
Workflow Improvements for
Real-Time Shader Development

Peter Dahl Ejby Jensen

Kongens Lyngby 2006

Master Thesis IMM-2006

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Abstract

This thesis will discuss the design and implementation of a shader graph edi-
tor. The editor makes the daunting task of programming shaders accessible for
non programmers, as no programming or specific knowledge of graphics hard-
ware is required. Graphics programming complexities such as different types
or conversion between mathematical spaces, such as world and object space,
is hidden from the user and handled automatically by the system. The work
presented here also covers integrating the editor with a game engine, which
includes supporting effects such as shadows and different light types in the gen-
erated shaders. The editor supports the creation of both vertex and fragment
shaders, and discusses optimization issues of the generated shaders.

Resumé

I denne afhandling vil vi diskutere design og implementering af en shader graf
editor. Editoren gør den krævende opgave at programmere shadere tilgængelig
for ikke programmører, da erfaring med programering eller specifik kendskab til
computer grafik hardware ikke er nødvendigt. Kompleksiteterne fra grafikpro-
grammering s̊asom forskellige typer samt transformation fra et matematisk rum
til et andet, som f.eks. objekt- til verdenskoordinater, er skjult for brugeren og
bliver h̊andteret automatisk af systemet. Projektet gennemg̊ar ogs̊a integrerin-
gen af editoren med en game engine, hvilket giver understøttelse af effekter som
f.eks. skygger og forksellige lyskilde typer i de generede shadere. Editoren un-
derstøtter ydermere b̊ade vertex og fragment shadere, og diskutere optimerings
overvejelser for de generede shadere.

Preface

This thesis was prepared at image analysis and computer graphics group, which
is a part of the Informatics and Mathematical Modeling department at the
Technical University of Denmark. The thesis is in partial fulfillment of the
requirements for acquiring the M.Sc. degree in engineering. It is nominated to 40
ECTS points, and the project period were 9 months between the first of october
to the 30 of june. The project was carried out in cooperation with the danish
software company Over The Edge Entertainment, and we frequently discussed
the content of the project with them. Our implementation were furthermore
integrated with their game development software named Unity. Unity is closed
source which means that the source code created in this project is not public, and
can not be redistributed. The rest of this report can be redistributed provided
that it is not modified without explicit permission from the author.

Lyngby, June 2006

Peter Dahl Ejby Jensen
Student Number: s001733

Acknowledgements

I would like to thank my two counsellors Niels Jørgen Christensen and Bent
Dalgaard Larsen for their ever helpful comments during my work. I would
also like to thank the whole computer graphics group at DTU, for showing
a great interest in this project. A special thank you goes to Over The Edge
Entertainment where this project were developed. The whole team at OTEE
were always there to help with issues using their game engine, and good tips,
ideas and discussions about the project. The high quality artwork and textures
in this thesis were provided by Danni Tell and Bill Vinton, to whom I am also
very grateful. Finally I would like to thank Martin Valvik and Bo Esbech for
their insightful comments during the final steps of the report writing, along with
my whole family who has been very understanding during stressful periods.

Contents

Abstract i

Resumé iii

Preface v

Acknowledgements vii

1 Introduction 1

1.1 Introduction . 1

1.1.1 Target Audience . 2

1.2 Introduction to Shaders and Effect Files 2

1.2.1 Shading Languages . 2

1.2.2 Effect Files . 4

2 Previous Work 7

2.1 Renderman Shading Language 8

2.2 Content Creation Tools . 10

2.3 Rendermonkey and FX Composer 12

2.4 Industrial Work in Shader Graphs 13

2.5 Academic Work in Shader Graphs 15

3 Background theory 19

3.1 Material theory . 19

3.1.1 BRDF’s in real-time graphics 20

3.1.2 Advanced BRDF’s . 22

3.1.3 Advanced Material Properties 23

3.2 Compiler Technology . 24

3.3 Directed Acyclic Graph . 26

3.4 GPU Programming . 26

3.4.1 GPU History and Architecture 27

3.4.2 Vertex vs. Fragment Programs 28

4 Requirement Specification 31

4.1 Target User Group . 32

4.2 Constraints . 33

4.3 Functional Requirements . 34

4.4 Non-Functional Requirements . 35

4.5 Identified Issues . 36

5 Design Considerations 37

5.1 GUI design . 38

5.2 Node Design . 40

5.2.1 Shader Code Containers 41

5.3 Connector Slots . 43

5.3.1 Polymorph Types . 44

5.3.2 Mathematical Type Transformations 45

5.4 Compiler Design . 46

5.5 Game Engine Integration . 50

6 Implementation 53

6.1 GUI Implementation . 54

6.2 Graph Implementation . 57

6.2.1 Node Implementation . 60

6.2.2 Connection Slot Implementation 62

6.3 Compiler Implementation . 63

6.4 Game Engine Integration . 65

7 Implementing Shaders in Other Systems 67

7.1 Creating Shaders in Renderman 68

7.2 Creating Shaders in RenderMonkey 70

7.3 Creating Shaders in Maya . 72

8 Results 75

8.1 Shader Graph Editor . 75

8.2 Integration with Game Engine 82

8.2.1 Effect File Capabilities . 82

8.2.2 Multiple Light Types in One Shader 85

8.2.3 Integration with Shadows 85

9 Discussion 89

9.1 Comparison With Renderman, RenderMonkey and Maya 89

9.2 Game Engine Integration . 92

9.3 Graph Shaders and Hand-coded Shaders Comparison 95

10 Conclusion and Future Work 99

10.1 Future Work . 99

10.2 Conclusion . 100

A Introduction to Unity 103

A.1 Introduction to Unity . 103

B Created Shaders Source Code 107

B.1 Sample ShaderLab shader . 107

B.2 Renderman Source Code . 109

B.3 RenderMonkey Source Code . 110

B.4 Handcoded and Generated Parallax Mapping Shaders 111

C CD-ROM Contents 117

C.1 Files on the CD-ROM . 117

Nomenclature

Expression Definition

Bump map A texture map that stores the normal of a surface. These
normals are often perturbed slightly in comparison with the
objects normals. When these normals are used in the light-
ing calculations, the result is a more rough looking surface.

Connector Slot The object used to create connections between nodes from
and to. Called input and output in figure 5.1. In terms
of the generated shader code, a slot should be thought of
as an variable of a particular type, which is defined in a
particular mathematical space.

Normal map A normal map is basically the same as a bump map, and
we use both of these terms interchangeably in this thesis.
The term normal map is often used in the industry, when
the goal is to create more precise pr. fragment lighting, and
not so much to create a rough looking surface.

Offline Rendering Any rendering that is not fast enough to be real-time ren-
dering.

Real-Time Rendering We define real-time rendering to be when the amount of
pictures generated each second exceed 25 (fps > 25).

Shader Graph A collection of connected nodes that has individual func-
tionality. The collection yields a shader when the nodes are
combined in the direction of the graph.

Shader A Shader is a piece of code that handles the coloring of an
object, possibly using textures and light calculations to gen-
erate the final appearance. Shaders can be executed on the
graphics hardware or using the CPU (software rendering).

Subgraph A subset of nodes defined by all the nodes that a given
node connects to, both directly and indirectly through other
nodes. The node used as a starting point is included in the
subgraph. See figure 5.2 for an illustration.

Swizzeling Swizzeling is used for selecting a subset of the components
in a vector. An example could be selecting only the red
component of a color by writing color.r.

Vector Notation When writing equations vectors will be written in bold let-
ters

Chapter 1

Introduction

1.1 Introduction

This thesis will discuss the implementation of a shader graph editor. The pur-
pose of this tool is to make shader programming more accessible, for people with
little or no shader programming experience. Experienced programmers could
also benefit from this tool, as it could quicken the development time by provid-
ing a higher level of abstraction, easier debugging plus other workflow improving
features. We will discuss both design and implementation issues throughout the
thesis, which will end with a presentation of the final product and a discussion
of the results obtained. The shader graph editor will be used to create shaders,
which is a special kind of program that handles the shading of an object. Re-
cently more and more applications are beginning to use the so called effect files
as a format of the shader program, which is also what we do in this thesis, with
the major difference that this file is presented in a graphical manner instead. In
this chapter we will discuss effect files, and give a brief description of the format
we have chosen to use in this thesis. In chapter 2 we discuss previous work in
both real-time and offline rendering. Relevant background theory on materials,
graphs and more is discussed in chapter 3. After discussing previous work and
background theory, we will present the requirement specification for our editor
in Chapter 4. In chapter 5 we discuss how to design a system that fulfills these
requirements, and chapter 6 discuss the implementation of this design. Chapter

7 is a case study of how a particular shader can be implemented, using other
applications, which we use as a base for comparison with our own product in
chapter 9. Between those two chapters we present our own results in chapter 8,
and in chapter 10 we conclude on the thesis and project in general.

1.1.1 Target Audience

We will assume that the reader of this thesis, is familiar with the capabilities of
the fixed function pipeline in graphics cards, and knows how to render objects
with it using OpenGL. This type of reader could be an engineer or similar, which
has some previous experience with graphics programming. We also expect the
reader to have knowledge about creating computer graphics for games. In this
thesis the product developed will be targeted towards game developers, and
this means we will be using game development terms throughout this thesis.
As the subject of this thesis covers many areas, we are not able to give thor-
ough explanations of all the relevant background theory, so often there will be
given references instead, which can be consulted for further information. These
references are especially about GPU programming and compiler design, which
we present in chapter 3. To sum up, the ideal reader of this thesis should have
knowledge about game programming, real-time graphics programming includ-
ing shader programming, and possibly some knowledge about graph theory and
compiler design.

1.2 Introduction to Shaders and Effect Files

In this section we will discuss the evolution of shaders, and account for the
underlying technology used to produce them. This will include a description of
effect files, which is the basic format for shaders that we use extensively through-
out this thesis. Future chapters will show how this format can be presented in
an abstracted way as a graphical editor for shaders.

1.2.1 Shading Languages

Only a few years ago, rendering objects using graphics hardware were done
by applying a set of fixed transformation and shading formulas in the render-
ing pipeline. The fixed function pipeline only had support for standard Phong

like shading models, where the programmer could set material constants such
as specular component and colors. This made realistic rendering of certain
materials such as glass or metals difficult, as these materials can have special
attributes such as anisotropic highlights, and reflection/refraction of light and
environments. Further more the shading were calculated on a pr. vertex basis,
which does not look as realistic as current pr. fragment based shading. This all
changed with the introduction of the programmable graphics pipeline though.
The previously fixed vertex and fragment processors were substituted with pro-
grammable ones, but the rasterizer that connects these remained the same. See
figure 1.1.G e o m e t r y V e r t e xP r o c e s s o r R a s t e r i z e r F r a g m e n tP r o c e s s o r C l i p S p a c eC a l c u l a t i o n sP r o g r a m m a b l eV e r t e x S h a d e r P r o g r a m m a b l eF r a g m e n tS h a d e r

Figure 1.1: Recent upgrade of the graphics pipeline.

The first generations of programmable graphics hardware, used low level as-
sembly languages for shader creation. It were difficult to create these programs
as debugging were impossible, and it required a great knowledge of the under-
lying hardware. This has changed with the last few generations of graphics
hardware though, where high-level programming languages has emerged. One
such language is Cg (C for Graphics), which were created by Nvidia [16]. Other
languages includes HLSL [12], GLSL [1] and SH [23]. These languages are very
similar to the well known C programming language, with added types for storing
vectors, matrices and such. They also have build in functions for working with
these types, that maps directly to the underlying hardware for fast algebra com-
putations. Programming shaders with these languages has become very popular
the last few years, as it has been relatively easy for programmers to harvest the
power of the new hardware. The languages still lack support for advanced data
structures. Debugging the high level languages is also a problem. It is possible
to perform some debugging through software simulators, but those might not
indicate driver bugs, or other very hardware near problems. These languages
also does not have any way of altering the current rendering state in OpenGL
(or DirectX if that is used). Programs created in these languages can be used to
control the rendering within a single pass, but they depend on the application
that uses them to set up the state variables such as blending, render target and
so on. This leads us to the introduction of a higher abstraction level, namely

effect files.

1.2.2 Effect Files

An effect file is a script that handles all the rendering of the objects it manages.
Currently there exists two dominant languages for writing effect files; Nvidia’s
CgFX [13] and Microsoft’s Effect Files (FX) [11]. Effect files are often used
for implementing shaders, as they have control to setup and handle rendering
passes, while they can also incorporate a shading language for customizing the
rendering pass. Often the shader is implemented by a single effect file. Most
effect file languages are very similar in their structure, and if a user is familiar
with one, it should not be a problem to understand effects written in the others.
We will now give a brief description to the structure of the effect file used in
this thesis. In Appendix B.1 we show an implementation of a shader that does
specular lighting, with the specular component modulated by a texture. The
shader uses the effect file format called Shaderlab, which illustrated below in
figure 1.2. For now it should be thought of as a pseudo format, but it is actually
an real effect file format that is a part of the game engine we have chosen to
integrate our work with.

The properties scope is used for defining variables that can be modified exter-
nally. These could be colors, textures or similar variables used for the rendering.
When defined in the Properties scope they will automatically be setup by the
effect file language. The Category defines a scope of states common to every-
thing inside it. It is possible to overwrite these state settings in subsequent
subshaders and pass scopes though. The subshader scope is used to set up
the rendering passes for the effect. Only one subshader will be executed in an
effect file. Shader Lab examines the subshaders in a top-down approach, and
uses the first one it encounters that will be able to execute on the underlying
hardware. If no subshader in a particular effect file is supported, the shader
will fall back to another shader, as specified with the Fallback command, that is
set as the last thing in the effect file. Within a subshader it is possible to alter
the OpenGL rendering state, and have any number of rendering passes. These
passes are set up using the Pass scope. Each Pass results in an actual rendering
pass being performed by the engine. In a Pass scope it is possible to modify
the OpenGL Rendering state, plus specify vertex and/or fragment programs. If
such programs are specified they will substitute the fixed function pipeline that
OpenGL otherwise uses. If no programs are specified, most effect file formats
has a material tag that can be used to set material constants used by OpenGL.

Shader ”Shader Name” {
Prope r t i e s {
}
Category {

// OpenGL Sta t e s can be wr i t ten here , they w i l l work in the whole Category scope .

subshader { // For GPUs that can do Cg programs

// OpenGL Sta t e s can be wr i t ten here , they w i l l work in t h i s SubShader scope .

Pass {

// OpenGL Sta t e s can be wr i t ten here , they w i l l work in t h i s Pass .

CGPROGRAM

// Put your normal Cg code here

ENDCG
}

// . . . More pas s e s i f n e c e s sa ry .

}
subshader { // For a l l OpenGL complaint GPUs

// . . . Passes that use s other render ing techn iques
// Such as normal OpenGL f i x e d func t i on

}
}
Fal lback ” f a l l b a c k shader name”

Figure 1.2: The structure of an effect file.

This thesis will describe a system that presents the structure outlined above in a
graphical manner. We will show how this results in a far more accessible way of
creating shaders, a way that does not require knowledge about programming or
the underlying graphics hardware. This results in great workflow improvements
for shader development, and will enable more users to have a greater control
over the appearance of their scenes.

Chapter 2

Previous Work

The previous work on shader graphs can be divided into two main categories,
Industrial and Academic work. In this chapter we will discuss the most rel-
evant work in both categories. The main difference between industrial and
academic work, is that the industrial work is only documented towards using
the final product, and very little information about the underlying technology
is revealed. This is quite logical, as the companies does not wish to reveal any
specific technology they have developed to competing companies. The industrial
work also tends to be more finalized than the academic work, which mainly fo-
cuses on specific problems, rather than creating a full solution. Besides previous
shader graph work, we also discuss Renderman, IDE’s like RenderMonkey and
FX Composer and content creating tools such as Maya and Softimage. These
are all relevant industry tools that either contains shader graph editors, or has
significant relevance for shader programming.

The project discussed in this thesis is an industrial project, therefore it will be
relevant to compare the final result with the industrial work discussed in this
chapter. We will also discuss the academic work though, as they reveal more
details about their implementation, which we can analyze and compare with
our implementation. We will begin this chapter with a brief discussion of the
Renderman Shading Language, which were developed by Pixar, as this were one
of the first shading languages.

Shader Type Definition

Light-source Shader The light-source shader uses variables such as the
light color, intensity and falloff information to calcu-
late the emitted light.

Displacement Shader Displacement shaders can be used to add bumps to
surfaces.

Surface Shader In renderman surface shaders are attached to every
primitive, and they use the properties of the surface
to calculate the lighting reflected from it.

Volume Shader Can be used to render volume effects in participating
media.

Imager shaders Performs pixel operations before an image is quan-
tized and output.

Table 2.2: Shader types in Renderman

2.1 Renderman Shading Language

The Renderman Interface were released by Pixar in 1988 [31]. It were designed
to function as an interface between 3D content creation tools, and advanced
rendering software. One of the new features of Renderman, as compared to
other similar products of that time, were the built-in shading language. The
Renderman shading language specifies five different types of shaders as seen in
table 2.2. These different shader types can easily be mixed and matched within
a scene, to give the Renderman user a very high degree of control over the fi-
nal image. Each of the different shaders would be implemented with one or
more functions, written in the Renderman Shading Language. The shading lan-
guage is very similar to the C programming language, and supports loops, if’s
and other flow control statements in a similar way. The shading language also
supports creating polymorphic functions that has the same name, but accepts
different arguments. It is notable though, that there is no support for calling a
function recursively. Most of the types that C supports such as floats, strings
and arrays are also supported in the Renderman Shading Language. Further
more the shading language has support for additional types commonly used in
3D graphics such as transformation matrices, vectors and points. These types

can have a value like normal C types, but they can further more be specified
relative to a specific basis, such as object or camera space. Renderman sup-
plies transformation procedures to transfer from one space to another, which is
just a matrix multiplication that does the basis change. Variables are implic-
itly converted to the ”current” space, if defined in another space. The current
space is the space the shader executes in, normally world or camera space. If
the variable is send to the shader with the Renderman interface, then it will
automatically be converted to the shaders space. If the user wishes to perform
other transformations, it is possible to specify transformation matrices. Similar
to points and vectors, matrices can be specified to lie in a certain space, which
means that the matrix will transform from current to that space.

The variable types above can further more be specified as either uniform or
varying. Variables specified as uniform are assumed to be constant over the
whole surface being shaded, such as a material color might be. Varying vari-
ables change over a surface. An example could be an opacity attached to each
geometric primitive, which will then be bilinearly interpolated over the surface.
In the Renderman shading language a uniform variable used as a varying will
automatically be promoted to varying, while it is an error to use a varying vari-
able as uniform.

Shaders are generated by creating the shader function using the relevant key-
word, e.g. Surface for surface shaders. Arguments can be passed to the shader,
but they are required to have a default value. Later it is possible to change
that value through the Renderman Interface. Within the body of the shader
there are a number of variables that are available, depending on the type of
the shader. For surface shaders variables such as the surface color, normal and
eye position are available. A surface shader further more expects the user to
set the color and opacity of the incident ray in the shader. For other rendering
approaches than ray tracing, this would correspond to the color of that pixel on
the surface. When a shader function is written, it can be instantiated using the
corresponding interface call such as RiSurface for surfaces.

Renderman Shading Language ships with an extensive library of functions for
standard mathematical calculations, noise for procedural texturing, texture
functions etc. There are also support for shadow maps and functions to find
a shadow intensity by using such a map. This is one of the ways Render-
man supports shadows in their shaders. Others could be based on the chosen
render-method, such as ray-tracing, radiosity etc. When rendering Renderman
subdivides the polygons of the model to a size that is smaller than the pixels on
the screen. So in Renderman a vertex and a fragment program is actually the

same thing, and therefore there is no dedicated vertex or fragment shaders.

2.2 Content Creation Tools

One of the first industrial uses of shader graphs were in content creation tools
such as Maya, 3D Studio MAX and Softimage XSI [6] [5] [33]. Both Maya
and Softimage XSI has a shader graph editor, where it is possible to build and
edit materials. The free open-source program Blender is currently implementing
their own shader graph editor as well. All of these shader graph tools work in
real-time, where any change made to the graph is instantly demonstrated in the
effected material. 3D Studio MAX uses a graph based representation of their
material shaders, but does not have an actual graph based editor. With these
tools, it is easy for the user to create a material simply by connecting nodes
with different properties with wires. In Mayas Hypershade, the user will typi-
cally use a material node such as the phong node, apply a texture and maybe a
bump map to create the material effect. The nodes are connected by creating a
connection from a specific output slot from one node, to the relevant input slot
of the other. This approach enables the artist to have fine control over which
colors to use where, but it also requires that she has some knowledge about
the meaning of the different connector slots, such as diffuse and specular colors,
normal maps and so on. These are symbols well known to artists though, so it
is generally not a problem to understand how to use them. Hypershade comes
with a lot of different nodes, including both a complex ocean shader node, and
more simple nodes like the color interpolation node. While the supplied nodes
might be enough for most users, it would be desirable to be able to create your
own nodes. This would enable a programmer to create custom material nodes,
or other special effects, that the artist then can use in her shader. To our
knowledge Maya does not support this though. A similar functionality could
be reached with the ability to combine multiple nodes into a single group node,
this would enable programmers and artists to create new nodes in an easy way.
This functionality is not supported in neither Maya nor 3DS Max.

Setting up connections between nodes works well in Maya. The most common
way to do it is by clicking the node you want to connect from, selecting the
variable you want to use, and then clicking the node it should be connected to.
Upon clicking the connected node, a popup menu will appear, with the possible
variables that can be connected to. In this way Hypershade can help the user
to make legal connections, by only exposing possible variables that makes sense.
As an example no possible connections would appear, if the user tries to connect
an UV set to a color interpolation node, because this node is not able to interpo-

late between UV coordinates. In a similar way swizzeling is supported, so when
the user picks the variable to connect from, it is possible to chose either all the
components of the possible multicomponent vector, or just a single one. If the
user selects only the red component of a texture, she will be able to connect it
to any single component in the variables of the node it is being connected to.
More control can be obtained by using the connection editor, where the user
can explicitly connect a variable in one node to a variable in the other. In the
connection editor, Hypershade also makes sure that only variables of similar
dimension and type can be connected.

When a material has been created, it can be a applied to an object in the scene,
which will then be rendered with the constructed shader. As far as we know, it is
not possible to export the shaders created in maya to a common format though.
This means that shaders done with Mayas shader editor, would have to be re-
done with another editor or written in code, if they are to be used outside Maya.

Softimage XSI has a similar shader graph tool called Render Tree. Like Hyper-
shade in Maya, Render Tree has a library of build-in nodes that can be used. In
Render Tree it is also not possible to create your own nodes, neither by combin-
ing several nodes into one, nor implementing custom nodes by programming. In
normal use, Render Tree is very similar to Hypershade. In both products the
user drag wires between nodes to set up a particular material effect. Usually
the user will use a build-in material and custom their appearance with texture
maps and color based functions. There is a slight difference in the way these
connections are made though. In Hypershade connections were handled from
the same connection slot in the node, while in Render Tree it is possible to
drag a connection from a specific output slot to a specific input slot. Viewing
the connections more directly like this, gives a greater sense of overview over
the whole graph. In Render Tree is is also possible to minimize a node, so all
connections emerge from the same connector slot, resulting in the same func-
tionality as in Hypershade. This posibility to switch seamlessly between the two
modes on a pr. node basis, allows the user to have both the greater overview
over connections, and smaller nodes which also increase overview.

Another important difference is that Render Tree supports connecting different
types with each other, something Hypershade does not allow. When connecting
a three component vector to a color value, Render Tree will automatically insert
a conversion node that converts between the two different types. While it is nice
to have this automatic conversion between types, it is not totally problem free.
Imagine connecting a floating point to a color, which is similar to the equation:
float intensity = V ector3(0.0, 0.5, 1.0). What is the expected result of inten-

sity ? Render Tree handles this conversion by setting intensity to 0.5 (green) by
default, which can later be changed by configuring the conversion node. This
default assignment might not be what the user expects, causing unpredictable
results and confusion for the user. The automatic conversion nodes are used
to handle swizzeling as well, by allowing the user to explicitly defining which
values are moved to where in a conversion node.

