
A New Way Of Estimating
Compute Boundedness And
Its Application To Dynamic
Voltage Scaling

Vasanth Venkatachalam?, Michael Franz
Donald Bren School of Information and Computer Science,
University of California, Irvine, Irvine, CA, U.S.A.
E-mail: {vvenkata,franz}@uci.edu
*Corresponding author

Christian W. Probst
Informatics and Mathematical Modelling
Technical University of Denmark, 2800 Kongens Lyngby, Denmark
E-mail: probst@imm.dtu.dk

Abstract: Many recent dynamic voltage-scaling (DVS) algorithms use hardware
events (such as cache misses, memory bus transactions, or instruction execution rates)
as the basis for deciding how much a program region can be slowed down with ac-
ceptable performance loss. Although these approaches result in power savings, the
hardware events measured are at best indirectly related to execution time and clock
frequency. We propose a new metric for evaluating the performance loss caused by
DVS, a metric that is logically related to clock frequency and execution time, namely
the percentage drop in cycles. Further, we show that we can predict with high accuracy
the execution time of a code region at any clock frequency after measuring the total
number of cycles spent in that region for two clock frequencies—the maximum and the
second highest clock frequency. Measurements using several real-world applications
show that this “two-point” model predicts execution times with an accuracy that is
greater than 95% in many cases. This result can be used to develop low-overhead DVS
algorithms that are more system-aware than many of the current algorithms, which
rely on measuring indirect effects.

Keywords: dynamic voltage scaling; performance estimation; virtual machines.

Reference to this paper should be made as follows: Venkatachalam, V., Franz, M. and
Probst, C.W. (2006) ‘A New Way Of Estimating Compute Boundedness And Its Ap-
plication To Dynamic Voltage Scaling’, Int. J. Embedded Systems, Vol. 1, Nos. 1/2/3,
pp.64–74.

Biographical notes: Vasanth Venkatachalam is a PhD candidate in the Donald Bren
School of Information and Computer Science at the University of California, Irvine.
His research focuses on compilers and operating systems for low power computing. He
has bachelors degrees in mathematics and philosophy from Wesleyan University, and
a masters degree in Computer Science from the University of California, Irvine.

Michael Franz is an Associate Professor in the Donald Bren School of Informa-
tion and Computer Science at the University of California, Irvine. His research focuses
on security and efficiency aspects of mobile-code systems, on virtual machine technol-
ogy in general, compiling for low-power usage, code compression, and programming
languages and architectures for component-based software construction. He received
a Dr. sc. techn. degree in Computer Science and a Dipl. Informatik-Ing. ETH degree,
both from the Swiss Federal Institute of Technology, ETH Zurich.

Christian W. Probst is an Assistant Professor in the Department for Informat-
ics and Mathematical Modelling at the Technical University of Denmark. His research
interests include language-based security, virtual execution environments, static
analyses and optimising compilers, and distributed systems. He received Dr. Ing. and
Diploma degrees in Computer Science from Saarland University, Germany.

1 Introduction

Dynamic voltage scaling (DVS) remains one of the most
popular and effective techniques for reducing the power
consumption of microprocessors. This technique, which
can be controlled from either of the hardware, operating
system or compiler levels, works by reducing a proces-
sor’s clock frequency and voltage in lockstep (Venkatacha-
lam and Franz, 2005). Because CPU power dissipation is
quadratic with respect to supply voltage and linear with
respect to clock frequency, DVS should, under ideal condi-
tions, reduce a processor’s instantaneous power dissipation
cubically.

However, when the processor is slowed down, program
execution will slow down as well. Thus DVS is only ef-
fective in code regions that can be slowed down without
unacceptably increasing a program’s total execution time
(or a user’s experience of it). Thus the correct question
to ask is: “What is the relationship between a program
region’s execution time and the clock frequency at which
it is run”?

Due to the effects of processor stalls, memory or disk in-
tensive programs tend to have less performance loss than
compute-intensive programs when run at a lower clock fre-
quency. This makes them ideal candidates for DVS algo-
rithms. Thus several recent DVS approaches (Choi et al.,
2004a,b,c,d; Li et al., 2003; Marculescu, 2000; Poellabauer
et al., 2005; Singleton et al., 2005; Weissel and Bellosa,
2002; Wu et al., 2005) aim to detect memory bounded-
ness, or how often the processor is stalling due to mem-
ory requests. Similarly, some approaches (Hsu and Feng,
2004, 2005) aim to infer memory boundedness from CPU-
boundedness. Although each of these approaches may have
good results, the key challenge they face is how to detect
processor stalls. Many of the architectures that are widely
used (e.g., Pentium M, Pentium III) lack hardware counter
events for measuring cycles spent during processor stalls.
Thus these approaches rely on indirect information that is
provided by the hardware-event counters available, infor-
mation about hardware events such as cache misses (Choi
et al., 2004b,c,d; Kondo and Nakamura, 2004; Li et al.,
2003; Marculescu, 2000; Poellabauer et al., 2005; Singleton
et al., 2005), memory bus transactions (Wu et al., 2005),
memory requests per cycle (Weissel and Bellosa, 2002), or
instruction execution rates (Hsu and Feng, 2004, 2005).

The problem is that the relationship between the events
measured and the execution time of a program at a given
clock frequency is at best indirect. Although the measure-
ments may be statistically related to processor stalls, they
do not imply processor stalls and it is difficult to draw
a correlation between them and program execution time,
which depends on everything that is happening in a sys-
tem. Moreover, not all processors provide the means to
measure these events, and devices lacking this ability can
not be supported by the approaches mentioned above.

Copyright c© 200x Inderscience Enterprises Ltd.

To overcome these difficulties, we present a new method-
ology to understand the relationship between performance
loss and clock frequency. The key observation is that the
execution time of a code region under a fixed clock fre-
quency is the ratio of (a) the total number of elapsed clock
cycles during the region’s execution, and (b) the clock fre-
quency (cycles/s) at which the region was executed. Thus
if a region is run at a lower clock frequency and its execu-
tion time does not increase as much as one would expect—
which is the case for memory bounded code regions—then
executing the region takes fewer clock cycles at the lower
frequency than at the higher clock frequency.

Thus we propose to use the percentage decrease in clock
cycles as the measure of how compute intensive a code
region is. Further, we show that just by knowing the total
cycles it takes to run a program at the maximum clock
frequency, and the total cycles it takes to run it at a single
notch below the maximum clock frequency, we can predict
with high accuracy the program’s execution time at any
lower clock frequency. This result can be used to develop
low-overhead DVS algorithms, which do not depend on
platform-specific event counters.

In sum, we make the following contributions:

• We introduce a new measure of compute-boundedness
which is based on logical foundations, namely the per-
centage decrease in cycles.

• We show that we can estimate, with high accuracy,
the execution time of a code region at an arbitrary
clock frequency simply by running the region at the
maximum clock frequency and at one notch below the
maximum clock frequency, and extrapolating from the
difference in execution cycles.

• We show how this result can be used to develop low-
overhead DVS algorithms that do not rely on hard-
ware event counters. We evaluate our technique on a
wide variety of real-world applications and show what
percentage of their total runtime is spent in processor
stalls. This can, among other things, be used to fo-
cus the development of power-management techniques
toward those benchmarks that are most amenable to
DVS.

The rest of this paper is structured as follows. Section 2
provides the theoretical framework of our model by formal-
ising the decrease in clock cycles for an arbitrary code re-
gion that is slowed down. Section 3, Section 4 and Section 5
discuss the implementation of our model, the methodology
used to validate our model, and provide results attesting
to the accuracy of this model for a wide variety of appli-
cations, respectively. Section 6 discusses how this model
can be applied to dynamic voltage scaling. Section 7 dis-
cusses the difference between our model and related work,
and Section 8 summarises our conclusions and describes
avenues for future work.

