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Abstract

We apply machine learning technigues in the form of Gaussian mixture
models to functional brain activation data. The dataset was extracted
through the WWW interface to the BrainMép(Research Imaging Cen-

ter, University of Texas Health Science Center at San Antonio) neu-
roimaging database. Modeling of the joint probability structure of act
vation foci and other database entries (e.g. behavioral domain, modality)
enables us to summarize the accumulated body of activation coordinates
in the form of a 3D density and allows us to explore issues like teeef

of the experimental modality on the resulting brainmap

1 Introduction

Neuroimaging experiments based on positron emission tomography,(BEfunctional
magnetic resonance imaging (fMRI), are accumulating vast spatio-tempdeddabes at
a rate that calls for new innovative informatics tools. Neuroscience ds¢gbare con-
ceptually and physically linked in complex socio-scientific networkswhhn relations,
publications, and funding programs. The neuroinformatics challengeadrganize these
networks and make them transparent for the neuroscience community [d@npertant
part of neuroinformatics concerns the process of relating different furadtheuroimaging
studies to each other.

A functional neuroimaging study based on fMRI or PET examines the neanalate of
a mental process as it affects cerebral blod flow, for a recent review see [1dgr the
functional segregation paradigm the brain image consists of actiiatiospots that each
are related to a cognitive component. When discussing the results in¢ioiual study the
observed set of activation foci is compared to foci from other studies egporthe litera-
ture most often by simple visual inspection, see e.g. a meta-analysisual recognition
[5]. Such discussions are naturally driven primarily by the infornealroscientific insight
of the researchers involved. Description of the set of foci can be givenrirstef lobes
or gyri (e.g. dorsolateral prefrontal cortex) or in terms of an inforeetlof funtional areas
(such as visual areas V1, V2, ...). An increasingly popular, formal anctitgiare alterna-
tive is to report foci positions with reference to the Talairach systeth2 a standardized
Euclidean system of reference.

The aim of this work is to explore quantitative and automatic proeitor the com-
parison and discussion of functional data and in this way to pave twk far objective



meta-analyses. We use self-optimizing machine learning algorithms delrttte densi-
ties of Tailarach coordinates and use VRML (virtual reality modeling langliggometric
hypertext tools as interface to the learned models.

The long term goal is a tool which can assist the neuroimaging researcheantifgjing
and reporting the information content of a study with respect to the ateuated body of
neuroscience.

2 BrainMap

The BrainMap" database is an extensive collection of papers containing Talairach coordi-
nates from human brain mapping studies maintained by the Research Imagieg Oeir
versity of Texas Health Science Center at San Antonio [6, 11]. The accessdatéimse

is provided by either a graphical user interface application or a web-basethod, see
http://ric.uthscsa. edu. The database contains bibliographic information about
the paper, formal descriptions of the study (e.g. modality, behalvitlymain, response
type) and 3D coordinates for the functional activations reported in therdah system
[17]. BrainMap has been used for meta-analytic modeling under the headimgfitinal
volumes modeling” [8, 7], see also [9, 13]. In [8] the location of #wtivation foci of
the mouth is modeled with a bounding box. The estimation of thetimarea required a
manual editing of the specific foci that where included to form the volofriaterest. In
this contribution we will investigate global patterns of foci fountber various activation
paradigms and we will use machine learning models with minimal usexaréon.

3 Generalizable Gaussian Mixtures

Our primary pattern recognition device will be the Gaussian mixtwee, 8.9., [15] for a
review. Gaussian mixture models have been used in single studydualcheuroimaging
before, see e.g. [4]. The Gaussian mixture density of a datavedtodefined as

K
p(x|) = Y P(k)p(x|k)
k=1
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where the component Gaussians are mixed with proporfiops$>(k) = 1, and we have
defined the parameter vect®r= {3, u; }. The parameters are estimated from a set of
examplesD = {x,|n = 1,..., N}. In the pattern recognition literature mixture densities
are mostly estimated by maximum likelihood (ML), using various est@gymaximize (EM)
methods [15]. The (negative log-)likelihood costfunction is dediby

£(D;0) =Y —logp(xs|0) )

n

and is minimize by the ML parameters. The Gaussian mixture model ismagty flexible

and simply minimizing the above costfunction will lead to an “infiniteedit”. It is easily
verified that the costfunction has a trivial (infinite) minimum attaingdeéttingu, = x

fork = 1,.., K — 1, and letting the corresponding covariances shrink to the zero matrix,
while the remainingk’th Gaussian is adapted to the ML fit of the remainiNg- K + 1
datapoints. This solution is optimal for the training set, bubuiinately has a generaliza-
tion error roughly equal to that of the single “background” Gaussianse€k this, let the



generalization error is defined as the limit

N

r(9) = ngnoo; log p(2|).- (3)

The ML mixture adapted on a finite dataset has a generalization error whesigiutar
components do not contribute because the data points assigned tothlaisilatapoints in
the training set together have zero measure. This instability has leadctoaonofusion in
the literature and needs to be adressed carefully. Basically, there is no wagitguish
generalizable from non-generalizable solutions, if we only considdikislégnood function.
The most common fix is to bias the component distributions so tlegthlave a common
covariance matrix, see e.g. [10]. Here we have decided to combine threaelppsdo
ensure generalizability. First, we compute centers and covariances on difiesamples
of the data sets. Secondly, we make an exception rule for sparsely pabotahponents
— the covariance matrix defaults to the scaled full-sample covariance mgainally we
estimate the number of mixture components using the AIC criteripn [1

The algorithm which is a modified EM procedure [2], and is defined asvislfor given
K.

