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Abstract

The current report concerns methods of early detection of connective tissuedisorders leading to aortic aneurysms and dissections. Automated and accuratesegmentation of the aorta in 4D (3D + time) MR image data is reviewed, and acomputer-aided diagnosis (CAD) method using independent component analysisis reported. This admits the objective identi�cation of subjects with connectivetissue disorders from 4D aortic MR images.
The majority of the presented work is concentrated on independent componentanalysis(ICA), estimating sources to be used for the diagnosis task. Prior knowl-edge of the source distribution is utilized using an ordering of the components.Two new ordering measures are introduced in current work. A novel approachto constrained dimensionality reduction in ICA is developed. A new idea oftime-invariant independent components is introduced, and assists in the diseasedetection in the presence of sparse data.
4D MR image data sets acquired from 21 normal and 10 diseased subjects areused to evaluate the e�ciency of the method. The automated 4D segmentationresult produces accurate aortic surfaces. The ICA results are validated by aleave-one-out classi�cation test, and are further substantiated by visual inspec-tion of the components. Using a single phase of the cardiac cycle, 8 out of 10diseased subjects are identi�ed and the speci�city is 100 %, classifying all 21healthy subjects correctly. These results are obtained using components show-ing correspondence to clinical observations. With 4D information included, theCAD method classi�es 9 out of 10 diseased correctly, and still the speci�city is100 %.
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Resum�e

Den indev�rende rapport vedr�rer metoder til tidlig detektering af bindev�vs-sygdomme, som f�rer til aortic aneurysms og dissections. En automatisk ogpr�cis metode til segmentering af aorta i 4D (3D + tid) MR data er refer-eret og en computerassisteret diagnose (CAD) metode, der involverer brugenaf independent component analysis, er rapporteret. Dette muligg�r en objektividenti�cering af subjekter med bindev�vssygdomme, udfra 4D MR billeder afaorta.
Hovedparten af det fremlagte arbejde er koncentreret omkring independent com-ponent analysis (ICA), som estimerer kilder, der bruges under diagnose opgaven.A priori viden om kildernes fordeling er udnyttet til udformningen af en sor-tering af de fundne komponenter. To nye sortereringsm�al er fremf�rt i detindev�rende arbejde. En ny tilgang til dimsionsreducering under bibetingelser iICA er udviklet. Et nyt koncept om en tidsinvariant independent component erdesuden introduceret, hvilket assisterer til sygdomsdetekteringen, n�ar der kuner en st�rkt begr�nset m�ngde data til r�adighed.
4D MR billeds�t, optaget af 21 normale og 10 syge subjekter, er brugt til atevaluere e�ektiviteten af den udviklede metode. Den automatiserede 4D seg-mentering giver en n�jagtig aorta over
ade. ICA resultaterne er valideret veden leave-one-out klassi�ceringstest, og er yderligere underbygget ved visuel in-spektion af de fundne komponenter. Ved brug af en enkelt fase a hjertecyklen,bliver 8 af 10 syge subjekter korrekt identi�ceret og speci�citeten er 100 %, s�aalle 21 sunde subjekter bliver klassi�ceret korrekt. Disse resultater er opn�aetmed komponenter, der viser lighed med kliniske observationer af bindev�vssyg-domme. N�ar 4D informationen er inkluderet, kan CAD metoden klassi�cere 9af 10 syge subjekter korrekt, samtidig med at speci�citeten stadig er 100 %.
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Chapter 1

INTRODUCTION

Aortic aneurysms and dissections are the 15th leading cause of death in thethe U.S., representing 0.7 % of all deaths in 2004 [1]. Persons with certainconnective tissue disorders, such as Marfan's syndrome and Familial ThoracicAortic Aneurysm syndrome are at increased risk of developing aortic aneurysmand dissection, which makes an early detection very important.
This study is approaching cardiovascular disease diagnosis using magnetic res-onance (MR) imaging. Producing manual outlining of the aorta in 3D imagesrequires expert knowledge and is a tedious and time-consuming task. Detec-tion of connective tissue disorder is based on a crude diameter measure of theascending aorta from a single 2D MR-slice. Fig. 1.1 shows three 2D slices of atypical 3D cardiac MR images with manually traced aorta contours.
The reported work focuses on the analysis of the automatically segmented aorta.The segmentation was done in a previous study as reported in [2], and the out-line of the applied method is provided here for completeness. The data wasnormalized to 16 phases of the cardiac cycle, and the aortic shapes for three ofthe cardiac phases are illustrated for a subject in Fig. 1.2. The aortic shapeswere analyzed using a point distribution model based on independent compo-nent analysis (ICA). The ICA method was extended with two di�erent orderingmeasures and a novel approach to dimensionality reduction. To utilize the in-formation of all the 16 phases and �nd statistically signi�cant descriptors, the
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Figure 1.1: Three sample 2D slices of a typical aorta candy-cane MR imagewith manually traced contours outlining aortic lumen.
concept of dividing the model into time-invariant and time-variant componentshas been introduced.

Figure 1.2: The phases 1, 6 and 11 of the cardiac cycle of a healthy subject.
A computer-aided diagnosis (CAD) method for objective identi�cation of sub-jects with connective tissue disorders from 16-phase, 3D+time aortic MR imagesusing independent component analysis is reported.
1.1 Organization of the report
The report is divided in four parts, each described below.

� Background (I): The imaging technique is described, as well as someof the connective tissue disorders and the most common e�ects they maycause. The data is presented as well as previous work in the area.
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� Methods (II): The proposed automatic 3D segmentation method is re-viewed and the concept of a point distribution model is described. In-dependent component analysis (ICA) is described along with associatedalgorithms and the development of several extensions to the basic ICAmodel is presented. The structure of the implemented program is shortlydescribed.� Results (III):. The segmentation results are demonstrated, and the es-timated indpendent components are evaluated both by visual inspection,and by performing a classi�cation task on the labeled subjects.� Discussion and conclusion (IV): The developed methods are discussedas well as the obtained results.
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Part I

BACKGROUND
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Outline of the presented background
In this part of the report the background of the study is summarized. Both thephysical background of MR imaging and the clinical background of the connec-tive tissue disorder are reviewed. In chapter 2 the development of cardiovascularMR imaging is presented, including the basic physics and a description of thestate of the art techniques. Chapter 3 contains a review of connective tissuedisorders including a description of current diagnostic techniques. Chapter 4presents the available data and gives an outline of the problem at hand. Therecent contributions in the �elds of this thesis are outlined in chapter 5.
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Chapter 2
Cardiovascular Magnetic

Resonance Imaging

The �rst steps towards cardiovascular magnetic resonance imaging were takenback in the early 1980's but huge advancements have been made since then.Magnetic resonance imaging (MRI) is based on the physical principles of nuclearmagnetic resonance (NMR). Almost every nucleos in the periodic system has anet spin due to an unpaired proton or neutron [3]. This spin causes the nucleusto function like a tiny magnet. In order to minimize the energy, the spin tendsto align with an external magnetic �eld, while the axis is still rotating aroundthe magnetic �eld. This is illustrated in Fig. 2.1
The rotation around the magnetic �eld can be ampli�ed by applying an os-cillating electric �eld at the resonance frequency. Once the oscillating �eld isremoved, the nuclei falls back into the normal state, shown in Fig. 2.1. This isthe basic principle behind NMR. The more recent techniques use a gradient inthe magnetic �eld and a whole range of frequencies to assemble an image in thefourier space. Fourier transformation gives the images as they are presented inthis thesis.
MRI technique has advantages such as high spatial and temporal resolutions,and favorable signal-to-noise ratio. It is widely used in routine clinical practice.Approximately 200 million MRI scans were in 2004 reported performed on more
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Figure 2.1: This spin axis tend to align with the magnetic �eld, while stillrevolving around the magnetic axis.
than 20,000 MRI units worldwide [4]. Protocols focused on imaging of the heartregion are referred to as Cardiovascular Magnetic Resonance (CMR).
The CMR images are typically 4D images acquiered using an ECG signal totrigger the data acquisition. The cardiac cycle is de�ned at the period of timebetween two peaks of the ECG R-wave. A simple ECG graph is shown in Fig.2.2. The basic principle of ECG measurements is to measure the depolarisationof cells in the heart, which happens at every heartbeat.
The CMR images are acquired from a slice of the 3D object of interest. Toreduce scan time and achieve desired temporal resolution, the slice thickness isnormally chosen larger than the slice plane resolution. A typical voxel size ofa 3D CMR image is 1.5mm�1.5mm�8mm, where 8mm is the slice thicknessand 1.5mm is the slice plane resolution. The 3D image representation of thewhole object of interest is acquired by stacking several slices of CMR imagesand the resulting 3D image is therefore anisotropic in 3D. The stacking processis illustrated in Fig. 2.3.
A 4D image representation of the object of interest is acquired from severalcardiac cycles. The typical procedure of acquiring a 4D image with a �xednumber of phase, N , is to measure the current cardiac cycle length and calculatethe time o�sets for each phase. During a whole cardiac cycle, the images areacquired from one or several slices at �xed locations at calculated time o�sets.
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Figure 2.2: A sample of an ECG signal with the the R-wave peaks illustratedwith circles. Adapted from [5]

Figure 2.3: An illustration of the merging of several slices into a volume.
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This step is repeated to acquire images at di�erent slices until images from allprescribed slices are acquired. Images can be taken with a lot of di�erent views,including short axis and long axis views that refers to the axes of the heart.
Several typical artifacts of the CMR images are:

� The anisotropic nature of voxel may introduce partial volume e�ect, a lossof resolution caused by multiple features present in the image voxel. Forexample, a voxel may contain both water and fat and the resulting imagepixel intensity is neither of fat nor of water.� The motion artifact is caused by motion of the entire object or part of itduring acquisition. It typically results in blurring of images.� Flow artifact caused by 
owing blood or 
uids in the body.



Chapter 3

Connective Tissue Disorders

The connective tissue supports many parts of the body like the skin, the eyes,the heart and the skeletal system. The connective tissue disorders can a�ectall these di�erent parts. The most signi�cant of the defects are cardiovascularabnormalities, which may include enlargement or dilatation of the base of theaorta, with aortic regurgitation, and prolapse of the mitral valve. People a�ectedwith connective tissue disorders have high risk of developing aortic aneurysmand dissection, described in section 3.1 and section 3.2 [6]. Congenital con-nective disorders include Chondrodysplasias, Cutis Laxa, Ehlers-Danlos Syn-drome, Marfan's Syndrome, Mucopolysaccharidoses, Osteogenesis Imperfecta,Osteopetroses and Pseudoxanthoma Elasticum [7].
People with the Marfan's syndrome carry a mutation in one of their two copiesof the gene that encodes the connective tissue protein �brillin-1. The majorityof the a�ected individuals (75%) have inherited an abnormal copy of this genefrom an a�ected parent. About one-quarter of the a�ected people have a newmutation that is not present in anyone else in their family but can be passed totheir o�spring [9].
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(a) (b)
Figure 3.1: The e�ect of Marfan's syndrome on the aorta adapted from [8]. (a)A normal aorta. (b) An aorta with enlargement caused by Marfan's syndrome.
3.1 Aortic Aneurysm
Aortic aneurysm [6] is a localized abnormal expansion, widening or balloon-ing of the aorta wall. Congenital connective tissue disorders such as Mar-fan's syndrome, trauma, and less commonly, syphilis, hardening of the arter-ies (atherosclerosis) and high blood pressure (hypertension) can lead to aorticaneurysm. Aortic aneurysms occur in the ascending aorta (25 % of the time),the aortic arch (25 % of the time), or the descending aorta (50 % of the time).An example of ascending aorta aneurysm is shown in Fig. 3.1 . Aneurysms arepotentially dangerous because they may burst [10].
Patients with aortic aneurysms are treated if the diameter of the aorta is greaterthan 5 - 6 cm. Because the size of individuals di�er, an aneurysm may also bede�ned by how much larger the weak area of the aorta is, compared to itsnormal size for that person. If the enlarged area is 1.5 to two times largerthan the normal size of the blood vessel, it is de�ned as an aneurysm [11]. Acommon treatment is to surgically replace the aorta with a fabric substitute. Forsmaller aneurysms of the descending aorta, the aorta can be stented by placing atube inside the vessel without chest incision or introducing specialized cathetersthrough arteries at the groin. Operation puts the patient under high risk ofcomplications which may include: heart attack, irregular heartbeats, bleeding,stroke, paralysis, graft infection, and kidney damage. Death soon after theoperation occurs in 5 - 10 % of the patients.
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(a) (b)
Figure 3.2: The two typical shapes of an aortic aneurysm adapted from [11].Both aneurysm are illustrated on the ascending aorta. The three blood vessels,at the top of the aorta, are positioned at the aortic arch, and the descendingaorta is the long part descending. (a) Fusiform aneurysm, which is an areaenlarged in all directions. (b) Saccular aneurysm (below right), which is a bulgeor sac on one side of the aorta
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3.2 Aortic Dissection
Aortic dissection [12] involves tearing of the inner layer of the aortic wall. As aresult a new false channel forms in the wall of the aorta. The likelihood of deathwithin the �rst 48 hours is 1 % per hour for untreated patients. The disorder iscurable with surgical repair if it is performed before aortic rupture. Less thanhalf of the patients with ruptured aorta survive.
A dissecting aneurysm indicates that the inner wall of the aorta develops a tearwhich propagates down the inside of the aorta due to the blood pressure. Itmay also be associated with other injury, infection or congenital weakness ofthe aorta such as Marfan's syndrome.



