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Abstract
The open source toolbox 'ERPWAVELAB' is developed for multi-channel time-frequency analysis of event related activity of EEG and MEG data. The toolboxprovides tools for data analysis and visualization of the most commonly used mea-sures of time-frequency transformed event related data as well as data decompositionthrough non-negative matrix and multi-way (tensor) factorization. The decomposi-tions provided can accommodate additional dimensions like subjects, conditions orrepeats and as such they are perfected for group analysis. Furthermore, the toolboxenables tracking of phase locked activity from one channel-time-frequency instanceto another as well as tools for artifact rejection in the time-frequency domain. Sev-eral other features are high-lighted. ERPWAVELAB can freely be downloaded fromwww.erpwavelab.org, requires EEGLAB (Delorme and Makeig, 2004) and runs underMATLAB (The Mathworks, Inc.).
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1 Introduction
Time-frequency analysis of event related potentials of electro-encephalography(EEG) and magneto-encephalography (MEG) data has recently attracted muchattention, see for instance (Tallon-Baudry et al., 1996; Simoes et al., 2003;
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Fig. 1. The ERPWAVELAB graphical user interface displays the multi-channeltime-frequency representation of each measurement as a compact array as well astime-frequency plots at each channel location.
Herrmann et al., 2004, 2005; Gruber et al., 2004; Lachaux et al., 2005). Mostanalyzes are based on the time-frequency representation of single channels.However, as computer power has increased, it is possible to analyze completedata sets from multiple channels, subjects etc. We have recently proposed avariety of methods to perform multi-channel time-frequency analysis (M�rupet al., 2006a,b,c) that also incorporates multi-subject and multiple-conditionanalysis. Based on the widely used toolbox EEGLAB (Delorme and Makeig,2004) we have developed an application interface in the process of applyingthese tools. This interface has been further developed as the ERPWAVELABtoolbox. running on a MATLAB (The Mathworks, Inc.) platform and it canbe downloaded from www:erpwavelab:org where the user can �nd installationdetails, a user guide and example data.
EEGLAB implements single channel time-frequency analysis and other EEG/MEG-toolboxes such as Fieldtrip (www:ru:nl=fcdonders=fieldtrip=) provide MAT-LAB routines for time-frequency transformation, plotting functions and sourcelocalization. However, to our knowledge, there is a need for tools for multi-channel time-frequency analysis as provided by ERPWAVELAB encompass-ing functionalities such as multi-channel and multi-subject time-frequency de-composition, artifact rejection in the time-frequency domain and coherencetracking. The toolbox is based on a graphical user interface to assist userswith limited programming experience to do complex analysis of their data inthe time-frequency domain. EEGLAB has routines for importing data, plot-ting channel activities and performing artifact rejection all useful for the fur-
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ther analysis in the time-frequency domain. ERPWAVELAB makes use ofEEGLAB's scalp plotting functions and imports EEGLAB data set for thegeneration of data sets operable for the toolbox. The multi-way array (tensor)analysis tools provided by the toolbox should be particularly helpful in gettinga comprehensive overview of the data.
The paper is structured as follows. First, an introduction to time-frequencytransformation is given. This is followed by an explanation of the time-frequencydomain methods for event related activity provided by ERPWAVELAB. Wenext illustrate artifact rejection in the time-frequency domain and give an in-troduction to the various decomposition techniques available in ERPWAVE-LAB including group analysis. Finally, we illustrate how ERPWAVELAB canbe used to track phase coherence over channel-time-frequency instances.

