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Summary

The purpose of this project is to investigate how methods from operational
research can be applied in the home care sector. A problem very similar
to the VRPTW arises, when scheduling the routes for the caretakers. The
problem is very complex, and hence it is simplified in this project. The
conditions are limited to include the time windows of the visits, the working
hours of the caretakers, visits locked to caretakers and if two caretakers share
a visit. In a shared visit two caretakers have to start and finish the visit at
the same time. The aim is to minimize the travelling time and maximize
the number of visits, which are attended by a regular caretaker.

An intelligent insertion heuristic is applied on the problem. The insertion
heuristic uses the regret measure to evaluate where the best insertion po-
sition is. The solutions found via the insertion heuristic are used as initial
solutions for a tabu search, which allow infeasible solutions.

The results show, that when maximizing the number of visits with a regular
caretaker, the total travelling time is likely to increase. The initial solutions
found by the insertion heuristic are improved by the tabu search up to 27 %.

The solutions are compared with solutions found by a programme called
ABP. The ABP incorporates more wishes and conditions. The results show,
that the solutions found by the methods investigated in this project are bet-
ter in all cases.

The conclusion drawn from this project is that it is possible to get high
quality initial solutions by applying an intelligent insertion heuristic, if the
only some of all the wishes and conditions are fullfilled. These high quality
solutions can also be improved by applying the tabu search method used in
this project.

Keywords: Home care, operational research, insertion heuristic, tabu search,
VRPTW, time windows, working hours, shared visits, travelling time.
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Resumé (in Danish)

Formålet med dette projekt er at undersøge hvordan metoder fra opera-
tionsanalyse kan anvendes i hjemmehjælpssektoren. Et problem, som ligner
VRPTW, opst̊ar, n̊ar hjemmehjælpernes ruter skal planlægges. Problemet
er meget komplekst, og derfor er det simplificeret i dette projekt. Betingelserne
er begrænsede til at omfatte tidsvinduer, hjemmehjælpernes arbejdstider,
besøg l̊ast p̊a hjemmehjælpere og hvis to hjemmehjælpere deler et besøg.
Ved et delt besøg skal to hjemmehjælpere starte og afslutte besøget sam-
tidig. Målet er at minimere vejtiden og maksimere antallet af besøg foretaget
af en fast hjemmehjælper.

En intelligent indsættelsesheuristik er anvendt p̊a problemet. Indsættelse-
sheuristikken bruger et fortrydelsesmål til at vurdere hvor den bedste ind-
sættelsesposition er. Løsningerne fundet vha. indsættelsesheuristikken er
brugt som initielle løsninger i en tabusøgning, som tillader ugyldige løsninger.

Resultaterne viser, at n̊ar antallet antallet af besøg med en fast hjemme-
hjælper maksimeres, stiger den totale vejtid i de fleste tilfælde. De initielle
løsninger fundet med indsættelsesheuristikken er forbedret op til 27 % med
tabusøgningen.

Løsningerne er sammenlignet med løsninger fundet af et program med navnet
ABP. Programmet ABP inkorporerer flere ønsker og betingelser. Resul-
taterne viser, at løsningerne fundet vha. de undersøgte metoderne i dette
projekt er bedre i alle tilfælde.

Fra dette projekt kan man drage den konklusion, at det er muligt at f̊a
løsninger af god kvalitet ved at anvende en intelligent indsættelsesheuristik,
hvis kun nogle af de mange ønsker og betingelser er opfyldte. Disse løsninger
kan forbedres ved at anvende tabusøgningsmetoden i dette projekt.

Nøgleord: hjemmehjælp, operationsanalyse, indsættelsesheuristik, tabusøgning,
VRPTW, tidsvinduer, arbejdstider, delte besøg, vejtid.
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List of Symbols

This list contains all the symbols used in this report with their meaning and
the page numbers for their first occurrence.

