
Issues in Holistic System Design

Julia L. Lawall

DIKU
University of Copenhagen

Universitetsparken 1
2100 Copenhagen Ø

julia@diku.dk

Christian W. Probst

IMM
Technical University of Denmark

Richard Petersens Plads
2800 Kongens Lyngby

probst@imm.dtu.dk

Ulrik Pagh Schultz

Maersk Institute
University of Southern Denmark

Campusvej 55
5230 Odense M

ups@mip.sdu.dk

Abstract

The coordination of layers in computer and software
systems is one of the main challenges in designing such
systems today. In this paper we consider Holistic Sys-
tem Design as a way of integrating requirements and
facilities of different system layers. We also discuss some
of the challenges that this kind of system design poses
for computer science in general as well as programming
languages and operating systems in particular.

Categories and Subject Descriptors D.2.11 [Soft-
ware Engineering]: Software Architectures; C.4 [Com-
puter Systems Organization]: Performance of Systems

General Terms Design, Languages, Reliability, Ver-
ification

Keywords Software Architecture, Domain-specific
Languages, Adaptive Software

1. Introduction

Recent years have seen a rapid growth in the diver-
sity and complexity of computer system components,
ranging from new kinds of hardware to advanced ap-
plications. This rapid growth has brought with it the
potential for significant improvements in the features
provided to the end user, to satisfy an increasing de-
mand for highly customizable, multifunctional systems.
Nevertheless, these benefits have been slow to appear,
for reasons ranging from programmability to reliabil-
ity. Indeed, existing programming mechanisms are in-
creasingly inadequate to coordinate the many different

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

components contributing to the overall system behav-
ior. Furthermore, the diversity and complexity of com-
ponents make it difficult to reason about global system
properties. Consequently, development costs and times
are exploding, software is unable to make optimal use
of the available resources, and adaption to specific user
needs is difficult.

We contend that a major source of this problem is the
stratification of computing systems into layers: the user
layer, the operating system (OS) layer, the hardware
layer, etc. While the user layer is highly customizable,
as we move to the lower layers, they become increasingly
rigid and unconfigurable. This stands in contrast to,
e.g., biological systems, where the different layers are
able to adapt individually and together in response to
changing needs. Analogously, techniques in computing
systems are needed to allow interaction and feedback
between layers, and gradual integration and adaptation
of new sub-systems, as found in nature.

To address these problems, we find it promising to
take a holistic approach to system design. Rather than
enforcing barriers between the various layers of a com-
puter system, the goal of Holistic System Design is to in-
tegrate requirements and functionalities of components
scattered across layers, while taking into account the
complexity of today’s systems. Two key issues are to en-
rich the interfaces between components to allow tighter
interaction between them, and to develop techniques to
exploit the semantic information provided by these en-
riched interfaces to reason about the system behavior.
Holistic System Design should lead to a new kind of sys-
tem that is easier to develop, more robust and better
adaptable to user demands.

While many different research areas can contribute
to holistic system design, we see the main challenge
in the areas of programming languages and operating
systems. Domain-specific languages will be needed for
expressing and specifying properties and requirements
of different layers, and to allow reasoning about these
properties. Operating systems, or the functionality pro-

vided by operating systems, will be needed to provide
the infrastructure for holistic system and to support dy-
namic re-configuration of these systems.

2. The Research Challenges

We consider some of the significant research challenges
that must be addressed to achieve a holistic approach
to system design.

Understanding the behavior and requirements of compo-
nents at various layers. To be able to tune a system to
the behaviors and requirements of a given component,
we need to be able to characterize these properties. For
example, while we may normally think of a text editor
as an application that manipulates and displays text
and a video player as an application that manipulates
and displays video, to get the most appropriate treat-
ment for these applications from a process scheduler or
power manager, it may be more useful to characterize
the text editor as a user-driven application and a video
player as a periodic one. Other characteristics may be
useful when considering the interaction with other sys-
tem components.

Expressing information about component behaviors and
requirements. Behaviors and requirements can change
over time, in complex ways. For example, although the
aforementioned video player normally exhibits periodic
behavior, when the user is selecting the next video the
player’s behavior is determined by user interaction, like
that of a text editor. A component interface model is
thus needed that enables safe, efficient, and expressive
intercommunication of this kind of complex, changing
information.

Exploiting this information in all layers. To be able to
coordinate the behaviors and requirements of compo-
nents in all layers, systems must be flexible and re-
configurable. For example, in the context of a battery-
powered laptop or mobile phone, power consumption
should be reduced to the minimum required to achieve
system goals. This, however, requires that the hard-
ware provides a wide range of power levels, that the
OS provides efficient mechanisms for changing between
them, and that there is an infrastructure for mediat-
ing their interaction. In general, these extra capabil-
ities can increase the burden on system developers.
Thus, research is needed into programming-language
and software-engineering techniques to provide a good
development model at all layers.