When the material has been created, Render Tree supports saving the generated
shader as an effect file, for use in real-time applications. While this is a huge
step over Hypershade that does not support writing out the shader to a common
format, it should be noted that some adjustments might be needed to make this
file work in a general render engine. Making shaders work in game engines is
one issue that we will address later in this thesis.

2.3 Rendermonkey and FX Composer

In this section we will give a brief description of two freely available shader
programming tools, known as Rendermonkey and FX Composer by ATI and
Nvidia respectively [22] [14]. Both of these tools are so called IDE’s, Integrated
Developer Environments, used to aid programmers with their projects. While
this is different from a shader graph tool, that aim towards helping non pro-
grammers to create shaders, both of these tools exist to enhance workflow in
shader creation which makes a brief description relevant.

In Rendermonkey and FX Composer the user has direct access to the code in
the effect file. Whenever the user changes something in the code, it has to re-
compiled to see the result of the change. Besides access to manipulate the code
directly, the IDE supplies an interface for easy manipulation of the variables
of the effect. The user can inspect the result of changing the variables in the
preview window, that is basically a real-time rendering of an object with the
created shader applied to it. Both tools has great text editors with syntax high-
lighting and numerous examples to give inspiration to the user. They also have
some debugging functionality, as it is possible to inspect render texture targets,
jump to lines with errors and so on. FX Composer from Nvidia supports only
HLSL where Rendermonkey also supports GLSL. FX Composer ships with more
additional tools for analysis and optimization of the code though. Both tools
support the Effect File format from Microsoft (.fx) for outputting shaders.

Compared to the shader graph tools discussed in this thesis, both Rendermon-
key and FX Composer requires the user to understand every aspect of shader
programming, in order to develop new shaders. It would be possible for an
artist, or other non programmer, to experiment with existing shaders though,
especially in Rendermonkey that has an artist view, where the complexity of
the code is not visible. We believe that there is enough room for both shader
graph tools and IDE tools in modern shader programming. For example a non
programmer could author a shader in the graphical tool, and it could then be
tweaked by a programmer using the IDE.

2.4 Industrial Work in Shader Graphs

In the past couple of years, there has been a few examples of shader graph tools
in the industry. These are all commercial products, that it were not possible to
obtain a copy of. Therefore we have not been able to evaluate them ourselves for
this thesis. The following discussion of these products are based on second hand
information, plus videos and other materials found on the products web-pages.

One of the most well known tools in the industry, is the material editor from
Unreal Engine 3. As the editor in Unreal engine 3 is a tool for an existing
game engine, materials created with their editor combines seamlessly with their
engine, supporting shadows and different light types directly. We were not able
to find documentation that said how this were handled though. Their tool is
focused on creating material effects, much like the ones found in the content
creation tools. Pre-made material nodes are available to the user. These nodes
has a number of input slots, such as diffuse color, specular power, surface normal
and so on. The user can connect the other nodes to these slots, to generate a
custom effect like a parallax shader [18]. The material node has a small preview,
that shows how this particular effect renders. It is possible to choose between
a number of few primitives for this preview, but as far as we know it is not
possible to see the result on in-game geometry, without testing it in the game.
We were unable to find out if Unreal engines material editor supports grouping
several nodes into one group node, or which format they use for the effect file. A
reasonable guess would be that they use .fx and the high level shading language
(hlsl). Other nodes can also have a preview field. Texture nodes displays the
full texture, while other nodes may display information relevant for them. From
second hand sources, we have learned that the editor ships with many different
nodes, both higher level material nodes, but also low level nodes that contains
a single instruction, such as an ”add” node.

RT/shader Ginza is one of the most advanced shader graphs in the industry so
far [32]. The shader graph tool features render to texture, assembling multiple
nodes in templates, high/low abstraction level and advanced lighting models.
As with the previous tools, the user creates graphs by setting up connections
between individual slots in nodes. Ginza ships with the most common nodes,
such as material nodes, texture nodes and so on. Whether it is possible to use
the Ginza SDK to create custom nodes, were not clear from the sparse docu-
mentation we were able to find. Ginza is a stand alone product, that can be
used to generate shaders in an easy way. Using those shaders in a third party
game engine, is up to the individual user to support though. According to the
Ginza developers, it can require some effort, to make the shaders created with
Ginza work in game engines. Further more, supporting shadows and different
light types, requires the user to create multiple versions of the shader (at best),
or depending on the engine used it may be impossible. The documentation we
were able to obtain, does not clarify how types are distinguished nor how trans-
formation between different spaces are handled. It is also questionable if Ginza
supports more than one pass, or has a nice interface for setting up blending
and other state variables, as this were not demonstrated in the documentation.
Ginza were originally sold from the RT/Shader web-page, but all information
from the company has disappeared, and their support team does not respond
to our requests.

Yet another shader graph application is Shaderworks 3d [7]. Like Ginza Shader-
works is primarily a stand alone tool, but they did feature a SDK for integrating
the Shaderworks shaders with real-time engines. Unfortunately we did not have
a chance to evaluate Shaderworks, because it had been acquired by Activision
by the time we started this project. By reading the documentation left online,
and studying the screenshots, we were able to obtain some information though.
Unlike the other products discussed, Shaderworks uses a color coding scheme to
define the variable type of the connection slots. Each different type is coded in
a different color, and we assume that it is therefore not possible to connect two
slots of different type. Conversion between different spaces is not mentioned, so
we assume that this would have to be set up by the user. The documentation
also does not say anything about the ability to group multiple nodes together,
which could be useful to make custom shader blocks, which could then be reused
in other projects. The output of Shaderworks is a MS .FX file, so Shaderworks
should be able to handle rendering states and multi passing, but these features
were not discussed on the feature list though. Integrating the exported .FX file
can be done with an integration SDK, which uses callback methods to handle
constant value, texture and mesh updating. The documentation for the SDK
does not explicitly discuss integrating these materials with shadows and differ-
ent light types, and as shadows are not discussed in any of the Shaderworks
documentation, nor visible in any of the screenshots, we assume that this is not

possible.

2.5 Academic Work in Shader Graphs

The most original work on representing shaders using graphs, were presented in
the Siggraph 1984 paper by Cook [10]. Cooks paper discussed building shaders
based on three different types; shade trees, light trees and atmosphere trees. Dif-
ferentiating between shader types were later adopted by the Renderman API,
as discussed earlier in this chapter. In Cook [10] shaders were described in a
custom language, which used build-in functions as nodes, and supported the
most common mathematical statements to connect these nodes. Custom key-
words such as normal, location and final color were used when compiling the
shader tree, to structure the tree and link with geometrical input. Using dif-
ferent spaces, such as eye or world space, were supported. The paper does not
clarify if any automated approach to convert between spaces were supported.
The original work by Cook were very much ground level research. The custom
made language were aimed at programmers, and therefore there were no au-
tomatic detection of type mismatches or a GUI interface. The work also did
not discuss real-time issues and optimizations, as this were not so relevant at
the time. The paper did describe how many interesting material effects could
be authored using shade trees though, and also how shadows in the form of a
light-map could be used.

Building on top of Cooks paper, Abram et al. described an implementation
featuring both a GUI interface, as well as a low level interface [2]. Their pa-
per primarily discusses the practical issues regarding implementing Cooks shade
trees, with a main focus on the user interface. Their primary contribution, a GUI
interface for shader creation, featured type checking, click and drag functional-
ity and a preview field. Using their implementation users can visually author
shaders in an easy way. They do only discuss the creation of raw shader files
though, and not how they can be used in game engines or other software. They
also does not discuss how to match variables of different type, which could be
done through swizzeling or automatically inserting type converters. Converting
between different spaces are not discussed, and ways to combine with shadow
or lighting calculations in a generic way were not mentioned.

The 2004 paper by Goetz et al. [20] also discussed the implementation of a
shader graph tool. Their tool was geared towards web graphics, and stored the
resulting shaders in XML files instead of an effect file. The implementation

supports functionality such as swizzeling, setting OpenGL state and grouping
multiple nodes in a diagram node. They check for type mismatching but does
not try to correct those errors automatically. Their implementation seems to be
geared towards programmers, as it displays variable types in the editor, does not
assist in converting between spaces and their nodes have very technical names
and appearances such as ”Calculate I N”, and it is therefore doubtful if this
tool can be used by non-programmers. The paper does not discuss how the
outputted XML files can be integrated into a real-time engine, and therefore
integration with lighting and shadowing is not discussed.

The latest shader graph system is discussed in McGuire et al.[24]. The approach
discussed is very abstract, as the purpose of this tool was to hide all program-
ming relevant information. In their system the user indicates the data-flow
between the nodes, using only a single connection arrow. This is different from
the previous work, as these relied on the user to connect specific output slots to
specific input slots. To generate the shader file, McGuire et al. used a weaver
algorithm that were based on custom semantic types. These types abstract
out dimensionality and types such as vector/normal/point, precision, basis and
length. Using the flow indications set up by the user, the weaver connects the
individual nodes by linking the variables in two nodes that has the best match.
This weaver automatically handles basis transformation and type conversions,
by finding a predefined conversion in a lookup table, based on two slightly dif-
ferent types. In order not to connect very different variables, a threshold for this
lookup were implemented. Further more their implementation detected and dis-
played individual features in the authored shader. The shader trees generated
with this tool is very compact compared to several previous tools. It can be a lit-
tle difficult to understand the tree though, as only a single connection between
two nodes are displayed. It is therefore not possible to see or control details
about which variables that are connected to where, or even which variables a
certain node has. We obtained a copy of their final product for evaluation, and
found that it were very difficult to understand what was going on behind the
scenes. As variables are automatically linked, it is important that the user has a
good understanding of each individual node, so correct flow dependencies can be
set up. Furthermore it is very difficult to debug a shader created with this tool,
as you do not know what gets linked to what, if anything is converted and so on.

The output of the weaver is a GLSL shader program. The paper does not dis-
cuss how this program can be integrated with engine dependent lighting and
shadows. Their implementation also does not support grouping multiple nodes,
nor having a preview field in each individual node, which could help solve some
of the debugging problems. Further more it requires a programmer with deep
graphics understanding to create new nodes, as these should use their custom

semantic types in order to be linked correctly by the weaver.

Chapter 3

Background theory

In this chapter we will discuss the theory that forms the background for our
project. In this thesis we discuss the creation of shaders, that can be used to
create realistic material effects, which should render in real-time. It is there-
fore important to have a basic understanding of what causes the appearance
of materials, which we will give here. Besides the material theory, we also use
elements of graph theory and compiler design theory in this thesis. These will
be discussed here as well, along with the considerations one must make when
generating programs for a GPU.

3.1 Material theory

When describing materials there are many different variables to take into ac-
count. Which variables that are the most relevant depend on what the applica-
tion is, for example a construction engineer would like to know how the durance
a certain material is, while a physicist might be more interested in the electro-
magnetic properties. Computer graphics researchers are usually more interested
in how the material reflects light, and they wish to develop functions that express
this reflectance. Those functions are called BRDF’s or Bidirectional Reflectance
Distribution Functions, which we will discuss more in the following. We will es-
pecially discuss the Blinn-Phong BRDF model, which is used in almost every

real-time rendering application. But as more power-full graphics cards has be-
gun to appear, the more advanced BRDF’s has also started to appear in state
of the art render engines. We will therefore also discuss the key components
of those models briefly. Other relevant characteristics of materials, such as the
Fresnel effect, anisotropic reflections and so on, will also be discussed later in
this section.

In order to find the amount of reflected light from a surface, one must use the
reflection formula as given below. Here the formula is presented in a ray manner,
instead of the integral equation that is otherwise often used. We do this because
we feel that the form presented here, is more relevant for real-time graphics.

Ir(x, r) = fr(r, i)Ii cos(Θ)

Where Ir is the intensity of the reflected light. fr(r, i) is the BRDF and Ii is
the intensity of the incoming light. The vectors are shown in figure 3.1, and x

is the position currently shaded. Θ is the incident angle of the light ray, and
the cosine term is known as lambert’s cosine law.

3.1.1 BRDF’s in real-time graphics

A BRDF is a mathematical function that express the reflection of light at the
surface of a material. BRFD functions can be determined in different ways,
either by measuring real materials, synthesizing the brdf using photon mapping
and spherical harmonics, or by making an analytical model. Measured and
synthesized BRDFs are not commonly used in real-time computer graphics,
probably due to their large data sets. In real-time graphics an empirical BRDF
is often used instead. An empirical (or analytical) BRDF is an analytic function,
which describes how light is reflected of a surface. This formula is usually based
on observations in nature, and tries to recreate a natural appearance using more
or less optically correct calculations. In the case of a diffuse material, the BRDF
will be a constant value, as diffuse materials radiate equally in all directions.
More info can be found in Watt [37]. The formulation is given by:

fr(r, i) =
kd

π

kd is the diffuse reflection constant of the surface. The value 1
π

is necessary
in order of ensuring energy conservation in the BRDF. Energy conservation is

one of two properties that any BRDF must obey. The other property is that
it should be bi-directional, which means that the function should give the same
result, if the light direction and the viewing direction were swapped. The result
of the diffuse BRDF does not depend on the direction of the light or reflected
direction, as it is just a constant value. This is not the case for specular materials
though, as the specular intensity depend on the angle between the viewer and
the reflected light vector. Figure 3.1 illustrates the vectors graphically.i n r vθ i θ iL i g h t C a m e r a

Figure 3.1: Vectors used in lighting calculations.

When talking about BRDF’s for real-time graphics, one cannot avoid mentioning
the work of Phong [30], as his work in many ways pioneered real-time shading
in computer graphics. In the original Phong model, the specular contribution
is calculated as the cosine between the reflected light vector, and the viewing
vector. This requires that the reflected light vector is recalculated for every
vertex or fragment being shaded though, which has made this model less used in
real-time graphics, as reflectance calculations are somewhat expensive on older
graphics cards. Instead most applications, including OpenGL and DirectX, are
using the Blinn-Phong BRDF. This model were developed by Blinn [8] a couple
of years after Phong presented his work. It relies heavily on the original work
of Phong, but instead of using the reflected light vector, the half angle vector
is used, which is the vector that lies between the light and viewing vector. The
normalized half angle vector is calculated as:

h =
i + v

|i + v|

The half angle vector is then dotted with the normal vector, and raised to the
exponent given by the shininess value (cl), to give the specular contribution:

s = (h · n)cl

The full Blinn-Phong BRDF can then be written as:

fr(r, i) =
1

π
kd + ks

s

i · n

Where kd and ks is the diffuse and specular constants respectively. Vectors r,
n and i are illustrated in 3.1. If we put that into the reflectance formula and
add an ambient term, then we will see that the result is the same as the one
presented in [8].

i = ka +
1

π
kdmax(0,n · i) + kss

Where max(0,n · i) illustrates that only the positive amount of the diffuse con-
tribution should be used, and ka is the amount of constant ambient light.

3.1.2 Advanced BRDF’s

Measurements carried out by Torrance and Sparrow [34], has indicated that
the position of the specular peak calculated by the Blinn-Phong model, is not
entirely accurate for many types of materials. This is because many materials
such as metals is not smooth at a microscopic level. This means that more
advanced calculations must be employed when finding the specular highlight,
as the incoming light will be masked or in other ways interact with these micro
facets. Previous work by Blinn [8] and also Cook and Torrance [9], has used the
measurements from Torrance and Sparrow [34], to develop a more sophisticated
reflectance model which takes these micro facets into account. This model is
called the Torrance-Sparrow (or Cook-Torrance) model. The model use three
main components to calculate the specular contribution, namely the distribution
function of the directions of the micro facets, the amount of light that is masked
and shadowed by the facets and the Fresnel reflection law (discussed later). The
model gives a more realistic appearance of metals than the Blinn-Phong model,
as the highlight were better positioned, and the color of the highlight were not
always white as in the original Blinn-Phong model.

Most of the more advanced BRDF’s that has been developed, is also based on
the theory of micro facets. Two well known models are the diffuse Oren-Nayar
model [27] and the specular model by Ward [36]. In the Oren-Nayar model,
the diffuse calculation is based on the micro facets, which results in a more flat
impression of the reflected light. The model simulates that a high amount of
the light is reflected directly back to the viewer, which makes it rather view
dependent. It does yield some better results for materials such as clay and dirt
though. The Ward model exists in both a isotropic and an anisotropic version.

In the isotropic version the specular highlight is found using a single roughness
value, while the anisotropic version requires two roughness values. Using the
anisotropic version it is possible to get non circular highlights, which can be
used to give a more realistic appearance of materials such as brushed steel.

3.1.3 Advanced Material Properties

When rendering glass or other transparent materials, it is no longer enough to
shade the object using only a BRDF. As the object is see-through, it is impor-
tant that the shading also show what is behind the object. This can be done
in two different ways in real-time graphics. The old fashioned way is to set a
transparency factor, and then alpha blend these objects with the background.
This will look acceptable for thin transparent objects such as windows, but not
for thicker objects, as the view through materials such as glass should actually
be distorted. The distortion can be found using snell’s law, which can be used
to calculate the angle the ray will have inside a material. Functions for finding
reflected and refracted vectors are implemented in most high level shading lan-
guages, and are discussed in [15].

Having found the refracted angle, it is possible to find the refracted vector.
This vector can then be used to sample an environment map, which will give
the correct distorted appearance. Shading a glass surface with only lighting
and the refracted contribution, will not make the glass look correct though.
The reflected contribution needs to be included too, as the glass surface also
reflects light, which adds a reflective look to the material. The reflected vector
can be found using the formula given above, and then an environment map can
be sampled to find the reflected contribution. One problem remains though,
namely to find the amount of reflected contra refracted light at a given point.
This relation can be found using the Fresnel formula, which is discussed in
several physics and computer graphics books such as Glassner’s book [19]. The
relation between reflected and refracted vectors and the Fresnel equation is
demonstrated in figure 3.2.

Remember that the Fresnel formula were also used in the calculations of the
highlight in the Torrance-Sparrow model. In their model they calculated the
amount of reflected light, and scaled the highlight with this value, so the Fresnel
formulas are used for other applications than transparency too. In fact both
Snell’s law and the Fresnel formula is often used in real-time graphics, to give
accurate light reflections of the environment in materials. The Fresnel factor
is often pre-calculated and put into a texture though, as the calculations are

i n r
t t r t r t

t t

N o r m a l R e fl e c t e d V e c t o r sI n c o m m i n g L i g h t

R e f r a c t e d V e c t o r s
n a i rn g l a s sn a i r

Figure 3.2: This figure demonstrates light reflecting and refracting in glass. nair

and nglass are the refractive indices of air and glass. The intensity of the re-
flected/refracted rays can be found by multiplying the intensity of the incomming
light with the t and r values, where r is the Fresnel reflection value, and t is
one minus the Fresnel reflection vaule.

somewhat expensive.

3.2 Compiler Technology

A compiler is a program (or collection of programs), which translates source
code into executable programs. Designing and implementing compilers is a very
large task, and thus there has been a lot of research on this topic. One of the
most recognized books on the topic, which we also have consulted when writing
this thesis, is known as the dragon book [3]. It is not the scope of this thesis
to give a thorough generalized analysis of compilers though, but as compiler
technology is relevant for the project, we will give a brief description of how
compilers work here. A standard compiler is often divided into two main parts,
the front end and the back end. Those two parts often contain the following
phases:

• Compiler Front End:

- Preprocessing.

- Lexical analysis.

- Syntax analysis.

- Semantic analysis.

In the preprocessing step the code is being prepared for analysis steps. This step
can include substituting macro blocks, or possibly handle line reconstruction in
order to make the code parseable. The lexical analysis step breaks the code into
small tokens, and the sequence of these tokens are then syntax verified in the
syntax analysis phase. Finally the code is checked for semantic errors, which
means checking that the code obeys the rules of the programming language.
When the code has been broken down to tokens, and has been checked for syntax
and semantic errors, the compiler back end is ready to perform optimizations
and generate the executable code.

• Compiler Back End:

- Compiler analysis.

- Optimization.

- Code Generation.

In the analysis step of the back end, the code is analyzed further in order to
identify possible optimizations. This analysis can include dependencies analysis
and checking if defined variables are actually used. The analysis step is the basis
for the optimization step, and these two steps are tightly bound together. In the
optimization step varying code transformations are applied, which results in a
more optimal representation of the code. The optimization step is very different
from compiler to compiler though, and often depends on user settings for which
things to optimize. An aggressive optimizer will apply code transformations
that removes all the code that is not relevant for the final result. The optimizer
may also perform loop optimizations, register allocation and much more. The
resulting code after the optimization step is identical in functionality with the
un-optimized code, but it will take up less storage, run faster or in other ways
have a more optimal representation. This optimized code is then put through
the code generator, which generates an executable program that will run on the
target platform.

3.3 Directed Acyclic Graph

A Directed Acyclic Graph (DAG) is a directed graph with no vertex that starts
and ends at the same vertex, as defined by the national institute of standards and
technology [26]. In plane english that means a structure where nodes (vertices)
are connected in a tree like structure, where no loops can occur. The connections
are further more directed, usually from the root node and down the graph, as
illustrated in figure 3.3.

n o d e
n o d e n o d e

n o d e n o d e
n o d e R o o t

n o d e

Figure 3.3: An example of a Directed Acyclic Graph

DAG’s are usually used in applications, where it does not make sense that a
node would connect to itself. A shader graph application is precisely such an
application, as a cycle in the graph would yield a dependency where evaluating
a node would depend on the value of the node. This is obviously not desirable,
and would most likely lead to problems in the generated source code. Besides
shader graph applications, DAG’s are also used in compiler generated parse trees
and scene graphs, as well as other applications where cycles are not desirable.

3.4 GPU Programming

During the last years, the graphics cards processors (GPU’s) has evolved with
magnificent speed. They have surpassed Moore’s law, and are actually more
than doubling their speed each year. Further more new functionalities are being
added with in the same pace, which requires the GPU programmer to spend a

lot of time investigating the functionalities of GPU’s. This should be combined
with the fact that debugging GPU programs is very difficult, the memory and
architecture is different from normal system programming and graphics cards
drivers does have bugs that can be difficult to track down. All of this means
that GPU programming is not very accessible for normal programmers, and a
substantial amount of time and experience is required to master the skills of
GPU programming.

Knowledge about the GPU’s functionality and capability is essential for our
project, so in this section we will discuss these issues, as well as the chips basic
architecture. We will also discuss the special concerns that should be taken
when creating programs for GPU’s. The resource used for writing this chapter
were the developer pages of ATI and Nvidia, and especially the GPU related
papers found there [21] [25].

3.4.1 GPU History and Architecture

Ever since GPU’s became programmable, there has been gradual increases in
the programmability with each new series of GPU’s. In the beginning low level
assembly languages were used to create custom vertex and fragment programs,
but the GPU’s only supported 16 instructions in such a program. This were
enough to create bump-map shaders with pr. pixel lighting though, which gave
a huge boost to the visual quality for games. Later GPU’s supported a more
accessible High Level Programming Language (like Cg, HLSL and GLSL), and
up to 96 instructions in the fragment program, which became known as Shader
Model 2.0 compliant cards. The first games to use these technologies were Far
Cry and Doom 3. The latest generation of graphics cards supports Shader Model
3.0, which allows thousands of instructions in both the vertex and fragment pro-
grams and dynamic branching and texture sampling in the vertex program. In
this thesis the primary focus is on generating shader model 2.0 compliant shader
code, but it should be straight forward to expand to shader model 3.0, at least
for the vast majority of the new functionalities. Further information about the
architecture and capabilities of different graphics cards, can be found on the
manufactures home pages.

