit
of B(|K| — 1) is collected from the unused buses.

Relaxations to travel time

The upper bound in (2.3.18) is the same for all values of M. Let us now incorporate M into
the upper bound. It is known that traveling further than M from the depot is impossible. Let
us now define Vi as the set of all nodes closer than M to the depot. The new upper bound is

> ¢+ B(K|-1) (2.3.19)

1€V

'GAMS is a programming language used to solve linear models in operation research.
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This upper bound, equation (2.3.19) does not allow profit outside the radius of maximum
route length. All profit within that radius, of maximum route length, is collected with a single
bus.

2.4 Review of Relevant Problems

The bus route problem focuses on routes that make there way through a number of pick up
points before finally stopping at the last point, known as the depot. This is similar to a well
known problem called the travelling salesman problem or TSP.

2.4.1 TSP

TSP tries to find the optimal, shortest, route from a source through a number of nodes and
back to the source. A travelling salesman leaving from New York and visiting all the major
cities on the east cost, of the USA, has to find the best route to travel and then return home
again, hence the name travelling salesman problem.

This problem is, perhaps, the best known problem in operations research. For this problem a
binary matrix is defined, x;;.

e 1 If one travels from node ¢ to node j
" 0 If one does not travel from node i to node j

Also a cost, ¢;j, is defined. This is the cost of travelling from node 7 to node j. The set of
nodes is V and A is the set of all arcs. A model, as defined in Wosley [15] is:

minZZciszj (241)

i€V jeV

st Yainti=1 VeV (2.4.2)
Szt =1 VjEV (2.4.3)

Dies 2jgsTij =1 for SCV, S#0 (2.4.4)

ziy; € {0,1} VieV,VjeV (2.4.5)

cij >0 VieV,VjeV (2.4.6)

Constraints (2.4.2) and (2.4.3) ensure that every node is both entered and exited. The most
complicated constraint is (2.4.4) for it is a sub tour elimination constraint. The number of
sub tour elimination constraints raises dramaticly with the number of nodes assigned to the
problem.

The number of possible solutions for TSP, with n nodes, is (n—1)!. Half that for the symmetric
problem. The TSP problem is NP-hard [6] Wosley [15] defines NP-hard in the follwoing way:
"NP s a class of decision problems with the property that: for any instance for wich the an-
swer is YES, there is a "short" (polynomial) proof of the YES." Heuristics such as Lagrangian
heuristic and meta heuristics, such as tabu search, are often used to solve TSP. The largest
TSP problem solved, to date, found the shortest path between 24,978 cities in Sweden [6]. To
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find the solution cutting plain and branch-and-cut processes were used and it took almost a
year to find the final solution [6].

As can be seen there are certain similarities between the travelling salesman problem and
the bus route problem. Although in the latter it is not necessary to stop at all points but that
is the case with TSP. Therefore in the bus route problem one must determine which pick up
points are important and which are not. A variation of the travelling salesman problem called
the price collecting travelling salesman problem, PCTSP, deals with this problem.

2.4.2 PCTSP

In PCTSP, each node is assigned a prize, or profit, gained when the node is visited. Not all
nodes have to be visited in PCTSP but a penalty is paid for every node skipped. As in TSP
V' is the set of all nodes.

Name | Description
Tij Is equall to 1 if the path between i and j is used otherwise it is 0.
Yi A binary number equal to 1 if node 7 is visited else it is 0
Vi Penalty to be paid if node ¢ is not visited.
i Prize gained from visiting node .
Cij Cost of travelling from 4 to j.
B A minimum amount of collected prizes.

The PCTSP problem as presented? in Dell’Amico [8]:

minz Z Cij%ij + Z’yz(l — yz) (247)

1€V jeV\i eV
s. t. djevi i = Yi VieV (2.4.8)
YievyTii =Y  VJEV (2.4.9)
g =1 (2.4.10)
Yicybiy; = B VieV (2.4.11)
Yies 2jen\sTij = Yn YREV\landVSCV:1€SheV\S (24.12)
vy € {0,1} Vie N,VjeN (2.4.13)
yi € {0,1} Vie N (2.4.14)
( )

Constraints (2.4.8) and (2.4.9) ensure that if a node is entered it is also exited. Constraint
(2.4.10) forces the depot to be included in the cycle. In (2.4.11) a certain amount of prizes has
to be gathered, a goal is defined, and (2.4.12) is a sub tour elimination constraint.

PCTSP was introduced by Balas and Martin in connection with operations of a steel
rolling mill. A variant of PCTSP is the profitable tour problem, PTP. When a PTP model is

2Similar mathematical presentations were presented in Balas [1] and Dell’Amico [9], but a slightly different
model was presented in Chaves [4]
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constructed it is essentially the same as PCTSP except (2.4.10) and (2.4.11) are removed and
vi=0forallieV [9].

Many methods have been used to solve PCTSP for example Lagrangian heuristic [8] or hybrid
algorithms [4].

In comparison the bus route problem and PCTSP are similar but PCTSP only allows a single
route to visit pick up points. The problem presented by ALCAN can have up to five routes.
A well know problem in operations research deals with multiple routes, that problem is called
the vehicle routing problem or VRP.

2.4.3 Vehicle Routing Problem

Allocating more than one route to a number of nodes, is generally called the vehicle routing
problem.

Name | Description

wf] Is equal to one if route k travels from 4 to j and 0 otherwise.
i Penalty to be paid if node 7 is not visited.

i Prize gained from visiting node .

Cij Cost of travelling from 4 to j.

B A minimum amount of collected prizes.

Routing problems are characteristically difficult to represent concisely in optimization models
[12]. These problems are often very useful in the real world. A mathematical model is presented

min » "N eyl (2.4.16)

k€K i€V jeV

in the following way:

Here K is the set of routes and |K| = N while V is the set of nodes were |V| = n. In this
problem the depot is presented by source node, ¢ = 0, and a sink node, i = n.

vt = Yievai; =0 YheV\{0,n}, ke K (2.4.17)
ke =1 Vie V\{0},Vj € V\ {n} (2.4.18)

Dy T =1 Vke K (2.4.19)
Sievat; =1 Vke K (2.4.20)
Dokek 2ies 2jev\sTij =1 VSCV:0€SneS (2.4.21)
zj; € {0,1} VieV,VieVke K (2.4.22)

The first constraint (2.4.17) ensures that all nodes entered are exited. The second constraint
(2.4.18) restricts more than one vehicle visiting any node. Then constraints (2.4.19) and
(2.4.20) force all routes to leave the source and enter the sink. The subtour elimination con-
straint is presented in (2.4.21) and lastly (2.4.22) gives xfj a binary value.
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The VRP is widely used in the real world. The best example is the delivery of goods from
suppliers to customers. Here the number of vehicles and capacity of vehicles can be a factor.
These problems are usually solved with a tabu search or other heuristics.

The VRP allows the use of more than one routes but the method requires each route to have
the same point of origin, called a source. The routes visit all points in V' but must end at the
same point they started from. When the routes return the source point is sometimes called a
sink, this is the same location but it has two names, source and sink. In the bus route problem
this is not the case, a bus can start at any node and then make its way to the depot. A
variation of VRP uses the same principle. That variation of VRP is called the open vehicle
routing problem or OVRP.

2.4.4 Open Vehicle Routing Problem

OVRP, is similar to the vehicle routing problem except when drivers have visited all nodes
they do not need to return to the depot. This is similar to the bus route problem except there
the bus starts at the last node and makes its way back to the depot. OVRP uses a set of
Hamiltonian paths while VRP uses a Hamiltonian cycles [3]. Both a Hamiltonian cycle and a
Hamiltonian path are defined in [14] as follows:

Before defining a path or a cycle a walk must first be defined. G is a graph, a walk
in G is a sequence of nodes and arcs. A path is a walk with no repeated nodes
and a trail is a walk within repeated arcs. Note that all paths are trails but not
all trails are paths. A circuit is a closed trail but not a path. A cycle is defined as
a circuit with at least one arc and has one repeated node is node; = node,,.

In OVRP the drivers start at the depot and then finish at the last customer node. There
are normally certain constraints applied to this problem. A vehicle has usually a maximum
predetermined capacity and this capacity cannot be exceeded by the demand of the costumer
nodes, on the route. Other constraints may also apply, for example a maximum number of
vehicles or the maximum length of any single route. The OVRP has not been as extensively
studied as VRP [3]. It was first mentioned, according to [3], in 1981 by Scharge in an article
dedicated to the description of realistic routing problems. The mathematical formulation of
OVRP is the same as for VRP except cp; =0, Vj € V.

OVRP is used for a number of problems, for example the school bus problem [17]. In that
problem a route for school buses is determined. In [17]| tabu search is used to solve the prob-
lem. Other algorithms, according to [16], that have been used include: list-based threshold
accepting, BoneRoute meta heuristic and record to record travel heuristic. The last one is a
deterministic variant of simulated annealing.

The OVRP has similarities with the bus route problem but it has to visit all points in V.
In the bus route problem one is allowed to skip some nodes, pick up points, but this is not
possible in the OVRP. The bus route problem does not have to visit all nodes, it does not have
to begin at the source and it has to choose nodes for there importance. A problem similar to
this is the team orienteering problem, or TOP.
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2.4.5 Team Orienteering Problem

The team orienteering problem, or TOP, is a combination of PCTSP and VRP. The problem
defines a set of nodes V', a set of arcs A and a set of routes K, were |[V| =n and |[K| = N. In
this problem N routes visit n points, but does not have to stop at all points; each point has a
service time and a profit.

Name | Description

k

z7; | The number of times edge (i,j) transverses with vehicle k.

Yik A binary number equal to 1 if node ¢ is visited by route k otherwise it is 0, i € V'
and k € K

d;j As the distance between two points and (i,j) € A.

Sq Servise time ate vertex i, 7 € V.

i The profit received for node i, i € V.
M The total duration of each tour.

This is in many ways similar to the bus route problem as a profit is needed for every node to
determine which are to be visited. The TOP problem as presented in [13]:

n—1 N
maXZZpiyik (2.4.23)
i=1 k=1
8. t. Z;:% Zév:1 w'éj =2N (2.4.24)
S T i T = 2k VieV\{nkkeK (2.4.25)
s D j>i dz‘jx% +3 M sk <M ke K (2.4.26)
Sl vik < 1 i e V\ {0,n} (2.4.27)
Sijevici th <|U[-1 UcV\{0},n—2>|U|>2kc [2.4.28)
ay; € {0,1,2} VieV\{o,nl,jeV,ke K (2.4.29)
x5 € {0,1} VjieV\{nhkekK (2.4.30)
yir € {0,1} Vie N (2.4.31)
(2.4.32)

The first constraint (2.4.24) ensures that N tours leave the source node and then return. To
ensure connection of selected nodes is (2.4.25) and (2.4.26) limits the length of any single
tour. The constraint (2.4.27) prevents more than one route going through a single node, other
than the depot. The sub-tour elimination constraint is (2.4.28). The last three constraint show
allowed values for the variables.

The TOP lets one construct N routes through n — 1 nodes and the depot. Stopping at any
single point gives a penalty or service time. This could for example be used for routing tech-
nicians to service customers at geographically distributed positions.

The TOP is a NP-hard problem as it is a varition of the selective traveling salesman prob-
lem [13]. Methods used to solve TOP include tabu search [13], greedy construction procedure
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and 5-step heuristic. A single route TOP, called the orienteering problem or selective traveling
salesman problem, has been solved with up to 500 nodes. This was done using branch-and-
bound and branch-and-cut [13]. Some times TOP is referred to as multiple tour maximum
collection problem. Of all the different problems presented the TOP is most similar to the bus
route problem.

2.5 Review of Methods

2.5.1 A Lagrangian heuristic for the Prize Collecting Travelling Salesman
Problem [8]

An article inspecting how to solve PCTSP with a Lagrangian heuristic by M. Dell’Amico, F.
Maffioli and A. Sciomachen. A good introduction to the PCTSP. The underlying cunstruc-
tion of the bus route problem, presented in the report, is based in partially on the PCTSP
model in this article. The problem presented in the article is minimized. Therefore to assist in
determining the valitity of calculated solutions a lower bound was also calculated. This lower
bound is found in [9]. A feasible solution is found by using Adding-Nodes Procedure where
two rules, R1 and R2, are compared. From these comparisons R2 was shown to be better in
this instance. This feasible solution is then defined as an upper bound as no feasible soultion
with a lower value objective value is know.

To improve upon feasible solutions two methods are combined. The first was the so called
Extension phase tries to improve the overall profit of the current cycle. The second method was
called Collapse phase and it tries to remove the most expensive node each time. Together the
method was called Extension and Collapse. Lastly a Lagragian heuristic was developed so that
Extension and Collapse was applied in each computation of the Lagrangian multiplier. This
method was then used on a few computational experiments. The conclusion of the experiments
was that with increased profit, that needs to be collected, the computational time required
increased while the quality of the solutions decreases. This quality of solutions was mesured
as the ratio between upper bound and lower bound.

2.5.2 Price Collecting Travelling Salesman Problem [1]

This is an article by E. Balas concerning the price collecting travelling salesman problem. It
was Balas who, along with Martin, first introduced the PCTSP. There is an introduction to
PCTSP in its first section. After this the article becomes very mathematical and complicated.

The main focus of this article is to discuss the structural properties of the PCTSP polytope,
the convex hull of the solutions to the PCTSP.

2.5.3 On Prize-Collecting Tours and The Asymmetric Travelling Salesman
Problem [9]

An article by M. Dell’Amico, F. Maffioli and P. Varbrand. The article contains a short in-
troduction to PCTSP and a model is presented. There is also a definition for PTP, profitable
tour problem; and APTP, asymmetric profitable tour problem. This article featured a good
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section on tests which proved to be helpful in conducting tests for the model inspected in this
report. Test were randomly generated.

The article defines PTP by removing certain constraints from PCTSP and allowing the empty
solution. A simple heuristic is defined to solve PTP. It is also discussed how the PTP can be
polynomialy reduced to Asymmetric TSP on a large diagraph. Three previously discovered
lower bounds for PCTSP are presented and also a new lower bound for PCTSP is put forth.
For asymmetric PTP two lower bounds are presented by removing constraints. The article ends
with a section on computational experiments both for PTP and PCTSP. Were all instances
were solved in less than one minute of CPU time. It was also concluded, by inspecting ratios
between lower bounds, that solutions to large asymmetric PTP problems were good.

2.5.4 Hybrid algorithms with detection of promising areas for the prize
collecting travelling salesman problem [4]

This article by Agusto and Lorena on PCTSP presents some ideas of clustering, using evolu-
tionary cluster search and a hybrid approach called CS*. This hybrid approach was constructed
from Greedy Randomized Adaptive Search Procedure, or GRASP, and Variable neighbour-
hood search. The methods are given a short description and how they can solve PCTSP is
explained. These ideas could be useful in further development of insert moves or bus moves.

The article starts with an introduction where PCTSP is introduced and a short history of the
problem is given. The next section puts forth a mathematical model of PCTSP, this model is
a little different from the one in [8]. In the third section ECS, evolutionary cluster search, and
its components, evolutionary algorithm, interactive clustering, analyzer module and a local
search; are explained. Then a section describes how ECS is applied for PCTSP. The hybrid
approach called CS* is then applied to PCTSP. In this section a few interesting moves are
defined. These 6 moves were different from the ones used in this project. One move called my,
is comparable with insert move 13%. Other moves were similar but often used more nodes, for
example my inserted 2 nodes instead of one. The last section is on computational results and
show solution from ECS and CS*. The results from these two are also compared to results
from a CPLEX 7.5 solver. In conclusion the authors find that CS* returns better solutions
and use of these methods is validated.

2.5.5 A tabu search algorithm for the open vehicle routing problem [3]

This article by Brandao contains a good introduction to OVRP and compares it to VRP.
Most of the information in the section on OVRP came from this source. There is also a short
introduction on the history of OVRP and relatively few, compared to VRP, have studied
it. The meta-heuristic used in the article is tabu search. The importance of a good initial
solution is discussed and how to attain such a solution, the methods used for this are nearest
neighbour heuristic, or NNH, and a solution based on a pseudo lower bound. The pseudo lower
bound is a method based on minimum cost spanning tree with degree k subject to relaxations.
Initial solutions given with an insertion heuristic and a lower bound were experimented upon.
Before applying the tabu search to this initial solution the solution is submitted to one of two
methods: nearest neighbour or unstringing and stringing method. This was done to improve
the solution. In the tabu search swap and insert moves are used. The goal of the algorithm was

3The moves and neighborhoods are defined in the next section.
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to minimize the number of routes and therefore new routes could not be created. A method
was included that tried to join the two routes with the lowest demand. This is clever and
could be implemented to the algorithm used in the report in the future. In conclusion it is
stated that the algorithm gave good solutions for a very short computing time, outperforming
former algorithms such as the one proposed by Sariklis and Powell. For example the method
of using psuedo lower bound gave an average travel time of 416.1 while Sariklis and Powell
algorithm had an average travel time of 488.2. These are from calculations with 50 point data
sets and the differance in running times was 88.6 seconds, Sariklis and Powell method solved
the problem in 0.22 seconds.

2.5.6 Open Vehicle Routing Problem with Time Deadlines: Solutions Meth-
ods and Application [17]

This article, by Aksen, Aras and Ozyurt; focused on the OVRP with time deadlines, or OVRP-
TD. Clarke-Wright parallel saving algorithm modified for OVRP was implemented along with
greedy nearest neighbour algorithm and a tabu search heuristic. The article also contains a
short description for most of these methods. The article explained how Clark-Wright, CW,
is modified for OVRP-TD, mostly by setting certain distances to infinity. Then CW and the
nearest neighbour algorithm were used to find an initial solution. There neighbourhood con-
sisted of three moves, which were 1-0 move, 1-1 exchange and 2-Opt move. These three moves
are the same as the swap moves described in this report. Local search with these moves is
incorporated into TS as a tool of local post optimization, LPO. The chapter on computational
results solving five random results and one real problem , a school bus problem in Istanbul. In
conclusion it was apparent that CW initial solution performed better than classical heuristics
with LPO. Overall this is a very short article that does not go much into details.

2.5.7 A general heuristic for vehicle routing problems [11]

This article, by Pisinger and Ropke, is a large, extensive and takes on various vehicle routing
problems. VRP with time windows, capacitated VRP, multi-depot VRP, site dependant VRP
and OVRP are all discussed and solved by transforming each instance into a single type
of model. The model is called Rich Pick up and Delivery Problem with Time windows, or
RPDPTW. There is a mathematical presentation of this model that is a little confusing, on
account of the number of sets involved. All the models RPDPTW solves are VRP models and
therfore have to visit all nodes presented in the system, which means the RPDPTW can not
be appplied to the bus route problem. Next there is a section on how one transforms these
five different VRP problems into a RPDPTW. This article and the model presented are good
reading material when presented with a problem as discussed in this report. The article also
explains different objectives of its model. The first objective is to minimize the number of
vehicles while the second objective is to minimize the travel distance. This is in accordance
with the problem presented in this report where the first objective is to visit as many nodes
as possible, with given travel constraints, while using as few buses as possible and the second
objective is to minimize the travel distance/time. The heuristic used to solve RPDPTW is
adaptive large neighbourhood search, ALNS, a method that uses two, a constructive and a
destructive, neighbourhoods to find an optimal solution. It is explained how one applies the
ALNS to RPDPTW and then there is a large section on computational results. In conclusion
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it is stated that the ALNS should be considered as one of the standard frameworks for solving
large-sized optimization problems, as the method is very general and gave good results.

2.5.8 Open vehicle routing problem with driver nodes and time dead-
lines [16]

This article looks at a particular variant of the OVRP where the vehicles, routes, start at the
depot and visit a number of nodes but all routes are required to end at certain types of nodes
called driver nodes, this problem also has time deadlines that have to be kept. A mathematical
model is presented for this particular type of problem. The problem is quite different from the
one presented in this report but as with articles on similar subjects it is worth a look to get
a better understanding on OVRP.

The introduction section in this article, by Aksen, Aras and Ozyurt, contains an excellent
historical overview of OVRP. Instrumental articles and methods used are mentioned. The
authors also state that they know of no other article where a similar problem, OVRP using
driver nodes, is tackled. To solve the problem a new heuristic called open tabu search is used.
It makes use of three move operators in generating the solutions in the neighbourhood of the
current solution. These moves are the same as defined in [17]. The initial solution is found
with a nearest insertion heuristic and a Clark-Wright parallel saving algorithm. The problem
called OVRP-d is mathematically presented as a mixed integer problem in the second section.
This is clearly presented and not complicated. The next section is on the tabu search algorithm
previously described. The forth section is on computational results where the open tabu search,
OTS, is compared to various classical heuristics. Then in conclusion it is determined that the
new heuristic, OTS, gives higher quality solutions then the classical heuristics.

2.5.9 A TABU Search Heuristic for the Team Orienteering Problem [13]

This article, by Tand and Miller-Hooks, on the team orienteering problem was very useful for
the project. The team orienteering problem, TOP, is very similar to the model presented in
this report. Also the authors supplied data so comparison tests, between their results and the
algorithm in this project, could be performed.

The article starts out with a good introduction to TOP. The connection between TOP and
several other problems is discussed. Also the method that have be inspected when solving
TOP are listed, simulated annealing is not one of them. The next section puts forth the
mathematical model in a very straight forward manner. The article explains how the initial
solution is calculated with a method known as adaptive memory procedure, AMP. This is an
excellent method for calculating an initial solution, although might in some cases be prob-
lematic if the best solution is using no routes*. Interestingly the tabu search algorithm uses
intermediate infeasible solutions to aid in the search process, by moving solutions out of local
optimums. Other methods like small and large neighbourhood search and methods used for
tour improvement are also discussed. The section on computational results shows comparison
between TABU search, 5-step heuristic and a version of the Tsiligirides heuristic extended for
TOP by Chao. In conclusion it is noted that AMP and its mechanism, alternating between
small and large neighbourhoods stages and using both random insertion and greedy procedures
led to an effective tabu search algorithm.

*For example in the algorithm used in this project.
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Chapter 3

Simulated Annealing for the BRP

3.1 Simulated Annealing Algorithm

Now the model for the bus route problem has been put forth, similar problems explored and
solution methods for those methods discussed. The other problems, that were compared to
BRP are solved with a heuristic or a meta-heuristic methods. Also in [13] it is shown that
TOP is NP-hard as it is a special case of the selective travelling salesman problem®. Now if, in
the bus route problem, 3 = 0 the we have the TOP problem with 7q; = 0, Vj € V. Therfore
the bus route problem is NP hard as well. In light of this it is necessary to choose a heuristic or
meta heuristic to solve the problem. In computer science one strives to find as good a soltution
as possible using as short a running time as possible. A heuristic is an algorithm that sacrifices
one or both of these goals.

Meta-heuristic is a method used for solving a class of computational problems, which are com-
mon in operations research. To find the best method suited for solving the BRP a simple but
effective meta-heuristic was needed. Simulated annealing is one such method and it has given
good results in the past, when dealing with similar projects. Therefore simulated annealing
algorithm was used to solve the BRP.

The idea of simulated annealing is to look at different solutions and compare them and accept
the better solution, except in certain instances a worse solution may be accepted. A pseudo
code of simulated annealing is given in [15] and it is presented below:

'Selective TSP is a variation of PCTSP.
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Pseudo Code
1. Get an initial solution S.

2. Get an initial temperature, Ty, and a reduction factor, r, with
0<r<l.

3. While not yet frozen do the following:

(a) Perform the following loop L times.
i. Pick a random neighbor S’ of S.
ii. Let A= f(S") — f(9).
iii. f A>set S’ =S5.
iv. If A < 0 set S’ = S with probability e=2/7".
(b) Set T« rT. Reduce temperature.

4. Return the best solution found.

The value of T is used to calculated e=2/7, this is the probability that determines if a worse
solution will be accepted or not. The reduction factor, r, determines how fast the values of
T will drop in each iteration. This along with a frozen value and stopping criteria is called a
cooling schedule. There are many different types of cooling schedules and some of them are
discussed in [10]. The basic idea of the cooling schedule is to minimize the likelihood of the
optimal value being a local optima and not a global optima.

The cooling schedule chosen in this project is the one described in Wosley [15]. Most cooling
scheduls would be effective for this problem, therefore the chosen schedule is just as good.

3.1.1 Neighborhoods

In the description of the simulated annealing algortim a solution S’ is defined as a neighbor
of S. This means that a similar solution to S, containing almost all the same nodes as S. This
similar solution S’ is there fore defined in the neighborhood of S. In problems such as the
BRP there are a few common neighborhoods. These are:

1. The insert move: One, or more, nodes are added to a possible solution. That is if the
algorithm chooses to add nodey, h € V, then nodey, is in S’ but not in S. Therefore
nodeyp, has been inserted into the possible solution. In this report this move is reffered to
as insert move 11,12,14 and 15.

(a) insert move 11: Randomly selects an unused node into the solution.

(b) insert move 12: Selects the highest profit unused node with the lowest possible
node number?.

(c) insert move 14: Selects the highest profit node farthest from the depot.
(d) insert move 15: Selects the highest profit node closest to the depot.

*Nodes have number ranging from 0 to |V|.
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2. 1-1 move: Two selected nodes, that are in S, are swaped by preserving there original
positions. In this report this move is reffered to as swap move 11.

3. Imsert and Remove: One selected node is removed from the route and another unused
node is inserted into the route. In this report this move is referred to as insert move 13.

Other possible neighborhoods are:

1. Swap move 21: Here two selected nodes, in two separate routes, are randomly chosen
and exchanged, preserving their original possition.

