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Abstract

We apply machine learning techniques in the form of Gaussian mixture
models to functional brain activation data. The dataset was extracted
through the WWW interface to the BrainMapTM (Research Imaging Cen-
ter, University of Texas Health Science Center at San Antonio) neu-
roimaging database. Modeling of the joint probability structure of acti-
vation foci and other database entries (e.g. behavioral domain, modality)
enables us to summarize the accumulated body of activation coordinates
in the form of a 3D density and allows us to explore issues like the effect
of the experimental modality on the resulting brainmap

1 Introduction

Neuroimaging experiments based on positron emission tomography (PET), or functional
magnetic resonance imaging (fMRI), are accumulating vast spatio-temporal databases at
a rate that calls for new innovative informatics tools. Neuroscience databases are con-
ceptually and physically linked in complex socio-scientific networks of human relations,
publications, and funding programs. The neuroinformatics challenge is to organize these
networks and make them transparent for the neuroscience community [16]. An important
part of neuroinformatics concerns the process of relating different functional neuroimaging
studies to each other.

A functional neuroimaging study based on fMRI or PET examines the neuralcorrelate of
a mental process as it affects cerebral blod flow, for a recent review see [14]. Under the
functional segregation paradigm the brain image consists of activationhot spots that each
are related to a cognitive component. When discussing the results of a functional study the
observed set of activation foci is compared to foci from other studies reported in the litera-
ture most often by simple visual inspection, see e.g. a meta-analysis onvisual recognition
[5]. Such discussions are naturally driven primarily by the informalneuroscientific insight
of the researchers involved. Description of the set of foci can be given in terms of lobes
or gyri (e.g. dorsolateral prefrontal cortex) or in terms of an informalset of funtional areas
(such as visual areas V1, V2, ...). An increasingly popular, formal and quantitative alterna-
tive is to report foci positions with reference to the Talairach system [17] — a standardized
Euclidean system of reference.

The aim of this work is to explore quantitative and automatic procedures for the com-
parison and discussion of functional data and in this way to pave the road for objective



meta-analyses. We use self-optimizing machine learning algorithms to model the densi-
ties of Tailarach coordinates and use VRML (virtual reality modeling language) geometric
hypertext tools as interface to the learned models.

The long term goal is a tool which can assist the neuroimaging researcher in quantifying
and reporting the information content of a study with respect to the accummulated body of
neuroscience.

2 BrainMap

The BrainMapTM database is an extensive collection of papers containing Talairach coordi-
nates from human brain mapping studies maintained by the Research Imaging Center, Uni-
versity of Texas Health Science Center at San Antonio [6, 11]. The access to thedatabase
is provided by either a graphical user interface application or a web-based interface, see
http://ric.uthscsa.edu. The database contains bibliographic information about
the paper, formal descriptions of the study (e.g. modality, behavioral domain, response
type) and 3D coordinates for the functional activations reported in the Talairach system
[17]. BrainMap has been used for meta-analytic modeling under the heading “functional
volumes modeling” [8, 7], see also [9, 13]. In [8] the location of theactivation foci of
the mouth is modeled with a bounding box. The estimation of the mouth area required a
manual editing of the specific foci that where included to form the volumeof interest. In
this contribution we will investigate global patterns of foci foundunder various activation
paradigms and we will use machine learning models with minimal user intervention.

3 Generalizable Gaussian Mixtures

Our primary pattern recognition device will be the Gaussian mixture, see, e.g., [15] for a
review. Gaussian mixture models have been used in single study functional neuroimaging
before, see e.g. [4]. The Gaussian mixture density of a datavectorx, is defined as
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where the component Gaussians are mixed with proportions�	 � �
 � � �, and we have
defined the parameter vector

� � ��	 � � 	  . The parameters are estimated from a set of
examples! � ��" �# � �� $$$� %  . In the pattern recognition literature mixture densities
are mostly estimated by maximum likelihood (ML), using various estimate-maximize (EM)
methods [15]. The (negative log-)likelihood costfunction is defined by& �! ' � � � �" � ()* � ��" �� � (2)

and is minimize by the ML parameters. The Gaussian mixture model is extremely flexible
and simply minimizing the above costfunction will lead to an “infinite overfit”. It is easily
verified that the costfunction has a trivial (infinite) minimum attained by setting�	 � �	
for 
 � �� $$� + � �, and letting the corresponding covariances shrink to the zero matrix,
while the remaining+ ’th Gaussian is adapted to the ML fit of the remaining% � + , �
datapoints. This solution is optimal for the training set, but unfortunately has a generaliza-
tion error roughly equal to that of the single “background” Gaussian. To see this, let the



generalization error is defined as the limit
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The ML mixture adapted on a finite dataset has a generalization error where thesingular
components do not contribute because the data points assigned to the singular datapoints in
the training set together have zero measure. This instability has lead to much confusion in
the literature and needs to be adressed carefully. Basically, there is no way todistinguish
generalizable from non-generalizable solutions, if we only consider thelikelihood function.
The most common fix is to bias the component distributions so that they have a common
covariance matrix, see e.g. [10]. Here we have decided to combine three approaches to
ensure generalizability. First, we compute centers and covariances on different resamples
of the data sets. Secondly, we make an exception rule for sparsely populated components
— the covariance matrix defaults to the scaled full-sample covariance matrix.Finally we
estimate the number of mixture components using the AIC criterion [1].