Common for all current and previous generation GPU’s is, that they are highly
parallel stream processors. A GPU has a number of vertex and fragment
pipelines, depending on the model. On programmable GPU’s each pipeline
executes the corresponding vertex or fragment program, which implements the
desired functionality. This program will be static for an object, which means

that all the vertices and fragments of that object, will be subjected to the same
vertex and/or fragment program when rendering it. This is typical for graph-
ics applications, where e.g. you would like to have each vertex subjected to
the same view frustrum transformations, or calculate the same lighting for each
pixel. As the number of pipelines increase (typically with newer GPU’s), it
will be possible to perform more calculations at the same time, because these
pipelines work in parallel, and share the same memory, which typically holds
the textures and vertex information. If the multiple objects should be rendered
with different programs, it is necessary to bind the new shaders to the graph-
ics hardware before rendering those objects. The binding is usually very fast
though, so it is generally not a problem to use many different programs when
rendering.

Another important feature of GPUs is that they have hardware support for
vector and matrix types. This support is used in common operations such as dot
products, which is implemented as a single instruction in the GPU. Compared
to the CPU which does not have hardware support for this types, this makes the
GPU a far more effective arithmetic processor, which is important for computer
graphics, as most graphics calculations are done in 3D using these instructions.

3.4.2 Vertex vs. Fragment Programs

One of the most important issues in GPU Programming is the difference be-
tween the vertex and fragment programs. In graphics the vertex programs are
usually used to perform the calculations, that can be interpolated linearly over
a vertex, in order to save computations in the fragment program. This could be
lighting vector, and viewing vector calculations. But more generally the vertex
program are able to transform the position of a vertex, thereby altering the final
position of the vertex. This can be used to calculate skinning in animations, or
add pr. vertex noise, to make an object become deformed. It also indicates one
of the main features that the vertex program can do, namely to scatter infor-
mation into the scene. This is in contrast to the functionality of the fragment
program, that are not able to displace a fragment. The only thing a fragment
program can do is to calculate the final color (and depth) of the actual fragment.
But the fragment program can read information from other fragments, if this
information is stored in a texture. This enables the fragment program to gather
information from surroundings in the scene, compared to the vertex program.
which can only read a minimal amount of constant memory (if vertex texture
reads are disregarded).

Often vectors and other values that can be interpolated linearly, are calculated
in the fragment program. They should be used in the fragment program though,
where the lighting calculations for pr. fragment lighting takes place. This intro-
duces the problem of transferring the variables from the vertex to the fragment
program. In the Cg language the transfer is done by binding the variable to one
of eight texture coordinates slots, in which case they are interpolated so they are
defined for each fragment on the screen, and not just at the vertex positions. It
is common to build a structure holding the variables that should be transfered.
In the remainder of this thesis we will call this the vertex to fragment structure.

1 0 2 4
7 6 8123 4 5678 9 R e n d e r e d I m a g e

Figure 3.4: When an object is shaded by a vertex shader, the vertex program will
only excecute one time for each vertex, which is nine times in this case. When
it is shaded in a fragment shader, the fragment program will execute one time
for each pixel the object fills up on the screen, which is more than 400.000 times
in the above case, if we assume the object takes up 60% of the image.

In GPU programming it is generally a good idea to place as many calculations
in the vertex program as possible. This is because there are almost always
far fewer vertices in a scene, than fragments in the final output image. A
reasonable amount of vertices to expect is 15.000 - 20.000, while a common
lowest resolution for games are 1024x768 ≈ 800.000 fragments. See figure 3.4 for
an illustration of this. A common example of this argument is to place the object
to tangent space transformations in the vertex shader, when calculating tangent
space bump mapping. The transformation is a matrix multiplication that is
unrolled to 3 dot products by the compiler, giving 6-9 additional instructions if
2-3 transformations are to be made. It can give substantially extra performance
to move these calculations to the vertex program.

Chapter 4

Requirement Specification

The primary goal of the project discussed in this thesis, is to create a shader
graph editor, that will enable non programmers to create custom shaders for
their applications. The tool should behave somewhat similarly to the ones dis-
cussed in Chapter 2, we have tried to pick out the good ideas of their tools, and
added new functionalities which should make this tool even bette. The following
paragraph gives an overview of the editor created in our project.

The user of our product will be able to generate shaders by connecting the
different nodes shipped with the system. If new nodes are required, it will be
possible to implement those by using a simple interface. Measures are taken to
keep the product and resulting shader type safe, and to aid the user in convert-
ing between geometrical spaces. Our nodes can display a preview field, which
shows the result of the subgraph from the node. This will aid the user to debug
complex graphs, as it will be possible to see where a problem arises. Later in
this chapter we will discuss the requirements of our shader graph editor, which
should shine some more light over its functionalities.

Early on we decided to integrate our work very closely with Unity. There were
several reasons why we made this decision. The most important issue was work-
flow. Integrating the shader graph editor with Unity, would allow the user to

work on shaders in the final scene, without the hassle of having to importing
them from an external application. Working on the actual scene geometry when
creating the shaders, gives the user possibilities to better obtain the desired look,
without shifting back and forth between applications. Another very important
issue is the integration with shadows and different light types. As light atten-
uation is based on the type of the light source (point, spot, directional), this
information must be available for the fragment program to calculate correct at-
tenuation , which can make it difficult to use a third party application to create
a shader. We will talk about that in greater detail in Chapter 6. The main
issue in integrating with Unity, is that we will have to get familiarized with the
rather complex code-base of Unity, to be able to perform the integration. It has
taken about four years to develop Unity, and the product consists of more than
a million lines of code, so it should be expected to use a fair amount of time
to understand the code we will need to update. The fact that this project is
carried out in collaboration with the company behind Unity, is of significant im-
portance, as it will be possible to obtain first hand support from their developers.

The requirement specification given by this chapter does not contain a thorough
listing of all the functional and non-functional requirements, which will be im-
plemented in the final product, as most of these features are obvious in a system
of this type. We focus on defining the target user group, discuss the constraints
and give a description of the most important functional and non functional re-
quirements. Finally we identify a couple of issues, and discuss precautions that
should be taken to avoid that they cause problems in the future.

4.1 Target User Group

As we have chosen to integrate our shader graph tool into Unity, the target
user group is the same as that of Unity, which is a very diverse group. Unity is
primarily targeted towards indie game developers, creating webbased or casual
games. The ease of use combined with the possibility for creating high quality
applications, also appeals to people doing architectural visualization, and to
educational use in both high-schools, design schools and primary schools. While
this is a very diverse user group, they do share some similarities, namely that the
user group is most likely a single person or a small team. This means that the
user must have a very broad knowledge about the game development, knowing
how to script behaviors, create shaders and possibly also do the artwork. This
kind of user can be expected to know basic scripting, and to me familiar with
graphics expressions such as normal maps, alpha blending and so on. It is
unlikely though that this type of user is able to program shaders, as this requires

a deeper intimate knowledge about the underlying graphics hardware. This fact
has been proven by the Unity community, that has generally been able to create
great casual games, which only used the shaders which shipped with Unity. Very
few users has created shaders in the one year Unity has been on the marked.
The work presented in this thesis, aims towards enabling this user group to
create custom shader effects for their games.

4.2 Constraints

The primary constrain for this project is the integration into Unity. The inte-
gration means that we should strive towards using features already implemented
whenever possible. If a feature that we need is not present in the engine, we
should try to implement it in a generic way, so this feature would be of overall
benefit to the engine. To uphold backwards compatibility, we are also required
to use the effect file language (shaderlab) and shading language (cg) that were
already used in Unity.

The primary goal for our implementation, is to produce a shader creation tool
that is highly accessible, that people with little or no experience in shader pro-
gramming can use. Therefore the accessibility also constrains the design, as
certain features that enhances flexibility will be disregarded if they compromise
the ease of use.

The implementation will need good text rendering, something Unity does not
currently have. Therefore a method to render true type fonts on the screen, in
a pr. pixel correct manner, will have to be created. The open-source library
Freetype should be used for handling true type fonts, and a generic system for
rendering the text should be made [17].

The main programming language of the project will be C#. This choice is
made because C# is a powerful but yet accessible language, which has many
functionalities that will aid the implementation. Most of the work will be done
inside Unity using C#, which will also avoid long compilation and linking times,
which is otherwise inevitable if changing the base code of Unity. Some changes
to the base code of Unity will be needed for the integration though. These
changes will be implemented in C++ and Objective C where relevant.

4.3 Functional Requirements

A preview rendering should be created in relevant nodes, which shows how the
subgraph would be rendered. This functionality can function as a debugging
method, as it will be easier for the user to identify where an error occurs.

Converting between different mathematical spaces (object space, world space,
eye space, tangent space) should be done automatically. Most of the users in
our identified user group, will find it difficult to know when to use which space,
which could cause problems with for example normal mapping. Therefore the
application should abstract these spaces out, and handle the conversion auto-
matically.

It should not be possible to make connections between different slot types, un-
less connecting from a floating point value. Color codes should be used for easy
identification of the different types. The argument for this is that it is that
an connection between a two dimensional vector and a 3 dimensional vector
does not make sense. An automatic conversion could be made, but it is impos-
sible to know if this conversion is what the user actually wants. Disallowing
the connection forces the user to think about what she wants with this connec-
tion, and use appropriate swizzeling to set it up. Connection a floating point
to a vector of higher than one dimension is allowed though, as it is rather ex-
plicit that the user wishes to expand the floating point to the vectors dimension.

Swizzeling should be supported. Swizzeling is the most sensible way to allow
a user to modify the dimensionality of vectors, and to extract specific channels
from a vector or matrix. These are features that are often used, so it is impor-
tant to support them.

The created shaders should support shadows, different light types and possibly
other engine specific features.

Both the vertex processing and fragment processing part should be a part of
the tool, so the user can create shader graphs that does modifications at both
of these two stages in the graphics pipeline.

Creation of new nodes for the graph should be possible, through a simple node

interface, or by grouping several nodes into one group node.

The user shall be able to setup specific OpenGL rendering states, e.g. to sup-
port transparency, turn off culling etc.

The system must be integrated with the Unity Game Engine.

4.4 Non-Functional Requirements

Look and Feel: The GUI should be reasonably nice to look at. Most Mac users
expects a certain look for a GUI, for example in respect to the use of trans-
parency, that we would like to have. Further more the user group is mainly
creative people, so the GUI should stimulate their creative thoughts whenever
possible. The GUI will be designed so that it is similar to the content creation
tools, as most of the users can be expected to have some familiarity with those
applications.

Usability: Usability is the primary concern in this project. The interface should
be simple to use, so names and conventions should be chosen to match those
the user is expected to know. The product should be easy to use for a user
who knows basic computer graphics terms, and has a basic knowledge of what
a shader is and how it works. Requirements from programming such as variable
types and different mathematical spaces should be abstract, so users with no
knowledge about these concepts still are able to use the tool.

Performance: The created shaders should perform as optimal as possible, and
match the performance of hand coded shaders. The design must consider ways
to optimize the generated shader code. The GUI interface should be interac-
tive, but high performance is not as important. Performance of both GUI and
generated shaders should scale nicely, so it is possible to create both simple and
more complex shaders which performs optimally.

Maintainability: It is important that the product is very maintainable, and easy
to extent with new additions, especially because it can not be expected that the
original developer (the author) will be available to maintain the product in the

future. To accommodate this, frequent code revisions will be held with the lead
programmer of Unity, to give him an imitite knowledge of the work done. Key
components of the code should further more be as simple and extensible as pos-
sible.

4.5 Identified Issues

Issue 1: The integration with Unity, as it is a complex piece of software, so it
will require some time to understand how to make the best possible integration.
We feel that the integration is so important that the extra time and effort will
have to be spend nontheless.

Issue 2: GLSL would be a better long term high level shading language to use,
as it performs better on ATI hardware, and shader model 3 could be difficult to
use with Cg on non-nvidia hardware. Therefore care must be taken to support
a future transition to GLSL.

Chapter 5

Design Considerations

In the previous chapter the requirements of our project were specified. We will
now discuss how to design a system that will meet those specifications, focusing
on ease of use and extendability. We found that this design process was very
important, in order to ensure that the final product was maintainable and ex-
tendable, which is why a substantial amount of time was used on design related
issues. The design related issues were discussed with the lead and graphics pro-
grammers of OTEE, in order to come up with the best possible solution. In
this chapter we begin with a discussion, of the individual parts in the system.
We start by describing the design of the GUI system, which is responsible for
the look and feel of the application. Then we discuss the components needed in
each individual node, which leads into a discussion of the connector slots that
handles connections between nodes. We then discuss how our group function-
ality should be created, and finally we discuss the design of the compiler that
generates the actual shader, and the new processing system we will introduce
to bind these shaders in the engine.

This chapter intents to discuss the design considerations we had early in the
project, so therefore it is mainly conceptual ideas that we discuss here. In the
next chapter we will go into details regarding the actual implementation of the
system, based on the concepts presented here.

5.1 GUI design

One of the first things we realized when designing our editor, was that we needed
a nice GUI interface, that would feel comfortable for the user to work with. Tra-
ditionally the GUI design is very important in Mac products, so we did not want
our GUI to be too primitive, which is otherwise the common rule for academic
work. The most important aspect of the GUI, was to make it functional. We
estimated that the most frequent operation made by an user, would be to con-
nect two slots in the graph. We therefore wanted to support a certain degree
of snapping, which means that even if the user does not precisely click the slot,
the system will guess that the user wanted to perform an operation on this slot.
We further more decided to use distinct colors for the different slots, based on
the variable type that represents, such as red for colors and so on. This is illus-
trated in figure 5.1. When setting up a connection between two nodes, the user
should drag a wire from an output slot to an input slot. We will only support
handling connections in this way, and it will therefore not be possible to setup
a connection by dragging from the input to the output slots. This is actually
meant as a help to the users, as it matches the left to right way most people read
and do things. It would also give some simplifications to the implementation,
if we only support the one direction of making connections. Should the user
wish to remove a connection, then this is done by ”picking up” the connection
at the input slot, and then reassigning it to another input slot, or dropping it
elsewhere, which will remove the connection. Connections between two slots
will be shown as a bezier curve of the same color as the input slot.

The slots should also be named, which caused an issue with input and output
slots lying directly opposite of each other. We therefore decided to keep all the
input slots in the top of the node, then we would have the output slots below
them, and if the preview field is active that would be rendered in the bottom.
The initial design considerations for the nodes, let to the schematic drawing
shown in figure 5.1.

As the maximized node would take up a lot of screen space, we found that it
were necessary to have different window modes, which would enable the user
to minimize the size of the node. We therefore decided to make three different
window types, which are discussed below.

Minimized: When a node is minimized, only the title-bar of the node should
be seen. Connections to and from the node should lead directly to the
side of the title-bar.

Normal: In the normal view all slots should be visible, but the preview field is

hidden.

Maximized: Maximized nodes shows all of the input and output slots, along
with a preview of the subgraph, which is rendered in the bottom of the
node.M a x i m i z e d N o d e N o r m a l N o d e M i n i m i z e d N o d eI n p u tO u t p u t I n p u tO u t p u t

Figure 5.1: Initial design ideas for the individual window modes of the nodes.

Besides showing the nodes on the screen, we also need a way to move them
around. This should be done by dragging the node in the title bar. We also
decided that is should be possible to make multi selections, by marking several
nodes with a selection rectangle.

Finally we need to be able to handle the group nodes (group nodes are discussed
in detail later). We decided that the user should be able to enter a group
node, which would yield a new view containing the grouped nodes. We choose
this approach of entering the group nodes, because we want them to be used
for creating overview in the graph. If the group nodes were rendered with
information about the nodes they contain, they would probably still be large
and confusing to have in the graph. Instead the user may double click the group
node to enter it and view its contents. In order to navigate back to the original
shader graph, we will then render the path in the top left corner of the view.
This path will start with the shader graphs name, and then print the name of
any entered group nodes recursively. Clicking on a name in the graph, will bring
the user to that level in the graph. We will further more color the shader graph
name either green, yellow or red, depending on whether the created shader runs
fast on all hardware, runs on all hardware but maybe slow, or red if it can not
be guaranteed that this shader runs on all vertex and fragment program capable
graphics cards. This is meant as a help to the user, which indicates how the
shader is expected to work on other machines. Should a shader not work on
any system, then that will become apparent as Unity will print a sensible error
message that says what went wrong.

5.2 Node Design

As previously discussed, we found it very important to keep the individual nodes
as simple as possible. This is important as people might wish to expand the
system with custom nodes, and then a simple and understandable framework
for the nodes is necessary. It seems like a obvious choice to create a parent
class, which holds the common functions a node should possess. We identified
the following functionalities:

- Shader Code Containers (discussed in next section).

- Variables for the rendering mode, if the node should have a preview, be
minimized or normal, the size of the node plus the nodes name.

- List of the input and output connector slots of the node.

- Type matcher function, which determines if a connection to a slot in this
node is valid.

- GUI related functions which returns the sizes of the node, which object
were clicked within the node (title-bar/slots), and functions that handles
node related GUI events (minimize, maximize, enter group node...).

- Function that forces the content of this node to be fragment program code.

- A preview rendering field, where the effect generated by the nodes sub-
graph is rendered.

It is obvious that each node needs to store its own state variables for the render-
ing mode, along with the name of the node. It might not be necessary to store
the size information in each individual node though. If we base the size of the
node on the amount of connector slots and the window mode, then the dimen-
sion of the node can be calculated by a function in the parent class, which is
what we have chosen in this project. This takes the flexibility of individual node
sizes from the user, but it makes it easier to implement new nodes, because it is
then not necessary to think about anything regarding the rendering of the node.

When making a connection from one slot to another, it is important to ensure
that the connection is valid, which means that the types must match. The
function for matching these two types can lie in both the slot class and the node
class, but we chose to put it in the node as we believe we will have access to
the nodes more easily. Finally we also wish to have the possibility of showing

a preview rendering in each node. This rendering should show the result of the
subgraph, as if it were a separate shader graph. See figure 5.2 for an illustration.
We can implement this by compiling shaders, where the preview enabled node
is the root node in the graph. This compilation will be performed similarly to
the compilation of the whole shader graph, which we will discuss later.N o d e N o d eP r e v i e w e dN o d e

N o d e
T h e s u b g r a p h o f t h e P r e v i e w e d N o d e

Figure 5.2: The nodes inside the box are refered to as the subgraph of the pre-
viewed node. When the preview shader is compiled, these nodes are treated as
an individual shader graph, in order to build the preview shader.

5.2.1 Shader Code Containers

One of the most important parts of a node, is the five strings which contains
the actual shader code. Each node will define its code in one or more of the five
strings which are:

Property Code: The property code defines the user controllable variables of
the shader, e.g. a diffuse material color editable by the user.

Header Code: The defined property variables and possible textures, are de-
fined in the header in order to be usable in the Cg program.

Vertex Code: This code is always put in the vertex program. Vertex depen-
dent code could be animation code which translates a vertex position, or
possibly lighting calculations for pr. vertex lighting.

Fragment Code: This code always put in the fragment program. Fragment
dependent code is usually texture lookups, or perhaps pr. fragment light-
ing calculations.

Generic Code: This code can either be put in the vertex or the fragment
program, depending on the type of code the node connects to. Generic
code is often simple operations like multiply and alike, which can easily
exist in both vertex and fragment programs.

In this project we have chosen to deal with both vertex and fragment code,
unlike former shader graph tools where only fragment code were supported.
Therefore we need to have both the vertex, fragment and generic code strings.
The vertex and fragment code strings are pretty self explaining, if a node defines
vertex or fragment code it is put into the corresponding program at the right
place. The generic code is more tricky. As there is no generic program type
(only vertex/fragment types), we need to figure out if the code should be put in
the fragment or vertex program, when the graph is compiled into the shader. We
have chosen to solve this problem by investigating the nodes and slots that the
generic slot connects to. If the node that contains the generic code is connected
to any node that forces fragment code, the generic code is put in the fragment
program. If not the code is put into the vertex program. We chose this approach
because we find it easy to understand, and it also provides some optimization
when as much code as possible is put into the vertex program by default. A more
correct approach would have been to flag if the generic code can be interpolated
linearly, and then put it in the vertex program if it could. We find this a lot
more difficult for the user to understand though, which will make it difficult
to create custom nodes, or to determine whether to force fragment code for a
specific node. Forcing a node which would otherwise be vertex code to lie in
the fragment program, is a feature we wish to implement to give the user more
control over the final shader. Imagine as an example, that a user wishes to crate
a diffuse lighting effect, by taking the dot product of the light and normal vector.
This code would end in the vertex program by default, as the dot node is generic
and can produce code for both program types. This will result in a pr. vertex
diffuse lighting effect. If the user wish to have a pr. fragment lighting effect,
it is important to supply a way of forcing this dot node to generate fragment
code.

The functionality to group several nodes in a single node, yields a special node
type called the group node. When a group is created, the nodes selected for
grouping should be removed from the main shader graph, and moved into the
group node. This should be straight forward to implement, as we can just move
the nodes from the shader graphs list to a list in the group node. There are
some issues with connecting to the group node though, which will be discussed
in the following section and in chapter 6. If any nodes have connections to

other nodes outside the group, the relevant connector slots should be put into
the group node, so these connections serve as the interaction points with the
grouped nodes. We will also make support for adding or removing the slots from
the grouped nodes to the actual group node, in order to use make these slots
available to the main shader graph. We discuss the handling of the connector
slots further in the next section.

5.3 Connector Slots

The connector slots will be the users main interface for setting up connections
between nodes, therefore the slot must have variables which stores the connec-
tion information. A connection should be set up by dragging a curve from an
output slot to the input slot of another node. When the connection is made,
the system should check if the two slots are defined in the same space, or if
an transformation node should be inserted in between. It is also important to
check if the connection would result in a loop in the graph. If that is the case,
the connection should not be possible. The features of the connection slots are
illustrated in figure 5.3.N o d e n o t v a l i d P r e v i e w e dN o d e T r a n s f o r m e r

V e c t o r T y p e S l o t
C o l o r T y p e S l o t A u t o m a t i c a l l y i n s e r t e dS p a c e T r a n s f o r m e r N o d e

O b j e c t S p a c e V e c t o r
W o r l d S p a c e V e c t o r

Figure 5.3: Connector slot features. The leftmost connection is not allowed due
to the different types. The right connection occurs between two vectors defined
in different spaces, so an transformation node is automatically inserted.

In respect to the final shader code, a slot should be thought of as a variable in a
program. Therefore it is important to define the type of the slot. As we wish to
abstract the mathematical space the variable lies in, we also need to store this
type information. The two types can be of the following form:

Normal Type: generic, float, vector2, vector3, vector4, matrix3x3, matrix4x4,

color, integer.

Mathematical Type: generic, world, object, tangent, eye.

Each of the mathematical types can further more be normalized or un-normalized,
which gives 10 different mathematical types in total.

Most of these types are pretty self explaining. The generic type however, is
introduced in order to support polymorphic types in slots, which means that
a generic slot can be any of the other types. In the following we will discuss
these polymorphic types in greater detail, and we will introduce a method to
automatically transform between the different mathematical spaces.

Each slot should also have a ”published” flag. If the slot belongs to a node inside
a group node, publishing will mean that this slot can now only be accessed from
the group node. If the slot belongs to the top-level shader graph, publishing
it will turn it into a property variable that can be edited in Unity through the
material interface.

5.3.1 Polymorph Types

Lets consider a typical node, such as the multiply node. This node should accept
two inputs, and give one output which is the result of the multiplication. As we
wish to introduce types in the connector slots, in order to make our generated
shader type safe, there are two different ways to design the multiply node. One
way could be to make many nodes, which support each different type the sys-
tem operates with. This is the straight forward way of doing it, but it will be
damaging for the workflow for the user, as she will have to constantly think in
terms of types when she adds new nodes. Another and more elegant way would
be to create a generic type that will function as a polymorph type, which means
that this slot can be of any type. We have chosen the last method, and have
introduced a generic type in the relevant nodes.