Chapter 4

Data description

The presented research is part of a study on Highly Automated Analysis of 4-D Cardiovascular MR Data funded by an NIH grant provided for the medicalimaging group at the Department of Engineering, University of Iowa [13]. Thegoal of the project is in part to create "A set of validated quantitative indicesof aortic morphology and motion". The subjects investigated in the currentstudy are 10 patients, genetically known to have a connective tissue disorder,and 21 normal persons scanned for the purpose of comparison. The patientsand the test subjects are as far as possible drawn from the same demographicdistribution.
The analyzed MR data is acquired by either Siemens or GE MR scanners. Thesequences used are Fiesta for the GE scanner and True Fisp for the Siemensscanner. Those sequences are virtually identical, so no bias caused by the usedscanner is expected. The images are of two standard views, the candy cane viewand the left ventricluar out
ow tract (LVOT) view. This is because the secondone is normally used in the manual diagnosis of connective tissue disorders,because it gives more accurate images of the ascending aorta. They are bothvisible in Fig. 4.1.
In Fig. 4.2 more data is illustrated for inspection.
The original voxel size for the GE scanner is 1:5� 1:5� 6mm3 with image size
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(a) (b)
Figure 4.1: Images representing the two di�erent views present in the acquiredset of data. (a) Candy cane view. (b) Left ventricular out
ow tract view.

Figure 4.2: Three typical images of the acquired dataset.
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(a) (b)
Figure 4.3: Images demonstrating the registered images to be merged to createthe data ready for analysis (a) Candy cane view. (b) Left ventricular out
owtract view.
256�256. The voxel size for the Siemens scanner is about 1:9�1:9�6mm3 withimage size 132 � 192. Typically 15{25 phases were acquired per cardiac cycle,together forming the 4D data. The 4D data is created by interpolating (usingnearest neighboring) the anisotropic images into isotropic images and merge theimages from candy cane and LVOT views together after registration as can beseen in Fig. 4.3. It can be seen that the two di�erent images desribe the samearea of the body, and they are merged to give data with fewer artifacts and lessnoise.
The number of phases of the cardiac cycle is normalized to 16 using cubic B-spline interpolation. The resulting preprocessed data consist of 4D data with16 phases. Part of the analysis consists of segmenting the aorta. The aorta isvisible in Fig. 4.1(a) as a candy cane or a bit like a question mark tilted left.Typical examples of the aorta can be seen in Fig. 4.4, where the mean of allthe diseased subjects and of the healthy subjects are illustrated. The mean ofthe diseased (Fig. 4.4(b)) is seen to be a bit dilated compared to the mean of
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the healthy subjects (Fig. 4.4(a)), which corresponds to clinical observationsrefered to in section 3. The mean shape is unfortunately not precise enough,as a descriptor, to separate the two classes using a simple distance measure orcanonical discriminant analysis. This is part of the motivation for the currentwork. Examples of the segmented aorta are available in App. A.

(a) (b)
Figure 4.4: Mean shape of healthy versus diseased subjects, taken over the �rstphase of the cardiac cycle from all the subjects. (a) The mean shape of allhealthy subjects. (b) The mean shape of all diseased subjects.



Chapter 5

Previous work

The aortic segmentation of computed tomography (CT) and MR images hasalready undergone a lot of research. Due to the labor intensive and di�cultanalysis of the vast amount of images, developing reliable and fast analysis toolshas been a high priority for a decade. Rueckert et al. [14] used Geometric De-formable Models (GDM) to track the ascending and descending aorta. Behrenset al. [15] obtained a coarse segmentation using Randomized Hough Transform(RHT). Bruijne et al.[16] introduced an Adapting Active Shape Models (ASM)for tubular structure segmentation. Subasic et al.[17] utilized the level-set al-gorithm for segmentation of abdominal aortic aneurysm (AAA). Though aorticsegmentation has been repeatedly attempted in the past, it is believed this isthe �rst study investigating its use for connective tissue disorders detection.
Independent component analysis (ICA) has its origin in the 1980's in the areaof neurophysiology and was soon adapted in neural network applications byHerualt et al. [18]. Not untill the 90's did the area recieve much attentionoutside of France and with the development of the fastICA algorithm in 1997by Hyv�arinen et al.[19], it is now a mature active �eld of research. Lelieveldt etal.[20] have studied the application of ICA in statistical shape models, insteadof the more commonly used PCA. ICA has proved to be a well suited toolin the analysis of the myocardial diseases. In modelling the left ventricularmyocardial contour, ICA extracted more localized features that helped to assessthe myocardial contractibility patterns [21].
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The same data that has been analyzed in the current work was previously ana-lyzed using a support vector machine [2]. This gave good results that were un-fortunately very di�cult to interpret clinically. The above mentioned featuresof independent component analysis, in particular in the ventricular modellingwas the source of inspiration for applying ICA to the same problem.



Part II

METHODS
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Outline of the presented methods
In this part of the report the di�erent methods applyed in the computer aideddiagnosis are described. This part is divided in chapters each describing a dif-ferent of the applied methods. Initially the segmentation algorithm is describedbrie
y in chapter 6, for the purpose of completeness, though the developmenthas not been part of the presented thesis. Chapter 7 gives an introduction tothe concept of capturing shape variations in a point distribution model. Thetheory of independent component analysis is reviewed in chapter 8, includingan illustration of the method, which also certi�es that the implemented algo-rithm works as expected. The three subsequent chapters 9, 10 and 11 providethorough descriptions of the developed extensions of the basic ICA model pre-sented previously. In chapter 12 the classi�ers used in the diagnostic step arepresented. Chapter 13 describes the structure of the implemented Visual C++program.
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Chapter 6

Segmentation

The segmentation method is as mentioned previously to provide a completedescription of the diagnosis process, from 4D MR images to the �nal diagnosis.The work has been reported by Zhao et al. [2].

6.1 Aortic surface presegmentation
A 3D fast marching segmentation method [22] was used to obtain an approx-imate aortic surface. Starting with a small number of interactively identi�edseed points within the aorta, the initial surface � propagates in an outwarddirection with the speed F . Let T (x; y; z) be the arrival time at which the levelset surface passes through the point (x,y,z) in the 3D image. The gradient ofthis arrival time shall be inversely proportional to the speed function F [22].

jrTjF = 1 (6.1)
The principal idea behind fast marching methods is to trace the surface ac-cording to the solution function T (x; y; z) solved using Eq. 6.1. To facilitatenumerical solution, discretization in both space and time domains must be per-
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formed. Then,
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where D+ and D� represent forward and backward di�erence operators. Thespeed function is de�ned by Eq. 6.3, where G� � Ix;y;z represents the imagesmoothed by a Gaussian �lter with a characteristic width �. This de�nitionensures that the surface development stops at a voxel with a high gradient.

F (x) = e
��jr(G��Ix;y;z)j; � > 0 (6.3)

Using a binary tree sorting technique, the fast marching method can solve Eq.6.2 with a time complexity of O(N logN), where N is the number of visitedpoints in the image [22]. The fast marching algorithm stops the surface in thevicinity of object boundaries yielding an approximate object surface.
In order to achieve an accurate segmentation, a skeletonization algorithm [23] isapplied to the result of the approximate segmentation to extract the aortic cen-terline. As a last segmentation step, a cylindrical surface graph search methodis used to accurately determine the �nal luminal surface.
6.2 Accurate aortic surface segmentation
Optimal border detection is an e�cient segmentation algorithm applicable totubular surfaces such as blood vessel. The method consists of 1) a coordinatetransformation, 2) surface detection using dynamic programming, 3) mappingof the segmentation result back onto the original image.
Coordinate transformation. In order to construct the aortic surface de-tection graph, a coordinate transformation is needed. First, cross sections areobtained by resampling the image in the directions perpendicular to the center-line. Each voxel in the aortic cross sections is resampled using a cubic B-splineinterpolation technique [24, 25]. The aorta is straightened by stacking the resam-pled cross sections to form a new volume. Each cross section in the resampledvolume is unfolded into polar coordinates to transfer the cylindrical surface intoa terrain-like surface [26]. This unfolded image is used for construction of the
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aortic surface detection graph. Fig. 6.1 shows the process of straightening theaorta into a cylindrical tube. Fig. 6.2 shows the unfolding process.

(a) (b)
Figure 6.1: The process of transforming the aorta into a straight cylinder.

Figure 6.2: Unfolding of the cylindrical surface into a terrain-like surface.
Detection of the accurate surface. After constructing the graph from theunfolded cross-sections, the border detection problem is transformed into asearch for optimal paths in weighted graphs [26]. Each pixel in the unfoldedcross section corresponds to a node in the graph. A cost is assigned to eachnode. The lower the cost, the more likely it is that the node is actually on theborder. The minimum-cost path (optimal border) that connects the start nodeand the end node is determined by dynamic programming [26].
Cost function design. The cost functions used for the identi�cation of theaortic surfaces plays a vital role in the graph search methods. Since the ascend-ing aorta is connected to the left-ventricle and is surrounded by tissue of similarMR appearance as the aortic wall, the borders of ascending aorta are hard todetect with a simple cost function. In this study, two di�erent cost functionswere developed { one for the ascending aorta and the second for the descendingaorta. First, a 3D edge image of the aorta is formed. The usual simple edge
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operators often overestimate or underestimate the actual border positions. Toovercome this problem, our edge operator utilizes a combination of �rst andsecond derivatives (3� 3 Sobel edge detector and 5� 5 Marr-Hildreth edge de-tector) of 2D gray-level images [27]. The edge image can be represented by:

E = (�S + �M)I ; (6.4)where I is the original image, S is the Sobel operator, and M is the Marr-Hildreth operator. The parameters � and � control the relative weight of the�rst and second derivatives. In the results presented in this study, � was �xedat 0.8 and � = 0:2. The cost function can be represented as:
C(i; j) = max

x2X;y2Y
f �F (x; y)� �F (i; j)g ; (6.5)

where �F (i; j) is the edge function which is "inverted" to form the cost function.
� Descending Aorta and Aortic Arch: Let d(i; j) represent the edge directionof a pixel (i; j). The edge function for the descending aorta and the aorticarch is as follows:

�F (i; j) = � E(i; j) d(i; j) 2 [�=2; 3�=2]E(i; j)��P otherwise (6.6)
where �P is a constant penalty term.� Ascending Aorta: The ascending aorta borders are di�cult to detect witha simple cost function such as given in Eq. 6.6. In order to overcome thisproblem, a knowledge-based cost function [28] is used for the ascendingpart. After examining the cross section perpendicular to the centerline, asmall gap between the ascending aorta border and its surrounding tissuewas detected (Fig. 6.3). The thickness of this gap ranged from 2 to 4pixels. Using this information, the edge function of the ascending aorta iscalculated as a combination of two related edges:�F (i; j) = �Fi(i; j) + �Fo(i; j) (6.7)The inner edge function �Fi(i; j) and outer edge function �Fo(i; j) are:

�Fi(i; j) = � E(i; j) d(i; j) 2 [�=2; 3�=2]E(i; j)��P otherwise (6.8)
�Fo(i; j) = max�j=2;3;4

� E(i; j +�j) d(i; j +�j) 2 [��=2; �=2]E(i; j +�j)��P otherwise (6.9)



6.2 Accurate aortic surface segmentation 31

(a) (b)

(c)

(d)
Figure 6.3: (a) A single 2D cross section of the ascending aorta. (b) thecross section with manually traced outlines. The inner outline is the borderof ascending aorta, the outer outline is the border of the surrounding tissue.(c) The unfolded image of (a). (d) The unfolded image with manually tracedoutlines. The lower outline is the border of ascending aorta, the upper outlineis the border of the surrounding tissue.
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Chapter 7

Point Distribution Model

Using the segmentation results, a shape Point Distribution Model (PDM) of theaorta population was generated. A PDM serves to represent shapes as variationsover a mean shape. Building the PDM consists of two stages: 1) Automatic gen-eration of aortic landmarks on the 3D segmentation result. 2) Capturing theshape variation by using statistical shape analysis, namely independent compo-nent analysis on the aortic shape.
7.1 Landmark generation
To build the PDM, the shape must be described by n corresponding landmarks.In this study, we generated the landmarks automatically from the aortic seg-mentation results in the following 3 steps:

1. Template shape generation. In order to obtain a compact model, the seg-mentation result images were aligned to remove the Euclidian transforma-tion e�ects of scale, rotation and translation by applying an a�ne trans-form Ta�ne. The template shape was generated by applying shape-basedblending [29] to the aligned segmentation surfaces.
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2. Template Shape landmarks generation. Landmarks were generated on thetemplate shape. The general layout of the method for generating land-marks was using triangular meshes to model the surface of the aorta, anduse vertices of these triangular meshes as landmarks. A marching cubesalgorithm [30] was used to generate the triangular meshes.3. Landmarks mapping. Once the entire set of aortic segmentations waslandmarked, each landmark was mapped back onto the original imagedata. In other words, the landmarks generated on the template shapewere mapped back onto the original volumes by using the inverse a�netransform T�1a�ne followed by a B-spline elastic transform to propagate thelandmarks onto the individual shapes. Each resulting shape sample wasrepresented by a shape vector x = (x1; y1; z1; :::; xm; ym; zm), consisting ofm pairs of (x; y; z) coordinates of the landmark points.

7.2 Shape Analysis
The landmarks were set to have correspondence between the di�erent aorticshapes, in line with their nature. To analyze the di�erent shapes they can bemodelled as variations of a golden standard shape. This is much related to theway humans interpret images. For instance if one thinks of an apple, everybodycan picture an apple, though apples come in variety of shapes, sizes and evencolors, but still we have a clear idea of the concept of an apple. Similarly theshape analysis is based on the analysis of variations over a shape chosen to bethe mean shape. The mean shape is estimated as a mean of all the individualshapes. The mean shape for the �rst phase of the cardiac cycle is illustrated inFig. 7.1.
Subtracting this mean shape from all samples makes the sample vectors zero-mean, which is an important prerequisit in independent components analysis,used to model the shape variations, as presented in chapter 8.



7.2 Shape Analysis 35

Figure 7.1: The mean shape of the �rst phase of the cardiac cycle.



36 Point Distribution Model



Chapter 8
Independent Component

Analysis

Independent Component Analysis (ICA) is a method suitable for recovering in-dependent sources that are mixed to form new signals. The general assumption,which has also been adopted in this work, is that the mixing process is linear.
The classical ICA example consists of a setup of several microphones placed ata cocktail party to pick up many distinct voices speaking. Each microphone willreceive a di�erent signal, depending on which persons it is close to. In this caseICA is suitable for separating the voices without using any knowledge of speakrecognition, except for the fact that the amplitude of the voices is non-Gaussian.
8.1 The Linear ICA model
Linear ICA models assume that the observed signals are linear combinations ofthe independent sources. X = AS ; (8.1)where Xd�1 are the d observed signals, Sk�1 represents the value of the k in-dependent sources and Ad�k is the mixing matrix. To correctly identify the
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true sources d � k needs to be true. It might actually be possible to estimatethe mixing matrix in cases d < k, but the sources can still not be determined,because the mixing matrix Ad�k is not invertible in this case.
To recover the independent sources a demixing matrix Wk�d is introduced by

S =WX ; (8.2)
where the sources S are assumed of zero mean and unit variance. The truesources can be reconstructed except for a scaling factor.
The independent components can, assuming non-Gaussian distribution of thesources, be found by maximizing a measure of non-Gaussianity. This is due tothe Central Limit Theory, which states that a mixture of any two, non-Gaussian,distributions will be more Gaussian than the original distributions. Finding thedi�erent components maximizing the non-Gaussianity yields distributions thatare not mixtures and the recovered components are thus independent.
8.2 Whitening
Independent component analysis seeks to �nd components that yield indepen-dent sources. Unlike principal component analysis nothing can be said aboutthe relation between the variance of these projections. In order to compare twoprojections the di�erent measures of independence either maximize a measure ofnon-Gaussianity or a measure of the information content of the sources. Com-mon for all measures is that they deal with the distribution rather than scalingand o�set of the variables. For this reason, most algorithms require the data tobe whitened before the algorithm is applied.
Initially the mean � is subtracted from the observations to give the input a zeromean. Let �X denote the data with subtracted mean, then�X = X � � : (8.3)
The whitening process then consists of a linear transformation that decorrelatesthe variables and changes the variance of each variable to 1. Let Id be the unitmatrix with dimensions d� d, and U the whitening matrix then

cov(U �X) = Id ; (8.4)
where U can be estimated by using principal component analysis, as the prin-cipal coe�cients are uncorrelated and the analysis also yields the variance of
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each component for normalizing the variance. Let V be a matrix containingthe principal components of �X and � be a diagonal matrix with the variance ofeach component in the diagonal. The whitening matrix U can be chosen to be

U = V �� 1
2V T ; (8.5)

which, if applied, gives white data as shown by
cov(U �X) = cov(V �� 1

2V T �X) = V �� 1
2V T cov( �X)(V �� 1

2V T )T= V �� 1
2V T (V �V T )V �� 1

2V T = �� 1
2��� 1

2 = Id : (8.6)
In general, only a limited number of samples exists in the medical application ofindependent component analysis. The number of principal values greater thanzero equals the number of samples (minus one as the mean has been subtracted).This means that the diagonal matrix with the variances is not invertible, andthe above listed scheme can not be applied in this case.
A possible modi�cation giving uncorrelated variables with unit variance will nowbe presented. Considering each term in the presented matrix U = V �� 1

2V T , therightmost V T can be considered as a transformation into a principal coe�cientspace, �� 1
2 is a scaling in this space so the variance of the coe�cients becomes 1,and the left V a transformation back into the original space. �r is introduced asa reduced version of �, where �r is a diagonal matrix where all the r elementsof the diagonal are di�erent from zero, including the non-zero principal valuesof �. Vr contains the r corresponding principal components and the singularvalue decomposition of cov( �X) can be written cov( �X) = V �V T . Let Ur be thenew whitening matrix, then Ur can be written as

Ur = �� 1
2

r V T
r ; (8.7)

giving scaled principal coe�cients, all with a variance of one as can be shownby
cov(Ur �X) = cov(�� 1

2
r V T

r
�X) = �� 1

2
r V T

r cov( �X)(�� 1
2

r V T
r )T= �� 1

2
r V T

r (V �V T )Vr�� 1
2

r = �� 1
2

r �r�� 1
2

r = Ir : (8.8)
In this work, the second transformation, Ur, has been used, as it works evenwhen the number of samples is smaller than the number of observed dimensions.
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8.3 ICA methods
ICA methods can be split up in two parts, namely an objective function and aoptimization algorithm. The ensemble forms an ICA algorithm.ICA method = Objective function + Optimization algorithm [31].First di�erent objective functions, typically measuring the degree of non-Gaus-sianity, are described, and subsequently di�erent optimization algorithms suitedfor the presented objective functions are treated.
8.3.1 Objective functions
In this section an overview of the considered objective functions is provided.
8.3.1.1 Kurtosis
The Kurtosis kurt(x) of the distribution of a random variable, x, is a measureof Gaussianity. The description of Kurtosis is included in this report because ofits simple analytical properties that in section 10.1.1 shall facilitate an analysisof some of the features of independent component analysis. The Kurtosis isde�ned by

kurt(x) = Efx4gEfx2g2 � 3; (8.9)
where x is a random variable. It can be shown that the Kurtosis is 0 for aGaussian distribution. For practical estimation Kurtosis is far from the optimalmeasure due to sensitivity to outliers and because it mainly measures the tailof the distribution and is largely una�ected by structure in the middle of thedistribution [32]. For the theoretical considerations this does not pose a problemas it can be assumed that the true distributions are know. For two randomindependent variables x and y it holds that

kurt(x+ y) = kurt(x) + kurt(y); (8.10)kurt(cx) = c4kurt(x); (8.11)
where c is an arbitrary constant. Let the row vector, w, be a projection, wX,on the input data X, and let the projection vector be bound by Ef(wX)2g = 1.As stated earlier X is assumed to be generated by the model X = AS (Eq. 8.1).Let z be de�ned by z = wA and observe that Ef(wX)2g = wAEfS2g(wA)T =
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kzk2 = 1, since the sources are independent and assumed of unit variance.

kurt(wX) = kurt(wAS) = kurt(zS) = kX
i=1 z

4
i kurt(Si): (8.12)

To �nd distributions diverging from the Gaussian distribution, the numericalvalue of the Kurtosis can be maximized under the constraint kzk2 = 1. Thiscan be shown to be the canonical base vectors �ei, projections on only oneindependent component [33]. Intuitively, remembering the constraint kzk2 = 1,it is also expected that maximizing Kurtosis corresponds to distributing thevariance over fewer components, as values smaller than one raised to the powerof four are reduced even more.
8.3.1.2 ICA by tensorial methods
One approach to ICA can be considered as a generalization of principal com-ponent analysis. PCA seeks to maximize the variance of the components, whilekeeping the correlation coe�cients zero. Cumulant tensors are generalizationsof the covariance matrix, in particular the fourth order cumulant tensor is givenby cum(xi; xj ; xk; xl) = Efxixjxkxlg � EfxixjgEfxkxlg�EfxixkgEfxjxlg � EfxixlgEfxjxkg ; (8.13)which is a four-dimensional array, or a "four-dimensional matrix". All fourth-order cumulants can be obtained as a linear combination of the cumulants of xi.The Kurtosis, descibed in section 8.3.1.1, of a linear combination of the input,can be written as

kurtX
i

wixi = cum0@X
i

wixi;X
j

wjxj ;X
k

wkxk;X
l

wlxl
1
A

= X
ijkl

w4
iw4

jw4
kw4

l cum(xi; xj ; xk; xl) : (8.14)
A cumulant tensor is a linear operator de�ned by the fourth-order cumulantscum(xi; xj ; xk; xl). The tensor is de�ned as a linear transformation in the spaceof d � d matrices oposed to the covariance matrix with elements cov(xi; xj),which is de�ned in the space of d-dimensional vectors. Let the transforma-tion of a matrix M be described by F and the i; jth element be given by thetransformation Fij , then the transformation is given by