2

2 Theoretical Foundation

In this section, we provide a formal model for under-
standing how much a program’s total clock cycles decrease
when the program is run at a lower clock frequency. Us-
ing this result, we show how we can estimate the CPU (or
memory or I/O) boundedness of a program region by sim-
ply slowing the region down to any lower clock frequency
and extrapolating from the difference in total execution
cycles.

To put all these ideas in context, we first describe two
theoretical extremes, an ideal, CPU-bound program that
contains only computations (with no memory accesses),
and an ideal, memory-bound program that contains only
memory accesses (no computations). As Figure 1 shows,
slowing down an ideal, CPU-bound program (top curve)
does not change the total number of clock cycles needed
for executing the program. Instead, the total cycles will
remain the same because computations (e.g., addition or
multiplication) generally require a fixed number of clock
cycles. As a result, the execution time of the CPU-bound
program increases inversely with respect to the decreas-
ing clock frequency. (Cutting the clock frequency in half
causes the program to run twice as long.)

In contrast, when an ideal, memory-bound program
(bottom curve) is slowed down, the total number of cycles
needed for executing the program decreases in direct pro-
portion to the decrease in clock frequency. This is because
the CPU is not performing any useful work during this
ideal memory-bounded program, but waits. As a result,
slowing down the CPU does not affect the amount of time
it takes to run the program. This is why the ideal memory-
bounded program does not suffer any performance loss
when slowed down, in contrast to the ideal, CPU-bounded

Clock Cycles Normalized To Cycles At 1600 MhZ

600
MhZ

800
MhZ MhZ MhZ MhZ MhZ

1000 1000 1000 1000
0

0.5

1

1.5

T
ot

al
 C

yc
le

s
(N

or
m

al
iz

ed
 to

 C
yc

le
s

at
 1

60
0

M
hZ

)

Ideal CPU

Ideal MEM

1 1 1 1 11

0.375 0.5 0.625 0.75 0.875 1

Ideal CPU

Clock Frequency

Ideal MEM
Typical

Figure 1: Execution cycles as a function of the clock fre-
quency for three programs, an ideal memory bounded pro-
gram, and ideal CPU bounded program, and a typical pro-
gram in between these two theoretical extremes.

program, which does suffer performance loss.
Most programs (middle curve) will exhibit behaviour in

between these two theoretical extremes. They may contain
regions where the processor is performing computations as
well as regions where the processor is idle, waiting for mem-
ory, disk, or network accesses to complete. When such a
program is run at a lower clock frequency, its total clock
cycles will decrease because the regions where the proces-
sor is idle will need fewer clock cycles for execution. This
percentage decrease in total clock cycles is the primary (and
most accurate) indicator of how CPU (memory) bounded
a program region is.

To quantify this decrease for an arbitrary program re-
gion, we consider two scenarios of program region execu-
tion that exhaust all possible cases. In the first scenario,
computations do not overlap with memory accesses, while
in the second scenario, they do.

2.1 Scenario 1: No Overlap Between

Computations and Memory Accesses.

Scenario 1 assumes that either the processor or the main
memory is executing at any given time. Figure 2 shows a
simplified version of this scenario. The processor first per-
forms some computations, then requests data from main
memory, idles while waiting for the memory transaction
to complete, and then continues performing more com-
putations. Let C1 mark the first computation phase, I1
mark the idle phase, and C2 mark the second computa-
tion phase. Then the total processor clock cycles for the
execution of this program region is:

Cycles(total) =
Cycles(C1) + Cycles(I1) + Cycles(C2)

(1)

Moreover, the total clock cycles that the processor
spends idling (during I1) is the product of the clock fre-
quency and the duration of phase I1 . That is,

Cycles(I1) = TI1f (2)

Because memory is asynchronous with respect to the
processor (under our assumptions), the duration of the idle
period, TI1 , is constant across all clock frequencies. Thus
the total idle cycles (Cycles(I1)) decrease as the frequency
f is lowered. On the other hand, the total computation
cycles (Cycles(C1) + Cycles(C2)) do not decrease since
C1 and C2 are computational phases. As a consequence,
the decrease in total execution cycles needed for executing
the program region at a lower clock frequency fnew instead
of the current clock frequency fold is:

Cyclesold − Cyclesnew = TI1 (fold − fnew) (3)

2.2 Scenario 2: Possible Overlap Between

Computations And Memory Accesses

We now consider a slightly more complex scenario (Fig-
ure 3). As before, the processor first performs some com-
putations and then issues a memory request. But this

3

Memory Request

CPU

Memory

C1 C2

I1

Figure 2: Processor and memory workload in scenario 1.

time, instead of idling during the entire memory transac-
tion, the processor performs some computations and then
idles. Finally, when the memory transaction is complete,
the processor continues performing more computations.

As before, let C1 stand for the first computation phase
(which includes computations performed during the mem-
ory transaction), I1 stand for the phase in which the pro-
cessor is idle, and C2 stand for the second computation
phase (which is dependent on the memory transaction
completing).

Now suppose the code region is run at a lower clock
frequency than the current clock frequency. Then, just
as in scenario 1, the total clock cycles spent in compu-
tation (Cycles(C1) + Cycles(C2)) will remain the same
since computations require a fixed number of cycles inde-
pendent of the clock frequency. And just as before, the
total clock cycles spent idling will decrease. However, the
amount by which the idle cycles decrease will be greater
in this scenario than it was in the previous scenario. This
is because the time that the processor spends idling (TI1)
is not fixed, but rather decreases as the clock frequency is
lowered, since the processor spends more time executing
the (slowed down) computations in C1 while the memory
is accessed. To formalise this reduction in idle time, let
T old

I1
be the processor’s idle time at clock frequency fold

and T new
I1

be the processor’s idle time at clock frequency
fnew . Then, the the difference in total clock cycles for exe-
cuting the code region at the lower frequency fnew instead
of the frequency fold is:

Cyclesold − Cyclesnew = T old

idle(fold) − T new

idle (fnew) (4)

Notice that the only difference between this and the previ-
ous scenario is that T new

idle
is less than T old

idle
. If these times

were equal, we would be back in scenario 1.
Applying this scenario to architectures such as the Pen-

tium 6 is problematic, since they are pipelined and allow
multiple loads and stores to overlap. The performance
counters on these architectures do not provide sufficient
information to quantify exactly how large this overlap be-
tween CPU and memory activity is; that is, there is insuf-
ficient information to determine exactly how much T new

idle

differs from T old

idle
.

Therefore, we will spend the rest of this section dis-
cussing the implications of scenario 1 (Figure 2). We will
show that scenario 1 implies a very powerful result for DVS
algorithms. This result, and the assumptions underlying
scenario 1, will be substantiated by our measurements in
Section 5.

C1
CPU

Memory

C2

Memory Request

I1

Figure 3: Processor and memory workload in scenario 2.

2.3 The Implications of Scenario 1

In scenario 1 (Section 2.1), processor and memory are asyn-
chronous, and memory stall time is roughly independent
of the processor clock frequency.1

Let Tidle be the total amount of time that the processor
stalls, waiting for memory requests to complete. (This is
a summation of all the idle periods that are interspersed
with computational periods in the entire program region.)
Then according to equations 4, the total decrease in cycles
when executing the code region at a lower clock frequency
fnew instead of the current clock frequency fold is:

Cyclesold − Cyclesnew = Tidle · (fold − fnew) (5)

As a result, we can deduce the idle period TIdle to be:

Tidle =
Cyclesold − Cyclesnew

(fold − fnew)
(6)

This means that the time that the processor spends
idling can be estimated by running the entire program re-
gion at a slower clock frequency and recording the differ-
ence in execution cycles. Since the idle period Tidle is con-
stant across all clock frequencies, it only needs to be com-
puted once, and it does not matter how much we slowed
down the original program region in order to compute this.