The algorithm which is a modified EM procedure [2], and is defined as follows for given+ .

Algorithm: Generalizable Gaussian Mixture

Initialization

1. Compute the mean vector� � � % �� �" �" .
2. Compute the covariance matrix of the data set:
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3. Initialize�	 � 	 �� � � � � �.
4. Initialize

�	 � � � .
5. Initialize� �
 � � �
+ .

Repeat until convergence

1. Compute� �
 ��" � and assign�" to the most likely component.
2. Split the data set in two equal parts!� , !� .
3. For each
 estimate�	 on the points in!� assigned to component
.
4. For each
 estimate

�	 on the points in!� assigned to component
. If the number of datapoints assigned to the
 ’th component is less
than the dimension, let

�	 � 
 � � � , where



is determined so that
the total variance of the component corresponds to the variance of
the datapoints associated with it.

5. Estimate� �
 � as the frequency of assigments to component
.

3.1 Generalizable Gaussian mixture classifier

In pattern recognition we are interested in the joint density of patterns� and class labels


,
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where� �� �
� is the class conditioned density and� �
� is the marginal class probabilities.
For a labeled dataset we design the classifier by adapting GGM’s to each class separately.
Hence, the joint density can be written
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Figure 1: VRML screen shot (from the left side of the back of the brain)of the GGM
model from the analysis of the effect of thebehavioral domain. It shows isosurfaces in
3 class-conditional densities� �� �
�. The wireframes correspond to thebehavioral do-
main denotedperception in BrainMap, the surfaces tocognition apart from “M” textured
surfaces beingmotion.

where� �
 �
� and+ � are the component frequencies and number components found for
class



.

4 Results

We downloaded the entirepaper andexperiment webpages from the BrainMap home-
page containing experiment variables and Talairach coordinates denotedlocations. The
front page of the web interface states that there are 225 papers, 771 experiments and 7683
locations. To each of the locations corresponds amodality, i.e., the type of scanner used
to acquire the data. Furthermore, each location has one or morebehavioral domains:
Perception, cognition, motion, disease, drug andemotion. We used only the first be-
havioral domain in the list and confined us to the three classes:perception, cognition
andmotion. (For some of the experiments the modality and behavioral domain was not re-
ported in the database and in the preliminary experiments reported here wesimply excluded
locations from these experiments.) While modeling the density of locations we found that
some of the locations were strong outliers. Some of these foci were probably erroneous
entries with decimal point errors. When excluding all locations from papers containing
outliers or missingbehavioral domain andmodality we are left with approximately 3800



Figure 2: VRML screen shot from the top (left panel) and the bottom (right panel) of the
brain. The frontal brain is up in the image. The red surfaces correspond tothe behavioral
domain denotedperception, the green tocognition and the blue beingmotion. Textured
surfaces with# are derived from the density offMRI locations,- arePET locations and
= arePET-MRI locations. For visual guidance and reference we have included in the left
panel also a surface reconstruction of the right cortex of the Visible Man [3].

Talairach coordinates.

We applied the GGM on the BrainMap data with the 3D Talairach coordinates as� and the
modality or behavioral domain represented by label



. In figure 1 is shown the isosurface

in the class-conditional densities� �� �
� for

 � �

perception, cognition, motion . A
characteristic in this view is themotion cluster in the left hemisphere (as e.g., compared to
the right hemisphere) probably stemming from the popular use of theright hand in studies.

In a second experiment we combinedbehavioral domain andmodality for the labels, i.e.
with 9 classes in total. Figure 2 shows that the frontal part of the brain is dominated by
the conjunction ofcognitive andfMRI. We can only speculate about this: Differing spatial
normalization procedures or fMRI motion artifacts could have affected the images or the
fMRI scanner could be more sensitive in the frontal part.PET dominates in the inferior
part of the brain, perhaps explainable by a smaller sensitivity of fMRIin the inferior parts
of the brain, e.g., in the frontal regions due to susceptibility distortions.

The generalization in terms of label prediction is not high, which is due to the high overlap
between classes:

Test set rates Base line probability
Modality 0.17 0.16
Behavior 0.47 0.52 (Figure 1)
Modality+Behavior 0.52 0.56 (Figure 2)

With the density model at hand we are able to pick a new functional neuroimaging study
and automatically label the activation foci and give the amount of novelty inthe experiment



Figure 3: VRML Screen shot of a part of the results from [12]. The glyphs have been
colored according to the posterior probability: The red component denote high probability
for perception, green component forcognition, and blue component formotion.

(in fact, one location outlier was discovered in this way). In figure 3 is shown the results
when the density model with labels frombehavioral domain is applied on a saccadic eye-
movement experiment [12]. The activation foci reported in the paper have automatically
been labeled by the GGM model and the three components of the posterior probabilities
have been piped to the red, green and blue color component. The highest posterior proba-
bility for a singlebehavioral domain is the third focus with the most probable label being
motion. In the paper the foci has been denoted as the supplementary eye field, — an area
associated with the control of eye movements.

5 Conclusion

Machine learning methods can assist the neuroscientists in quality control and provide
context by summarizing large neuroimaging databases.
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