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Crash course in Bayesian learning for those unfamiliar with this
paradigm

Experienced people hopefully gets new inspiration

Informatics and Mathematical Modelling / Intelligent Signal Processing

T. Bayes “An Essay Towards Solving a Problem in the Doctrine

of Chances, Phil. Trans. Roy. Soc., 53, 370-418, 1783

The world is uncertain......

inference: assign probabilities to hypothesis from specific data set
decision theory: choose between actions to minimize loss/risk

Basic axiom systems for decision theory and inference leads to that
rational analysis must corresponds to a Bayesian paradigm

You are probably already doing Bayes — even if you don't know it
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Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation

Bayesian model selection

Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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D. MacKay: Information Theory, Inference and Learning
Algorithms,
J.0. Berger: Statistical Decision Theory and Bayesian Analysis,
Springer-Verlag, 2nd edition, 1985.
C.P. Robert: The Bayesian Choice: A Decision-Theoretic
Motivation, Springer-Verlag, 1994,
J.JK. O Ruanaidh and W.J. Fitzgerald: Numerical Bayesian
Methods Applied to Signal Processing, Spinger-Verlag, 1996.
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principal framework which combines available uncertain knowledge
- data, prior etc.

Bayesian learning is optimal - if you are
Bayesian learning is typically more robust to mis-specifications and
small data sets

classical learning schemes are special cases
known to give better performance for most models

offers model selection as an integrated part
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Basic ingredients

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation

Bayesian model selection

Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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HE

predictions/forecast comes with errorbars (credible sets, highest
posterior density credibility set)

new approaches such as Variational Bayes, Expectation
Propagation makes the Bayesian learning computational attractive
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clustering using mixture of Gaussians (Attias, Rasmussen)

mixture of factor analyzers clustering and dimensionality reduction
(Ghahramani+Beal)

principal components analysis (Bishop)

independent component analysis
(Hgjen-Sgrensen+Whinter+Hansen, Lee, Attais, Valpola,
Miskin-+MacKay)

state-space models, e.g., extended Kalman filters
(Ghahramani+Beal, de Freitas, Niranjan, Wan, Doucet, Gordon)

time series modeling (Roberts+Penny,
Quifionero+Girard+Larsen+Rasmussen)

HE

VIBES (Bishop, Spiegelhalter, Winn)

Matthew Beal

ICA toolbox (DTU)

Bayes Blocks (HUT)

Bayes Net toolbox (Kevin Murphy)

ReBEL : Recursive Bayesian Estimation Library (E. Wan)

NetLab (Bishop)
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mixture of experts (Ueda)
hidden Markov models (MacKay)
Bayesian networks, graphical models (Heckerman, Jordan,
Ghahramani, Bishop, Spiegelhalter)
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all variables have associated probability densities
variables not required in the final estimate are integrated out
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Why Bayesian learning?

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation

Bayesian model selection

Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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@ multivariate input
vy multivariate output

z multivariate hidden/latent variables

introduction of hidden variables often facilitate model specifica-

tion
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variables which we want to infer

problems (unsupervised /supervised)

data

model

prior

predictive distribution through Bayes theorem
loss and Bayes risk

Bayes estimate
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unsupervised modeling if only x

predictive modeling if  and y

y continuous is regression, e.g., time-series modeling

y discrete is classification

state-space models, mixture models use continuous or discrete

hidden variables
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Usually i.i.d. samples
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p(6)

expresses the degree of belief

probability is limit of frequency #outcomes/#total

properties beliefs lead to same rules as for probabilities, hence
using probability to measure belief

. more on choice of prior later
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yle.0.m) = [ ply,zle.0,m) dz
6 are model parameters usually not amenable for interpretation

m index a particular model structure

we consider usually flexible universal approximation model families
neural networks, Gaussian processes, mixture models

Pyl 0) = @%exp(—[y — flw, w)2/20%)

