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Bayesian learning

T. Bayes “An Essay Towards Solving a Problem in the Doctrine
of Chances, Phil. Trans. Roy. Soc., 53, 370–418, 1783

The world is uncertain......

inference: assign probabilities to hypothesis from specific data set

decision theory: choose between actions to minimize loss/risk

Basic axiom systems for decision theory and inference leads to that
rational analysis must corresponds to a Bayesian paradigm [Berger]

You are probably already doing Bayes – even if you don’t know it
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Intention

Crash course in Bayesian learning for those unfamiliar with this
paradigm

Experienced people hopefully gets new inspiration
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Generalization and bias/variance

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework

Example of Bayesian learning: RVM

Bayesian signal detection
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General Resources

D. MacKay: Information Theory, Inference and Learning
Algorithms, http://www.inference.phy.cam.ac.uk/mackay/itprnn

J.O. Berger: Statistical Decision Theory and Bayesian Analysis,
Springer-Verlag, 2nd edition, 1985.

C.P. Robert: The Bayesian Choice: A Decision-Theoretic
Motivation, Springer-Verlag, 1994.

J.J.K. Ó Ruanaidh and W.J. Fitzgerald: Numerical Bayesian
Methods Applied to Signal Processing, Spinger-Verlag, 1996.
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Why Bayesian learning?

principal framework which combines available uncertain knowledge
- data, prior etc.

Bayesian learning is optimal - if you are

Bayesian learning is typically more robust to mis-specifications and
small data sets

classical learning schemes are special cases

known to give better performance for most models

offers model selection as an integrated part
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Why Bayesian learning?

predictions/forecast comes with errorbars (credible sets, highest
posterior density credibility set)

new approaches such as Variational Bayes, Expectation
Propagation makes the Bayesian learning computational attractive
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Applications of Bayesian learning

clustering using mixture of Gaussians (Attias, Rasmussen)

mixture of factor analyzers clustering and dimensionality reduction
(Ghahramani+Beal)

principal components analysis (Bishop)

independent component analysis
(Højen-Sørensen+Whinter+Hansen, Lee, Attais, Valpola,
Miskin+MacKay)

state-space models, e.g., extended Kalman filters
(Ghahramani+Beal, de Freitas, Niranjan, Wan, Doucet, Gordon)

time series modeling (Roberts+Penny,
Quiñonero+Girard+Larsen+Rasmussen)
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Applications of Bayesian learning (cont.)

mixture of experts (Ueda)

hidden Markov models (MacKay)

Bayesian networks, graphical models (Heckerman, Jordan,
Ghahramani, Bishop, Spiegelhalter)
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Software Tools

VIBES (Bishop, Spiegelhalter, Winn) http://vibes.sourceforge.net/

Matthew Beal http://www.cse.buffalo.edu/faculty/mbeal/software.html

ICA toolbox (DTU) http://isp.imm.dtu.dk/toolbox

Bayes Blocks (HUT) http://www.cis.hut.fi/projects/bayes/software

Bayes Net toolbox (Kevin Murphy) http://bnt.sourceforge.net

ReBEL : Recursive Bayesian Estimation Library (E. Wan)
http://choosh.ece.ogi.edu/rebel

NetLab (Bishop) http://www.ncrg.aston.ac.uk/netlab/index.php
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Basic ideas of Bayesian framework

all variables have associated probability densities

variables not required in the final estimate are integrated out
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The basic ingredients

variables which we want to infer

problems (unsupervised/supervised)

data

model

prior

predictive distribution through Bayes theorem

loss and Bayes risk

Bayes estimate

Jan Larsen 14
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The basic ingredients - variables
Predict y from measurement x

x multivariate input

y multivariate output

z multivariate hidden/latent variables

introduction of hidden variables often facilitate model specifica-
tion

Jan Larsen 15



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

The basic ingredients
Problems

unsupervised modeling if only x

predictive modeling if x and y

− y continuous is regression, e.g., time-series modeling

− y discrete is classification

state-space models, mixture models use continuous or discrete
hidden variables

Jan Larsen 16
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The basic ingredients - data

D = {xk,yk}N
k=1

Usually i.i.d. samples

Jan Larsen 17
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The basic ingredients - models
Models

p(y|x,θ,m) =

∫
p(y,z|x,θ,m) dz

θ are model parameters usually not amenable for interpretation

m index a particular model structure

we consider usually flexible universal approximation model families
neural networks, Gaussian processes, mixture models