Fij =X
kl

mklcum(xi; xj ; xk; xl) : (8.15)
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As for the common matrix transformation, an eigenvalue decomposition can bede�ned for cumulant tensor, given by

F(M) = �M : (8.16)
Assume that a W is found, satsifying the ICA model (8.2) with whitened data,then �X =WTS ; (8.17)since W is orthogonal. �X then has the special structure that M given by

M = wmwT
m ; (8.18)

is an eigenmatrix, where wm;m = 1; : : : ; d is a row of the de-mixing matrix W .This can be shown by considering an element of the transformed matrix.
Fij(wmwT

m) =X
kl

wmkwmlcum( �Xi; �Xj ; �Xk; �Xl)
=X

kl

wmkwmlcum
0
@X

q

wqiSq;X
q0

wq0jSq0 ;X
r

wrkSr;X
r0

wr0lSr0
1
A

= X
klqq0rr0

wmkwmlwqiwq0jwrkwr0lcum(Sq; Sq0 ; Sr; Sr0) : (8.19)
Since the sources, Si, are independent, only terms where q = q0 = r = r0 givescumulants di�erent from zero, which gives

Fij(wmwT
m) =X

klq

wmkwmlwqiwqjwqkwqlkurt(Sq) ; (8.20)
where it is used that kurt(sq) = cum(Sq; Sq; Sq; Sq). The rows of W are orthog-onal which means that Pk wmkwqk = �mk and the same for index l. This gives

Fij(wmwT
m) =X

q

wqiwqj�qm�qmkurt(Sq) = wmiwmjkurt(Sm) ; (8.21)
which shows that matrices of the form (8.18) are eigenmatrices with eigenvaluekurt(Sm). It can be shown that all other eigenvalues of the tensor are zero[31]. If the eigenvalues of the tensor, corresponding to the Kurtosis of theindependent components, are distinct, every eigenmatrix corresponds to one rowin the de-mixing matrix W . A method for estimating the desired eigenmatricesis described in section 8.3.2.1.
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8.3.1.3 Negentropy and mutual information
Entropy can be percieved as a measure of information or disorder contained ina distribution. If a distribution for example only has two possible states withequal probability the entropy of a random variable distributed according to thisdistribution is one bit. This is the information that is gained if we knew theactual "state" of the variable. It can also be thought of, as the disorder of thevariable, in the sense that knowing only the distribution, "how many possibleways" can the variable be distributed. The di�erential entropy, de�ned forcontinous valued random vectors Y , is given by

H(Y ) = �Z pY (�)logpY (�)d� ; (8.22)
where pY is the density of Y .
The reason that the entropy is an interesting measure in the ICA setting isthat among all distributions with a �xed variance, the Gaussian has the largestentropy. This indicates that the di�erence between the entropy of a distributionand the entropy of a Gaussian distribution with the same variance could beused as a measure of how Gaussian a distribution is. This measure is callednegentropy and is given by

J(Y ) = H(YGauss)�H(Y ) ; (8.23)
where YGauss is a Gaussian random variable. As H(YGauss) assumes the high-est possible value, the negentropy measure is always positive, and maximizingnegentropy is in a sense the optimum way of determining non-Gaussianity. Theproblem though consists of determining the density of the random vector Y . Inthe presence of sparse data this is very di�cult, which is why approximations tothe entropy have been introduced.
Another information theoretic approach is minimizing mutual information to re-cover the independent components which, after approximations, gives the samealgorithm for estimating the components.
8.3.1.4 Joint Entropy
Another measure of entropy is the joint entropy, measuring the informationcontents of a linear projection of the data followed by a nonlinear transformation,which for example can be done by a sigmoid function. The projection Y is thengiven by Y = f �W �X + w0� ; (8.24)
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where w0 is an extra bias weight. Let kJk be the determinant of the Jacobianmatrix, then the distribution of the output Y; pY (Y ) is related to the distributionof the observed signals p �X( �X) by

pY (Y ) = p �X( �X)kJk : (8.25)
The joint entropy is de�ned similar to the diferential entropy (8.22), except theidea of joint entropy is, as the name implies, to estimate an entropy of the wholede-mixing matrix W , rather than just evaluating a single component. Using thenotations introduced already, this can be written as

H(Y ) = �E [logpY (Y )] = E [logkJk]� E �logp �X( �X)� ; (8.26)where the second term E[logp �X( �X)] is seen to be independent of the chosenweights, which is taken into consideration when maximizing the joint entropyin section 8.3.2.3.
8.3.2 Optimization algorithms
Di�erent algorithms are suited for the di�erent objective functions. This sectiongives a description of algorithms suited for the presented objective functions.
8.3.2.1 Joint approximative diagonalization of eigenmatrices
The joint approximative diagonalization of eigenmatrices (JADE) method isan approximative method for estimating the eigenmatrices described in section8.3.1.2. This can be done by restating the eigenmatrix property. The de-mixingmatrixW is the matrix that diagonalizes F(M) for anyM . This means thatQ =WF(M)WT is diagonal. In order to estimate the W 's so Q becomes a diagonalmatrix a measure is wanted for the amount of diagonalization. An appearentapproach is maximization of the diagonal elements, as W is orthonormal andthe squared sum of all the elements remains constant.JJADE(W ) =X

i

kdiag(WF(Mi)WT k2 : (8.27)
In the presence of true and limited data, a complete diagonalization is not pos-sible. The matrices Mi could in principle be chosen arbitrarily, but to reducecomputation time, a set consisting of eigenmatrices of the cumulant tensor canbe chosen [34]. One problem with the JADE algorithm is that the cumulant ten-sor scales like O(n4) with the number of dimensions, so for high dimensionalitysignals, the memory requirements become very high.
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8.3.2.2 FastICA
This algorithm works well with the negentropy (and mutual information) ap-proximation. It does work with several di�erent objective functions, but dueto its current use, the negentropy approximation is emphasized, as discussed inApp. B
The FastICA algorithm is iterative and let n represent the iteration number,w(n) the estimated independent component in the nth iteration step. Xd�1is a column vector with the d rows representing the observed signals, in thepresented case corresponding to features of a patient. The iteration steps aregiven by the following

w(k) = EfXT g(w(n� 1)X)g � Efg0(w(n� 1)X)gw(n� 1); (8.28)where g and g0 are derivatives of a non-quadratic functionG(u) = � exp(�u2=2).This is the previously mentioned negentropy approximation. The componentsare found sequentially and the data projected into the subspace orthogonal tothe recovered projections to improve performance and convergence [35]. Theweight vector, w, is randomly initialized which in
uences the obtained solutiondue to multiple local maxima. Multiple w's were initialized allowing the selectionof the one resulting in a source with the most desirable properties.
8.3.2.3 Gradient descent
Gradient descent works by maximizing a function iteratively by moving in smallsteps along the negative gradient untill a suitable maximum is reached. Let Gbe a function of the weight vector w, then the update rule can be described by

�w = ��G(w)�W jW=W (t�1) (8.29)
Gradient descent on the joint entropy measure The gradient descentalgorithm has proven its worth on the joint entropy measure introduced in sec-tion 8.3.1.4. It is noted that the determinant of the Jacobian can be rewrittenas kJk = �����kWk dY

i=1
�Yi� �Xi

����� ; (8.30)
and next using (8.29) gives

�W = ��H(Y )�W = ��W logkJk = ��W logkWk+ ��W log dY
i=1
���� �Yi� �Xi

���� : (8.31)
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The derivative of logkWk can be rewritten as

��W logkWk = [WT ]�1 ; (8.32)
giving the �nal and simpler expression

�W = �[WT ]�1 + (1� 2Y ) �XT ; (8.33)
where the nonlinearity is assumed to be sigmoid.
The gradient descent algorithm was implemented on the joint entropy measurerevealing similar results as the FastICA algorithm on the aortic shape as wellas on the simple test, described in section 8.4. It did have a slower convergencethough.
8.3.3 Conclusion
For recovering the independent components, the FastICA algorithm has beenapplied in this study, due to its fast convergence and robustness[32]. As men-tioned in section 8.3.1.1, the Kurtosis is not very well suited in practical imple-mentations with only a limited number of samples. The JADE algorithm waspreviously implemented by the current research group, which did not yield sat-isfactory results. As discussed in section 10.1.1 more sources than samples mayexist, and JADE is not well suited for making a selection between interestingcomponents. Gradient descent on a joint entropy measure was implemented,yielding similar results, but later discarded due to slower convergence.
8.4 A demonstration of ICA
The following example works to prove that the produced implementation worksto �nd independent components, as well as to demonstrate the hypothesis ofICA in the presence of the same number of sources as observable signals.
8.4.1 Two independent sources
This example demonstrates that two independent sources can be identi�ed andseparated. The two uncorrelated sources have been constructed as a randomuniformly distributed signal and a serrated signal shown in Fig. 8.1(a).
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(a) (b)
Figure 8.1: (a) The two indpendent signals. A serrated signal and a randomunform signal. (b) Two mixtures resulting from a linear mixture process.
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The two signals are mixed linearly using an arbitrary mixing matrix A2�2 givenby

A = � 0.23 0.300.35 0.28 �

The two signals resulting from the mixture process given by (8.1) are shown inFig. 8.1(b). It is evident that both mixtures are rather similar mixtures of thesources. Figure 8.2(a) shows a scatter plot of the two sources. It can be seenthat both sources are uniformly distributed and in Fig. 8.2(b) it is illustratedhow the mixed signals have a skewed distribution.

(a) (b)
Figure 8.2: (a) The two indpendent signals. The serrated signal and the randomunform signal. Both have a uniform distribution which can clearly be observedin the plot. (b) Two mixtures resulting from a linear mixture process. Theuniform distributions are now skewed.
Principal Component Analysis The most common procedure in dimen-sionality reduction and/or feature extraction is using principal component anal-ysis (PCA). PCA is �nding projections that explain the biggest amount of vari-ance, whereas ICA is concerned with �nding independent components. In thepresence of data with a Gaussian distribution, ICA can not be utilized, as Gaus-sian distributions can not be distinguished. In this case PCA �nds the principalaxes in the hyper-ellipsoid describing the Gaussian distribution.
PCA applied on the two mixtures gives two principal axes illustrated in Fig.8.3(a). It can be observed how the one axis represents the majority of thevariation and the other the rest. In describing the two di�erent sources theyperformed badly, since they are both a mixture of the two independent sources,which can be clearly observed in Fig. 8.3(b).
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(a)

(b)
Figure 8.3: (a) Scatter plot of the two linear mixtures. The two red lines areillustrating the principal components, scaled like 2 times the standard deviation.(b) The resulting scores of each principal component. The scores on the leftgraph are from the principal component explaining the most variance, and thescores shown in the right graph are from the other principal component. Thiscan also be observed in the values of the scores, which have greater variancefor the �rst independent component. They are both clearly a mixture of therandom uniform signal and the serrated signal.
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Independent Component Analysis The obtained results using ICA on themixed data are presented in this section. Initially the data was whitened as de-scribed in section 8.2. Subsequently the FastICA algorithm was applied on thewhitened data to estimate the independent components. In Fig. 8.4(a) the esti-mated independent components can be observed. The directions perpendicularto the components have also been emphasized with dashed lines to illustratethat the parts excluded by the projection of the data on the independent com-ponents are the other components. In Fig. 8.4(b) the estimated sources can beseen to correspond almost excactly to the true sources illustrated in Fig. 8.1(a),except for an o�set and a scaling factor. The amplitude of the sources cannotbe determined, as it is unknown if the scaling origins from the mixing process orfrom the original source signal. A closer investigation yields small ripples in theestimated saw teeth which are caused by chance correlations between the twosignals. The average magnitude of these depends on the number of samples.

