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Abstract

The open source toolbox 'ERPWAVELAB’ is developed for multi-channel time-
frequency analysis of event related activity of EEG and MEG data. The toolbox
provides tools for data analysis and visualization of the most commonly used mea-
sures of time-frequency transformed event related data as well as data decomposition
through non-negative matrix and multi-way (tensor) factorization. The decomposi-
tions provided can accommodate additional dimensions like subjects, conditions or
repeats and as such they are perfected for group analysis. Furthermore, the toolbox
enables tracking of phase locked activity from one channel-time-frequency instance
to another as well as tools for artifact rejection in the time-frequency domain. Sev-
eral other features are high-lighted. ERPWAVELAB can freely be downloaded from
www. erpwavelab.org, requires EEGLAB (Delorme and Makeig, 2004) and runs under
MATLAB (The Mathworks, Inc.).

Key words: EEG, MEG, multi-channel time-frequency analysis toolbox, wavelet
analysis, Non-negative Decomposition, Event related potentials,
PARAFAC/TUCKER, Coherence, artifact rejection in time-frequency domain.

1 Introduction

Time-frequency analysis of event related potentials of electro-encephalography
(EEG) and magneto-encephalography (MEG) data has recently attracted much
attention, see for instance (Tallon-Baudry et al., 1996; Simoes et al., 2003;
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Fig. 1. The ERPWAVELAB graphical user interface displays the multi-channel
time-frequency representation of each measurement as a compact array as well as
time-frequency plots at each channel location.

Herrmann et al., 2004, 2005; Gruber et al., 2004; Lachaux et al., 2005). Most
analyzes are based on the time-frequency representation of single channels.
However, as computer power has increased, it is possible to analyze complete
data sets from multiple channels, subjects etc. We have recently proposed a
variety of methods to perform multi-channel time-frequency analysis (Mgrup
et al., 2006a,b,c) that also incorporates multi-subject and multiple-condition
analysis. Based on the widely used toolbox EEGLAB (Delorme and Makeig,
2004) we have developed an application interface in the process of applying
these tools. This interface has been further developed as the ERPWAVELAB
toolbox. running on a MATLAB (The Mathworks, Inc.) platform and it can
be downloaded from www.erpwavelab.org where the user can find installation
details, a user guide and example data.

EEGLAB implements single channel time-frequency analysis and other EEG/MEG-
toolboxes such as Fieldtrip (www.ru.nl/ fedonders/ fieldtrip/) provide MAT-
LAB routines for time-frequency transformation, plotting functions and source
localization. However, to our knowledge, there is a need for tools for multi-
channel time-frequency analysis as provided by ERPWAVELAB encompass-
ing functionalities such as multi-channel and multi-subject time-frequency de-
composition, artifact rejection in the time-frequency domain and coherence
tracking. The toolbox is based on a graphical user interface to assist users
with limited programming experience to do complex analysis of their data in
the time-frequency domain. EEGLAB has routines for importing data, plot-
ting channel activities and performing artifact rejection all useful for the fur-



ther analysis in the time-frequency domain. ERPWAVELAB makes use of
EEGLAB’s scalp plotting functions and imports EEGLAB data set for the
generation of data sets operable for the toolbox. The multi-way array (tensor)
analysis tools provided by the toolbox should be particularly helpful in getting
a comprehensive overview of the data.

The paper is structured as follows. First, an introduction to time-frequency
transformation is given. This is followed by an explanation of the time-frequency
domain methods for event related activity provided by ERPWAVELAB. We
next illustrate artifact rejection in the time-frequency domain and give an in-
troduction to the various decomposition techniques available in ERPWAVE-
LAB including group analysis. Finally, we illustrate how ERPWAVELAB can
be used to track phase coherence over channel-time-frequency instances.

2 Method

The present section on time-frequency analysis is kept to a minimum only
describing the most basic concepts used in ERPWAVELAB. More elaborate
descriptions of wavelets and other time-frequency transforms can be found
at www.wavelet.org. Furthermore, many details are left out in the following
sections such as model estimation and multi-way operations. This substance
is at a basic level, aimed at the reader new to the field. For a more detailed
description of the decompositions used see (Morup et al., 2006¢,b).