2. Swap move 31: Here a selected node is removed from a route and inserted randomly
into another separated route.

3. Bus move: If there exists a route containing no nodes then a random number of unused
nodes will be selected and inserted into that route.

These six moves form the neighborhood used in the simulated annealing algorithm. The first
three were chosen as they are often used in the literature. The different types of insert moves
were devised as it is one of the, if not the most, important moves. This is manly because
the initial guess is the empty solution, no active routes, and therfore the algorithm has to
construct the routes. Insert moves add new nodes to routes thereby increasing there profit
and the value of the objective function.

When defining insert move 14 one could have defined two parameters determining what is
high profit and what is far from the depot. Instead a more linear approach was chosen, simply
as it was more straight forward and easier to program. This linear approch defined the profit
of anode as ¢; and the distance between node; and the depot was defined as 79 ;. To determine
which node to choose insert move 14 inspected ¢;7 ;.

Similarly two parameters could have been defined for insert move 15, determining what is
high profit and what is close to the depot. A linear approach was also used in this case as it
was logical and easy to program. The values inspected by insert move 15, to determin what
node to choose, was the ratio ¢; /7.

In insert move 13 the lowest profit node was removed from a randomly selected route. Then
another node, chose randomly, was inserted into the selected route. It might be wiser to re-
move a random node rather than one with low importance, but this was not implemented due
to time constraints.

The bus move may be a bit crude but it was devised to speed things along in the first iter-
ations of simulated annealing. By using the bus mowve entire routes were added and thereby
decreasing the number of iterations needed to construct them simply by using insert move.

The swap move 31 was deemed necessary. None of the other mowves could assist in the removal
of a route so this one was constructed. Other possibilities were inspected, for example remov-
ing a whole route and distributing its nodes to the remaining routes. This was not considered
optimal and could potentially do more harm than good.
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Other swap moves were also used, called swap move 11 and 12. They moved nodes around in
the routes thereby attempting to decrease travel time.

3.1.2 Adapting SA for BRP

In simulated annealing one inspects the objective value, always accepting a better solution
and with a probabilty of e=2/T accepting a worse solution. In the BRP the objective function
is not the only thing inspected. Let us define w; as the combined route lengths of all routes
in a solution at iteration ¢. Then if A = 0 there is a chance that wpew < weig. This new
solution S’, with travel time wye,, may not return a higher objective value but is none the less
a better solution. Therefore small changes were made to the simulated annealing algorithm.
This update was introduced late in the project and therefore not implemented in all tests,
before this was programmed the algorithm used a simulated annealing algorithm with only
one A. This updated version of the algorithm is from here on called the updated simulated
annealing algorithm.

Pseudo Code

1. Get an initial solution S.

2. Get an initial temperature, Ty, and a reduction factor, r, with
O<r<l.

3. While not yet frozen, maximum number of iterations is not reached,
do the following:

(a) Perform the following loop L times.

i. Pick a random neighbor S’ of S. Where one of the
neighborhoods is chosen.

ii. Let A = f(S) = f(9).

iii. If time constraints are not broken then do the following:
A IfA>0set S'=S.
B. If A =0 and wold > wnew set S' = S.
C. If A =0 and wold < wnew set S’ = S with probability

e~ B2/T,
D. If A < 0set S’ = S with probability e~/
(b) Set T« rT. Reduce temperature.

4. Return a solution.

The cooling schedule used in this pseudo code is the one used in Wosley [15]. The initial values
of parametere, of the cooling schedule, were set to Ty = 3000, » = 0.5 and the stopping criteria
F = 0. The author had little experience with this to begin with that led to this bad choice.
In Wosley [15] it says that the reduction factor is a positive number less than one, 0 < r < 1.
Therfore an average of » = 0.5 was chosen.
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Figure 3.1: Shows how classes call other classes.

3.2 Implementation Details
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Programming was done in the Java programming language, as the author had previous expe-

rience with the language. It was decided that using CPLEX?, applicable with C and C-++,

would not be an option as ALCAN did not have the program and a commercial license is

expensive.

The algorithm is divided into a number of classes. Of the classes there are two most important:
SimulatedAnnealing.java and moves.java. These two classes are the core of the algorithm. One

can see how the classes are called in Figure 3.2.

3CPLEX is an optimization software package.
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3.3 Classes

All the classes have different roles in the whole algorithm, they can all be seen in appendix
C.2.

3.3.1 Run java

This class is the main file, it is used when the algorithm is to be run. In this class infor-
mation defined from input files, using GetDataFrom* java; the initial guess is defined, in Ini-
tialguess.java; and simulated annealing is performed, in SimulatedAnnealing.java. The whole
run of the algorithm is timed to see how long a calculation takes. Many of the constants used
in the program are defined in Run.java and therefore it is crucial to change the file if a different
data set is being tested.

The initial guess generated in this project was an empty set, all buses driving from source
to sink. There are other possibilities for generating this guess, for example in [13] a method
called adaptive memory procedure is used to find initial guesses.

3.3.2 SimulatedAnnealing.java

This class is the core of the algorithm as it performs the simulated annealing. This class calls
moves.java, CalculateOpt.java and CalulatedTime.java. All of the time constraint are handled
in this clags. The temperature, reduction factor, frozen factor, maximum number of iterations
and the maximum travel time are defined in this class.

3.3.3 Moves.java

This class calls the neighborhood classes, UnvisitedPoints.java and NumberOfBuses.java. In
this class the probabilities of certain neighborhoods are determined. This is done by using a
probability matrix, P.

3.3.4 Neighborhood Classes

There are six previously defined neighborhoods.

In BusMove.java a bus mowve is implemented. If the new proposed solution is infeasible, for
example the route too long, SimulatedAnnealing.java will reject it.

The three types of swap moves are called in SwapMovell.java, SwapMove21.java and Swap-
Move31l.java. As with the bus mowve if any of the solutions calculated by the swap mowves are
infeasible SimulatedAnnealing.java will reject it.

There are four different insert moves (11, 12, 14 and 15). These are defined in InsertMovell.java,
InsertMovel?2.java, InsertMovel4.java and InsertMovelb.java. As with the othe moves if a solu-
tion is infeasible the soltuion is rejected. Which insert move is best suited for the algorithm
is determined in tests.
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InsertMovel3.java was created for a certain case. If an unimportant node was added to the
solution there would be a chance that this node would be removed and replaced with a more
important node.

3.3.5 Other Classes

Two classes called calculateTime.java and calculteOpt.java calculate the travel time of the routes
and the objective function. In calculatedOpt.java both constants in the objective function, «
and [, are defined.

NumberOfBuses.java is used to determine how many routes are currently active. This has to
be used for example in BusMove.java, because adding an already active route is impossible.

UnvisitedPoints.java is definitely the bottle neck of the program. It uses a triple for loop to
construct a vector of unused points. This is necessary in the program, for one cannot add a
point that is currently in use. The class uses the two dimentional matrix route to determine
which points are not in use. Route is a | K| x |V| matrix that shows the all the routes and the
points they visit. In an earlier version of UnvisitedPoints.java a vector called Y was used. This
version was simpler and faster but unfortunatetly because of inheritance factors in Java this
did not work. Future inspections of the program might fix the problem but in this project too
much time had been spent on the problem so it was left as is.

A second version of UnvisitedPoints.java was constructed that removed all points within a cer-
tain radius of a chosen node from the set of usable nodes.

Very late in the project’s process an important class was created called Decrease.java. The
objective of this class was to inspect which points where within radius M from the depot
and remove all other points. As it is impossible for a route to travel further than M, maxi-
mum route length, because all points at a further distance are unimportant. This class was a
great sucsess decreasing runtime from over 100 seconds to under 10 seconds in one instance?.
This class also provided better solutions. Unfortunatetly the class was introduced late in the
project so so it was not included in all tests, those test that used this class indicate so in there

introduction.

Programs were also constructed, during experiments, to run a number of tests consecutively.
These were all simple programs only constructed for optimal use of time.

‘Data set 50a, M = 20
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Chapter 4

Tests

4.1 Data Sets

There were 25 data sets and of those 22 were constructed. The other three were obtained data
sets from Tang and Miller-Hooks [13].

To verify the algorithm, used for solving the bus route problem, tests were implemented. Note
in this chapter 7;; are always Euclidian distances, also note that 79; = 0, foralli € V when
dealing with generated data sets. Also §;, penalty for stopping at a single node, can have
differrent values for all ¢ € L. In the test performed for constructed data sets §; = 1,Vi € L.
In test using obtaind data sets d; = 0 for all ¢ € L. For the depot dp = 0 and J,,+1 = 0 in all
tests.

4.1.1 Constructed Data sets

The constructed data sets are catagorized in to two types, the non-randomly constructed and
data sets and the randomly constructed data sets.

The non-randomly constructed data sets were situated in a graph of the scale 100 x 100. The
depot was defined as the center, (50,50), and had a number of routes in a certain direction.
The possible number of these routes was 3 and 4. A typical data set with three routes can
be seen in Figure 4.1. Each node was situated so that it had the coordinates (mg,m,), where
mg € Z4 and my € Z (both positive integer numbers). This means that when using three
routes, originating from the depot, the Euclidian distance between a point and its closest
neighbor was either 1 or 4/1 + 1. In the case were there were four routes, originating from the
depot, the distance between a point and ist closest menighbor was always 1.

Of the non-randomly generated data sets six had 50 points and six sets had 100. As these
data sets where supposed to be simple, to inspect if the algorithm works for the simple cases,
the profit of every node was the same, with a value of 10. This was perhaps a bit to simple
so a number of nodes had to be removed or have there profits decreased, otherwise the data
sets would ahve been to simple. Therefore a small number, 10%, of points were chosen. the
reason for choosing 10% is that 10% is sufficently small to change the data set but still retain
the original simplicity. This means that in a 100 points data set 10 were selected. Of these
ten points five were removed and five had there profits decreased to 1. When dealing with
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Figure 4.1: This is a test, type 1, with three routes and n points on each route.
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50 point data sets five points were selected, of these three were removed and two had there
profits decreased to 1.

The non-randomly generated data sets were named by three parameters. First was the number
of routes, second was the number of points and third was the data sets number among similar
data sets. Therefore a three route 50 point data set generated second, among other 50 point
three route data sets, was named: 350 b. There were only three similar data sets a,b and c.

The randomly generated data sets were devided into two subgroups, the 50 point data sets
and the 100 point data sets. The 50 point data sets were generated on a 50 x 50 graph, as
with the non-random data sets each coordinate consists of two positive integere numbers. In
the data sets the depot was defined in one corner, (50,50). This is similar to the location
of ALCAN aluminium plant with concern to Reykjavik. Of these 50 points each was given
a profit ranging from one to ten, One representing an node of unimportance and ten a node
of great importance. This scale was used because it has, in the past, been used in similar
situations with good result. These profits were randomly generated in Java.

The 100 point randomly generated data sets were situated on a 100 x 100 graph. The depot for
the 100 point data sets is defined as the point (50, 50). As with other data sets the coordinates
consisted of two positive integer numbers. Profits ranged from one to ten.

The randomly generated data sets were named according to there rank among similar data
sets and the number of points in them. The ranks were defined as a,b,c,d and e where a was
genrated first and e last. Therefore a 100 point data set genrated fourth was called data set 50c.

A subset of data set 50a was also constructed. This subset conssited of the 20 first points in
the data set 50a. The set was named data set 20.

4.1.2 Obtained Data Sets

When constructing computational experiments it is necessary to compare your results to
other similar methods. In this project the TOP was most similar to the BRP and thus ideal
for comparison. The authors of [13] were kind enough to send supply data sets so that a
comparison could be done. The three data sets used had 102 points, 32 points and 33 points.
All of these were randomly generated and had profits ranging from five to 50.

4.2 Cooling Schedule

In Simulated Annealing a cooling schedule with three parameters, must be implemented. These
three parameters are the temperature, T'; reduction factor, r; and the definition of frozen?,
F'. To find the best combination of these three parameters they must be tested. In one test
Tp = 3000 and r = 0.5 along with the forzen value of F' = 0 was used. This cooling schedule
is very fast as can be seen in Figure 4.2, so fast in fact it has nearly the same qualities as no
cooling schedule what so ever. Fortunatly it was only used in one test and unfortunatly due

'The was no reason given in [13] for the choice of these profits.
2A stopping criteria.
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Cooling Scedule, with T1=3000 and r=0.5
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Figure 4.2: Shows the cooling schedule with Ty = 3000 and r = 0.5, note that 1799 = 4.7332 -
10727,

to time constrants that test could not be repeated.

Now the initial solution to this problem is f(S) = | K|/ and if the first iteration is a insert
move, that chooses a node with profit ¢*, then the new solution is f(S’) = ¢* + (|K| — 1)4.
Now A = f(5") — f(S) = ¢* — 3. It is know that for all nodes in L, constructed data sets,
the profit p; € {1,2,3,...,10}. If values A are inspected, see Figure 4.3, ¢; = 5, for i € L, is
the most common value for profit, therfore A = —10 is the most common value for A. This is
only because ¢; = 5 is the most common value.

Somtimes, when a bus move is implemented, —5 < A < 0. The reason for this is that bus
mowve inserts more the one node into the solution.

An initial test with data set 50a determined a cooling shecule. That schedule was then retuned
with data set 50a and then again with data set 3_50_a.

In most test a value called residual ratio was inspected. This is now defined. Let us say that
Obj; is the result given by a single run and that the best known value is z. Then the residuals
are defined as:

ri=2z—0bj; YieT
Here T is the set of trials, for each individual M. So the residual ratio for each M is defined

as:
ZiET(Z — Obj;)
T

(4.2.1)
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M=50, 32925 values M=65, 44487 values M=80, 20008 values
10000 10000 10000
5000 I | I 5000 5000 I
0 0 0
-10 -5 0 -10 -5 0 -10 -5 0
M=95, 44702 values M=110, 44864 values M=125, 44858 values
10000 10000 10000
5000 5000 5000
0 0 0
-10 -5 0 -10 -5 0 -10 -5 0
M=140, 28301 values M=155, 44668 values M=170, 13011 values
10000 10000 10000
5000 5000 5000
0 0 0
-10 -5 0 -10 -5 0 -10 -5 0

Figure 4.3: Histograms for 50 points and 4 routes. Shows how many negative values, vertical
axis, of A, horizontal axis, were calculated.

Where |T'| is the number of trials for each individual M.

4.2.1 First Trials for Calculating a Cooling Schedule using Data Set 50a

To find the best Tj a set of possible T was constructed and tested on data set 50a. To begin
with the reduction factor was set to 1 — 10~ and the stopping criteria set to 1, so when the
temperature goes below 1 the algorithm will start using strictly local search. The values of Tj
tested were 28 and ranged from 6 to 10,000.

These initial values for r and F were found in a discared test using data set 50a. There 20
trials were used for each M.

After the finding a good initial temperature a good reduction factor was calculated. The new
better Ty = T;; was used and the stopping criteria was still kept at 1. There were 14 different
values of 7 tested ranging from 0.99 to 1 — 10~ along with r = 0.5.

To find good stopping criteria a test was performed inspecting different values of the factor
called frozen®. In this inspection the better values of Ty = T and r = r* were used. There

were 17 values inspected ranging from 10 to 101,

Each value was tested for 9 values of M, maximum route length, in these trials and each test

3The stopping criteria.
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was performed 50 times. The maximum number of routes was 3. In these test the updated
simulated annealing was used.

Results for Initial Temperature, Ty

To find the best initial temperature residual ratio was inspected. The reason is so that some
referance of the performance could be established. This was done by comparing all results
found from the data set 50a while M € {10, 20, 40, 50, 70, 80, 100, 130, 160}. At this time the
best known objective for these values of M and using three routes are shown in Table 4.2.

Table 4.1: Best known values for the data set 50a
M | 10]20] 40 | 50 | 70 | 80 | 100 | 130 | 160 |
OPT |45 [ 49 | 102 | 128 | 172 | 194 | 241 | 258 | 258 |

Table 4.2: Shows the best known objectives for data set 50a. For M = 130 and M = 160the
objective value is 258, which is the combined profit of all nodes in the data set.

Now to compare different temperatures plots were made of each. In these plot of the best
known objective value was compared to the average objective value obtained, with that ini-
tial temperature, and the residual ratio was also inspected. These figures can be viewed in
appendix D.2.1. As always the results with the result which gave the smallest residual ratio
was the one considered best. Four different temperatures and their results can be viewed in
Figure 4.4.

When these four graphs are compared it may be hard to see which one gives the best results.
So all residual ratio values were summed and the result giving the lowest value, for the sum,
is the best result. This, the sum with the lowest value, was found when Ty = 15. When all
temperatures were compared the solution was by far the lowest. The second lowest sum, of
residual ratios, was found when Ty = 19. If residual ratios, for all values of M, are summed
up then one can inspect how they change in connection with temperature in Figure 4.5. The
value for Ty = 15 is considerably lower than the other values and outside of the 10% interval.
The +10% intervale, from the mean, is to show more clearly which Ty stand out. Other plots
that show the same graph with the mean of all residual sums and a plot of all the residual
sums can be seen in the appendix.

For further trials, inspectinge the cooling schedule, Ty = 15 is used unless otherwise specified.

Results for Reduction Factor, r

All results from the test be seen in appendix D.2.2. Figure 4.6 shows the four best results,
these four have the lowest average value for there residual ratios. Of the four, and all other
inspected r values, the value » = 1 — 10! gives the lowest values of residual ratio.

Let us now inspect Figure 4.7. This shows the total sum of the residual ratios for each instance
and all M. The instances are {0.5,1 —1072,1—1073,1—-10"%,...1 =107 13,1 — 10~ '*}. When
this plot is compared to the one in Figure 4.5 one can see that they are not the same when
Tp =15 and r = 1—107Y, that is instance 7 in figure 4.7. This is due to the fact that there are
a lot of random factors in the algorithm. In Figure 4.7 the first instance of reduction factor
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Figure 4.4: Shows results for four different temperatures. Blues line and dots is the average
value and the calculated objectives, the red line is the best known objective and the green line
is the residual ratio.
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Figure 4.5: Shows the residual sum for some temperatures, blue line. The black line is the
average residual sum for temperatures, Ty € [6;20], green dots are mean+10%.
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r=1-10"%°, Residual sum=3.0115 r=1-10""2, Residual sum=2.9473
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Figure 4.6: Shows results for four different temperatures. Blues line and dots is the average
value and the calculated objective values, the red line is the best known objective and the
green line is the residual ratio.

is r = 0.5. One can see, from Figure 4.7, that it gives worse results than other instances of
reduction factor.
The reduction factor is now set to r = 1 — 10713 until a better value of r is found.

Results for Stopping Criteria, F

All results from the test can be seen in appendix ??. The four best results can be seen in
Figure 4.8 and the single best result found is the residual sum of 2.4320 when F' = 2. Again
though the random factors in the algorithm led to different results. If not then values calcu-
lated for F' = 1 should have given the same results as the ones calculated previously, when
ideal temperature and reduction factor were determined. This was not the case.

In Figure 4.9 a plot of the different residual sum compared with the different instances can be
seen. The instances are: F € {10,8,6,5,4,3,2,1,} and F € {1071,1072,1073,...1079,10710}.
In Figure 4.9 there is a drop in the values of residual sums in instances 5 and up. This means
that F' < 4 are better stopping criteria than F' > 4. Therefore the average value for instances
higher than 5 was inspected. As can be seen, from the plot, the values, of residual sum, are
very similar for instances higher than 5, F € {2,1,07!,1072,1073,...107?,10710}.

The stopping criteria is now set to F = 2 until otherwise specified. This means that when
the tamperature reaches the value F a srict local search will begin, ending the possibility of
accepting worse solutions. Now better values for all three parameters of the cooling schedule
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Figure 4.8: Shows results for four different temperatures. Blues line and dots is the average
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green line is the residual ratio.
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Figure 4.9: Shows the residual sum for all frozen factors, blue line. The black line is the average
residual sum for instances 6 to 18, green lines are mean410%.

have been identified. This schedule is Ty = 15, r =1 — 107 and F = 2.

4.2.2 Second Trials for Calculating a Cooling Schedule using Data Set 50a

After a better cooling schedule had been determined a second run was constructed. This was
done to retune the schedule with the new values. In these trials the same set for M was
used but a 100 runs were done for each value, of M. The updated simulated annealing and
Decrease.java were both used.

As previously, a new, set of possible Ty, was constructed and tested on data set 50a. The
reduction factor was set to 1 — 10713 and the stopping criteria set to 2, both calulated values.
The values of Tj tested were 33 and ranged from 10000 to 6.

After the finding a good initial temperature a new reduction factor was calculated. The new
To = Ty was used and the stopping criteria F' = 2. There were 13 different values of r tested
raging from 0.99 to 1 — 10~ 4.

Next to find good stopping criteria a test was performed inspecting different values of the
factor called frozen. In this inspection the better values of Ty = Ty and r = r* were used.
There were 17 values inspected ranging from 4 to 10710,
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Figure 4.10: Shows results for four different temperatures. Blues line and dots are the average
value and the calculated objective values, the red line are the best known objective values and
the green line is the residual ratio.

Results for Initial Temperature, Ty, using Data Set 50a

In the second run for inspecting possible values for Ty, each combination of M € {10, 20, 40, 50, 70, 80, 100, 130,
and Ty € {6,7,8,...,32,33} ran 100 times. This was done to limit the random factors in the

algorithm. The four best results are shown in Figure 4.10. Note that individual results from

this test can be seen in the appendix D.2.4.

The residual sum for all values of Ty was then plotted in Figure 4.11. The best value according
to this test was Ty = 6, the old value Ty = 15 is marked on Figure 4.11 with a red dot. In
the first trials Ty = 6 gave a rather high residual sum, see Figure 4.5, but increased number
of test for each combination should limit the effects of random factors. In the previous test
To = 9 and Ty = 19 gave good results, in this test both initial temperatures perform better
than average. This can be seen by inspecting the black line displaying the average results, for
all Ty, in Figure 4.11.

Individual result for each possible Ty can be seen in the appendix.

The initial temperature is now set to Ty = 6 until otherwise specified.

Results for Rreduction Factor, r, using Data Set 50a

The second run for the reduction factor gave different result than the first one. The value of
r giving the lowest residual ratio sum was r = 1 — 1075, The four best results are shown in
Figure 4.12. The four results are the four highest values, of reduction factor, tested.
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Figure 4.11: This figues shows the residual sum for some temperatures, blue line. The black
line is the average residual sum for temperatures and green line is the mean+10%. The red
dot is the best result from the previous test.
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Figure 4.12: Shows results for four different temperatures. Blue line and dots are the average
value and the calculated objective values, the red line are the best known objective values and
the green line is the residual ratio.

Let us now inspect Figure 4.13. As previously the plot is of instance of reduction factors versus
the residual sum. The only instance removed from the trial set was r = 0.5 as it gave the worst
results. Therefore the instances are {1 —1072,1—-1073,1—107%,..1 —10713,1 — 1074}, The
plot 4.13 shows that the highest values tested resulted in the lowest sum of residual ratio.
Compared to the previous test, of reduction factor, r = 1 — 10710 is the only of the previous
top four results to preform better than average. Note that all other results from this test can
be seen in the appendix D.2.5.

The reduction factor is now set to r = 1 — 10~° until otherwise specified.

Results for Stopping Criteria, F', using Data Set 50a

The four best results, the ones with the lowest residual sum, can be seen in Figure 4.14 and
the single best result found is the residual sum of 1.9757 when F = 1— 1079, this is the result
displayed in the bottom right courner of Figure 4.14. Other results from this test can be seen
in the appendix D.2.5.

In Figure 4.15 a plot of the different residual sum compared with the different instances can be

seen. The instances are: F' € {4,3.5,3,2.5,2,1.5,1,0.58,} and F € {1071,1072,1073,...107%,10719}.

In this plot, Figure 4.15, it is apperant that there are two local minimum values and of those
one is the global minimum value. This global minimum value is found when F = 1075 In the
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Figure 4.13: Shows the residual sum for all reduction factors, blue line. The black line is the
average residual sum for all instances, green lines are mean+10%.
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Figure 4.14: Shows results for four different temperatures. Blue line and dots are the average
value and the calculated objective values, the red line are the best known objective values and
the green line is the residual ratio.



4.2. COOLING SCHEDULE o7

Stopping criteria plot
28 T T

2.7t A i

25fF m 4

241 b

2.3fF b

Residual sum

2.1F R

1.9 b

1.8 L L L L L L L L
0 2 4 6 8 10 12 14 16 18

Instance

Figure 4.15: Shows the residual sum for all frozen factors, blue line. The black line is the
average residual sum for all instances, green lines are mean+10%.

first trials F' = 10—6 also gave good results.

The frozen factor is not set as F' = 10~% until otherwise specified.

4.2.3 Cooling Schedual Trials for Data Set 3 50 a

To ensure that the cooling schedule calculated is the best one available a new data set was used
in cooling schedule experiments. This data set was 350 a. After a new value Ty or r had
been calculated that same value was used to determine the remaining values of r or F'. The
set maximum route lengths was M € {10, 20,40, 50, 70, 80, 100, 130,160}. Each combination
of the tested factor (7o, r or F') and M was run 50 times and each run had 50,000 iterations.
The values in the objective function where « =1 and 8 = 15.

The results from tests with 3 50 a were only compared to the results from the second trials
of test using data set 50a, as that cooling schedule was considered a better schedule because
it had been retuned.

Results for Cooling Schedual Trials for Data Set 3 50 a

Individual results for each trial, inspecting each factor (Tp, r and F') can be seen in appendixes
D.2.6, D.2.7 and D.2.8.