(a) (b)
Figure 8.4: (a) Scatter plot of the two linear mixtures. The two red linesare illustrating the independent components, scaled apropiately. The dashedlines show the directions perpendicular to the independent components, whichcan be seen to be directed along the distribution of the other source. (b) Theresulting estimated independent sources. It can be seen that the original sourcesillustrated in Fig. 8.1(a) are reconstructed except for scaling and an o�set.
8.5 Conclusion
In this section several objective functions were described as well as some of theoptimization algorithms considered. In a previous study, a JADE implementa-
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tion of ICA by tensorial methods was used, without giving acceptable results.For this reason, this method was not pursued further. The negentropy objec-tive function is analytically attractive, because it in some sense is a "natural"measure of non-Gaussianity. The approximation introduced in section 8.3.2.2made for an e�cient optimization algorithm. Joint entropy was also an attrac-tive objective function, giving similar results using a gradient descent algorithm,but slower convergence makes the negentropy measure combined with the ap-proximation and FastICA algorithm the prefered choice of algorithm. Unlessspeci�cally stated, the algorithm used in the remaining of this report is theFastICA algorithm as described in section 8.3.2.2, and implemented as outlinedin chapter 13.
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Chapter 9
A �rst approach to ICA on

the aortic shape

Due to the orthogonalization step in the FastICA algorithm, the ordering ofthe components has a rather great signi�cance on the estimated components.Three di�erent ordering measures are implemented in this work, introducing thenew Fisher discriminant measure, a localization measure, and a measure basedon the approximated negentropy measure. Section 9.2 introduces the orderingmeasure that maximizes localization, which is preferable in the interpretationof the extracted components, and in section 9.3 the Fisher discriminant as anordering measure for extraction of the component that separates the diseasedand normals, is described.
9.1 Ordering by the negentropy approximation
Initially the FastICA algorithm was applied on the data, searching for the max-imum possible number of components that could be estimated. Having 31 sub-jects, after the whitening process, the maximum number of independent com-ponents to be estimated was 30. The coe�cient values of the projection of thedata onto these 30 independent components yield an initially interesting result.The objective function to be maximized by the FastICA algorithm was a mea-
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sure of non-Gaussianity. In Fig. 9.1 the distribution of the coe�cients for eachindependent component is illustrated.

Figure 9.1: Distribution of the projections on each independent component. Itcan be observed that the �rst components explain an almost binary division ofthe patients in two groups.
It is observed that the sources corresponding to the �rst components are dis-tributed almost solely around the binary values 1 and -1, which gives a verynon-Gaussian distribution. Dividing the data into two distinct groups is proba-bly not caused by an underlying feature of the data, but is rather arising fromthe scarce amount of samples available for estimation of the mean values in theFastICA algorithm. The components best suited for distinguishing the normalsubjects and the patients, were components of the order 9 - 17, and none showedany particular clear separation between the two groups of subjects. The �rstcomponent which gives an almost completely binary distribution of the coe�-cients is shown in Fig 9.2. It can be observed that the major di�erence betweenthe two binary groups is centered around the ascending aorta, seeming to havetwo di�erent angles. Also at the tip of the descending aorta there are somedi�erences and this is not a very interesting feature, since the segmentation ofthe end of the descending aorta is not very robust.
To achieve features with distributions di�erent from just being non-Gaussian,two new ordering measures are introduced.
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Figure 9.2: Illustration of an independent component. One phase of the inde-pendent component is projected onto the mean shape of the aortic candy cane.It is color coded such that red corresponds to a dilation of the aorta at a givenpoint and blue to a shrinkage at that point. Green means the components isnot dependent on a point.
9.2 The localization of the components
The true underlying sources are believed to be localized. Being diseased forinstance is expected not to in
uence the entire shape of the aorta, but onlya part of it close to the heart at the ascending aorta or at the aortic arch.More generally in medical applications, components are usually expected toshow local rather than global features. This is the main reason to reinforce thelocalization of the enountered independent components through an ordering ofthe components.
A measure is de�ned that focuses on the peaks of the shape variation, extendinga measure de�ned by Lelieveldt et al. [20] to 3D. The variation of the shapeby a given projection is mapped onto the normals of the mean surface. Thenormals are determined from the triangulation using a scheme as depicted inFig. 9.3. Each triangle is assigned a "spin", and by registering the spin in eachconnection between points, forming the triangles, it can be made sure that allthe spins are rotating in the same direction. This is done by noting that eachedge is an edge in two triangles, and that the "spin-direction" of the edge isopposite for the two triangles. Starting by assigning a direction to one triangle,the rest can be assigned using this scheme. The normals are found by takingthe cross product of two of the edge vectors, using the spin direction to choosethe ordering.
The volume between the two triangles, illustrated in Fig. 9.4, is calculated by



56 A �rst approach to ICA on the aortic shape

(a) (b)
Figure 9.3: (a) An example of triangles with normals, all pointing in the samedirection (either outwards or inwards). (b) De�ning a direction by assigning aspin to each triangle.
multiplying the area of the triangle by a projection of the displacement on tothe normal vector of the mean shape. All volumes are compared and peaks arefound as will be described.

Figure 9.4: Illustration of the calculated volume between a triangle of the meanshape and a corresponding triangle of an estimated independent component.
Peaks with a peak value of over 50% of the maximum peak value are countedas peaks. The average volume of these peaks is taken as a measure of how thecomponent has centered its shape changes in these few large peaks. Let npeaksbe the number of peaks, nP the number of points included in these peaks, andV the volume of the signi�cant peaks, then the measure L is de�ned as

L = VnPnpeaks : (9.1)
Introducing this ordering measure, the independent components are estimated
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again, using the FastICA algorithm. This gives the independent componentsmuch more localized features as can be observed in Fig. 9.5(b) that has beencolorcoded according to the shape variations. The principal components repre-sent more global variations which can be observed in Fig. 9.5(a). These di�erentcharacteristics can obviously also be observed in the value of the ordering mea-sure.

(a) (b)
Figure 9.5: Blue corresponds to no variation and red to maximum variation.(a) Aortic shape variations captured by a PCA mode. Notice the big variancein color over the whole aortic surface. (b) Aortic shape variations captured by anindependent component. It is observed that the independent component showvery localized features compared to the more global variations of the principalcomponent.
It should be noted that the illustrated independent component is not well suitedfor separating normal subjects from patients, leading back to the issue that thedistinction between the normal subjects and the patients is not very good. Thisissue is treated in section 9.3.
9.3 The Fisher discriminant
The hypothesis of this study is that connective tissue disorder is one of thesources shaping the aorta. The lack of an aparent ordering measure, havingno exact knowledge of the distribution of the seeked component, it is modelledto be composed of two normal distributions. One is representing the normalsubjects and the other the diseased subjects, o�set by the di�erence betweenbeing diseased and having a normal aorta. The Fisher discriminant, evaluatingthe projection separation of the two populations, is expected to have its maxi-mum at the true source and thus seems a well suited ordering measure. Initially
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canonical discriminant analysis was performed, as this method �nds the opti-mum projection under the given assumption, but this did not yield a completeseparation of the subjects.
The Fisher ordering measure has been implemented, and a resulting distributionis compared to the previously best obtained separation in Fig. 9.6. It is seenthat the separation, using the Fisher ordering, is much better, though the groupsare still not entirely separated.

(a) (b)
Figure 9.6: Separation between normal (+) and diseased (o) subjects. (a) Atypical best separation obtained with two of the features calculated using non-Gaussianity as independent component ordering. (b) Much better separatingfeatures using the Fisher discriminant as ordering measure.
Visual inspection of the independent components, shown in Fig. 9.7 yields thatthe coe�cients corresponding to diseased subjects tend to have a dilation alongthe ascending aorta and the aortic arch. During the testing a rather strongdependency on the initialization was observed, giving inspiration to section 9.3.1.

9.3.1 Multiple Initializations
Due to the random initialization of the FastICA algorithm and multiple min-ima, it was also tried to initialize more independent components than could beestimated. The "best" components could then be selected by the ordering mea-sure, and a complete separation could be obtained. This worked better whendiscarding the principal coe�cients corresponding to the least signi�cant vari-ances. In Fig. 9.8 it can be observed that the groups can be separated linearly,
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(a) (b)
Figure 9.7: Variation of the two best separating independent components, usingthe Fisher discriminant as an ordering measure for the independent components.Left corresponds to negative coe�cients (diseased) right to positive coe�cients(normals) (a) The �rst independent component, the diseased are seen to havea dilation at the ascending aorta. (b) The second independent component alsowith a dilation for the diseased subjects, apparently including a dilation aroundthe beginning of the descending aorta.
though without a very clear division. Unfortunately the generalization is bad.The separation was best using around 14 principal coe�cients, but this gives 13degrees of freedom and only 31 samples, so we expect the problem to be thatthe solution is over-�tted to the presented data.
9.4 Conclusion
In this section it has been shown that using di�erent ordering measures canimprove vastly on the properties of the recovered components. Using a measureof localization has given very localized components and the Fisher discriminantas ordering measure showed a much better separation of the components. Insection 9.1 it was learned that the number of free parameters was too high,giving components with no medical signi�cance. This may also to some extenthave been the case using the two other ordering measures.
Another problem with the two ordering measures is how to combine them. Thisand the poor ability to generalize is treated in chapter 10.
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Figure 9.8: Distribution of the projections on each independent component,along the two �rst independent components. A linear separation is possible,though not very convincing.



Chapter 10
A novel approach to

dimensionality reduction

In secion 9.3.1 it was reported that the generalization ability of the estimatedindependent components was very poor, and that this may be related to over-�tting of the solution. This hypothesis has been investigated further, and asuggestion for a constraining scheme has been proposed, which is summarizedin the article Detection of Connective Tissue Disorders from 3D MR Imagesusing Independent Component Analysis that is to be orally presented at theComputer Vision Approaches to Medical Image Analysis (CVAMIA) workshopof the ECCV conference. The paper is appended in App. C. This sectionprovides an elaboration of the reported work.
10.1 Sparse data
The number of dimensions is an important factor because the data is very sparse.The observed data, X, in this study has d = nlandmarks � 3 = 248 � 3 = 744 di-mensions when using one phase and 1581 when using two phases of the cardiaccycle. The number of samples is still only 31, 21 normals and 10 diseased. Asdescribed in section 8.2, the data is projected onto the principal components.This is both out of computational convenience and because the data is only
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distributed along these directions. In section 9.3.1 it was reported that limitingthe number of included principal components made an improvement to the sep-aration of the independent components, but gave a poor generalization ability.This gives motivation to further reduce the number of free parameters in theestimation of the independent components.