Example

p(y|x,θ) =
1√

2πσ2
exp(−[y − f (x,w)]2/2σ2)

θ = (σ2,w)
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The basic ingredients - priors

p(θ)

expresses the degree of belief

probability is limit of frequency #outcomes/#total

properties beliefs lead to same rules as for probabilities, hence
using probability to measure belief

.... more on choice of prior later

Jan Larsen 19
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The basic ingredients - Bayes theorem

Combining information using Bayes theorem

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) =

∑
A

P (B|A)P (A)

p(θ|D) =
p(D|θ)p(θ)

p(D)

posterior =
likelihood × prior

prob of data

p(D|θ) =

N∏
k=1

p(yk|xk,θ,m)
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The basic ingredients - predictive
distribution

p(y|x,D,m) =

∫
p(y|x,θ,m) · p(θ|D) dθ

is the result of Bayesian learning and provides a full conditional
distribution for new inputs x

Relation to classical learning

MAP: p(θ|D) = δ(θ − θMAP ), θMAP = arg maxθ p(θ|D)

p(y|x,D,m) = p(y|x,θMAP ,m)

ML: no prior θML = arg maxθ p(D|θ)

p(y|x,D,m) = p(y|x,θML,m)
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The basic ingredients - transductive
learning

p(y|x,D,m) =

∫
p(y|x,θ,m) · p(θ|D,x) dθ

Model is updated for every test input x

p(θ|D,x) =
p(D,x|θ)p(θ)

p(D,x)

Requires a model for input distribution as well!

Jan Larsen 22



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Predictive distribution example

Model
p(y|x,θ) = N (x�θ, σ2)

MAP (or ML)

p(y|x,D) = N (x�θMAP , σ2)

Gaussian prior on θ

p(y|x,D) = N (x�θ̂, σ2 + x�Σθx)

Jan Larsen 23
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The basic ingredients - loss function

L(y, ŷ) = L(y(x), ŷ(x|D))

defines how close our estimate ŷ is from the truth y.
Can formally be defined through axiomatic utility theory Berger

Examples
square loss for continuous variable

L(y, ŷ) = (y − ŷ)2

zero-one loss for classification y, ŷ ∈ [1; C]

L(y, ŷ) =

⎧⎨⎩ 0, y = ŷ

1, y �= ŷ

Jan Larsen 24
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The basic ingredients - risk
Frequentist risk

R(y, ŷ) =

∫
L(y, ŷ(D)) · p(D) dD

average over all possible data sets

Bayes risk

ρ(ŷ|D) =

∫
L(y, ŷ(D)) · p(y|x,D) dy

average w.r.t. predictive distribution and conditioned on data

Jan Larsen 25
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The basic ingredients - risk

Integrated frequency risk

r(ŷ) =

∫
L(y, ŷ(D)) · p(y|x,D)p(D) dydD

=

∫
ρ(ŷ|D) · p(D) dD

=

∫
L(y, ŷ(D)) · p(y|x,θ)p(D|θ)p(θ) dθdy

Jan Larsen 26
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Bayes estimator

ŷB = arg min
ŷ

r(ŷ) = arg min
ŷ

ρ(ŷ|D)

Risk of Bayes estimator

r(ŷB)

Jan Larsen 28
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Bayes estimator in continuous case
Square loss

ŷB = arg min
ŷ

ρ(ŷ|D) = arg min
ŷ

∫
(y − ŷ)2 · p(y|x,D) dy

ŷB =

∫
y · p(y|x,D) dy = Epred[y]

Absolute loss

ŷB = arg min
ŷ

∫
|y − ŷ| · p(y|x,D) dy

ŷB is the median of predictive distribution

Jan Larsen 29



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Bayes estimator for classificstion
Loss matrix
Penalty of estimating class ŷ ∈ [1; C] if the truth is class y ∈ [1; C]

L(y, ŷ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ŷ = y (correct decision)

l(y, ŷ) if ŷ �= y ∈ [1; C]

t if ŷ = C + 1 (rejection)

Zero-one loss with rejection

L(y, ŷ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ŷ = y (correct decision)

1 if ŷ �= y ∈ [1; C]

t if ŷ = C + 1 (rejection)
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Bayes decision rule - general loss

ρ(ŷ|D) =
∑
y

L(y, ŷ) · p(y|x,D)