The concept of polymorph types does introduce a new set of problems though.
Imagine for example that a user should want to connect a two and a three
dimensional vector to the same multiply node, what would the output then be
? If we simply put V ector2 ∗V ector3 in our shader code, it will not compile. In
other cases it might downcast one of the vectors automatically, but this is also
not desirable as the user might become confused and will wonder about what is

happening. We have therefore decided that when a user connects a non generic
type to a slot that is of the generic type, the rest of the generic types in that
node should be set to the same type as the connecting type. If many nodes of
generic types are connected together, all of the generic types in this graph will
be set to the connecting type. Only the types that are already generic will be
changed into the connecting type, so if a node has both generic and other types,
only the generic ones are updated. If the last connection from a node (or graph
of generic typed nodes) are broken, all the types should be reset to the generic
type. We illustrate this type updating in figure 5.4.G e n e r i c N o d e N o d eG e n e r i c N o d e

G e n e r i c N o d e N o d eG e n e r i c N o d e
B e f o r e c o n n e c t i o n : A l l g e n e r i c s l o t si n t h e " g e n e r i c s u b g r a p h " a r e n o t s e tt o a n y p a r t i c u l a r t y p e .

A f t e r c o n n e c t i o n : A l l g e n e r i c s l o t si n t h e " g e n e r i c s u b g r a p h " a r e n o w s e tt o t h e t y p e o f t h e s l o t t h e s u b g r a p h i sc o n n e c t e d t o .
Figure 5.4: Demonstration of connector slot polymorphism.

We have considered the case where a node might have multiple generic types,
which are independent from each other. In such a node it might not be desirable
to set all the generic types to the type of the incoming connection. A possible
solution to this problem could be to create a layer of generic types, so that all
types that are of the type ”generic1”, would be set to the same type upon a
connection, while ”generic2, generic3” and so on remain generics. This idea will
remain a design suggestion though, and will not be implemented as we do not
feel we really need it, and it could possibly confuse the users. If the future shows
that this becomes an issue, it should be easy to update the program to have
this feature.

5.3.2 Mathematical Type Transformations

We have chosen to introduce another type, the mathematical space of the vari-
able, to our connector slots also. In computer graphics vectors, points and other
variables can exist in different mathematical spaces, such as object, world, tan-
gent and eye space. Many of the users defined in chapter 4 might find it daunting

to think in terms of these spaces, so it is desirable to handle these space con-
versions automatically. We have chosen to handle these mathematical types
by adding a second type defining variable to our connector slots. When a new
connection is created, we check the mathematical type of the slot we connect
from and the slot we connect to. If those two types does not match, we will
insert a converter which converts the slot we connect from to the proper space.

We have considered whether to display these inserted transformer to the user
or not. Some users might find it confusing to see if something is automatically
inserted, and others might find it annoying if they can not see what is going on
behind the scenes. We have therefore chosen to support both displaying and
hiding the inserted transformers. If the transformers are displayed and a trans-
former is deleted by a user, we maintain the connection between the input and
output slot of the transformer, but remove the transformer itself. That should
give the user the possibility to force a ”illegal” mathematical type connection,
if that for some reason is desired.

A generic mathematical type should be understood as this slot does not care
which space it exists in. The generic types has the same functionality as the
polymorph types discussed above, so when connecting a slot of the world space
type to a generic slot, the other generic slots in this node will have their type
set to world space.

5.4 Compiler Design

One of the most important components in our project is the shader graph com-
piler. It should be noted that we use the term compiler, though strictly speaking
the result of the compilation is a shader file, which is not an executable applica-
tion, as it needs to be processed further by the game engine. As the output of a
compiler should be an executable program, one may argue that the shader graph
compiler is not really a compiler, but rather a code transformer that transform
form graph representation to shader code. Seen from the view of the shader
graph editor though, the created shader is executed by the engine, which makes
using the compiler term suitable in that context. The compiler is responsible
for translating the user generated shader graph into a shader file, which can be
used in a game engine. The compile process is broken into several individual
phases:

• Compiler Front End:

- Preprocessing:

- Make variable names unique (uniquefy).

- Setup fragment code flags.

- Setup publishing.

• Compiler Back End:

- Code Generation:

- Build vertex to fragment program structure.

- Build individual shader code string.

- Build final shader.

The front end of a compiler is usually responsible for preprocessing and lexical,
syntax and semantic analysis. In our system however, only the preprocessing
phase is relevant, as a graph is always ensured to be valid, and in a process-able
graph form. Therefore the shader graph, which is the source for the compiler, is
already syntaxical correct, and no lexing or semantic analysis is necessary. The
front end of the compiler discussed in this section, does only do preprocessing
which are divided into the steps illustrated above.

In the first step, all the variable names are made unique, so that we do not
risk having two identical variables in the generated shader code. Remembering
that the variable names are actually just the names of the connector slots, it is
easy to realize the relevance of this step, as it is obviously viable to have several
identical nodes in a graph, which could lead to identical variable names. In that
case the names should be made unique.

The next step is to set up the fragment code flags. As discussed above, we
have introduced a method for forcing a generic node to generate fragment code.
This step scans the nodes for fragment code dependency, and ensures that all
following nodes are also set to be fragment code dependent. The dependency of
the node can be set it two ways; either by a user who forces fragment code, or
by the node itself, if it is a texture node or another type of node, which must
generate fragment code.

Finally we need to setup the published connector slots. This step is only con-
cerned with slots that should be published as properties, so this can be done
by checking all connector slots in the top-level graph. If a slot is published, it
should be added to the properties of the shader. There is one problem though,

namely that Unity only supports a few specific types to be published as prop-
erties. There are floating points and colors. We have therefore chosen that it
should only be possible to publish those two types to properties.

A compilers back end normally consists of an analysis step, which is tightly con-
nected to the optimization step. The compiler presented here transforms from
one very high level of abstraction, to another highlevel programming language.
The highlevel code is then compiled by the Cg compiler, which means that most
of the optimizations are done by the Cg compiler. There are some possible opti-
mizations that we will do though, as for example the vertex to fragment struct,
where we optimize the number of interpolation slots used. The Cg language
supports transferring eight four component vectors, two colors and one position
in this structure. In this project we only use eight vector spots, as some game
engines use the color slots for other purposes. The issue is that transferring just
a single float in such a vector is just as expensive as transferring the full vector,
so we want to pack the variables we transfer into the four components. An
example could be that when transferring two UV coordinates (two component
vectors), they are packed into a single four component vector. In order to make
it work, we will also have to update the UV variables so they can remember
which part of the vector they lie in. This can be done by appending the swizzle
components ”.xy” or ”.zw” to its name. The variable packing is illustrated in
figure 5.5.

...U V . x U V . y U V 2 . x U V 2 . y
V i e w D i r e c t i o n . x V i e w D i r e c t i o n . y V i e w D i r e c t i o n . z

V e r t e x t o F r a g m e n t S t r u c t u r e

Figure 5.5: Abstracted illustration of how variables are packed into the structure.
The horinzontal boxes indicates a single component in a four component vector.
In this example we illustrate how it might look if we packed two UV coordinates
and the viewing vector, in the first and last texture coordinate slots.

In our implementation of the vertex to fragment structure creating function, we
will pack the variables as described above in order to save space, and to transfer
as few slots as possible. Other optimizations that we will do is the more ad-

vanced material nodes, that we will discuss later.

The last step of a typical compiler back end is the code generation. As previously
discussed the nodes store code fragments, which the compiler must concatenate
into a final shader program during this step. The compiler discussed here starts
by building the vertex to fragment program structure though. This structure
is responsible for carrying variables from the vertex program to the fragment
program. During this process the values in these variables will be interpolated
linearly by the graphics hardware. The structure can be build by investigating
each connection in the whole graph. If a slot forced to generate fragment code,
connects to a slot that generates vertex code, it is necessary to put the variable
of the vertex code slot into the structure, to ensure that it is available in the
fragment program. Further more the fragment code variable should be updated
to accesses the carried variable in the structure.

Generating the shader code strings is relatively simple. Each node defines a
function that initializes its code strings, based upon which connections the node
has. Most nodes has only one node to initialize its code strings, but for some
nodes such as the material nodes depend, the initialization depends on the con-
nections of the node. If for example a normal map is connected to the normal
of a material node, this node needs to initialize its tangent space code instead of
its normal object space code. We could have omitted this feature, and relied on
our automatic space conversion scheme, but that would force a space conversion
in the fragment program for the above case, which is not very efficient. When
the nodes has initialized their strings, we first concatenate them individually for
the five different code strings discussed above. This results in five independent
fragments, which we then concatenate to give us the final shader program.

When a node is set to show its preview field, the shader of that nodes subgraph
has to be compiled. We do this in the same way as with the normal compilation,
except for one important difference. As the node with the preview field is
probably not an output node, then we do not know which output slots that
should be used as the final color, vertex position or alpha value. Therefore we
simply iterate over the output slots, and select the first slot of the color type
to be the output color in the shader, and similarly with the vertex and alpha
values. This means that nodes with two or more output slots of the same type,
should have the the most important slot at the top of the list.

5.5 Game Engine Integration

The previous sections of this chapter discussed how to design a shader graph ed-
itor, but there were no real mentioning of how to integrate it with an engine. In
order to use shaders in game engines, the engine must have a way of processing
and reading the effect files. Changing a game engine to a highly shader driven
approach, is a rather complicated task, and we will not go into full details about
that here. Readers with an interest in this subject should read the GPU Gems
article by O’Rorke [28]. If the game engine chosen for the integrating already
had support for reading and rendering with effect files, one would only have to
update this support to handle the shader graph shaders too.

The Unity game engine handles shader binding in a two step method. In the first
step, any vertex or fragment program is compiled into an assembly program,
using the Cg compiler from Nvidia. The original high level code string is then
exchanged with the assembly level code, but only in the internal representation,
no update of the original shader file occurs. In the next step the processed
shader is parsed to an internal rendering structure, using a Yacc based parser
and Lex for doing the lexical analysis. The rendering step then uses the internal
representation of the shaders, when rendering the objects in the scene.

As the shader graph editor outputs a normal and well defined effect file, we could
have chosen to use the shader binding scheme already present in Unity directly,
but this presented a problem with supporting different light types, shadows and
other shader dependent effects. To illustrate this problem, consider a shader
which shades an object using phong lighting calculations. Depending on the
light-source type, which can be either a spotlight, a point light or a directional
light, the emitted light should be attenuated differently. This attenuation must
take place in the fragment program, if the other lighting calculations also are
carried out there, in order to correctly attenuate the light. This means that there
must exist individual fragment programs for each possible attenuation type, and
also for handling shadows and other effects that requires to be calculated in the
fragment program. The way Unity used to handle this were based on a very
un-extentable autolight system, which compiled the shaders to have support for
multiple different light-types. The un-extentability of the system meant that a
new way had to be introduced, that would have support for shadows and other
effects in the future. As the support of multiple light-source types and effects
like shadows were important for this project, we decided to come up with a
novel approach to the shader processing system.

The primary problem faced in the shader processing is how to take a single
shader file, and process the vertex and fragment programs, to generate multiple
programs that are identical, except for the alteration caused by the effects that
the shader are compiled to support. In the case of light sources, this means
that all the vertex and fragment programs in a shader that handles attenua-
tion, should be compiled in multiple versions that are identical, except for the
difference in the attenuation calculations. To keep the system as extendible as
possible, we have decided to do the compilation based on keywords that are
defined in the shader graph, or in the programming language if the shader is
hand-coded. We will illustrate this keyword based approach, by taking a closer
look at how the light node should work. The light node should have output
slots for the light position (and/or direction), the color of the light and the
attenuation value. When multiple lights are used in a scene, we still need only
one light node, as Unity renderers each object once pr. light source, so we only
need to handle the light source that is being rendered from at that moment.
When the attenuation slot is used, the three keywords ”point”, ”spot” and ”di-
rectional” should be put into the shader. Then when the shader is compiled,
the processing system will compile each relevant vertex and fragment program
once, with each of these keywords set. This will create three versions of the
programs that each support a different attenuation scheme. In order to make
this work, the attenuation function will need to be placed in an utility library,
and this function should then always be used for attenuation calculations. Fur-
ther more the function must define three different paths, corresponding to the
three keywords discussed above. In the case of other effects such as shadows,
it should be possible to use the same keyword approach in a similar way. This
would happen by introducing the keyword in the shader, which would cause the
shader to be compiled with this keyword defined. The corresponding function
that actually implements the effect should be defined in multiple versions too,
in order to support the different paths compiled. Figure 5.6 shows a diagram of
the integration model used in this thesis.

U s e r B u i l d s S h a d e rw i t h S h a d e r G r a p hG U I . S y s t e m c o m p i l e s g r a p ht o s h a d e r fi l e . P r o c e s s i n g s y s t e mg e n e r a t e s m u l t i p l ei n d i v i d u a l p r o g r a m s .O n r e n d e r i n g : B i n dp r o g r a m s t h a t m a t c ht h e a c t i v e k e y w o r d sU s e r c a n u s e s a m es h a d e r w i t h / w i t h o u ts h a d o w s e c t .
G a m e E n g i n e I n t e g r a t i o n

Figure 5.6: Diagram of the path from shader graph to processed shader file.

When there are more than one effect in play, the system should automatically
create all the possible combinations of the effects. An example could be in the
case of light attenuation and shadows, where the result should be six different
versions of the programs, namely the three attenuation methods in both a shad-
owed and un-shadowed way. We propose doing this by separating the keywords
of individual effects into separate lines. Each combination of keywords should
then be created by the compiler during the processing. We further more wish
to support keywords that only affect vertex programs or fragment programs,
along with keywords that affect both. We will discuss the implementation of
this keyword system further in the next chapter.

Of cause one must consider the amount of programs that are being created.
If there are several different effects with several keywords each, the number
of generated programs will quickly explode. In chapter 9 this problem will
be discussed further, and we will present an example that demonstrates the
complications encountered in practice.

Chapter 6

Implementation

In this chapter we will discuss the implementation of the shader graph tool,
based on the design discussed in the previous chapter. From the beginning of
this project, we chose to integrate the shader graph very closely with Unity, for
reasons previously discussed. This tight integration had significant implications
for the implementation of the tool. First and foremost, we had to make changes
to the unity engine itself. As Unity is such a complex piece of software, a fair
amount of time was used to get acquainted with the code-base. For the same
reason, we early on decided to keep as much of the development as possible,
apart from the main code-base of Unity. Therefore the majority of the tool
were developed within Unity, using the C# programming language. The addi-
tional engine based work that were carried out for this project were presented
to the scripting interface too, so we could keep our main development in the C#
scripts. Besides the fact that we did not have to bother with the main code-
base of Unity, we also had a far less compilation time overhead. Recompiling
our entire project takes one or two seconds, where recompilation of the whole
Unity engine can take up to 20 minutes.

Figure 6.1 demonstrates the class diagram for the implementation, which shows
the dependencies within our project.

In the remainder of this chapter will discuss the implementation of our project,

S h a d e r G r a p h P a n eT h e v i n d o w w h e r e t h es h a d e r g r a p h i s v i e w e d .
D r a w G r a p hH a n d l e s d r a w i n go f t h e g r a p h . G U IU t i l i t y c l a s s u s e d f o rd r a w i n g G U I e l e m e n t s .

M e n u I t e m sC r e a t e s d r o p d o w n m e n uw i t h s p e c i fi e d e l e m e n t s .
C o n n e c t o rI m p l e m e n t s t h e c o n n e c t i o ns l o t s u s e d t o m a k ec o n n e c t i o n s b e t w e e n n o d e s .

S p a c e T y p e H a n d l e rH a n d l e s t h e a u t o m a t i cc o n v e r s i o n b e t w e e nm a t h e m a t i c a l s p a c e s .
S h a d e r G r a p hH a n d l e s o p e r a t i o n s o n as i n g l e s h a d e r g r a p h . S h a d e r G r a p h N o d eP a r e n t c l a s s f o r a l l n o d e si n t h e s y s t e m .

U t i l i t yC o n t a i n s u t i l i t y f u n c t i o n ss u c h a s fl o o d fi l l i n g a n dc l e a n u p f u n c t i o n s . S h a d e r G r a p h C o m p i l e rC o m p i l e s t h e u s e rg e n e r a t e d s h a d e r g r a p ht o a s h a d e r fi l e .A d d N o d eA d d s t w o v a r i a b l e sB l i n n P h o n g N o d eB l i n n a P h o n g l i g h t i n g m o d e lR e fl e c tR e fl e c t s a v e c t o r a r o u n dt h e n o r m a l ...
Figure 6.1: Class diagram of our system. A closed arrow indicates where a class
is primarily used, while a open arrow points to the parent class.

and we will discuss which choices we had to make during this implementation.
We start by discussing the implementation of the GUI system. We then discuss
the overall implementation of the shader graph tool. This discussion will cover
the implementation details about the graph system itself, along with implemen-
tation details about the nodes. We will then discuss the implementation of the
compiler, and finally round off with a closer look at the integration with the
Unity engine.

6.1 GUI Implementation

As we discussed in the last chapter, we chose to do most of the GUI system our-
selves, instead of using Cocoa which is the Mac OS X windowing system. This
was primarily because we wanted full control over the look, but also because we
required features such as OpenGL renderings inside nodes and alike, which could
become problematic with regular Cocoa code. Another strong selling point was
that this system would become platform independent, a nice feature to have if

Unity should be converted to a windows application in the future.

We implemented the GUI system by drawing textured quads and curves, inside
our shader graph view in Unity. This view is actually just an OpenGL viewport,
that it is possible to render into. The nodes were simply rendered as quads with
a specific GUI texture applied. Predefined texture coordinates were wrapped
into easily understandable names, which made it possible to use simple function
for drawing the textured quads. The texture we used for the nodes is shown in
figure 6.2. The texture was created in part by the author, and by the people
behind Unity.

Figure 6.2: The GUI Texture used for drawing the nodes

In this project we only use the two gray boxes which are located in the top
left corner, over and under each other. The lower of the two are used when a
node is selected, while the top left box is used for unselected nodes. The rest
of the boxes were not used in the work of this thesis. The images used for the
connector slots are located in the bottom left corner. There are different images
for when the slot has a connection or not. When the slots are drawn on top
of the node, they are modulated with the color that match their type, so it is
easier for the user to make type legal connections.

We have implemented support for rendering the nodes in three different sizes,
as described in the previous chapter. We added an enumeration to the node
class, which determines how to render the node. In the DrawGraph class, we
simply use this information when rendering the node.

The Bezier curves which represent connections between the slots, were rendered
using the Bezier class provided by the engine. The class initially only supported
evaluating points on the curve, so we updated it to support rendering the curve,
by drawing small concatenated quads along the curve. We chose to use a Bezier
curve instead of a line primarily for ascetic reasons. The color of the curve were
set to the same color as the slot the curve connects from.

Finally we also needed a system for rendering text in our GUI system. We use
this system for displaying the node and slot names, along with the shader graph
path in the top left corner of the view. The text rendering system Unity had
was not so suitable, as the text appeared blurry. We therefore made a new
importer, which is able to import true type fonts into Unity. The importer uses
the Freetype library, and stores information about the glyphs and kerning in a
font object. It then renders the individual fonts to a texture, which is used for
drawing the text on the screen. Storing the glyphs in a texture were a simple
way to get the text rendering into Unity, but it will yield some problems with
languages such as Chinese and Japanese, which use many individual signs. This
was not a major concern for this project, and if Unity’s font rendering is up-
dated in the future, it will be straight forward to support those languages in the
shader graph GUI.

Besides rendering GUI elements, we have also implemented functions for han-
dling the users mouse input. When the user clicks on a node, the function
iterates over all the nodes, and returns an index which says what the user
clicked in the view. Based on this index we find a reference to the object (node,
slot etc.) that were clicked, and perform the appropriate function that the user
selected. The user can right click to get a menu with possible commands. This
menu has been implemented using the Cocoa window interface, as there were
not enough time to make a nice platform independent implementation. We also
added support for the classic hot-keys for delete and duplicate, which is based
on events send by the operating system. If the whole GUI system needs to be
made platform independent some day, this right click menu and the operating
system events would need to be handled in a more generic way. The code which
handles most of the GUI system is in the ShaderGraphPane and DrawGraph

classes. The DrawGraph class uses the GUI class for rendering.

6.2 Graph Implementation

The main functionality of the graph system is implemented in the ShaderGraph
class. The class has an array which holds the individual nodes, and has functions
for adding and deleting nodes from this array. The connection information is
stored in the connector slots, which is implemented by another class. The con-
nection slots always exist in a shader graph node, and thus the three classes that
makes up the shader graph system is the ShaderGraph, the ShaderGraphNode
and the Connector classes. The Utility class is also used though, as it has the
flood filling function etc. This section will discuss how these three classes works
together, to implement the connectivity and functionality of the actual shader
graph system.S h a d e r G r a p h G r o u p N o d eN o d e F i n a l C o l o rG e o m e t r y
Figure 6.3: This figure illustrates how the nodes in the shader graph is connected.
The arrows indicate the direction of the connection in the DAG. A close-up of
the group node can be seen in figure 6.5.

Figure 6.3 illustrates the connectivity of the shader graph system. The nodes
of the system are placed in the shader graph object, except for grouped nodes,
which are placed inside the group node. Each node has a number of connection
slots that the user use to connect variables in the system, thereby setting up
the functionality of the shader. Early on we decided to only store these connec-
tions in one direction, going from an input slot to an output slot. This decision
was made as it seemed natural that an input variable only can be assigned
to one unique variable, and hence only has one unique connection. To better
understand that, consider that those variables are on the left hand side of an as-
signment operation in the generated code: NodeInputSlot = NodeOutputSlot.

This means that it only makes sense to have one connection from an input
slot, while an output slot can easily be connected to multiple input slots. Of
cause this can give problems with supporting swizzeling, as that would require
multiple connections to a single input slot, but we chose to solve that problem
by having swizzle nodes instead. One of our main concerns were to keep the
implementation of the graph system as simple as possible, which also speaks for
this simple one way connection system. Of cause it would have been possible
to store connections in the other direction too, possibly by having an array of
connections for each output slot. This could require us to differentiate between
input and output slots though, as input slots should still only have one connec-
tion. It would also mean that we had to store and maintain twice the amount
of serialized data, which could hurt performance. On the other side, having ac-
cess to the connection information in one direction only, would make flood-filling
and other operations which also move ”forward” in the graph more complicated.
See figure 6.4 for an illustration of the ”forward” term. But as we will not have
many of these operations, we decided to go for the simple connection scheme.

In each input slot the connection is stored by having a reference to both the
node and the slot that is being connected to. We need information about both,
because the slots does not know which node they are a part of.N o d e O u t N o d eN o d eN o d e F o r w a r d D i r e c t i o n

B a c k w a r d D i r e c t i o n
Figure 6.4: In this thesis we call the left to right direction for the forward direc-
tion in the graph.

To summarize on the above, the shader graph is represented using a Directed
Asyclic Graph, and the connections are only stored in one direction. This means
that many of the algorithms we had to implement, were recursive algorithms.
An example of a recursive algorithm implemented, is the loop finding algorithm
1.

The loop detection algorithm is being called whenever a connection is made

Algorithm 1 Loop Detection Algorithm

if current node has been checked then

return false
end if

mark current node as visited
bool hasLoop = false
for each input slot in current node do

if slot has connection then

hasLoop = hasLoop or has loop on connecting node
end if

end for

unmark current node as visited
return hasLoop

between two slots. The algorithm works by detecting if a node in a subgraph,
in any way connects to itself, in which case true is returned. Another type
of recursive functions that proved a little more challenging, was the function
for flood-filling generic type slots. We wanted this function to be as generic
as possible, so it could handle large subgraphs with only generic type nodes,
and flood fill all the generic slots when a connection were made to one of the
nodes. As a connection can just as easily be made to a node in the middle of
the subgraph, we would have to be able to flood fill in both directions in the
graph. This caused a problem, as we only stored connectivity in one direction.
We solved this by iterating over all the input slots in all the nodes, every time
we wished to examine if a output slot has a connection. We would then check
for connectivity between the output node, and each of the input nodes in the
iteration. This might seem as an unoptimized way of doing the flood fill, but
remember that high performance is not so important for the GUI interface
of the shader graph, as long as it stays interactive. The flood fill algorithm
is explained in an abstract form in algorithm 2. In the implementation the
algorithm is invoked by calling the FloodF ill function, with the current node
and information about which type to flood fill with as arguments.