Algorithm: Generalizable Gaussian Mixture

Initialization

1. Compute the mean vectpy = N™' Y z,,.

2. Compute the covariance matrix of the data selL, =
NS (@0 — o) (@n — o) -

3. Initialize pj, ~ N (pg, Xo)-

4. Initialize X, = 3.

5. Initialize P(k) = 1/K.

Repeat until convergence

1. Computep(k|x,,) and assigr,, to the most likely component.

2. Split the data set in two equal pai®s,, Ds:.

3. For eaclk estimateu,, on the points inD,, assigned to component
k.

4. For eaclk estimateX;, on the points inDyx assigned to component
k. If the number of datapoints assigned to kth componentis less
than the dimension, IeE;, = ¢ - X, wherec is determined so that
the total variance of the component corresponds to the variange of
the datapoints associated with it.

5. EstimateP(k) as the frequency of assigments to comporient

3.1 Generalizable Gaussian mixture classifier

In pattern recognition we are interested in the joint density of pattearsd class labels,
denoted by(x, ¢)

p(x,¢) = p(x|c) P(c) (4)
wherep(x|c) is the class conditioned density afdc) is the marginal class probabilities.
For a labeled dataset we design the classifier by adapting GGM's to each classedgparat
Hence, the joint density can be written

K.
p(x,¢) = > p(x|k)P(k|c) P(c), )
k=1



Figure 1. VRML screen shot (from the left side of the back of the brafnthe GGM
model from the analysis of the effect of thehavioral domain. It shows isosurfaces in
3 class-conditional densitiggx|c). The wireframes correspond to thehavioral do-
main denotederception in BrainMap, the surfaces twognition apart from “M” textured
surfaces beinghotion.

whereP(k|c) and K, are the component frequencies and number components found for
classc.

4 Results

We downloaded the entingaper and experiment webpages from the BrainMap home-
page containing experiment variables and Talairach coordinates ddoottidns. The
front page of the web interface states that there are 225 papers, 771 expisrénd 7683
locations. To each of the locations correspondsaalality, i.e., the type of scanner used
to acquire the data. Furthermore, each location has one or petvavioral domains:
Perception, cognition, motion, disease, drug andemotion. We used only the first be-
havioral domain in the list and confined us to the three classesception, cognition
andmotion. (For some of the experiments the modality and behavioral domainetasn
ported in the database and in the preliminary experiments reported hei@plg excluded
locations from these experiments.) While modeling the densityaaftions we found that
some of the locations were strong outliers. Some of these foci wetEply erroneous
entries with decimal point errors. When excluding all locations from Epentaining
outliers or missingpehavioral domain andmodality we are left with approximately 3800
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Figure 2: VRML screen shot from the top (left panel) and the bottogh{mpanel) of the
brain. The frontal brain is up in the image. The red surfaces correspdhd twehavioral
domain denotegerception, the green taognition and the blue beingiotion. Textured
surfaces with# are derived from the density é¥IRI locations,- arePET locations and

= arePET-MRI locations. For visual guidance and reference we have included in the left
panel also a surface reconstruction of the right cortex of the Visitzla [3].

Talairach coordinates.

We applied the GGM on the BrainMap data with the 3D Talairach coordinateaad the
modality or behavioral domain represented by label In figure 1 is shown the isosurface
in the class-conditional densitiggx|c) for ¢ € {perception, cognition, motion}. A
characteristic in this view is th@aotion cluster in the left hemisphere (as e.g., compared to
the right hemisphere) probably stemming from the popular use afghthand in studies.

In a second experiment we combirteehavioral domain andmodality for the labels, i.e.
with 9 classes in total. Figure 2 shows that the frontal part of thenbsadlominated by
the conjunction otognitive andfMRI. We can only speculate about this: Differing spatial
normalization procedures or fMRI motion artifacts could have affectedntiagés or the
fMRI scanner could be more sensitive in the frontal p®&ET dominates in the inferior
part of the brain, perhaps explainable by a smaller sensitivity of fMRhe inferior parts
of the brain, e.g., in the frontal regions due to susceptibiliggaitions.

The generalization in terms of label prediction is not high, which is duké high overlap
between classes:

Test setrates Base line probability

Modality 0.17 0.16
Behavior 0.47 0.52 (Figure 1)
Modality+Behavior 0.52 0.56 (Figure 2)

With the density model at hand we are able to pick a new functional neagiig study
and automatically label the activation foci and give the amount of novethgiexperiment



Figure 3: VRML Screen shot of a part of the results from [12]. Theplgs/have been
colored according to the posterior probability: The red component dérigh probability
for perception, green component farognition, and blue component fanotion.

(in fact, one location outlier was discovered in this way). In figure s the results

when the density model with labels frdmehavioral domain is applied on a saccadic eye-
movement experiment [12]. The activation foci reported in the paper haweenatically

been labeled by the GGM model and the three components of the postetiabpities

have been piped to the red, green and blue color component. The hightestqugsoba-

bility for a singlebehavioral domain is the third focus with the most probable label being
motion. In the paper the foci has been denoted as the supplementary eye field, — an area
associated with the control of eye movements.

5 Conclusion

Machine learning methods can assist the neuroscientists in quality kantgorovide
context by summarizing large neuroimaging databases.
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