α is the latest starting time, page 45

β is the price for violating the same starting times for shared visits ,
page 45

γ is the price for violating the latest working time, page 45

δ is the modification factor for the prices α, β and γ, page 46

θ is the number of iterations, where it is tabu to reinsert a visit in a
route during the tabu search, page 52

λ is the diversification factor, page 53

µ is the price for letting a non-regular caretaker visit a citizen, page 11

ωij is a binary variable, which indicates whether the two visits i and j
form a shared visit, page 11

φi
r is a binary variable, which indicates whether the visit i is locked to

caretaker r, page 9

Ψ is the number of unlocked visits without a regular caretakers. The
shared visit only contribute by 1 in Ψ, if the two caretakers attend-
ing the shared visit are not regular, page 16

ρ is the number of times visit v has been inserted in the route r during
the local search, page 53

σi
z is a binary variable, which indicates whether citizen z is the citizen

at visit i, page 9

τo
z is a binary variable, which indicates whether caretaker o is regular

at citizen z, page 7
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A(x) is the total violation of the latest starting times for visits in the
solution x, page 45

ai is the earliest starting time at visit i, page 9

Â(x) is the total violation of the time windows for the visits in the solu-
tion x, page 55

B(x) is the total violation of equal starting times for shared visits in the
solution x, page 45

bi is the latest starting time at visit i, page 9

B̂(x) is the total violation of the equal starting times for shared visits in
the solution x, page 56

C(x) is the cost of a feasible solution x, page 12

c1(v, r, pr) is the additional cost, when inserting the not shared visit v in
route r at position pr, page 29

c1(v, r1, r2, pr1 , pr2) is the additional cost, when inserting the shared visit v
in the distinct routes r1 and r2 at the positions pr1 and pr2 , page 31

c2(v) is the regret measure for inserting visit v, page 29

di is the duration of visit i, page 9

fi is the finishing time at visit i, page 11

G(x) is the total violation of the latest finishing times for routes in the
solution x, page 45

Ĝ(x) is the total violation of the working hours in the routes in the
solution x, page 55

go is the earliest starting time for caretaker o, page 6

ho is the latest finishing time for caretaker o, page 6

i is a visit in the set V, page 8

j is a visit in the set V, page 8

li is the arrival time at visit i, page 11

m is the total number of routes in the set R, page 9

n is the number of visits in the set V, page 8

N(x) is the neighbourhood to the solution x, page 43
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nr is the number of visits in route r, page 9

O is the set of caretakers, page 6

o is a caretaker in the set O, page 6

p is a position in a route, page 24

P (x) is the penalty function in the solution x, page 53

PFi The push forward of the starting time for visit i, page 27

R is the set of routes, page 9

r is a route in the set R, page 9

S is the solution space for the problem, page 12

si is the starting time at visit i, page 11

T is the total travelling time in a solution, page 16

t(v, r, pr) is the additional travelling time, when inserting visit v in route r
at position pr, page 28

tz1z2 is the transportation time between citizen z1 and z2 , page 8

V̄ is the set of the not scheduled visits, page 23

V is the set of visits, page 8

V is the set of the scheduled visits, page 23

v is a visit in the set V, page 8

wi is the waiting time at visit i, page 11

x is a solution in the solution space S, page 12

xijr indicates whether caretaker r goes from visit i to visit j, page 15

Z is the set of citizens, page 7

z is a citizen in the set Z, page 7
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Chapter 1

Introduction

”As long as possible in your own home”

(In Danish ”Længst muligt i eget hjem”)

-A slogan in Danish social politics, 1987

1.1 Motivation and History

The elderly people make up an increasing proportion of the populations
in the western world caused by an increasing average life age. This is a
conclusion drawn from the development over the last century. The social
systems in the western countries do therefore experience a larger demand
for help to the elderlies. These demands are mainly payed via the taxes and
as the proportion of tax payers is not increasing there is an imbalance.