Now we use Tidle to estimate the execution time of the
program at any clock frequency. As before, let fold be the
old clock frequency at which we ran the program region and
fnew be the new, slowed down clock frequency. Let Cold

and Cnew be the total execution cycles at the old frequency
fold and the new frequency fnew , respectively. Then, by
equations 6 and 5 the execution time of the program region
under the new clock frequency fnew is:

ExecutionTimeNew =
Cnew

fnew

=
Cold − (Cold − Cnew)

fnew

=
Cold − Tidle · (fold − fnew)

fnew

(7)

This equation implies that the execution time under the
new clock frequency fnew is a function of the cycles Cold

under the old clock frequency and the idle time TIdle, which

1We are well aware that in some architectures the memory bus
clock frequency depends on the processor clock frequency. However,
if we know the ratio between the two clock frequencies (which should
be given in the processor manuals), our approach can be adapted.

4

Frequency [MHz] 600 800 1000 1200 1400 1600
Voltage [mV] 956 1036 1164 1276 1420 1484

Table 1: Frequencies and associated voltage levels of the 1.6 GHz Pentium M processor.

we computed knowing merely the total cycles Cold under
the old clock frequency fold and the total cycles Cnew un-
der the new clock frequency fnew . In other words, the
total number of cycles it takes to run a program at two ar-
bitrarily chosen clock frequencies is enough information to
estimate the program’s execution time for any other clock
frequency.

In particular, running a program region at a
clock frequency that is “one notch” lower than
the clock frequency at which the region originally
ran, can provide enough information (i.e., the cy-
cle counts) to estimate the execution time of the
region at any clock frequency..

3 Implementation

This section gives an overview of the experimental plat-
form we used to validate our model.

3.1 Experimental Platform

Our experimental platform is a Dell Latitude D600 laptop
featuring a 1.6 GHz Pentium M processor. The processor
supports Intel Enhanced Speedstep Technology, which al-
lows switching between multiple frequency settings on the
fly and automatically adjusts the voltage with respect to
the frequency. The supported frequencies and their accom-
panying voltage levels are listed in Table 1. We are using
the Linux CPUFreq driver to adjust the frequency settings.
However, we have written a system call that directly in-
vokes this driver’s internal frequency setting method so
that we can avoid the overhead of its default mechanism,
a communication interface via the proc file system.

3.2 Changes to Linux Kernel

We have extended the Linux 2.6 kernel with a high-
level interface for monitoring hardware events including
clock cycles with minimal invasiveness and distinguishing
events occurring in userspace from events occurring in ker-
nelspace, in addition to retrieving process-specific event
counts.

To distinguish kernel mode events from user mode
events, we have modified the Linux kernel to save and re-
store the event counts whenever a task switches to and
from kernel mode, and to also update the total number of
kernel events, context switches, and interrupts for the cur-
rent process. Similarly, to retrieve process-specific event
counts, we have modified the scheduler so that it saves the
event counts for each task being switched out and restores
the original event counts for each task being switched in.

3.3 Changes to the Java Virtual Machine

We decided to implement our model on top of the Java vir-
tual machine because mobile code such as Java and .NET
bytecode is already ubiquitous in a variety of devices in-
cluding laptops, PDAs, and set-top boxes.

We have implemented our model inside version 1.6.0 of
the Sun Hotspot Client Virtual Machine (SUN HotSpot,
2006). We previously implemented the same mechanism
inside the Jikes Research Virtual Machine (Arnold et al.,
2000), but migrated it to Hotspot for two reasons. First,
Hotspot is a production-quality, industrial VM, whereas
Jikes is a prototype, research VM with many missing fea-
tures. By using Hotspot, we obtain results that are more
realistic and have broader industrial applicability. Second,
Hotspot can run programs using any of the Sun Java li-
braries, allowing us to experiment with a broader range
of real-world applications than any other VM. This again
enhances the applicability of our approach.

We have extended the Hotspot VM, allowing the inter-
preter and just-in-time compiler to instrument the entries
and exits of methods. Our instrumentation can be used
to start and stop hardware performance counters, sample
any hardware counter events (including clock cycles), and
switch the processor clock frequencies for different method
invocations. All of the instrumentation can be turned on
and off dynamically for specific methods, independent of
any other methods.

We ran all benchmarks in Hotspot’s default mixed-mode
execution framework, because the interpreter-only option
is prohibitively slow. We can safely run our experiments
this way because Hotspot’s re-compilation heuristic is not
sensitive to the processor clock frequency, but only de-
pends on method invocation counts and backward branch
counts, meaning that the heuristic makes the same deci-
sions regardless of the clock frequency.

4 Experiment Methodology

4.1 The Two Point Hypothesis

Recall our model of execution time in equation 7 from Sec-
tion 2.3:

ExecutionTimeNew =
Cold − Tidle · (fold − fnew)

fnew

Our hypothesis is that if we know the execution cycles for a
program at the maximum clock frequency and at the clock
frequency one notch below the maximum clock frequency,
this information allows us to predict, with reasonable ac-

5

Benchmark Description

SpecJVM ’98

201 compress Compression algorithm using modified Lempel-Ziv method.

202 jess An Expert Shell System.

209 db Performs multiple database functions on memory resident database.

213 javac Java compiler from JDK 1.2.

222 mpegaudio Decompresses MPEG-3 audio files.

227 mtrt A multithreaded raytracer that works on a scene depicting a dinosaur.

228 jack A Java parser generator based on the Purdue Compiler Construction Tool Set.

DaCapo

antlr Parses one or more grammar files and generates a parser and lexical analyzer for each.

bloat Performs a number of optimisations and analyses on Java bytecode files.

chart Uses JFreeChart to plot a number of complex line graphs and renders them as PDF.

fop takes an XSL-FO file, parses it and formats it, generating a PDF file.

hsqldb Executes a JDBC-like in-memory benchmark against a model of a banking application.

jython Inteprets a series of Python programs.

pmd Analyzes a set of Java classes for a range of source code problems.

ps Reads and interprets a PostScript file.

xalan Transforms XML documents into HTML.

JavaGrande

Search Solves a game of connect-4 on a 6 x 7 board using a alpha-beta pruning technique.

Euler Solves the time-dependent Euler equations.

Mol. Dynamics A simulation of N particles interacting under a Lennard-Jones potential.

MonteCarlo A financial simulation, using Monte Carlo techniques.

LUFact Solves an N x N linear system using LU factorisation followed by a triangular solve.

SOR Performs 100 iterations of successive over-relaxation on a NxN grid.

HeapSort Sorts an array of N integers using heap sort.

Crypt Performs IDEA encryption and decryption on an array of N bytes.

FFT Performs a one-dimensional forward transform of N complex numbers.

Sparse Sparse matrix multiplication, using an unstructured sparse matrix.

Table 2: A Description of the benchmarks used in this study.

curacy, the execution time of the program at every other
clock frequency.

We tested this “two point hypothesis” on 26 real-world
Java applications from the SpecJVM ’98, Dacapo, and Jav-
aGrande benchmark suites, taking as our two points 1.6
GhZ (the maximum clock frequency) and 1.4 GhZ (one
notch below the maximum clock frequency). The bench-
marks used are described in Table 2. We ran each bench-
mark to completion ten times over every supported clock
frequency on our platform, flushing the hardware caches
in between each run to ensure that all the runs begin from
the same state. For each benchmark we obtained for each
clock frequency

• The total execution cycles for that clock frequency.