For ŷ = C + 1 then
∑

y L(y, ŷ) · p(y|x,D) = t
∑

y p(y|x,D) = t

ŷB =

⎧⎨⎩ k if minŷ≤C
∑

y L(y, ŷ) · p(y|x,D) < t

C + 1 otherwise

Jan Larsen 31
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Bayes decision rule - zero-one loss

∑
y

L(y, ŷ) · p(y|x,D) =

⎧⎨⎩ 1 − p(j|x,D), ŷ = j ∈ [1; C]

t, ŷ = C + 1

ŷB =

⎧⎨⎩ arg maxy≤C p(y|x,D), and prob > 1 − t

C + 1 if all p(y|x,D) ≤ 1 − t

p(y|x,D) ≥ 1/C which means 1 − t > 1/C for rejection to occur

Jan Larsen 32
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Bayes classifier

decision boundaries are specified by p(y = i|x,D) = p(y = j|x,D)
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Optimality through admissibility

Admissibility
ŷ0 is inadmissible if

∀y, R(y, ŷ0) ≥ R(y, ŷ1), ∃y0, R(y0, ŷ0) > R(y0, ŷ1)

Generalized Bayes estimator is admissible under regularity conditions

p(y|x) = p(y|x,D)p(D)/p(D|y,x) > 0 for all data

Bayes risk is finite (might fail for generalized - improper prior case)

R(y, ŷ) is continuous in y

Jan Larsen 34
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Optimality through generalization error
Randomized estimators
use predictive distribution p̂ = p(y|x,D) as random estimator rather
than point estimate ŷ

Kullback-Leibler information as average loss between distributions

KL(p|p̂) =

∫
p(y|x) log

p(y|x)

p(y|x,D)
dy

= E{L(p, p̂)}
the loss is defined as

L(p, p̂) = log p(y|x) − log p(y|x,D)

KL ≥ 0 with 0 if and only if p ≡ p̂

Jan Larsen 35
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On the property of KL
Inequality

− log λ ≥ 1 − λ for λ > 0 and − log λ = 1 − λ for λ = 1

Proof Define λ(y) = p̂(y)/p(y). That is − log λ(y) = log p(y)/p̂(y)

KL =

∫
p(y)[− log λ(y)] dy

≥
∫

p(y)[1 − λ(y)] dy

=

∫
p(y)

[
1 − p̂(y)

p(y)

]
dy

= 0

Jan Larsen 36
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Optimality through generalization error

KL = G︸︷︷︸
generalization error

− H(p)︸ ︷︷ ︸
entropy

Average generalization error

Γ = EDEx{G} = −
∫

log p(y|x,D)p(D)p(x) dydxdD

is integrated frequency risk (also averaged w.r.t p(x)) up to a
constant

L.K. Hansen: “Bayesian Averaging is Well-Temperated,” NIPS99, 265–271, 2000

shows optimality in generalization error
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More on priors

subjective priors: consider relative likelihood of various
parameters values

empirical priors: obtained from past experience data

structural priors:

− independence of some parameters?

− imposing functional smoothness

− invoking constraints

convenience priors:

− nice functional form in order to make calculations simple

− conjugate priors: posterior and prior have same shape
exponential family is important

Jan Larsen 39
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More on priors

hierarchical: p(θ) =
∫

p(θ|λ)p(λ) dλ

non-informative: make the influence of the prior as small as
possible

improper: improper priors do not integrate to one. Leads to
generalized Bayes estimator which typically also is admissible

Jan Larsen 40
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Non-informative priors

discrete parameter taking C values: p(θ) = 1/C

continuous parameter p(θ) = 1 which is improper
∫

p(θ) dθ = ∞
Location parameter

invariance to choice of parameterization

η = θ + c, ∀c ∫
p(η) dη =

∫
p(θ) dθ∫

p(η − c) dη =

∫
p(η) dη

for all η. With η = c then p(c) = p(0) thus p(θ) = 1

Jan Larsen 41
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Non-informative priors
Scale parameter η = cθ, ∀c > 0∫

p(η) dη =

∫
p(θ) dθ∫

p(ηc−1)c−1 dη =

∫
p(η) dη

thus with η = c and p(c) = c−1p(1). Setting p(1) = 1 then
p(θ) = θ−1

Jeffrey’s non-informative

p(θ) =
√

det I(θ)

I(θ) = −E[∂2 log p(x|θ)/∂θ∂θ�]
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Optimizing hyperparaters using evidence

p(θ) = p(θ|λ)

λ are hyperparameters

Evidence - marginal likelihood

p(D) = p(D|λ) =

∫
p(D|θ,λ)p(θ|λ) dθ

λML−II = arg max
λ

p(D|λ)
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Generalization is the ultimate frequentist
objective

Assume that the underlying system is stationary (time-
invariant).
How well are we doing on future data?