2.1 Time-frequency transformation

EEG and MEG data is believed to primarily stem from synchronous oscillatory
activity of neurons in the brain (Nunez, 1981, 1995) thus frequency analysis of
the recorded activities has become a widely used technique to investigate the
activity of interest (Simoes et al., 2003; Herrmann et al., 2004, 2005; Lachaux
et al., 2005; Gruber et al., 2004). However, the oscillatory spatio-temporal pat-
terns are not stationary but varying in time. To accommodate non-stationarity
frequency analysis can be split into time segments aka frames, windows etc.
This can be done using the short time Fourier transform (STEFT). The STFT
uses the same window length at all frequencies which may result in excel-
lent frequency resolution for high frequencies but poor time resolution and
vice versa for low frequencies. One way of achieving an improved trade off be-
tween temporal resolution and frequency resolution is through the ‘continuous’
wavelet transform which varies the window length over frequencies. Consider
the mother wavelet ¢(¢). The wavelet coefficient of the sampled signal x(t,)



at time tq at scale ¢ can then be estimated as
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Although many types of wavelets exists, the complex Morlet has been widely
used in the analysis of EEG and MEG data, see for instance (Miwakeichi et
al., 2004; Simoes et al., 2003; Herrmann et al., 2004; Lachaux et al., 2005;
Gruber et al., 2004; Tallon-Baudry et al., 1996; Lachaux et al., 2005):

1, 2
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It is simply the conventional Fourier transform with a Gaussian window func-
tion. Inserting equation 2 into equation 1 it is seen that the wavelet transform
uses the same number of oscillations for each scale a. The attractive prop-
erty of the wavelet transform in accessing the oscillatory activity of EEG is
that high frequency burst are believed to vary more rapidly in time than low
frequency activities. Since the wavelet length for high-frequency analysis are
shorter than low frequency analysis the wavelet gives a good tradeoff between
precision in time and in frequency of the EEG/MEG signals. For the complex
Morlet wavelet of equation 2, o is a parameter defining how many oscillations
are included in the analysis denoted the width (m) of the wavelet given as
m = 2wo oscillations. As the nature of the time-frequency transform applied
does influence the results, the most adequate time-frequency transformation
depends on the data at hand and type of analysis performed in the time-
frequency domain. Thus, we have decided to let ERPWAVELAB have both
the short time Fourier and the complex Morlet wavelet transforms so that the
relative merits of the two can be explored in a specific data context.

2.2 Measures of the time-frequency Transformed ERP

Let X(c, f,t,n) denote the time-frequency coefficient at channel ¢, frequency
f, time t and epoch n of the EEG/MEG signal given by z(c,t,n). Then the
following measures have proven useful for the analysis of the oscillatory ac-
tivity of event related potentials, see for instance (Delorme and Makeig, 2004;
Herrmann et al., 2005):

ERSP(c, f,t)=

WTav(e, f,t)=



While the evoked spectral perturbation (ERSP) is a measure of the average
power over epochs at given channel-frequency-time points the WTav is the
average amplitude of the oscillation.

To access the evoked activity phase locked to the event the following measures
are useful:

1 X X(e, f,t,n)

ITPC(c Nzn: X f i) (5)
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The amplitude of the inter trial phase coherence (ITPC) Tallon-Baudry et al.
(1996) (also sometimes named the phase locking index/value) measures the
phase consistency over epochs, the inter trial linear coherence (ITLC) weights
each epoch according to amplitude. Finally, the avW'T corresponds to the
time-frequency transformed Evoked Potential (EP).

From the WTav and avW'T the induced activity, i.e., everything that is not
phase locked to the event can be estimated as

INDUCED(c, f,t) = WTav(c, f,t) — lavWT(c, f,1)]. (8)

Finally, phase coherence, i.e. how consistent the phase of a given oscillatory
activity at channel ¢, frequency f' and time t' is to the activity at channel ¢,
frequency f and time ¢, can be estimated by:
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where X* denotes the complex conjugate. While the evoked response phase
coherence (ERPCOH) gives the same weight to all epochs, the evoked response
linear coherence (ERLCOH) weights the phase coherence by the relative am-
plitudes of the signals over the epochs. Traditionally, ERPCOH and ERLCOH
have been calculated having f' = f and ¢’ = ¢ (Delorme and Makeig, 2004;
lachaux et al., 1999). In ERPWAVELAB we extend this approach to investi-
gate the phase synchrony across frequency-time instances. This is in line with
the approach of Lachaux et al. (2003) attempting to access interdependencies
across different time-frequency regions.