• The percentage decrease in clock cycles compared to
running at the maximum clock frequency.

• The actual execution time for that clock frequency.

• The estimated execution time for that clock frequency,
according to our model under the two-point hypoth-
esis. This estimated time was computed by plugging

into equations 6 and 7 the total cycles for 1.6 GHz
(Cycles1 .6GHz) and for 1.4 GHz (Cycles

1.4GHz).

• The estimation error, given as a percentage. The er-
rors were originally positive or negative depending on
whether our model overestimated or underestimated
the actual execution time. However, we have displayed
here the absolute values of those errors.

5 Results

We illustrate our results with two different types of plots.
First, Figure 4 is a histogram of the estimation errors for all
benchmarks over all clock frequencies. On the x-axis is the
clock frequency in GHz, and on the y-axis is the estimation
error, given as a percentage. The datapoints correspond to
the estimation errors for different benchmarks. The errors
displayed for the reference points 1.4GhZ and 1.6GhZ will
always be zero since these two points were initially chosen
to extrapolate the execution times for all other clock fre-
quencies. We are only interested in the datapoints plotted
for the other clock frequencies (0.6GhZ up to 1.2GhZ). Of

6

 0

 5

 10

 15

 20

 25

 0.6 0.8 1 1.2 1.4 1.6

er
ro

r
[%

]

clock frequency [GHz]

Figure 4: A histogram of the estimation error of our model
for all benchmarks over all clock frequencies.

these 104 points, the majority of them (all but 8) lie below
the 10% error mark. In fact, most of the points (all but
13) lie at or below the 5% error mark, and there are many
of the remaining that are close to 1% error. A small num-
ber of points are higher on the error axis: two are between
10% and 15% error, three are between 15% and 20% er-
ror, and two are slightly above 20% error, but none of the
points exceeds 25% error. This suggests that our model
has an estimation accuracy of above 90-95% for most of
the datapoints, and 75-80% accuracy for a small number
of datapoints.

To more closely see what gives rise to these results, we
present a second set of plots. Figure 5, Figure 6, and Fig-
ure 7 display the detailed results of running each of the
benchmarks over all possible clock frequencies.2 In each
figure, the x-axis is the clock frequency in GhZ, the y-axis
on the left denotes the execution time in seconds, and the
y-axis on the right denotes the percentage decrease in clock
cycles. Each figure displays three different plots as function
of the clock frequency, namely the actual execution time,
the estimated execution time, and the percentage drop in
cycles.

There are several conclusions that can be drawn from
the benchmarks. First, there is a wide variation in how
much performance loss different benchmarks exhibit when
run at lower clock frequencies, and there is also a corre-
lation between this performance loss and the decrease in
total cycles. On the one hand, the benchmarks jython, ps,
mpegaudio, crypto, and moldyn are highly CPU-intensive.
The percentage drop in clock cycles for these benchmarks is
very small (less than 5%) and the overhead of slowing these
benchmarks down is very large. For example, for ps, the
execution time increases by 163% when the benchmark is
run at the lowest clock frequency. Thus these benchmarks

2To save space, we only show 6 plots for each benchmark suite.
However, the appendix contains data for all benchmarks.

should not be considered for DVS. On the other hand, the
benchmarks antlr, db, jack, mtrt, euler, fft, flufact, heap-
sort, montecarlo, and sparsematmult fall into the category
of being memory or disk bound. They exhibit significantly
less performance loss and a higher decrease in cycles when
run at lower clock frequencies. For example, the sparse-
matmult benchmark has roughly a 3.5% performance loss
and a 61% drop in cycles when run at the lowest clock
frequency.

Second, in most of the graphs, the percentage drop in
cycles increases almost linearly as the clock frequency is
lowered from 1.6 GhZ to 0.6 GhZ. This suggests that the
total processor stall time is roughly the same regardless
of clock frequency, implying that scenario 1 (Figure 2),
rather than scenario 2 (Figure 3), holds for most of these
benchmarks. This supports our model. For two of the
graphs (DaCapo jython and Javagrande moldyn) the drop
in clock cycles appears erratic, but the drop is so small (less
than 5%) that we can safely ignore it. (The fluctuations
are most likely caused by measurement noise.)

Third, for most of the benchmarks, our estimate of ex-
ecution time is very close to the actual execution time for
the different clock frequencies. However, there are a few
cases where the error is 15-20%, namely for the bench-
marks flufact, montecarlo, sor, fft, and mtrt. For the first
four of these benchmarks there is a pattern, which is most
easily observable in the graph of sor. The drop in cycles
first increases linearly as the clock frequency is lowered,
and our estimated execution time remains close to the ac-
tual execution time at these points. However, at a certain
point, the slope of this curve abruptly changes, becoming
less steep, and exactly at that point, our estimated exe-
cution time diverges noticeably from the actual execution
time. This happens because the number of clock cycles
spent in memory stalls decreases as the clock frequency
is decreased. However, there will be a point of diminish-
ing returns where the clock cycle length is so long that
decreasing the clock frequency will not decrease the total
cycles any further because all of the memory stall slack
has been used up. Although we may not be able to ob-
serve this point—there are limits to how low we can set
the clock frequency—the trend is for applications to grad-
ually converge to that point. We see this in the graph by
noticing the “drop in cycles” curve becoming less and less
steep. However, because our model is based on a simple
linear extrapolation, it is not sensitive to this. This ex-
plains the larger error numbers (15%-20%) we see for the
four benchmarks above (flufact, sor, montecarlo, fft).

The mtrt benchmark displays a different anomaly—the
drop in clock cycles is initially very low as the proces-
sor clock frequency is switched from 1.6GhZ to 1.4GhZ,
but below 1.4GhZ it suddenly becomes higher, causing our
model to overestimate the execution time by around 20%.
Nevertheless, the curve remains linear for frequencies be-
low 1.4GhZ. We are currently studying this benchmark
further to see what could be causing this early change in
slope.

Appendix A contains a table of the numbers used to gen-

7

 40

 50

 60

 70

 80

 90

100

110

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo chart

execution time [s]
estimated time [s]

drop [%]

 3

 4

 4

 5

 5

 6

 6

 7

 7

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo fop

execution time [s]
estimated time [s]

drop [%]

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo jython

execution time [s]
estimated time [s]

drop [%]

 20

 25

 30

 35

 40

 45

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo pmd

execution time [s]
estimated time [s]

drop [%]

 40

 50

 60

 70

 80

 90

100

110

120

130

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo ps

execution time [s]
estimated time [s]

drop [%]

 8

 10

 12

 14

 16

 18

 20

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

dacapo xalan

execution time [s]
estimated time [s]

drop [%]

Figure 5: Results for representative benchmarks from the DaCapo suite.

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm compress

execution time [s]
estimated time [s]

drop [%]

 4

 4

 5

 5

 6

 6

 7

 7

 8

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

30

35

40

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm jack

execution time [s]
estimated time [s]

drop [%]

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm javac

execution time [s]
estimated time [s]

drop [%]

 3

 3

 4

 4

 5

 5

 6

 6

 7

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm jess

execution time [s]
estimated time [s]

drop [%]

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm mpegaudio

execution time [s]
estimated time [s]

drop [%]

 2

 2

 3

 3

 4

 4

 5

 5

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

specjvm mtrt

execution time [s]
estimated time [s]

drop [%]

Figure 6: Results for representative benchmarks from the Spec JVM 98 suite.