Reasoning about the resulting systems. Current ap-
proaches to reasoning about system behaviors and re-
quirements are hampered by the stratification of sys-
tems into layers. For example, in safety-critical real-time

systems, it is necessary to identify the worst-case execu-
tion time of each component, to ensure that the entire
system can respond in a timely manner. Due to the in-
ability of user-layer components to control components
in lower layers, execution times can widely vary. Thus,
such estimates are typically gross over-approximations,
resulting in underutilization of computing resources.
The challenge is to enable precise configuration of com-
ponents at all layers, to make their behavior more pre-
dictable, making it easier to reason about the overall
system behavior.

Balancing openness with encapsulation. Expressing and
exploiting information across layers means opening up
the implementation of each layer, but this should be
done in a structured and disciplined way, to preserve
internal invariants and avoid spurious implementation
dependencies. Again, we find the same principles at
work in biological systems. For example, the inner work-
ings of a cell is protected by the cellular membrane but
can nevertheless be affected both by neighboring cells
and by hormones global to the living organism. This
way, biological systems feature a rigid division into lay-
ers as we know it from today’s systems, while at the
same time providing means for interaction and adap-
tion across layer boundaries.

Adapting legacy software and software engineering
methodologies. A large body of software is available that
is designed in terms of the standard layers. To benefit
from this existing work, techniques are needed to evolve
legacy software for use within a holistic system. Fur-
thermore, well-tested software engineering methodolo-
gies have been developed to enable limited communica-
tion between layers. Where appropriate, these method-
ologies should be evolved to encompass the principles
of holistic system design.

Validating holistic systems. Building complete systems
is essential for experimentally assessing the system-wide
benefits of Holistic System Design, such as improved re-
sponsiveness and reduced power consumption. Evalua-
tion techniques will be needed to determine the indi-
vidual contributions of system components in all layers
and to understand how these contributions synergize
into the whole system behavior.

3. Current Research Efforts

In this section, we describe some of the authors’ current
research efforts that cut across the traditional layers
of a computer system, either by exploiting existing
properties of lower layers from higher layers, or by
redesigning lower layers to make more interaction with
them possible. In each case, we consider what new

features or further research are needed to improve the
holistic nature of the approach.

Interaction between the user layer and the hard-
ware layer: Controlling the cache behavior of
network servers. As memory sizes have grown in re-
cent years, network servers have increasingly been able
to serve requests entirely out of memory, without rely-
ing on slow access to disk storage. In this setting the
data and instruction cache behavior becomes the limit-
ing factor in the ability of a network server to handle
large numbers of concurrent request [3]. Furthermore,
when the network server is implemented in an event-
based style, as is the case of many efficient network
servers today, its memory requirements can be highly
predictable. Based on these observations, Bhatia, Con-
sel, and the first author have developed a memory al-
locator that allocates memory from a pool limited to
a cache-sized memory region, implying that it should
be possible to freely use the memory within the pool
without cache conflicts [4]. The allocator furthermore
constrains the concurrency of the network server, using
its knowledge of the server’s memory requirements, so
that all active requests can be handled within the mem-
ory available in the pool. In our benchmarks of several
network servers running on a Pentium IIIM, including
the highly efficient server TUX, when bombarded with
requests, we have found that our memory allocator dras-
tically decreases the number of cache misses, and sig-
nificantly increases the number of requests that can be
treated concurrently [5].

Our approach connects the network server running
in the user layer with the behavior of the cache in the
hardware layer. Some other work has also found the
value of tuning user-layer code to caching properties,
including that of Chilimbi et al. on data structure lay-
out [7, 8]. Although our benchmarks show that we have
succeeded in drastically reducing the number of cache
misses on the Pentium IIIM architecture, all of the work
in this area could benefit from predictable mechanisms
for controlling the cache alignment of critical memory
locations.

Interaction between the user layer and the OS
layer: Application-specific process scheduling.
Process scheduling is the mechanism by which an OS de-
cides which process has access to the CPU and at what
time. Traditionally, general-purpose OSes such as Linux
and Windows run each process for a given time slice in
a best-effort, round-robin fashion, ensuring that each
process eventually gets access to the CPU but provid-
ing no other guarantees. Real-time processes, however,
have more specialized timing requirements. For exam-
ple, a video player, which is often used in a general-
purpose computing environment, must execute period-
ically to maintain its frame rate. Execution at a fixed

rate cannot be guaranteed by a round-robin scheduler
in the presence of a potentially unbounded number of
processes.