In Denmark the situation is very similar according to the Danish Statistics
Bank [Ban]. Hundred years ago in 1905 the proportion of persons with an
age above 64 years was 6,62 %, and in 1955 it was 9,68 %. Last year in 2005
the proportion was 15,01 %. The forecast for the future years shows the
same tendency, because the proportion is forecasted to be 18,54 % in 2015.

The Danish social politics is aware of the increasing demand for help to
elderlies. The home care system was introduced in 1958 according to [Soc]
when it became possible for retirement pensioners and handicapped to re-
ceive home care. Now it was possible for the elderlies to choose between
receiving help in their own home or at a rest home. In 1987 the government
introduced a senior residence reform to build more elderly residences. The
new slogan was ”as long time as possible in your own home”.
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CHAPTER 1. INTRODUCTION

The home care system in Denmark is organized and administrated by the
municipalities. Typically every municipality is divided into small areas
called districts and each area is serviced by a group of caretakers. There are
different types of caretakers e.g. helpers, assistants, nurses and unskilled.
They perform the visits in the homes of the citizens needing help. Ad-
ministrating the social care includes more hours for planning the routes for
the caretakers, because the demand for care is increasing, and also because
planning the routes is a complex problem.

One of the ways to handle the increasing demand is by using operational
research (OR). There are many problems in the administration of social
care where OR can be applied. Until today there has though been a lack
of research on that subject, see also section 2.5. The reasons for the lack
of research could be many. OR is normally applied in technical areas e.g.
production, whereas home care is considered a nontechnical area. For this
reason there might have been ignorance of OR in the home care system and
also the other way around there might have been ignorance of home care in
the OR research environment.

As a student at the Technical University of Denmark, I got very interested
in the world of OR, and therefore I expected to make my final master thesis
in this area. In my holidays I had a very challenging and experience-giving
job as a substitute caretaker in the home care during 6 years from 2000 until
2005. For this reason I saw the opportunity for combining my two interests
in the thesis. By chance I found out that Jesper Larsen and René Munk
Jørgensen were making a programme for scheduling the caretakers’ routes.
See more on their programme in chapter 5. They were luckily willing be
supervisors in this project.

1.2 Purpose of the Project

The aim for this project is to investigate how methods from OR can be
applied on home care.

One goal of this project is to refine the existing solution methods and develop
new ones. To presentate and investigate the problem better, the problem is
simplified and the horizon of planning is shortened to one day.

A new insertion method is developed on the basis of an already known
insertion heuristic where the assignment of visits to caretakers and the gen-
eration of routes is done in the same process. The solution found by the
insertion heuristic will form an initial solution for a variant of tabu search.
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CHAPTER 1. INTRODUCTION

The tabu search has proved to be very efficient in other similar problems
and is therefore applied on the problem in this project.

Jesper Larsen and René Munk Jørgensen have as mentioned in the previous
section developed a programme for automatic scheduling the caretakers’
routes and it is an aim to compare the problem and the methods in this
project with their programme.

Another focus of the project is on the trade-off, that can arise, when one
both wishes to minimize the travelling time and maximize the number of
regular caretakers visiting the citizens. One should have the opportunity to
adjust which weight the two wishes have proportional to each other.

The different developed solution methods are at the end compared with
respect to solution quality and running times. The comparison is made
between the developed methods in this project and the method in the pro-
gramme developed by Jesper Larsen and René Munk Jørgensen.

1.3 Outline of the Report

Chapter 2 introduces the problem treated in this project by describing the
problem and its mathematical formulation. The chapter also goes into pre-
viously written literature on similar problems.

The insertion heuristic is described in chapter 3, where a small example
illustrates how the heuristic works.

A variant of the tabu search heuristic is introduced in chapter 4 with de-
scriptions of different variations inside the heuristic.