The function that implements the flood filling, also handles the logical types,
which identifies the mathematical space of the variable (world, object etc.). This
makes the actual function a little more complicated, but in general it is imple-
mented like algorithm 2 suggests. Many of the other algorithms implemented
for this thesis were also recursive, and has been implemented using the same
general idea.

Algorithm 2 Flood-Filling Algorithm

for each input slot in current node do

if slot is generic then

slot type = flood filling type
end if

if slot has connection then

flood fill the node connected to with the same type
end if

end for

for each output slot in current node do

if output slot is generic then

slot type = flood filling type
end if

find the input slots that connects to this slot
for each found input slot do

if slot is generic then

flood fill the node of this input slot with the same type
end if

end for

end for

6.2.1 Node Implementation

As previously discussed, we wanted to focus on creating a simple interface for the
nodes. The implementation reflects this design, by using a parent node class
called ShaderGraphNode, which has all the functionalities that are common
between most nodes. The most important functionalities of the parent class
are:

- Array lists for holding the input and output slots.

- Strings variables for holding the Cg code.

- Type matching function, that returns true if two types are compatible.

- Functions for setting up published connectors and creating preview shaders.

- GUI related functions such as finding the height of a node etc.

These functionalities has been pretty straight forward to implement, and as it is
something all nodes needs to have, it seemed the smartest to encapsulate them

in a parent class. In order to create a new node for the system, one only has to
implement implement the following functionalities:

- Create input and output connection slots, and add them to the nodes
array lists.

- Set mathematical space types for the slots, if they should be different from
the default, which is no space defined.

- Implement the SetCodeStrings() function, which sets up the code string
to perform the operation desired for the node.

The SetCodeStrings() function is the only demanding task when making a new
node. The function should generate the code that will be accessed by the output
slots, by using the connection information of the input slots and the Cg code
strings relevant for that functionality. An example could be the ”Add” node,
which should fetch the two variables connected to in the input connectors, put
a ” + ” between their variable names, and store that result in the output con-
nector. In the case where a input slots does not have a connection, the default
value of the slot is used, in order to ensure a valid output.

When more advanced nodes needs to be made, the overhead is a little larger
though. The basics are the same, but more advanced nodes might require dif-
ferent code paths depending on which slots that has connections, such as our
material nodes does. In the material nodes we have two different code paths,
depending on whether the normal slot is connected to a tangent space normal,
such as a normal map node. In that case we handle the lighting calculations in
tangent space in another path, instead of using our automatic space transfor-
mation system. This is purely because of performance though, we could have
used our automatic space transformer system as well. The material node also
needs to transfer viewing and lighting vectors internally. In order to make that
work with our automatic scheme for building the transfer structure, we added a
flag to the connection slots, that made the struct builder function handle those
variables too. The connection slots and compiler implementation will be dis-
cussed in the next sections.

The one node that differs the most is the group node, which is actually more
like a separate functionality than an actual node. We chose to implement it as
a node though, because we wanted to show it like a node, so it were convenient
to inherit from the parent class to get the drawing automatically. Unlike the
normal nodes, the group node has been implemented to have its own array of

nodes. When a selection of nodes are being grouped, we then move the relevant
nodes from the shader graphs array to the nodes array. We also create slots
in the group node, which are identical to the slots that have connections to or
out of the selection. In that way the grouped nodes have the same connectivity
through the group node, as they had when they were individual nodes. One
problem remains though. As the group node contains multiple nodes, it is
difficult to create a single function that creates the code string for all the nodes.
We chose to solve this problem by not doing this operation in the group node,
but simply relying on the functions in the nodes themselves. This means that
the group node just becomes a container for other nodes, and should not be
handles as a normal node when performing operations on the graph. We have
solved this by adding connections to the output slots in the group node, which
point towards the corresponding output slot and node inside the group. The
functions that depend on the connectivity of the graph, were then updated to
use then connection information when encountering a group node, which makes
the functions operate like they would on a flat unfolded graph. The connectivity
of the group nodes is illustrated in figure 6.5.N o d e G r o u p N o d e N o d e
Figure 6.5: The connectivity of a group node. Notice the additional added con-
nections which goes from the group nodes output slot to the output slot of the
internal slot that has this slot. A dashed line means that the connection curve
should not be visible. Grayed out slots are published, and can only be accessed
via the group node.

6.2.2 Connection Slot Implementation

Another important component of the shader graph are the connection slots,
which are the users only interface for connections in the graph. As previously
discussed, we only store connections from input to output nodes, because the
input nodes only can have one connection. This is the only difference between
input and output slots though, so we decided to use the same class for both
types, and just not use the connection information in the output slots, except
for group nodes, as discussed above. A connection is implemented by using two
variables in the slot, one for the node being connected to, and one for the name

of the slot connected to. We decided to do the connections in this way, as we
more often would need access to the node connected to, than to the slot directly.
In the cases where the specific slot needs to be found, we use a property which
loop through the slots of the node, and returns the array index of the named
node. The only real issue with this approach, is that it is then not possible to
have two slots with the same name within a node. That should probably have
been avoided anyway, as that can appear confusing to the users.

Besides the connection information, a slot also has the following important
variables:

Published: Slots published in the main shader graph are presented in the ma-
terial inspector for fast editing (Only floats and colors). Slots published
from a node inside a group node, is shown in the group node.

Name: The name of the slot. Slot names must differ within a single node.

Default Value: The default value of the represented variable. Such a value
must be set for input slots, but it has no effect for output slots. The
default value is implemented as a string.

Type: The type of the variable the slots represents (generic, float, vector3,
color etc.).

Logical Type: The space this variable is defined in (object, world, tangent,
eye etc.).

Is Generic: Flag that says if this is a generic type, which means that it can
be flood filled. Similar flag exist for the logical type.

The connection slots are always contained in the input or output slot lists in
a node. They are normally created and handled by the node too, except for
the case where additional slots are published to a group node, in which case
the system creates the new connector and places it in the group node. If users
wishes to create their own nodes, they should familiarize themselves with the
variables listed above, as they will be important for make the slots of the node
work correctly.

6.3 Compiler Implementation

Early on in the compiler implementation stage, we experimented with building
a new compiler tree structure, which had connection information in both di-

rections, and which flattened the group nodes, so the compiler would work on
one big shader graph. This proved to be a bad idea though, as that required
building a new structure of serialized data, which is a bad idea as it can make
the system very unstable. The unstability occurs if the original graph and new
generated structure become inconsistent. Besides that it is a waste of space to
work on an new representation of the same data. It also seemed to complicate
the implementation of the compiler to an unnecessary degree. We therefore
came up with another method, where we worked directly on the unmodified
shader graph that had been created. We found it to be surprisingly easy to
work on this structure, as we could simply use recursive functions to traverse
through the graph, and concatenate the shader code strings in the nodes, begin-
ning with the nodes lowest in the graph. This ensures that the code is added in
the correct order, so code in early nodes are put in the shader first, so the later
nodes can work on the result of those previous nodes. As it is possible for one
node to be visited more than once though, we had to maintain a flag to know
if the node had already been processed, as nodes should only provide code to
the shader one time. With that in place, the problem of actually building the
shader string, was reduced to concatenating the code strings of the nodes in a
recursive manner. Before that could be done though, the compiler has to go
through the following preprocessing steps:

- Make the variable names unique.

- Set nodes generic code to be vertex or fragment code.

- Process published slots.

- Build the vertex to fragment structure.

- Setup the code strings in the nodes.

We first need to make the variable names unique, as multiple variables with
the same names would cause errors when compiling with the Cg compiler. We
uniquefy the variables names by iterating over all the slots in the graph, and
maintain a list of already used names. When a duplication between two variable
names is encountered, we append and ”I” to the variable name, thereby making
it unique. Next we iterate over all the nodes in a recursive manner, and examine
if the node should generate vertex or fragment code for its generic code strings.
We then examine if any slot is published, in which case we add it to the properties
of the shader, which makes it visible in the material editor. The next step is
to build the vertex to fragment structure, by identifying the connections that
goes from a fragment program variable and to a vertex program variable. When
that happens, we pack that variable into the structure, as described in chapter
5. Finally we invoke each nodes function for setting up the code strings, and
concatenate the code strings which gives the final shader.

6.4 Game Engine Integration

Implementing the game engine integration were primarily an question about
getting the shader graph into Unity, and also to implement the new compilation
system discussed in the previous chapter. Integrating the shader graph with
Unity were surprisingly easy. An OpenGL viewport named shader graph were
implemented by the Unity staff, and in collaboration with the author, the mate-
rial system were updated so a material could contain a shader graph instead of
a normal shader file. As the user work with the shader graph, the relevant data
such as nodes, slots and so on are serialized to the disk and saved automatically.
This is a benefit of the engine integration, and it means that the graph is always
kept saved and updated in the project. Inside the OpenGL viewport the shader
graph were rendered, using the previously described GUI system, and scripts
were attached which implemented the features of the system. With this in place,
the only problem that remained were to implement the new processing system,
and do some slight modifications to the binding of shaders.

The design idea for the keyword compilation system, indicated that we should
use the Cg Framework to handle the compilation of the vertex and fragment pro-
grams. Unfortunately though, the Cg framework crashed frequently on the OS
X platform, so we were unable to use it. The Cg compiler worked though, and we
was able to compile the programs using that. This meant that we were unable
to use several nice framework functions, for compilation and binding of the pro-
grams, but we were still able to compile the Cg code though. The compilation
were implemented by cutting the Cg code out of the shader, and do a command
line compilation of the code into the standard ARB VERTEX PROGRAM or
ARB FRAGMENT PROGRAM assembly code. We used the comment lines
from the compiler output to find texture bindings and setup variable bindings
too. The whole process were then repeated for each combination of keywords,
and the resulting compiled programs were put back into the shader file. When
the shader files were processed to have the assembly level code instead of the
high-level Cg code, Unity will do the binding of the shaders using standard ver-
tex and fragment program binding functions. We did update the binding too
though, as the binding scheme should now use the keywords from the shader
too. So when processing a shader file, we stored the keyword information in the
shader object. When finding which shader to bind, we checked which keywords
were currently active, and iterated over the keyword combinations in the shader
to find the one that matched best. This version of the vertex and fragment
programs would then be bound. This meant that we had to update the lighting
source code too, so it would set the keyword corresponding to the light type,
in order to make this work. If future effects require the use of keywords, it is
important to make sure the keywords are set when the shader using them are

expected to run. That can be done by modifying the engine source code as we
did, or by using the SetKeyword() function that we implemented during our
integration.

There are two main problems with using the Cg command line compiler instead
of the framework though. First of all if the commenting style changes in a later
version of Cg, the implemented code would have to be updated to reflect those
changes. A even more annoying problem is that the command line compiler is
very slow to use. It takes about half a second just to start it, and we start
the compiler for each keyword combination compiled, and for each vertex and
fragment program in those combinations. So when compiling a shader with and
ambient pass (no keywords) and the lighting pass (3 keywords) that would lead
to starting the compiler 8 times, which cost around 3-4 seconds. That means
that we did not have the opportunity to automatically compile the shader graph
every time a change occurred, as the system would become very un-interactive
to work with. A possible solution to the problem by implementing a compilation
console was discussed, but there were not enough time to implement it for this
project. Another solution would be to skip Cg and go with GLSL instead, but
that would also be a problem as that will break backwards compatibility.

Chapter 7

Implementing Shaders in

Other Systems

Since the introduction of the Renderman shading language, the creation of
shaders has been a very important aspect of computer graphics. In this the-
sis we discuss a system for shader creation, which features integration with a
game engine for real-time rendering, and where usability is one of the key is-
sues. There are several alternative approaches to shader creation though, e.g.
using the original Renderman interface and shading language. This chapter will
discuss the creation of a simple shader with both Renderman, RenderMonkey
and Maya, for the purpose of comparing these products with the one developed
in this thesis. In the next chapter the same shader will be created using our
implementation, and chapter 9 discusses the comparison.

The shader we use for comparison is very similar for all the creation methods
discusses in this chapter, and it will also be created using the Shader Graph
editor implemented in this thesis in the next chapter. The only real difference
is that we use build-in functions in Renderman, which calculates the lighting
based on the original Phong lighting model. The other shaders are created us-
ing the slightly simpler Blinn-Phong model, which is more common in real-time
applications. Another difference is that Renderman does not support real-time
rendering, but this is not really an issue here, as we just want to discuss how to

create shaders in Renderman, and as such we do not care about the rendering
speed at this point.

We wanted to keep the shader relatively simple, but still advanced enough to
be able to discuss the differences of the products. We therefore decided to
implement a bump mapping shader, which creates a rough appearance of an
object. We further more gave the shader the twist that it should use two different
colors, one from the main texture, and an additional color which should be
controlled by the alpha channel of the main texture. This means that where the
alpha channel is white, the original texture should shine through, and where the
alpha channel is black the color should be modulated onto the texture. This
shader was actually a request by an user of Unity, who were not able to program
the shader himself. We therefore feel that this shader serves as a good example
for comparing the different creation methods, and finally show how this user
could have made it in Unity, had the shader graph been available.

7.1 Creating Shaders in Renderman

Even though the Renderman shading language were among the first languages
of this kind, it is still arguably the most advanced systems today. The general
concepts of Renderman were discussed in chapter 2, and we discussed the dif-
ferent shader types that Renderman operates with. In order to implement the
effect discussed above, we had to use four different shaders that we will discuss
in the following.

Light Shaders:

We used two different light source shaders when creating this ef-
fect, namely the ambient light shader and the distant light shader.
The ambient light shader is the simplest of the two, and it just sets
the light color to the intensity defined by the user, or one in the
default case. This adds a constant amount of ambient light to the
scene. This is then combined with the light created by the distant
light shader, which simulates a directional light source. The solar()
function call is used in the distance shader, to setup a light-source
which casts light in a given direction, and the shader then sets the
light color in that given direction. The lighting shaders are auto-
matically used to attenuate the light, when the lighting calculations
are performed in the surface shader.

Displacement Shader:

The displacement shader uses a height map to displace the pixels
before the lighting calculations are done. On the contrary to the ap-
proach taken by real-time shading where only the normal is altered,
the displacement shader actually moves the pixels, and then recal-
culates the normals based on the new position. The moving of the
pixels is important, for Renderman’s ability to perform correct hid-
den surface removal and shadowing on the displaced scene. In this
effect it is most important that the normals are updated though,
as the perturbed normals will greatly influence the lighting of the
object and make it look bumpy.

Surface Shader:

In the surface shader we find the texture color, and do a linear in-
terpolation between this color and a second color based on the alpha
value in the texture. We then use build-in functions to calculate the
diffuse, specular and ambient light contributions, which are mul-
tiplied with their respective material constants in accordance with
Phong’s lighting model. We then add these contributions together
to get the final lighting contribution. It should be noticed that we
do not need to sample a bump map, as the normals calculated in the
displacement shader, now matches those that would be found in the
bump map.

The source code for the four shaders can be found in appendix B.2, and the result
of the rendering can be seen in figure 7.1.We used the freely available renderer
called Pixie [4], which is a Renderman compatible renderer. As Renderman
is an interface rather than an actual application, no graphical user interface
or other code abstracting systems exist, which means that creating shaders
with the Renderman shading language is limited to programmers only. The
implementation of the effect in Renderman is slightly different from shading
languages such as Cg, as it requires multiple shaders to be created. Renderman
uses the light-source shaders to calculate the attenuation values of the different
light sources in a shader, and a displacement shader for actually displacing the
surface, which differs from normal Cg shaders where everything is done in a
single vertex and fragment program. Further more Renderman has predefined
names for the normal, light and viewing vectors and so on. This means that
it requires a quite good understanding of the Renderman shading language to

Figure 7.1: Result from rendering the bumped sphere with Renderman.

implement special effects, as the programmer would have to be familiar with
these names, and how to use the different shader types.

In order to apply the shaders created, one has to make a so called RIB file,
which is an abbreviation for Renderman Interface Bytestream. This file is used
to setup the scene, which means setting up the camera, objects, surfaces and
lighting and so on. The RIB file used to setup the scene, can also be found in
appendix B.2.

7.2 Creating Shaders in RenderMonkey

Figure 7.2 demonstrates shader creation in RenderMonkey. The left viewport is
an inspector which can be used to setup variables such as textures and colors,

Figure 7.2: Screenshot from RenderMonkey that shows how the shader were
created, using ATI’s shader IDE.

which can then be used in the shader. In the screenshot the inspector shows the
unrolled effect named ”BumpedSpecular”, which is the created effect. It has a
single pass, which specifies the second color used to modulate the texture with.
Inside the pass we also find the vertex and fragment program used to implement
the effect. Using the inspector it is also possible to setup the rendering state for
each individual pass, which allows effects such as transparency due to blending
etc. The next window to the right is the preview window. It shows the active
effect applied to a model, using a directional light which can be setup with a
variable in the inspector view. The artist view to the far right is similar to the
inspector, but it only allows for changing variables such as colors, vectors and
scalars, which are relevant for the shading effect. The artist view is meant as a
help for non programmers to tweak the appearance of the effect, by adjusting
variables used in the shader, and not having to deal with the more program-
ming oriented view of the inspector. The artist view is only a small help for
tweaking existing effects though, it is still only possible to create shaders with
RenderMonkey for programmers with shader programming experience.

In the middle to the right we have the code view, where it is possible to edit the
shader code of the vertex and fragment program. In this particular example the
glsl shading language were used to implement the effect. The vertex and frag-

ment programs implement the Blinn-Phong lighting model discussed in chapter
3, using the normal from the bump map and performing the lighting calculations
in tangent space. Tangent space calculations are necessary, because the normal
from the bump map is defined in this space. In the vertex program we calculate
the viewing and lighting vectors, and rotate them into the tangent space. The
fragment program then calculates the lighting contribution, and multiplies this
with the texture color, which has been modulated with the second color based
on the textures alpha component. This creates the effect seen in the preview.
The source code for the shaders can be found in appendix B.3.

7.3 Creating Shaders in Maya

Creating shaders in Maya using Hypershade is very similar to the approach
discussed in this thesis. Hypershade is Mayas own shader graph editor, and
it is also one of the first graphical shader creation tools demonstrated in the
industry. We created the shader by setting up the graph in Hypershade, as seen
in figure 7.3.

Figure 7.3: Shader creation using Hypershade in Maya. The left view shows the
available nodes, the middle-bottom view shows the created shader graph, and the
right scene view shows the shader applied to the spaceship.

The first node we put in the graph were the Blinn material node, which calculates
Blinn-Phong lighting as discussed in chapter 3. We then created two texture

nodes, one which held the main texture and one for the height map used for
bump mapping. In Maya one uses a height map and a bump map node instead of
a pre-calculated bump-map texture. This might be due to tangent space issues
for bump maps. The output from the Bump node were connected to the normal
of the Blinn node. The color and alpha output from the main texture were then
connected to a color blending node, attaching the color to the first input color,
and the alpha value to the interpolation slot. The second color were then set to
a blue color, and the output of the color blending node were connected to the
diffuse color of the Blinn node. The figure illustrates how the material renders
when applied to a sphere, which is being illuminated by a directional light.

Chapter 8

Results

The main product of this thesis is the shader graph editing tool, which makes
the creation of custom shader effects more accessible. This chapter will show
how the tool can be used to create custom material effects, and the features
implemented in the system will be presented. Besides the screenshots presented
here, the accompanying CD-ROM has a number of videos that demonstrates how
shaders are created using the shader graph editor. We also strongly recomend
looking at the high resolution images found on the CD, as it should be easier to
understand the figures from them. The images has been given the same name
as the figures, so they are easy to identify. More information about the CD can
be found in appendix C.

8.1 Shader Graph Editor

Figure 8.1 shows how the shader graph can be used to create a basic Blinn-
Phong shader. The alpha channel of the texture is connected to the glossy slot
of the Blinn-Phong node, which means that the value from the textures alpha
channel is used to modulate the specular contribution, giving glossy specular
reflections. In this example the Blinn-Phong and the Texture nodes has been set
to display their preview fields. The preview field of a node is a feature we have
implemented, to help the user understand what happens in the individual nodes.

Figure 8.1: Basic textured Blinn-Phong shader.

For texture nodes the preview field just displays the texture, which is important
if there are many textures, and the user needs to pick the correct one in a given
situation. For other node types, the preview field shows a rendering of a sphere
illuminated by a directional light, using the subgraph of the node to shade the
sphere. Being able to see a preview in each node1, helps the user identify where
in the shader graph something were connected wrong, which could prove to be
an important debugging feature. While most of the previous industry work has
this feature, most of the previous academic work discussed in chapter 2 did not
have this feature. In some of the screenshots shown in this chapter, the preview
field has been disabled for the nodes, in order to save space in the graph view.
It would have been possible to use the preview of those nodes too though, and
indeed the preview were often used during creation of the graphs.

The effect from figure 8.1 is a pretty standard effect, which most game engines
has build-in. So let us consider a slightly more sophisticated effect, which will
show the shader graph tools ability to quickly modify and create new shaders.
Figure 8.2 shows a shader graph which handles an extra game related color, and
shades the object using Blinn-Phong shading. This is the same shader as the

1Some of the purely geometrical nodes does not have previews

one we demonstrated in the previous chapter.

Figure 8.2: Blinn-Phong shader modified to have an extra color. Same textures
and light setup as in the examples in previous chapter.

In the users case, he wanted to render a space ship using this shader, and he
needed the additional color to set the color of the player. In figure 8.3 we show
the difference in the result the user were able to obtain without the shader
graph, and how simple it would have been to obtain the correct result with the
shader graph.

The effect were initially discussed on the Unity forum [35]. The user wished to
create a bump-map shader that could color specific parts of his spaceship, based
on the alpha channel of the texture. He did not know how to program shaders
though, and therefore he sought help from the community forum, as his initial
result (left ship in figure 8.3) were not satisfying. It is very likely though, that
he would have been able to create the shader as done in figure 8.3, by applying
a mix node 2 to mix between the player and main color based on the texture
alpha. In order to manipulate the player color slot, it were published using our
publishing scheme, which puts published colors or values in the material, for
easy editing in the inspector. The graph in figure 8.3 also shown how easy it is
to use normal/bump maps using our system. If the normal slot is not assigned

2The mix node is equivalent to the lerp command in Cg, and does linear interpolation.

Figure 8.3: Blinn-Phong shader modified to have an extra game-related color.
The leftmost space ship is rendered with the normal build in bump-map shader,
and the two right most ships are rendered with the shader presented by the graph,
which features the extra player color.

as in 8.1, then the object spaced normal supplied in the model is used. If the
normal map slot is assigned to a normal map, the Blinn-Phong node uses the
normal from the map to do normal/bump mapped lighting. The Blinn-Phong
node were implemented to perform the required tangent space transformation
in the vertex program for optimization purposes, therefore no basis transfor-
mation were inserted in this example. In the next example, we will show an
effect where the automatic insertion of transformation nodes is used. Figure 8.4
demonstrates a rather advanced shader that creates a silver like material. The
shader uses the Blinn-Phong lighting model, but the normals has been fetched
from a normal map. The UV coordinates used to find the normal is further
more offset according to a height map, which is known as parallax mapping.
The shader has also been made to reflect the environment, by sampling an en-
vironment map with the reflected viewing vector. The reflected vector has been
found by reflecting it on the perturbed normal from the normal map, which en-
sures that the reflection also appears bumped. This shader operates with three
primary spaces, namely object space for the viewing and lighting directions,
tangent space for the normal found in the normal map, and the environment
map nodes requires the direction vector to be in world space. This gives an

chance to see the automatic insertion of transformation nodes in action.

Figure 8.4: Parallax mapping shader with Blinn-Phong lighting, and reflections
in the ambient pass

The thin green boxes in the parallax shader graph, is the transformers that has
automatically been inserted by the system. The leftmost transformer transforms
from object to tangent space, while the one to the right transforms the reflection
vector from tangent to world space. The left transformer were inserted because
this particular reflection node is set to tangent space. This happened because
the first connection made to it, the output from the normal map, is defined to
be tangent space, which made the whole reflection node tangent space. The
environment map needs a world space vector though, which is why the other
converter were inserted. Issues with insertion of these transformation nodes are
discussed in chapter 9.