For standard OSes, such as Linux and Windows,
user-layer applications can only control the schedul-
ing behavior via a fixed set of process priorities. To
allow application programmers to specify more com-
plex scheduling policies, Muller and the first author
have developed the Bossa scheduling framework [12].
This framework provides an OS-independent domain-
specific language for implementing scheduling policies,
and an OS-specific run-time system that connects a
Bossa scheduling policy to the target OS. The latter
must be implemented just once for each OS. Verifica-
tions are provided that ensure statically that a Bossa
scheduling policy respects the basic semantics of each
scheduling-related operation. A Bossa scheduling pol-
icy can furthermore specify an interface that allows an
application to interact with the scheduler in a policy-
specific way. We have used Bossa to implement a num-
ber of scheduling policies, mostly targeted to multime-
dia applications. Bossa has also been used in teach-
ing scheduling at several institutions. Our experiments
show that Bossa is easy to use and incurs no noticeable
overhead in the execution of real applications.

Bossa is an example of how lower layer services can
be redesigned to be more configurable from upper lay-
ers, while retaining safety. Our approach relies critically
on the use of a domain-specific language to encapsulate
expertise and provide safety. Other projects that have
used programming languages to both allow and con-
strain configuration of lower layers include the SPIN
OS [2] and the Berkeley Packet Filter [11]. More work,
however, is needed in language design strategies, both to
lower the expertise barrier for programming such com-
plex systems and to be able to specify and check relevant
properties.

Interaction between low-level components in the
user layer: Middleware for self-reconfigurable
robots. A self-reconfigurable robot is a robot that
can change its own shape. Self-reconfigurable robots
are built from multiple identical modules that can
manipulate each other to change the shape of the
robot [6, 10, 13, 14, 16, 19]. Changing the physical shape
of a robot allows it to adapt to its environment, for ex-
ample by changing from a car configuration, best suited
for flat terrain, to a snake configuration, best suited for
uneven terrain. Programming self-reconfigurable robots
is complicated by the need to distribute control across
the modules that constitute the robot and furthermore
to coordinate the actions of these modules. Algorithms
for controlling the overall shape and locomotion of the
robot have been investigated (e.g. [9, 17]), but the is-

sue of providing a high-level programming platform for
developing controllers remains largely unexplored.

The primary challenges in programming modular,
self-reconfigurable robots are coordinating transforma-
tions (and thus movements in general) during shape
change and propagating information between individ-
ual modules. Given a control algorithm, coordinating
transformations entails coordinating the movements of
the individual modules to produce the required overall
effect on the robot. Propagating information typically
entails propagating sensor information to the parts of
the robot that need to react to external events and prop-
agating commands to the parts of the robot that need
to perform actions. Shape change however complicates
information propagation, since it not only causes the
topology of the robot to change, but also can change
the functionality (and hence the information require-
ments) of each module.

The complex communication requirements prompt
the need for a middleware providing high-level commu-
nication primitives. This middleware layer must how-
ever be highly adaptable to support different sets of re-
quirements for different shapes. The third author is cur-
rently investigating such a middleware for the ATRON
reconfigurable robot, in collaboration with members of
the Adaptronics group [1, 10, 15].

Moving lower layers up to higher layers, to fa-
cilitate inter-layer communication: Power man-
agement for portable devices. Recent years have
seen a tremendous increase in the capabilities of mo-
bile devices. Nevertheless, while hardware performance
has increased, power supply technology has not kept
pace, becoming a significant bottleneck. This has led to
a large collection of techniques to reduce power con-
sumption, the most popular being Dynamic Voltage
Scaling (DVS). This technique, which can be controlled
from the hardware, operating system or compiler lev-
els, works by reducing a processor’s clock frequency and
voltage in lockstep. Because CPU power dissipation is
quadratic with respect to supply voltage and linear with
respect to clock frequency, DVS should, under ideal con-
ditions, reduce a processor’s instantaneous power dissi-
pation cubically. However, when the processor is slowed
down, program execution slows down as well. Thus DVS
is only effective in code that can be slowed down with-
out unacceptably increasing a program’s total execution
time (or a user’s experience of it).

Multi-tasking induces further challenges for DVS.
Changing the frequency of the processor affects the be-
havior of other systems, such as memory. Thus, the ideal
frequency for one process might not be appropriate for
other processes running concurrently. For this reason,
in systems that offer multi-tasking, DVS is currently
often done at the hardware or OS level, where a global

view of the system behavior is available. Nevertheless,
at this low level there is no mechanism available for
applications to communicate their requirements to the
DVS management system.

Venkatachalam, Franz, and the second author have
therefore suggested a holistic system for mobile-code
execution, that integrates hardware, operating system,
and applications into a feedback loop, using a virtual
machine [18]. In this framework, applications can easily
communicate their resource needs to other system parts.
Furthermore, the virtual machine layer can use its high-
level information to re-compile (parts of) the applica-
tion to, e.g., satisfy the needs of applications running
in parallel, thereby connecting different applications di-
rectly to the DVS management system.