0 = (0%, w)
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P(BJA)P(A)
P(A|B) = ———=——=,P(B) = Y | P(B|A)P(A)
P(B) A
p(D[6)p(6)
p(0|p) = LEIPPE)
(6D) (D)
e likelihood x prior
osterior =
P prob of data
N
p(D16) = 1] p(yil1,0,m)
k=1
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plyle, D,m) = / plylz,0.m) - p(6]D) d6

is the result of Bayesian learning and provides a full conditional
distribution for new inputs @

MAP: p(68|D) = 6(6 — Orr4p), Ors4p = arg maxg p(6|D)
pylz, D, m) = p(ylz, 0 4p,m)

ML: no prior 8,7, = argmaxg p(D|0)
p(yle, D, m) = p(yl@, 071, m)
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plylz,0) = N(z' 8,57

plyle, D) = Nz 0rrap,0%)

ply|x, D) = N(:J@, ol + iCTEgCC)
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plyle, D,m) = / plyle,0.m) - p(6]D, ) d6

Model is updated for every test input @

_ p(D,x|0)p(6)
p(0|D,$) - p(D,w)

Requires a model for input distribution as well!
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L(y.y) = L(y(=), y(z|D))
defines how close our estimate y is from the truth y.
Can formally be defined through axiomatic utility theory

square loss for continuous variable
~ ~\2
Ly,y) = (y -y
zero-one loss for classification y,y € [1; C|

. 0, y
L(y,y) =
Y
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Riy.9)= [ Lw.3(D) - p(D)aD

average over all possible data sets

(3/D) = [ L1y 5(D)) - plyle. D) dy

average w.r.t. predictive distribution and conditioned on data
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Why Bayesian learning?

Basic ingredients

More on selection of priors
Generalization and bias/variance
Generalization estimation

Bayesian model selection

Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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1) = [ Ly 5(D) - plyle, D)p(D) dydD
~ [ #@ID) - p(p) ap
~ [ Ly 3(D)) - plule. 0)0(D0)5(6) by
\ /
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G55 = argmin~(§) = arg min p(§|D)
) )

r(Yp)
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™
B = argmin p(D) = sz [y~ )% plyle. D) dy
3= [ - vle.D)dy = Eyi)
gy —asgnin [ |y~ 3 plyle. D) dy
Y
Y is the median of predictive distribution
. /
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pGID) =) L(y,5) - plylz, D)
Y

Fory=C+1then > L(y,9) - plyle, D) =t 3, p(ylx, D) =t

k if ming<c >, L(y,y) - plyle, D) <t
C 4+ 1 otherwise
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Penalty of estimating class y € [1; C] if the truth is class y € [1; C]
0 if ¥ =1y (correct decision)

Wy, 9) if y#y € [;0]
t if y=C+1 (rejection)

L(y,y) =

0 if ¥y =y (correct decision)

Lif y#ye[LC]
t if y=C + 1 (rejection)

Ly, y) =

Jan Larsen 31
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arg max,<c p(y|x, D),and prob > 1 —¢
C+1lifall p(yle,D)<1—t
p(yle, D) > 1/C which means 1 — ¢t > 1/C for rejection to occur

Yp =

[
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decision boundaries

(X\C ()

7P| CP(G)

\-@@p(é;q.
.

R71 Ry IR; R> !

(%]

decision boundaries are specified by p(y = i|x, D) = p(y = j|z, D)
\ /
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use predictive distribution p = p(y|x, D) as random estimator rather
than point estimate y

_ p(y|z)
KL(p|p) —/ ylw 87 lep)dy

= F{L
the loss is defined as
L(p,p) = log p(y|x) — log p(y|z, D)
KL>0OwithOifandonlyifp=p

Informatics and Mathematical Modelling / Intelligent Signal Processing ..