10.1.1 The number of source signals
The data is describing the shape of the aorta and therefore the number ofindependent source signals is expected to be rather high. The physical shapeof the subject, the gender of the subject, the height and the age of the subjectcould all be independent sources shaping the aorta. The one of interest in thisstudy divides the subjects in two groups with versus without connective tissuedisorders.
Due to the reduced number of free dimensions and the complex shaping of theaorta, there are probably more sources than dimensions of the observed signal(e.g. samples). This is in contrast to the original assumption behind the ICAmodel (8.1). Reformulating the model in the framework of the anlytically simpleKurtosis measure shows some interesting features, and is the topic of this section.
Maximizing the absolute value of the Kurtosis can be interpreted as recoveringa projection that is only directed along a single of several independent compo-nents. Now examining wTX = wTAS, the common assumption in ICA is thatAd�k satis�es d � k because in this way no constraints are imposed on z givenby z = wA. This was also the assumption in section 8.3.1.1 where Kurtosis wasintroduced. Assuming that d < k means that wA is only spanning a subspace of
R
k, the space of S. This could mean that some of the minima are not describedin this subspace. Denote the subspace of Rk not spanned by wA by V̂k�d�k.The additional constraints on z are given by (Eq. 10.1), where 01�k�d is a vectorof zeros due to the orthogonality.

zV̂ T = 01�k�d (10.1)
The number of constraints under the maximization is bigger than the numberof parameters and thus the earlier described minima can not be reached. TheKurtosis measure is still favoring distributing the zi's on as few components aspossible though. Meanwhile recovering a true independent component is not tobe expected, the maximum will, by this objective function, be as independentfrom the other sources, as possible using a linear transformation.
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10.1.2 Overcomplete source basis
Several locally stable projections are found by the FastICA algorithm. Theoutcome depends on the initialization of the algorithm, and it is assumed, basedon the discussion in section 10.1.1 that the di�erent projections favor di�erentsource signals. None of them may fully describe a true source signal, but itwill be more or less represented in every projection. This is the motivationfor choosing an ordering measure that favors the components that is believedto describe the desired sources well. An observation of section 9.3.1 was thatthe number of free parameters needs to be reduced. Based on the conclusionof section 10.1.1 that the ICA algorithms still favor few source signals in thepresence of more source signals than observable signals, the idea of the currentsection is to constrain the estimation to include only a few observable variablesat the time.
Let the total number of observables be denoted d and the number of independentsources k. In the speci�c case d = 22, retaining 97.5 % of the information anddiscarding the 8 least signi�cant principal components. To reduce the numberof degrees of freedom the search is constrained to only alter the coe�cientscorresponding to dividing the variance in c = 5 � p22 parts. This is illustratedby Xd = AconSc ; (10.2)where the constraints of the constrained matrix Acon are best illustrated bywriting out the matrix representation.
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where the number of free parameters in each constrained independent compo-nent is d1�1; d2�d1�1; :::; dc�Pi<c di�1. In the speci�c case, the maximumis 6 free parameters (keeping in mind that all components are normalized to aunit length, taking one degree of freedom). To emphasize the calculation of oneconstrained independent component, the equation governing the ith component
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under the above mentioned constraints is given by

xi =
0
BBB@

xdi�1+1xdi�1+2...xdi

1
CCCA =

0
BBB@

adi�1+1;iadi�1+2;i...adi;i

1
CCCA si ;

which can be estimated using the same algorithm as the usual ICA model (8.1).
The realizations in section 10.1.1 indicate that the estimated components foundin (10.2) will not describe only one independent source. This observation, com-bined with the fact that prior information about the true source distributionexist inspires to allow a relaxation of the constraints given by (10.2) by includinga second mixing matrix. Let the constrained mixing matrix be named Acon andthe second mixing matrix Am(c� c), then

X = AconAmSc ; (10.3)
which gives a new model formulation for the estimation Am~Xc = AT

conXd = AmSc ; (10.4)
since AT

conAcon = Ic due to the previous whitening of X. Equation (10.4) isseen to be of the same form as the ICA model (8.1) and the components canthus be estimated with the same method. The number of degrees of freedom inthe model is observed to be reduced drastically.
The aortic shape of each subject is, after application of ICA, represented bythe projection on the independent components. As the components are cho-sen with the property to divide the two populations, ICA is applied again onthe most signi�cant projections to extract more localized components using thesame scheme as represented by (10.4). This is both due to a desire to obtain in-tuitively simple sources and because we a priori believe the sources are localizedas discussed in section 9.2.
10.2 Example with more sources than observa-tions
To illustrate the properties of maximizing the Kurtosis, an example of a ran-domly selected mixing matrix A2�3 is chosen. This corresponds to 3 sources butonly two observables. The Kurtosis of the three distributions are also randomly
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chosen by

A = � 0:6136 1:0320 0:7604�0:8242 �0:4344 1:2546 �K1 = 0:118 K2 = 0:7005 K3 = 2:133: (10.5)
The projection vector w is rotated from 0 to � and the size is set to match theconstraint Ef(wX)2g = 1. z is still de�ned by z = wA. The result is seen in Fig.10.1. The rotation of w giving the maximum Kurtosis is seen to include mainlyone of the three independent components, whereas the two eigenvectors, de�nedby the maximum and the minimum of the dash-dotted curve, are mixtures ofcomparable fractions of all three independent components. This illustrates thetrend that the Kurtosis measure under constraints as without constraints isbetter than the PCA measure at isolating a few independent components.

Figure 10.1: w-projections in an over-constrained independent component sys-tem. The x-axis is the rotation of w in radians. The solid line is the calculatedKurtosis with the maximum illustrated. The dashed lines are representing thefraction of variance contributed from each independent component. The dash-dotted line is the variance of the projection along the w-direction.
To investigate the matter further, and to a�rm that the implemented FastICAalgorithm gives the same result as the theoretical expectation, the sources andthe mixing matrix is constructed with properties as described in (10.5). Sourceswith a speci�c Kurtosis can be constructed from a uniform distribution. A uni-form distribution is described by the with and the density along the uniform
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part, the rest of the probability density is concentrated around zero, as illus-trated in Fig. 10.2. The relation between the density and the width a is chosenso that the variance is one.

Figure 10.2: A uniform distribution with width a = 3.34 and density 0.0403,with the remaining probability concentrated around the value zero.
The Kurtosis of a distribution like the one illustrated in Fig. 10.2, with widtha and density p can be estimated by

Efx2g = Z a

�a
px2dx = 2pa33 = 1

, p = 32a3EfX4g = Z a

�a
px2dx = 2pa55 = 3a25

kurt(x) = Efx4g(Efx2g)2 � 3
, a = r53kurt(x) + 3 ; (10.6)

which means that deciding a value of Kurtosis, a distribution with the desiredKurtosis can be assigned by choosing the value of a and hereby also the valueof p, as it is set to be of unit variance. Three such signals, with Kurtosis asdescribed in (10.5), are illustrated in Fig. 10.3.
The three source signals are mixed with the mixing matrix from (10.5) to con-struct two mixtures, shown in Fig. 10.4.
A scatter plot of the two mixtures is seen in Fig. 10.5. It is observed thatthe high density around zero for all the distributions results in three lines in
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(a) (b)
Figure 10.3: Three source signals, with Kurtosis of 0.118, 0.7005, and 2.133. (a)The constructed signals. Most of the values are set to a small random number.(b) The resulting histograms. All have approximately unit variance and zeromean.
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Figure 10.4: The two signal mixtures. It is possible to spot all the three inde-pendent sources in the mixtures, but hard to make out, how to separate them.
the scatter plot. The density is by far the highest in the center of the plot,corresponding to all three sources assuming small values.

Figure 10.5: A scatter plot o the two signal mixtures. The three independentsources can best be identi�ed by their high density around zero.
The FastICA algorithm was applied on the two mixtures to assess if the al-gorithm gives results similar to those expected by the Kurtosis analysis in Fig.10.1, where a clear maximum of the Kurtosis is seen where the projection mainlyconsists of one independent source, namely the third one, with the highest Kur-tosis value. The other component will, due to the whitening, be orthogonal tothis component, and will thus include almost none of this component, but a
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mixture of the two other components. The resulting estimated sources of theFastICA algorithm is illustrated in Fig. 10.6(a), and a clear correspondencebetween the third independent source, seen in Fig. 10.3, and the �rst estimatedindependent signal can be seen. The second component can clearly be seen to bea combination of the two other sources as is expected by the previous analysison Kurtosis.

(a)

(b)
Figure 10.6: (a) The demixed signals, obtained using the FastICA algorithm.(b) The principal coe�cient are clearly mixtures of all sources to a higher extentthan the independent components.
Comparing the estimated independent components with the principal compo-nents shown in Fig. 10.6(b), it is evident that the independent componentsdescribe the sources more precisely. Whereas the principal components bothseem like mixtures of all components the independent components appear likeeither a mixture of the two sources or a single sources with only a little of therandom source added.
To investigate the matter further, the scatter plots of the projections are exam-ined in Fig. 10.7. Note that the di�erent sources are distributed along the dense
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lines that are visible in the scatter plot, because for all distributions the valuesaround zero are the most frequent ones. The longer line correspond to the thirdindependent source having the largest Kurtosis. In Fig. 10.7(a), showing the twoindependent components, it can be seen that this line is almost exactly alignedwith the �rst independent component. The second component is a combinationof the two other components as can be seen by the orientation of the these lines.In Fig. 10.7(b) the distribution of the principal coe�cients is illustrated, andthere is clearly not much tendency in any of the principal components.

(a) (b)
Figure 10.7: Scatter plots where the direction of the di�erent sources is appear-ent through the lines with higher density. (a) The independent coe�cients.(b) The principal coe�cients.
To summarize this illustration of independent component analysis in the pres-ence of more sources than observables, it can be concluded that ICA was abetter tool for extracting the sources than principal components.



Chapter 11

Time-invariant ICA model

The modi�cation of the ICA model presented in chapter 10 proved to createa more robust estimation of the independent components working on only asingle phase. Increasing the number of phases in the analysis did not improvethe classi�cation accuracy. The extra phases are included in the calculatedprincipal components and do e�ect the principal coe�cients forming the ba-sis for the independent component analysis, but there seems to be a tendencythat capturing the desired variations becomes harder, when the dimensional-ity of the problem increases. This was the motivation for developing a newmodel including time-invariant independent components. The basic assumptionis that some time-invariant components exist along with some time-variant com-ponents. The work has been reported in a paper submitted to the MICCAI'06conference, awaiting review, available in App. D. The current section is anattemp to elaborate the description of the idea presented in the paper. For thepresented model the landmarking scheme had to be altered to consist of timecorresponding landmarks, meaning to say that the landmarks in di�erent phaseswere assigned using the same template.
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11.1 Time-Invariant ICA
The time-corresponding landmarks consist of 243 three-dimensional points. Itis assumed that the independent sources explaining the shape-variation can bedivided in time-variant and time-invariant sources. The ICA model can beformulated as

X729�1(t) = Acsc +At(t)st = [Ac At(t)] � ScSt
� ; (11.1)

where Ac represents the time-invariant components and Sc the correspondingtime-invariant sources. At(t) are the time-variant components with correspond-ing time-independent sources St. All 16 phases of the cardiac cycle can now berepresented by the following model
X729�16 = [x(1) x(2) � � �x(16)] = [Ac At(1) � � � At(16)]

2
666664

Sc Sc : : : ScSt 0 : : : 00 St : : : 0... . . . ...0 0 : : : St

3
777775 ;

where X729�16 is the concatenation of all the 16 aortic phase instances of asubject. It is assumed that a time-invariant source exists, only related to thedisease status of the subject. The source represents the same shape variationindependently on the phase of the heart cycle. This is an important assumption,since 16 instances exist of each of the 31 subjects, augmenting the total numberof aortic instances to 496 for the estimation of the independent components.The model given by (11.1), along with the usual ICA implementation, is usedto determine the time-invariant components. The di�erent phases are correlatedin their variation to some degree, but this model is still expected to be morerobust than the one-phase model.
The independent component related to connective tissue disorders is most likelytime-variant to some extent. The 
ow of blood and the aortic motion are botha�ecting the shape during the cardiac cycle. However, the component wasdivided in a time-invariant and a time-variant component. The time-invariantpart can be estimated using far more instances of the aorta resulting in a morerobust classi�cation. Only one source related to being diseased is expected toexist, but as discussed in chapter 10, we expect the recovered components to becombinations of several true independent components. Therefore it is relevantto include more than one component in the later classi�cation. The time-variantpart of the component is estimated phase-wise based on the 31 instances of aspeci�c phase of the aorta.