The cooling schedule should return good results for any number of data sets. Therefore the
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Figure 4.16: Shows the scaled residuals ratios for different temperatures for data sets 50a and
3 50 a.

results from the second trials using data set 50a and the trials using data set 3 50 a were
compared. It is known that data set 3 50 a is simpler, or its routes are easier to construct,
than data set 50a. This leads to lower residuals sums for data set 3 50 a. To compare the
results the two the residuals needed to be scaled. This is done in a few steps. First let us
define the set of residuals as A (for 50a) and B (for 3_50_a). To even things out a little bit
a logaritmic function calculated for each set, in(A) and In(B). This gives equal importance
to the high values residuals calulated with data set 50a and the high value residals calculated
with 3_50_a. After this is done the average value of each logarithmic set, my,(4) and my,p),
were withdrawn from the set. This ensures that both sets are distributed around zero. The
final values of residual sums expolered were [n(A) — my, 4y and In(B) — my,(p).-

The results from all this can be seen in Figure 4.16. This figure shows that the best starting
temperature, Ty, for both of these data sets is Ty = 21. This temperature was then used to
determinie the best r and F', the two remaining tests in this section.

The same method was then applied to the sets of results from different reduction factors. The
scaled residual plot from that can be viewed in Figure 4.17. From that plot it is seen that
instance number 4 gives the best reduction factor for these two data sets. The instances are
the same as in the second trials with data set 50a, meaning that the best reduction factor is
r =1 —107°. This is the same result as the second trials with data set 50a determined. The
reduction factor used to determine F is r=1 — 1075,

The results from tests, used to determine the frozen factor, were scaled as previously explained.
Theses scaled results can be seen in Figure 4.18. The figure shows the best rusults found at
instance 14 were F' = 107, which is the best stopping criteria for data sets 50a and 3_50_a.
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Figure 4.19: Shows the change in objective function in each iteration step, blue line. Also the
proposed solution, red dots, is also shown.

In Figure 4.19 the objective value and suggested solutions can be observed. The cooliing sched-
ule used in Figure 4.19is Ty =21, 7 =1 — 107° and F = 107% and the data set is 50a, the
number of iterations was 100,000.

The best cooling schedual found for data sets 50a and 3_50 a is Tp = 21, 7 = 1 — 107° and
F=107°,

4.3 Determining the Probability Matrix

In the class moves.java it is determined what action will be taken in the current iteration.
The actions are defined as moves!. Now in each iterations there are different scenarios. In
one scenario there might be no unused routes and therefore it would be impossible to call
BusMove.java, in another there might be no unused points left then one cannot call an insert
move or a bus move. This means that in some scenraios one is only possible to use certain
moves, while in other scenarios one might be able too call all moves. If a move that is infeasible
to use in a certain scenario is called, in that paticular scenario, the result will be a calculation
error in the algorithm. Overall there are seven scenarios and in each case, except one®, there

are different odds for different moves. To represents these odds a matrix, P, was constructed.
Where:

*InsertMovell.java, InsertMovel3.java, SwapMovell.java, SwapMove21.java, SwapMove3l.java and Bus-
Movell.java
5In scenario 5 one can only call SwapMovell.java
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pP11 P12 P13 P14 P15 Pi6
P21 P22 P23 P24 P25 P26
P31 P32 P33 P34 P35 P36
P = py pi2 Ppa3 DPua P45 Pas
P51 P52 P53 Ps4 P55 P56
P61 P62 D63 DPes P65 P66
br1 Pr2 P73 Pra Pr5 P16

The scenarios are:

Scenario | Description
1 More the one route in use, but not all, and no available points.
All buses in use and available points.
All buses in use and no available points.
More the one route in use, but not all, and available points.
One route and no available points.
One route and available points.
No routes and available points.

N O Ot s W N

The numbers of the scenarios reflect the way they were programmed and is not important in
any other way. It should be noted that after Decrease.java was constructed a new scenario was
discovered. This would be referred to as scenario 8, in that case no routes are active and no
unused points are available. In this scenario the only possible solution is the empty solution
giving the objective value as 3|K]|.

The moves are:

Number Type of move

1 SwapMove?1.java
SwapMovell.java
InsertMovell.java

BusMove.java
SwapMove31.java
InsertMovel3.java

SO = W N

So in some scenarios it is impossible to call certain actions, moves. Therefore to update P
these indesable moves are replaced with zero, in the matrix.

pir pr2 0 0 pi5 O
0

P21 P22 P23 Pb25 P26
p3t p2 0 0 p3s O
P = P41 P42 P43 P44 P45 P46

0 ps2 O 0 0 0

0 pe2 pe3 pPea 0  pes
0 0 pm pu 0 O

When test on the matrix, P, are conducted there is no need to look at line number 5 as:

> pi; =100 Vie{1,2,3,4,5,6,7}
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Therefore psa = 100 in all test.

pit p2 0 0 pi5 O

P21 P22 P23 0 p2s pos

ps1 p2 0 0 p3s O
P=1 py pa2 P43 paa DPa5 Da6

0 100 0 0 0 O

0 pe2 pe3s pea 0  pes
0 0 pm pu 0 O

Before the test are started an initial guess for p must be constructed:

40 40 0 0 20 O
30 30 20 0 10 10
40 40 0 0 20 O

P 30 20 25 10 10 5
0 100 0 0 O O
0 30 50 10 0 10

0 0 9 10 0 O

The matrix, P;, was constructed entirely with logical guess as no other methods were available.
This was done by guessing what moves would be important in each scenario. For example if
there are no unused points left it is a given that swap moves are important. Of these three
swap moves 11 and 21 work faster than swap move 18 this is because the former two move
two nodes while the latter only moves one node. Therefore the odds in scenario one feature
an equal possibilty of choosing 11 or 21 but a slightly smaller possibility of choosing 31. This
kind of logic was implemented for all scenarios. The scenarios are independent of each other
in any single iteration. They may though be connected when many iterations are put together.

In order to find the best odds for each action, move, each scenario will be looked at separately®.
So in order to find the best odds in line 3, in P, the rest of the matrix will be locked in the
initial guess while all possibilities for line 3 are inspected. The same was then done for all
other lines of the matrix, P.

There were two tests constructed to determine the different values of P for different data sets.
The data set used for first experiment was 350 a with M = 20, Ty = 3000, »r = 0.5, FF =0
and there were 10 trials for each possibility. The maximum number of routes was 3.

The second data set used was 50a with M = 100, Ty = 3000, » = 0.5, F' = 0, and there were
10 trials for each possibility. The maximum number of routes was 3. Note the in this test,
using this data set, a second test was conducted for scenario one. M = 160 and the maximum
number of buses was 5 for the second test of scenario one. The reason for this is that the
scenario cannot occur unless all the points are visited without using all the routes.

Note that the first test, involving scenario one and data set 50a, used P; to try to determine
the best value of P, for this scenario, but the results were not usable. Therefore a second
test using Ps, as a reference while inspecting possible values, was conducted and gave usable
results. The value of P is defined in the results section.

5Looking at all the scenarios together may is to complicated as there are to many possibilities.
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4.3.1 Results for Data Set 3_50 «a

63

To limit the running time, of the tests, the probabilities did not run on a single percent,
{1%,2%,3%. ...}, in line 3 alone there would be over 125,000 possibilities”. Rather on ten
percent,{0%, 10%, 20%, 30%. ... }. This decreased calculation time enough to run the tests.

Scenario | Objective Value | Iteration | Travel Time
1 231.3 26,391 57.6083
2 231.6 22,061 57.5682
3 229.2 28,904 58.1504
4 231.4 31,025 57.7911
6 231.4 29,622 58.2504
7 229.1 28,963 57.4555
232

The table above shows the average objective value, the average iteration where the objective
value was found and the total travel time for all the routes. In the last line of the table one
can see the best known objective value. This test then gave a new probability matrix, Ps,

viewable below:

F
I

50
0
60
0
0
0
0

30 0 0 20
10 10 0 30
30 0 0 10
10 10 60 20

100 0 0 O
0 0 70 O
0 70 30 O

0
50
0
0
0
30
0

The probability matrix® P, was constructed by inspecting not nearly all possible solutions, as
that would have taken to long?. Therefore to inspect if single percentage values are important
Py was constructed. The test was very similar to the one used to construct P» but imple-
mented an updated simulated annealing. The solutions close to the one calculated in P, were

the only ones inspected.

Travel Time

Scenario | Objective Value | Iteration
1 231.9 19,956
2 231.8 25,712
3 231.9 22,506
4 232 18571
6 231.8 21,686
7 231.8 23,397
232

96.9000
57.0000
96.9000
57.0000
96.8000
56.5000

The changes in average objective a relatively small, can be contributed to the random factor
in the algorithm!®, for most scenarios. Although the greatest changes seen in average objective

values are found in scenarios 3 and

7.

"This would then have a runtime of more than a 1000 hours, given an average runtime of about 30 seconds
8The probability matrix used in tests for the cooling schedule was Ps.

9 Approximately 120 days, at the time.

'0All nodes are inserted randomly into the soltuion.
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53 34 0 0 13 0
0 7 10 0 25 38
9 34 0 0 7 O
Py = 2 7 6 5 16 14
0 100 0 0 O O
4 5 0 72 0 19
0 0 7™ 26 0 O

It is necessary for each line of the probability matrix to have a total sum of 100%. Therefore
when the second trials, determining P, were consructed a fail safe was put into the test
algorithm to ensure constraint was met. Therefore some values in P5, and later in P, differ
more than 5% from there conterparts in P, and Pj.

4.3.2 Results for Data Set 50a

The result in the table below show the objective value calculated, the iteration the value was
found and the combined travel time for all the routes.

Scenario | Objective Value | Iteration | Travel Time

1 105.6 21294.1 107.73
2 105.8 18187 118.00
3 121.2 23580.9 145.23
4 125.7 22051.9 146.05
6 96.6 19821.3 106.36
7 213.8 28945.6 294.83

241 293.24

When the table above is inspected it is obvious that the probability values for scenario 7 are
the most important. Big changes in those values result in a much higher average calculated
objective value. The results in other scenarios are much lower the best known objective, shown
in the bottom line. The value of P = P53 is shown below.

30 70 0 O O O
10 50 20 0 10 10
10 0 0 9 O

0
P = 0 50 0 20 10 20
0 0 100 0 O O
0 60 0 20 0 20
0

0 20 8 0 O

The results from the test used to re-evaluate scenario one are seen in the table below. Remem-
ber that this test used P» as an inital guess not P;.

Scenario | Objective Value | Iteration | Travel Time
1 262.5 ‘ 21384 ‘ 263.4

273



4.4. EXPLORING DIFFERENT INSERT MOVES 65

pri=(70 10 0 0 20 0)

So according to this the value of P best suited for solving problem defined with data set 50a
is:

70 10 0 0 20 O
10 50 20 0 10 10
10 0 0 9 O

0
P = 0 50 0 20 10 20
0 0 100 0 0 O
0 60 0 20 0 20
0

0 20 8 0 O

A second trial was done to determine the single percent values of P3. The new matrix con-
structed was called Pj. These new trials gave the following results. Note though that an
updated version of the simulated annealing algorithm was used along with Decrease.java and
P3 was used as the old matrix when evaluating P;. All other factors are the same as when P3
was calculated.

Scenario | Objective Value | Iteration | Travel Time

1 258 48008 417.9
273

2 220.8 35292 293.7

3 216.1 30787 294

4 222.6 32150 296.2

6 217.9 37688 291.9

7 216.6 36484 294.1
241 293.24

72 5 0 0 23 0
46 18 0 7 22
24 0 0 7 0

452 17 7 26

0 100 0 0 O
%5 0 22 0 23
0 18 8 0 0

3
I
cCo o wo

The two matrixies P, and P3 were compared. This is shown in later sections. Of the two P
provided better results and was then compared to P;. Because P3 provide worse results P
was not inspected further.

4.4 Exploring Different Insert Moves

In this project there were four insert moves constructed 11, 12, 14 and 15. Another insert
move, called 13, is also used but is differant from the other four as it removes a node before
inserting a new one. Therefore 13 will not be put in the same catagory as 11, 12, 14 and 15.
Tests using data set 350 a were preformed 10 times for each combination of insert move and
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M € {5,10,15, 20,25, 30, 35,40, 50}. For each test several values were inspected. First the ob-
jective value was inspected, it was the most important value in the test. If the best known objec-
tive value, the objective calculated by hand, was reached then for M € {5, 10, 15, 20, 25, 30, 35}
the route was also inspected, for some M to find maximum profit the algorithm had to find
the best route, this can also be calculated due to the structure of the dat set. For M € {40,50}
the maximum profit could be achieved without using the best route. The iteration value when
the objective value was reached was inspected. All tests preformed 50,000 iterations, the initial
temperature was set to 11, Ty = 11, the reduction factor was set at 1—10713, 7 = 1—10713 and
frozen factor at 2, F' = 2. Also an updated version of simulated annealing and Decrease.java
were implemented in these tests. In the objective function a = 1 and 8 = 15, the beta value
was chosen such that more than one node had to be added to a new route. The probability
matrix P was set to Ps.

Note that all factors in the program remained unchanged except insert moves 11, 12, 14 and 15;
when these experiments were carried out. One could still choose a swap mowve if the algorithm
and the scenario at hand demanded it.

4.4.1 Results

Let OPT be the returned objective given by the program. Let z be the best known objective
value, calculated by hand, for the given problem. Then define:

N

OPT;

Z = Z ~ * N are the number of runs for a given M. (4.4.1)
i=1

So the Table 4.3 shows z/Z for all M and the four insert moves.

M | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50 | Average |
InserMovell | 1 | 0.99009 | 0.94678 | 0.99914 | 0.99302 | 0.95651 | 0.96983 | 0.95579 | 0.98611 | 0.97747
InserMovel2 | 1 | 0.77477 | 0.74854 | 0.72414 | 0.71429 | 0.78947 | 0.78589 | 0.91111 | 0.93796 | 0.82069
InserMovel4 | 1 | 0.67568 | 0.88246 | 0.92672 | 0.67409 | 0.70305 | 0.73942 | 0.90602 1 0.83416
InserMoveld | 1 | 0.94595 | 0.99415 | 0.94828 | 0.91694 | 0.99723 | 0.85742 | 0.9375 | 0.97824 | 0.95286

Table 4.3: Shows the ratio between the returned objective value and the best known objective
value calculated by hand for each M.

If Table 4.3 is inspected one can see that insert move 11 returns on average the best objective
values. Also in most cases it has the highest ratio for any given M. although in two cases in-
sert mowve 15 performed better. Of the four insert move 11 is the only one that performed well
for all M, insert move 12 tends too give the worst performance. Insert move 12, shows poor
results for most M, except when M € {40,50}. In those cases M is greater than the maximum
route length and insert move 12 returns acceptable results. The reason for these results may
be that insert move 12 always chooses the highest profit node with the lowest node number.
Therefore if two nodes had equal importance, say nodejo and nodeys1, then InsertMovel?2.java
would always choose nodeqs.
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Another insert move showed poor results for all M except those values that are longer than
the longest possible route and this was insert move 14. In cases where M = 50 insert move 14
returns excellent results. This is because the method always chooses the node with the highest
profit farthest from the depot. Therefore when this node is outside the maximum route length,
isert move 14 cannot find any node to insert into the routes.

The only other insert move to return good results is insert move 15. It always chooses the
highest profit node closest to the depot. Therefore InsertMovelb.java always finds nodes to
insert into its routes as long as there are high profit nodes inside the range of the maximum
route. The main problem with InsertMovel5.java is if there is a low profit node that one can
fit into the route, then insert move 15 will not add that node to the route. Still the method
did often produce acceptable results.

M | 5 | 10 | 15 | 20 | 25 | 3 | 3 | 40 | 50 | Average |

TnserMovell | 21,456 | 17,120 | 14,640 | 20,142 | 15,669 | 24,152 | 29,122 | 44,513 | 10,752
InserMovel2 | 24,513 | 13,202 | 8,419 | 3,297 | 5,176 | 16,720 | 22,707 | 30,749 | 35,755
InserMoveld | 49,038 | 29,027 | 17,481 | 18,776 | 24,930 | 37,997 | 37,664 | 22,143 | 8,65/
InserMovel5 | 24,358 | 7,716 | 5,327 | 6,578 | 11,703 | 34,121 | 34,174 | 55,155 | 24,703

Table 4.4: Shows the number of iterations used to find the returned objective value.

Table 4.4 shows the average number of iterations it took for the program to find the objective
values returned for each value of M. The values are not that different but insert move 12 was
fastest and insert move 14 used the most iterations to find an optimum value. The results
show that insert move 11, the most effective of the four, does not require an extraordinary
amount of iterations to return an objective value.

M | 5 | 10 | 15 | 20 | 25 | 30 | 3 | 40 | 50

21,951
17,282
27,301
22,648

| Average

TnserMovell | 21,456 | 17,129 | 15,699 | 21,375 | 16,075 | 24,342 | 30,203 | 62,276 | 47,628
InserMovel2 | 24,658 | 13,631 | 5,261 | 12,496 | 17,374 | 27,190 | 44,066 | 48,681 | 89,509
InserMoveld | 49,227 | 31,193 | 18,560 | 20,985 | 25,934 | 43,857 | 42,236 | 40,727 | 40,715
InserMovel5 | 24,358 | 7,716 | 5465 | 7,083 | 12,833 | 34,884 | 40,145 | 63,851 | 62,832

Table 4.5: Shows the number of iterations used to find the returned path.

Table 4.5 above shows the average number of iterations it took for the program to find the
returned route for each value of M. Here insert move 11 and insert move 15 use the fewest
iterations. This still shows that insert move 11 is an acceptable method when considering the
amount of iterations needed to find a good route. Note that in most instances, especially when
M € {5,10, 15,20, 25,30,35}, the number of iterations needed to find an objective value and
the number needed to find an returned route are often similar.

In Table 4.6 the number of cases, for each M, found were the best known objective was reached
using the best known path are listed. If a certain run returned the best known objective value,
calculated by hand, taking and the best known route the test was marked with a Boolean
true if this was not the case then the run returned a Boolean false. Of the four insert mowves

28,464
31,429
34,825
28,790
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M | 5 |10 ]15]20|25]30]35]40 | 50 | Average |
InserMovell {10 | 9 | 5 | 8 | 7 |6 | 1|3 |1 5.0
InserMovel2 {10 | O | O | O | O | O | O | 3]0 1.3
InserMovel4 {10 | O | O | O | O | O | O | 2] 0 1.2
InserMovel5 [ 10 | 0 | O [ 0 | O [ 0 | O | 2|0 1.2

Table 4.6: Shows the numer of times best know objective value is reached using best known
path.

InserMovell, M=25 InsertMovel2, M=25
400 400
g 300 S 300
g g
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Figure 4.20: Shows a example of the objective function, for all insert moves, in each iteration,
blue line. The red line represents the best known objective value.

the first, insert move 11, gives the highest values of true. The reason insert move 15 does not
return good results, as it did with the objective value, because of the method it uses.

In Figure 4.20 one can see the objective value changing with regards to the iterations. In the
figure M is set to 25, note that none of the methods reach the best known objective value,
the red line. Of the four methods insert move 15 is closest to the best known objective value
and insert move 14 is furthest from the best known objective value.

In Figure 4.21 one can clearly see the difference between methods. The residual ratio is con-
sistently low for insert move 11. Both insert move 12 and insert move 14 give bad results and

insert move 15 acceptable results but not as good as insert move 11.

In conclusion one can see, from tables 4.3, 4.4, 4.5 and 4.6; and Figure 4.21, that of the four
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Data set3.50., P, Data set:3.50.a, P,

Objective Value
Residual ratio
Objective Value

Residual ratio

35 5 10 15 20 25 30 3 4 45 S50
Maximum route length Maximum route length

Data set:3.50b, P, Data set:3.50.0, P,

Objective Value
sidual ratio
Objective Value

Re:

4 45 50 5 10 15 20 25 30 3 40 45 50

5 10 15 20 B
Maximum route length Maximum route length

Figure 4.21: Shows calculated results in comparison with the best known objective value. The
blue line is the average results, the blue dots are each calculated result and the red line is the
best known objective value. The green line is the residual ratio and is represented on the right

y-axis.
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imsert move 11 gives the best results and does so in an acceptable amount of iterations.

From this one can see that the insert move 11, a random insertion into routes, returns the
best results. Therefore it will be the only insert move used here after, unless otherwise specified.

4.5 Non-Randomly Generated Data Sets

The twelve non-randomly generated data sets were tested on the algorithm in this section.
The cooling schedule used was Ty = 15, r = 1 — 107! an F = 2. Decrease.java was used
along with the updated version of simulated annealing. The number of iterations for each test
was 50,000 and the runs for each possible compnation of M and |K| was ten. In all tests
using non-randomly generated data sets a = 1 and g = 15 in the objective function. In the
these data sets one could calculate the best known objective value by hand. This was possible
because of the structure of the data sets.

4.5.1 Results Data Set 3 50 a

The test performed on dataset 3 50 aused |K|=3and M € {5, 10, 15, 20, 25, 30, 35,40, 50}.
As the use of Decrease.java will remove points from the data set the number of points used
for each M is shown in Table 4.7, these points are called feasible. Note that the maximum
number of points is 45, not 50, because 10% of points have been removed, to include an equal
amount of nodes in each route the number of points could not be 47, 47/3 = 15.667 and the
depot then counts as an additional two points. Also in Table 4.7 are displayed the calculated
best known objective values. These are known best objective values as the unique structure
of the data sets allows one to calculated, by hand, the best objective values and paths.

M | 5] 10] 15|20 ] 25| 30| 35 | 40 | 50 |
3.50_a|10] 22 | 33 | 41 | 45 | 45 | 45 | 45 | 45
Best | 60 | 111 | 171 | 232 | 301 | 361 | 411 | 432 | 432

Table 4.7: Shows the number of points feasible for each M and the best known objective value,
calculated by hand.

In Figure 4.22 the structure of the data set is displayed.
To determine which probability mattices are the best it was necessary to compare them.

Table 4.8 shows the results from calculations using Pj, Table 4.9 shows results from calcula-
tions using P» and Table 4.10 shows results from calcualtions using P5. If the best calculated
values in the three tables (4.8, 4.9 and 4.10) are compared to the best known objective values,
calculated by hand, in Table 4.7 one can see that the best known objective value is found by
the algorithm in most cases. Of the three possabilities matrices P, returns the best solutions.
Notice that neither P, or P3 found the best known objective value when M = 35. This is
because of the uniqueness of the solution, displayed in Figure 4.23. The solution for M = 35
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Figure 4.22: Shows the data set 350 a, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

M | 5 | 10 | 15 | 20 | 25 | 3 | 3 | 40 | 50 |
Avrage | 515 | 101.3 | 150.6 | 228.1 | 282.8 | 341.1 | 360.6 | 380.8 429
Best 60 111 171 232 301 361 401 432 432

Ratio | 0.85833 | 0.91261 | 0.8807 | 0.98319 | 0.93953 | 0.94488 | 0.89925 | 0.88148 | 0.99306
CPU 4101.5 | 5785.5 | 7840.4 | 9499 10253 | 9873.4 | 9773.2 9555 9220.7

Table 4.8: Results from computations using P;. The values shown are the average calculated
value, the best calculated value, the ratio between those two values and calcualtion time in
milli seconds.

M | 5 | 10 | 15 | 20 | 25 | 3 | 3 | 4 | 50 |
Avrage | 59 102.8 168 231.8 | 286.9 | 361 | 3944 | 4248 430
Best 60 111 171 232 301 361 411 432 432

Ratio | 0.98333 | 0.92613 | 0.98246 | 0.99914 | 0.95316 1 0.95961 | 0.98333 | 0.99537
CPU 4482.7 | 6377.9 8565 10623 11628 | 11268 | 10987 10325 10065

Table 4.9: Results from computations using P». The values shown are the average calculated
value, the best calculated value, the ratio between those two values and calcualtion time in
milli seconds.

is not straight forward but uses a remainder of a path to reach the best known objective value.
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M | 5 | 10 | 15 | 20 | 25 | 30 | 3 | 40 |

50

Avrage | 58.5 109.8 166.8 221.5 271.1 324.5 376.9 402.9 415.9
Best 60 111 171 232 301 361 402 432 432
Ratio | 0.975 | 0.98919 | 0.97544 | 0.95474 | 0.90066 | 0.89889 | 0.93756 | 0.93264 | 0.96273
CPU | 4316.8 | 5967.1 | 7644.8 | 9889.2 10869 10282 10004 | 9755.3 | 9529.8

Table 4.10: Results from computations using P3. The values shown are the average calculated
value, the best calculated value, the ratio between those two values and calcualtion time in
milli seconds.

In tables 4.8, 4.9 and 4.10 average run times for the algorithm is displayed. Of the three
matrices P, appears to have the longest run time. The differances between run times can be
explained by the odds of invoking a certain move. For example an insert move in very simple
and uses few calculaltions where a bus move uses methods similar to a single insert mowve
more than once. Therefore different moves have different run times and the three matrices
give different average run times.

4.5.2 Results for Data Sets 3 50 a,b and c

After looking at each result individually!'!, for the data sets containing 50 points and 3 routes,
the results were looked at as a whole. In Figure 4.24 these results can be viewed. They show
the best known objective value, the results calculated by the algorithm and the residual ratio.

The feasible points for each M and the best known objective values, calculated by hand, for
data sets 3_50_b and 3_50_c are shown in Table 4.11.

M 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 50

3 50 b 9| 22| 32| 41 | 45 | 45 | 45 | 45 | 45
Best 55 | 120 | 180 | 250 | 301 | 361 | 411 | 432 | 432
3 50 c| 10| 22 | 32 | 42 | 45 | 45 | 45 | 45 | 45
Best 55 | 111 | 181 | 240 | 300 | 360 | 411 | 432 | 432

Table 4.11: Shows the number of points feasible for each M and the best known objective
value for data sets 3_50 b and 3_50_c.