(%]

Yy is inadmissible if
Vy, R(y,¥o) = Ry, y1), 3yo, R(yo,yo) > Ryo, ¥1)

pylz) = p(ylz, D)p(D)/p(Dly, x) > 0 for all data
Bayes risk is finite (might fail for generalized - improper prior case)

R(y,y) is continuous in y

Jan Larsen 35
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—logA>1—Afor A>0 and —logA=1—AforA=1
Define A(y) = ply)/p(y). That is —log A(y) = log p(y)/p(y)
KL= [ )= togAw)dy
> [ty - Al dy
ﬁ(y)}
= [ply) |1 -—| dy
/ . { p(y)
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KL= \G/ — H(p)
generalization error  entropy
= EpEa{G) = - [ logplyle. D)p(D)p(x) dydawdD

is integrated frequency risk (also averaged w.r.t p(x)) up to a

constant

shows optimality in generalization error
. /
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subjective priors: consider relative likelihood of various
parameters values
empirical priors: obtained from past experience data

structural priors:
independence of some parameters?
imposing functional smoothness
invoking constraints

convenience priors:
nice functional form in order to make calculations simple
conjugate priors: posterior and prior have same shape
exponential family is important

Informatics and Mathematical Modelling / Intelligent Signal Processing
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Why Bayesian learning?
Basic ingredients

Bayes estimators

Generalization and bias/variance
Generalization estimation
Bayesian model selection

Discussion of Bayesian framework

Jan Larsen 38
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hierarchical: p(0) = [ p(0|\)p(X) dX
non-informative: make the influence of the prior as small as
possible

improper: improper priors do not integrate to one. Leads to
generalized Bayes estimator which typically also is admissible

Jan Larsen 40
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discrete parameter taking C' values: p(6) = 1/C

invariance to choice of parameterization

[ vman = [ pioyas
/p(n—C) dn = /p(n) dn

for all . With n = ¢ then p(c) = p(0) thus p(#) =1

n==0+c, Ve

\

continuous parameter p(f) = 1 which is improper [ p(6

)df = 0o

(%]
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p(6) = p(O|A)
A are hyperparameters

p(D) = p(DIA) = / p(D]6, Np(B]) d6

AML—I] = arg meP(D\A)
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n=ch, Ve>0

[ pwan = [ so)a0
ot an = [ty an

thus with 7 = ¢ and p(c) = ¢~ !p(1). Setting p(1) = 1 then
OB

p(@) = +/det I(0)

1(0) = —E[0%log p(]0)/0000 |
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Why Bayesian learning?
Basic ingredients
Bayes estimators

More on selection of priors

Generalization estimation

Bayesian model selection

Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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Assume that the underlying system is stationary (time-

invariant).
How well are we doing on future data?

G(D) = /L(y, y(D)) - plx, y) dedy
{x;y} is a sample independent of all samples in the training set

L(-) is any loss function

DIU
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bias only depends on true and average distributions

variance is non-negative not a function of true distribution, and
zero only if and only if distributions are equal

mean-square error is a special case

I'=Ep{G(D)} = H(p) + KL(p|p)
= H(p) + KL(p|p) + Ep {KL(p|p)}
= Inherent Noise + Bias + Variance

with average model
p=2"-exp(Ep{logp})

=
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I'=Ep{G(D)}

I' = Inherent Noise + Bias 4 Variance
Inherent Noise (minimal Bayes risk) can not be modeled
Bias is due to an incomplete model

Variance is due to a finite training set

DIU
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‘ low ‘ high ‘

‘cannot fit‘fits to noise‘
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Generalization Error

Iraining Error

\

Optimal

Complexity

Jan Larsen
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Fit: y;=1.13-0.98*x

Fit: y,=1.31-1.46*x+0.23*x?

MSE 1,,=0.91

Sl *MSE=1.02
x

MSE 14,,=0.91

*MSE 4,=1.03
x
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y=1-x n is Gussian (0,1) noise
2t 4 2 4
* *
* *
1 o 1 1 * =
* x *
o * * *
>of hex 1 co % * * b
*
* * *
k.
b * x = 4
* x *
o ] = ]
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Fit: y;=1.87-4.94*x+4.71*x?~1.5*x3

/

Fit: yg=—4.08+58.69*x~188.1*x?+233.7*x3~123*x*+23.03*x®

MSE,,,=0.88

train

2F

*MSE go=1.11 1
x

Jan Larsen
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Why Bayesian learning?
Basic ingredients