Generalization error

G(D) =

∫
L(y, ŷ(D)) · p(x,y) dxdy

{x; y} is a sample independent of all samples in the training set

L(·) is any loss function
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Generalization error decomposition
Average generalization error / averaged integrated risk

Γ = ED {G(D)}

Decomposition

Γ = Inherent Noise + Bias + Variance

Inherent Noise (minimal Bayes risk) can not be modeled

Bias is due to an incomplete model

Variance is due to a finite training set
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A general B/V decomposition Heskes, 1998

Properties

bias only depends on true and average distributions

variance is non-negative not a function of true distribution, and
zero only if and only if distributions are equal

mean-square error is a special case

Decomposition

Γ = ED {G(D)} = H(p) + KL(p|p̂)

= H(p) + KL(p|p̄) + ED {KL(p̄|p̂)}
= Inherent Noise + Bias + Variance

with average model

p̄ = Z−1 · exp(ED {log p̂})
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Bias/variance dilemma

The model should learn rather than memorize training data

Model complexity

low high

cannot fit fits to noise
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Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Bias/variance dilemma
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Overfitting
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Overfitting
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Overfitting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

Fit: y3=1.87−4.94*x+4.71*x2−1.5*x3

MSEtrain=0.88

MSEtest=1.11

x

y 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−3

−2

−1

0

1

2

3

Fit: y5=−4.08+58.69*x−188.1*x2+233.7*x3−123*x4+23.03*x5

MSEtrain=0.66

MSEtest=3.13

x

y 3

Jan Larsen 52



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Overfitting in an RBF network
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Generalization estimation
Approaches

Asymptotic theory leading to algebraic estimates of the average
generalization error

Resampling approaches (cross-validation, jackknife, and bootstrap)
of the generalization error or average generalization error

Purposes

Assessing the final quality and reliability of the model

Model selection
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Limited data is always a challenge

D
FE �� ��

Design Test

VT ����

Training Validation

Design/Test Split

Test set is exclusively used for final assessment of model designed
from E
Objective is high generalization ability and reliable assessment

J. Larsen and C. Goutte: “On Optimal Data Split for Generalization Estimation

and Model Selection,” in Proceedings of the IEEE NNSP Workshop IX,

pp. 225–234, 1999
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Limited data is always a challenge

D
FE �� ��

Design Test

VT ����

Training Validation

Training/Validation Split

Model is trained on training set. Validation set is used to select
optimal model or tune additional hyperparameters

Objective is high generalization ability.
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Hold-Out Cross-Validation
Data Splitting

γ = i/N i = 1, 2, · · · , N − 1 is the split ratio

NF = γN for testing and NE = (1 − γ)N for design

HO Estimate

ĜHO = NF
−1

∑
k∈F

− log p(y(k)|x(k), E ,m)

Property HO is an unbiased estimate of the generalization error for
i.i.d. samples
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Quality of the HO Estimator

MSEHO(γ) = ED

{(
ĜHO − G∗

)2
}

= ED

{(
ĜHO − G(D)

)2
}

︸ ︷︷ ︸
variance

+ ED
{

(G(D) − G∗)2
}

︸ ︷︷ ︸
bias

where G∗ is the minimum achievable gen. error for the current
model, i.e., infinitely data
Property

Bias ↓ as γ ↓
Variance ↑ as γ ↓
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K-fold Cross-Validation
Procedure

Split data into K disjoint subsets Fj (approx. equal sizes)

K = � 1/γ �, for γ < 1/2,
γ = {1/N, 1/(N − 1), · · · , 1/2, · · · , 1 − 1/N}
Evaluate on each subset the model designed on the remaining
data, Ej = D \ Fj

Estimate

Γ̂KCV =
1

N

K∑
j=1

∑
k∈Fj

− log p(y(k)|x(k), Ej,m)

Property Unbiased estimator the average generalization error, Γ,
based on NE data.
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Quality of KCV Estimator