Chapter 5 describes the problem and the methods in the programme devel-
oped by Jesper Larsen and René Munk Jørgensen and the deviations from
the limited problem in this project.

Chapter 6 shows the results of the different comparisons between methods
in this project and the methods in the programme described in chapter 5.

Chapter 7 discusses the use of OR in the home care system.

There are many issues left after this project to be investigated and these are
introduced in chapter 8.

Chapter 9 gives the final conclusions on the project.
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Chapter 2

The Vehicle Routing
Problem
with Time Windows and
Shared Visits

The vehicle routing problem with time windows and shared visits (VRPTWSV)
is described in section 2.1. The mathematical model for the problem is given
in section 2.2 and the complexity of the problem is found in section 2.3. The
problem is commented in section 2.4 and a literature review on similar prob-
lems is given in section 2.5.

2.1 Description of the Problem

The problem and its different elements are described in this section. Many
of the symbols used in the remaining part of the report are also introduced
in this section.

2.1.1 What is a Caretaker ?

There are different types of caretakers, which depend on the caretakers’
education, e.g. nurses, assistants and unskilled.

The set of caretakers in the problem is symbolized by O, where o is a care-
taker in the set O.

4



CHAPTER 2. THE VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS AND SHARED VISITS

Each caretaker has an earliest starting time go, and a latest finishing time
ho. The time interval [go, ho] is also named the working hours for caretaker
o.

2.1.2 What is a Citizen ?

The citizens in this problem are elderlies and handicapped, who receive help
at home payed by the government. The municipalities are administrating the
help. Before a citizen can receive help, the citizen is examined to determine
how much and how often the citizen needs help.

All the citizens in the problem form the set Z, where the citizen z is one of
the citizens in the set.

Figure 2.1 shows how the citizens could be situated. Notice that the admi-
nistration office is also considered a citizen in this problem.

���� ����

��������

��		


�

�
��

Citizen 1
Citizen 2

Citizen 3

Citizen 5

Citizen 4

Office

Figure 2.1: How the citizens could be situated at a map.

Each citizen has at least one caretaker as a contact person. A contact
person is in this project also called a regular caretaker . In most cases it is
preferable that regular caretakers attend the visits at the citizens, because
when an elderly person meets a new person often in his home, he may feel
insecure. It also eases the job for the caretakers, because they get to know
the procedures after being at the citizen many times and can perform better.
Another and very important reason for having a regular caretaker is to have
somebody responsible for keeping an eye on how the situation evolves at
the citizen, see more on this topic in chapter 7. The parameter τ o

z indicates
whether caretaker o is regular at citizen z.
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CHAPTER 2. THE VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS AND SHARED VISITS

τo
z =

{

1 if the caretaker o on is regular at citizen z
0 elsewise

No regular caretakers are assigned to the office.

The travelling time between two citizens z1 and z2 are measured in minutes
and given as the parameter tz1z2 .

2.1.3 What is a Visit?

A visit is performed when a caretaker visits a citizen to help him. For
instance a visit can include helping an elderly person taking a shower in
the morning and helping her making the breakfast. A visit can also include
helping a young handicapped by cleaning her home. The help needed is also
called a demand, and some demands require special qualifications from the
caretakers. One could imagine a situation, where a citizen needs to get his
medicine for the next week dosed into a box with 7 separate holes. Only the
caretakers educated in medicine are allowed to do this job. For other types
of demands some caretakers are more qualified than others. For instance a
assistant is more qualified than the unskilled for helping citizens suffering
from dementia.

The set of visits is V, where v ∈ V. Often another notation is used in this
report, where i ∈ V or j ∈ V. The number of visits in V is n.

Sometimes the caretakers have to visit the same citizen more than one time
the same day. In figure 2.2 is a sketch of how the citizens and visits one day
could be situated along a road network. The numbers of the visits are given
to clearify that this example is a situation with more visits than citizens.
Compare this figure to 2.1 to find the corresponding citizens. In the example
in figure 2.2 citizen 4 and 5 both have two visits one day and citizen 1 and
2 have three visits one day, while citizen 3 only has one visit. The office has
4 visits, because two caretakers visit the office twice in this example.