Bayes estimators

More on selection of priors

Generalization and bias/variance

Bayesian model selection
Discussion of Bayesian framework
Example of Bayesian learning: RVM

Bayesian signal detection
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Design Test
Asymptotic theory leading to algebraic estimates of the average & F
generalization error
: e : T Y
Resampling approaches (cross-validation, jackknife, and bootstrap) . -
R Training  Validation
of the or average generalization error
Test set is exclusively used for final assessment of model designed
from &
Assessing the final quality and reliability of the model Objective is high generalization ability and reliable assessment
Model selection
DTU DTU
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Design Test
1) F

D
T 12
Training  Validation
Model is trained on training set. Validation set is used to select
optimal model or tune additional hyperparameters
Objective is high generalization ability.
\ /
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MSEpo(v) = Ep { (@Ho - G*)Q}

- £ { (6o - c0)) |+ o {GiD) - 6}

~~

bias

variance
where G* is the minimum achievable gen. error for the current
model, i.e., infinitely data

Bias | as v |
Variance T as v |

Jan Larsen 59
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v=1/Ni=1,2,---,N — 1is the split ratio
Nz =N for testing and Ng = (1 — )N for design
Gro = Ng 'Y —logpl(y(k)|z(k),€,m)
keF
HO is an unbiased estimate of the generalization error for
i.i.d. samples
. %
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Split data into K disjoint subsets J; (approx. equal sizes)
K =|1/v], fory < 1/2,
Evaluate on each subset the model designed on the remaining
data, 5]‘ =D \ fj
1 K
kov =2 D ~logp(y(k)lz(k), &, m)
j=1keF,
Unbiased estimator the average generalization error, I,
based on N¢ data.
ETE
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MSEkcv(v) = Ep (FKCV -G )
~ 2 2
ZED{(FKC\/—F) }+ED{(F—G)}

variance g bias
. %
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Asymptotic estimates valid for large training sets
Various assumptions on model bias and example dependencies

No data need to be set aside for validation

63
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Analytical expression for opt. design /test splits for location
parameter model. Tends to hold asymp. for other models:

HO: vopt — 1, as N — oo
KCV: yopt = 1/N, (LOO)
Model selection using KCV:
Yopt — 1, as N — o0
LOO seems to optimal when IV is small both wrt. generalization
error and probability of selecting correct model
Model selection using HO:
Conflict between opt. gen. error and probability of selecting
correct model
o
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Estimator Model Est.
Exact (Hansen 93) Unbiased lin. zero-mean Gaus data ML
FPE (Akaike 69) Unbiased, no prior MSE
FPER (Larsen 94) Unbiased with prior Pen. MSE
AIC (Akaike 73) Unbiased no prior ML
AlCc (Hurvich& Tsai 1989) Unbiased no prior ML
GEN (Larsen 92, 2000) No restrictions, auto corr data  Pen. MSE/MAP
GPE (Moody 91) nonlin with prior MSE
NIC (Murata 94) nonlin(NN),nested, i.i.d. data MAP
TIC (Takeuchi 76) nonlin i.i.d. data MAP
GIC (Konishi&Kitagawa 96) general i.i.d. MAP,Bayes
DIC (Spiegelhalter et al. 2002) general i.i.d. Bayes
ETE
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Asymptotic validity, o(1/N) laen = Ep{Sp(0)} + N
App.)lies to bias and regula'rizefi models _é' OR (9*)J_1(0*)8_R(0*)
Estimates average generalization error N 907 00
Optimal parameters: 8" = argming G(6) where the expected
N cost: C(0) = Ep{Cp(0)} = G(0) + R(0)
Cp(0) = N1 Zé(y(k)]w(k), 0)+ R(6) = Sp(0) + R(0) For practical use an unbiased o(1/N') estimator is obtained by,
k=1 neglecting the expectation, replacing 8* by 0, and J by Jp
. J . /
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Effective number of parameters Why Bayesian learning?
M . :
N—n Basic ingredients
o —1/p* T
mefp = tr | J7(07) | K(0) + Zl N (K(n)+ K (n)) Bayes estimators
n=
P More on selection of priors
— tr [J 6 )L} o o
- Generalization and bias/variance
where M = min(M, N — 1), M is the time dependence length — R
. Generalization estimation
(for i.i.d. examples M = 0),
A=M+1-M(M +1)/2N
K(n) = E{0((k)/00 - 90(k + n)/@OT} with Discussion of Bayesian framework
Uk) = L(y(k)|x(k),0%)) Example of Bayesian learning: RVM
J(0) is the Hessian matrix of the expected cost function C(8) Bayesian signal detection
= o
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Bayes optimal decision rule (under 0/1 loss function) leads to the
optimal model
Mopt = aIg mn%xp(mrp)