MSEKCV (γ) = ED

{(
Γ̂KCV − G∗

)2
}

= ED

{(
Γ̂KCV − Γ

)2
}

︸ ︷︷ ︸
variance

+ ED
{

(Γ − G∗)2
}

︸ ︷︷ ︸
bias
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Results

Analytical expression for opt. design/test splits for location
parameter model. Tends to hold asymp. for other models:

− HO: γopt → 1, as N → ∞
− KCV: γopt = 1/N , (LOO)

Model selection using KCV:

− γopt → 1, as N → ∞
− LOO seems to optimal when N is small both wrt. generalization

error and probability of selecting correct model

Model selection using HO:

− Conflict between opt. gen. error and probability of selecting
correct model
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Algebraic Generalization Error Approach
Properties

Asymptotic estimates valid for large training sets

Various assumptions on model bias and example dependencies

No data need to be set aside for validation
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Estimator Model Est.

Exact (Hansen 93) Unbiased lin. zero-mean Gaus data ML

FPE (Akaike 69) Unbiased, no prior MSE

FPER (Larsen 94) Unbiased with prior Pen. MSE

AIC (Akaike 73) Unbiased no prior ML

AICc (Hurvich&Tsai 1989) Unbiased no prior ML

GEN (Larsen 92, 2000) No restrictions, auto corr data Pen. MSE/MAP

GPE (Moody 91) nonlin with prior MSE

NIC (Murata 94) nonlin(NN),nested, i.i.d. data MAP

TIC (Takeuchi 76) nonlin i.i.d. data MAP

GIC (Konishi&Kitagawa 96) general i.i.d. MAP,Bayes

DIC (Spiegelhalter et al. 2002) general i.i.d. Bayes

Jan Larsen 64



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

GEN
Major Assumptions

Asymptotic validity, o(1/N )

Applies to bias and regularized models

Estimates average generalization error

MAP approach

CD(θ) = N−1
N∑

k=1

�(y(k)|x(k),θ) + R(θ) = SD(θ) + R(θ)
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GEN Estimator

ΓGEN = ED{SD(θ̂)} +
meff

N

−A

N
· ∂R

∂θ�
(θ∗)J−1(θ∗)

∂R

∂θ
(θ∗)

Optimal parameters: θ∗ = arg minθ G(θ) where the expected
cost: C(θ) = ED{CD(θ)} = G(θ) + R(θ)

For practical use an unbiased o(1/N ) estimator is obtained by,

neglecting the expectation, replacing θ∗ by θ̂, and J by JD
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GEN Estimator

Effective number of parameters

meff = tr

⎡⎣J−1(θ∗)

⎛⎝K(0) +

M̄∑
n=1

N − n

N
(K(n) + K�(n))

⎞⎠⎤⎦
= tr

[
J−1(θ∗)L

]
where M̄ = min(M,N − 1), M is the time dependence length
(for i.i.d. examples M = 0),
A = M̄ + 1 − M̄(M̄ + 1)/2N

K(n) = E{∂�(k)/∂θ · ∂�(k + n)/∂θ�} with
�(k) ≡ �(y(k)|x(k),θ∗))
J(θ) is the Hessian matrix of the expected cost function C(θ)
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Outline

Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors

Generalization and bias/variance

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework

Example of Bayesian learning: RVM

Bayesian signal detection
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Bayesian model selection
Bayes optimal decision rule (under 0/1 loss function) leads to the
optimal model

mopt = arg max
m

p(m|D)

p(m|D) =
p(D|m)P (m)

M∑
m=1

p(D|m)P (m)

is the probability of the model given data

The Bayes model probability is only correct if the true model is
among the hypothesis models!
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Probabilistic Model Selection
Uniform Model Belief
In the case of equal model priors, i.e., P (m) = 1/M , the model
selection concerns computing the evidence p(D|m)

Evidence

p(D|m) =

∫
p(D,θ|m) dθ =

∫
p(D|θ,m)p(θ|m) dθ

where

θ are model parameters

p(D|θ,m) is the likelihood

p(θ|m) is the prior which is normally assumed vague and
normalizable
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Approximations

Laplace approximation

BIC approximation (large sample Laplace)

variational Bayes (“EM like”)

expectation propagation

ensemble learning

(annealed) importance sampling, particle filtering

Gibbs sampling

Markov chain Monte Carlo methods (Metropolis-Hastings, Parallel
tempering (gets marginal likelihood), particle path filter)
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Models with hidden variables

p(y|x,D) =

∫
p(y,z|x,θ,m) · p(θ|D) dzdθ

In particular ensemble learning and Variational Bayes are useful

approximate by integrating w.r.t. proposal distributions q(z,θ)

ensemble learning uses simple functional forms often fully
factorized q(z,θ) =

∏
i q(zi)