2 Method
The present section on time-frequency analysis is kept to a minimum onlydescribing the most basic concepts used in ERPWAVELAB. More elaboratedescriptions of wavelets and other time-frequency transforms can be foundat www:wavelet:org. Furthermore, many details are left out in the followingsections such as model estimation and multi-way operations. This substanceis at a basic level, aimed at the reader new to the �eld. For a more detaileddescription of the decompositions used see (M�rup et al., 2006c,b).
2.1 Time-frequency transformation
EEG and MEG data is believed to primarily stem from synchronous oscillatoryactivity of neurons in the brain (Nunez, 1981, 1995) thus frequency analysis ofthe recorded activities has become a widely used technique to investigate theactivity of interest (Simoes et al., 2003; Herrmann et al., 2004, 2005; Lachauxet al., 2005; Gruber et al., 2004). However, the oscillatory spatio-temporal pat-terns are not stationary but varying in time. To accommodate non-stationarityfrequency analysis can be split into time segments aka frames, windows etc.This can be done using the short time Fourier transform (STFT). The STFTuses the same window length at all frequencies which may result in excel-lent frequency resolution for high frequencies but poor time resolution andvice versa for low frequencies. One way of achieving an improved trade o� be-tween temporal resolution and frequency resolution is through the `continuous'wavelet transform which varies the window length over frequencies. Considerthe mother wavelet e'(t). The wavelet coe�cient of the sampled signal x(tn)
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at time t0 at scale a can then be estimated as
X(t0; a) = 1pa

1X
n=�1

e'(tn � t0a )x(tn): (1)
Although many types of wavelets exists, the complex Morlet has been widelyused in the analysis of EEG and MEG data, see for instance (Miwakeichi etal., 2004; Simoes et al., 2003; Herrmann et al., 2004; Lachaux et al., 2005;Gruber et al., 2004; Tallon-Baudry et al., 1996; Lachaux et al., 2005):

e'(t) = 1p2��2 e�i2�te� t2
2�2 : (2)

It is simply the conventional Fourier transform with a Gaussian window func-tion. Inserting equation 2 into equation 1 it is seen that the wavelet transformuses the same number of oscillations for each scale a. The attractive prop-erty of the wavelet transform in accessing the oscillatory activity of EEG isthat high frequency burst are believed to vary more rapidly in time than lowfrequency activities. Since the wavelet length for high-frequency analysis areshorter than low frequency analysis the wavelet gives a good tradeo� betweenprecision in time and in frequency of the EEG/MEG signals. For the complexMorlet wavelet of equation 2, � is a parameter de�ning how many oscillationsare included in the analysis denoted the width (m) of the wavelet given asm = 2�� oscillations. As the nature of the time-frequency transform applieddoes in
uence the results, the most adequate time-frequency transformationdepends on the data at hand and type of analysis performed in the time-frequency domain. Thus, we have decided to let ERPWAVELAB have boththe short time Fourier and the complex Morlet wavelet transforms so that therelative merits of the two can be explored in a speci�c data context.
2.2 Measures of the time-frequency Transformed ERP
Let X(c; f; t; n) denote the time-frequency coe�cient at channel c, frequencyf , time t and epoch n of the EEG/MEG signal given by x(c; t; n). Then thefollowing measures have proven useful for the analysis of the oscillatory ac-tivity of event related potentials, see for instance (Delorme and Makeig, 2004;Herrmann et al., 2005):

ERSP (c; f; t)= 1N
NX
n
jX(c; f; t; n)j2 (3)

WTav(c; f; t)= 1N
NX
n
jX(c; f; t; n)j: (4)
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While the evoked spectral perturbation (ERSP) is a measure of the averagepower over epochs at given channel-frequency-time points the WTav is theaverage amplitude of the oscillation.
To access the evoked activity phase locked to the event the following measuresare useful:

ITPC(c; f; t)= 1N
NX
n

X(c; f; t; n)
jX(c; f; t; n)j (5)

ITLC(c; f; t)= 1N
NX
n

X(c; f; t; n)q 1N
PNn jX(c; f; t; n)j2 (6)

avWT (c; f; t)= 1N
NX
n
X(c; f; t; n): (7)