4. Conclusion

This paper describes holistic system design as a way of
integrating requirements and facilities of different sys-
tem layers. The goal of holistic system design is to fun-
damentally improve the way we design systems. We ex-
pect that it will be possible to more quickly develop
complex systems that will make better use of available
resources. The overall system behavior will furthermore
become more predictable because of the ability to rea-
son about the interaction between components. Finally,
these features will facilitate research into new resource
management strategies.

References
[1] Adaptronics group, Maersk Institute. http://www.

adaptronics.dk.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. J. Eggers.
Extensibility, safety and performance in the SPIN
operating system. In Proceedings of the Fifteenth ACM
Symposium on Operating System Principles, pages
267–284, Copper Mountain Resort, CO, Dec. 1995.

[3] S. Bhatia. Optimisations de compilateur pour les
systèmes réseaux. PhD thesis, University of Bordeaux,
June 2006.

[4] S. Bhatia, C. Consel, and J. Lawall. Memory-
manager/scheduler co-design: optimizing event-driven
servers to improve cache behavior. In Proceedings
of the 2006 international symposium on Memory
management, pages 104–114, Ottawa, Canada, June
2006.

[5] S. Bhatia, C. Consel, and J. Lawall. Minimizing cache
misses in an event-driven network server: A case study
of TUX. In The 31st IEEE Conference on Local
Computer Networks (LCN), Tampa, FL, USA, Nov.
2006. To appear.

[6] A. Castano and P. Will. Autonomous and self-sufficient
conro modules for reconfigurable robots. In Proceedings
of the 5th International Symposium on Distributed

Autonomous Robotic Systems (DARS), pages 155–164,
Knoxville, Texas, USA, 2000.

[7] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-
conscious structure definition. In Proceedings of
the ACM SIGPLAN’99 Conference on Programming
Language Design and Implementation (PLDI’99),
pages 13–24, May 1999.

[8] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-
conscious structure layout. In Proceedings of the ACM
SIGPLAN’99 Conference on Programming Language
Design and Implementation (PLDI’99), pages 1–12,
May 1999.

[9] D. Christensen and K. Støy. Selecting a meta-module
to shape-change the ATRON self-reconfigurable robot.
In Proceedings of IEEE International Conference on
Robotics and Automations (ICRA), pages 2532–2538,
Orlando, USA, May 2006.

[10] M. W. Jorgensen, E. H. Ostergaard, and H. H. Lund.
Modular ATRON: Modules for a self-reconfigurable
robot. In Proceedings of IEEE/RSJ International
Conference on Robots and Systems (IROS), pages
2068–2073, Sendai, Japan, Sept. 2004.

[11] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
USENIX Association, editor, Proceedings of the Winter
1993 USENIX Conference, pages 259–269, San Diego,
CA, Jan. 1993. USENIX.

[12] G. Muller, J. L. Lawall, and H. Duchesne. A framework
for simplifying the development of kernel schedulers:
Design and performance evaluation. In HASE 2005
- High Assurance Systems Engineering Conference,
Heidelberg, Germany, Oct. 2005.

[13] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa,
A. Kamimura, and S. Kokaji. Hardware design of mod-
ular robotic system. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 2210–2217, Takamatsu, Japan,
2000.

[14] D. Rus and M. Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. Jour-
nal of Autonomous Robots, 10(1):107–124, 2001.

[15] U. Schultz, K. Støy, N. Dvinge, and D. Christensen.
Sensor networks and self-reconfigurable robots. Tech-
nical Report 1, Maersk Institute, Aug. 2006. To be
presented at the OOPSLA 2006 Workshop on Building
Software for Sensor Networks (BSSN’06).

[16] W.-M. Shen, M. Krivokon, H. Chiu, J. Everist,
M. Rubenstein, and J. Venkatesh. Multimode loco-
motion via superbot robots. In Proceedings of the
2006 IEEE International Conference on Robotics and
Automation, pages 2552–2557, Orlando, FL, 2006.

[17] K. Støy. How to construct dense objects with self-
reconfigurable robots. In Proceedings of European
Robotics Symposium (EUROS), pages 27–37, Palermo,
Italy, May 2006.

[18] V. Venkatachalam, C. W. Probst, and M. Franz. A
Multilevel Introspective Dynamic Optimization System

For Holistic Power Aware Computing. Technical
Report 04-08, University of California, Irvine, School
of Information and Computer Science, April 2004.

[19] M. Yim, D. Duff, and K. Roufas. Polybot: A modular
reconfigurable robot. In Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), pages 514–520, San Francisco, CA, USA, 2000.