Another feature discussed in this thesis is the group nodes, which can be used to
encapsulate multiple nodes into one group node. Figure 8.5 shows the content
of the group node named Glossy in figure 8.4.

The group node may seem like a trivial thing, nonetheless it were not discussed
in the previous academic work presented in chapter 2. The group node rep-
resents an important feature, namely the ability to get a far better overview

Figure 8.5: A view inside the glossy node shown in figure 8.4.

in large shader graphs. The amount of screen space you have available is very
important in visually based applications, so if space can be saved on the graph,
and the graph further more can have a simplified look, then that is a very im-
portant feature to have. The group node works by selecting a number of nodes,
and then selecting ”Group Selected Nodes”. The connections leading into and
out from the selected nodes to the rest of the graph, will automatically be setup
as connectors in the group node. Should the user wish to expose other slots
from the nodes in the group node, so they can be handled from the group node
instead, then this can be done by simply right clicking the slot and pressing
publish. Another important feature of the group node is that the user can cre-
ate custom nodes by grouping several nodes with different functionality, like
the glossy node shown in figure 8.4 does. Unity has a packaging system which
can be used to save these nodes, and share nodes between users, which made it
unnecessary to implement this feature in this project in particular.

Until now we have only discussed how the shader graph can be used to create
shading effects, which mainly are calculated in the fragment program. The sys-
tem fully supports modifying the vertices in the vertex program too though,
which is something nearly all the other work discussed in chapter 2 did not
support. A good example of an useful vertex program, could be a vertex shader
which performs the skinning calculations in an animation system. The shader
graph editor presented here would be able to perform such an operation, it
would require that a relevant node were implemented first though. Unfortu-
nately there were not enough time to create an animation and implement the
skinning functions in this project. Instead we illustrates how the vertex shading
capabilities can be used to transform the position of the vertices, creating a
magnified object.

Figure 8.6: Demonstration of the vertex shading abilities of the shader graph
editor. The three objects are (from the left): A sphere, A torus and a cylin-
der. The vertices are transformed as illustrated in the graph, which causes the
modified shape.

Figure 8.6 presents a shader which magnifies the size of an object by 1.5, and
then shades this magnified object with Blinn-Phong shading. The top objects
in the scene view is rendered with this shader, while the bottom objects is
rendered using a normal Blinn-Phong shader like the one from figure 8.1. The
magnification shader interpolates the object space vertex position with the zero
vector, with a interpolation value of 0.5 (zero vector and the 0.5 interpolating
value are default values). It then adds this result to the vertex position, and
uses the new position in the Blinn-Phong shading calculations. The example
shows that the shader graph supports custom vertex transformations too, and
can use these new vertex positions in the rest of the shader. It also shows
how the preview works when altering the vertex position. In the lerp node,
the preview sphere is half size of the standard sphere, which is what should be
expected. In the add node though, we only see a black box in the preview field.
This is because the sphere has becomed too big to fit the preview field, so the
sphere covers the whole field. This illustrates the problem that can arise, when
performing enlarging transformations on the vertex position, and then trying
to fit it in the limited preview field. The problem would be less apparent if the
preview rendering automatically adopted a reasonable focusing of the sphere,

but then we would still not be able to illustrate the great magnification. In two
leftmost previews, the object is rendered black, because these nodes does not
output a color value. In the Blinn-Phong nodes preview field, the shading is
a one would expect, put the previous transformations are not visible. This is
because the Blinn-Phong node does not output a three component vector, so
the preview renderer does not know what to use as the vertex position, and
thus uses the standard non-transformed position. This could be updated by
supporting more customizable preview fields, but that would then propagate
the problem of the preview field not showing the whole object, so we felt that it
would be better to just show the shading on a single sphere, and disregard the
transformation in these cases.

8.2 Integration with Game Engine

One of the most important aspects of this thesis, is the integration of the shader
graph editor with a game engine. This integration has allowed us to investigate
features such as automatic generation of multiple shaders, depending on which
light type that is being used and on other effects such as shadows. The inte-
gration has also ensured that an effect file format were used, instead of just a
single vertex and fragment program. This has provided the option to render
multiple passes with a single shader, such as both ambient and lighting passes.
The effect file format also gives the possibility to modify the OpenGL states in
the shader, thereby supporting blending, transparency, different culling schemes
and so on. This section will present results that we were only able to obtain
because of this integration.

Figure 8.7 shows a rendering of the entrance to a building. For this scene we have
created three shaders using the shader graph, a glass shader for the glass doors,
a floor shader to shade the floor, and the Ward shader shown in the shader graph
view. The ward shader uses the Ward node, to calculate anisotropic shading
of the brushed steel wall. The figure illustrates how working inside the game
engine will allow the user to work on final in-game scenes, which should be very
helpful, as things such as light setup and surroundings plays an important role
on the shading.

8.2.1 Effect File Capabilities

The glass shader demonstrated in figure 8.8, demonstrates how transparency
can be obtained using the shader graph. The shader uses the Blinn-Phong node

Figure 8.7: Shader graph editor being used to create the materials of a game
scene in a simple way.

for light calculations (with very dark specular and main color though), and we
have added reflections to the ambient pass using an environment map. We then
set the pass type for the graph to be transparent, so we can see through the
window. This illustrates the ability to setup selected OpenGL rendering states
in the shader graph. We can also see that there is a check box for turning culling
on/off, which can be used to make the geometry faces visible from both sides.

The environment map used in this scene is the classic mountains cube-map from
the ATI SDK, found at ATI’s developer pages [22]. This environment does not
have much in common with the scene presented here, and a visually far better
approach would have been to use a cube map rendering of this scene, had it been
available. It would be even more interesting if this cube-map could be updated
each frame though, as that would give dynamic reflections in the window, which
would greatly enhance the visual experience. An efficient approximation known
from the games industry, is to render only one or two faces of the cube-map each
frame, which should give good enough quality for the reflections. Currently it
is not possible to setup this cube-map rendering using the shader graph. The
reason for this is that there is no way to move the camera in the effect file, nor
to select a cube-map as the render target. It is not only our system that has this

Figure 8.8: The shader graph shown in the top viewport is used to render the
transparent window surface in the glass doors. In the inspector view it can be
seen how the transparent mode has been chosen, which setup the correct blending
state in the effect file.

deficit, in fact to our knowledge no effect file formats supports this, which means
the user has to setup the updating of the cube-map in the engine instead. In
the future it could be interesting to experiment with scripting inside the effect
file, which would then support operations such as updating a cube-map.

Effect files do support multiple passes though, which is something we have
exploited in the shader graph. Shaders created with the graph has two passes as
default, an ambient pass and a lighting pass. Nodes connected to the selfillum
slot of the final color node, will go into the ambient pass of the shader. An
example could be the environment reflections shown in figure 8.8. The ambient
pass is necessary in Unity, because without it the object would disappear from
the sceneview when it is out of range of any light, due to the culling system.

8.2.2 Multiple Light Types in One Shader

In this section we will present the results from the shader processing system. The
system is responsible for turning the high level Cg code into assembly level vertex
and fragment programs, which are then bound to the graphics card. During this
step the system compiles a shader multiple times, based on keywords specified
either by the shader programmer, or keywords specified by shader graph nodes.
One such node is the Light node, which supports the three classic light types;
point lights, spot lights and directional lights. The main difference between these
light-types is the way their attenuation values should be calculated. Therefore
the Light node specifies the three keywords point, spot and directional, which
generates one shaders with multiple different vertex and fragment programs,
that supports the three different light types. In figure 8.9 below we demonstrates
this, by rendering the entrance scene with one light of each type. The point light
by the entrance door is the same as for the other figures. In this scene there
further more is an orange colored directional light, to illuminate the left side of
the scene. In the right side there is a blue spotlight, which casts light on the
right steel wall. It is important to notice that, it is the same shader graph shader
that is being used for rendering all three light types, which has automatically
been generated to support all three light types based on the keywords.

8.2.3 Integration with Shadows

The keyword system introduced in this thesis, can also be used to support
shadows in the created shaders. Unfortunately the shadowing system of the
Unity engine is not completed yet, so it were not possible to use it in this thesis.
As the integration with shadows is an important argument, we created our own
custom shadow implementation, by using shadow rays that are evaluated on the
GPU. The shadow rays are intersection tested with the sphere, using ray-sphere
intersection as discussed on the siggraph page [29]. The result of the shadow
implementation can be seen in figure 8.10.

The shadow information is found in the shadow slot of the light node. The light
node has introduced two additional keywords to the shader called ”SHADOW”
and ”NOSHADOW”. This causes the processing system to generate additional
vertex and fragment programs, which does the shadow calculations. In figure
8.10 we set the SHADOW keyword, which caused the shader to use the shadow
information. The keyword can be toggled by using the checkbox named ”Cast
Shadow” as seen in the inspector. In figure 8.11 the stone floor is rendered using
the same shader graph, but with the ”NOSHADOW” keyword set, which causes
programs without shadow support to be bound and used for rendering.

Figure 8.9: In this scene the graphs created with the shader graph is lit by
three different light types, a white point light, a yellow directional light and a
blue spotlight. The Ward shader shown in the shader graph view calculates the
individual light attenuation from all three light types, using the shader processing
system presented in this thesis.

Figure 8.10: Shadow being cast on a parallax mapped stone floor. The sphere
is shaded with the anisotropic Ward shader. The sphere is set to cast shadows,
which enables the ”SHADOW” keyword, so the correct shadow capable vertex
and fragment programs are used.

Figure 8.11: The sphere is set not to cast shadows, so in this case the
”NOSHADOW” keyword is enabled and the versions of the programs without
shadows are used.

Chapter 9

Discussion

This chapter discuss the results obtained with the shader graph editor presented
in this thesis. Initially we will discuss how the shader graph can be used to
improve the workflow in shader creation. To better argue for this increased
workflow, we will compare a shading effect created with the shader graph, to
similar effects created with ATI’s Rendermonkey and software which uses Pixars
Renderman. This comparison will show how fast an shading effect can be created
using our system, without requiring any programming. A comparison with
hypershade in Maya will also be discussed, which will lead to a discussion about
the importance of game engine integration. Further more we will discuss the
difference between a hand coded shader, and a shader created with the shader
graph tool, with respect to the performance of the shader.

9.1 Comparison With Renderman, RenderMon-

key and Maya

Chapters 7 and 8 demonstrated the creation a shader that does bump-mapped
lighting, and features an additional game related color, which were modulated
onto the object using the alpha value from the texture map. We saw that in
order to implement this effect in Renderman, four shaders had to be created,

two for the light-source types, one for the surface displacement and one for do-
ing the lighting calculations. While the Renderman approach, with multiple
different shader types, does give a large degree of flexibility, it is definitely not
the most simple solution. The multiple different shader types and the build in
variable names which must be used in the shaders, requires users of Renderman
to have a substantial amount of experience with the system, in order to create
more advanced effects. Further more Renderman is a programming interface, so
only users with programming experience will be able to use it, which leaves out
most artists and other types of creative people. So while Renderman remains
one of the most advanced systems for creating non real-time shaders, it is also
one of the most difficult systems to use, which limits the amount of possible
users significantly.

Soon after the introduction of high level programming languages for real-time
shader creation, several integrated developer environments came out on the
marked, to help shader programmers make their shaders. While these programs
does offer some aid, such as easy variable tweaking and rendering state han-
dling, they still require the user to program the shader by hand. In the case
of the shader discussed here, that meant writing both a vertex and a fragment
program, which implements the bump-map shading effect. When doing this we
had to take care of doing the lighting calculations in the same space, which
meant rotating the viewing and light vectors into tangent space, as this is the
space the bump-map uses for storing the normals. This example illustrates that
a programmer not only needs to know the syntax of the shading language, but
also needs to understand more advanced topics such as performing lighting cal-
culations in tangent space, in order to implement this effect in Rendermonkey.
As the shaders grow more advanced, the programmer will also need to have
an even deeper understanding of the underlying graphics hardware and shader
programming in general in order to succeed.

The last of the other products presented in chapter 7, were Mayas material
editor Hypershade. Shader creation in Hypershade is very similar to creating
shaders using our shader graph editor. Both versions use the Blinn-Phong node
as the material node, and uses a bump-map (height map in Hypershade) and a
texture map, along with an interpolation node which adds the extra color to the
scene. When glancing on the Hypershade shader graph, and our version from
figure 8.2, the largest difference seems to be that Maya does not have connector
slots, instead they give a popup menu when the user makes the connection,
where the appropriate variables can be chosen. Whether that is better than
having explicit slots is probably a matter of personal taste. There are other im-
portant differences between our system and Hypershade though. One of them
is the ability to group several nodes in a single group node. For more compli-

cated shaders, this is an important feature which can be used to create a better
overview of the graph. Maya does not have this feature though. Maya does
also not have vertex shading support, which makes it impossible to do vertex
transformations in Maya.

While the shaders are easy to create in Maya, they are not usable for use with
a real-time rendering engine, as it is not possible to export the shader to an
effect file. Shaders created in Maya can therefore only be used inside Maya, for
rendering images or animations. This is actually the same in our case, where
the created shaders are only usable with the Unity engine. This is quite obvious
as we are using the custom effect file language called Shaderlab, and because
we have chosen to do the tight integration with this specific engine. In the next
section we will discuss the pros and cons of having a shader graph editor as a
stand alone tool, in a content creation tool or in a game engine.

Another big difference between our system and Hypershade in Maya, is the
missing ability to create new nodes in Maya. When playing with Hypershade,
we often were missing specific nodes that just were not there, and as it is im-
possible to create the nodes oneself, this could lead to effects that just cant be
made. In our system on the other hand, we have a rather simple interface for
creating new nodes, where most of the functionality of a node is already imple-
mented in a parent class. Creating nodes requires a programmer, which uses a
little time to understand the node interface, but once a node has been created it
may be used many times in many different situations. We therefore felt that it
was an important feature to have, in order to insure extendibility of the product.

Figure 8.2 in chapter 8 demonstrates how the discussed shader can be created
using our shader graph system. As the figure demonstrates, the creation process
should be quite intuitive, as the user just has to connect the individual nodes. Of
cause the user must know graphical terms such as normal maps, and know what
to use the material nodes for, in order to create shaders using our system. This
is in accordance with the target user group presented in chapter 4 though. On
the contrary to both Renderman and RenderMonkey, no programming has to be
done when creating shaders using our system. The user can easily play with the
connections, to create new interesting effects. Whenever a connection between
different spaces are made, it is either handled in the node, or a conversion node
is inserted to perform the required transformation. The result should therefore
always be valid and in accordance with what the user expects from the graph.
Further more it is only possible to create legal connections, as only slots of the
same types can be connected. We aid the user to make the right connections by
coloring different slot types in different colors. This is different from some of the

previous academic work [10], where it were possible to setup illegal connections.
In figure 9.1 we show the result of rendering with the four different methods side
by side. The reason why they have slight variations, is that some were made on
a PC and some on a Mac. Those two systems have quite a large difference in
the standart gamma setting, and even though we tried to adjust for that it were
difficult to find the coresponding intensity and ambient settings. The bumpy
look on the Renderman rendering also looks slightly different. This is because
Renderman actually displaces the geometry, where the other methods just use
the perturbed normal to do their lighting calculations.

9.2 Game Engine Integration

The most important aspect of our system, that really sets it apart from most of
the previous work, is our tight integration with a game engine. This integration
has let to several things, for example the use of an effect file for storing the
shaders, which again leads to support for features such as handling the render-
ing state, having multiple passes and so on. As far as we know, no academic
work has previously discussed storing shader graph shaders in effect files, which
is also why previous academic work has not supported changing the rendering
state, nor having ambient passes or multiple passes. We support both of these
features, which gives a higher degree of flexibility for the shader graph.

In chapters 2 and 7 we have discussed some of the other tools available for creat-
ing shaders. These tools can all be divided into three categories, namely stand
alone editors, content creation tools and tools for real-time rendering engines.
Depending on the category of a specific shader graph editor, there is quite a
big difference of what it is possible to use the editor for. The stand alone ed-
itors are naturally the most isolated tools. Some of them are able to work on
the actual scene geometry, but they have to export the created shader to an
effect file, which then must be integrated into a rendering engine. The stand
alone systems can therefore only be used for the actual shader generation, and
a significant amount of work remains to make it work in the engine. This work
includes integration with the lighting system, to support different light types,
and integration with the shadow calculations. In order to support lighting and
shadows, it will be necessary to create multiple versions of the shader, or possi-
bly find another scheme which handles attenuation and shadow calculations in
a generic way.

The content creation tools are more versatile than the stand alone tools, at

least with respect to lighting and shadow calculations. Using the shader graph
editors in the content creation tools, it is possible to create material effects,
which automatically supports different light types and shadows inside the tool.
It is unclear how this is supported though, it might be through the rendering
scheme used for producing the renderings, such as photon mapping or ray-
tracing. The content creation tools has the same problem as the stand alone
tools, namely that in order to use their shaders in a game engine, it is necessary
to export the effect file, if that is even possible. Exported effect files will face
the same problems with shadow and light type integrations, and therefore it will
not be straight forward to use them in a real-time engine.

None of the past academic work that we could find, discussed integrating the
created shaders with a real-time game engine. In the industry there has also
been very few examples of this, one of the only ones are the material editor
of Unreal Engine 3, which is not accessible to normal people. This makes the
work presented in this thesis rather unique, as we present a full integration with
a commercial game engine. Using our product, shaders can be created in a
simplified way, which is quite similar to that of both the stand alone tools and
the content creation tools. Unlike those other tools though, shaders created
using our system will automatically be preprocessed to support different light
types, by creating multiple versions of the vertex and fragment programs. When
future versions of the game engine will support shadows, the shaders will also
automatically have support for those, using the preprocessing system discussed
in chapters 5 and 6. The strongest argument for integrating the shader graph
with an engine, is that we want the generated shader where we need it. It is
common to use several different content creation tools, but rather uncommon to
use different engines, when creating games or other real-time rendering appli-
cations. So it is unlikely that the generated shader is going to be used outside
the engine anyways.

In our system we have further more explored vertex shading using a shader
graph editor, which is something none of the other available systems has. Ver-
tex shaders give the user support for implementing animation features, which
then runs on the graphics hardware. In the future vertex shaders might also
become increasingly relevant for doing physics calculations on the GPU. Vertex
shaders also has a relevance in shading calculations though, as operations such
as vector calculations and space transformations, can be moved to the vertex
program in order to save instructions in the fragment program. As our shader
graph has support for vertex programs, we have also explored a method, which
automatically keep as many operations as possible in the vertex program. We
further more have taken measures to optimize the structure that transfers vari-
ables from the vertex to the fragment program, in order to maximize the amount
of variables we can put through the interpolator.

There is one possible issue with our game integration, which is the amount of
vertex and fragment programs generated, when many keywords are used. In
order to investigate the implications of this, we hand-coded a version of the
anisotropic Ward shader, and put in the keywords listed in table 9.1.

POINT SPOT DIRECTIONAL
SHADOW NOSHADOW HDR NOHDR
IMGEFFECT NOIMGEFFECT MOTIONBLUR NOMOTIONBLUR
LIGHTMAP NOLIGHTMAP DOF NODOF
NVIDIA ATI INTEL MATROX

Table 9.1: The Anisotropic Ward shader were compiled with these keywords,
yielding 786 individual vertex and fragment programs.

Using our preprocessing system, 768 versions of the vertex and fragment pro-
grams were created, matching the amount of possible combinations of those
keywords. The processing time for the shader were quite long (1-2 minutes), as
the Cg command-line compiler had to be opened more than 1500 times during
the process. When using the shader though, the framerate of the scene rendered
remained the same, which indicates that the high amount of keywords, does not
slow down the binding of the shader significantly. The only other problem that
could arise is the space consumed by the large shaders on the graphics hard-
ware. Lets consider a more realistic scenario, where a shader of 200 instructions
is processed to give 20 individual vertex and fragment programs. If we further
more say that each instruction takes up 10 bytes of memory on the graphics
card, the result is that 200∗20∗10 = 40000 which is approximately 40 kilobytes
of memory. If the scene has 100 of these shaders, they would take up about
four megabyte on the graphics card, under the assumption that they are not
compressed or anything like that. This is roughly the same size as two high
resolution textures. Our conclusion is that the preprocessing system should not
cause problems under normal or even more extreme use cases, and we feel that
it is the best way to give the flexibility of supporting multiple effects in one
shader.

Shadows are one of the most important visual elements in computer graphics,
as well as in the real world. Shadows is an important visual clue in images, as
it can be impossible to determine the spacial position of objects without them,
and they can also add mood, information about the time of day and much more.
In chapter 2 we discussed how most of the previous industry work, and all of the
previous academic work, did not consider support for shadows in game engines.
In figure 8.10 and 8.11 we showed how the keyword processing system introduced
in this thesis, will give the created shaders support for toggling shadows on or off.

Even though that the shadow scheme used is a custom raytracing like method,
the argument is that it does not matter how the shadow calculations are made.
So when the shadow system of Unity is completed, it will exchange our custom
code, and the generated shaders will then support shadows in a generic way.

9.3 Graph Shaders and Hand-coded Shaders Com-

parison

In order for the shaders created using the shader graph to be practical, they
may not run significantly slower than similar handcoded shaders. If they do run
slower, not many would have an interest in them, as optimized rendering and
getting as much out of the graphics card as possible is important for games.
The advanced shader created with the graph in figure 8.4, implements a reflect-
ing parallax bump-mapped effect, which is used to produce a silver effect on
a sphere. We will use this advanced shader to discuss potential performance
pitfalls with the shader graph.

The transformers are the most delicate point for the shader graph tool when
it comes to performance. If we assume that the nodes are reasonably well
implemented, so that they do not create unnecessary compiled code 1, then
the inserted transformers should be the only difference between a hand coded
shader, and a shader generated using the graph. The transformers are inserted
whenever a connection between slots defined in different mathematical spaces
are created. Sometimes it is possible to optimize the amount of matrix multipli-
cations though, or at least to move some of them to the vertex program by being
a little smart. This means that a hand coded shader, if programmed by a smart
shader programmer, may have less instructions and therefore run faster. For
comparison we have produced an optimized version of the parallax shader from
figure 8.4, which we have compared to the one generated with the shader graph
in table 9.2. The generated and hand written source code for the two shaders
can be found in Appendix B.4. By studying the code of both of the shaders,
one can see that the main difference is that a matrix transpose were omitted in
the hand coded shader, and a matrix multiplication were moved to the vertex
program instead of the fragment program. The difference is that the hand coded
shader setup a tangent to world space matrix in the vertex program, and passes
that to the fragment program. In the fragment program, the normal from the
normal map is transformed into world space, before it is used with the world
space viewing vector to find the reflected vector. In the generated version, the
reflection is done in tangent space, and the reflected vector is then transformed

1Extra code in the nodes is only a problem if it survives the Cg compilers optimizations.

into world space in the fragment program, which is an operation that requires
two matrix multiplications plus a transpose of the object to tangent space ma-
trix. One additional difference is that the hand coded shader uses the world
space viewing vector in the parallax calculations, which is not really correct as
it should be the tangent space vector. We experimented with both and found
the visual difference to be so small that it were neglicable. It would still be more
correct to use the tangent space vector though, which would introduce another
matrix multiplication in the vertex program of the hand coded shader.

Vertex Fragment
Graph Hand-coded Graph Hand-coded

Lit Amb. Lit Amb. Lit Amb. Lit Amb.
Point 25 18 23 24 36 35 37 23
Spot 25 18 23 24 38 35 39 23
Directional 21 18 19 24 34 35 35 23

Table 9.2: This table compares the amount of instructions in the processed vertex
and fragment programs. The comparison is done for a hand coded shader, and
one generated with the shader graph, for both the ambient and light calculating
pass.