The amplitude of the inter trial phase coherence (ITPC) Tallon-Baudry et al.(1996) (also sometimes named the phase locking index/value) measures thephase consistency over epochs, the inter trial linear coherence (ITLC) weightseach epoch according to amplitude. Finally, the avWT corresponds to thetime-frequency transformed Evoked Potential (EP).
From the WTav and avWT the induced activity, i.e., everything that is notphase locked to the event can be estimated as

INDUCED(c; f; t) = WTav(c; f; t)� javWT (c; f; t)j: (8)
Finally, phase coherence, i.e. how consistent the phase of a given oscillatoryactivity at channel c0, frequency f 0 and time t0 is to the activity at channel c,frequency f and time t, can be estimated by:

ERPCOHc0;f 0;t0(c; f; t)= 1N
NX
n

X(c; f; t; n)X�(c0; f 0; t0; n)
jX(c; f; t; n)jjX(c0; f 0; t0; n)j (9)

ERLCOHc0;f 0;t0(c; f; t)= PNn X(c; f; t; n)X�(c0; f 0; t0; n)qPNn jX(c; f; t; n)j2PNn jX(c0; f 0; t0; n)j2 ; (10)
where X� denotes the complex conjugate. While the evoked response phasecoherence (ERPCOH) gives the same weight to all epochs, the evoked responselinear coherence (ERLCOH) weights the phase coherence by the relative am-plitudes of the signals over the epochs. Traditionally, ERPCOH and ERLCOHhave been calculated having f 0 = f and t0 = t (Delorme and Makeig, 2004;lachaux et al., 1999). In ERPWAVELAB we extend this approach to investi-gate the phase synchrony across frequency-time instances. This is in line withthe approach of Lachaux et al. (2003) attempting to access interdependenciesacross di�erent time-frequency regions.
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Although other measures of event related activity in the time-frequency do-main exist, most are similar to the measures above and therefore not included.Furthermore, since the energy at low frequencies is higher than the energy athigher frequencies, X is often normalized prior to calculating the above mea-sures. Common normalization is to divide by a baseline activity or 1=f .
While ERSP especially, but also the WTav, avWT, INDUCED, ITLC, ERL-COH are strongly in
uenced by noise this is not the case for the ITPC. As allepochs are given the same weight to the ITPC even very noisy epochs onlycontribute as every other epoch. This property makes the ITPC attractive incomparison with the avWT in accessing the evoked activity, despite the lostamplitude information. Furthermore, both the ITPC and ERPCOH are givenas the sum of unit vectors in the complex plane. The resulting length to thecenter of the complex plane (origo) of such a sum of random vectors (alsodenoted a random walk) is known to be Rayleigh distributed. Hence, randomITPC and ERPCOH have the probability density function (pdf) given by
f(x) = x�2 e� x2