When inspecting Figure 4.24 it is obvious that P = P» returns the best results. One can see
this by comparing the graphs in the center column to the other graphs in Figure 4.24. The
residual ratio, green line, is considerably lower for graphs in the center column than the graphs
situated on the right and left columns of Figure 4.24. This shows that on average the individ-
ual results of the algorithm, when using P = P», are much closer to the best known objective
values, calculated by hand, than results calculated using P; or Ps. It should be noted that the
objective function is in reality a step function and not a continuous function as displayed in
Figure 4.24. The figure is set up this way to demonstrate how closely the tests follow the best

"ndividual results for data sets 3_50_ b and 3_50 c can be viewed in appendix D.1.1 and D.1.2.
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Figure 4.23: Shows results for the data set 3_50_a when M = 35 and the an objective value
of 411. Note this solution was found with P = P, in moves.java, although it took 22 runs to
produce the result. Also compare with Figure 4.22 to see if all point of low profit are included.
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Figure 4.24: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line.

known objective values.

In Figure 4.25 the run times for every test and there average function can be viewed. Note how
the run times increase with M, reach a high point, when M = 25, and then decrease slightly
for M > 25. The reason for this is that M = 25 allows for all points to be included, which
means they are all feasible. Although all points are feasible this does not mean that all points
will be included in the solution. M = 25 has the lowest objective value, calculated by hand,
with the highest number of points at feasible points. This means all other solutions either have
fewer feasible points or higher objective values, calculated by hand. Therefore M = 25 should

have the largest number of claculations'?.

In conclusion it is apperant that P, gives the best results for data sets 3 50 a, 3 50 b and
3_50_c. This can be seen by comparing the residual ratios in Figure 4.24. The run time of
the algorithm also is the greatest when the highest number of feasible points yields the lowest
objective values. This is obtained by comparing Figure 4.25 and Table 4.11

4.5.3 Results for Data Sets 3 100 a,b and ¢

A graph displaying the individual results for 3 100 a,b and ¢ was constructed and can be
viewed in Figure 4.26. The center column of Figure 4.26 show lower residual ratios than the
graphs in the left and right column. This means that when P» is used it gives, on average,
better results than when P; or P5 is used. If compared with 4.24 it appears that the results

2For example uses UnvistedPoints.java most often.



4.5. NON-RANDOMLY GENERATED DATA SETS 75

Data set:3.50.a, P, Data set:3.50.a, P, Data 5et:3.50.a, P,

¥ B

M ¥
10000 12000 N * 12000
* %
£ so00) £ 10000] £ 10000 i

& & &
£ 6000| £ 8000| £ 8000]
H H H

4000] 6000} 6000]

*

0 10 40 50 (] 10 20 50 o 10

20 30 20 30 20 30
Maximur route length Maximum route length Maximum route length

10000} 12000]

£ 10000

£ o000
H H
& &
£ 6000] £ 8000|
H H

4000} 6000}

0 10 20 30 0 50 0 10 20 30 0 10 20 30 0
Maximum route length Maximum route length Maximum route length

Data set3.50.¢, P,

0 10 40 50 o 10 20 50 0 10 20 50

20 30 20 30 20 30
Maximum route length Maximum route length Maximum route length

Figure 4.25: Shows how long each run of the program took, blue dots; and the average running
time, blue line; with regards to maximum route length.

using 100 point give higher residual ratios on average. This means that the algorithm performs
better when using smaller data sets than when using larger ones. This is most likely because
the number of iterations is the same in both cases and therefore it is normal that objective
function of larger data sets are more difficult to calculate. This can also be seen when in-
specting the residual ratios on any single graph in Figure 4.26. Notice how the residual ratios
increases as the values of M gets larger.

In Table 4.12 the number of feasible points and the best known objective values, calculated
by hand, are displayed. If Table 4.12 and Figure 4.27 it can be seen that the run time of the
algorithm rizes till it reaches M = 50 and the falls slightly. This is because M = 50 gives the
lowest objective value while having the largest set of feasible points. This is when M = 50
and allows all 94 points to be included in the calculation but the best known objective value
is lower than with M = 60 or M = 75.

In conclusion it can be seen from Figure 4.26 that P, is the best probabilty matrix for data
sets 3_100 _a,b and c. When Figure 4.26 was inspected it was observed that residual ratios
rize as the values of M get larger. Also for data sets 3 100 _a,b and c the algorithm gives the
highest run times when the set of feasible points is the largest while the calculating the lowest
objective value.
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Figure 4.26: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.27: Shows how long each run of the program took, blue dots; and the average running
time, blue line; with regards to maximum route length.
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M 10 | 20 | 30 | 35 | 40 | 45 | 50 | 60 | 75

v3 100 _a | 21 | 45 | 67 | 77 | 8 | 90 | 94 | 94 | 94
Best 121 | 240 | 370 | 431 | 500 | 562 | 620 | 740 | 863
3_100_b | 22 | 45 | 67 | 77T | 8 | 90 | 94 | 94 | %4
Best 130 | 250 | 380 | 430 | 500 | 560 | 630 | 740 | 873

3 100 ¢ | 21 | 42 | 66 | 76 | 84 | 90 | 94 | 94 | 94
Best 110 | 240 | 350 | 420 | 480 | 542 | 602 | 732 | 880

Table 4.12: Shows the number of points feaslable for each M and the best known objective
value for data sets 3_100_a, 3_100_b and 3_100_c.

4.5.4 Results for Data Sets 4 50 a,b and c

As with previous data sets graphs were constructed to compare calculated results with the
best known objective values and also to inspect the residual ratio. These graphs can be seen
in Figure 4.28. The best performance is again achived by using P = P and it is considerably
better the that of P; and P5. Results calculated with P, are displayed in the center column and
they have a considerably lower residual ratio than the graphs in the left and right columns.
This data set was allowed to plateau, best know objective for M € {24,28, 30,35} is 432, the
combined profit of all the nodes.

Plots of the running times were also done, see figure 4.29. The sharp increase in run times
results in the highest values when M = 12, which is the lowest objective value, calculated by
hand, in concern with the number of feasible points. This is the same for all three data sets
and can be seen in Table 4.13

M 4] 8 | 121620 | 24|28 |30 ] 35
4 50 a| 14| 33 | 45 | 45 | 45 | 45 | 45 | 45 | 45
Best | 70 | 131 | 201 | 281 | 361 | 432 | 432 | 432 | 432
4 50 b|15]| 34 | 45 | 45 | 45 | 45 | 45 | 45 | 45
Best | 70 | 150 | 211 | 290 | 370 | 432 | 432 | 432 | 432
4 50 c|16] 34 | 45 | 45 | 45 | 45 | 45 | 45 | 45
Best | 80 | 160 | 231 | 291 | 372 | 432 | 432 | 432 | 432

Table 4.13: Shows the number of points feaslable for each M and the best known objective
value for data sets4 50 a,4 50 band 4 50 c.

In conclusion it is apperant that calculations with P» give better solutions than those using
Py or Ps for datasets4 50 a,4 50 band 4 50 c. This can be observed in Figure 4.28 by
comparing the center column graphs to other graphs in the figure. Run times for the algorithm
are also the highest when looking at the lowest best known objective value, calculated by hand,
in concern with the largest amount of feasible points. This is observed by comparing Figure
4.29 and 4.13.
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Figure 4.28: Shows the the best known objective values red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.29: Shows how long each run of the program took, blue dots; and the average running
time, blue line; with regards to maximum route length.
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Data set4.100., P, Data set4.1004, P, Data set4.100., P,

Figure 4.30: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line.

4.5.5 Conclusion in Data Sets 4 100 a,b and c

Graphs displaying the results for 4 100 a,b and ¢ can be found in Figure 4.30. If the three
columns in Figure 4.30 are compared it can be seen that the graphs in center column give the
lowest residual ratio. These results, the ones displayed in the center column of Figure 4.30,
were calculated using P, whilst the the other results were found using P; or P5. If compared
with results in Figure 4.28 it is apparent that the graphs displayed in Figure 4.28 give lower
residual ratios. Although when Figure 4.30 is inspected the residual ratios do not increase, on
average, as M gets larger. This does though occur in some graphs in Figure 4.30, observe the
right column.

M 10 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60

4 100 a| 34 | 73 1 95| 95 | 95 | 95| 95 | 95 | 95
Best 190 | 380 | 471 | 560 | 670 | 752 | 861 | 905 | 905

4 100_b | 34 | 72 |1 95| 95 | 95 | 95 | 95 | 95 | 95
Best 190 | 380 | 470 | 570 | 660 | 751 | 831 | 905 | 905

4 100 c| 34 | 73|19 ] 95 | 9 | 95 | 95 | 95 | 95
Best 190 | 390 | 470 | 580 | 661 | 762 | 851 | 905 | 905

Table 4.14: Shows the number of points feaslable for each M and the best known objective
value for data sets 4 100 _a, 4 100_b and 4 100_c.
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Figure 4.31: Shows how long each run of the program took, blue dots; and the average running
time, blue line; with regards to maximum route length.

Table 4.14 shows the feasible points for each M and the best known objective values, calcu-
lated by hand. If Table 4.14 and Figure 4.31 are compared it can be seen that the largest run
times are the result of the sets with large sets of feasible points but a low objective value. This
is when M = 25 allows for all 95 points to be included in the calculation. This results in the
lowest objective value for all values M giving 95 feasible points.

In conclusion from Figure 4.30 it was observed that P, was best suited for calculations with
data sets 4 100 a,b and c. Also table 4.14 and Figure 4.31 showed that the largest run times
are found when the largest set of feasible points result in the lowest best known objective
value.

4.6 Randomly Generated Data Sets

In these test the randomly constructed data sets were used. There were 10 of these tests con-
structed, 5 with 50 points and 5 with 100 points. As the points are randomly distributed there
was only a need to construct one profit vector for 50 points and one for 100 points. These
profit vectors can be viewed in appendix D.3.3.

In table 4.15 the number of feasible points for a certain M is displayed for randomly generated
data sets.
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M |10 20|40 |50 | 70 | 80 | 100 | 130 | 160
50a | 1 | 4 |27 38| 50 | 50 | 50 | 50 | 50
50b | 3 | 4121139 50 | 50 | 50 | 50 | 50
50c |1 | 3 [20|38] 50 | 50 | 50 | 50 | &0
50d | 1 | 4 21|37 50 | 50 | 50 | 50 | 50
50c | 3 | 7 |27 (40| 50 | 50 | 50 | 50 | 50
100a | 2 | 11 | 51 | 78 | 100 | 100 | 100 | 100 | 100
1006 | 3 |13 |49 | 77| 99 | 100 | 100 | 100 | 100
100c | 4 |10 |49 | 79 | 100 | 100 | 100 | 100 | 100
100d | 4 | 11 | 47 | 77 | 100 | 100 | 100 | 100 | 100
100c | 2 |12 49| 75 | 100 | 100 | 100 | 100 | 100

Table 4.15: Show the number of feasible points for a certain M in a data set of randomly
generated points.

4.6.1 Test with data sets 50a,b,c,d and e with 450,000 iterations

In tests with non-randomly constructed data sets it was determined that P, gave better solu-
tions than Ps; and P;. Because P3 was calculated using randomly generated data set and P
was calculated using a non-randomly constructed data set a second comparison was deemed
necessary. Therefore these two probability matrices were compared again using randomly gen-
erated data sets.

The cooling schedule used in these tests was Ty = 15, r = 1 — 10713 and F = 2. Also
Decrease.java and the updated simulated annealing was used. In these test a large number of
iterations was used or 450,000. The initial solution was the empty solution. Ten runs were
performed for each possible combination for M € {10, 20,40, 50, 70, 80,100, 130, 160}, |K| €
{3,4, 5} and p € {PQ,Pg}.

Results from data sets 50a,b,c,d and e with 450,000 iterations

Plots for each data set can be viewed in the appendix. As previously the residual ratios are
important. So for each data set and each value |K| € {3,4,5} the residual ratios were aggre-
gated. From this tables 4.16 and 4.17 were constructed.

[a—y

M |[10] 20 | 40 | 50 | 70 | 80 | 100 | 130 | 160 | AVE |
[K|=3 ] 0 [ 0.1600 | 0.3075 | 0.7020 | 1.3472 | 1.2314 | 0.9670 | 0.2031 | 0.0006 | 0.5465
[K|=4 | 0 | 0.1550 | 0.4850 | 0.6800 | 1.3972 | 0.9501 | 0.5440 | 0.5400 | 0.4596 | 0.5790
K|=5| 0 | 0.1700 | 0.7550 | 0.8440 | 1.2044 | 1.0225 | 0.6990 | 1.0501 | 0.8438 | 0.7321

Table 4.16: Shows values of residual ratios calculated with P5 for each M and |K|. Individual
tables for each dat ser (50a,b,c,d and e) wher ussed to construct this table.

The values form Table 4.18 are plotted in Figure 4.32. As values from Table 4.17 are with-
drawn from values in 4.16 Table 4.18 is constructed. It is apparent that if more values, in
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M |[10] 20 | 40 | 50 | 70 | 80 | 100 | 130 | 160 | AVE |
K|=3 ] 0 [ 0.1600 | 0.6775 | 0.5240 | 1.6657 | 1.3713 | 1.1860 | 0.3609 | 0.0106 | 0.6618
[K|=4 | 0 | 0.1350 | 1.2800 | 0.7540 | 1.3043 | 0.9237 | 0.5920 | 0.5500 | 0.4033 | 0.6603
K|=5| 0 | 0.1300 | 1.5000 | 1.8300 | 1.1043 | 0.7373 | 0.7200 | 0.9577 | 0.7126 | 0.8547

[a—y

Table 4.17: Shows values of residual ratios calculated with P3 for each M and |K|. Individual
tables for each dat ser (50a,b,c,d and e) wher ussed to construct this table.

[a—y

M |[10] 20 | 40 | 50 | 70 80 100 | 130 | 160 | AVE

K|=3| 0 0 -0.3700 | 0.1780 | -0.3185 | -0.1399 | -0.2190 | -0.1578 | -0.0100 | -0.1152
K|=4 | 0 | 0.0200 | -0.7950 | -0.0740 | 0.0929 | 0.0264 | -0.0480 | -0.0100 | 0.0563 | -0.0813
K|=5| 0 | 0.0400 | -0.7450 | -0.9860 | 0.1001 | 0.2852 | -0.0210 | 0.0924 | 0.1312 | -0.1226

Table 4.18: Is constructed from tables 4.16 and 4.17 by withdrawing values in the latter table
from values in the former table.

Table 4.18, are positive, then Pj is better else P, gives better objective values. If Figure 4.32
is inspected it is apparent that more values are less than zero, negative. Therefore one can
assume that P, gives better objective values.

The reason this was done instead of just comparing plots is that results were to similar
in comparison, using plots like those constructed for non-randomly generated data sets. In
conclusion it is apparent that P, gives better results than Pjs for randomly generated data
sets.

4.6.2 Comparing Probability matrices P, and P;

After determining that the probability matrix P, gives better objective values than P3; and P
it is ideal to see if P; gives better or equally as good results. Tests were performed on data
sets 100a,b,c,d and e using a |K| = 3. For each M € {10, 20, 40, 50, 70, 80, 100, 130, 160} ten
trials were run. The cooling schedule used was Ty = 15, r = 1 — 10713 and F = 2. The tests
used the updated simulated annealing and Decrease.java.

Results in Comparing Probability matrices P» and Py

In Figure 4.33 the results from the tests can be observed. From that figure one can see that
there is little differance between using P, left column, and Pj right column.

To compare further a residual plot was constructed to inspect the differance between the two
matrices further. This plot can be seen in Figure 4.34. The residual ratio results, calculated
with P5, were withdrawn from the residual ratios calculated with P. In Figure 4.34 more
of the results are negative and thereby the residual results for Pj were greater than those
calculated with P.

In conclusion we have seen from Figure 4.33 that the differance between results calculated
with P, and P53 are not great. Furhter inspection, seen in Figure 4.34, showed that P tended
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Figure 4.33: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line.
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Figure 4.34: Show the result when residual sums for P5 are removed from the residual sums
of P2.

to give better results on average.

4.7 Comparison to GAMS

A 20 point subset data set was constructed from data set 50a. This was done in effort to com-
pare solutions from the algorithm to solutions from a differrent program. Thit other program
was written in GAMS.

The model used in GAMS is the linear model presented in the section on the model.

The cooling schedule used in these tests was Ty = 15 and » = 1 — 10~'3 and stopping
criteria ' = 2. Each run inspected 9 possible values for maximum route length, M €
{10, 20, 30, 40, 50, 60, 70, 80,90}, and there were 20 trials for each M. The initial guess is the
empty solution where no routes are active. The maximum amount of profit available from the
nodes was 110.

These tests also used Decrease.java along with the improved simulated annealing. In the ob-
jective function o = 1 and § = 15.

4.7.1 Results Comparison to GAMS

In Table 4.19 all solutions from GAMS and the simulated annealing algortihm are compared.
The solutions presented by gams had the best calculated objective, an ubber bound and the
gap between the two. The best calculated objectiv will be called the lower bound as GAMS
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has proven that the objective function is at least this value. If Table 4.19 is inspected it can
be seen that the best values presented by the simulated annealing algorithm are all in between
the lower bound and the upper bound, calculated by GAMS. Although in all cases the upper
bound proposed by GAMS is:

> ¢+ |K|B (4.7.1)

Vi

This is an upper bound that was shown in the section on upper bounds.

M 10 20 30 40 50 60 70 80 90 |K|
Best | 45 49 49 29 69 76 95 107 110 3
AVE | 45 482 49 5045 6455 733 89.05 99.2 10745 | 3

LB |45 49 49 59 59 61 92 78 92 3
GAP | 9 20 20 45 69 65 63 68 63 3

UB |54 69 69 99 123 139 155 155 155 3
Best | 60 64 64 74 84 92 109 119 125 4
AVE | 60 63.6 638 659 80.75 86.55 101.65 111.3 113.35| 4

LB |60 64 64 74 74 76 107 102 107 4

GAP | 9 20 20 40 64 65 63 68 63 4

UB |69 &4 84 114 138 141 170 170 170 4
Best | 75 79 79 89 99 106 124 129 138 5
AVE |75 79 788 8045 95.85 101.15 118.85 122.85 12585 | 5

LB |7 79 79 89 89 91 122 117 122 5

GAP | 9 20 20 40 64 78 63 7 63 5
)

UB |8 99 99 129 153 156 185 185 185

Table 4.19: Shows the average results from the simulated annealing algorithm and its maximum
calculated values. This is compared with values calculated by GAMS, the upper limit proposed
by GAMS and the gap between the two.

A plot of the results can be viewed in Figure 4.35. The greatest variation found between av-
erage value and the best known objective value is under 20%. This is not perfect but acceptable.

The comparison between GAMS and the simulated annealing algorithm show that the best
value calculated with simulated annealing is always closer to the best known objective, than
the value calculated with GAMS. Also simulated annealing much faster as a single calculation
in GAMS more then a day finish but took only seconds using the simulated annealing algo-
rithm.

The GAMS code performed well for M < 50, this is most likely because when M = 50 there
are only 12 points within the maximum route length, this increases to 17 for M = 60 and 20
for M > 70. This shows that with increasing number of points the GAMS program has more
difficulty calculating the objective value, which was expected. There fore the GAMS does gives
to low values when calculating for M > 60.

The simulated annealing algorithm also has worse average values for high values of M. This



86 CHAPTER 4. TESTS

Data set 20, p,, [K|=3

120~

60—

50
Maximum route length

Data set 20, p,, [K|=4

50
Maximum route length

Figure 4.35: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line. These are
the results when using simulated annealing for both time and profit, used Decrease.java and a
new cooling schedule.

is also due to larger number of available nodes and can be seen in figure 4.35.

From this, Table 4.19 and Figure 4.35, one can conclude that the simulated annealing algorithm
is performing accaptably weel in comparison with GAMS and using data set 20.

4.7.2 Results Comparison to Decrease.java with New Cooling Schedule

A comparision between using Decrease.java and not was done. Also when Decrease.java was
not used an older cooling schedule was still in use. There Ty = 3000, r = 0.999 and F' = 0. Re-
sults from using Decrease.java, and the new cooling schedule, can be seen in Figure 4.35 while
results from not using it are seen in Figure 4.36. Note that both trials used an updated version
of the simulated annealing algorithm. When these two figures are compared it is apparent that
results are better with Decrease.java and the new cooling schedule. A table containing results
from the older version can be seen in appendix D.4.

Also run times were compared to see which method was faster. These results are seen in tables
4.20 and 4.21.

As can be seen in tables 4.21 and 4.20 run times for low values of M are lower when De-
crease.java is used. In that case, using the new version of the algorithm, the run time is greates
for M = 60 were all points are feasible but the objective value is the lowest with comparison
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Data set 20, p,, [K|=3

Figure 4.36: Shows the best known objective values, red line; the different results and there
average value, blue dots and blue line; also the residual ratio is plotted, green line. These are
the results when using simulated annealing for both time and profit.

M 10 20 30 40 20 60 70 80 90
mean | 3208 3520 3588 4711 5418 6194 5484 5448 4991
max | 4068 6156 6257 6459 8222 9479 8899 8541 6304
min | 3009 3227 3208 4425 4406 5091 5036 5035 4505
mean | 7433 8147 8134 11384 13195 17023 14649 12603 11389
max | 10362 11848 10585 16854 18304 27887 21553 17612 16120
min | 5172 5797 5572 8168 9264 11974 9775 8142 7686
mean | 6619 7148 7275 10591 12669 16453 13278 10898 9772
max | 9404 9787 9855 14740 18074 26861 20284 15144 14207
min | 5156 5828 5611 8394 10073 13374 8211 7198 7657

CUOT O i e W W | X

Table 4.20: Shows run times for tests using the new cooling schedule and using Decrease.java,
results are in milli seconds.

to other sets with the same number of points. For the older version of the algorithm high
run times are recorded when M € {20,30}. In that case there is a large number of infeasi-
ble solutions proposed by the algorithm, Decrease.java removes a majority of these infeasible
solutions. Average run times in both cases were compared and no conclusive result could be
reached. The old version performed better on average of 0.3 seconds. In conclusion the new
version gave better solutions on similar run times which are good results.
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M 10 20 30 40 50 60 70 80 90 | |K]|
mean | 7779 10278 19730 13120 7464 6413 5186 5050 4733 | 3
max | 22591 23881 29952 25254 15219 16555 7544 5525 5398 | 3
min | 6873 6858 10446 7132 5002 4998 4873 4849 4239 | 3
mean | 8196 10742 10898 12113 9301 7946 6833 5664 5107 | 4
max | 8674 15341 12453 21734 12262 10533 9089 7106 6739 | 4
min | 7950 7812 7791 8131 8216 5492 5436 4854 4318 | 4
mean | 8870 11683 12274 12721 9827 9008 6635 5695 5198 | 5
max | 9233 13504 13371 13471 12987 12287 9384 8349 8483 | 5
min | 8719 8793 8765 8763 8833 7861 4756 4755 4731 | 5

Table 4.21: Shows run times for tests using the older version of the algorithm, results are in
milli seconds.

4.8 Obtained Data Sets

These previously conducted tests were used in [13]. There were 3 data sets tested each in
different size. The sets sizes are |V| = 102, |V| = 32 and |V'| = 33. There names are respectively
data set 102, 32 and 33. To be comparable with the problem presented in [13] § was set to
zero. This means that the only contributing factor in the objective function is ),y pivi, as
a = 1. Now the number of possible routes was | K| € {2, 3,4}. The cooling schedule was set to
To =15, 7 =1—10"13 and F = 2. The number of iterations was 50,000 and the probability
matrix used was P». Each test with all possible combination was done 10 times. The maximum
route lengths differed for each test.

4.8.1 Results for Data Set 32

The results for the comparison between the tabu search algorithm presented in [13] and the
simulated annealing algorithm presented in this thesis can be seen in table 4.22. The tabue
search algorithm performs better in most cases, although the simulated annealing performs
equally well in a few cases and better in one (|K| =3 and M = 13.3). In the one case where
the simulated annealing algorithm performs better it finds the best known objective value. It is
stated in [13] that the best known objective value for that paticular case, when M = 13.3 and
|K| =3, is 75. Overall the simulated annealing algorithm performs sufficently well compared
to the tabu search.

The run times of the two methods are also dispayed in Table 4.22, these time are mesured
in seconds. The computer used in the tabu search experiment was a DEC Alpha XP1000
Computer and the one used to calculated the simulated annealing was a Dell Inspiron 5150
(Pentium 4). When the two methods are compared it is obvious that the tabu search is much
faster than the simulated annealing, somtimes faster by as much as 15 seconds. The values
shown are both maximum calculations time recored in there trials.

In conslusion one can see, by inspecting Table 4.22 that the tabu search algortihm returns
better soltutions faster than the simulated annealing algorithm, when daeiling with the 32
point data set. Although the simulated annealing algorithm does not return as good solutions,
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S.A. Tabu
|[K| M  Average Max Min CPU Max CPU
18.8 151 165 135 13.011 175 1.5
18.2  145.62 155 130 12.708 165 1.3
12.5 72.75 75 70 11.964 75 0.8
25 188.75 220 135 11.737 220 1.5
24.3 177.88 195 140 11.395 205 2.6
21.7  147.62 165 125 10.208 170 14
13.3 73.0 75 70 11.712 70 0.8
23 122.25 135 95 15.860 135 1.3

N W WWWhs &= =

Table 4.22: Show the comparison between a tabu search algorithm persented in [13]| and the
simulated annealing algorithm persented in this thesis.

as the tabu search, it gives resonalby good results in some cases even finding the best known
objective value.