p(Dlm)P(m)

M
> p(Dlm)P(m)
m=1

p(m|D) =

is the probability of the model given data

The Bayes model probability is only correct if the true model is

among the hypothesis models!

=
—
=

m
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Laplace approximation

BIC approximation (large sample Laplace)
variational Bayes (“EM like")

expectation propagation

ensemble learning

(annealed) importance sampling, particle filtering
Gibbs sampling

Markov chain Monte Carlo methods (Metropolis-Hastings, Parallel
tempering (gets marginal likelihood), particle path filter)

Informatics and Mathematical Modelling / Intelligent Signal Processing ..

In the case of equal model priors, i.e., P(m) = 1/M, the model
selection concerns computing the p(D|m)

p(Dlm) = [ p(D.6lm) 6 = [ p(Dl6.m)pBlm)
where
0 are model parameters
p(D|6,m) is the likelihood

p(@|m) is the prior which is normally assumed vague and
normalizable

=
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plyle, D) = / Py, z|z, 8, m) - p(6]D) d=d6

In particular ensemble learning and Variational Bayes are useful

approximate by integrating w.r.t. proposal distributions ¢(z, 8)
ensemble learning uses simple functional forms often fully
factorized ¢(z, 6) = [[; q(=:) [1; a(6;)

Variational Bayes uses functional forms as priors partly factorized
q(z,0) = q(z)[1;a(0;)

works for on-line models

=
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Use factorized approximate posterior distribution log p(D|m) = 1og/p (D, 0 z\m ) dzd8
q(6,2) =q(0) - q(2) q(6 D 0.2m) o
Use Jensen's inequality to bound marginal likelihood (evidence) log (2) o
-/Tm(q ) ) + KLpost(‘]HP)
Z. Ghahramani, C. Bishop, G. Hinton, M.I. Jordan, D. MacKay, C. log p(Dlm) > fm(q(e),q(Z),D)D 0
Rasmussen, R. Neal, M. Beal — /q(@)q(z) 1ogwdzd0
q(0)q(z)
. / .
DTU
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Maximize Fy;,(q(0), q¢(2), D) w.r.t. ¢(€) and ¢(z) i.e., minimize
p(0,2/D,m) KLpost(qllp)

KLpost(qlp) = / q(0)q(z) log 10)q() dzd6

(I(]Jf])(z) X exp |:/ logp(D,Z’O,m) :| a6

x p(6) exp [ / 1ogp<1>,zw,m>q<f“><z>] dz

Reduces to classical EM when ¢(8) = §(0 — 6)
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Bl

' N
T
ply, 210, @) = [(y,z,2)9(0) exp [(0) Tuly, z,2)|
T
POl v) = hin, v)g(8)" exp [$(6) Tv]

many standard distribution belongs to exponential family

also complete likelihood for many mixture models, classes of

Markov models, etc.
. %

ELU
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Minka: focus on approximating maginals for each sample:
t1(8) = p(0)p(yx |z, 6).
Use KL(p|q) not KL(q|p) as in VB which typically under-estimates
variability.
Iterate for each sample k&
Deletion: delete t;.(0)
Projection: update #1,(6)
Inclusion: update ¢(0)

No proof of convergence.
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D ={z}, yp},

q(zg) < f (Y, Tk, Z)) exp [&(B)TU(yk, 2 wk)} —p(ziyp 5, P(6)
o(0) = <¢(0))q(9) are natural parameters

a(0) = h(7.9)9(0) exp | 6(0) 7|

T=n+N,v=v+30 uly ),
w(yg, T) = (W(yYp, Tp))g ()