2�2 which is fully described by the mean value of the distributiongiven as x = �q�2 . From this, signi�cance of any ITPC and ERPCOH activitychange can be accessed by evaluating the activity at hand with respect to theknown `null' distribution of random activity.
The signi�cance of the activity of all the measures above can also be estimatedby the more costly approach of estimating the distribution of random baselineactivity by bootstrap. Here, surrogate data sets are generated by randomly se-lecting data from a baseline region and the signi�cance obtained by evaluatingthe activity to the distribution of these data sets. Both analytic and bootstrapmeasures are incorporated into ERPWAVELAB.
Notice, while the ERPCOH, just as the ITPC, is little in
uenced by randomnoise the ERPCOH is strongly in
uenced by systematic background noise suchas magnetic �elds generated by currents of electrical devices inducing currentsin the EEG-electrodes or systematically distorting the MEG �eld. While thisactivity is not generally related to the event hence leaves the ITPC unin-
uenced it might have the same phase delay across two given channel-time-frequency points through the epochs. Furthermore, the ERPCOH and ERL-COH is strongly confounded by volume conduction unrelated to the event asvolume conduction tend to have �xed delays between regions over the epochs.
2.3 Artifact rejection in the time-frequency domain
While the signal to noise ratio of EEG and MEG data can be low, some epochsare highly confounded by noise, say, due to muscular activity, eye motion, orexternal sources from the surroundings during the recording. Traditionally,
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Fig. 2. Left panel; Time-frequency activity at the various channels of the INDUCEDactivity. Signi�cance is here estimated by bootstrapping indicating by red contoursregions signi�cantly elevated from baseline and in green regions signi�cantly de-creased. Middle panel; same as left panel but zoomed in on channel T8. Right panel;The distribution at channel T8 at time 200 ms, 20 Hz giving the epochs presentin the data's in
uence on the value found. The left bar plot shows the distributionfound by bootstrapping over the epochs while the right bar plot shows the distribu-tion found by calculating the value each time leaving one of the epochs in the dataout. Red line the true value found using all epochs, dotted lines plus/minus twostandard deviations. The text below gives the two epochs in
uencing the measurethe most.epochs have been rejected by visual inspection of the EEG-data or by semi-automatic techniques rejecting trials exceeding a given threshold or varyingtoo strongly over a given time course. Recently, independent component anal-ysis has been deployed in removing artifacts as noise such as eye motion canbe captured in separate components and these components removed from thedata (Delorme and Makeig, 2004).
However, for all the methods mentioned above there is a tendency to rejectepochs based on low frequency activity since most of the energy of the EEG islow frequent. Consequently, artifact rejection based on inspection and analysisof the raw EEG can be biased by relevant low frequency activities.
ERPWAVELAB facilitates rejection of artifacts by inspection and analysis inthe time-frequency domain. Thus, high frequency noise can easily be identi�edand such noisy epochs rejected. By normalizing the wavelet transformed datathe deviation in higher frequencies become clear. Apart from visual inspec-tion of the epochs power, amplitude and phase, ERPWAVELAB also enablesinspection for statistical outliers, see �gure 3.
2.4 Non-negative decompositions
The decompositions used in ERPWAVELAB are based on the PARAFAC(Carroll and Chang, 1970; Harshman, 1970) and TUCKER (Tucker, 1966)
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Fig. 3. Left panel: Time-frequency plot of the activity at channel FC1 over 72epochs. Middle panel; the corresponding activities of the raw data of epoch 17 1819 20 36 37 for all channels, below the raw data FC1 is highlighted together with thecorresponding time-frequency activities. From the time-frequency plots it is clearlyseen that epoch 19 and 36 are strongly confounded by noise. However, epoch 17might potentially have been rejected due to its sudden jumps as seen from the rawdata activity - this activity is however low frequent, hence not a�ecting the higherfrequency activity. Thus, had epoch 17 been rejected based on inspection of the rawdata, information useful for a higher frequency analysis might have been removed.Right panel: plot of the time-frequency coe�cients of FC1 at 1000 ms 30 Hz overall epochs, emphasizing that epoch 19 at this time-frequency point is an outlier(Upper left plot, the time-frequency coe�cients plotted in the complex plane, lowerleft the distribution of amplitudes, upper right the angles of the complex coe�cients,lower right the distribution of angles over the epochs). Clearly, the amplitude of theoscillation of epoch 19 at the inspected channel-time-frequency point is well abovethe amplitudes found in the rest of the epochs.
models. Both models are generalizations of the matrix decomposition modelunderlying decomposition techniques such as Principal Component Analysis(PCA), Independent Component Analysis (ICA), Singular Value Decomposi-tion (SVD) and Non-negative Matrix Factorization (NMF) to arrays of higherorder than two, so-called multi-way arrays or tensors. Consequently, conven-tional two-way matrix decomposition will in the following be considered aspecial case of the PARAFAC and TUCKER decompositions. The PARAFACmodel decomposes the array Xi1;i2;:::;iM into an outer product of vectors span-ning each modality, i.e.