4.8.2 Results for Data Set 33

In Table 4.23 a comparison between a tabu search algorithm, persented in [13], and the sim-
ulated annealing used in the thesis is displayed. The tabu search performs better on average.
The simulated annealing in some cases give equally good values as the tabu search but never
better values. Though the tabu search performs better overall the simulated annealing tends
to find objective values close to the best known objective values, persented by the tabu search
algorithm.

The run times, displayed in table in Table 4.23, are compared it is apparent that tabu search
is much faster than the simulated annealing algorithm. The computer used in the tabu search
experiment was a DEC Alpha XP1000 Computer and the one used to calculated the simulated
annealing was a Dell Inspiron 5150 (Pentium 4). The differance between runtimes is consi-
darble with tabu search out performing the simulated annealing algorithm by as much as 12
seconds. In both cases the run time are maximum numbers recorded over a few trials.

Overall tabu search out performs simulated annealing both in concern to the objective values
and run time, seen in Table 4.23, when compared with data set 33. Although simulated
annealing does return good objective values but not always the best known objectives.

4.8.3 Results for Data Set 102

Comparison with the 102 point data set can be viewed in Table 4.24. In most instnces the
tabu search algorithm returns better objective values the the simulated annealing algorithm.
There are also cases where the two algorithms return the same best objective values. In one
case,M = 93.3 and |K| = 3, simulated annealing returned a better objective than the tabu
search algorithm. In this case the best known objective values, according to [13], is 813.

The run times are also compared in Table 4.24. Values displayed are the maximum recorded
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S.A. Tabu
|[K| M  Average Max Min CPU Max CPU
22.5  481.5 520 400 12.233 560 0.7
15 259.25 280 220 11.388 310 0.8
10 190 190 190 10.008 190 0.6
36.7 68625 720 620 10.840 750 3.3
31.7 610.75 650 540 11.818 680 3.1
30 574 620 470 10.447 640 2.1
28.3 53475 570 420 11.562 590 2.0
25 471.75 500 430 14.083 510 2.0
475 6975 740 630 8.907 760 5.4
42,5  619.25 660 540 9.775 690 6.6
30 42575 490 290 10.973 490 1.5
275 386.75 430 280 9.512 460 3.8
25 360 390 270 11.092 410 3.1
20 261.75 290 180 10.296 290 1.2
175 2125 250 170 9.132 250 0.8
12.5 176 180 110 11.354 180 1.2

NN DN DN DNDDNDNDND W W WWwWiks k=&

Table 4.23: Show the comparison between a tabu search algorithm persented in [13] and the
simulated annealing algorithm persented in this thesis.

run times. The computer used in the tabu search experiment was a DEC Alpha XP1000
Computer and the one used to calculated the simulated annealing was a Dell Inspiron 5150
(Pentium 4). In most cases the simulated annealing algorithm uses shorter runtimes but for
low values of M the tabu search is quicker.

In conclusion the simulated annealing algorithm returns good results but not always the best
possible and calculates them in short times compared to other methods, when dealing with
large data sets.

4.9 Distance Constraint

When dealing with routes one does not want the bus to drive a short distance and before
stopping again. Two nodes close to one another share much of the same profit. Therefore a
small change was implemented to one of the java classes, UnvisitedPoints.java. This ensured
that the bus had to drive either for some time or a certain distance before stopping again,
whether it was distance or time depends on the input. The new class UnvisitedPoints2.java
made it impossible for any route to stop within a certain radius a, from an already picked
node. Test that were conducted with UnvistedPoints2 java also used Decrease.java and the up-
dated version of simulated annealing. The data sets tested were 50a,b,c,d and e. Each test
looks at nine possible maximum route lengths M € {10, 20, 40, 50, 70, 80, 100, 130,160} and
had a maximum of three vehichles, |K| = 3. Values of the radius were a € {1,2,3,4,5,10}.
All possible combinations of data sets, maximum route lengths and radiuses were tested 10
times and each test used two initial guesses the second being the solution from the first test.



4.9. DISTANCE CONSTRAINT 91

Data set 50a, a=1 Data set 50a, a=2

OPT Value
g
*

20 20 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Maximum route length Maximum route length

Data set 50a, a=3 Data set 50a, a=4

OPT Value

20 0 60 80 100 120 140 160 20 0 60 80 100 120 140 160
Maximum route length Maximum route length

Data set 50a, a=5 Data set 50a, a=10

OPT Value

P N
n :
Maximum route length Maximum route length

Figure 4.37: Shows the best known objective values, red line; and the different results and
there average value, blue dots and blue line.

The cooling schedule used in these tests was Ty = 15, r = 1 — 1073 and F = 2. Number of
iterations was 50,000.

4.9.1 Results for the Distance Constraint

All data sets showed a decrease in objective function as the radius a increased. This can be
seen in the table blow and in Figure 4.37. Similar figures for data sets 50b,c,d and e were
constructed and are viewable in appendix D.4.1.

The Table 4.25 and Figure 4.37 shows that as a increases the average objective values decrease.
For example the best known objective value for M = 20 is 49 for all values of a € {1,2,3,4,5}
but when a = 10 the objective value decreases to 45. For other values of M the decrease is
much more obvious.

All points in V for data set 50a are shown in Figure 4.38. When a = 3 and M =160 the routes
chosen can be seen in Figure 4.39, routes constructed for the same M and a = 10 is shown in
Figure 4.40. Other similar figures for data set 50a can be seen in appendix D.4.1.

To compare between a route with a = 0 and a route with a = 5. This can be seen in figures
4.41 and 4.42. In Figure 4.41 blue points reprsent nodes not chosen. When compared to 4.42
one can determin nodes that were left out becuase they are to close to there neighbor.

These results confirm that the second version of UnvisitedPoints.java works and returns solu-
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Points 50a
50 - T

451 . . . i
40 . g

35f . . :

25 . . m
20, . -7 . . i

157 ... T

0 5 10 15 20 25 30 35 40 45 50

Figure 4.38: Shows all points in data set 50a.
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Figure 4.39: Shows the routes constructed when a = 3 and M = 160. The circles are the area
where that must be travelled before another pick up point is chosen.
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Figure 4.40: Shows the routes constructed when a = 3 and M = 160. The circles are the area
where that must be traveld before another pick up point is chosen.

60

a=5, M=100

501

40t

301

201

10}

-10

-10

0 10 20 30 40 50

Figure 4.41: Shows the routes constructed when a = 5 and M = 100. The circles are the area

where that must be travelled before another pick up point is chosen.



94 CHAPTER 4. TESTS

a=0, M=100
50 T

451
40} /
351
301
251
20t
15t

10f

Figure 4.42: Shows the routes constructed when a = 0 and M = 100. The circles are the area
where that must be travelled before another pick up point is chosen.

tions where a bus is prohibited from visiting any points within radius a of a chosen node.
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S.A. Tabu
|[K| M  Average Max Min CPU Max CPU
4 100 876.3 972 672 42,110 1067 86.6
4 95 859.8 1008 768 48.770 1019 84.3
4 90 813.9 906 672 47.007 966 101.0
4 85 729.9 810 552 79.156 905  95.2
4 80 681.6 756 558 47.383 832 82.0
4 75 660.3 738 540 47.741 776 713
4 70 592.2 696 516 51.924 726 54.4
4 65 543.3 600 462 53.606 643 68.8
4 60 483.6 528 432 56.333 576  31.8
4 a5 418.8 456 342 64.727 503 44.9
4 50 382.2 414 336 69.247 462 23.6
4 45 346.8 359 336 83.772 359 20.6
3 1333 9117 1032 774 30.927 1098 143.2
3 126.7 1895.5 972 816 32,517 1061  99.8
3 120 863.4 942 702 33.138 1011 93.6
3 1133 790.8 900 612 32271 966 98.8
3  106.7 7815 858 714 32503 922  74.0
3 100 723.6 840 606 34.229 874 1028
3 93.3 677.4 792 420 33.218 789  126.5
3  86.7 608.1 738 486 34.962 756 121.2
3 80 543.9 660 360 34.602 681 69.5
3 733 529.2 632 414 40.395 632 94.4
3 66.7 445.2 552 300 39.312 563  107.7
3 60 394.2 438 336 42.797 481  36.0
3 93.3 327 390 270 43.955 416 34.0
3 46.7 312.6 330 282 56.311 344 21.0
2 200 951 1062 810 26.023 1165 290.6
2 190  1932.1 1050 798 23.908 1116 215.6
2 180 1885.6 972 780 23.946 1067 432.6
2 170 852.9 978 750 26.709 1017 239.6
2 160 826.5 894 750 39.186 987 272.1
2 150 769.8 894 648 25499 914 2028
2 140 695.1 792 534 30.222 864 224.3
2 130 630.9 744 456 26.995 817 174.1
2 120 579.9 702 450 27.055 767 2175
2 110 579 642 450 30.544 702  120.1
2 100 495 600 324 26.256 638 118.7
2 90 420.6 564 282 28.611 578 84.4
2 80 417.3 480 258 29.395 521  52.0
2 70 337.2 384 234 31.648 459 74.6
2 60 298.2 336 222 35.746 382 427
2 50 263.7 276 246 41.383 290  37.7

Table 4.24: Show the comparison between a tabu search algorithm persented in [13] and the
simulated annealing algorithm persented in this thesis.
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M 10 20 40 50 70 80 100 130 160
Best | 45 49 102 128 172 194 241 258 258
a=1 |45 49 9890 117.7 155.2 177.9 2223 245.05 258
a=2 |45 49 98 117.8 156.7 171.7 212.5 246.70 249.4
a=3 |45 49 9220 108 151.5 165.6 2019 222.10 2244
a=4 |45 49 8285 103.5 137.2 154.3 1945 21480 2154
a=>5 |45 49 8240 1019 125.3 1555 182.6 191.80 192.6
a=10 |45 45 92 64.1 80.7 849 86.3 86.80 83.8

Table 4.25: Compares the average calculated objective values, limited by a radius a and com-
pared to the best known objective value. All this is then done for multible value of M.
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Conclusions

The simulated annealing algorithm has been put through a number of tests. The best known
cooling schedule, Ty = 21, r =1 — 107% and F = 107%; was calculated in section 4.2.

The best known probability matrix was calculated in 4.3 and then compared to a number of
other probability matrices (see sections 4.5 and 4.6). This best probability matrix was:

50 30 0 0 20 O
0 10 10 0 30 50

60 30 0 O 10 O
0 10 10 60 20 O
0 100 0 0 O O
0o 0 0 7 0 30
0 0 70 30 0 O

Py

The best node insertion method, of those proposed, was random insertion. This was shown in
section 4.4.

In comparison to a program written in GAMS the simulated annealing algorithm prooved
superior, see section 4.7. The algorithm returned objectives between the upper bound, calcu-
lated by GAMS, and the objective value suggested by GAMS, used as a lower bound. The
gap between the upper and lower bound proposed by GAMS was always large and therefore
quality of solutions could not be shown. The simulated annealing algortihm was also much
faster than the GAMS program.

The simulated annealing algorithm was then compared to a tabu search algorithm used for
TOP, see section 4.8. In most cases the tabu search algorithm outperformed the simulated
annealing algorithm by returning better objective values. There were though a few cases there
simulated annealing found better sobjectives. For small data sets the tabu search algorithm
was also faster but for larger data sets simulated annealing had shorter run times. In all cases
simulated annealing returned objectives close to the best known objective values.

A constraint ensuring that a bus must travel for a certain amount of time was implemented.
This constraint worked a returned routes that did not violate the constraint.

97
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The simulated annealing algorithm designed to solve the bus route problem has been con-
structed. In has a good cooling schedule and a good probability matrix. Furthermore a con-
straint forcing a certain time to pass between stops is present if needed. The algorithm returns
good results but not always the best objective values when compared to other algorithms.

5.1 Further Work

5.1.1 Real World Application

Due to time constrictions and lack of easily accessible data the project was not successful in
providing a good bus routes for ALCAN Iceland. In the future a travel time matrix, including
all possible pick up point will have to be constructed. This matrix is estimated in size at
least as 2002200 and could possibly be larger. This matrix would be constructed using travel
plans of local buses, an algorithm constructed for measurments of travel time inside Reykjavik
and real world trials. After the travel time matrix has been constructed, profits have to be
assigned to each possible pick up point. These profits can be influenced by factors determined
by ALCAN, for excample the number of employees living close by or access to the local bus
system. Finally the vector determing in the time penalty for stopping at a certain node will
have to be constructed. This factor is easily estimated by assigning each node, except the
source an sink, the same penalty. If considered necessary a stopping penalty dependant on the
number of people picked up can be implemented.

5.1.2 Algorithm Improvement

As has been discussed in the report there are many things that may be improved and in-
spected. The upper bound using time restrictions always assumes that one bus drives to all
the nodes, in many cases this is not possible. An improvement might add a nearest neighbour
algorithm to determine some sort of route lengths, or travel times. This could then be used
to estimate how many buses are needed to visit the nodes selected in the upper bound.

Also in Java the inheritance of variables is a bothersome. This led to the removal of the vector
y. By doing this a double for-loop in Unvisitedpoints.java was replaced with a triple for-loop.
In future versions of the algorithm inserting y into the code could reduce the run time of the
program, although this could be complicated as it changes much of the algorithm.

In this report the initial guess introduced into the simulated annealing algorithm was the
empty set, or a previously returned solution from the algorithm. There are other methods
available in choosing good initial guess, for example adaptive memory procedure discussed
in [13]. These methods could in most cases decrease run time dramatically. Although in
some cases, when the best objective is an empty solution, these initial guesses result in worse
solutions. This can happen in some theoratical cases but is unlikly to matter in real world
application. This could be countered by implementing a new move that would remove a single
node, without adding a new.

The neighbourhood, moves, could also be improved. Linking InsertMovell java, BusMove.java
and InsertMovel3.java would be useful. In that case InsertMovel3.java and BusMove.java would
use InsertMovell.java to add points to routes. Other methods such as evolutionary cluster
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search discussed in [4]. Methods such as that would although lead to longer run times, sim-
pler methods need fewer calculations.

BusMove.java could be improved be removing a node if the new route is too long, this is done
until the travel time is less than M. This would also lead to more calculations. As proposed
in [3] one could also include a function that would try to joint the two routes with the lowest
profit or travel time.

5.2 A Learning Experiance

Doing such a large project is a great learning experience that can benefit one in future work.
A much better understanding of basic methods such as simulated annealing, and its cooling
schedule; computational experiments and report writing. Also understanding of complicated
operations research methods such as PCTSP, VRP, OVRP and TOP was attained. New in-
sights into organizational skills, conducting productive meetings, communicating with persons
abroad, criticizing once own work and navigating through time constrictions was gained.

Einar Leif Nielsen
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Data set
50a

50b

50c

50d

50e

oowwwoowoowoowwoowoowoowoowoowwwwwwwwwwwwwwwwwwwwwwwwwN

M
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160

Average
16
25.1
108.4
136.1
172.6
202.9
240.8
257.5
258
12.1
24.6
73.6
106.3
171.2
193.8
239
257.6
258
4
11.9
77
104
177.9
210.5
239.4
256.8
258
D
25
73.2
102.6
163
189.8
229.5
256.1
258
9.1
31.9
80.6
98.6
175.1
203.1
240
257.6
258

Max Min Average CPU

16
31
112
141
189
220
252
258
258
17
27
79
115
181
209
252
258
258
4
16
84
113
204
220
252
258
258
5
25
79
107
180
212
248
258
258
11
33
88
108
191
214
252
258
258

16
21
102
130
149
184
220
253
258
9
24
69
96
141
160
228
256
258
4
7
64
97
149
199
233
255
258
5
25
68
93
149
173
207
241
258
6
28
69
80
149
195
216
254
258

APPENDIX A. RESULTS

2265.5
2132.4
4364.7
6033.6
8300.9
8231.3
8065.7
7869.1
7900.5
2054.2
2100.6
3666.9
6327.4
8383.7
8285.8
8135.5
7943.5
7955.5
2361.1
2381.8
3814
6489.9
8638.2
8561
8286.5
8398
8422
2132.9
2345.4
3721.2
6015.9
8477
8439
8224.6
8098.3
8061.9
2164.3
2396.7
4538.2
6583
8544.8
8409
8294.5
8147.7
8118

Table A.1: Results using a« = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.
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Data set |K| M Average Max Min Average CPU
o0a 4 10 16 16 16 2302.5
4 20 24.9 31 21 2182.1
4 40 121.7 130 106 5118.7
4 50 155.4 164 145 7269.8
4 70 207 221 194 10337
4 80 2374 249 214 10150
4 100 256.6 258 251 9999.4
4 130 258 258 258 9929.9
4 160 258 258 258 9940.4
50b 4 10 13.2 17 9 2170.9
4 20 23.7 27 19 2339.8
4 40 82.8 90 7 4246.6
4 50 124.8 133 114 7683.7
4 70 204.7 224 191 10459
4 80 236.6 252 222 10349
4 100 257.5 258 255 10186
4 130 258 258 258 10084
4 160 258 258 258 10130
o0c 4 10 4 4 4 2374.9
4 20 11.7 13 7 2492
4 40 89.3 98 76 4237.4
4 50 136.6 147 126 T7782.5
4 70 212.3 228 183 10616
4 80 235.3 252 228 10730
4 100 255.2 258 252 10383
4 130 258 258 258 10377
4 160 258 258 258 10293
50d 4 10 D ) ) 2181.1
4 20 21.5 25 15 2247.9
4 40 84.2 88 80 4228 .4
4 50 117.8 123 110 T117.5
4 70 191.9 203 177 10418
4 80 229.8 244 203 10338
4 100 254.9 258 236 10144
4 130 258 258 258 10061
4 160 258 258 258 11618
o0e 4 10 9 11 6 2233.3
4 20 31.2 33 28 2484.7
4 40 93.3 98 87 0178.2
4 50 128 138 113 7865.4
4 70 210.9 221 202 10563
4 80 235.2 246 227 10349
4 100 258 258 258 10151
4 130 258 258 258 10116
4 160 258 258 258 10156

Table A.2: Results using a = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.
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Data set
50a

50b

50c

50d

50e

CﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂO‘!O‘(O‘!O‘(O‘(Cﬂb‘(CﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂCﬂN

M
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160

Average
16
27.6
129.8
170
229
252.8
258
258
258
14.1
23.7
89.9
146
238.2
255.2
258
258
258
4
11.2
99.3
148.5
233.1
249.4
257.7
258
258
D
21.6
91.3
133.1
226.4
245.6
258
258
258
8
29.9
100.7
142.4
230.2
252.6
258
258
258

Max Min Average CPU

16
31
135
177
239
257
258
258
258
17
27
92
157
249
258
258
258
258
4
16
103
158
247
255
258
258
258
5
25
93
140
235
255
258
258
258
11
33
102
154
238
258
258
258
258

16
21
124
158
213
241
258
258
258
9
19
88
134
225
251
258
258
258
4
7
89
132
227
242
255
258
258
5
20
90
113
215
234
258
258
258
6
26
97
133
222
234
258
258
258

APPENDIX A. RESULTS

2362.8
2324.8
5790.2
8449
12068
12102
11818
11826
11851
2294.5
2360.6
4677.8
8964.3
12473
12292
12124
12071
12077
2297.1
2168.8
4575.1
8635.3
12307
12225
12146
12144
12037
2247.3
2287.3
4824.4
8480.9
12457
12392
12240
12178
12189
2241
2532.9
2875.8
9308.6
12339
12260
12146
12139
12070

Table A.3: Results using « = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



Data set |
100a

| M
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40

K
3
3
3
3
3
3
3
3
3
100b 3
3
3
3
3
3
3
3
3
3
3
3
3 50
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

100c

70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160

100d

100e

Average
11
35.5
89.6
116.8
152.6
181.6
230.8
266.4
335.5
17.5
43.1
97.7
113.1
156.1
183.9
221.9
278.5
327.2
28
53.3
98.8
128.5
178
205.4
242.5
295.5
352.9
20.3
43.5
83
96.7
145.6
172.6
215.9
265.8
314.3
8
37.7
96.5
123.3
160.7
195.1
232.4
288.6
354.8

Max Min Average CPU

11
38
102
126
174
195
266
304
379
23
47
106
130
171
197
245
325
376
30
o4
104
143
201
233
282
340
392
22
45
91
111
163
182
232
306
335
8
38
109
141
185
215
258
315
377

11
34
66
90
133
165
210
218
301
13
40
86
98
140
168
200
235
284
20
47
93
115
143
173
210
248
316
12
40
68
83
115
142
198
228
255
8
35
86
105
107
175
207
242
336

2398.9
3003.3
9508.3
19074
28235
27764
26520
25725
25165
3381.5
4202.5
7283
12593
17413
18224
16983
16522
15356
4146.9
4493.6
7775.1
12966
17580
16659
16618
15192
15150
3925.1
4427.8
6736.5
12487
17324
17978
16567
15795
15609
4633.4
4814.9
9371.8
12709
18782
18814
17216
16074
16341

107

Table A.4: Results using a = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



108

Data set
100a

100b

100c

100d

100e

HkAkﬂkﬂkﬂkﬂkﬂk»hﬂk»-lk»-lkn-lkAkﬂkﬂkﬂkﬂkﬂk»hﬂk»-lkn-lkn-lk%%%%»&HA%%A&%H&A&%A&H&%HA%H&A&H&H&N

M
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160

Average
11
42.7
115.2
155
206.9
224.8
277.3
362.6
411.7
16.8
50.6
118
142
206.6
209.8
273.3
345.9
404.1
25.8
61.5
118.1
154.2
232.5
261.1
296.1
378.8
436.8
16.9
51.6
99.5
129.2
186.7
215.1
281.5
352.3
413.9
8
444
120.4
154.8
218.9
250.8
282.8
366.1
415.7

Max Min Average CPU

11
44
126
170
227
246
316
380
452
23
o4
131
159
223
243
300
373
433
30
63
134
174
256
284
334
435
455
21
52
115
136
203
249
307
378
448
8
46
130
176
245
271
307
402
439

11
38
102
140
181
191
235
314
370
13
45
107
125
168
182
234
301
383
20
54
111
132
213
221
246
333
402
12
ol
89
111
162
188
249
325
372
8
41
112
107
198
230
254
342
395

APPENDIX A. RESULTS

2404.5
3196.8
11631
23627
35611
34632
33560
31908
31406
3518.7
4461.5
8125.3
14834
20674
20979
20222
18515
17062
3683.4
4353.6
8298.9
14958
21281
19116
18789
17720
16923
3631.5
4367.4
7917
14742
20872
21440
19357
18277
17440
4694.2
5669
9416.6
15486
21922
22476
19784
19978
17509

Table A.5: Results using a = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



Data set |
100a

| M
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40

K
5
5
5
5
5
5
5
5
5
100b 5
5
5
5
5
5
5
5
5
5
5
5
5 50
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

100c

70
80
100
130
160
10
20
40
50
70
80
100
130
160
10
20
40
50
70
80
100
130
160

100d

100e

Average
11
45.2
139.9
180.2
237.7
273.6
333
429.4
470.7
17.3
56.5
141.7
164.8
249.5
276.6
335.7
408.3
465.7
24.6
65.4
131.6
183.2
265.9
302.2
362
433.9
488.3
17
53.7
113.8
150.1
231.8
265.3
331.3
422.7
479.9
8
53
140.3
182.2
245
294.7
342.8
417.9
476

Max Min Average CPU

11
46
151
204
259
301
366
446
002
23
29
152
185
276
301
358
431
494
30
71
152
197
283
327
404
459
504
21
95
125
169
246
288
395
451
002
8
o6
148
200
273
309
372
432
002

11
44
125
162
210
255
299
406
416
13
52
119
143
226
255
298
378
433
20
63
109
173
242
274
321
420
459
12
52
108
134
208
239
296
395
455
8
49
127
137
211
285
321
357
457

4114.6
4704.7
10074
17528
26868
24430
22919
20914
20513
3973.5
4989.3
9463.7
17603
24986
25792
22461
21481
20413
3588.4
4402.7
8891.5
17426
25305
23638
22466
21035
19577
3532.4
4388.1
8386.2
18106
27403
24810
23208
20982
19146
4814
5314
10134
17948
27232
25393
24342
22018
22587
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Table A.6: Results using a = 1 and 8 = 0. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



110

Data set |
3 50 a

K| M
3 5
310
3 15
320
3 25
3 30
3 35
3 40
3 50

350b 3 5

310

3 15

320

3 25

3 30

3 35

3 40

3 50

3 5

310

3 15

320

3 25

3 30

3 35

3 40

3 50

3 50 c

Average
59
102.8
168
231.8
286.9
361
394.4
424.8
430
55
117
171
249
292.9
356.9
401.8
428.9
423
55
104.5
179
228.1
299.2
359
402.9
428
429

Max Min Average CPU

60
111
171
232
301
361
411
432
432

25
120
180
250
301
361
411
432
432

25
111
181
231
300
360
411
432
432

20
90
141
231
222
361
371
371
412
95
100
140
240
230
330
370
401
372
95
90
171
222
292
350
370
392
402

APPENDIX A. RESULTS

4482.7
6377.9
8565
10623
11628
11268
10987
10325
10065
4833.6
6275.6
8560.7
10993
12022
11570
11125
10317
10403
4843.8
6605.6
8756.9
11517
12029
11760
11730
11412
10319

Table A.7: Results using @« = 1 and 8 = 15. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



Data set |
4 50 a

K| M
4 4
4 8
412
4 16
420
4 24
4 28
430
4 35
450 b 4 4
4 8
412
4 16
420
4 24
4 28
4 30
4 35
4 4
4 8
412
4 16
420
4 24
4 28
4 30
4 35

4 50 c

Average
72.5
129.6
190.8
272
359.9
423
431.9
430.9
426
71.5
144
206.9
273.4
364.1
423.9
423.7
417.9
430.9
75
156
229.9
286.4
361.5
423.9
428
428.9
432

Max Min Average CPU

75
131
201
281
361
432
432
432
432

75
150
211
290
370
432
432
432
432

80
160
231
292
372
432
432
432
432

65
120
171
211
351
352
431
421
392

60
120
191
241
331
372
400
341
421

60
140
220
261
320
401
412
412
432

6816.4
9613.7
17074
14932
14440
13535
12780
12427
12669
7025.3
9696.4
16331
14673
14050
12864
13007
12435
12172
6975.3
9060.5
15812
14074
13112
12542
12264
12323
11720

111

Table A.8: Results using @ = 1 and 8 = 15. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.
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Data set |
4 100 a

K| M
410
420
425
430
4 35
4 40
4 45
450
460
4100 b 4 10
420
425
4 30
4 35
4 40
4 45
4 50
460
410
420
425
4 30
4 35
4 40
4 45
4 50
460

4 100 ¢

Average
183
362

462.6
544.8
628
697.2
742.3
835.2
875.3
182
377
440
566.6
651.2
684.5
790.2
842.5
882.2
190
378
463
548
644.3
681.4
793.6
820.8
883.2

Max Min Average CPU

190
380
471
561
661
750
814
904
905
190
380
470
071
670
751
841
904
905
190
390
470
580
661
761
841
904
905

170
300
430
431
600
063
582
713
814
150
360
370
951
621
540
750
795
834
190
310
450
450
580
990
721
721
853
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11610
44446
69766
27475
23055
47969
44791
44777
41065
11757
39682
65734
28835
26639
47337
44403
42063
41686
11702
42901
69121
60838
53120
47479
46224
43629
41369

Table A.9: Results using @« = 1 and 8 = 15. Average objective, best calculated objective, worst
calculated objective and average run times in mille seconds are displayed.



