
Single-pass Wireframe Rendering

Andreas Bærentzen1 Steen L. Nielsen1,2 Mikkel Gjøl3 Bent D. Larsen1,3 Niels Jørgen Christensen1

1 Informatics and Mathematical Modelling, Technical University of Denmark, 2 Flux Studios, 3 Dalux

The standard procedure for wireframe drawing with hidden line re-
moval on a graphics card has not changed for a long time: First the
filled polygons are drawn, laying down the depth buffer. Next, the
polygon edges are drawn as lines with a small depth offset to ensure
that polygons do not occlude their own edges.

The depth offset is required because the procedure for rasterizing
lines is not exactly the same as the one for rasterizing polygons.
Consequently, when rasterizing a polygon edge as a line, a given
fragment may have a depth value that is different from when the
corresponding polygon itself is rasterized. This leads to stippling
artefacts. However, adding an offset is not an ideal solution since
this offset can result in disocclusions of lines that should be hidden.
Moreover, there is usually stippling in any case near steep slopes in
the mesh where a very large offset is sometimes required. The only
real fix is a slope dependent offset but that tends to make disocclu-
sion problems much worse. A few authors have proposed improved
techniques, but either these are not intended for modern graphics
hardware [Wang et al.] or they incur a performance hit [Herrel et
al.].

Our solution does not use the line primitive at all. Instead polygon
edges are drawn directly as a part of polygon rasterization. For
each fragment, we compute the shortest distance to the edges of the
polygon and map that distance to an intensity value, I, as shown
in the figure (right). This mapping is not just a step function but a
smooth function, I = exp2(−2d2) which amounts to antialiasing by
prefiltering.

This method works for convex polygons (triangles or quads most
likely), and it suffers from none of the artefacts associated with the
offset based methods, but it does have one drawback. If a polygon
does not have a neighbouring polygon (e.g. near a hole or a silhou-
ette) the line is drawn from one side only. This means that silhou-
ette lines are thinner and not antialiased. However, in practice the
quality is still far better than using the offset based method, and the
performance is almost invariably better. On a Geforce 7800 GTX

1(jab|njc)@imm.dtu.dk
2steen@flux-studios.com
3(mig|bdl)@dalux.dk

the Happy Buddha mesh was rendered at 25 fps using our method
and only 5 fps using the offset based method. Thus, our method
seems to be particularly well suited for the rendering of dense trian-
gle meshes such as the increasingly common laser scanned models.
Furthermore, many variations of the method are possible. In fact,
the two images in the figure show the method using attenuation of
line intensity (left) and thickness (center). In the center image, al-
pha testing was used to remove the interior of the quads.

Implementation

Observe that the 2D distance from a point to a polygon edge is an
affine function. Such functions are reproduced by linear interpola-
tion. For this reason, we can compute the distance at each vertex
and simply interpolate linearly. Thus, for each vertex of, say, a tri-
angle we must send the other two vertices as attributes in order to
compute the line distance. The graphics card will do the interpola-
tion, but there is one problem: Perspective correct interpolation is
currently hardwired into the interpolation used by modern graph-
ics cards. It is possible, however, to negate this interpolation by
premultiplying the distance (computed in a vertex program) with
the w value. The interpolated distance is then postmultiplied in the
fragment program by the interpolated 1/w.

It is worth mentioning that Direct3D 10 offers an even simpler so-
lution: It is possible to switch off perspective correction in D3D 10.
Moreover, D3D 10 supports geometry shaders which are executed
after vertex shaders but before rasterization. In such shaders, all
vertices of a triangle can be accessed making it possible to compute
the distance at each vertex without sending additional attributes per
vertex. A similar shader type (called primitive shaders) is planned
for OpenGL 3.0.

References

HERRELL, R., BALDWIN, J., AND WILCOX, C. 1995. High-
quality polygon edging. IEEE Comput. Graph. Appl. 15, 4, 68–74.

WANG, W., CHEN, Y., AND WU, E. 1999. A new method for
polygon edging on shaded surfaces. J. Graph. Tools 4, 1, 1–10.