\ /
DTU
>
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Simpler than more involved methods like Laplace, variational Bayes

and MCMC

1
Cp(9) = 7 (logp(D|6, m) + log p(8]m))
and the maximum a posteriori (MAP) solution

6 = arg max Cp(0)

=
=
=

M
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Bl

e
1 ~ ~
Cp(6) = Cp(6) — (6~ 6)Tp(6 - )
0*Cp(0
_ el
9000 " |, 5
J p should be of full rank, hence JBI should exists
Jp = O(1) is usually fulfilled with N~! normalization. Sinusoidal
model is a counter example
.
Jan Larsen 81
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Since Jp = O(1), the leading term for large N does not involve the
often complicated Hessian, hence, the evidence is approximated as

dim(e)
~ -~ 2 2
p(Dlm) ~ p(D|8,m) - p(8m) - { -

-~ ~

logp(D|m)/N ~ BIC = Cp(0) + dim(0) - log(N)/(2N)

HE
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Bl

. N
p(Dlm) = [ e (NCp(6)) do
~ N ~ ~T
~ [ exp (NCp(6) — (0 -8)Tp(O-8)" ) db
dim(g)

~ ~ 27\ 2 _1

~ p0l8.m) @l ()
\ /
DTU
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BIC gives a consistent model selection as N — oo if the true
model is among the candidates

GEN/AIC consistently overfit for N — oo has a smaller penalty
dim(@)/N compared to dim(8) - log(N)/2N in BIC

In GEN/AIC Ep {G(D)} is approximated by a 2nd order Taylor

In BIC, Ep {exp (G(D))} is approximated a 2nd order Taylor;
hence log is performed

84
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Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation

Bayesian model selection

Example of Bayesian learning: RVM

Bayesian signal detection

Informatics and Mathematical Modelling / Intelligent Signal Processing ..

DIU

>
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likelihood, loss function, model family, parameter priors

G.E.P. Box (1976) and Stephen Strother: “all models are wrong —
but some are useful”

use flexible models with careful model optimization

be as data-driven as possible, minimum non-informative prior
assumptions

use Bayes for formal incorporation of all available knowledge

use careful model evaluation (generalization performance,
robustnes to changes in assumptions, sensitivity analysis)

=
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We want to be as objective as possible, however without prior

expectation nothing can be learned

no-free-lunch theorems
link to philosophical theories

J. Friedman: “no methods dominates all others over all possible
situations”

Jan Larsen 86
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Slight changes in model assumptions should lead to slight

changes in conclusions/decisions

sensitivity analysis

generalization error - test performance
extensive cross-validation

learning curves

information conveyed by data and by prior - if they clash we want
likelihood dominance.

errorbars and fluctuations in predictive distributions

Jan Larsen 88
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iterated modeling until desired performance/robustness is obtained
trade-off between performance and robustness for specific limited
data set
ELU
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;4
_ ) 0 T
y= Zd’j(w)wij te=¢ (x)0+e
j=1
e~ N(0,0%) and i.i.d
_ A\ (12 2
¢j(x) = exp(—|le — x(5)[|7/2v7),
y= P'0+e
EI!
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Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation
Bayesian model selection

Discussion of Bayesian framework

Bayesian signal detection

ETE
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a N
Prior p(0|A) ~ N(0,A7Y), A = diag(cv), a;j is (inverse)

individual weight decay or hyperparameter

Likelihood

= [I N (y(k) — ¢ (2(k))8, 0?)

p(0]A)

p(0|Da 62’A7y2) = NN(év 29)

Y= (0 2@d" +A)"!
6 = 0T Ngdy = (8D +°A) By

Jan Larsen 92
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plyle, D) =

- approx-RPGD

2] : exact—ll?F'GD
/p(y\x,e)p(G\D,JQ,A,VQ)dG ;
5
~N(7,0;) 0
j=0¢'()0
0l = o? + d)T(a:)E d)(a:) 2% 20 20 60
Y o
ET‘U
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o2, A, /2 are optimized by maximizing the
simple search

p(D|02,A, 1/2) = p(D|0, 0%, v p(0|A)

Literature:

using EM and

Jan Larsen 94
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Why Bayesian learning?