Although other measures of event related activity in the time-frequency do-
main exist, most are similar to the measures above and therefore not included.
Furthermore, since the energy at low frequencies is higher than the energy at
higher frequencies, X is often normalized prior to calculating the above mea-
sures. Common normalization is to divide by a baseline activity or 1/f.

While ERSP especially, but also the WTav, avW'T, INDUCED, ITLC, ERL-
COH are strongly influenced by noise this is not the case for the ITPC. As all
epochs are given the same weight to the ITPC even very noisy epochs only
contribute as every other epoch. This property makes the ITPC attractive in
comparison with the avW'T in accessing the evoked activity, despite the lost
amplitude information. Furthermore, both the ITPC and ERPCOH are given
as the sum of unit vectors in the complex plane. The resulting length to the
center of the complex plane (origo) of such a sum of random vectors (also
denoted a random walk) is known to be Rayleigh distributed. Hence, random

ITPC and ERPCOH have the probability density function (pdf) given by

f(z) = ~se 2" which is fully described by the mean value of the distribution

given as T = p\/g. From this, significance of any I'TPC and ERPCOH activity
change can be accessed by evaluating the activity at hand with respect to the
known ‘null’ distribution of random activity.

The significance of the activity of all the measures above can also be estimated
by the more costly approach of estimating the distribution of random baseline
activity by bootstrap. Here, surrogate data sets are generated by randomly se-
lecting data from a baseline region and the significance obtained by evaluating
the activity to the distribution of these data sets. Both analytic and bootstrap
measures are incorporated into ERPWAVELAB.

Notice, while the ERPCOH, just as the ITPC, is little influenced by random
noise the ERPCOH is strongly influenced by systematic background noise such
as magnetic fields generated by currents of electrical devices inducing currents
in the EEG-electrodes or systematically distorting the MEG field. While this
activity is not generally related to the event hence leaves the ITPC unin-
fluenced it might have the same phase delay across two given channel-time-
frequency points through the epochs. Furthermore, the ERPCOH and ERL-
COH is strongly confounded by volume conduction unrelated to the event as
volume conduction tend to have fixed delays between regions over the epochs.

2.3 Artifact rejection in the time-frequency domain

While the signal to noise ratio of EEG and MEG data can be low, some epochs
are highly confounded by noise, say, due to muscular activity, eye motion, or
external sources from the surroundings during the recording. Traditionally,
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Fig. 2. Left panel; Time-frequency activity at the various channels of the INDUCED
activity. Significance is here estimated by bootstrapping indicating by red contours
regions significantly elevated from baseline and in green regions significantly de-
creased. Middle panel; same as left panel but zoomed in on channel T8. Right panel;
The distribution at channel T8 at time 200 ms, 20 Hz giving the epochs present
in the data’s influence on the value found. The left bar plot shows the distribution
found by bootstrapping over the epochs while the right bar plot shows the distribu-
tion found by calculating the value each time leaving one of the epochs in the data
out. Red line the true value found using all epochs, dotted lines plus/minus two
standard deviations. The text below gives the two epochs influencing the measure
the most.

epochs have been rejected by visual inspection of the EEG-data or by semi-
automatic techniques rejecting trials exceeding a given threshold or varying
too strongly over a given time course. Recently, independent component anal-
ysis has been deployed in removing artifacts as noise such as eye motion can

be captured in separate components and these components removed from the
data (Delorme and Makeig, 2004).

However, for all the methods mentioned above there is a tendency to reject
epochs based on low frequency activity since most of the energy of the EEG is
low frequent. Consequently, artifact rejection based on inspection and analysis
of the raw EEG can be biased by relevant low frequency activities.

ERPWAVELAB facilitates rejection of artifacts by inspection and analysis in
the time-frequency domain. Thus, high frequency noise can easily be identified
and such noisy epochs rejected. By normalizing the wavelet transformed data
the deviation in higher frequencies become clear. Apart from visual inspec-
tion of the epochs power, amplitude and phase, ERPWAVELAB also enables
inspection for statistical outliers, see figure 3.