Xi1;i2;:::;iM �X
d
a(1)i1;da(2)i2;d � � � a(M)iM ;d (11)

Consequently, when X is a matrix the model becomes the regular factor anal-ysis Xi1;i2 �
P

d a(1)i1;da(2)i2;d.
While no interactions are present between vectors of di�erent indices in thePARAFAC model, the TUCKER model allows full interaction between all thevectors spanning each modality. This is achieved by introducing what is called
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a core array G accounting for these interactions
Xi1;i2;:::;iM � X

j1;j2;:::;jM
Gj1;j2;:::;jMa(1)i1;j1a(2)i2;j2 � � � a(M)iM ;jM (12)

Notice that this model theoretically allows for di�erent amounts of factorsin each modality. Consequently, if an activity pattern in a given modality isshared by di�erent patterns of activities of other modalities the model can ef-fectively account for this without having to repeat this shared activity patternas required by the PARAFAC model.
The coe�cients of ITPC, ITLC, avWT, ERPCOH and ERLCOH are all com-plex. However, in the following when referring to these measures it is theiramplitude absolute value that is considered. Consequently, since ERSP, wtAV,ITPC, ITLC, avWT, INDUCED, ERLCOH and ERPCOH are all representedby non-negative values it may be relevant to constrain the PARAFAC andTucker decompositions to non-negative factors (and core). In theory variousoscillatory activities might overlap, but the over-complete representation ofthe data given by the time-frequency transformation enables the decomposi-tions above in many cases to isolate each oscillatory behavior well even whenthese activities are not well-separated in the time domain alone. Notice how-ever, the decompositions are meant for data exploratory purposes, hence forvisualization of activities present in the data. In general the decompositions donot guarantee to �nd the `true' sources, e.g. if these do not follow an additivelaw.
What makes non-negative decomposition attractive is that they are known togive a parts based representation that often is easier to interpret than otherforms of decompositions such as PCA/SVD or ICA (Lee and Seung, 1999).Although non-negativity improves uniqueness of the decomposition by con-straining the solution space to the positive orthant, non-negative decomposi-tions are not in general unique (Donoho and Stodden, 2003). The PARAFACmodel for arrays of order three (and higher) has theoretically been provenunique under mild conditions (Sidiropoulos and Bro, 2000; Kruskal, 1977).Yet, no such theoretical uniqueness property has been given for the PARAFACmodel under non-negativity constraint, see for instance Lim and Golub (2006).Consequently, to acquire uniqueness of the decompositions, constraints in theform of sparsity can be imposed (Hoyer, 2004; Eggert and K�orner, 2004). As aresult, the algorithms used to estimate the PARAFAC and TUCKER modelsdescribed in (M�rup et al., 2006b,c) can impose sparseness on any combina-tion of modalities. Sparseness is imposed through a penalty on the absolutevalue of each parameter in a given modality (i.e., based on the L1 norm). Thisconstraint will seek to eliminate excess parameters, see e.g., (M�rup et al.,2006c).
Since the frequency modality is generated from the time modality the time-
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Fig. 4. The non-negative array of Channel � Time � Frequency to the left givesa decomposition by the 2-way PARAFAC into time-frequency `signatures' and thestrength in which these signatures are present in the channels. The 2-way Tuckerfurther produces a core array measuring the relations between signatures. Notice,in the two-way analysis the TUCKER and PARAFAC model yield identical results,however for higher order the two models are di�erent, see also �gure 6
frequency transform is in a sense just a new representation of the time modal-ity. Consequently the extra frequency modality arising from the time-frequencytransformation is collapsed to form a combined time-frequency modality. Hence,the decomposition ofXc;q � Pd a(1)c;da(2)q;d where q denotes a given time-frequencypoint gives the strength in which the time frequency activity of componentsd, i.e. a(2)d , is present in the cth channel given by a(1)c;d. The correspondingTucker based decomposition gives Xc;q � Pd;d0 Gd;d0a(1)c;da(2)q;d0 . Consequently thecore Gd;d0 gives the strength in which each channel components a(1)d are re-lated to the time-frequency component a(2)d0 . In the two-way case there is nodi�erence between the two models, since the Tucker model becomes X �A(1)GA(2)T = A(1)fA(2)T thus corresponding to a PARAFAC model havingfA(2)T = GA(2)T , see �gure 4. However, for higher order arrays the PARAFACmodel and TUCKER model becomes di�erent, see �gure 6.
2.5 Accessing group di�erences
Most ERP studies are based on multi-subject multi-condition analysis. Hence,the data encompasses extra modalities such as subjects, conditions, date ofrecording etc. In this type of analysis it is of interest to access the dominantsources of activity di�erences in an unsupervised manner.
Consider the data array X being one of the measures ERSP, avWT, WTav,ITPC, ITLC, INDUCED, ERPCOH or ERLCOH, i.e. X(c; f; t; s; k) where sdenotes a given measurement at a given channel c, frequency f time t point fora recording belonging to group k. One measure of di�erence between groupsis a one-way analysis of variance (ANOVA).
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Xk(c; f; t; k)= 1S
SX