Basic ingredients

Bayes estimators

More on selection of priors
Generalization and bias/variance
Generalization estimation
Bayesian model selection
Discussion of Bayesian framework

Example of Bayesian learning: RVM
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4 h
Literature:
K
y(n) = Y by ax(n) +e(n)
k=1
y=y+e=Xb+e
observed signal y = {y(n)} isa N x 1 (data D) vector
K = 2k periodic basis functions k € [1; k]
Tog(n) = cos(kwon), w9x_1(n) = sin(kwon)
X ={zp(n)} isa N x K matrix
%
DTU
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[+

Estimate unknown fundamental frequency wg and the number

of components K

integrate out undesired model parameters 6 = (b, 02

select model wy(m), K(m), m = [1; M]

m = 0 corresponds to only noise, i.e., X = 0.

p(ylwo, K)p(wy, K)
py)

p(w07 K|y) =

Jan Larsen 99
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b;. linear coefficients b = {b.} is a K x 1 vector
noise: € ~ N(0, o)

HEN

98

[+

plylb, o2, wy, K) - p(b, 0°) dbdo?

2ro® N2 exp (~|ly = Xl /20%) - p(b, o) dbdo’

iyl ) = |
/

(a/Q)d/2 . (02)—(d+K+2)/2
2m)K/2 . det V2. T(d/2)

p(b,0°a,d, K, m,V) =

exp <—(b —m)T202V) " (b — m) — a/202)

=
=
=
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/ ™
pla.d. Kom. V) = [ plb.o?la.d Kom. V) do”
~ T(m,aV/(d—2))
p(c?|a,d) = /p(b, o’la,d, K,m,V)db ~ IG(a/(d — 2))
mean of noise variance a/(d — 2) = 6\5 —y'y/N
d = 3 is smallest value for which prior is finite, hence “weak”
m = 0 for no prior assumption of mean amplitude of periodic
components
N %
]11]
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-~

posterior is NIG thus the marginal likelihood is its normalization
integral
1/2
['(dp/2)
(d/2)

plylwn, K) = ( det V- af )

detV -ap’ - N
Vpl=Vv1l+XTX
mp=Vp(Vim+XTy)
ap=a+m'Vim4+yly— m]TDV]’)lmp
dp=d+N
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e
V =l for simplicity
Eprior[yTyVN = TT[XXTEpriOT[bbTH/N
—v-a/(d—2)-Tr[XXT]/N
If Epriorly " yl/N =5 =a/(d —2) thenv = N - Tr[ XX |71
o
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HE
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uniform models prior p(wy(m), K(m)) = 1/(M + 1)
oyl
P i
with

p(ylm) = p(ylw(m), K(m)), m >0

p(yl0) = p(ylw, K) with X =0
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e

More research on the evaluation of the learning process. Account
for all variation — also data set variability

"TRUE" AND NOISY SIGNALS

Development of better and easy to communicate approximation
schemes

L L
180 180 200

’ = TRE; AND RSEGCONST‘RGLDICTED 'SZ\gNALS‘(i‘(ELEI

2 T T T T T H H H H H H

‘ More research on online learning in a non-stationary switching

of dynamics settings

-1

e Bayes does not tell you anything about the domain exterior to the

T — model - hence, more focus on integrating the data representation,
feature selection, and preprocessing steps

FROBABILITY
=
o
T
L

L - Systems interact with other systems and humans — model the man
RLMEERCF OGS in the loop, model irrationality
. % . %
]11] ]11]
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a N
Bayesian learning combines all available knowledge in principled
way
Ingredients: variable, data, model, prior, loss
Bayes is optimal in admissibility/generalization sense
Bayes framework is complete as it offers model selection and
confidence
Robustness needs to be tested, model mis-specifications can cause
arbitrary errors
- J
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