2.4  Non-negative decompositions

The decompositions used in ERPWAVELAB are based on the PARAFAC
(Carroll and Chang, 1970; Harshman, 1970) and TUCKER (Tucker, 1966)
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Fig. 3. Left panel: Time-frequency plot of the activity at channel FC1 over 72
epochs. Middle panel; the corresponding activities of the raw data of epoch 17 18
19 20 36 37 for all channels, below the raw data FC1 is highlighted together with the
corresponding time-frequency activities. From the time-frequency plots it is clearly
seen that epoch 19 and 36 are strongly confounded by noise. However, epoch 17
might potentially have been rejected due to its sudden jumps as seen from the raw
data activity - this activity is however low frequent, hence not affecting the higher
frequency activity. Thus, had epoch 17 been rejected based on inspection of the raw
data, information useful for a higher frequency analysis might have been removed.
Right panel: plot of the time-frequency coefficients of FC1 at 1000 ms 30 Hz over
all epochs, emphasizing that epoch 19 at this time-frequency point is an outlier
(Upper left plot, the time-frequency coefficients plotted in the complex plane, lower
left the distribution of amplitudes, upper right the angles of the complex coefficients,
lower right the distribution of angles over the epochs). Clearly, the amplitude of the
oscillation of epoch 19 at the inspected channel-time-frequency point is well above
the amplitudes found in the rest of the epochs.

models. Both models are generalizations of the matrix decomposition model
underlying decomposition techniques such as Principal Component Analysis
(PCA), Independent Component Analysis (ICA), Singular Value Decomposi-
tion (SVD) and Non-negative Matrix Factorization (NMF') to arrays of higher
order than two, so-called multi-way arrays or tensors. Consequently, conven-
tional two-way matrix decomposition will in the following be considered a
special case of the PARAFAC and TUCKER decompositions. The PARAFAC
model decomposes the array X; into an outer product of vectors span-
ning each modality, i.e.

1582550 M

) (2 M
Nivaeing R D Q510 GG (1)
d

Consequently, when X is a matrix the model becomes the regular factor anal-
. 1) (2
ysis Xi i, & D4 az(-l,)dal(-%)d.

While no interactions are present between vectors of different indices in the
PARAFAC model, the TUCKER model allows full interaction between all the
vectors spanning each modality. This is achieved by introducing what is called



a core array GG accounting for these interactions
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Notice that this model theoretically allows for different amounts of factors
in each modality. Consequently, if an activity pattern in a given modality is
shared by different patterns of activities of other modalities the model can ef-
fectively account for this without having to repeat this shared activity pattern
as required by the PARAFAC model.

The coefficients of ITPC, ITLC, avWT, ERPCOH and ERLCOH are all com-
plex. However, in the following when referring to these measures it is their
amplitude absolute value that is considered. Consequently, since ERSP, wtAV,
ITPC, ITLC, avWT, INDUCED, ERLCOH and ERPCOH are all represented
by non-negative values it may be relevant to constrain the PARAFAC and
Tucker decompositions to non-negative factors (and core). In theory various
oscillatory activities might overlap, but the over-complete representation of
the data given by the time-frequency transformation enables the decomposi-
tions above in many cases to isolate each oscillatory behavior well even when
these activities are not well-separated in the time domain alone. Notice how-
ever, the decompositions are meant for data exploratory purposes, hence for
visualization of activities present in the data. In general the decompositions do
not guarantee to find the ‘true’ sources, e.g. if these do not follow an additive
law.

What makes non-negative decomposition attractive is that they are known to
give a parts based representation that often is easier to interpret than other
forms of decompositions such as PCA/SVD or ICA (Lee and Seung, 1999).
Although non-negativity improves uniqueness of the decomposition by con-
straining the solution space to the positive orthant, non-negative decomposi-
tions are not in general unique (Donoho and Stodden, 2003). The PARAFAC
model for arrays of order three (and higher) has theoretically been proven
unique under mild conditions (Sidiropoulos and Bro, 2000; Kruskal, 1977).
Yet, no such theoretical uniqueness property has been given for the PARAFAC
model under non-negativity constraint, see for instance Lim and Golub (2006).
Consequently, to acquire uniqueness of the decompositions, constraints in the
form of sparsity can be imposed (Hoyer, 2004; Eggert and Korner, 2004). As a
result, the algorithms used to estimate the PARAFAC and TUCKER models
described in (Mgrup et al., 2006b,c) can impose sparseness on any combina-
tion of modalities. Sparseness is imposed through a penalty on the absolute
value of each parameter in a given modality (i.e., based on the L; norm). This

constraint will seek to eliminate excess parameters, see e.g., (Mgrup et al.,
2006¢).