s=1
X(c; f; t; s; k) (13)

fX(c; f; t)= 1K
KX
k=1

Xk(c; f; t; k) (14)
Ftest�value(c; f; t)= 1K�1

PKk=1(Xk(c; f; t; k)� fX(c; f; t))2
1K(S�1)

PSs=1(X(c; f; t; s; k)�Xk(c; f; t; k))2 : (15)
As a result, the ANOVA gives a data array of channel-frequency-time of F-test values which as for the other ERPWAVELAB measures can be decom-posed by the PARAFAC and TUCKER model. The ANOVA assumes thatthe distribution of data in each of the groups are normal thus the F-test isextremely non-robust to deviations from normality (Lindman, 1974). If thedata can not be assumed normal the Kruskal-Wallis test of rank can be used.Let R(c; f; t; s; k) denote the order of the value of a given channel-frequency-time point for subject s in group k to all other subjects and groups in thesame channel-time-frequency point. The Kruskal-Wallis one-way analysis ofvariance by ranks is then given by (Kruskal and Wallis, 1952):

Rk(c; f; t; k)= 1S
SX

s=1
X(c; f; t; s; k) (16)

eR(c; f; t)= 1K
KX
k=1

Rk(c; f; t; k) (17)
�2test�value(c; f; t)= (SK � 1) PKk=1 S(Rk(c; f; t; k)� eR(c; f; t))2PKk=1

PSs=1(R(c; f; t; s; k)� eR(c; f; t))2 (18)
Another approach to access di�erences between groups is to measure theirdistance D(s; k; s0; k0) between each single measurement s from a given groupk to another measurement s0, k0, here given as the euclidian distance:

D(s; k; s0; k0) = sX
c;f;t

(Xk(c; f; t; s; k)�Xk(c; f; t; s0; k0))2: (19)
From this distance matrix a dendrogram can be generated showing what mea-surements are the most related. Both the ANOVA, Kruskal-Wallis and den-drogram methods are provided in ERPWAVELAB, see also �gure 5.
However, the above measures are not very speci�c when explaining what is ac-tually the di�erence and similarity between each group of measurements. Thismotivates the group analysis based on the decomposition techniques providedby the PARAFAC and TUCKER models. Assuming that the activities arepresent throughout the measurements within the same scalp region a 2-way
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Fig. 5. Left panel; example of an ANOVA array of channel x time-frequency of F-testsigni�cance values. Right panel; a dendrogram formed by the distance betweenmeasures given in equation 19.
analysis of channel�time�frequency�measurements can be used to identifythese regions. Consider further X(c; q; r), i.e the activity at a given channel cat time-frequency q at measurement r where r index over all measurements ofsubjects, conditions, dates etc. Then the decomposition Xc;q;r � Pd a(1)c;da(2)q;da(2)r;dnot only gives the mixing of the time-frequency activity of a(2)d in the channelsa(1)d but also the strength in which this activity is present at each measure-ment a(3)d . Consequently, measurements with a region of similar activity willbe strongly present in a(3)d while this similar activity will be given in a(1)d , a(2)d .Again, the corresponding Tucker model Xc;q;r � Pd;d0;d00 Gd;d0;d00a(1)c;da(2)q;d0a(2)r;d00 al-lows factors of various indices to interact. The 2-way and 3-way decompositionof arrays including several measurements are given in �gure 6.
2.6 From ITPC to tracking the ERPCOH
The ITPC is a measure of evoked activity. However, sometimes the phaselocked activity initiates another activity at another time and location andpossibly of another frequency (Varela et al., 2001; Kopell et al., 2000). Hence,the secondary activity evoked by the initial activity evokes later, say, tertiaryactivities. However, in the chain of brain events the evoked activities willhave a tendency to be less phase locked to the event, since it is the resultof communication through more stages of neurons. Consequently, the phasejitter to the event might be larger than the phase jitter to the �rst activation.If this is not so, the two activities could be considered parallel instead of serial.
Traditionally, the ERPCOH has been used to measure the coherence betweendi�erent channels at the same time-frequency point (Delorme and Makeig,
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Fig. 6. Left panel: The 3-way array given by including several (presently 28) mea-surements. Middle panel; the decompostion found by collapsing the measurementmodality onto the time-frequency modality to �nd scalp localized regions of activ-ity. Right panel: The corresponding 3-way analysis given by the PARAFAC, andbottom panel: TUCKER model of channel � time � frequency � measurement.Contrary to the 2-way analysis the 3-way analysis assumes also the time-frequencyactivity are similar across groups of measurements.

2004). However, in ERPWAVELAB the ERPCOH can also be set to measurethe coherence from a given time-frequency-channel point to all other time-frequency-channel points. Consequently, if a region is evoked by the activityof another region this can be captured by the ERPCOH. As a result, �ndingthe ITPC maxima and calculating the ERPCOH from this maxima can elicithow other regions of the brain are activated, i.e evoked, due to this ITPCactivity. This secondary activity showing up as an ERPCOH maxima mightagain activate other regions which can again be captured by calculating theERPCOH from this ERPCOH-maxima to all other points. ERPWAVELABenables an e�cient method of tracking these types of stepwise phase coher-ences by allowing each coherence to be recorded and afterwards displayed ina diagram of coherent connectivity, see �gure 7. Furthermore, since both theITPC and ERPCOH are Rayleigh distributed, the signi�cance of the phaselocked activities can be accessed by the toolbox.
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Fig. 7. Left panel: the various recorded cross coherences. One procedure being tocalculate the ITPC activity, from this maxima calculating the ERPCOH to �nd themost phase locked activity to this ITPC maxima. Recording this ERPCOH-maximathe cross coherence can again be calculated and another ERPCOH maxima foundand recorded. Right panel: the overall recorded activity. The strength of each coher-ence is indicated by the intensity of the arrows while the signi�cance of each arrowis given in the individual plots. Hence, black arrows indicate strong coherence whilelight gray arrows indicate a week phase synchrony.
3 Conclusion
This paper has introduced the new open source toolbox ERPWAVELAB. Thetoolbox is rooted in the widely used toolbox EEGLAB and can be downloadedfrom www:erpwavelab:org, where we also have placed a detailed tutorial thatexplains all the features of the toolbox. The tools can be helpful when analyz-ing multi-channel time-frequency transformed event related potentials. Facingnon-stationary and noisy data, we have included tools for rejection of arti-facts in the time-frequency domain and made it possible to track phase lockedoscillations in a systematic way.
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