∏
j q(θj)

Variational Bayes uses functional forms as priors partly factorized
q(z,θ) = q(z)

∏
j q(θj)

works for on-line models Ghahramani, Valpola
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Variational Bayes learning
Key ingredients

Use factorized approximate posterior distribution

q(θ,z) = q(θ) · q(z)

Use Jensen’s inequality to bound marginal likelihood (evidence)

Resources

www.variational-bayes.org

Z. Ghahramani, C. Bishop, G. Hinton, M.I. Jordan, D. MacKay, C.
Rasmussen, R. Neal, M. Beal

Jan Larsen 73



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Variational Bayes learning

log p(D|m) = log

∫
p(D,θ,z|m) dzdθ

= log

∫
q(θ)q(z)p(D,θ,z|m)

q(θ)q(z)
dzdθ

= Fm(q(θ), q(z),D) + KLpost(q‖p)

Variational free energy F bounds the evidence

log p(D|m) ≥ Fm(q(θ), q(z),D)

=

∫
q(θ)q(z) log

p(D,θ,z|m)

q(θ)q(z)
dzdθ
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Variational Bayes learning
Kullback-Liebler between true and approximate posterior

KLpost(q|p) =

∫
q(θ)q(z) log

p(θ,z|D,m)

q(θ)q(z)
dzdθ
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Variational Bayes learning
Maximize Fm(q(θ), q(z),D) w.r.t. q(θ) and q(z) i.e., minimize
KLpost(q‖p)

“E-step” - estimate posterior over hidden variables

q(j+1)(z) ∝ exp

[∫
log p(D,z|θ,m)q(j)(θ)

]
dθ

“M-step” - estimate posterior over parameters

q(j+1)(θ) ∝ p(θ) exp

[∫
log p(D,z|θ,m)q(j+1)(z)

]
dz

Reduces to classical EM when q(θ) = δ(θ − θ0)
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Exponential distribution family

Complete likelihood

p(y,z|θ,x) = f (y,x,z)g(θ) exp
[
φ(θ)�u(y,z,x)

]
Conjugate prior

p(θ|η,ν) = h(η,ν)g(θ)η exp
[
φ(θ)�ν

]
many standard distribution belongs to exponential family

also complete likelihood for many mixture models, classes of
Markov models, etc.
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Optimum under exponential distribution
family
i.i.d. Data D = {xk,yk}N

k=1
Exact posterior as in regular EM but using averaged natural
parameters

q(zk)∝f (yk,xk,zk) exp
[
φ̄(θ)�u(yk,zk,xk)

]
=p(zk|yk,xk, φ̄(θ))

φ̄(θ) = 〈φ(θ)〉q(θ) are natural parameters

q(θ) also exponential family conjugate

q(θ) = h(η̃, ν̃)g(θ)η̃ exp
[
φ(θ)�ν̃

]
η̃ = η + N , ν̃ = ν +

∑N
n=1 ū(yk,xk),

ū(yk,xk) = 〈u(yk,xk)〉q(z)
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Expectation propagation

Minka: focus on approximating maginals for each sample:
tk(θ) = p(θ)p(yk|xk,θ).

Use KL(p|q) not KL(q|p) as in VB which typically under-estimates
variability.

Iterate for each sample k

−Deletion: delete tk(θ)

− Projection: update t̃k(θ)

− Inclusion: update q(θ)

No proof of convergence.
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Simple evidence approximation
Simpler than more involved methods like Laplace, variational Bayes
and MCMC

Normalized log-posterior

CD(θ) =
1

N
(log p(D|θ,m) + log p(θ|m))

and the maximum a posteriori (MAP) solution

θ̂ = arg max
θ

CD(θ)

Jan Larsen 80



Informatics and Mathematical Modelling / Intelligent Signal Processing�

�

�

�

Approximations
Gaussian MAP approximation

CD(θ) = CD(θ̂) − 1

2
(θ − θ̂)JD(θ − θ̂)�

JD = −∂2CD(θ)

∂θ∂θ�

∣∣∣∣∣
θ=θ̂

= O(1)