Since the frequency modality is generated from the time modality the time-
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Fig. 4. The non-negative array of Channel x Time — Frequency to the left gives
a decomposition by the 2-way PARAFAC into time-frequency ‘signatures’ and the
strength in which these signatures are present in the channels. The 2-way Tucker
further produces a core array measuring the relations between signatures. Notice,
in the two-way analysis the TUCKER and PARAFAC model yield identical results,
however for higher order the two models are different, see also figure 6

frequency transform is in a sense just a new representation of the time modal-
ity. Consequently the extra frequency modality arising from the time-frequency
transformation is collapsed to form a combined time-frequency modality. Hence,
the decomposition of X, ~ >4 a(% a((fc)l where g denotes a given time-frequency
point gives the strength in which the time frequency activity of components
d, i.e. adQ, is present in the ¢ channel given by agc)l. The corresponding
’lgag?()l,. Consequently the
core Gy 4 gives the strength in which each channel components agl) are re-
lated to the time-frequency component ag). In the two-way case there is no
difference between the two models, since the Tucker model becomes X =

ADGAD" = AMA(2)T thus corresponding to a PARAFAC model having

A" = GrA(Q)T7 see figure 4. However, for higher order arrays the PARAFAC
model and TUCKER model becomes different, see figure 6.

.. . N (
Tucker based decomposition gives X., ~ >, » Gaaa,

2.5  Accessing group differences

Most ERP studies are based on multi-subject multi-condition analysis. Hence,
the data encompasses extra modalities such as subjects, conditions, date of
recording etc. In this type of analysis it is of interest to access the dominant
sources of activity differences in an unsupervised manner.

Consider the data array X being one of the measures ERSP, avWT, WTav,
ITPC, ITLC, INDUCED, ERPCOH or ERLCOH, i.e. X(c, f,t,s,k) where s
denotes a given measurement at a given channel ¢, frequency f time ¢ point for
a recording belonging to group k. One measure of difference between groups
is a one-way analysis of variance (ANOVA).

10
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As a result, the ANOVA gives a data array of channel-frequency-time of F-
test values which as for the other ERPWAVELAB measures can be decom-
posed by the PARAFAC and TUCKER model. The ANOVA assumes that
the distribution of data in each of the groups are normal thus the F-test is
extremely non-robust to deviations from normality (Lindman, 1974). If the
data can not be assumed normal the Kruskal-Wallis test of rank can be used.
Let R(c, f,t, s, k) denote the order of the value of a given channel-frequency-
time point for subject s in group k to all other subjects and groups in the
same channel-time-frequency point. The Kruskal-Wallis one-way analysis of
variance by ranks is then given by (Kruskal and Wallis, 1952):

Ri(e, f t, k)= ZX [t s, k) (16)

R(c Z Ri(c, f,t,k) (17)

Zk:l (Rk(c7 f; t? k) - R(% f; t))2
Yio1 T (R(e, [t s, k) — R(c, [,1)?

X?est—value(CJ f7 t) = (SK - 1) (18)

Another approach to access differences between groups is to measure their
distance D(s, k; s', k") between each single measurement s from a given group
k to another measurement s’, k', here given as the euclidian distance:

D(s, k;s' k') > (Xile, f.t,8, k) — Xi(e, f,t, 8, k)2 (19)
o, fyt

From this distance matrix a dendrogram can be generated showing what mea-
surements are the most related. Both the ANOVA, Kruskal-Wallis and den-
drogram methods are provided in ERPWAVELAB; see also figure 5.