Chapter 12
The diagnostic step

Finding a single independent component distinguishing between diseased andnormal subjects has not proven possible. This is discussed more thoroughlyin chapter 17 but to summarize; more than one component may be neededto describe all connective disorders. The Fisher discriminant was introducedas an ordering measure in section 9.3 and may help to assess if a componentcontains valuable information in the diagnostic step. The choice of classi�ersis explained in section 12.1, the quadratic classi�er is the topic of section 12.2,and the perceptron classi�er is explained in section 12.3.
12.1 Choosing a classi�er
Concentrating on the components seemingly containing the most discrimina-tive information about the two groups, a classi�er is still needed to make thediagnosis decision. Important aspects in choosing a suitable classi�er are

� The number of features.� The complexity of the classi�cation task.� The complexity of the classi�er.
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� Intuitive intepretation of the classi�er output.

The number of interesting features can be reduced to only two or three, usingthe Fisher discriminant and multiple initializations is to obtain a few diagnostic-wise interesting components. The classi�cation task is rather simple once goodindependent components have been selected. Since the number of samples is verysmall (only 31 subjects available), there appears not to be su�cient evidence forcreating a very complex decision boundary. This, in terms, means the classi�erpreferably should be rather simple. Because the �nal diagnosis will be given bya physician, it is important that he can validate that the decision is based on asound foundation. Visual inspection of the decision rule is considered as a ratherstrong argument. A cuadratic classi�er has most of the desirable properties andwas the basis of the classi�cation step in the work described in chapter 10.The perceptron classi�er furthermore has a linear decision boundary where thenormal vector can be illustrated visually. This could be presented alongside theactual instance of the aortic shape, to a�rm that the caught variation is indeedpresent in the shape.
12.2 The quadratic classi�er
The quadratic classi�er is very well described in the litterature and the decisionrule will just be emphasized here along with the assumptions made [36]. Theprior probabilities are assumed equal, knowing that this probably gives a smallbias to classify subjects as diseased, as the apriori probabilities seem hard toestimate. The quadratic discriminant function is given by

gi(X) = �12XT��1i X + �Ti ��1i X � 12�T��1i �� 12 logj�ij ; (12.1)
where �i and �i are the estimated covariance matrix and mean for the twodistributions.
12.3 The perceptron classi�er
The implemented perceptron classi�er is adapted from [37] getting a bit of in-spiration from the support vector machine, which tries to maximize the distancebetween two groups.
The perceptron searches for a projection vector ad+1 including a bias that sepa-rates the populations, letting the sign decide how to classify a sample. Samples
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that are misclassi�ed are collected and added to the projection vector. To �nda better separation, a constraint is put on the distance to zero, so the distancefrom the separating hyperplane to all the points can be maximized for increasedgeneralization ability.
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Chapter 13
Implementation

The algorithms and preprocessing of the data have been implemented in VisualC++ 6.0. Some of the graphs presented in the current report are generated usingMATLAB 6.5. This section is intended to give an overview of the implementedcode, organized as a short description of the di�erent implemented classes.
The di�erent implemented classes are listed in Fig. 13.1. Direct dependency isillustrated with an arrow.

Figure 13.1: List of implemented classes, strong dependencies are listed with anarrow.
The di�erent classes together form the backbone of all the analysis performedas described in this chapter. The following is an attempt to give some insight
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into the structure of the implemented program.

� Matrix-template A matrix-template was developed using core featureslike principal component analysis and matrix inversion from an existingarray class made by Steve Mitchell. This new matrix class is a templateclass, meaning it can be de�ned for all variable types, and uses operatoroverloading, allowing pseudo-normal syntax in matrix calculations, verymuch similar to the syntax of MATLAB. This matrix-template is appliedby all the implemented classes and functions, and serves as a format forexchange of data between classes.� landmarkClass As the landmarked data had its origin from several sour-ces and was stored in di�erent formats a general procedure was build intothe landmarkClass. It also reads and stores the triangulation of the shape,if a such exists.� Visual Toolkit A toolkit developed open source by Kitware which can bedownloaded free of charge. It is a rather powerfull toolkit for visualization,but has proved hard to learn being new to the concept. Two books existon the toolkit, which have shown to be very useful [38] [39].� displayICA A function has been created to display the variety of ICAresults in di�erent ways, as illustrated in the current report. This functionis based on the Visual Toolkit.� ICAclass A class that contains the implementation of the di�erent algo-rithms implemented in this work. To keep the implementation general,the functions are implemented as a FunClass that for instance has itsfunctions overloaded by � exp��x2
2 , named gaussFun in the case of thenegentropy approximation for the FastICA algorithm.



Part III

RESULTS
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Outline of the presented results
The objective of the presented study was three-fold. A partial objective was toobtain a good automatic segmentation of the aorta. This was obtained previ-ously, but the results are provided in chapter 14 for completeness, as they formthe basis of the current work. The reported methods are brie
y reviewed inchapter 6. A second goal was to obtain features describing the aortic morphol-ogy, which is presented as the independent components in capter 15, both inthe single-phase situation, and the time-invariant features extracted from the16 phases of the cardiac cycle. The diagnosis step based on the estimated inde-pendent components is validated in chapter 16 applying a leave-one-out test onthe data.
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Chapter 14

Segmentation results

The developed segmentation method produced aortic surfaces with subvoxelaccuracy as judged by the signed surface positioning errors of -0.09�1.21 voxel(-0.15�2.11 mm) and unsigned positioning errors of 0.93 � 0.76 voxel (1.62�1.25 mm). An example of a typical segmentation result is shown in Fig. 14.1.The segmentation result is shown in transverse and coronal views. For eachview shown in the �gure, 4 slices were randomly selected from the 3D image.The volumetric representation of segmentation is shown in Fig. 14.2. Fig. 14.3summarizes the signed positioning errors obtained for each image.
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(a)

(b)
Figure 14.1: Automated segmentation result in 4 randomly selected slices; thesegmentation outlines are shown in green. (a) Transverse view. (b) Coronalview.
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Figure 14.2: Volumetric representation of the segmentation result.

Figure 14.3: The average signed positioning errors for all analyzed images.
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Chapter 15

ICA Results

The ICA results are divided in the analysis of a single phase from the 31 availablesubjects and the estimation of time-independent components from all 16 phasesof the cardiac cycle.

15.1 Single-phase ICA results
Fig. 15.1 illustrates the shape variations captured by the �rst and second in-dependent components on the �rst phase. The analysis suggests that the �rstindependent component represents the variation in the length at both ends andto a smaller extent the shape of the aortic arch. The second independent com-ponent shows less localized variations concentrated along the ascending aorta.None of the components seem to have much e�ect on the descending aorta,which corresponds well to the clinical expectation stating the e�ect is centeredaround the arch, as described in section 3.
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(a)

(b)
Figure 15.1: Aortic shape variations observed in the analyzed population. Redcorresponds to negative variation, compared to the normal of the mean-aorta,on which the variances are projected. Blue corresponds to positive variation.Positive values of the projection correspond to a higher likelihood of havinga connective tissue disorder. (a) Shape variations for the �rst independentcomponent on both sides of the aorta. The aortic shape corresponding to adiseased subject is seen to have a "
atter" and slightly dilated aortic arch.(b) Shape variations for the second component, again from both sides. Thediseased subjects corresponding to the positive blue is seen to have a morerounded arch, and a dilation around the ascending aorta.
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15.2 16 phase ICA results
The two �rst time-invariant independent components estimated using all 16phases are illustrated in Fig. 15.2. They both describe diseased subjects withthicker ascending aorta and the �rst one also a thicker aortic arch and start ofthe descending aorta. This also corresponds the clinical observations of connec-tive tissue disorder, though the components are less localized, which indicatesvariation in between phases.
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(a)

(b)
Figure 15.2: Aortic shape variations described by the �rst two time-invariantindependent components, shown as the mean shape �2 standard deviation. (a)The �rst time-invariant independent component. It can be observed that thediseased subjects (left) seem to have a thicker arch and in particular a thickerascending aorta. (b) The second component. The diseased subjects (left) alsoappear to have a thicker ascending aorta and a 
atter aortic arch.



Chapter 16

Diagnosis Results

The diagnosis results can be divided in the results obtainable considering only asingle aortic phase or the same model applied on two phases, and the obtainedresults utilizing the extra information in all the 16 phases.
16.1 Single-phase and two-phase results
The distribution of the projection of the data on the two �rst independentcomponents, shown in Fig. 16.1, illustrates that the separation task can verywell be performed by a simple classi�er. The evaluation is done using a leave-one-out approach and though it always appears possible to �nd independentcomponents dividing the two populations, it is not guaranteed to generalize tothe unseen sample.
For the single-phase case, 248 landmarks were automatically generated on eachaortic luminal surface. The quadratic classi�er working on two independentcomponents exhibited a sensitivity of 80%, meaning that 80% of diseased werediagnosed as such and a speci�city of 100%, meaning that all normal subjectsare classi�ed as being normal in the leave-one-out test. When working on twophases, 248 landmarks on the �rst phase of the aortic surface and 279 landmarks
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Figure 16.1: Projection of data along the two �rst independent components.Diseased subjects are marked with '+' and healthy subjects with 'o'. A clearseparation is observed.
on the aortic surface in the middle phase were included. The classi�cationproved worse, namely a sensitivity of only 70% but still a speci�city of 100%.The analysis on two phases using the same model was performed to comparethe method to the previous work using a support vector machine, reported in[2]. The localization ordering measure was designed for only one object and nottwo phases and this may have a�ected the outcome.
The overall results are summarized in table 16.1 and table 16.2, showing theconfusion tables of the single-phase model and the two-phase model.
The single-phase model applied to either one of the two phases gives the sameconfusion table, but one of the errors in classifying the diseased was for di�erentsubjects, so a combination of the one phase models, believing that the speci�cityis really 100% would actually give an even better classi�cation. The very en-couraging results obtained analyzing a single phase work well as a motivation forfurther exploration analyzing 2 phases and all available 16 phases. Initially theconstraints on the ICA were a simple constraint as described earlier setting theelements corresponding to the last 16 principal components to zero. This gavea good separation, but the limited ability to generalize lead to less than perfectspeci�city and only 40% sensitivity. An issue that might make the sensitivityworse than the speci�city is that the number of diseased is only 10 compared to21 normals. As only two independent components were needed for the classi�-cation task, it seems that when using prior knowledge of desired features of thecomponent, more task-speci�c information can be contained in the independentcomponents than in the higher-variance principal components. The previously
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implemented support vector machine needed 9 principal components.

PredictedDisease Status Diseased NormalDiseased 8 2Normal 0 21
Table 16.1: Classi�cation results ofthe single-phase model

PredictedDisease Status Diseased NormalDiseased 7 3Normal 0 21
Table 16.2: Classi�cation results ofthe two-phase model.

16.2 16 phase results
Fig. 16.2 shows the distribution of the projections of the 16 phases of thedi�erent subjects. The diseased subjects tend to have negative values of bothcomponents. The dilation of the components is located di�erently for the twocomponents and it is seen that the di�erent aortic instances are combinationsof the two, each corresponding to a di�erent position of the aortic dilation.

Figure 16.2: Projection of data along the �rst two time-invariant independentcomponents. The arotic instances of the left-out diseased subject are seen to bedistributed among the other diseased subjects.
The projections along the time-variant and time-invariant independent compo-nents were combined using a perceptron classi�er on each phase. In the lastclassi�cation step the phases 1, 7 and 8 were included, corresponding to thephases around the cardiac R-wave peak and in the middle of the R-R interval.This gave more robust results. Results of a leave-one-out test can be seen inTable 16.3. Only one diseased subject was wrongly classi�ed as being normal.
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This is an improvement from the one-phase results that classi�ed two diseasedsubjects as normals. The advantage of the reported ICA-method is the abilityto verify that the features it captures, correspond to the clinical expectation,namely dilations around the aortic arch, and the ascending aorta.

PredictedDisease Status Diseased NormalDiseased 9 1Normal 0 21
Table 16.3: Leave-one-out classi�cation results ofthe 16-phase model

To assess the classi�cation in more details Fig. 16.3 has been generated. Fromthis we can learn that one of the diseased subjects appears more healthy thanone of the healthy subjects, but only, when the diseased one has been left outof the independent component estimation.