Essential assumptions

JD should be of full rank, hence J−1
D should exists

JD = O(1) is usually fulfilled with N−1 normalization. Sinusoidal
model is a counter example Stoica
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Approximations
Laplace Approximation

p(D|m) =

∫
exp (NCD(θ)) dθ

≈
∫

exp

(
NCD(θ̂) − N

2
(θ − θ̂)JD(θ − θ̂)�

)
dθ

≈ p(D|θ̂,m) · p(θ̂|m) ·
(

2π

N

)dim (θ)
2

· |J |−
1
2

D
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Bayesian Information Criterion

Since JD = O(1), the leading term for large N does not involve the
often complicated Hessian, hence, the evidence is approximated as

p(D|m) ≈ p(D|θ̂,m) · p(θ̂|m) ·
(

2π

N

)dim (θ)
2

log p(D|m)/N ≈ BIC = CD(θ̂) + dim(θ̂) · log(N )/(2N )
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Views on Bayesian model selection

BIC gives a consistent model selection as N → ∞ if the true
model is among the candidates

GEN/AIC consistently overfit for N → ∞ has a smaller penalty
dim(θ)/N compared to dim(θ) · log(N )/2N in BIC

Connection between BIC and GEN/AIC

In GEN/AIC ED {G(D)} is approximated by a 2nd order Taylor

In BIC, ED {exp (G(D))} is approximated a 2nd order Taylor;
hence log is performed
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Outline

Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors

Generalization and bias/variance

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework

Example of Bayesian learning: RVM

Bayesian signal detection
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Discussion of Bayesian Learning
Objectivity

We want to be as objective as possible, however without prior
expectation nothing can be learned

no-free-lunch theorems

link to philosophical theories

J. Friedman: “no methods dominates all others over all possible
situations”
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Discussion of Bayesian Learning
Prior knowledge
likelihood, loss function, model family, parameter priors

G.E.P. Box (1976) and Stephen Strother: “all models are wrong –
but some are useful”

use flexible models with careful model optimization

be as data-driven as possible, minimum non-informative prior
assumptions

use Bayes for formal incorporation of all available knowledge

use careful model evaluation (generalization performance,
robustnes to changes in assumptions, sensitivity analysis)
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Discussion of Bayesian Learning
Robustness

Slight changes in model assumptions should lead to slight
changes in conclusions/decisions

sensitivity analysis

generalization error - test performance

extensive cross-validation

learning curves

information conveyed by data and by prior - if they clash we want
likelihood dominance.

errorbars and fluctuations in predictive distributions
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Discussion of Bayesian Learning
Robustness

iterated modeling until desired performance/robustness is obtained

trade-off between performance and robustness for specific limited
data set
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Outline

Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors

Generalization and bias/variance

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework

Example of Bayesian learning: RVM

Bayesian signal detection
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Bayesian learning in RBF nets -
relevance vector machine
RBF network

y =

nH∑
j=1

φj(x)wO
ij + ε = φ�(x)θ + ε

ε ∼ N (0, σ2) and i.i.d

φj(x) = exp(−‖x − x(j)‖2/2ν2),

Vector notation of training data

y = Φ�θ + ε
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Getting the predictive distribution
Ingredients

Prior p(θ|A) ∼ N (0,A−1), A = diag(α), αj is (inverse)
individual weight decay or hyperparameter

Likelihood p(D|θ, σ2, ν2) =
∏N

k=1N (y(k) − φ�(x(k))θ, σ2)

Posterior weight distribution

p(θ|D, σ2,A, ν2) =
p(D|θ, σ2, ν2)p(θ|A)

p(D|σ2,A, ν2)
∼ N (θ̂,Σθ)

Σθ = (σ−2ΦΦ� + A)−1

θ̂ = σ−2ΣθΦy = (ΦΦ� + σ2A)−1Φy
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Getting the predictive distribution

p(y|x,D) =∫
p(y|x,θ)p(θ|D, σ2,A, ν2) dθ

∼ N (ŷ, σ2
y)

ŷ = φ�(x)θ̂

σ2
y = σ2 + φ�(x)Σθφ(x) 0 20 40 60 80 100
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Optimizing hyperparameters
σ2, A, ν2 are optimized by maximizing the evidence using EM and
simple search

p(D|σ2,A, ν2) = p(D|θ, σ2, ν2)p(θ|A)

Literature:

Quiñonero-Candela, J., Girard, A., Larsen, J., Rasmussen, C. E.: “Propagation of

Uncertainty in Bayesian Kernel Models - Application to Multiple-Step Ahead

Forecasting,” ICASSP, vol. 2, pp. 701-704, 2003

Quiñonero-Candela, J., Hansen, L. K.: “Time Series Prediction Based on the

Relevance Vector Machine with Adaptive Kernels,” ICASSP, pp. 985-988, 2002
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Example
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Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors

Generalization and bias/variance

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework

Example of Bayesian learning: RVM

Bayesian signal detection
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Bayesian signal detection model
Literature:

Hansen, L. K., Nielsen, F. ., Larsen, J.; “Exploring fMRI Data for Periodic Signal
Components,” Artificial Intelligence in Medicine, vol. 25, pp. 25–44, 2002

y(n) =

K∑
k=1

bk · xk(n) + ε(n)

y = ŷ + ε = Xb + ε

observed signal y = {y(n)} is a N × 1 (data D) vector

K = 2κ periodic basis functions k ∈ [1; κ]

x2k(n) = cos(kω0n), x2k−1(n) = sin(kω0n)

X = {xk(n)} is a N × K matrix
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bk linear coefficients b = {bk} is a K × 1 vector

noise: ε ∼ N (0, σ2)
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Objective

Estimate unknown fundamental frequency ω0 and the number
of components K

Bayesian learning

integrate out undesired model parameters θ = (b, σ2)

select model ω0(m), K(m), m = [1; M ]

m = 0 corresponds to only noise, i.e., X ≡ 0.

p(ω0,K|y) =
p(y|ω0,K)p(ω0,K)

p(y)
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Marginal likelihood

p(y|ω0,K) =

∫
p(y|b, σ2, ω0,K) · p(b, σ2) dbdσ2

=

∫
(2πσ2)N/2 exp

(
−‖y − Xb‖2/2σ2

)
· p(b, σ2) dbdσ2

Conjugate prior: normal-inverse-gamma

p(b, σ2|a, d,K,m,V ) =
(a/2)d/2 · (σ2)−(d+K+2)/2

(2π)K/2 · det V 1/2 · Γ(d/2)
·

exp
(
−(b − m)�(2σ2V )−1(b − m) − a/2σ2

)
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Priors

p(b|a, d,K,m,V ) =

∫
p(b, σ2|a, d,K,m,V ) dσ2

∼ T (m, aV /(d − 2))

p(σ2|a, d) =

∫
p(b, σ2|a, d,K,m,V ) db ∼ IG(a/(d − 2))

mean of noise variance a/(d − 2) = σ̂2
y = y�y/N

d = 3 is smallest value for which prior is finite, hence “weak”

m = 0 for no prior assumption of mean amplitude of periodic
components
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Priors

V = vI for simplicity

Eprior[y
�y]/N = Tr[XX�Eprior[bb�]]/N

= v · a/(d − 2) · Tr[XX�]/N

If Eprior[y
�y]/N = σ̂2

y = a/(d − 2) then v = N · Tr[XX�]−1
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Marginal likelihood
posterior is NIG thus the marginal likelihood is its normalization
integral

p(y|ω0,K) =

(
det V P · ad

det V · adP

P · πN

)1/2
Γ(dP/2)

Γ(d/2)

V −1
P = V −1 + X�X

mP = V P (V −1m + X�y)

aP = a + m�V −1m + y�y − m�
PV −1

P mP

dP = d + N
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Model selection
uniform models prior p(ω0(m),K(m)) = 1/(M + 1)

p(m|y) =
p(y|m)∑M

m=0 p(y|m)

with

p(y|m) = p(y|ω(m),K(m)), m > 0

p(y|0) = p(y|ω,K) with X = 0
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Example
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Suggestions for a roadmap

More research on the evaluation of the learning process. Account
for all variation – also data set variability

Development of better and easy to communicate approximation
schemes

More research on online learning in a non-stationary switching
dynamics settings

Bayes does not tell you anything about the domain exterior to the
model - hence, more focus on integrating the data representation,
feature selection, and preprocessing steps

Systems interact with other systems and humans – model the man
in the loop, model irrationality
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Wrap up

Bayesian learning combines all available knowledge in principled
way

Ingredients: variable, data, model, prior, loss

Bayes is optimal in admissibility/generalization sense

Bayes framework is complete as it offers model selection and
confidence

Robustness needs to be tested, model mis-specifications can cause
arbitrary errors
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