Data set |
3100 a

K| M
310
320
3 30
3 35
3 40
3 45
3 50
3 60
3 75

3.100b 3 10

320

3 30

3 35

3 40

3 45

3 50

3 60

3 75

310

320

3 30

3 35

3 40

3 45

3 50

3 60

3 75

3100 c

Average
118
2311
358.1
414.7
492.1
521.3
587.4
691.7
805.6
130
246
359
410
475
540.2
594
681.8
784.3
112
237
328
411
456
526.3
563.5
685.4
811.2

Max Min Average CPU

121
240
370
431
500
560
620
732
863
130
250
380
430
500
960
620
741
874
120
240
350
420
480
951
601
732
881

111
161
281
331
480
410
520
631
713
130
220
290
340
390
411
950
622
690
100
230
270
380
340
400
440
622
753

6121.4
12729
23002
30998
34771
41077
43730
41873
38226
6071.3
12023
23078
28914
36920
37747
44592
40227
34663
5802.6
11083
22702
27548
35322
39322
38953
39509
34580
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Table A.10: Results using o = 1 and § = 15. Average objective, best calculated objective,

worst calculated objective and average run times in mille seconds are displayed.
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Appendix B

Solution Types

A few types of solutions are presented here and then analyzed with SWOT analysis. There
internal benefactors of the project are: the student, ALCAN and the professors. The external
benefactors are:The employees of ALCAN, Hopbilar (or other transport companies) and the
general public.

Type 1: Use current pickup points along with new ones (predefined, such as local bus stops).
Estimate the importance of each pickup point by the number of people living close to it, the
amount of parking and connection to local transit system. Buses from Hopbilar are used to
pick up employees.

Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-

travel time. A general solu- | tion. In this solution new
tion that takes into account | nodes without a predefined lo-
employee  turnover. Works | cation cannot be used. Hard
all year round, 24 hours a | to estimate the general popu-
day. This solution is not too | lation of an area.

simple to be considered a

exam project.

External | Decreases travel time. Decreases profit for Hopbilar.
Decreases the current amount
of service provided by AL-
CAN.

Transportation in this solution is provided by Hépbilar.

Type 2: Same as type 1 except importance of pickup points is decided by the number of

employees that live close to them.
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Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases cost. Decreases | This is a special solution that

travel time. Works all year | does not take into account em-
round, 24 hours a day. Not | ployee turnover. In this so-
to simple to be considered | lution new nodes without a
an exam project. Relatively | predefined location cannot be
simple to program and there | used. Not ALCAN’s desired
fore a good candidate for the | solution.

first solution.

External | Decreases travel time. Decreases profit for Hopbilar.
Decreases the current amount
of service provided by AL-
CAN.

Transportation in this solution is provided by Hoépbilar.

Type 3 Same as type 2 except a soft wear, such as ShorTrec from AGR hf., is used to

determine the bus routes. A new route can be calculated as often as ALCAN desires.

Helpful to achieving the ob-

Harmful to achieving the ob-

provider of the new soft wear.

jective jective
Internal | Decreases cost. Decreases | This solution depends on a 3
travel time. Works all year | party program. This solution
round, 24 hours a day. A gen- | is too simple to be considered
eral solution that takes into | an exam project unless the 3
account employee turnover. party soft wear is programmed
by the student. Not ALCAN’s
desired solution.
External | Decreases travel time. In- | Decreases profit for Hopbilar.
creases the profit for the | Decreases the current amount

of service provided by AL-
CAN.

Transportation in this solution is provided by Hoépbilar.

Type 4: Uses the local transit system, buses, to pickup employees and return them.




Helpful to achieving the ob-

Harmful to achieving the ob-

ployee will have to walk further
than 600m. Possible for em-
ployees to use outside of work-
ing hours. Increases use of the
local bus system.

jective jective

Internal | Decreases cost. Decreases | This solution is too simple to
travel time. This solution | be considered an exam project.
gives good publicity for AL- | Doesn’t work all year round,
CAN by increasing the use of | 24 hours a day. Not ALCAN’s
the local bus system. A gen- | desired solution.
eral solution that takes into
account employee turnover.
Solves overtime problem.

External | Decreases travel time. No em- | Removes Hopbilar from the

picture. Decreases the current
amount of service provided by
ALCAN. Straeté will have to
put up a new bus stop in
Straumsvik.

Transportation in this solution is provided by Straeto.
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Type 5 : Car pooling. Each car will be given a driving diary and receive a payment for
gas used at the end of the month. It would be necessary to right a program that would put
five optimal people together as a part of a car pooling team.

Helpful to achieving the ob-

Harmful to achieving the ob-

ployee will have to walk,
they are picked up at there

doorstep.

jective jective

Internal | Decreases cost. Decreases | A special solution that does
travel time. Might solve over- | not take into account employee
time problem. Not to simple | turnover. Might be misused by
to be considered an exam | employees, who could log more
project. This solution works | kilometers than they actually
all year round, 24 hours a day. | drove. Not ALCAN’s desired

solution.
External | Decreases travel time. No em- | Removes Hopbilar from the

picture. Decreases the current
amount of service provided by
ALCAN. Employees depend
on one another to be at work
on time. Not every one owns a
car.

Transportation in this solution is provided by Employees.

Type 6 : Driving grant. Each employee would receive an increase in pay to compensate
for the lack of buses. The employees would then drive themselves to work.
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Helpful to achieving the ob-

Harmful to achieving the ob-

creases employee pay (which is
always popular).

jective jective
Internal | Decreases cost. Decreases | Too simple to be considered an
travel time. A special solu- | exam project. Not ALCAN’s
tion that takes into account | desired solution.
employee  turnover.  Solves
overtime problem. This solu-
tion works all year round, 24
hours a day.
External | Decreases travel time. In- | Removes Hopbilar from the

picture. Decreases the current
amount of service provided by
ALCAN.

Transportation in this solution is provided by Employees.

Type 7 : Car pooling with taxis. A taxi would pickup employees and return them. Each
taxi would be filled with passengers. A program would tell the taxi service where and when

to pick up an employee.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Possibly
solves overtime problem. This
solution works all year round,
24 hours a day. Not too sim-
ple too be considered an exam
project.

A special solution that does
not take into account employee
turnover. Cost of this solution

is unknown. Not ALCAN’s de-
sired solution.

External

Decreases travel time. Service
is increased as all employ-
ees are picked up on there
doorstep. Profit for taxi service
is increased.

Removes Hopbilar from the
picture.

Transportation in this solution is provided by a taxi service.

Type 8 : Same as type 1 except the pickup points would be calculated so that there

location was optimal and not from predetermined points.




Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases cost. Decreases | Hard to estimate general pop-
travel time. A general solution | ulation of an area. Of all the
that takes into account em- | solutions likely to be the most
ployee turnover. This solution | complicated to formulate.
works all year round, 24 hours
a day. Not too simple too be
considered an exam project.
ALCAN’s desired solution.

External | Decreases travel time. Service is decreased. Hop-

bilar’s profit is decreased.

Transportation in this solution is provided by a Hoépbilar.

B.0.1

Combined solutions

Combo 1 : Type 1 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 1 when type 4 is not available.

Helpful to achieving the ob-

Harmful to achieving the ob-

ing day/evening on non hol-
idays. Decreases travel time.
Employees can use the pub-
lic buses when they are not at
work. More users for the public
transport system.

jective jective

Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-
travel time. A general solution | tion. In this solution new
that takes into account em- | nodes without predefined loca-
ployee turnover. This solution | tions can not be defined. Hard
works all year round, 24 hours | to estimate general population
a day. Not too simple too be | of an area.
considered an exam project.
Solves the overtime problem
during day/evening on non
holidays.  Good  publicity
for ALCAN as the public
transport system gains more
users.

External | No employee will have to | Service is decreased. Hop-
walk further than 600m dur- | bilar’'s profit is decreased.

Straeto will have to build a new
bus stop in Straumsvik.

Transportation in this solution is provided by a Hépbilar and Straeté.
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Combo 2 : Type 2 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and

solution type 2 when type 4 is not available.

Helpful to achieving the ob-

Harmful to achieving the ob-

ployees can use the public
buses when they are not at
work. More users for the pub-
lic transport system. No em-
ployee will have to walk further
than 600m during day/evening
on non holidays.

jective jective

Internal | Decreases cost. Decreases | A general and special solution
travel time. A general and | that does not take into ac-
special solution that takes into | count, during night or on hol-
account, during day/evening | idays, employee turnover. Not
on non holidays, employee | ALCAN’s desired solution. In
turnover. This solution works | this solution new nodes with-
all year round, 24 hours a day. | out predefined locations can
Not too simple too be consid- | not be defined.
ered an exam project. Partly
solves the overtime problem.
Good publicity for ALCAN as
the public transport system
gains more users.

External | Decreases travel time. Em- | Service is decreased. Hop-

bilar’s profit is decreased.
Straetd will have to build a new
bus stop in Straumsvik.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 3 : Type 3 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 3 when type 4 is not available.



Helpful to achieving the ob-

Harmful to achieving the ob-

jective jective

Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-
travel time. A general and | tion. This solution is too sim-
special solution that takes into | ple to be considered an exam
account employee turnover. | project unless the 3 party soft
This solution works all year | wear is programmed by the au-
round, 24 hours a day. Partly | thor of the project.
solves the overtime problem.
Good publicity for ALCAN as
the public transport system
gains more users.

External | Decreases travel time. Em- | Service is decreased. Hop-
ployees can use the public | bilar's profit is decreased.

buses when they are not at
work. More users for the pub-
lic transport system. No em-
ployee will have to walk further
than 600m during day/evening
on non holidays.

Straeto will have to build a new
bus stop in Straumsvik.
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Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 4 : Type 5 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 5 when type 4 is not available.
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Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases cost. Decreases | A general and special solu-
travel time. A general and | tion that does not take into
special solution that takes into | account, during night or on
account, during day/evening | holidays, employee turnover.
on non holidays, employee | Not ALCAN’s desired solu-
turnover. This solution works | tion. Might be misused by em-
all year round, 24 hours a | ployees, who could log more
day. Partly (even completely) | kilometers than they actually
solves the overtime problem. | have driven.

Good publicity for ALCAN as
the public transport system
gains more users.

External | Decreases travel time. Em- | Service is decreased. Removes
ployees can use the public | Hopbilar from the picture.
buses when they are not at | Streeté will have to build a new
work. More users for the pub- | bus stop in Straumsvik. Em-
lic transport system. No em- | ployees depend on one another
ployee will have to walk further | to be at work on time. Not ev-
than 600m during day/evening | ery one owns a car.
on non holidays.

Transportation in this solution is provided by a Employees and Straeto.

Combo 5 : Type 6 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 6 when type 4 is not available.



Helpful to achieving the ob-

Harmful to achieving the ob-

jective jective
Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-
travel time. A general solution | tion. This solution is too sim-
that takes into account em- | ple to be considered an exam
ployee turnover. This solution | project.
works all year round, 24 hours
a day. Solves the overtime
problem.  Good  publicity
for ALCAN as the public
transport system gains more
users.
External | Decreases travel time. Em- | Service is decreased. Removes

ployees can use the public
buses when they are not at
work. More users for the pub-
lic transport system. Employ-
ees receive an increase in pay.
No employee will have to
walk further than 600m during
day/evening on non holidays.

Hoépbilar from the picture.
Straeto will have to build a new
bus stop in Straumsvik. Not
every one owns a car.
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Transportation in this solution is provided by Employees and Straeto.

Combo 6 : Type 7 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 7 when type 4 is not available.
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Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal | Decreases travel time. A | A special solution, at night
general solution,during | and on holidays, that does
day/evening on mnon holi- | not take into account employee
days, that takes into account | turnover. Not ALCAN’s de-
employee turnover. This solu- | sired solution. Cost is an un-
tion works all year round, 24 | known factor.
hours a day. Solves the over-
time problem. Good publicity
for ALCAN as the public
transport system gains more
users. Not too simple to be
considered an exam project.

External | Decreases travel time. Em- | Service is decreased during

ployees can use the public
buses when they are not at
work. More users for the public
transport system. Service is in-
creased during night and holi-
days. No employee will have to
walk further than 600m during
day/evening on non holidays.
Increased revenue for the taxi
service.

day/evening on non holidays.
Removes Hopbilar from the
picture. Straetd will have to
build a new bus stop in
Straumsvik.

Transportation in this solution is provided by a taxi service and Straeto.

Combo 7 : Type 8 and type 4.
Description : Use solution type 4 when it is possible, during daytime on non holidays, and
solution type 8 when type 4 is not available.



Helpful to achieving the ob-

Harmful to achieving the ob-

buses when they are not at
work. More users for the pub-
lic transport system. No em-
ployee will have to walk further
than 600m during day/evening
on non holidays .

jective jective

Internal | Decreases cost. Decreases | Hard to estimate general pop-
travel time. A general solution | ulation of an area. Not AL-
that takes into account em- | CAN’s desired solution. Likely
ployee turnover. This solution | a complicated solution.
works all year round, 24 hours
a day. Partly solves the over-
time problem. Good publicity
for ALCAN as the public
transport system gains more
users. Not too simple to be
considered an exam project.

External | Decreases travel time. Em- | Service is decreased. Hop-
ployees can wuse the public | bilar’'s profit is decreased.

Straetd will have to build a new
bus stop in Straumsvik.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 8 : Type 5 and type 6.
Description : Type 5 but instead of using the driving diaries, employees would receive an
increase in pay, type 6, for driving there fellow coworkers to work.

Helpful to achieving the ob-

Harmful to achieving the ob-

ees are picked up at there
doorstep. Employees
pay increase.

receive

jective jective

Internal | Decreases cost. Decreases | Not ALCAN’s desired solu-
travel time. This solution | tion. A special solution that
works all year round, 24 | does not take into account em-
hours a day. Could solve the | ployee turnover.
overtime problem. Not too
simple to be considered an
exam project.

External | Decreases travel time. Employ- | Service provided by ALCAN

is decreased. Hopbilar are re-
moved from the picture. Em-
ployees depend on one another
to be at work on time. Not ev-
ery one owns a car.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 9 : Type 7 and type 6.
Description : Solution type 7 would be used but instead of ALCAN paying the taxi service it
would increase workers pay. Employees would then use that pay increase to pay for the taxies.
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Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. This so-
lution works all year round,
24 hours a day. Could solve
the overtime problem. Not too
simple to be considered an
exam project.

Not ALCAN’s desired solu-
tion. Cost is unknown, likely
high. A special solution that
does not take into account em-
ployee turnover.

External

Decreases travel time. Employ-
ees are picked up at there
doorstep. Employees
pay increase. Service is in-
creased. Increased revenue for

receive

the taxi service.

Hoépbilar are removed from the
picture.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 10 : Extreme solution using type 1 and type 4.

Description : Solve solution type 1 with as few routes and pickup points as possible. Em-

ployees then use local buses to get to those points, type 4.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

ployees can use the public
buses when they are not at
work. More users for the public
transport system. No employee
will have to walk further than
600m.

Internal | Decreases travel time. A gen- | Not ALCAN’s desired solu-
eral solution that takes into | tion. Does not work all year
account employee turnover. | round, 24 hours a day. Cost
Good publicity for ALCAN as | might not be decreased. In
the public transport system | this solution new nodes with-
gains more users. Not too sim- | out predefined locations can
ple to be considered an exam | not be defined. Hard to esti-
project. mate general population of an

area.

External | Decreases travel time. Em- | Service is decreased. Hop-

bilar’s profit is decreased.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 11 : Extreme solution using type 2 and type 4.

Description : Solve solution type 2 with as few routes and pickup points as possible. Em-

ployees then use local buses to get to those points, type 4.




Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. A gen-
eral and special solution that
takes into account employee
turnover. Good publicity for
ALCAN as the public trans-
port system gains more users.
Not too simple to be consid-
ered an exam project.

Not ALCAN’s desired solu-
tion. Does not work all year
round, 24 hours a day. Cost
might not be decreased. In
this solution new nodes with-
out predefined locations can
not be defined.

External

Decreases travel time. Em-
ployees can use the public
buses when they are not at
work. More users for the public
transport system. No employee
will have to walk further than
600m.

Service is decreased. Hop-
bilar’s profit is decreased.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 12 : Extreme solution using type 3 and type 4.
Description : Solve solution type 3 with as few routes and pickup points as possible. Em-
ployees then use local buses to get to those points, type 4.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. A gen-
eral and special solution that
takes into account employee
turnover. Good publicity for
ALCAN as the public trans-
port system gains more users.

Depend on a third party pro-
gram. Too simple to be con-
sidered an exam project, un-
less the third party program
is program by the author of
the project. Not ALCAN'’s de-
sired solution. Does not work
all year round, 24 hours a day.
Cost might not be decreased.

External

Decreases travel time. Em-
ployees can use the public
buses when they are not at
work. More users for the pub-
lic transport system. No em-
ployee will have to walk further
than 600m. Increased revenue
for the taxi service.

Service is decreased. Hop-
bilar’s profit is decreased.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 13 : Extreme solution using type 8 and type 4.
Description : Solve solution type 8 with as few routes and pickup points as possible. Em-
ployees then use local buses to get to those points, type 4.
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Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

ployees can use the public
buses when they are not at
work. More users for the public
transport system. No employee
will have to walk further than
600m.

Internal | Decreases travel time. A gen- | Not ALCAN’s desired solu-
eral solution that takes into | tion. Does not work all year
account employee turnover. | round, 24 hours a day. Cost
Good publicity for ALCAN as | might not be decreased. Likely
the public transport system | a complicated solution.
gains more users. Not too sim-
ple to be considered an exam
project.

External | Decreases travel time. Em- | Service is decreased. Hop-

bilar’s profit is decreased.

Transportation in this solution is provided by a Hépbilar and Straeté.

Combo 14 : Extreme solution using type 1 and type 5.

Description : Solve solution type 1 with as few routes and pickup points as possible. Em-

ployees then use car pooling to get to those points, type 5.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a day.
Not too simple to be consid-
ered an exam project.

A general and special solution
that does not takes into ac-
count employee turnover. Not
ALCAN’s desired solution. In
this solution new nodes with-
out predefined locations can
not be defined. Might be mis-
used by employees who could
log more kilometers then they
actually have driven. Hard to
estimate general population of
an area. Cost might not be de-
creased.

External

Decreases travel time. Em-
ployee picked up at doorstep.

Service is decreased. Hop-
bilar’s profit is decreased. Em-
ployees depend on one another
to catch the bus. Not every one
owns a car.

Transportation in this solution is provided by Hopbilar and employees.




Combo 15 : Extreme solution using type 2 and type 5.
Description : Solve solution type 2 with as few routes and pickup points as possible. Em-
ployees then use car pooling to get to those points, type 5.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a day.
Not too simple to be consid-
ered an exam project.

A special that does not
takes into account employee
turnover.  Not  ALCAN’s
desired solution. Might be
misused by employees who
could log more kilometers then
they actually have driven. In
this solution new nodes with-
out predefined locations can
not be defined. Cost might not
be decreased.

External

Decreases travel time. Em-
ployee picked up at doorstep.

Service is decreased. Hop-
bilar’s profit is decreased. Em-
ployees depend on one another
to catch the bus. Not every one
owns a car.

Transportation in this solution is provided by Hépbilar and employees.

Combo 16 : Extreme solution using type 3 and type 5.
Description : Solve solution type 3 with as few routes and pickup points as possible. Em-
ployees then use car pooling to get to those points, type 5.

Helpful to achieving the ob-

Harmful to achieving the ob-

ployee picked up at doorstep.
Increases profit for the soft
wear provider.

jective jective

Internal | Decreases travel time. Works | Not ALCAN’s desired solu-
all year round, 24 hours a | tion. Depends on a third party
day. A special solution that | program. Might be misused by
takes into account employee | employees who could log more
turnover. This solution is not | kilometers then they actually
too simple to be considered an | have driven. Cost might not be
exam project. decreased.

External | Decreases travel time. Em- | Service is decreased. Hop-

bilar’s profit is decreased. Em-
ployees depend on one another
to catch the bus. Not every one
owns a car.

Transportation in this solution is provided by employees and Hopbilar.

Combo 17 : Extreme solution using type 8 and type 5.
Description : Solve solution type 8 with as few routes and pickup points as possible. Em-
ployees then use car pooling to get to those points, type 5.
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Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

ployee picked up at doorstep.

Internal | Decreases travel time. Works | Not ALCAN’s desired solu-
all year round, 24 hours a day. | tion. A general and special so-
This solution is not too sim- | lution that does not take into
ple to be considered an exam | account employee turnover.
project. Might be misused by employ-
ees who could log more kilo-
meters then they actually have
driven. Cost might not be de-
creased.
External | Decreases travel time. Em- | Service is decreased. Hop-

bilar’s profit is decreased. Em-
ployees depend on one another
to catch the bus. Not every one
owns a car. Likely a compli-
cated solution.

Transportation in this solution is provided by employees and Hépbilar.

Combo 18 : Extreme solution using type 1 and type 6.

Description : Solve solution type 1 with as few routes and pickup points as possible. Em-
ployees then receive an increase in monthly pay to be used to get to said points, type 6.

Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases travel time. Works | Not ALCAN’s desired solu-
all year round, 24 hours a | tion. New nodes without pre-
day. A general solution that | defined locations cannot be
takes into account employee | used. Hard to estimate a gen-
turnover. This solution is not | eral population of an area.
too simple to be considered an | Cost might not be decreased.
exam project.

External | Decreases travel time. In- | Service is decreased. Hop-
creases pay for employees. bilar’s profit is decreased. Not

every one owns a car.

Transportation in this solution is provided by employees and Hopbilar.

Combo 19 : Extreme solution using type 2 and type 6.

Description : Solve solution type 2 with as few routes and pickup points as possible. Em-
ployees then receive an increase in monthly pay to be used to get to said points, type 6.




Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases travel time. Works | Not ALCAN’s desired solu-
all year round, 24 hours a day. | tion. New nodes without pre-
A special solution that partly | defined locations cannot be
takes into account employee | used. Cost might not be de-
turnover. This solution is not | creased.
too simple to be considered an
exam project.

External | Decreases travel time. In- | Service is decreased. Hop-
creases pay for employees. bilar’s profit is decreased. Not

every one owns a car.

Transportation in this solution is provided by employees and Hépbilar.

Combo 20 : Extrema solution using type 3 and type 6.
Description : Solve solution type 3 with as few routes and pickup points as possible. Em-

ployees then receive an increase in monthly pay to be used to get to said points, type 6.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a
day. A special solution that
takes into account employee
turnover.

Too simple to be considered an
exam project, unless the third
party program is program by
the author of the project. Not
ALCAN’s desired solution. De-
pends on a third party pro-
gram. Cost might not be de-
creased.

External

Decreases travel time. In-
creases pay. Increases profit for

software provider.

Service is decreased. Hop-
bilar’s profit is decreased. Not
every one owns a car.

Transportation in this solution is provided by employees and Hopbilar.

Combo 21 : Extreme solution using type 8 and type 6.
Description : Solve solution type 8 with as few routes and pickup points as possible. Em-

ployees then receive an increase in monthly pay to be used to get to said points, type 6.
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Helpful to achieving the ob- | Harmful to achieving the ob-
jective jective

Internal | Decreases travel time. Works | Not ALCAN’s desired solu-
all year round, 24 hours a | tion. Hard to estimate a gen-
day. A general solution that | eral population of an area.
takes into account employee | Cost might not be decreased.
turnover. This solution is not | Likely a complicated solution.
too simple to be considered an
exam project.

External | Decreases travel time. In- | Service is decreased. Hop-
creases pay for employees. bilar’s profit is decreased. Not

every one owns a car.