However, the above measures are not very specific when explaining what is ac-
tually the difference and similarity between each group of measurements. This
motivates the group analysis based on the decomposition techniques provided

by the PARAFAC and TUCKER models. Assuming that the activities are
present throughout the measurements within the same scalp region a 2-way

11
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Fig. 5. Left panel; example of an ANOVA array of channel x time-frequency of F-test
significance values. Right panel; a dendrogram formed by the distance between
measures given in equation 19.

analysis of channel xtime— frequency—measurements can be used to identify
these regions. Consider further X (¢, ¢,7), i.e the activity at a given channel ¢
at time-frequency ¢ at measurement r where r index over all measurements of

subjects, conditions, dates etc. Then the decomposition X.,, ~ >, aggagi)la%

not only gives the mixing of the time-frequency activity of ag) in the channels
agll) but also the strength in which this activity is present at each measure-

ment ag)’). Consequently, measurements with a region of similar activity will

be strongly present in ag’) while this similar activity will be given in a&l), af).

Again, the corresponding Tucker model X, ., ~ >4 v 4 Gaq a4 aggaéi)l, agu al-
lows factors of various indices to interact. The 2-way and 3-way decomposition

of arrays including several measurements are given in figure 6.

2.6 From ITPC to tracking the ERPCOH

The ITPC is a measure of evoked activity. However, sometimes the phase
locked activity initiates another activity at another time and location and
possibly of another frequency (Varela et al., 2001; Kopell et al., 2000). Hence,
the secondary activity evoked by the initial activity evokes later, say, tertiary
activities. However, in the chain of brain events the evoked activities will
have a tendency to be less phase locked to the event, since it is the result
of communication through more stages of neurons. Consequently, the phase
jitter to the event might be larger than the phase jitter to the first activation.
If this is not so, the two activities could be considered parallel instead of serial.

Traditionally, the ERPCOH has been used to measure the coherence between
different channels at the same time-frequency point (Delorme and Makeig,

12



2-way PARAFAC 3-way PARAFAC

channel x time - frequency x measurement array channel x time- frequency measurement channel x tim:

ency X measurement

3-way TUCKER

channel x time-frequency x measurement

o M uLIrlI i, M

r [
N : s
K 2 e
D 2 0

Fig. 6. Left panel: The 3-way array given by including several (presently 28) mea-
surements. Middle panel; the decompostion found by collapsing the measurement
modality onto the time-frequency modality to find scalp localized regions of activ-
ity. Right panel: The corresponding 3-way analysis given by the PARAFAC, and
bottom panel: TUCKER model of channel x time — frequency X measurement.
Contrary to the 2-way analysis the 3-way analysis assumes also the time-frequency
activity are similar across groups of measurements.

2004). However, in ERPWAVELAB the ERPCOH can also be set to measure
the coherence from a given time-frequency-channel point to all other time-
frequency-channel points. Consequently, if a region is evoked by the activity
of another region this can be captured by the ERPCOH. As a result, finding
the ITPC maxima and calculating the ERPCOH from this maxima can elicit
how other regions of the brain are activated, i.e evoked, due to this ITPC
activity. This secondary activity showing up as an ERPCOH maxima might
again activate other regions which can again be captured by calculating the
ERPCOH from this ERPCOH-maxima to all other points. ERPWAVELAB
enables an efficient method of tracking these types of stepwise phase coher-
ences by allowing each coherence to be recorded and afterwards displayed in
a diagram of coherent connectivity, see figure 7. Furthermore, since both the
ITPC and ERPCOH are Rayleigh distributed, the significance of the phase
locked activities can be accessed by the toolbox.

13
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Fig. 7. Left panel: the various recorded cross coherences. One procedure being to
calculate the ITPC activity, from this maxima calculating the ERPCOH to find the
most phase locked activity to this ITPC maxima. Recording this ERPCOH-maxima
the cross coherence can again be calculated and another ERPCOH maxima found
and recorded. Right panel: the overall recorded activity. The strength of each coher-
ence is indicated by the intensity of the arrows while the significance of each arrow
is given in the individual plots. Hence, black arrows indicate strong coherence while
light gray arrows indicate a week phase synchrony.

3 Conclusion

This paper has introduced the new open source toolbox ERPWAVELAB. The
toolbox is rooted in the widely used toolbox EEGLAB and can be downloaded
from www.erpwavelab.org, where we also have placed a detailed tutorial that
explains all the features of the toolbox. The tools can be helpful when analyz-
ing multi-channel time-frequency transformed event related potentials. Facing
non-stationary and noisy data, we have included tools for rejection of arti-
facts in the time-frequency domain and made it possible to track phase locked
oscillations in a systematic way.
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