8

 30

 40

 50

 60

 70

 80

 90

100

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande crypto

execution time [s]
estimated time [s]

drop [%]

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

30

35

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande euler

execution time [s]
estimated time [s]

drop [%]

 85

 90

 95

100

105

110

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

30

35

40

45

50

55

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande fft

execution time [s]
estimated time [s]

drop [%]

110

115

120

125

130

135

140

145

150

155

160

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

30

35

40

45

50

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande montecarlo

execution time [s]
estimated time [s]

drop [%]

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande sor

execution time [s]
estimated time [s]

drop [%]

 92

 92

 93

 94

 94

 94

 95

 96

 0.6 0.8 1 1.2 1.4 1.6
 0

 5

10

15

20

25

30

35

40

45

50

55

60

65

tim
e

[s
]

dr
op

 in
 c

lo
ck

 c
yc

le
s

[%
]

javagrande sparsematmult

execution time [s]
estimated time [s]

drop [%]

Figure 7: Results for representative benchmarks from the JavaGrande suite.

erate these graphs, as well as the numbers for the bench-
marks not shown as graphs.

6 Applications Of Our Model

There are many possible applications for this mecha-
nism. For example, embedded systems can use this model
to speed up the offline experiments used to predict the exe-
cution times of specialised programs. Another application
would be to use this model at runtime in a DVS algorithm.
One of the goals of a DVS algorithm is to find the optimal
clock frequency fnew that keeps the execution time of the
program region from increasing more than, say N% of the
original execution time. Using equation 7, we can model
this constraint as

ExecutionTimeNew =
Cold − Tidle(fold − fnew)

fnew

< (
Cold

fold

) + (
N

100
)(

Cold

fold

)

(8)

Solving this equation for Fnew we get:

fnew >=
Cold − Tidlefold

(100+N)·Cold

100·fold
− Tidle

(9)

Then the goal of a DVS heuristic would be to find the
lowest clock frequency fnew that meets the above con-
straint. The different parameters in equation 9 can be

estimated at runtime (by an OS or dynamic compiler) us-
ing the equations just provided. For example, at method
level one would measure a method’s execution cycles Cold

under the current clock frequency fold . Once a stable read-
ing has been obtained, the clock frequency for the method
is changed for the next invocations. To avoid performance
loss, the frequency is reduced by just one notch below the
previous clock frequency. After the method has run enough
times to obtain stable readings, we measure the difference
in execution cycles with respect to the previous invocation,
and estimate Tidle using equation 6. This provides all the
parameters (Cold , fold , Tidle) needed to use equation 9 to
determine the appropriate clock frequency for the method.
Note that this approach is not restricted to method-level,
or compiler-based DVS. It can be applied at other granu-
larities, e.g., at the OS-level, where entire tasks could be
slowed down using this approach.

The advantages of this approach are:

• There is a direct relationship between clock cycles,
clock frequency, and execution time. This allows for
a more accurate measure of how compute-intensive a
code region is, and a more accurate computation of
the correct clock frequency.

• The cycle counts encapsulate all the “hard-to-
measure” system effects (i.e., disk accesses, network
accesses, multiple cache misses) that could give rise
to processor stalls, thus providing more complete in-

9

formation for making DVS decisions than any single
hardware counter event.

• Because the clock frequency is only lowered a single
notch below the top clock frequency, and this is only
done once for the sake of measurement, there will be
little performance loss.

• Clock cycles can be easily measured on most devices,
allowing for portability even if hardware event coun-
ters fall out of fashion.

7 Related Work

There is a wealth of literature on DVS algorithms
DVS (Azevedo et al., 2002; Choi et al., 2004b; Dudani
et al., 2002; Flautner et al., 2001; Govil et al., 1995; Gruian,
2001; Hsu and Feng, 2004; Hsu and Kremer, 2003; Kondo
and Nakamura, 2004; Pillai and Shin, 2001; Saputra et al.,
2002; Stanley-Marbell et al., 2002; Weiser et al., 1994).
Due to limited space, we will only give a few representa-
tive examples of the kinds of approaches that our mecha-
nism can be used to extend, namely those approaches that
attempt to extrapolate the memory boundedness of pro-
grams from information provided by hardware event coun-
ters (Choi et al., 2004b,c,d; Kondo and Nakamura, 2004;
Li et al., 2003; Marculescu, 2000; Poellabauer et al., 2005;
Singleton et al., 2005; Stanley-Marbell et al., 2002; Wu
et al., 2005).

Marculescu (2000) was one of the earliest to propose us-
ing cache misses to drive dynamic voltage scaling. The
main idea is that between the time when a cache miss is
detected and the time it is resolved, the CPU activity can
be divided into an independent and a dependent phase.
The independent phase consists of instructions that can
be executed while the miss is still being resolved. The de-
pendent phase consists of instructions that have to wait
until the miss is resolved. The CPU is slowed down im-
mediately after the miss is detected, so that its workload
during the independent phase finishes exactly when the
miss is resolved.

Kondo and Nakamura (2004) propose an interval-based
approach driven by cache misses. The heuristic pe-
riodically calculates the number of outstanding cache
misses and increments one of three counters depending on
whether the number of outstanding misses is zero, one, or
greater than one. The cost function expresses the memory
boundedness of the code as a weighted sum of the three
counters. In particular, the third counter, which is incre-
mented each time there are multiple outstanding misses,
receives the heaviest weight. At fixed length intervals, the
heuristic compares the memory boundedness so computed,
with respect to an upper and lower threshold. If the mem-
ory boundedness is greater than the upper threshold, then
the heuristic decreases the frequency and voltage by one
setting; otherwise, if the memory boundedness is below

the lower threshold, then it increases the frequency and
voltage settings by one unit.

Weissel and Bellosa (2002) propose a heuristic that mon-
itors the rates of different hardware events (i.e., cache
misses) and attributes these rates to different processes
that are executing. At each context switch of the OS
scheduler, this heuristic sets the clock frequency for the
process being switched in based on its previously measured
event rates. To do this, it refers to a table that assigns
clock frequencies based on event rates and performance
loss thresholds. Weissel and Bellosa construct this table
using exhaustive offline experiments where they measure
the lowest clock frequency that will allow a program to
satisfy a performance loss threshold under different com-
binations of event rates.

Wu et al. (2005) have developed a memory-aware DVS
algorithm that can be used inside a dynamic compiler.
Their cost model is based on the analytical model de-
scribed in (Xie et al., 2003, 2004). The main idea is to
estimate the scaling factor based on the fraction of time
that the processor is stalled. The model extrapolates this
information from three hardware counter events, memory-
bus transactions, FP/INT instructions retired, and micro-
ops retired. The values of the three main terms in their
cost model (the optimal scaling factor, the total time that
the memory is busy, the total time that CPU and mem-
ory are both busy) depend on platform-specific coefficients
that are estimated using offline simulations.

Poellabauer et al. (2005) attempt to divide a program’s
execution time into two parts—the time spent in computa-
tions and the time spent in memory accesses. To estimate
memory boundedness they propose a new metric, which
they call memory access rate, which quantifies the average
rate at which cache misses are occurring per instruction ex-
ecuted. They use performance counters to measure cache
misses and instructions executed. To determine how to
slow down the processor on the basis of these measure-
ments, they construct a table that maps these memory
access rates to matrices of scaling factors. Their heuristic
consults this precomputed table at runtime.

Choi et al. (2004b) use the Intel XScale processor’s per-
formance counters to determine how much of a program’s
execution time is spent on-chip versus off-chip. Under this
cost model, this reduces to estimating the average cycles
for an on-chip instruction. For specific benchmarks, they
find that this latter quantity is linear with respect to the
average CPU stall cycles per instruction. Reasoning that
stall cycles increase with respect to cache misses, they con-
struct a table that associates cache miss ranges with stall
cycles. Their DVS heuristic consults this table to choose
the correct clock frequency.