Transportation in this solution is provided by employees and Hopbilar.

Combo 22 : Extreme solution using type 1 and type 7.

Description : Solve solution type 1 with as few routes and pickup points as possible. Em-
ployees then use a taxi service to said points, type 7.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a day.
This solution is not too sim-
ple to be considered an exam
project.

A general and special solution
that does not take into account
employee turnover. Not AL-
CAN’s desired solution. Hard
to estimate a general popula-
tion of an area. Cost might not
be decreased. New nodes with-
out a predefined location can-
not be used.

External

Decreases travel time. Em-
ployee picked up on doorstep.
Increases revenue for taxi ser-
vice. Service is increased.

Hopbilar’s profit is decreased.

Transportation in this solution is provided by taxi service and Hopbilar.

Combo 23 : Extreme solution using type 2 and type 7.

Description : Solve solution type 2 with as few routes and pickup points as possible. Em-
ployees then use a taxi service to said points, type 7.




Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a day.
This solution is not too sim-
ple to be considered an exam
project.

A special solution that does
not take into account employee
turnover. Not ALCAN’s de-
sired solution. Cost might not
be decreased. New nodes with-
out a predefined location can-
not be used.

External

Decreases travel time. Em-
ployee picked up on doorstep.
Increases revenue for taxi ser-
vice. Service is increased.

Hopbilar’s profit is decreased.

Transportation in this solution is provided by taxi service and Hopbilar.

Combo 24 : Extreme solution using type 3 and type 7.
Description : Solve solution type 3 with as few routes and pickup points as possible. Em-

ployees then use a taxi service to said points, type 7.

Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round, 24 hours a day.
A special solution takes into
account employee
This solution is not too sim-
ple to be considered an exam
project.

turnover.

Depends on a third party pro-
gram. Not ALCAN’s desired
solution. Hard to estimate a
general population of an area.
Cost might not be decreased.
New nodes without a prede-
fined location cannot be used.

External

Decreases travel time. Em-
ployee picked up on doorstep.
Increases revenue for taxi ser-
vice. Service is increased. In-
creased profit for the provider
of the new soft wear.

Hoépbilar’s profit is decreased.

Transportation in this solution is provided by taxi service and Hopbilar.

Combo 25 : Extreme solution using type 8 and type 7.
Description : Solve solution type 8 with as few routes and pickup points as possible. Em-

ployees then use a taxi service to said points, type 7.
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Helpful to achieving the ob-
jective

Harmful to achieving the ob-
jective

Internal

Decreases travel time. Works
all year round. 24 hours a day.
This solution is not too sim-
ple to be considered an exam
project.

A general and special solution
that does not take into account
employee turnover. Not AL-
CAN’s desired solution. Hard
to estimate a general popula-
tion of an area. Cost might not
be decreased.

External

Decreases travel time. Em-
ployee picked up on doorstep.
Increases revenue for taxi ser-
vice. Service is increased.

Hopbilar’s profit is decreased.

Transportation in this solution is provided by taxi service and Hopbilar.




Appendix C

Algorithm

C.1 Number of Possible Solutions

Consider a set of nodes V', the number of nodes in V' is n, |V| = n. The source node is j € V.
It is known for TSP that the number of possible solutions is:

(n—1)! (C.1.1)

If we relax relax constraint saying all points must be visited and let ¢ denote the number of
nodes visited in a certain solution. All nodes are used except the source, since source to source
moves are not allowed, although source to sink route is allowed. Now the possible values for i
arei € {1,2,..,n—1} = 5.

Next a number of sets, I;, are defined where I; C V,Vi € S. So each set I; is a reduced
version of N that includes the source and i nodes we i.e. have |I;| = i+1. Next C.1.1 is applied
to each I; and all possibilities added up:

n—

1 n—1
S (L -nr=> (C.1.2)
=1

i=1
This sums up the possibilities for |S| TSP. Each of the |S| TSP only uses i of the n — 1
available points.For each TSP, other than ¢ = n — 1,there are more than one posssibility of
choosing the i nodes used in the TSP. The possible combination for choice of ican be expressed
with the binomial ceefficient.

N (n—=1\ (n—1)!
C(Z)_< i >_i!((n—1—i))! (C-13)

We now multiply C.1.2 and C.1.3. This gives the number of possible solutions for a TSP
where you have n nodes to choose from but are not restricted to use all, but have to use the
source.

- — (n—1)!
D COULI=D'=> =5 (C.1.4)

— 1 — 7!
pt ~ (n 1—1d)!

If the distance matrix is symmetric then the number of possible solutions is
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(n—1)+%Zm (C.1.5)

Because when dealing with 2 points the solution is the same even if the distance matrix is
asymmetric. Therefore the solutions dealing with two points are symmetric and therefore do
not need to be divided by 2. Now the equation C.1.7 can also be written as

13 S|
\S\‘i‘izm (C.1.6)

=1

Where S ={1,2,...,n — 1} and |S| = n — 1. This applies for all problems where n > 1.

Now let us assume that there are | K| routes and that each route, k, includes all nodes in the
set Vi and the source node, j, is in that set, j € V;. Now we know that k € K = {1,2,..., N},
let us now define V) = j. Next we define Jy as the set of all nodes not visited by routes in
k*, where k* = {1,2,...,k — 1}, and the source node. So J, = {V\{Vy U V... UV,_1,j5}. Tt
is known that the complexity for each route decreases as a previous route has included some
nodes. Then the number of possibilities for a multiple route problem becomes:

N-1

— n—1)!
>y ﬁ (C.1.7)

k=0 i€ Jy

C.2 Algorithm

C.2.1 Run.java

import java.util.Vector;
import java.util.Random;

import java.io.*;

import java.util.Date;

import java.text.DecimalFormat;

public class Sudol0
{

//int K,V;
int V1;
int[10] y;
int[][] Route;
int[] NN;
int OPT;
//File Pro

new File("profit_3_50_a.txt");
//File Tim = new File("dist_3_50_a.txt");
//File Sto = new File("Stop_47.txt");

int[] Profit; //profit matrix

double[]1[] time;
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int[] Stop;

long datel;

long date2;

long date;

//String file = "3_B0_a_p3test.txt" ;
//String File = "route3_50_a_p3test.txt" ;
String filel = "testb0a_10_p.txt";
String file2 = "testb0a_20_p.txt";
String file3 = "testb0a_40_p.txt";
String filed4 = "testb0a_50_p.txt";
String fileb = "testb0a_70_p.txt";
String file6 = "testb0a_80_p.txt";
String file7 = "testb50a_100_p.txt";
String file8 = "testb0a_130_p.txt";
String file9 = "testb0a_160_p.txt";

double Time;

public Sudo10(int K, int V, File Pro, File Tim, String File, String file, int[][] p) throws
{

//datel= System.currentTimeMillis();

//K=3;

//V=4T;

Profit = new int[V];

time = new double[V][V];

Stop = new int[V];

NN= new int[9];

NN[0]1=10;
NN[1]=20;
NN [2]=40;
NN[3]=50;
NN[4]=70;
NN[5]=80;
NN[6]1=100;
NN[7]=130;
NN[8]=160;

FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
PrintWriter outFile = new PrintWriter(bw, true);

FileWriter fw2 = new FileWriter(File);
BufferedWriter bw2 = new BufferedWriter(fw2);
PrintWriter outFile2 = new PrintWriter(bw2, true);
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SimulatedAnnealing7 Sim[] = new SimulatedAnnealing7[10];

GetDataFromiD ProData = new GetDataFromiD(Profit,Pro);
Profit=ProData.P;

GetDataFrom2D TimeData = new GetDataFrom2D(time, V, Tim);
time=TimeData.P;

//GetDataFromlD StoData = new GetDataFromiD(Stop,Sto);
//Stop=StoData.P;

for (int i=0; i<V; i++)
{

if (i==0 || i==V-1)

{

Stop[i]l=0;

}

else

{
Stopl[il=1;
}

}

for (int k=0; k<1;k++)
{
for (int i=0;i<9;i++)

{

Decrease DD= new Decrease(V, Profit, time, Stop, NN[i]);
V1=DD.v;

double[][] TT= new double[V1][V1];

TT=DD.T;

int[] profit=new int[V1];
profit=DD.P;

int[] stop =new int[V1];
stop=DD.S;

InitialGuess init = new InitialGuess (K, V1);
Route=init.Route; //constructs the Route matrix 2D

for(int j=0;3<9;j++)

{

datel= System.currentTimeMillis();

Sim[j] = new SimulatedAnnealing7(Route,K, V1, profit, TT, stop, filel, NN[il, p);
0PT=Sim[j].S;

Route=Sim[j] .Route;
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date2= System.currentTimeMillis();
date=date2-datel;

Time=Sim[j].TotalT;

outFile.println(date+" "+NN[i]+" "+QPT+" "+Time) ;

R s =

C.2.2 SimulatedAnnealing.java

import java.util.Vector;
import java.util.Random;
import java.lang.0Object;
import java.io.*;

public class SimulatedAnnealing?

{

int [1[] Route;

int S; //Solution

int count, MAX=50000; //Maximum number of iterations
//int MaxTime=5; //maximum travel time in a single route
int MRT=0;

int AS=0;

int JCVD=0;

int[] SS;

int iter1=0;

int iter2=0;

//String file = "test_3_50_a_5_1.txt";

double T=15; //temperature

double r=1-Math.pow(10,-13); //reduction factor
double Frozen =2;

double[] SumTime; //time traveled for bus k
double Delta, Delta?2;

double prop;

double Numi;

double[] SumTemp;

double TimeTemp;

double Time;

double Maximum;

double TotalT;

float RandN;
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int Snew; //temporary variables
int [1[] RouteNew;

calculateOpt calOpt[] = new calculateOpt[2];
calculateTime calT[] = new calculateTime[2];
moves2 move[] = new moves2[2];

public SimulatedAnnealing7(int[][] route, int K, int V, int[] p, double[][] time, int[] Sto
{

Random generator = new Random();
Route=route;

count=0;

calOpt[0] = new calculateOpt(Route, K,V, p);

S=calOpt [0] .0OPT;

calT[0]= new calculateTime(Route,time,K,V, Stop);
SumTime=calT[0] .SumT;

count=1;

FileWriter fw = new FileWriter(file);
BufferedWriter bw = new BufferedWriter(fw);
PrintWriter outFile = new PrintWriter(bw, true);

while (count<MAX)

{

move[1]=new moves2(K,V,Route, SumTime, MaxTime, time, p, PROP);
RouteNew=move[1] .route;

calOpt[1] = new calculateOpt(RouteNew, K,V,p);
Snew=calOpt [1] .0PT;
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Delta=Snew-S;

calculateTime calTemp = new calculateTime(RouteNew, time, K,

SumTemp=calTemp.SumT;
Maximum =0;
TimeTemp=0;

Time=0;

MRT=move [1] .temp;
outFile.println("Move: "+MRT);
AS=move[1] .temp2;
outFile.println("Instance: "+AS);
JCVD=move [1] .temp3;
outFile.println("UsedBuses: "+JCVD);
SS=move[1] .UsedBuses;

for(int i=0; i<K; i++)

{

if (Maximum<= SumTempl[i])
{

Maximum=SumTemp [i] ;

}

TimeTemp=SumTemp [i]+TimeTemp;
Time=SumTime[i]+ Time;

}

if (Maximum <= MaxTime)

{

if (Delta>=0)

{

if (Delta==0)

{

if (TimeTemp<=Time || (Time==0 && TimeTemp!=0))
{

S=calOpt[1].0PT;
Route=move[1] .route;

}

else

{

Delta2=TimeTemp-Time;
Numi=-Delta/T;

prop= Math.exp(Numl) ;
RandN=generator.nextFloat () ;
if (Delta2 <0 && prop<=RandN && Maximum<= MaxTime)
{

S=calOpt[1].0PT;
Route=move[1] .route;

V, Stop);
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if (TimeTemp<Time || (Time==0 && TimeTemp!=0))
{

iter2=count; //finding the iteration when the optimal value is found

else

{

iterl=count; //finding the iteration witch returns the optimal value
S=calOpt[1].0PT;

Route=move[1] .route;

}

3

else

{

Numi=-Delta/T;

prop= Math.exp(Numl) ;
RandN=generator.nextFloat () ;

if (Delta <0 && prop<=RandN && Maximum<= MaxTime)
{

S=calOpt[1].0PT;

Route=move[1] .route;

}

}

}

if (T> Frozen)

{

T=r*T; //Cooling Schedule
}

else

{

T=0; //Now we implement a local search

¥

calT[1]= new calculateTime(Route,time,K,V, Stop);
SumTime=calT[1] .SumT;
count=count+1;

try
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{

//outFile.println(S+" " + (count-1));
//outFile.println("iteration:" + (count-1));
//outFile.println("Opt: "+iteri+" Time: " +iter2);

//for(int k=0; k<K; k++)

/74

//for(int i=0; i<V; i++)

/74

//if(i==0 || Routel[k] [i]!=0)
//outFile.print (Route[k] [i] +" ");
/1%

//outFile.println();

/1%

TotalT=0;

for(int k=0; k<K; k++)

{

//outFile.print (SumTime [k]+" ");
TotalT=SumTime [k]+TotalT;

}

//outFile.println();

}

catch (NumberFormatException exception)

{

System.out.println ("NumberFormatException" );
}

}

catch (IOException exception)

{
System.out.println("I0Exception ");

3
3
3

C.2.3 moves.java
import java.util.Random;

import java.io.*;

public class moves2

{



144 APPENDIX C. ALGORITHM

int O0OPT;

int[] UsedBuses; //number of buses in route
int[] U; // number of unvisited points
int[][] route;

int[] Prop;

int RandProp;

int[][] Rnew;

int Neighbor=6; //number of possible Swaps
int temp=0;

int temp2=0;

int temp3=0;

double SumTravelNew=0;
double SumTravel=0;
double[] Travel;
double[] TravelNew;

calculateTime calT[] = new calculateTime[2];

public moves2 (int K, int V, int[][] Route, double[] SumT, int MaxT, double [I[] time, int[
{

Random generator = new Random();

Prop = new int[Neighbor];

route = new int[K][V];

UnvisitedPoints Unvi = new UnvisitedPoints(X,V,Route);
U=Unvi.U;

NumberOfBuses Num = new NumberOfBuses(K,V,Route);
UsedBuses=Num.N;
temp3=UsedBuses.length;

/) m
//1f loop construct the odds of insert or Swap moves happening

/) m
if (UsedBuses.length>1)//more the one route

{

if (U.length<l && UsedBuses.length<K) //more then 1 route and no unused points and not all
{ temp2=1;

Prop[0]=PROP[0] [0]; //SwapMove2_1 40%

Prop[1]=PROP[0] [1]; //SwapMovel_1 40%

Prop[2]=0; //a chosen insert move 0%

Prop[3]=0; //a chosen bus move 0%

Prop[4]1=PROP[0] [4]; //SwapMove3_1 20%

Prop[5]=0; //Insert1_3 10%

}
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else

{

if (UsedBuses.length==K) //all buses in use
{

if (U.length>0) //unused points available

{ temp2=21;

Prop[0]=PROP[1][0]; //SwapMove2_1 30%
Prop[1]1=PROP[1] [1]; //SwapMovel_1 30%
Prop[2]=PROP[1][2]; //a chosen insert move 20%
Prop[3]=0; //a chosen bus move 0%
Prop[4]=PROP[1][4]; //SwapMove3_1 10%
Prop[5]=PROP[1][5]; //Insertl1_3 10%

}

else //U.length <=0

{ temp2=22;

Prop[0]=PROP[2] [0]; //SwapMove2_1 40%
Prop[1]=PROP[2] [1]; //SwapMovel_1 40%
Prop[2]=0; //a chosen insert move 0%
Prop[3]=0; //a chosen bus move 0%
Prop[4]=PROP[2] [4]; //SwapMove3_1 20%
Prop[5]1=0; //Insertli_3 0%

}

}

else //not all buses in use

{

if (U.length>1) //unused points left

{ temp2=3;

Prop[0]=PROP[3] [0]; //SwapMove2_1 30%
Prop[1]=PROP[3] [1]; //SwapMovel_1 20%
Prop[2]=PROP[3][2]; //a chosen insert move 25%
Prop[3]=PROP[3][3]; //a chosen bus move 10
Prop[4]1=PROP[3][4]; //SwapMovel_1 10%
Prop[5]=PROP[3][5]; //Insertl_3 5%

}

}

}
}
else

{
if (UsedBuses.length>0) //only one route

{

if (UsedBuses.length>0 && U.length<l) //only one route and no unused points

{ temp2=5;

Prop[0]=0; //SwapMove2_1 0%
Prop[1]1=100; //SwapMovel_1 100%
Prop[2]=0; //a chosen insert move 0%

145
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Prop[3]=0; //a chosen bus move 0%
Prop[4]=0; //SwapMove3_1 0%
Prop[5]1=0; //Insertl_3 0%

}
else //only one route and unused points
{ temp2=6;

Prop[0]=0; //SwapMove2_1 0%
Prop[1]1=PROP[4][1]; //SwapMovel_1 30%
Prop[2]=PROP[4][2]; //a chosen insert move 50%
Prop[3]=PROP[4][3]; //a chosen bus move 10%
Prop[4]=0; //SwapMove3_1 0%

Prop[5]=PROP[4] [5]; //Insertl1_3 10}

}

}

else //mno route
{ temp2=7;

Prop[0]=0; //SwapMove2_1 0%

Prop[1]1=0; //SwapMovel_1 0%
Prop[2]1=PROP[5][2]; //a chosen insert move 90%
Prop[3]=PROP[5][3]; //a chosen bus move 10
Prop[4]1=0; //SwapMove3_1 0%

Prop[5]=0; //Insert1_3 0}

}

}

RandProp=Math.abs (generator.nextInt())%(100)+1;//generates an number between 1 & 100

if (RandProp<Propl[0])

{ temp=1;

swapmove2_1 swa= new swapmove2_1(V,K, UsedBuses, Route);
route=swa.r;

if (RandProp<Prop[1]+Prop[0] && RandProp>=Prop[0] && Prop([1]!=0)
{ temp=2;

swapmovel_1 swa= new swapmovel_1(V,K, UsedBuses, Route);
route=swa.r;

if (RandProp<Prop[2]+Prop[1]+Prop[0] && RandProp>=Prop[1]+Prop[0] && Prop[2]!=0)

{ temp=3;

InsertMovel_1 ins = new InsertMovel_1(V,K,U,UsedBuses,Route, time, MaxT );
//InsertMovel_2 ins = new InsertMovel_2(V,K,U,UsedBuses,Route, time, MaxT , profit);
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//InsertMovel_4 ins
//InsertMovel_5 ins
route=ins.r;

}

else

{

if (RandProp<Prop[3]+Prop[2]+Prop[1]+Prop[0] && RandProp >= Prop[2]+Prop[1]+Prop[0] && Prop
{ temp=4;

BusMovel_1 bus =new BusMovel_1(V,K,U,UsedBuses, Route,time, MaxT);

route=bus.r;

}

else

{

if (RandProp<Prop[4]+ Prop[3]+Prop[2]+Prop[1]+Prop[0] && RandProp >= Prop[3]+ Prop[2]+Propl[
{

temp=5;

swapmove3_1 swa= new swapmove3_1(V,K,UsedBuses,Route);

route=swa.r;

}

else

{

if (Prop[5]!=0)

{

temp=6;

InsertMovel_3 ins = new InsertMovel_3(V,K,U,UsedBuses,Route, profit);

route=ins.r;

new InsertMovel_4(V,K,U,UsedBuses,Route, time, MaxT , profit);
new InsertMovel_5(V,K,U,UsedBuses,Route, time, MaxT , profit);

i o eI

W

C.2.4 InitialGuess.java

import java.util.Vector;
import java.util.Random;

public class InitialGuess

{

int []1[] Route;

public InitialGuess(int K, int V)
{
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Route = new int [K][V]; //

for(int k=0; k<=(K-1); k++)

{

Route [k] [0]=0;

Route[k] [1]=V-1; //V=L+2 but the number of nodes is V-1
}

}

}

C.2.5 calculateOpt.java

import java.util.Random;
import java.io.*;

public class calculateOpt
{

int alpha;

int beta;

int sumX;

int sumY;

int OPT;

int R;

public calculateOpt (int[][] route, int K, int V, int[] P)

{

alpha=1;

beta=15;

sumX=0;

sumY=0;

for (int k=0;k<K; k++)

{

for (int i=0;i<V;i++)

{
sumY=sumY+P [route [k] [i]];
}

if (route[k] [1]1==(V-1))

{

sumX=sumX+1;

}

}
OPT=alpha*sumY+beta*sumX;
}

}
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C.2.6 calculateTime.java

import java.util.Random;
import java.io.*;

public class calculateOpt
{

int alpha;

int beta;

int sumX;

int sumY;

int OPT;

int R;
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public calculateOpt (int[][] route, int K, int V, int[] P)

{

alpha=1;

beta=15;

sumX=0;

sumY=0;

for (int k=0;k<K; k++)
{

for (int i=0;i<V;i++)
{
sumY=sumY+P [route [k] [i]];
}

if (routel[k] [1]==(V-1))
{

sumX=sumX+1;

}

}

OPT=alpha*sumY+beta*sumX;
}
}

C.2.7 UnvisitedPoints.java

import java.util.Vector;
import java.util.Random;

public class UnvisitedPoints2
{

int[]1 U;

int sum;

int temp=0;

int temp2=0;

public UnvisitedPoints2(int K, int V,

int[J[] route, double[][] dist, int MaxDist)
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{
U = new int[0];
sum=0;

for (int i=1; i<V-1; i++)
{

temp=0;

for (int k=0; k<K; k++)
{

for(int j=0; j<V; j++)
{

if (routelk] [j1==1)

{

temp=1;

}

}

}

if (temp==0)

{

temp2=0;

for (int k=0; k<K;k++)
{

for (int j=1;j<V; j++)
{

if (dist[routelk] [j1]1[il< MaxDist && routelk] [jl!=i && route[k][j]!=0)
{

temp2=1;

}

}

if (temp2==0)

= addArrayElement (i) ;

s o ok ==

public int[] addArrayElement(int n){
int[] newarray = new int[U.length + 1];
for (int i = 0;i < U.length;i++){
newarray[i] = U[i];

}

newarray[U.length] = n;

return newarray;

¥
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C.2.8 NumberOfBuses.java

import java.util.Vector;
import java.util.Random;

public class Number(OfBuses

{

int[1 N;

public NumberOfBuses(int K, int V, int[][] route)

{

N = new int[0];

//This double for loop finds all buses that are on route
for(int k=0; k<K; k++)

{

if (routel[k] [1]1<V-1)

= addArrayElement (k) ;

N = A

public int[] addArrayElement(int n){
int[] newarray = new int[N.length + 1];
for (int i = 0;i < N.length;i++){
newarray[i] = N[i];

}

newarray[N.length] = n;

return newarray;

}
}

C.2.9 InsertMovell.java

import java.util.Vector;
import java.util.Random;

//Inserts a random node into a random route, currently in use.
//1f the route will then become to long a new route (and node)
//will be chosen. The current route will though be tested MaxTemp
//times before it is abandond (it is possible to ad a node without
//increasing travel time)

public class InsertMovel_1
{

int LengthU;

int RandI;

int LengthK;

151
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int RandK;

int RandAdd; //the spot where the new node is added into the route

int[1[] r; //route

int NewNode; //the node to be added

int AddedTo; //the route to be increased

int NumVisitedPoints; //Number of nodes in chosen route (includes source and sink)
int MAX=100; //maximum number of iterations

double[] SumT;//travel time for busses 0... K-1

public InsertMovel_1(int V, int K, int[] u, int[] UsedBuses, int[][] Route, double[][] time
{

Random generator = new Random();

r = new int[K][V];

//For loop necessary else epsilon and Y will follow each other.

for (int k=0; k<K; k++)

{

for (int i=0; i<V; i++)

{

r[k] [i]=Route[k] [i];

LengthU = u.length;
RandI=Math.abs (generator.nextInt())%(LengthU); // Generates a random node
NewNode= u[RandI];

LengthK= UsedBuses.length;

if (LengthK==0) //no bus in use or current routes are full

{

RandK=Math.abs (generator.nextInt())%(K);

AddedTo=RandK;

}

else

{

RandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on route
AddedTo=UsedBuses [RandK] ;

for (int i=0; i<V; i++)
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{

if (r[AddedTo] [i]==V-1)

{

NumVisitedPoints=i;// find the number of nodes in the current route
}

}

//System.out.println(NumVisitedPoints);
//System.out.println(AddedTo);

RandAdd=Math.abs (generator.nextInt())’%(NumVisitedPoints)+1; // Generates a random number s

//adding the new node into the current route
if (NumVisitedPoints==RandAdd)

r[AddedTo] [RandAdd+1]=r [AddedTo] [RandAdd] ;
elseq

for (int i=NumVisitedPoints; i>=RandAdd; i--)
{

r[AddedTo] [i+1]=r[AddedTo] [i];

i3

r[AddedTo] [RandAdd] =NewNode;

}

}

C.2.10 BusMove. java

import java.util.Vector;
import java.util.Random;

//Inserts a random nodes into a random route, currently not in use.
//1f the route will then become to long a new route (and node)
//will be chosen. The current route will though be tested MaxTemp
//times before it is abandond (it is possible to ad a node without
//increasing travel time)

public class BusMovel_1

{

int LengthU;

int RandI;

int RandN, RandN2;

int LengthK;

int RandK;

int Num; //number of points to be added to route

int M; //No more the this many points can be in the route
int bool=0; //Boolean number for while loop

int RandAdd; //the spot where the new node is added into the route
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int[] Buses;

int[J[] r; //route

int[] NewNodes; //the nodes to be added

int AddedTo; //the route to be increased

int NumVisitedPoints; //Number of nodes in chosen route (includes source and sink)
double SumT;//travel time for the bus route

double T;

int count=0;

public BusMovel_1(int V, int K, int[] u, int[] UsedBuses, int[][] Route, double[][] time, i:
{