The amount of instructions shown in table 9.2, is the number of assembly in-
structions generated by the Cg compiler, when the vertex and fragment pro-
grams are processed with the preprocessor. The biggest difference is found in
the fragment program in the ambient pass. This is where the reflection calcula-
tions used with the environment map is calculated, and where the hand coded
shader were optimized by avoiding a matrix transpose and a matrix multipli-
cation. This results in 12 instructions less or about 33 percent fewer than the
generated shader, which is a quite substantial optimization. As it can be seen,
the corresponding vertex program is 6 instructions longer due to the inserted
transformation, but that is not a problem as typical game scenes has far fewer
vertices than fragments on the screen, so it is usually considered an optimization
to move calculations to the vertex program.

Another interesting observation is that the hand coded shader actually is one
instruction more expensive in the fragment program in the light pass. It is
not apparent why that is so, as no extra calculations goes on in that program,
and the result of the two programs are the same. We believe that the extra
instruction is due to the Cg compiler who is missing some optimization due to
the difference in the high level code. So while the output should be identical
between the two shaders, some coding related issue makes the compiler miss a
possible optimization. The same seems to be the case for the vertex program of
the lighting pass, where the generated shader has two extra instructions com-

pared to the hand coded one.

As it can be seen from this section, one should be careful if the shader graph
has a lot of transformation operations. If a person with shader programming
experience is available though, it would be possible to use the graph to create
shaders in a faster and easier way, and then have this person doing some opti-
mizations by hand afterwards. We believe that while this certainly is an issue,
it is not a major one, because most users will not run in to these problems very
often. Most users will probably use the nodes that ship with the system, and
add extra textures, color ramps and alike to create a custom material effect. It
is likely that many of these operations are performed on colors, which does not
exist in a particular basis, and therefore no transformers will be inserted. Future
optimizations giving a more intelligent automatic transformation system would
be interesting though, as this should result in a smaller performance difference
between hand written and graph generated shaders.

Figure 9.1: The bumped sphere rendered with the four different systems. Top
left is our shader graph. Then using Hypershade in Maya. Bottom left is the
Rendermonkey version, and then in the bottom right its the result from Render-
man.

Chapter 10

Conclusion and Future Work

10.1 Future Work

throughout this thesis we have often made arguments that the shader graph
editor is very easy to use by non-programmers. Those arguments are based on
subjective belief, and the fact that non-programmers are using similar editors
made by others. It remains to be tested if users will find our editor just as easy
to use though, so future work should definitely include a generalized user test,
that we unfortunately did not have time for during this project. Other work
that aims towards completing the product, is creating even more nodes such as
a Fresnel node. More material nodes that implement other BRDF’s could also
be interesting. On a more academic note, updating the shader graph to have
support for the GLSL shading language would be quiet interesting. This would
give us the possibility to support future shader models on all capable graphics
cards. An example could be shader model 3.0, where it would be very interesting
to experiment with support for dynamic branching and vertex textures.

10.2 Conclusion

This thesis has presented the design and implementation of a shader graph edi-
tor. The editor can be used to create shaders in a simplified way, by connecting
nodes with different functionality to create an specific effect. The presented sys-
tem ensures that these connections are both syntactically and mathematically
correct, by disallowing connections of differently typed variables, and automat-
ically handling transformations from one mathematical space to another. The
automatic space transformation has been demonstrated during the creation of
a parallax mapping shader, where automatic transformations to both tangent
and world space are performed, without the user has to think about that. It
should be noted that under some circumstances, the automatic transformations
can cause a graph shader to perform slower than a handcoded shader. Generally
the two shaders will perform equally well though.

In order to increase the usability of the editor, we have implemented a group-
ing feature, so several nodes can be turned into one. We have demonstrated
through examples, how this can be used to increase the overview of a shader
graph. We have further more introduced an preview option for the nodes, that
will demonstrate the intermediate results throughout the shader graph. This
preview option will make debugging the shaders generated with the graph eas-
ier, as it will be possible to see where something goes wrong. The features such
as creating group nodes, are handled from our simple but yet fully functional
GUI system.

On the contrary to other accessible shader graph editors, we are able to handle
both vertex and fragment shading using the editor described here. This has
given the possibility to perform optimizations by putting more calculations in
the vertex program, and has enabled the shader graph user to create shaders
that actually transform the vertex position. During both vertex and fragment
shading, swizzeling can be needed, so this has been supported by making specific
swizzle nodes. In the case that more nodes are needed, it should be possible for
programmers to create those, by using the simple node interface where basically
only a single function has to be created.

The presented shader graph has been integrated with a commercial game engine,
which has given us the unique opportunity to support effects such as shadows
and different light attenuation in the created shaders. This has been done by
creating a novel processing step, where several versions of the vertex and frag-
ment programs are generated, to match the effects that should be supported by

the shader. The engine integration has also led to the use of effect files for stor-
ing the shaders, which gives the user the option to handle OpenGL rendering
state settings, such as blending and culling.

Appendix A

Introduction to Unity

A.1 Introduction to Unity

Unity is a Mac based game development platform, developed with ease of use in
mind. The system combines a powerful game engine with an editing interface.
Unity has always been developed with ease of use and workflow in mind. Every-
thing in Unity is contained within one window, that can look like the screenshot
in figure A.1.

The top-left view of the application is the scene view. When creating a game
the user sets up her scene in this view by dragging objects and models into
it. Models from most modeling packages are imported into unity automatically,
if they are saved in the folder for the active project. It is not possible to do
any modeling inside Unity itself. The contents of the project folder can be ex-
amined in the project view, which is situated to the bottom right of the scene
view. It is possible to use the create button on the top of this view to create
new materials, render-textures and so on. Any selection will be shown in the
inspector to the right of the project view. Here is is possible to manipulate
the selected game object in any way it supports. For the case of the selected
material it is possible to assign its texture, change it to use a different shader
and so on. The whole scene hirachy is displayed in the middle-top view, and the
left-bottom view displays the result as it will look in the actual game. Unity has

Figure A.1: The Unity application

build-in physics, using the well known Novodex API from Ageia. Physics and
other game-play related behaviors can be scripted using the .NET framework
(C#, javascript) or the phyton like language Boo. Unity also has packages for
importing and playing audio-clips and text rendering. The text rendering were
implemented as a part of the shader graph project, and will be discussed briefly
later. Unity is primarely aimed towards indie game developers for casual games
creation. It is also possible to use it for architectural renderings, 3D commer-
cials and much more. The standard Unity user will be an artist that knows a
little programming, or an indie developer that knows a little bit of everything.
More information on Unity and projects involving Unity can be found on the
applications home-page: www.otee.dk.

As this project concerns the creation of shaders, we will primarily concern our-
selves with the material system in Unity, and focus on a way to develop and
integrate a graphical approach to shader creation. The motivation for this is
that very few users take advantage of the advanced shader capabilities Unity
offers. Unity has a build in shading language (discussed in the next section), but
most users are intimidated by the level of difficulty, and graphics programming
knowledge required, to master such a language. We therefore with to present

an more accessible way, to utilize the powerful graphics capabilities of modern
computers.

Appendix B

Created Shaders Source Code

B.1 Sample ShaderLab shader

Shader ” Glossy” {
Prope r t i e s {

Color (”Main Color ” , Color) = (1 , 1 ,1 ,1)
SpecColor (” Specu lar Color ” , Color) = (0 . 5 , 0 .5 , 0 . 5 , 1)
Sh i n i n e s s (” Sh in in e s s ” , Range (0 . 01 , 1)) = 0.078125
MainTex (”Base (RGB) Gloss (A)” , 2D) = ”white” {}

}
Category {

tags { ” lod ” = ”0” }
Blend AppSrcAdd AppDstAdd

Fog { Color [AddFog] }
// −−−
// Geforce 3 , ARB FP
// −−−
SubShader {

TexCount 4 // Get Geforce2s to ignore t h i s shader
Pass { // Ambient only

Name ”BASE”
Tags {”LightMode” = ”PixelOrNone”}
Blend AppSrcAdd AppDstAdd
Color [PPLAmbient]
SetTexture [MainTex] { constantColor [Color] Combine t exture ∗ primary DOUBLE, t exture ∗

constant}
}
Pass {

Name ”BASE”
Tags {”LightMode” = ”Vertex ”}
Light ing On
Mater ia l {

Di f f u se [Color]
Emiss ion [PPLAmbient]
Specu lar [SpecColor]
Sh i n in e s s [Sh i n i n e s s]

}
SeparateSpecu lar On

CGPROGRAM

#pragma p r o f i l e s arbfp1
#pragma fragment
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB p re c i s i o n h i n t f a s t e s t

#inc l ude ”UnityCG. cg in c ”

s t r uc t v2f {
f l o a t 4 hPos i t i on : POSITION;
f l o a t 4 uv : TEXCOORD0;
f l o a t 4 d i f f :COLOR0;
f l o a t 4 spec :COLOR1 ;

} ;

uniform sampler2D MainTex ;
ha l f 4 main (v2f i) : COLOR {

ha l f 4 temp = tex2D (MainTex , i . uv . xy) ;
temp . xyz = (temp . xyz ∗ i . d i f f . xyz + i . spec . xyz ∗ temp .w) ∗ 2 ;
temp .w = temp .w ∗ i . d i f f .w;
return temp ;

}
ENDCG

SetTexture [MainTex] {Combine texture ∗ primary , constant}
}
Pass {

Name ”PPL”
// Sum a l l l i g h t con t r i b s from 2−tex l i g h t s
Tags {

”LightMode” = ”Pixe l ”
”LightTexCount ” = ”012”

}
Blend AppSrcAdd AppDstAdd
Fog { Color [AddFog] }

CGPROGRAM
#pragma p r o f i l e s arbfp1
#pragma fragment f rag
#pragma vertex ver t
#inc l ude ”UnityCG. cg in c ”
#inc l ude ”AutoLight . cg inc ”
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB p re c i s i o n h i n t f a s t e s t
#pragma MULTIINCLUDE SPOT

st r uc t appdata {
f l o a t 4 vertex ;
f l o a t 4 tangent ;
f l o a t 3 normal ;
f l o a t 4 texcoord ;

} ;

s t r u c t v2f {
f l o a t 4 hPos i t i on : POSITION;
f l o a t fog : FOGC;
f l o a t 4 uv : TEXCOORD2;
f l o a t 3 vi ewDir ect ion : TEXCOORD3;
f l o a t 3 normal : TEXCOORD4;
f l o a t 3 l i g h tD i r e c t i on : TEXCOORD5;
LIGHTMAPCOORDS

} ;

Light l ;

v2f ver t (appdata v) {
v2f o ;
o . hPos it i on = mul (g l s t a t e . matrix .mvp, v . vertex) ;
o . fog = o . hPos i t i on . z ;

// Compute the object−space l i g h t vec to r
o . l i g h tD i r e c t i o n = ObjectSpaceLightPos [0] . xyz − v . vertex . xyz ∗ ObjectSpaceLightPos [0] . w;
o . uv = mul(v . texcoord , g l s t a t e . matrix . t exture [0]) ;
o . v i ewDir ec t ion = ObjectSpaceCameraPos − v . vertex . xyz ;
o . normal = v . normal ;

TRANSFER
return o ;

}

uniform sampler2D MainTex ;
uniform f l o a t 4 SpecColor ;
uniform f l o a t Sh i n i n e s s ;
f l o a t 4 f rag (v2f i) : COLOR {

// Normal izes l i g h t vector with no rmal i za t ion cube map
f l o a t 3 l i g h t = normal i ze (i . l i g h tD i r e c t i on) ;
f l o a t 3 normal = normal i ze (i . normal) ;
f l o a t 3 V = normal i ze (i . v i ewDir ec t ion) ;
f l o a t 3 H = normal i ze (l i g h t + V) ;

f l o a t 4 c o l o r ;
f l o a t 4 t ex co l = tex2D (MainTex , i . uv . xy) ;
f l o a t d i f f u s e = dot (normal , l i g h t) ;
f l o a t spec = pow(max(0 , dot (H, normal)) , Sh i n i n e s s ∗128)∗ t ex co l . a ;
spec = spec ∗ d i f f u s e ;

c o l o r . rgb = (d i f f u s e ∗ t ex co l . rgb ∗ ModelLightColor [0] . rgb + SpecColor . rgb ∗ spec ∗ LightColor0 . rg
c o l o r . a = spec ∗ SpecColor . a ∗ LIGHTATT(i) ;

return c o l o r ;
}
ENDCG

SetTexture [LightTexture0] { combine prev ious ∗ t extu re }
SetTexture [LightTextureB0]{ combine prev ious ∗ t extu re }
SetTexture [MainTex]{ combine previous ∗ texture}

}
}

}
Fal lback ” VertexLi t ” , 0

}

B.2 Renderman Source Code

s u r f a c e bumpspecmodulate (f l o a t Ka = 1 , Kd = .2 , Ks = . 2 , roughness = 0 . 2 ;
co lo r s pe cu l a r c o l o r = 1 ;
s t r i ng texturename = ”” ;

s t r i n g texturename2 = ”” ;
c o l o r p l ay e r co l = (1 . 0 , 0 . 0 , 0 . 0) ;) {

Ci = Cs ;
normal Nf ;
co l o r t ex co l ;
f l o a t alpha ;
i f (texturename != ””) {

t e xc o l = texture (texturename) ;
alpha = textu re (texturename2) ;

}

Nf = face fo rward (normal i ze (N) , I) ;
Ci ∗= p la y e r co l + ((alpha) ∗ (t e xc o l − p l a ye r c o l)) ;

Ci = Ci ∗ (Ka∗ambient () + Kd∗ d i f f u s e (Nf)) + spe c u l a r co l o r ∗ Ks∗ s pecu la r (Nf,−normal i ze (I) , roughness) ;
Oi = Os ; Ci ∗= Oi ;

}

di sp lacement bumpy(
f l o a t Km = 0 . 0 3 ;
s t r i ng normalmap = ”” ;)

{
f l o a t amp = Km ∗ f l o a t t extu re (normalmap) ;
P += amp ∗ normal i ze (N) ;
N = calcu la t enormal (P) ;

}

Texture Mapping example us ing quadr i cs
GSO 7−15−98
Display ” quads text1 . t i f ” ” f i l e ” ” rgb”
Format 512 512 −1
Pro je c t i on ” pe r sp ec t i v e ” ” fov ” [3 0]
Trans late 0 0 3
Rotate 80 1 0 0
Rotate 80 0 0 1
WorldBegin
LightSource ” ambient l i ght ” 1 ” i n t e n s i t y ” [0 . 3]
LightSource ” d i s t a n t l i g h t ” 2 ” i n t e n s i t y ” [2] ” from” [0 . 0 0.9 0 . 0] ” to ” [20 −5 5 . 5]
Color [1 1 1]
Sur face ”bumpspecmodulate ” ” texturename ” ”colormap . t i f ”
Displacement ”bumpy” ”normalmap” ”bumpheight . t i f ”
Sphere [0 . 5 −0.5 0 .5 360]

WorldEnd

l i g h t
ambient l ight (

f l o a t i n t e n s i t y = 1;
co lo r l i g h t c o l o r = 1 ;) {

Cl = i n t e n s i t y ∗ l i g h t c o l o r ;
}

d i s t a n t l i g h t (
f l o a t i n t e n s i t y = 1 ;
co lo r l i g h t c o l o r = 1;

po int from = point ÓshaderÓ (0 , 0 , 0) ;

po int to = point ÓshaderÓ (0 , 0 , 1) ; {
s o l a r (to−from , 0 . 0)
Cl = i n t e n s i t y ∗ l i g h t c o l o r ;

}

B.3 RenderMonkey Source Code

a t t r i b u t e vec3 rm Tangent ;
a t t r i b u t e vec3 rm Binormal ;

uniform vec4 l i gh tD i r ;
uniform vec4 vViewPosition ;

varying vec2 varTexCoord ;
varying vec3 varNormal ;
varying vec3 varWposT;
varying vec3 varCamPos ;
varying vec3 l i ghtDi rInTangent ;
varying vec3 varLightVec ;

void main(void)
{

// Output transformed vertex p o s i t i on :
g l P o s i t i o n = ft ran s form () ;

// Compute the l i g h t vec tor (view space) :
varLightVec = l i g h tD i r . xyz ;

mat3 tangentMat = mat3 (rm Tangent ,
rm Binormal ,
gl Normal) ;

l i ghtDi rInTangent = normal i ze (l i gh tD i r . xyz) ∗ tangentMat ;

// Compute view vector (view space) :
varCamPos = vViewPosition . xyz ∗ tangentMat ;

varWposT = g l Ver tex . xyz ∗ tangentMat ;
varTexCoord = gl MultiTexCoord0 . xy ;

}

uniform sampler2D bump ;
uniform sampler2D baseMap ;
uniform vec4 SecondColor ;
varying vec2 varTexCoord ;
varying vec3 varNormal ;
varying vec3 varWposT;
varying vec3 varCamPos ;
varying vec3 l i ghtDi rInTangent ;
varying vec3 varLightVec ;

void main(void) {

// Normal izes l i g h t vector with no rmal i za t ion cube map
vec3 l i g h t = normal i ze (l i ghtDi rInTangent) ;

// Sample and expand the normal map textu re
f l o a t 3 normal = normal i ze (texture2D (bump , varTexCoord) . xyz ∗ 2 − 1) ;

// Di f f u s e l i g h t i n g with spec and bump
vec3 V = normal i ze (varCamPos − varWposT) ;
vec3 H = normal i ze (l i ghtDi rInTangent + V) ;

vec4 t ex co l = texture2D (baseMap , varTexCoord) ;
t ex co l . rgb = l e rp (SecondColor . rgb , t ex co l . rgb , t ex co l . a) ;

f l o a t d i f f u s e = dot (normal , l i g h t) ∗ . 6 ;

f l o a t spec = pow(max(0 , dot (H, normal)) , 100) ∗ . 5 ;

g l FragCo lo r . rgb = (d i f f u s e ∗ t ex co l . rgb + spec) ∗ 2 .0 + (0 . 2 ∗ t e xc o l . rgb) ;

g l FragCo lo r . a = 1 . 0 ;
}

B.4 Handcoded and Generated Parallax Map-

ping Shaders

Shader ” GeneratedShader ”
{ Prope r t i e s {
Env Scale (” Env Scale ” , Color) = (0 . 5 , 0 .5 , 0 . 5 , 0 .5)
Para l l ax (” Para l l ax ” , Range (0 . 0 , 0 . 0 6)) = 0.02
Normal Map (”Normal Map” , 2D) = ”white” {}
Texture (” Base (RGB) Gloss (A)” , 2D) = ”white” {}
Color (”Main Color ” , Color) = (. 5 , . 5 , . 5 , . 5)
SpecColor (” Specu lar Color ” , Color) = (0 . 5 , 0 . 5 , 0 .5 , 1)
Specu la r (” Specu lar Constant ” , Range (0 . 0001 , 0 . 99)) = 0.4
Enviroment Map (” Enviroment Map” , Cube) = ”white” {}

Env Scale (” Env Scale ” , Color) = (0 . 5 , 0 .5 , 0 . 5 , 0 .5) }
Category {

tags { ” lod ” = ”0” }
Fog { Color [AddFog] }
Blend AppSrcAdd AppDstAdd

SubShader {
// Ambient pass
Pass {

Tags {”LightMode” = ”PixelOrNone”}
Color [PPLAmbient]

CGPROGRAM
#pragma p r o f i l e s arbfp1
#pragma fragment f rag
#pragma vertex ver t
#inc lude ”UnityCG. cg in c ”
#inc lude ”AutoLight . cg inc ”
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB pr ec i s i on h i n t f a s t e s t

s t ru c t appdata {
f l o a t 4 vertex ;
f l o a t 4 tangent ;
f l o a t 3 normal ;
f l o a t 4 texcoord ;

} ;

s t ru c t v2f {
f l o a t 4 hPos i t i on : POSITION;

f l o a t 4 t r a n s f e r S l o t 0 : TEXCOORD1;} ;

f l o a t 3 Env Scale ;
uniform f l o a t Para l l ax ;
uniform sampler2D Normal Map ;
uniform f l o a t 4 Normal Map ST ;
uniform sampler2D Texture ;
uniform f l o a t 4 Texture ST ;
uniform f l o a t 4 Color ;
uniform samplerCUBE Enviroment Map ;
v2f ver t (appdata v) {

v2f vertexToFragment ;
TANGENT SPACE ROTATION;
f l oa t3 x3 invRotation = transpo se (ro t a t i on) ;

vertexToFragment . t r a n s f e r S l o t 0 . zw = v . texcoord . xy∗ Normal Map ST . xy+ Normal Map ST . zw ;
vertexToFragment . t r a n s f e r S l o t 0 . zw = v . texcoord . xy ;
f l o a t 3 L igh t Di r e c t i on = ObjectSpaceLightPos [0] . xyz − v . vertex . xyz ∗ ObjectSpaceLightPos [0] .w;
f l o a t 3 View Direct ion = ObjSpaceViewDir (f l o a t 4 (v . vertex . xyz , 1)) ; f l o a t 3 Pos i t i on = ObjectSpaceCameraPos ;
f l o a t 3 Inverted Vec = −View Direct ion ;
vertexToFragment . t r a n s f e r S l o t 0 . yzw = mul(rotat ion , Inverted Vec) ;

vertexToFragment . hPos i t ion = mul (g l s t a t e . matrix .mvp, f l o a t 4 (f l o a t 3 (v . vertex . xyz) , 1)) ;
return vertexToFragment ;
}

f l o a t 4 f rag (v2f vertexToFragment) : COLOR {

f l o a t 4 normalMapNormalI = tex2D (Normal Map , vertexToFragment . t r a n s f e r S l o t 0 . zw) ;
f l o a t 3 NormalI = normalMapNormalI . rgb ∗ 2 .0 − 1 . 0 ;
f l o a t AlphaI I I = normalMapNormalI . a ;
f l o a t 2 Parallax UV = vertexToFragment . t r a n s f e r S l o t 0 . zw + (f l o a t 3 (1 , 1 , 0) . xy ∗ (A lphaI I I ∗ (Pa ra l l ax ∗2) −
vertexToFragment . t r a n s f e r S l o t 0 . xy = Parallax UV∗ Normal Map ST . xy+ Normal Map ST . zw ;
f l o a t 4 normalMapNormal = tex2D (Normal Map , vertexToFragment . t r a n s f e r S l o t 0 . xy) ;
f l o a t 3 Normal = normalMapNormal . rgb ∗ 2.0 − 1 . 0 ;
f l o a t AlphaII = normalMapNormal . a ;
vertexToFragment . t r a n s f e r S l o t 0 . zw = Parallax UV∗ Texture ST . xy+ Texture ST . zw ;
f l o a t 4 texColorTexture = tex2D (Texture , vertexToFragment . t r a n s f e r S l o t 0 . zw) ;
f l o a t 3 C o l o r I I I I = texColorTexture . rgb ;
f l o a t Alph a I I I I I = texColorTexture . a ;
f l o a t 3 Col o r I I = Color . rgb ∗ PPLAmbient . rgb ∗ Co l o r I I I I ;
f l o a t Attenuation = 1 . 0 ;

f l o a t 3 Co l o r I I I = ModelLightColor [0] . rgb ;
f l o a t 3 OutputI = Co lo r I I ∗Attenuation ;
f l o a t 3 Re f l D i r e c t i on = r e f l e c t (vertexToFragment . t r a n s f e r S l o t 0 . yzw , Normal) ;
f l o a t 3 Out = mul ((f l oa t3x3) Object2World , mul (invRotation , Re f l D i r e c t i o n)) ;
f l o a t 4 texColorEnviroment Map = texCUBE(Enviroment Map , Out) ;
f l o a t 3 ColorI = texColorEnviroment Map . rgb ;
f l o a t AlphaI = texColorEnviroment Map . a ;
f l o a t 3 Output = Env Scale∗ColorI ;
f l o a t 3 co lo rRe su l t = OutputI ;
return f l o a t 4 (Output + colo rResu l t , f l o a t (f l o a t (1))) ;}
ENDCG
}

Pass {
Tags {

”LightMode” = ”Pixe l ”
”LightTexCount ” = ”012”