Hsu and Feng (2004, 2005) propose an interval-based
DVS algorithm that measures CPU-boundedness. Accord-
ing to their model, the execution time for running a pro-
gram at a given clock frequency is proportional to a con-
stant β, which is a measure of how computation-intensive
the program is. Their DVS heuristic estimates β at run-
time, using a regression method over past instruction exe-

10

cution rates.
All of the above works attempt to use specific hardware

events as indicators for estimating a program’s execution
time at a given clock frequency. In the case of Kondo and
Nakamura (2004), Poellabauer et al. (2005), Marculescu
(2000), and Choi et al. (2004b) the events are cache misses.
In Weissel and Bellosa (2002) the events are memory re-
quests per cycles and instructions per cycle. In Wu et al.
(2005), the events are memory-bus transactions and micro-
ops retired. In Hsu and Feng (2004, 2005), the events
are instrution execution rates. These approaches involve
a level of indirection, because they are based on statisti-
cal correlations between the events in question (e.g., cache
misses, instruction execution rates) and execution time and
clock frequency. On the other hand, execution time, clock
frequency and clock cycles are logically related. Thus our
metric, the percentage drop in cycles, is a more appropri-
ate metric for assessing how much a code region will slow
down when it is run at a lower clock frequency.

8 Conclusions and Future Work

We have presented a new way of understanding and pre-
dicting how compute-intensive a code region is for the pur-
poses of DVS. Namely, the percentage decrease in cycles is
the primary indicator of how much the execution time will
increase when a code region is run at a lower clock fre-
quency. It is the most fundamental measure of compute-
boundedness because of the logical relationship between
clock cycles, clock frequency, and execution time. We can
estimate with high precision the execution time of a code
region at any clock frequency just by running the region at
the two highest clock frequencies, and extrapolating from
the decrease in cycles. This result can be used to develop
low-overhead DVS algorithms that are more system-aware
than current approaches (Choi et al., 2004b,c,d; Hsu and
Feng, 2004, 2005; Kondo and Nakamura, 2004; Li et al.,
2003; Marculescu, 2000; Poellabauer et al., 2005; Singleton
et al., 2005; Weissel and Bellosa, 2002; Wu et al., 2005), ap-
proaches that choose clock frequencies based on hardware
events that may be at best indirectly related to execution
time.

We are integrating our model into a DVS algorithm for
the Sun Hotspot VM. So far we have collected detailed
method-level execution traces of the benchmarks in this
paper. While many of these benchmarks spend a sig-
nificant amount of time in memory stalls, we find that
most of these stalls are occurring at the loop granularity
rather than the method granularity. Moreover, in the 3
or 4 benchmarks that contain opportunities for DVS on
method level, we find that switching the clock frequency
on every method entry and exit amounts to a lot of over-
head. We are still investigating the right granularity at
which to apply DVS.

Another avenue for future work involves extending this
model. Although we can predict execution times with rea-
sonable accuracy using a “two-point” approach, we can

increase the accuracy by considering more points. This
will allow us to better deal with special cases.

9 Acknowledgements

Parts of this effort have been sponsored by the National
Science Foundation (NSF) under ITR grant CCR-0205712
and by the Office of Naval Research (ONR) under grant
N00014-01-1-0854. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and should not be interpreted as necessar-
ily representing the official views, policies or endorsements,
either expressed or implied, of the National Science Foun-
dation, the Office of Naval Research, or any other agency
of the U.S. Government. The authors also gratefully ac-
knowledge gifts from Intel, Microsoft Research, and Sun
Microsystems that partially supported this work.

The authors further thank Vivek Haldar and Andreas
Gal for commenting on an early draft of this paper, and
Andreas Gal also for helping us implement a lightweight
interface to the Pentium 6 performance counters, which we
used in our early investigations.

REFERENCES

Arnold, M., Fink, S., Grove, D., Hind, M., and Sweeney,
P. F. (2000). Adaptive Optimization in the Jalapeno
JVM: The Controller’s Analytical Model. In The 3rd
ACM Workshop on Feedback-Directed and Dynamic Op-
timization (FDDO-3).

Azevedo, A., Issenin, I., Cornea, R., Gupta, R., Dutt, N.,
Veidenbaum, A., and Nicolau, A. (2002). Profile-based
dynamic voltage scheduling using program checkpoints.
In Proceedings of the Conference on Design, Automation
and Test in Europe, page 168. IEEE Computer Society.

Choi, K., Lee, W., Soma, R., and Pedram, M. (2004a).
Dynamic voltage and frequency scaling under a precise
energy model considering variable and fixed components
of the system power dissipation. In Proceedings of the
International Conference on Computer Aided Design.

Choi, K., Soma, R., and Pedram, M. (2004b). Dynamic
voltage and frequency scaling based on workload decom-
position. In Proceedings of the 2004 international sym-
posium on Low power electronics and design, pages 174–
179. ACM Press.

Choi, K., Soma, R., and Pedram, M. (2004c). Fine-grained
dynamic voltage and frequency scaling for precise en-
ergy and performance trade-off based on the ratio of
off-chip access to on-chip computation times. In DATE
’04: Proceedings of the conference on Design, automa-
tion and test in Europe, page 10004, Washington, DC,
USA. IEEE Computer Society.

11

Choi, K., Soma, R., and Pedram, M. (2004d). Off-chip
latency-driven dynamic voltage and frequency scaling
for an mpeg decoding. In DAC ’04: Proceedings of
the 41st annual conference on Design automation, pages
544–549, New York, NY, USA. ACM Press.

Dudani, A., Mueller, F., and Zhu, Y. (2002). Energy-
conserving feedback edf scheduling for embedded sys-
tems with real-time constraints. In Proceedings of the
Joint Conference on Languages, Compilers and Tools for
Embedded Systems, pages 213–222. ACM Press.

Flautner, K., Reinhardt, S., and Mudge, T. (2001). Auto-
matic performance setting for dynamic voltage scaling.
In Proceedings of the 7th Annual International Confer-
ence on Mobile Computing and Networking, pages 260–
271. ACM Press.

Govil, K., Chan, E., and Wasserman, H. (1995). Compar-
ing algorithms for dynamic speed-setting of a low-power
cpu. In Proceedings of the 1st Annual International Con-
ference on Mobile Computing and Networking, pages 13–
25. ACM Press.

Gruian, F. (2001). Hard real-time scheduling for low-
energy using stochastic data and dvs processors. In Pro-
ceedings of the 2001 International Symposium on Low
Power Electronics and Design, pages 46–51. ACM Press.

Hsu, C. and Feng, W. (2004). Effective dynamic voltage
scaling through cpu-boundedness detection. In Work-
shop on Power Aware Computing Systems.

Hsu, C.-H. and Feng, W.-C. (2005). A power-aware run-
time system for high-performance computing. In SC ’05:
Proceedings of the 2005 ACM/IEEE conference on Su-
percomputing, Washington, DC, USA.

Hsu, C.-H. and Kremer, U. (2003). The design, implemen-
tation, and evaluation of a compiler algorithm for cpu
energy reduction. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and
Implementation, pages 38–48. ACM Press.

Kondo, M. and Nakamura, H. (2004). Dynamic processor
throttling for power efficient computations. In Workshop
on Power Aware Computing Systems.

Li, H., Cher, C.-Y., Vijaykumar, T. N., and Roy, K. (2003).
Vsv: L2-miss-driven variable supply-voltage scaling for
low power. In MICRO 36: Proceedings of the 36th an-
nual IEEE/ACM International Symposium on Microar-
chitecture, page 19, Washington, DC, USA.