Random generator = new Random();

r = new int[K][V];

Buses = new int[K];

M=V-1;

//Determinging the length of the new route
LengthU = u.length;

RandI=Math.abs (generator.nextInt())%(LengthU)+1; // Generates a random number
if (RandI>M)

{

Num=M;

}

else

{

Num=RandI;

}

NewNodes =new int[Num];

//For loop necessary else epsilon and Y will follow each other.
for (int k=0; k<K; k++)

{

Buses [k]=k;

for (int i=0; i<V; i++)

{

r[k] [i]=Route [k] [i];

LengthK= UsedBuses.length;

if (LengthK==0) //no bus in use or current routes are full

{
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RandK=Math.abs (generator.nextInt())%(K);

AddedTo=RandK;

}

else

{

for (int i=0; i<LengthK; i++)

{

for(int j=0; j<Buses.length; j++)

{

if (Buses[j]==UsedBuses[il])

{

Buses = removeArrayElement(j); //removing used buses from the function
}

}

}

RandK=Math.abs (generator.nextInt())%(Buses.length); //Generates a random bus
AddedTo=Buses [RandK] ;

for (int i=0; i<Num; i++)

{

RandN=Math.abs (generator.nextInt())%(LengthU);

NewNodes[i]l= u[RandN];

r[AddedTo] [i+1]=NewNodes[i];

UnvisitedPoints Unvi = new UnvisitedPoints(K,V,r); //unused nodes redefined
u=Unvi.U;

LengthU= u.length;

X
/] ==
r[AddedTo] [Num+1]=V-1;
¥
/** Creates a new array from intarray skipping element n.
*/

//For Buses Matrix

public int[] removeArrayElement(int n)<{
int[] newarray = new int[Buses.length - 1];
for (int i = 0;i < Buses.length;i++){

if (i < n)

{
newarray[i] = Buses[i];
}

if (14 > n)

{

newarray[i-1] = Buses[i];
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}
3
return newarray;
3

// For NewNodes matrix

public int[] removeArrayElement2(int n){
int[] newarray2 = new int[NewNodes.length - 1];
for (int i = 0;i < NewNodes.length;i++){
if (i < n) newarray2[i] = NewNodes[i];
if (i > n) newarray2[i-1] = NewNodes[i];
¥

return newarray?2;

¥

C.2.11 SwapMovell.java

import java.util.Vector;
import java.util.Random;

//Swaps to nodes in the same route
//Can only be entered if there is an active route in the system.
//A swap move will only decrease traveling time and not profit

public class swapmovel_1

{

int temp;

int Randl;

int LengthK;

int RandK;

int RandSwapl;

int RandSwap2;

int SwappedIn; //the spot where the new node is added into the route
int[1[] r; //route

int NumVisitedPoints; //Number of nodes in chosen route (includes source and sink)
int MAX=10;

int count=0;

public swapmovel_1(int V, int K, int[] UsedBuses, int[][] Route)
{

Random generator = new Random();
r= new int[K][V];

for(int k=0; k<K; k++ )
{
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for(int i=0;i<V; i++ )

{

r[k] [i]1=Route [k] [i];

3

}

LengthK= UsedBuses.length;

//This move is only feasible when there already some buses in route, visiting more the one
RandK=Math.abs (generator.nextInt())%(LengthK); //Generates a bus that is on route
SwappedIn=UsedBuses [RandK] ;

//Finding the number of nodes in route, they have to be at least 2
for (int i=0; i<V; i++)

{

if (r[SwappedIn] [i]==V-1)

{

NumVisitedPoints=i;// find the number of nodes in the current route
}

}

RandSwapl=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;
RandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;

while (RandSwapl==RandSwap2 && count<MAX && NumVisitedPoints>2)
{

RandSwapi=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1; // Generates a random numb
RandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints-1)+1;
count=count+1;

}

temp=r [SwappedIn] [RandSwapl];

r [SwappedIn] [RandSwapl]=r [SwappedIn] [RandSwap2] ;

r[SwappedIn] [RandSwap2]=temp;

}

}

C.2.12 SwapMove?1.java

import java.util.Vector;
import java.util.Random;

//Swaps to nodes in the same route
//Can only be entered if there are 2 our more routes active

//

public class swapmove2_1

{
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int temp;

int RandI;

int LengthK;

int RandKl1;

int RandK2;

int RandSwapi;

int RandSwap2;

int SwappedBetweenl; //the spot where the new node is added into the route
int SwappedBetween2;

int[1[] r; //route

int NumVisitedPointsl; //Number of nodes in chosen route (includes source and sink)
int NumVisitedPoints2;

public swapmove2_1(int V, int K, int[] UsedBuses, int[][] Route)

{

Random generator = new Random();

r= new int[K] [V];

for(int k=0; k<K; k++ )
{

for(int i=0;i<V; i++ )
{

r[k] [i]=Route[k] [i];

}

}

LengthK= UsedBuses.length;
//This move is only feasible when there already some buses in route, visiting more the one
while (RandK1==RandK2)

{

RandK1=Math.abs (generator.nextInt())’(LengthK); //Generates a bus that is on route
RandK2=Math.abs (generator.nextInt())’ (LengthkK);

X

SwappedBetweenl1=UsedBuses[RandK1];
SwappedBetween2=UsedBuses[RandK2] ;

//Finding the number of nodes in route, they have to be at least 2
for (int i=0; i<V; i++)

{

if (r[SwappedBetweenl] [1]==V-1)

{

NumVisitedPointsi=i;// find the number of nodes in the current route
}

}

for (int i=0; i<V; i++)

{

if (r[SwappedBetween2] [1]1==V-1)
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{

NumVisitedPoints2=i;// find the number of nodes in the current route

}

}

RandSwapl=Math.abs (generator.nextInt())%(NumVisitedPoints1-1)+1; // Generates a random num
RandSwap2=Math.abs (generator.nextInt())%(NumVisitedPoints2-1)+1;

temp=r [SwappedBetweenl] [RandSwapl];
r[SwappedBetweenl] [RandSwapl]=r [SwappedBetween2] [RandSwap2] ;
r [SwappedBetween2] [RandSwap2]=temp;

}

}

C.2.13 SwapMove3l. java

import java.util.Vector;
import java.util.Random;

//Swaps one nodes from one route to anouther
//Can only be entered if there is more then one active route in the system.
//A swap move will only decrease traveling time and not profit

public class swapmove3_1

{

int temp;

int RandI;

int LengthK;

int RandK1;

int RandK2;

int RandFrom;

int RandTo;

int RandSwap;

int RandLocation;

int SwappedFrom;

int SwappedTo;

int[1[] r; //route

int NumVisitedPointsl; //Number of nodes in SwappedFrom route (includes source and sink)
int NumVisitedPoints2; //Number of nodes in SwappedTo route (includes source and sink)
int MAX=50;

int count=0;

public swapmove3_1(int V, int K, int[] UsedBuses, int[][] Route)
{

Random generator = new Random();

r= new int[K] [V];
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for(int k=0; k<K; k++ )

{

for(int i=0;i<V; i++ )

{

r[k] [i]1=Route [k] [i];

}

}

LengthK= UsedBuses.length;

//This move is only feasible when there already some buses in route, visiting more the one
RandK1=Math.abs (generator.nextInt())’(LengthK); //Generates a bus that is on route
SwappedFrom=UsedBuses [RandK1] ;

RandK2=Math.abs (generator.nextInt())’(LengthK); //Generates anouther bus that is on route
SwappedTo=UsedBuses [RandK2] ;

while (RandK1==RandK2 && count<MAX)

{

RandK1=Math.abs (generator.nextInt())’(LengthK); //Generates a bus that is on route
SwappedFrom=UsedBuses[RandK1];

RandK2=Math.abs (generator.nextInt())’(LengthK); //Generates anouther bus that is on route
SwappedTo=UsedBuses [RandK2] ;

count=count+1;

}

//Finding the number of nodes in route, they have to be at least 2

for (int i=0; i<V; i++)

{

if (r[SwappedFrom] [i]==V-1)

{

NumVisitedPointsl=i;// find the number of nodes in the SwappedFrom route

}

if (r[SwappedTo] [i]==V-1)

{

NumVisitedPoints2=i; // find the number of nodes in the SwappedTo route

}

}

RandSwap=Math.abs (generator.nextInt())’ (NumVisitedPointsl-1)+1; // Generates a random numb
RandLocation=Math.abs (generator.nextInt())’ (NumVisitedPoints2)+1; // Generates a random nu

temp=r [SwappedFrom] [RandSwap]; //the node to be moved

//Adding the node to SwappedTo route
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for (int i=NumVisitedPoints2; i>= RandLocation; i--)
{

r [SwappedTo] [i+1]=r[SwappedTo] [i];

}

if (RandLocation==NumVisitedPoints?2)
{

r [SwappedTo] [NumVisitedPoints2+1]1=V-1;
}

r[SwappedTo] [RandLocation]=temp;

for (int i=RandSwap; i<=(NumVisitedPointsl+l);i++)
{

r[SwappedFrom] [i]=r [SwappedFrom] [i+1];

}

}

}
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Appendix D

Test

This, the appendix, contains additional information on many of the test, experimants and
analysis carried out in the report. In some cases p may represent the probabiltiy matrix
instead of P. This is due to change lat in the project wher P was denoted as the probability
matrix as p could confuse with the profit of a single node.

D.1 Non-Randomly Generated Data Sets

D.1.1 Results Data Set 350 b

Results Py
52.5 105.5 168.1 211.6 279.5 334.7 374.2 400.6 419.9
55 120 180 250 301 361 411 432 432
0.95455 0.87917 0.93389 0.8464 0.92857 0.92715 0.91046 0.92731 0
3888.7 5790.6 7312 9762.7 10273 9784.4 9572.1 9388.6 9127.7
Results P;
b5 117 171 249 292.9 356.9 401.8 428.9 423
55 120 180 250 301 361 411 432 432
1 0.975 0.95 0.996 0.97309 0.98864 0.97762 0.99282 0.97917
4833.6 6275.6 8560.7 10993 12022 11570 11125 10317
Results P
53.5 114 167.1 213.1 279.7 350.8 376.2 404.8 413.7
55 120 180 250 301 361 411 432 432
0.97273 0.95 0.92833 0.8524 0.92924 0.97175 0.91533 0.93704 0.95764
4216.7 5843.1 7815.3 9982.5 10597 10098 9943.8 9878.2 9470.6

D.1.2 Results Data Set 350 c
Results Py

163
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Figure D.1: Shows the data set 350 b, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.
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65 b

60 R

551 b

500 . .

451 :

40 4

351 h

30 | | | | | | |
30 35 40 45 50 55 60 65 70

Figure D.2: Shows the data set 350 ¢, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.
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80 90
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Figure D.3: Shows the data set 3 100 a, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

51.5 94 166 208.9 275.7 341.9
55 111 181 232 300 360
0.93636 0.84685 0.91713 0.90043 0.919
3808.2 5724.8 7530.7 10032 10144 9506.1
Results P;
55 104.5 179 228.1 299.2 359
55 111 181 231 300 360
1 0.94144 0.98895 0.98745 0.99733
4843.8 6605.6 8756.9 11517 12029
Results P3
55 109.8 171.9 218.4 254.2 341
55 111 181 231 300 360
1 0.98919 0.94972 0.94545 0.84733
4445 .5 6130.9 7790.1 10633 10959

D.1.3 Results Data Set 3 100 _a

Results P;
111.2 216.5 342.2 378.5
121 240 370 430
0.91901 0.90208 0.92486 0.88023

5288.2 10992 21209 25362

371.5

402
0.94972 0.92

9350.6 9

402.9 42
411 432
0.99722 0.98029

11760 11730

364.4 41
411 432
0.94722 0.88662

10435 10082

447 .4
490
0.91306
29351

398.7 420
432 432

413  0.92292
352.9 9051

8 429
432
0.99074
11412

0 411
432
0.94907
10139

494 .4
551
0.89728
30888

0.9722
.4

0.99306
10319

0.95139
10004

552.2
611
0.90376
32924
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90

Figure D.4: Shows the data set 3100 b, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

Results P,
118 231.1 358.1
121 240 370
0.97521 0.96292 0.96784
6121.4 12729 23002
Results P3
115.4 225.5 343.4
121 240 370
0.95372 0.93958 0.92811
5431.9 11390 22847

D.1.4 Results Data Set 3100 b

Results P;
113.5 219 338.5
130 240 380
0.87308 0.9125 0.89079
5521.1 10912 19956
Results P,

130 246 359

414.7
431
0.96218
30998

409.6
431
0.95035
26672

383
430
0.8907
29231

410

492.1
500
0.9842
34771

455.9

491
0.92851
33301

460
500
0.92
29985

475

521.3
560

.93089

41077

514.9
561

.91783

38870

467.7
541

.86451

34844

540.2

587.4
620

.94742

43730

544 .
611

.89116

35621

563.5
611

.92226

37307

594
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Figure D.5: Shows the data set 3 100 ¢, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

130 250 380 430 500 560 620

1 0.984 0.94474 0.95349 0.95 0.96464 0.95806

6071.3 12023 23078 28914 36920 37747 44592

Results P

120 240 354 391 444 .2 501.6 580.5

130 250 380 440 500 541 621
0.92308 0.96 0.93158 0.88864 0.8884 0.92717 0.93478
5617.7 11396 22569 26318 36042 40019 39442

D.1.5 Results Data Set 3 100 ¢

Results P;

106.5 221 330 395.1 425.2 445 .3 526.6

120 240 350 420 471 550 601

0.8875 0.92083 0.94286 0.94071 0.90276 0.80964 0.87621

5301.6 10011 18860 24295 30413 35980 37782

Results P,

112 237 328 411 456 526.3 563.5

120 240 350 420 480 551 601

0.93333 0.9875 0.93714 0.97857 0.95 0.95517 0.9376

5802.6 11083 22702 27548 35322 39322 38953
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Figure D.6: Shows the data set 4 50 a, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

Results P;

111
120
0.925
5530.4

223

240
0.92917
10180

2

D.1.6 Results Data Set 4 50 a

Results for P = P;

62.5

70
0.89286
4790.1

109.4
131
0.83511
8160.9

Results for P = P,

72.5

75
0.96667
6816.4

129.6
131
0.98931
9613.7

Results for P = Py

70

75
0.93333
5608.3

127.6
131
0.97405
8630.3

174.1
201

0.86617

14217

190.8
201

0.94925

17074

182.8
201

0.90945

15744

343
350
0.98
4435

262.1
281

0.93274

12665

272

281
0.96797
14932

264.5
281

0.94128

13947

407

420
0.96905
26076

342

361
0.94737
11754

359.9
361

0.99695

14440

331
361
0.9169

12237

455

480
0.94792
33234

402.7
432

0.93218

11243

423

432
0.97917
13535

407.8
432

0.94398

11754

50

0.91
38

417.9
432

0.96736

11168

431.9
432

0.99977

12780

403.9
432

0.93495

11528

3.7
551
416
273

0.

416.8
432

0.96481

11130

430.9
432

0.99745

12427

397.8
432

0.92083

11431

531.1

591
89865
42131

43

43

43
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Figure D.7: Shows the data set 4 500 b, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

D.1.7 Results Data Set 4 50 b

Results for P = P;

62.5

70
0.89286
4928.6

126.5
150
0.84333
8316.7

Results for P = P,

71.5

75
0.95333
7025.3

144
150
0.96
9696.4

Results for P = Py

69.5

75
0.92667
6052.4

142

150
0.94667
8526.6

167.4
211
0.79336

14414

206.9
211
0.98057

16331

205.9
211
0.97583

14891

D.1.8 Results Data Set 4 50 c

Results for P = P;

264.7
290
0.91276

12453

273.4
290
0.94276

14673

275.6
290
0.95034

13404

324

360
0.9

11638

364.1
370
0.98405

14050

333
362
0.91989

11996

379

432
0.87731
11345

423.9
432
0.98125
12864

417.8
432
0.96713
11668

399.8
432
0.92546
11129

423.7
432
0.98079
13007

406.8
432
0.94167
11728

402.7
432
0.93218
11180

417.9
432
0.96736
12435

428
432
0.99074
11320
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Figure D.8: Shows the data set 4 50 ¢, points in red mark the point with decreased profit

APPENDIX D. TEST

35 L

35 40

65

or the depot(center). One can also see which point have been removed form the routes.

64.5 146.5 191.6 271.2 343.1 408.5 406.5 424.8
70 160 221 292 372 432 432 432 4
0.92143 0.91563 .86697 0.92877 0.92231 0.9456 0.94097 0.98333 0
5201.6 8204.9 14624 12352 11850 11494 11322 11218
Results for P = P,
75 156 229.9 286.4 361.5 423.9 428 428.9
80 160 231 292 372 432 432 432 4
0.9375 0.975 .99524 0.98082 0.97177 0.98125 0.99074 0.99282
6975.3 9060.5 15812 14074 13112 12542 12264 12323
Results for P = Py
71.5 148.5 228.9 277.5 342.1 412.3 406.5 422.8
80 160 231 292 372 432 432 432 4
0.89375 0.92812 .99091 0.95034 0.91962 0.9544 0.94097 0.9787 0
6096.6 8785.3 15063 12749 12204 11575 11507 11309
D.1.9 Results Data Set 4 100 a
Results P;
167.5 295.6 413.5 485.7 593.1 624.6 681.3
190 370 471 560 633 712 793
0.88158 0.79892 0.87792 0.86732 0.93697 0.87725 0.85914
10836 39478 55322 47922 45993 42580 38845
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Figure D.9: Shows the data set 4 100 a, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

Results P

183

190
0.96316
11610

Results P;

183

190
0.96316
11258

362 462.6

380 471
0.95263 0.98217
44446 69766
351.3 423.5
380 471
0.92447 0.89915
43975 67787

D.1.10 Results Data Set 4 100 b

Results P;

165.5
190
0.87105
10984

Results P

315 425.2
360 470
0.875 0.90468
35607 55929

544.8
561

.97112

57475

527.7
561

.94064

63596

508
550

.92364

51928

628

661
0.95008
53055

577.3
660
0.8747
52416

597 .4
641
0.93198
47081

697 .2

750
0.9296
47969

631.2
712
0.88652
49354

664 .8
751
0.88522
41341

742.3
814

.91192

44791

672.8
763

.88178

43542

645.7
761

.84849

38896
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Figure D.10: Shows the data set 4 100 b, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

182 377 440 566.6 651.2 684.5 790.2

190 380 470 571 670 751 841
0.95789 0.99211 0.93617 0.99229 0.97194 0.91145 0.9396
11757 39682 65734 58835 56639 47337 44403

Results P3

182 361 426 532.3 625.8 668.3 688.6

190 380 470 571 661 731 752
0.95789 0.95 0.90638 0.93222 0.94675 0.91423 0.91569
11515 44669 84627 62193 51611 48193 45368

D.1.11 Results Data Set 4 100 ¢

Results P;
157.5 341 428.5 520.4 607 .4 643.7 693.8
190 380 470 570 660 700 780
0.82895 0.89737 0.9117 0.91298 0.9203 0.91957 0.88949
11248 35945 58997 54339 48585 42226 40935

Results P
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Figure D.11: Shows the data set 4 100 ¢, points in red mark the point with decreased profit
or the depot(center). One can also see which point have been removed form the routes.

190 378

190 390

1 0.96923

11702 42901
Results P3

180 356

190 390

0.94737 0.91282

11513 49877

D.2 Cooling Schedule

463

470
0.98511
69121

446

470
0.94894
70498

548

580
0.94483
60838

551.1
580
0.95017
52944

D.2.1 Results for temperature, 7', first run

644 .3
661

.97474

53120

596.4
661

.90227

53646

681.4
761
0.8954
47479

668.7
731
0.91477
46272

793.6
841
0.94364
46224

721.5
802
0.89963
45828
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Residual plot
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Temperature, T0

Figure D.12: This figues shows the residual sum for some temperatures, blue line. The black
dots are the mean residual sum for all temperatues and green dots are mean+10%.

Residual plot

3.2 T T T

Residual sum

26} h

23 L L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Temperature, T0

Figure D.13: This figues shows the residual sum for all tested temperatures.
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Maximum route length Maximum route length

Figure D.14: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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80 100
Maximum route length

T=250

120 140 160

80 100
Maximum route length

120 140 160

Figure D.15: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.16: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.



178 APPENDIX D. TEST

=30 -0
*
i
’ ¥ os
g 3 / *
H 3
g g
: z %
5 5
5 3 / i
* %
*
— PO
120 140 160 20 40 120 140 160

20 40 60

T=19 T=18
_—
200 200
0s
M g g
EH £ 3
H ] g
< i * 2 <
£ / 2 £
& / 3 . 3 8
X +
B
*
= ® *
20 40 60 80 100 120 140 160 80 100
Maximum route length

Maximum route length

Figure D.17: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.18: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.19: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.20: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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OPT Value

Figure D.21: This figues shows results for four different tempratues. Blues line and dots is

the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.

D.2.2 Results for reduction factor, r, first run
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Figure D.22: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.23: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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OPT Value

20 40 60 80 100 120 140 160
Maximum route length

Figure D.24: This figues shows results for four different tempratues. Blues line and dots is

the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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OPT Value
Residual ratio

20 40 60 80 00 120 140 160
Maximum route length

OPT Value
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OPT Value
Residual ratio

120 140 160

Figure D.25: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.

D.2.3 Results for stopping criteria, [, first run
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Figure D.26: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.27: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.28: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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OPT Value
OPT Value

20 40 60 80 100 120 140 160 20 40 60 80 100 120
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Figure D.29: This figues shows results for four different tempratues. Blues line and dots is

the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.30: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.

D.2.4 Results for temperature, 7', second run
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20 40 60 8 00 120 140
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Figure D.31: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.32: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.33: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.34: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.35: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.36: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.37: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.

D.2.5 Results for reduction factor, r, second run

subsectionResults for stopping criteria, F', second run
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Figure D.38: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.39: This figues shows results for four different tempratues. Blues line and dots is

the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.40: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.41: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.42: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.43: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.



D.2. COOLING SCHEDULE 205

OPT Value
OPT Value

20 40 60 80 100 120 140 160 20 40 60 80 100 120
Maximum route length Maximum route length

140 160

Figure D.44: This figues shows results for four different tempratues. Blues line and dots is

the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.45: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.

D.2.6 Results for Temperature, 7', Data Set 3 50 a
D.2.7 Results for Reduction Factor, r, Data Set 3 50 a
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Figure D.46: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.47: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.48: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.49: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.50: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.51: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.52: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the

green line is the residual ratio.
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Figure D.53: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.54: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.55: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.56: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.

D.2.8 Results for Frozen Factor, /', Data Set 3 50 a

D.3 Randomly Generated Data Sets

D.3.1 50 point profit vector
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Figure D.57: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.58: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.59: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.60: This figues shows results for four different tempratues. Blues line and dots is
the average value and the calculated optimas, the red lin is the best known optimum and the
green line is the residual ratio.
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Figure D.61: Blues line and dots is the average values and the calculated optimums, the red
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line is the best known optimum and the green line is the residual ratio.

O N O 01 =

D.3.3 Test with data sets 50a,b,c,d and e with 450,000 Iterations
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Figure D.62: Blues line and dots is the average values and the calculated optimums, the red
line is the best known optimum and the green line is the residual ratio.
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Figure D.63: Blues line and dots is the average values and the calculated optimums, the red
line is the best known optimum and the green line is the residual ratio.
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Figure D.64: Blues line and dots is the average values and the calculated optimums, the red
line is the best known optimum and the green line is the residual ratio.
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Figure D.65: Blues line and dots is the average values and the calculated optimums, the red
line is the best known optimum and the green line is the residual ratio.
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Figure D.66: Blues line and dots is the average values and the calculated optimums and the
red line is the best known optimum

D.4 Results Comparison to Decrease.java with New Cooling Sched-

ule

M 10 20 30 40 50 60 70 80 90 K| | p
OPT |45 49 49 59 69 76 95 107 110 3 | po
AVE | 45 482 49 5045 64.55 73.3 89.05 99.2 107.45 3 | p2
OPT [ 60 64 64 74 84 92 109 119 125 4 | po
AVE | 60 63.6 63.8 65.9 80.75 86.55 101.65 111.3 113.35| 4 | po
OPT |75 79 79 89 99 106 124 129 138 5 | po
AVE |75 79 78.8 8045 9585 101.15 118.85 122.85 125.85 5 | p2

D.4.1 Results for the Distance Constraint
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Figure D.67: Blues line and dots is the average values and the calculated optimums and the
red line is the best known optimum
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Figure D.68: Blues line and dots is the average values and the calculated optimums and the
red line is the best known optimum
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Figure D.69: Blues line and dots is the average values and the calculated optimums and the
red line is the best known optimum
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Figure D.70: Shows the routes constructed when a =1 and M = 160. The circles are the area
where that must be traveld before another pick up point is chosen.
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Figure D.71: Shows the routes constructed when a = 2 and M = 160. The circles are the area
where that must be traveld before another pick up point is chosen.

Figure D.72: Shows the routes constructed when a =4 and M = 160. The circles are the area
where that must be traveld before another pick up point is chosen.
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Figure D.73: Shows the routes constructed when a = 5 and M = 160. The circles are the area
where that must be traveld before another pick up point is chosen.