}
CGPROGRAM
#pragma p r o f i l e s arbfp1
#pragma fragment f rag
#pragma vertex ver t
#inc l ude ”UnityCG. cg in c ”
#inc l ude ”AutoLight . cg inc ”
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB p re c i s i o n h i n t f a s t e s t

s t r u c t appdata {
f l o a t 4 vertex ;
f l o a t 4 tangent ;
f l o a t 3 normal ;
f l o a t 4 texcoord ;

} ;

s t r u c t v2f {
f l o a t 4 hPos i t i on : POSITION;

f l o a t 4 t r an s f e r S l o t 0 : TEXCOORD1;
f l o a t 4 t r an s f e r S l o t 1 : TEXCOORD2;
f l o a t 4 t r an s f e r S l o t 2 : TEXCOORD3;
f l o a t 4 t r an s f e r S l o t 3 : TEXCOORD4;
#pragma mul t i compi l e POINT SPOT DIRECTIONAL
#pragma mul t i compi l e SHADOW NOSHADOW
LIGHTING COORDS} ;

f l o a t 3 Env Scale ;
uniform f l o a t Para l l ax ;
uniform sampler2D Normal Map ;
uniform f l o a t 4 Normal Map ST ;
uniform sampler2D Texture ;
uniform f l o a t 4 Texture ST ; uniform f l o a t Specu la r ;
uniform f l o a t 4 Color ;
uniform f l o a t 4 SpecColor ;
Light l ;
uniform f l o a t 4 Sphe re In f ;
v2f ver t (appdata v) {

v2f vertexToFragment ;
TANGENT SPACE ROTATION;
f l oa t 3x3 invRotation = tran spose (ro t a t i on) ;

vertexToFragment . t r an s f e r S l o t 1 . zw = v . texcoord . xy∗ Normal Map ST . xy+ Normal Map ST . zw ;
vertexToFragment . t r an s f e r S l o t 1 . zw = v . texcoord . xy ;
vertexToFragment . t r an s f e r S l o t 2 . xyz = mul(rotat ion , ObjSpaceLightDir (v . vertex)) ;
vertexToFragment . t r an s f e r S l o t 3 . xyz = mul(rotat ion , ObjSpaceViewDir (v . vertex)) ;
TRANSFERVERTEX TO FRAGMENT(vertexToFragment)
f l o a t 3 L igh t Di r e c t i on = ObjectSpaceLightPos [0] . xyz − v . vertex . xyz ∗ ObjectSpaceLightPos [0] .w;
f l o a t 3 ray = ObjectSpaceLightPos [0] . xyz − v . vertex . xyz ;
f l o a t 3 cen ter = mul (World2Object , f l o a t 4 (Sphe re In f . x , Sphe re In f . y , Sphere In f . z , 1)) . xyz ;
f l o a t rad ius = Sphere In f .w;
f l o a t a = dot (ray , ray) ;
f l o a t b = dot (2∗ ray , v . vertex . xyz − c enter) ;
f l o a t c = dot (v . vertex . xyz − center , v . vertex . xyz − cente r) − (rad iu s∗ rad iu s) ; vertexToFragment . t r a n s f e r S l o t 0 .w
vertexToFragment . hPosi t ion = mul (g l s t a t e . matrix .mvp, f l o a t 4 (f l o a t 3 (v . vertex . xyz) , 1)) ;
return vertexToFragment ;
}

f l o a t 4 f rag (v2f vertexToFragment) : COLOR {

f l o a t 4 normalMapNormalI = tex2D(Normal Map , vertexToFragment . t r a n s f e r S l o t 1 . zw) ;
f l o a t 3 NormalI = normalMapNormalI . rgb ∗ 2.0 − 1 . 0 ;
f l o a t AlphaI I I = normalMapNormalI . a ;
f l o a t 2 Parallax UV = vertexToFragment . t r an s f e r S l o t 1 . zw + (f l o a t 3 (1 , 1 , 0) . xy ∗ (A lphaI I I ∗ (Pa r a l l ax ∗2) − Par
vertexToFragment . t r an s f e r S l o t 1 . xy = Parallax UV∗ Normal Map ST . xy+ Normal Map ST . zw ;
f l o a t 4 normalMapNormal = tex2D(Normal Map , vertexToFragment . t r a n s f e r S l o t 1 . xy) ;
f l o a t 3 Normal = normalMapNormal . rgb ∗ 2.0 − 1 . 0 ;
f l o a t AlphaII = normalMapNormal . a ;
vertexToFragment . t r an s f e r S l o t 1 . zw = Parallax UV∗ Texture ST . xy+ Texture ST . zw ;
f l o a t 4 texColorTexture = tex2D(Texture , vertexToFragment . t r an s f e r S l o t 1 . zw) ;

f l o a t 3 C o l o r I I I I = texColorTexture . rgb ;
f l o a t Alph a I I I I I = texColorTexture . a ;
vertexToFragment . t r a n s f e r S l o t 0 . xyz = Normal ;

vertexToFragment . t r a n s f e r S l o t 2 . xyz = normal i ze (vertexToFragment . t r a n s f e r S l o t 2 . xyz) ;
vertexToFragment . t r a n s f e r S l o t 3 . xyz = normal i ze (vertexToFragment . t r a n s f e r S l o t 3 . xyz) ;
f l o a t 3 hal fAngl eVector = normal i ze (vertexToFragment . t r a n s f e r S l o t 3 . xyz + vertexToFragment . t r a n s f e r S l o t 2 . xy
f l o a t d i f f u s e = dot (vertexToFragment . t r a n s f e r S l o t 0 . xyz , vertexToFragment . t r a n s f e r S l o t 2 . xyz) ;
f l o a t nDotH = satura t e (dot (vertexToFragment . t r a n s f e r S l o t 0 . xyz , ha l fAngl eVector)) ;
f l o a t s pecu la r = pow(nDotH , Specu la r ∗ 128) ∗ Alph a I I I I I ;
sp ecu l ar ∗= d i f f u s e ;
f l o a t 3 Col o r I I = (Color . rgb ∗ ModelLightColor [0] . rgb ∗ d i f f u s e ∗ Co l o r I I I I + SpecColor . rgb ∗ s pecu la r)
f l o a t Alpha I I I I = specu la r ∗ SpecColor . a ;
f l o a t Attenuation = LIGHT ATTENUATION(vertexToFragment) ; ;
SHADOWCALC(vertexToFragment . t r a n s f e r S l o t 0 .w) ;
f l o a t 3 Co l o r I I I = ModelLightColor [0] . rgb ;
f l o a t 3 OutputI = Col o r I I ∗Attenuation ;
f l o a t 3 co l o rResu l t = OutputI ;
return f l o a t 4 (co lorResu l t , f l o a t (f l o a t (1))) ;}
ENDCG
}
}
}
}

Shader ” ParallaxHandCoded” {
Prope r t i e s {

Env Scale (” Env Scale ” , Color) = (0 .5 , 0 . 5 , 0 .5 , 0 . 5)
Para l l ax (” Para l l ax ” , Range (0 . 0 , 0 . 06)) = 0.02
Normal Map (”Normal Map” , 2D) = ”white” {}
Texture (” Base (RGB) Gloss (A)” , 2D) = ”white” {}
Color (”Main Color ” , Color) = (. 5 , . 5 , . 5 , . 5)
SpecColor (” Specu lar Color ” , Color) = (0 . 5 , 0 .5 , 0 . 5 , 1)
Specu lar (” Specu lar Constant ” , Range (0 .0001 , 0 . 99)) = 0 .4
Enviroment Map (” Enviroment Map” , Cube) = ”white” {}

Env Scale (” Env Scale ” , Color) = (0 .5 , 0 . 5 , 0 .5 , 0 . 5)
}

Category {
tags { ” lod ” = ”0” }
Fog { Color [AddFog] }
Blend AppSrcAdd AppDstAdd
SubShader {

// Ambient pass
Pass {

Tags {”LightMode” = ”PixelOrNone”}
Color [PPLAmbient]

CGPROGRAM
#pragma p r o f i l e s arbfp1
#pragma fragment f rag
#pragma vertex ver t
#inc lude ”UnityCG. cg in c ”
#inc lude ”AutoLight . cg inc ”
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB pr ec i s i on h i n t f a s t e s t
#pragma mul t i compi l e POINT SPOT DIRECTIONAL

s t ru c t appdata {
f l o a t 4 vertex ;
f l o a t 4 tangent ;
f l o a t 3 normal ;
f l o a t 4 texcoord ;

} ;

s t ru c t v2f {
f l o a t 4 hPos i t i on : POSITION;
f l o a t 4 v i ewDire ct ion : TEXCOORD1;
f l o a t 4 viewDirectionT : TEXCOORD6;
f l o a t 4 texcoord : TEXCOORD2;
LIGHTING COORDS
f l o a t 4 tangent : TEXCOORD3;
f l o a t 4 binormal : TEXCOORD4;
f l o a t 4 normal : TEXCOORD5;

} ;

f l o a t 3 Env Scale ;
uniform f l o a t Para l l ax ;
uniform sampler2D Normal Map ;
uniform f l o a t 4 Normal Map ST ;
uniform sampler2D Texture ;
uniform f l o a t 4 Texture ST ;
uniform f l o a t 4 Color ;
Light l ;
uniform samplerCUBE Enviroment Map ;

v2f ver t (appdata v) {
v2f vertexToFragment ;

TANGENT SPACE ROTATION;
vertexToFragment . tangent . xyz = mul(ro ta t ion , Object2World [0] . xyz) ;

vertexToFragment . binormal . xyz = mul(ro ta t ion , Object2World [1] . xyz) ;
vertexToFragment . normal . xyz = mul (rotat ion , Object2World [2] . xyz) ;

vertexToFragment . texcoord . zw = v . texcoord . xy∗ Normal Map ST . xy+ Normal Map ST . zw ;
f l o a t 3 View Direct ion = ObjSpaceViewDir (v . vertex) ;
f l o a t 3 Pos i t i on = ObjectSpaceCameraPos ;
vertexToFragment . vi ewDir ect ion . xyz = mul((f l oa t3x3) Object2World , −View Direct ion) ;
vertexToFragment . viewDirectionT . xyz = mul(rotat ion , V iew Direct ion) ;
vertexToFragment . texcoord . zw = v . texcoord . xy ;
vertexToFragment . hPos i t i on = mul (g l s t a t e . matrix .mvp, f l o a t 4 (f l o a t 3 (v . vertex . xyz) , 1)) ;
return vertexToFragment ;

}

f l o a t 4 f rag (v2f vertexToFragment) : COLOR {
f l o a t3 x3 ro ta t ion = f l oa t3 x3 (vertexToFragment . tangent . xyz , vertexToFragment . binormal . xyz , vertexToFragme

f l o a t 4 normalMapNormalI = tex2D (Normal Map , vertexToFragment . texcoord . zw) ;
f l o a t he ight = normalMapNormalI . a ;

f l o a t 2 Parallax UV = vertexToFragment . texcoord . zw + (vertexToFragment . viewDirectionT . xy ∗ (he ight ∗ (Pa ra l l
vertexToFragment . texcoord . xy = Parallax UV∗ Normal Map ST . xy+ Normal Map ST . zw ;

f l o a t 3 Normal = tex2D (Normal Map , vertexToFragment . texcoord . xy) . rgb ∗ 2 .0 − 1 . 0 ;

vertexToFragment . texcoord . zw = Parallax UV∗ Texture ST . xy+ Texture ST . zw ;

f l o a t 3 Re f l D i r e c t i o n = r e f l e c t (vertexToFragment . v i ewDire ct ion . xyz , mul (rotat ion , Normal)) ;
f l o a t 3 r e f l e c t i o n = Env Scale∗texCUBE(Enviroment Map , R e f l D i r e c t i on) . rgb ;
f l o a t 3 co l o rResu l t = Color . rgb ∗ PPLAmbient . rgb ∗ tex2D(Texture , vertexToFragment . texcoord . zw) . rgb ;
return f l o a t 4 (r e f l e c t i o n + co lorResu l t , f l o a t (f l o a t (1))) ;

}
ENDCG

}
Pass {

Tags {
”LightMode” = ”Pixe l ”
”LightTexCount ” = ”012”

}

CGPROGRAM
#pragma p r o f i l e s arbfp1
#pragma fragment f rag
#pragma vertex ver t
#inc l ude ”UnityCG. cg in c ”
#inc l ude ”AutoLight . cg inc ”
#pragma fragmentoption ARB fog exp2
#pragma fragmentoption ARB p re c i s i o n h i n t f a s t e s t
#pragma mul t i compi l e POINT SPOT DIRECTIONAL

st r uc t appdata {
f l o a t 4 vertex ;
f l o a t 4 tangent ;
f l o a t 3 normal ;
f l o a t 4 texcoord ;

} ;

s t r u c t v2f {
f l o a t 4 hPos i t i on : POSITION;
f l o a t 4 texcoord : TEXCOORD2;
f l o a t 4 vi ewDir ect ion : TEXCOORD3;
f l o a t 4 l i g h tD i r e c t i on : TEXCOORD4;
LIGHTING COORDS

} ;

f l o a t 3 Env Scale ;
uniform f l o a t Para l l ax ;
uniform sampler2D Normal Map ;
uniform f l o a t 4 Normal Map ST ;
uniform sampler2D Texture ;
uniform f l o a t 4 Texture ST ; uniform f l o a t Specu la r ;
uniform f l o a t 4 Color ;
uniform f l o a t 4 SpecColor ;
Light l ;

v2f ver t (appdata v) {
v2f vertexToFragment ;
TANGENT SPACE ROTATION;

vertexToFragment . vi ewDir ect ion . xyz = mul(rotat ion , ObjSpaceViewDir (v . vertex)) ;
vertexToFragment . texcoord . zw = v . texcoord . xy ;
vertexToFragment . l i g h tD i r e c t i on . xyz = mul(rotat ion , ObjSpaceLightDir(v . vertex)) ;
TRANSFERVERTEX TO FRAGMENT(vertexToFragment)
vertexToFragment . hPos i t i on = mul (g l s t a t e . matrix .mvp, f l o a t 4 (f l o a t 3 (v . vertex . xyz) , 1)) ;
return vertexToFragment ;

}

f l o a t 4 f rag (v2f vertexToFragment) : COLOR {

f l o a t he ight = tex2D (Normal Map , vertexToFragment . texcoord . zw) . a ;
f l o a t 2 Parallax UV = vertexToFragment . texcoord . zw + (vertexToFragment . v i ewDire ct ion . xy ∗ (he ight ∗ (Pa
vertexToFragment . texcoord . xy = Parallax UV∗ Normal Map ST . xy+ Normal Map ST . zw ;
f l o a t 3 Normal = tex2D (Normal Map , vertexToFragment . texcoord . xy) . rgb ∗ 2 .0 − 1 . 0 ;
vertexToFragment . texcoord . zw = Parallax UV∗ Texture ST . xy+ Texture ST . zw ;
f l o a t 4 texColor = tex2D (Texture , vertexToFragment . texcoord . zw) ;

vertexToFragment . v i ewDire ct ion . xyz = normal i ze (vertexToFragment . v iewDir ec t ion . xyz) ;
vertexToFragment . l i g h tD i r e c t i o n . xyz = normal i ze (vertexToFragment . l i g h tD i r e c t i o n . xyz) ;
f l o a t 3 hal fAngl eVector = normal i ze (vertexToFragment . l i g h tD i r e c t i o n . xyz + vertexToFragment . v i ewDire ct ion
f l o a t d i f f u s e = dot (Normal , vertexToFragment . l i g h tD i r e c t i o n . xyz) ;
f l o a t nDotH = satu ra t e (dot (Normal , ha l fAngl eVector)) ;

f l o a t specu la r = pow(nDotH , Specu la r ∗ 128) ∗ texColor . a ;
sp ecu la r ∗= d i f f u s e ;

f l o a t 3 c o l o r = (Color . rgb ∗ ModelLightColor [0] . rgb ∗ d i f f u s e ∗ texColor . rgb + SpecColor . rgb ∗ sp ecu l

f l o a t Attenuation = LIGHT ATTENUATION(vertexToFragment) ;
return f l o a t 4 (co lo r ∗Attenuation , 1) ;

}
ENDCG

}
}

}
}

Appendix C

CD-ROM Contents

C.1 Files on the CD-ROM

The CD-ROM has three folders, one which has alle the source code written in
this project, one with all the figures in high res. and one with videoes on how to
use the Shader Graph. The videoes are in the Quick Time format, and can only
be garantied to work with the latest version of Quick Time. Futher more the
CD-ROm contains the PDF file of the thesis. We strongly recomend looking at
the high res. image files instead zooming in on the PDF, as they are of higher
quality.

Bibliography

[1] 3DLabs. Opengl shading language specification. Online resource at: http :
//www.opengl.org/documentation/glsl/, February 2006.

[2] Gregory D. Abram and Turner Whitted. Building block shaders. In SIG-
GRAPH 92. ACM, 1990.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. In Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[4] Okan Arikan. Pixie. Online resource at: http :
//www.cs.utexas.edu/ okan/P ixie/pixie.htm, November 2005.

[5] Autodesk. Autodesk 3d studio. Online resource at: http :
//usa.autodesk.com/adsk/servlet/index?id = 5659302&siteID =
123112, March 2005.

[6] Autodesk. Autodesk maya. Online resource at: http :
//usa.autodesk.com/adsk/servlet/index?id = 6871843&siteID =
123112, March 2005.

[7] Scott Bean. Shaderworks. Online resource at: https :
//www.shaderworks.com, March 2005.

[8] James F. Blinn. Models of light reflection for computer synthesized pictures.
In SIGGRAPH 77. ACM, 1977.

[9] Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. In SIGGRAPH 82. ACM, 1982.

[10] Robin L. Cook. Shade trees. In SIGGRAPH 84. ACM, 1984.

[11] Microsoft Corporation. Microsoft directx - effect reference. Online
resource at: http : //msdn.microsoft.com/library/default.asp?url =
/library/en − us/directx9c/dx9graphicsreferenceeffects.asp, February
2006.

[12] Microsoft Corporation. Microsoft directx - hlsl. Online resource at: http :
//msdn.microsoft.com/directx/, February 2006.

[13] Nvidia Corporation. The cg toolkit. Online resource at: http :
//developer.nvidia.com/object/cgtoolkit.html, September 2005.

[14] Nvidia Corporation. Fx composer. Online resource at: http :
//developer.nvidia.com/object/fxcomposerhome.html, September 2005.

[15] Randima Fernando and Mark J. Kilgard. In The Cg Tutorial. Addison-
Wesley, 2003.

[16] Randima Fernando and Mark J. Kilgard. The Cg Tutorial. Addison-Wesley,
2003.

[17] Freetype. Freetype font library. Online resource at: http :
//www.freetype.org/, November 2005.

[18] Epic Games. Unreal engine 3 shader graph. Online resource
at: http : //www.unrealtechnology.com/screens/MaterialEditor.jpg,
November 2005.

[19] Andrew S. Glassner. In Principles of Digital Image Synthesis. Morgan
Kaufmann, 1995.

[20] Frank Goetz, Ralf Borau, and Gitta Domik. An xml-based visual shading
language for vertex and fragment shaders. In Proceedings of the ninth
international conference on 3D Web technology. ACM, 2004.

[21] Mark Harris. Gpgpu: Beyond graphics. In Procedings of Game Developers
Conference 2004. Nvidia, 2004.

[22] ATI Inc. Rendermonkey shaderprogramming ide. Online resource at: http :
//www.ati.com/developer/rendermonkey/index.html, February 2006.

[23] RapidMind Inc. Sh metaprogramming language. Online resource at: http :
//libsh.org/, February 2006.

[24] Morgan McGuire, George Stahis, Hanspeter Pfister, and Shriram Krishna-
murhi. Abstract shade trees. In Proceedings of the Symposium on Interac-
tive 3D Graphics and Games. ACM, 2006.

[25] Nvidia. Gpu programming guide. In Nvidia online resource. Nvidia, 2006.

[26] National Institute of Standarts and Technology. Definition
of a directed acyclic graph. Online resource at: http :
//www.nist.gov/dads/HTML/directAcycGraph.html, April 2004.

[27] Michael Oren and Shree K. Nayar. Generalization of lambertÕs reflectance
model. In SIGGRAPH 94. ACM, 1994.

[28] John O’Rorke. Integrating shaders into applications. In GPU Gems.
Addison-Wesley Professional, 2004.

[29] G. Scott Owen. Ray-sphere intersection. Online resource at: http :
//www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter1.htm,
June 1999.

[30] Bui Tuong Phong. Illumination for computer generated pictures. In SIG-
GRAPH 75. ACM, 1975.

[31] Pixar. Pixar renderman interface. Online resource at: https :
//renderman.pixar.com/products/rispec/index.htm, November 2006.

[32] RTzen. Rt/shader ginza. Online resource at: https : //www.rtzen.com,
March 2005.

[33] Softimage. Softimage xsi. Online resource at: http :
//www.softimage.com/, March 2005.

[34] Kenneth E. Torrance and E. M. Sparrow. Theory for off-specular reflec-
tion from roughened surfaces. In JOSA, Vol. 57 Nr. 9. Optical Society of
America, 1967.

[35] Bill Vinton. Shader related question. Online resource at: http :
//forum.unity3d.com/viewtopic.php?t = 932, November 2005.

[36] Gregory J. Ward. Measuring and modeling anisotropic reflection. In SIG-
GRAPH 92. ACM, 1992.

[37] Alan Watt and Mark Watt. In Advanced Animation and Rendering Tech-
niques. Addison-Wesley, 1992.

	Abstract
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Introduction
	1.1.1 Target Audience

	1.2 Introduction to Shaders and Effect Files
	1.2.1 Shading Languages
	1.2.2 Effect Files

	2 Previous Work
	2.1 Renderman Shading Language
	2.2 Content Creation Tools
	2.3 Rendermonkey and FX Composer
	2.4 Industrial Work in Shader Graphs
	2.5 Academic Work in Shader Graphs

	3 Background theory
	3.1 Material theory
	3.1.1 BRDF's in real-time graphics
	3.1.2 Advanced BRDF's
	3.1.3 Advanced Material Properties

	3.2 Compiler Technology
	3.3 Directed Acyclic Graph
	3.4 GPU Programming
	3.4.1 GPU History and Architecture
	3.4.2 Vertex vs. Fragment Programs

	4 Requirement Specification
	4.1 Target User Group
	4.2 Constraints
	4.3 Functional Requirements
	4.4 Non-Functional Requirements
	4.5 Identified Issues

	5 Design Considerations
	5.1 GUI design
	5.2 Node Design
	5.2.1 Shader Code Containers

	5.3 Connector Slots
	5.3.1 Polymorph Types
	5.3.2 Mathematical Type Transformations

	5.4 Compiler Design
	5.5 Game Engine Integration

	6 Implementation
	6.1 GUI Implementation
	6.2 Graph Implementation
	6.2.1 Node Implementation
	6.2.2 Connection Slot Implementation

	6.3 Compiler Implementation
	6.4 Game Engine Integration

	7 Implementing Shaders in Other Systems
	7.1 Creating Shaders in Renderman
	7.2 Creating Shaders in RenderMonkey
	7.3 Creating Shaders in Maya

	8 Results
	8.1 Shader Graph Editor
	8.2 Integration with Game Engine
	8.2.1 Effect File Capabilities
	8.2.2 Multiple Light Types in One Shader
	8.2.3 Integration with Shadows

	9 Discussion
	9.1 Comparison With Renderman, RenderMonkey and Maya
	9.2 Game Engine Integration
	9.3 Graph Shaders and Hand-coded Shaders Comparison

	10 Conclusion and Future Work
	10.1 Future Work
	10.2 Conclusion

	A Introduction to Unity
	A.1 Introduction to Unity

	B Created Shaders Source Code
	B.1 Sample ShaderLab shader
	B.2 Renderman Source Code
	B.3 RenderMonkey Source Code
	B.4 Handcoded and Generated Parallax Mapping Shaders

	C CD-ROM Contents
	C.1 Files on the CD-ROM