Marculescu, D. (2000). On the use of microarchitecture-
driven dynamic voltage scaling. In Proceedings of the
Workship on Complexity-Effective Design.

Pillai, P. and Shin, K. G. (2001). Real-time dynamic volt-
age scaling for low-power embedded operating systems.
In Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles, pages 89–102. ACM Press.

Poellabauer, C., Singleton, L., and Schwan, K. (2005).
Feedback based dynamic voltage and frequency scaling
for memory-bound real-time applications. In IEEE Real
Time and Embedded Technology and Applications Sym-
posium, pages 234–243.

Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin,
M. J., Hu, J. S., Hsu, C.-H., and Kremer, U. (2002).
Energy-conscious compilation based on voltage scaling.
In Proceedings of the Joint Conference on Languages,
Compilers and Tools for Embedded Systems, pages 2–11.

Singleton, L., Poellabauer, C., and Schwan, K. (2005).
Monitoring of cache miss rates for accurate dynamic
voltage and frequency scaling. In Proceedings of the 12th
Annual Multimedia Computing and Networking Confer-
ence.

Stanley-Marbell, P., Hsiao, M., and Kremer, U. (2002).
A Hardware Architecture for Dynamic Performance and
Energy Adaptation. In Proceedings of the Workshop on
Power-Aware Computer Systems, pages 33–52.

SUN HotSpot (2006). SUN HotSpot’s Homepage
http://java.sun.com/products/hotspot/, last vis-
ited 2/22/2006.

Venkatachalam, V. and Franz, M. (2005). Power reduction
techniques for microprocessor systems. ACM Computing
Surveys, 37(3):195–237.

Weiser, M., Welch, B., Demers, A. J., and Shenker, S.
(1994). Scheduling for reduced CPU energy. In Pro-
ceedings of the First USENIX Symposium on Operating
Systems Design and Implementation, pages 13–23.

Weissel, A. and Bellosa, F. (2002). Process cruise control:
event-driven clock scaling for dynamic power manage-
ment. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embed-
ded Systems, pages 238–246. ACM Press.

Wu, Q., Martonosi, M., Clark, D. W., Reddi, V. J., Con-
nors, D., Wu, Y., Lee, J., and Brooks, D. (2005). A
dynamic compilation framework for controlling micro-
processor energy and performance. In MICRO 38: Pro-
ceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture, pages 271–282, Wash-
ington, DC, USA. IEEE Computer Society.

Xie, F., Martonosi, M., and Malik, S. (2003). Compile-
time dynamic voltage scaling settings: opportunities and
limits. In PLDI ’03: Proceedings of the ACM SIG-
PLAN 2003 conference on Programming language design
and implementation, pages 49–62, New York, NY, USA.
ACM Press.

Xie, F., Martonosi, M., and Malik, S. (2004). Intraprogram
dynamic voltage scaling: Bounding opportunities with
analytic modeling. ACM Trans. Archit. Code Optim.,
1(3):323–367.

12

A Benchmark Data

cycle perf. cycle perf.
freq clock actual estimated error drop loss clock actual estimated error drop loss

[MHz] cycles runtime [ms] [%] [%] [%] cycles runtime [ms] [%] [%] [%]

data/dacapo-antlr.data data/dacapo-bloat.data

600 3.05e10 50769.1 48160.8 5.1 37.1 67.5 4.60e10 76603.4 75066.2 2.0 19.4 114.7

800 3.42e10 42747.0 41017.0 4.0 29.4 41.0 4.78e10 59711.3 59309.9 0.7 16.3 67.3

1000 3.75e10 37526.4 36730.8 2.1 22.6 23.8 5.02e10 50162.3 49856.1 0.6 12.1 40.6

1200 4.07e10 33887.1 33873.3 0.0 16.1 11.8 5.24e10 43704.9 43553.6 0.3 8.1 22.5

1400 4.46e10 31832.2 31832.2 0.0 8.0 5.0 5.47e10 39051.8 39051.8 0.0 4.2 9.4

1600 4.85e10 30301.4 30301.4 0.0 0.0 0.0 5.71e10 35675.4 35675.4 0.0 0.0 0.0

data/dacapo-chart.data data/dacapo-fop.data

600 6.29e10 104790.0 102330.0 2.4 19.6 114.2 4.44e09 7394.6 7320.1 1.0 23.3 104.4

800 6.54e10 81777.0 80961.1 1.0 16.4 67.2 4.63e09 5788.1 5839.0 -0.9 19.9 60.0

1000 6.84e10 68425.0 68139.7 0.4 12.5 39.9 4.90e09 4899.0 4950.3 -1.1 15.3 35.4

1200 7.15e10 59602.8 59592.1 0.0 8.6 21.8 5.21e09 4341.0 4357.9 -0.4 10.0 20.0

1400 7.49e10 53486.7 53486.7 0.0 4.3 9.3 5.51e09 3934.7 3934.7 0.0 4.8 8.7

1600 7.83e10 48907.6 48907.6 0.0 0.0 0.0 5.79e09 3617.3 3617.3 0.0 0.0 0.0

data/dacapo-jython.data data/dacapo-pmd.data

600 4.00e10 66585.7 66186.4 0.6 4.2 155.3 2.68e10 44650.6 43222.2 3.2 24.9 100.1

800 4.11e10 51348.1 50144.1 2.3 1.5 96.8 2.84e10 35513.6 34857.5 1.9 20.4 59.1

1000 4.09e10 40880.7 40518.7 0.9 2.0 56.7 3.06e10 30573.3 29838.7 2.4 14.3 37.0

1200 4.12e10 34317.2 34101.8 0.6 1.3 31.5 3.24e10 26968.1 26492.8 1.8 9.3 20.8

1400 4.13e10 29518.3 29518.3 0.0 0.9 13.1 3.37e10 24102.9 24102.9 0.0 5.4 8.0

1600 4.17e10 26080.6 26080.6 0.0 0.0 0.0 3.57e10 22310.4 22310.4 0.0 0.0 0.0

data/dacapo-ps.data data/dacapo-xalan.data

600 7.69e10 128234.0 127759.0 0.4 1.0 163.7 1.19e10 19757.6 19335.7 2.1 12.5 133.2

800 7.70e10 96290.6 96100.2 0.2 0.9 98.0 1.21e10 15078.7 14989.9 0.6 11.0 78.0

1000 7.72e10 77195.5 77104.8 0.1 0.7 58.8 1.24e10 12449.2 12382.4 0.5 8.1 46.9

1200 7.74e10 64491.3 64441.2 0.1 0.5 32.6 1.28e10 10633.3 10644.1 -0.1 5.8 25.5

1400 7.76e10 55395.7 55395.7 0.0 0.2 13.9 1.32e10 9402.5 9402.5 0.0 2.8 10.9

1600 7.78e10 48611.6 48611.6 0.0 0.0 0.0 1.36e10 8471.2 8471.2 0.0 0.0 0.0

data/javagrande-crypto.data data/javagrande-euler.data

600 5.82e10 97044.9 97160.2 -0.1 0.5 165.1 2.06e10 34276.8 31797.8 7.2 33.2 77.9

800 5.84e10 73008.5 72938.4 0.1 0.2 99.4 2.22e10 27726.7 26785.9 3.4 28.0 43.9

1000 5.85e10 58470.0 58405.3 0.1 0.1 59.7 2.41e10 24123.9 23778.7 1.4 21.7 25.2

1200 5.85e10 48727.9 48716.6 0.0 0.1 33.1 2.62e10 21841.2 21773.9 0.3 14.9 13.3

1400 5.85e10 41796.1 41796.1 0.0 0.0 14.1 2.85e10 20341.9 20341.9 0.0 7.6 5.5

1600 5.86e10 36605.7 36605.7 0.0 0.0 0.0 3.08e10 19267.9 19267.9 0.0 0.0 0.0

data/javagrande-fft.data data/javagrande-flufact.data

600 6.57e10 109492.0 99203.9 9.4 53.2 24.6 3.28e10 54735.0 44692.3 18.4 49.7 34.1