Figure 16.3: A confusion matrix of the results of the leave-one-out test. It can beobserved that the values are generally a bit closer to the decision boundary, zero,in the diagonal, where they have been left out of the independent componentestimation. NB. "out subject" refers to the left-out-subject.
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Chapter 17

Discussion

The results described in chapter III are good however, there is still room forimprovement. In every aspect, we are interested in getting as precise descriptors,as possible, for the diagnosis. Some weaknesses of the proposed models havebeen considered and are summarized and some ideas for further investigationare described. It should be emphasized that it is a list of apparent problemsrather than a complete list of possible problems.
� The independent component assumptionIt is doubtful whether one independent component can explain all thepossible variations observed in subjects with connective tissue disorders.Suppose that several components are needed (as for the practical diagno-sis task), then they should describe di�erent independent connective tissuedisorders. Otherwise, if they were describing the same phenomenon, theywould obviously be inter-dependent, and the basic independency assump-tion (8.1) of the analysis would not be met. The two components shownin Fig. 15.1 each show distinct characteristics, but this may be a conse-quence of the described estimation method. With the limited number ofsubjects it appears di�cult to conclude anything statistically signi�canton this issue.
� Analysis of variation
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Figure 17.1: Demonstration of how features 1 and 2 that are present in the"training data" (the two left �gures), is not present in the rightmost �gure,even though it clearly has a similar dilation.
Suppose a situation like the one depicted in Fig. 17.1 existed. To a humanobserver, it is apparent that the third example is of the same kind as thetwo presented examples, assuming the two �rst belong to the same class ofillness. This will not be captured by the independent component analysis,as it only can capture variations that globally resemble a presented case,even though the local correspondence is very much alike. This means thata given local variation has to be present at the same global position, to berecognized.

� Landmark dependencyThe model captures variations by doing statistics on the chosen landmarks.The result is that every variation in the precise landmark assignment,will also have an e�ect on the statistical analysis. Possibly this could beavoided by considering landmark-free shape models. Since it has beenobserved that the descending aorta has little or no signi�cance as a clas-si�cation feature, it might also be an idea to discard it from the analysisall together, to avoid chance correlations. A di�erent approach could bea thinning of the correlation over distances, which could be another wayto reduce chance correlations.
� Sparse dataThe major issue of the current work has been the very limited amount ofavailable data. The acquisition of data is work intensive and expensive.In time more data will be available for the study, but the number ofsubjects will still be limited. The considerations on sparse data preseneted
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in chapter 10 are valid in many medical applications that mostly su�erfrom the same problem.Related to the correlation thinning discussed previously, it is interestingif the goal of obtaining localized independent components is achievable.Suppose an independent component has been estimated, depending onlyon variations in a small localized area of the aorta (maybe even of onephase only). The analysis then has isolated the variation in this area,independently of the con�guration of the rest of the aortic shape. Tomake this observation that all other variations occur independently of thislocal variation, a signi�cant number of samples would be required.A di�erent approach to the problem of an insu�cient number of samplesmight be to make a "rotation" and consider the subjects as observationsand the landmarks as samples. This would augment the number of "sam-ples" to several thousands. A parallel to this approach is an e�cient wayof calculating a singular value decomposition, however it has not been in-vestigated further, as the independence condition between sources is notalways expected to hold true, which is illustrated in Fig. 17.2. The cur-rent implemented methods do also include some assumptions that mayonly be partially met, so it could still make sense to engage in furtherinvestigations of this idea.

(a) (b)
Figure 17.2: Examples of two independent sources. (a) The two shapes arecolored green and red, and the mean shape is black. It is seen that they havean overlap in common. (b) The value of the observations, subtracted the meanshape. Still one shape is represented by green and the other by red. The blackcurve illustrates the cumulative estimated covariance of the components, whichare seen not to be independent.

Yet another approach could have been to use the orthomax, varimax orsparse principal component analysis (SPCA) algorithms instead of theICA, but they unfortunately lack the generative model of the analyzed
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data, which gives a more physical interpretation of the components. Con-versely it could be argued that the very small number of samples meansthat investigating the distribution in multiple dimensions, is not optimalfor a general analysis.� Structure of the componentsIt is observed that the components have quite a bit of structure. Meth-ods for independent component analysis on signals with a time structurehave been developed, making separation by either autocovariances or bychanges in the variance of the signal [31]. This can not immediately beapplied to the artic shape, as it is a surface distributed in two dimen-sions, and not just in one dimension as a time-signal. But creating atwo-dimensional reference system on the aortic surface, it could prove aninteresting way to exstract components.

The presented considerations consist of some the possible problems and sugges-tions to their solutions, but not necessarily all problems, as the problem wasindeed a very complicated one.
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Conclusion

Early detection of connective tissue disorders leading to aortic aneurysms anddissections is potentially an important tool in a prophylactic treatment of thesesevere diseases. Objective identi�cation of subjects with connective tissue dis-orders is shown to be possible from 4D aortic MR images. Automated and ac-curate segmentation of the aorta in 4D (3D + time) MR image data is reviewed,and a computer-aided diagnosis (CAD) method using independent componentanalysis (ICA) is reported.
The presented problem is ill-posed, with a high number of dimensions comparedto the number of samples (subjects), but the developed ICA model was a suit-able approach for capturing the structural shape variations important to theclassi�cation task.
Two di�erent ordering measures have been introduced, based on conclusionsdrawn from the performed analysis. Except for being generally applicable or-dering measures, they also demonstrate that the ICA results can be vastly im-proved by choosing an appropiate ordering of the independent components. Inmany cases would probably be useful to model the desired sources, and orderthe corresponding independent components accordingly.
To improve on the generalization ability, a method for constraining the estima-tion of the independent components was developed. This constraining method



102 Conclusion
may very well be applicable in other medical imaging challenges, as the problemof sparse data is very common in the medical imaging �eld. A paper present-ing the method (App. C) and the obtained results, has been accepted for oralpresentation at the CVAMIA'06.
The concept of time-invariant independent components has been introduced,and it has been shown to have great use in the extraction of the informationfrom several available phases in the classi�cation step. In many applications,data is available from several time steps, and this could be a way to extractinformation from it. Especially when data is sparse it may help to increase therobustness of the feature extraction, as has been demonstrated in the currentwork.
4D MR image data sets acquired from 21 normal and 10 diseased subjects wereused to evaluate the e�ciency of the methods. The obtained ICA results havebeen validated by performing a leave-one-out classi�cation task on the mostsigni�cant features, as well as performing a visual inspection of the components.A quadratic classi�er and a linear perceptron classi�er were both su�cent forthe classi�cation task, and when using a single phase of the cardiac cycle, 8 outof 10 diseased subjects were identi�ed and the speci�city was 100 %, classifyingall 21 healthy subjects correctly. With 4D information included in the analysisby using the estimated time-invariant components, the developed CAD methodclassi�ed 9 out of 10 diseased correctly, and still the speci�city was 100 %.The independent components were inspected visually to further substantiatetheir validity, and this analysis showed good correspondence between the clinicalobservations and the estimated indendent components.
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Appendix A

Aorta examples

The aortic shape of 10 diseased subjects and 10 normal subjects are illustratedfor the �rst phase in this appendix.
Subject reference listDiseased subjects Normal subjectsp99308931-030612-1226 p01487814-041019-1457p98088726-020826-1138 p32871631-040818-1043p96947008-030214-1046 p70083176-040803-1147p89311241-030923-1129 p87159991-041119-1550p88249033-021204-1548 p95094481-041018-1332p77188991-030502-1606 p98013520-041115-1539p76043978-040716-1011 p98013891-041116-1539p75047514-040319-1339 p98374221-040929-1455p72151835-020118-1418 p99402301-040928-1506p01005182-040216-1315 p99540886-041215-1541

Table A.1: List of illustrated subjects
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Figure A.1: Diseased subjects.
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Figure A.2: Normal subjects.
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Appendix B

The fastICA algorithm

In this section the �xed-point fastICA algorithm is developed using negentropy.The fastICA algorithm is a �xed-point algorithm, which means that when itconverges like w = f(w) : (B.1)
Let EfG(wX)g be an approximation of the negentropy then

rwEfG(wX)g = EfXg(wX)g ; (B.2)
where g(wX) is the derivate of the approximation G(wX). Now inspired bythe gradient descent algorithm, the �xed-point algorithm is constructed so theweight vector is aligned with the gradient. This can be modi�ed a bit, and weget

w = EfXg(wX)g (B.3)(1 + �)w = EfXg(wX)g+ �w ; (B.4)
where (B.3) still holds true for all values of �. This is recognized as beingvery similar to the Lagrange condition, when optimizing EfG(wX)g under theconstraint that kwk2 = 1, which gives

EfXg(wX)g+ �w = 0 : (B.5)
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Let F be the left-hand side, then

�F�w = EfXXT g0(wX)g+ �I : (B.6)
This can be approximated by noting thatX is sphered, to get EfXXT g0(wX)g �EfXXT gEfg0(wX)g = Efg0(wX)gI. Thus according to the newton iteration

w(n+ 1) = w(n)� [EfXg(wX)g+ �w]=[Efg0(wX)g+ �]) w(n+ 1) = EfXg(wX)g � Efg0(wX)gw ; (B.7)
remembering that the w(n+1) is normalized in every step, and that the sign isalso arbitrary.
This completes the �xed-point iterations in the fastICA algorithm. A typicalapproximation G(wX) to the negentropy is the function G(x) = �e�x2 , whichhas also been implemented in the current report. The developed �xed pointalgorithm converges towards independent components, which was proved byHyv�arinen et al. [31].



Appendix C
Detection of Connective
Tissue Disorders from 3D
Aortic MR Images using
Independent Component

Analysis

Accepted for publication by CVAMIA'06 in Springer LNCS.
Michael Sass Hansen, Fei Zhao, Honghai Zhang, Nicholas E. Walker, AndreasWahle, Thomas Scholz and Milan Sonka.
Abstract A computer-aided diagnosis (CAD) method is reported that allowsthe objective identi�cation of subjects with connective tissue disorders from3D aortic MR images using segmentation and independent component analysis(ICA). The �rst step to extend the model to 4D (3D + time) has also beentaken. ICA is an e�ective tool for connective tissue disease detection in thepresence of sparse data using prior knowledge to order the components, and thecomponents can be inspected visually.
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3D+time MR image data sets acquired from 31 normal and connective tissuedisorder subjects at end-diastole (R-wave peak) and at 45% of the R-R intervalwere used to evaluate the performance of our method. The automated 3D seg-mentation result produced accurate aortic surfaces covering the aorta. The CADmethod distinguished between normal and connective tissue disorder subjectswith a classi�cation accuracy of 93.5 %.



Appendix D
Detection of Connective
Tissue Disorders from 4D
Aortic MR Images using
Independent Component

Analysis

Submitted to MICCAI'06 , awaiting review.
Michael Sass Hansen, Fei Zhao, Honghai Zhang, Bjarne K. Ersb�ll, AndreasWahle, Thomas Scholz and Milan Sonka.
Abstract Independent component analysis (ICA) is applied in a computer-aided diagnosis (CAD) method that allows the objective identi�cation of sub-jects with connective tissue disorder from 4D aortic MR images. A novel ideaof time-invariant independent components assists in the disease detection in thepresence of sparse data with high dimensionality. Prior knowledge of the sourcedistribution is utilized using an appropiate ordering of the components.
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4D MR image data sets acquired from 21 normal and 10 diseased subjects wereused to evaluate the performance of our method. The automated 4D segmenta-tion result produced accurate aortic surfaces. The CAD method distinguishedbetween normal and diseased subjects with a classi�cation accuracy of 96.8 %,using features showing correspondence to clinical observations of connective tis-sue disorder.
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