800 8.00e10 100000.0 94670.8 5.3 43.1 13.8 3.62e10 45291.3 43139.6 4.8 44.5 10.9

1000 9.46e10 94568.8 91951.0 2.8 32.7 7.6 4.36e10 43564.8 42207.9 3.1 33.2 6.7

1200 1.09e11 90713.4 90137.8 0.6 22.5 3.2 4.99e10 41623.3 41586.8 0.1 23.5 1.9

1400 1.24e11 88842.6 88842.6 0.0 11.5 1.1 5.76e10 41143.2 41143.2 0.0 11.7 0.8

1600 1.41e11 87871.2 87871.2 0.0 0.0 0.0 6.53e10 40810.5 40810.5 0.0 0.0 0.0

data/javagrande-heapsort.data data/javagrande-moldyn.data

600 3.54e10 58939.4 57144.3 3.0 41.4 56.2 1.29e11 214407.0 223422.0 -4.2 4.7 153.9

800 3.95e10 49408.5 49379.0 0.1 34.5 30.9 1.30e11 161997.0 167821.0 -3.6 4.0 91.8

1000 4.47e10 44726.9 44719.9 0.0 25.9 18.5 1.34e11 133587.0 134461.0 -0.7 1.1 58.2

1200 4.99e10 41568.3 41613.7 -0.1 17.3 10.1 1.34e11 112035.0 112221.0 -0.2 0.4 32.7

1400 5.52e10 39395.1 39395.1 0.0 8.6 4.4 1.35e11 96335.3 96335.3 0.0 0.1 14.1

1600 6.04e10 37731.1 37731.1 0.0 0.0 0.0 1.35e11 84421.0 84421.0 0.0 0.0 0.0

continued on next page

13

continued from previous page

cycle perf. cycle perf.
freq clock actual estimated error drop loss clock actual estimated error drop loss

[MHz] cycles runtime [ms] [%] [%] [%] cycles runtime [ms] [%] [%] [%]

data/javagrande-montecarlo.data data/javagrande-search.data

600 9.35e10 155848.0 129119.0 17.1 47.2 40.7 3.32e10 55259.4 55434.1 -0.3 21.6 109.0

800 1.12e11 140254.0 121757.0 13.2 36.6 26.6 3.48e10 43515.2 43834.3 -0.7 17.6 64.6

1000 1.21e11 121183.0 117341.0 3.2 31.5 9.4 3.66e10 36635.6 36874.4 -0.7 13.3 38.5

1200 1.39e11 115875.0 114396.0 1.3 21.5 4.6 3.86e10 32171.6 32234.4 -0.2 8.7 21.7

1400 1.57e11 112293.0 112293.0 0.0 11.2 1.4 4.05e10 28920.2 28920.2 0.0 4.2 9.4

1600 1.77e11 110716.0 110716.0 0.0 0.0 0.0 4.23e10 26434.5 26434.5 0.0 0.0 0.0

data/javagrande-sor.data data/javagrande-sparsematmult.data

600 9.79e09 16312.5 13004.9 20.3 20.1 113.0 5.71e10 95229.3 95370.8 -0.1 61.1 3.5

800 9.88e09 12346.6 10866.3 12.0 19.3 61.2 7.51e10 93835.0 94026.7 -0.2 49.0 1.9

1000 1.00e10 10017.6 9583.1 4.3 18.2 30.8 9.29e10 92937.1 93220.2 -0.3 36.8 1.0

1200 1.08e10 9031.3 8727.7 3.4 11.5 17.9 1.11e11 92631.7 92682.6 -0.1 24.4 0.6

1400 1.14e10 8116.7 8116.7 0.0 7.2 5.9 1.29e11 92298.5 92298.5 0.0 12.2 0.3

1600 1.23e10 7658.4 7658.4 0.0 0.0 0.0 1.47e11 92010.5 92010.5 0.0 0.0 0.0

data/specjvm-compress.data data/specjvm-db.data

600 8.86e09 14764.9 14356.3 2.8 13.4 130.9 1.14e10 19033.6 17960.9 5.6 44.1 49.0

800 9.09e09 11358.8 11171.3 1.6 11.1 77.6 1.30e10 16308.5 15886.0 2.6 36.1 27.6

1000 9.37e09 9373.3 9260.3 1.2 8.3 46.6 1.52e10 15222.7 14641.1 3.8 25.5 19.1

1200 9.61e09 8012.2 7986.2 0.3 6.0 25.3 1.70e10 14174.0 13811.1 2.6 16.7 10.9

1400 9.91e09 7076.2 7076.2 0.0 3.1 10.6 1.85e10 13218.3 13218.3 0.0 9.4 3.4

1600 1.02e10 6393.7 6393.7 0.0 0.0 0.0 2.04e10 12773.7 12773.7 0.0 0.0 0.0

data/specjvm-jack.data data/specjvm-javac.data

600 4.47e09 7447.3 7525.8 -1.1 36.9 68.0 7.69e09 12816.3 12521.4 2.3 19.3 114.9

800 4.99e09 6239.8 6288.2 -0.8 29.6 40.7 8.00e09 9999.8 9897.7 1.0 16.1 67.7

1000 5.48e09 5484.9 5545.7 -1.1 22.6 23.7 8.22e09 8218.4 8323.5 -1.3 13.8 37.8

1200 6.02e09 5018.3 5050.7 -0.7 15.0 13.2 8.59e09 7158.6 7274.0 -1.6 9.9 20.0

1400 6.58e09 4697.1 4697.1 0.0 7.2 5.9 9.13e09 6524.3 6524.3 0.0 4.2 9.4

1600 7.09e09 4431.9 4431.9 0.0 0.0 0.0 9.54e09 5962.1 5962.1 0.0 0.0 0.0

data/specjvm-jess.data data/specjvm-mpegaudio.data

600 4.12e09 6859.4 6864.1 -0.1 14.6 127.7 7.18e09 11973.3 11849.5 1.0 0.7 164.7

800 4.31e09 5393.6 5323.4 1.3 10.4 79.0 7.18e09 8975.6 8918.6 0.6 0.7 98.4

1000 4.39e09 4392.4 4399.0 -0.1 8.8 45.8 7.19e09 7188.6 7160.1 0.4 0.6 58.9

1200 4.59e09 3827.6 3782.7 1.2 4.7 27.0 7.21e09 6004.8 5987.7 0.3 0.4 32.7

1400 4.68e09 3342.5 3342.5 0.0 2.9 10.9 7.21e09 5150.3 5150.3 0.0 0.3 13.8

1600 4.82e09 3012.3 3012.3 0.0 0.0 0.0 7.24e09 4522.3 4522.3 0.0 0.0 0.0

data/specjvm-mtrt.data

600 2.53e09 4214.2 5105.3 -21.1 22.6 106.3

800 2.69e09 3356.5 3880.3 -15.6 17.8 64.3

1000 2.87e09 2868.3 3145.2 -9.7 12.2 40.4

1200 3.02e09 2518.4 2655.2 -5.4 7.5 23.2

1400 3.23e09 2305.2 2305.2 0.0 1.2 12.8

1600 3.27e09 2042.7 2042.7 0.0 0.0 0.00

14