All caretakers have at least one visit at the office during a day. There could
be several reasons for visiting the office. One reason could be to check in and
out from work. Another reason could be to get and hand in a special key
for key boxes at the office. In most municipalities they have a very special
key system. There is a key box by the citizens, that can not or do not wish
to open their door themselves. In a key box is the key to the front door. In
some municipalities it is possible to take the key home after work, but in
others it isn’t, because the staff will not risk loosing the key. The key can

6



CHAPTER 2. THE VEHICLE ROUTING PROBLEM

WITH TIME WINDOWS AND SHARED VISITS

Visit 4

Visit 5+6

Visit 3
Visit 9

Visit 8

Visit 10Visit 11

Visit 7

Office

Visit 13

Visit 12

Visit 1+2+14+15

Figure 2.2: How the visits could be situated on a map.

open the front door in hundreds of homes, and therefore it is handled with
care. A final reason for visiting the office is to have a break.

A visit at the office can be locked to a caretaker to ensure for instance that
the caretaker has a break.

φi
r =

{

1 if visit i is locked to caretaker r
0 elsewise

To every visit i belongs a citizen z. The relationship between a visit and a
citizen is given by the parameter σi

z.

σi
z =

{

1 if citizen z is the citizen at visit i
0 elsewise

For each of the visits i ∈ V a time window [ai, bi] is determined, where ai is
the earliest starting time and bi is the latest starting time.

Each visit has a fixed duration di, which is given in minutes.

2.1.4 What is a Route?

A route consists of a sequenced group of visits. Figure 2.3 illustrates how
visits can form two routes.

The arrows in figure 2.3 only indicate the order of the visits, and they do
not show the physical path taken between the visits. There are two routes
in the left sketch in figure 2.3, and they are separated in the boxes to get a
better overview.
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Figure 2.3: How visits can form a route.

The set of routes is R, where route r ∈ R. The total number of routes is
m. The number of visits in the route r is nr.

Each caretaker takes one route. The caretaker having route r is also referred
to as r in the remaining part of this report, except in chapter 8.

2.1.5 What is a Shared Visit?

There may arise special situations when taking care of elderly or handi-
capped citizens, and in some cases it is necessary to have two caretakers
attending a visit. These visits are called shared visits. This could concern a
citizen that has to be transfered with a lift between the bed and the wheel
chair. The situation is shown at figure 2.4.

Figure 2.4: Two caretakers using the lift to transfer a citizen. Lars-Ole Nejstgaard has
painted this picture, see [Nej].

As shown on the picture in figure 2.4 the situation with a lift requires two
caretakers. A shared visit is split into two separate visits i and j with the
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same time window, citizen and duration. In the general situation the two
persons could start or finish at different times as long as they both are
present while the lift is used.

The parameter ωij indicates whether two visits i and j constitute a shared
visit.

ωij =

{

1 if visit i and visit j form a shared visit
0 elsewise

2.1.6 The Limitations

The planning horizon for the problem is limited to one day to make it easier
to manage the problem.

Another assumption in the problem is that all caretakers have the same
qualifications, and the visits do not have different types of demands.

In this project it is also assumed, that two caretakers attending a shared
visit start and finish at the same time to make the problem less complex
and therefore easier to explore.

2.1.7 The Objective of the Problem

The objective of the problem is to minimize the total travelling time and
the number of unlocked visits without a regular caretaker, when finding out
which caretaker should attend which visit and in which order.

The value of having a regular caretaker attending a visit at a citizen is
measured by the parameter µ. This price µ is given in minutes, and is the
price per visit for letting a non-regular caretaker attend the visit at a citizen.
This means that if you let a regular caretaker attend the visit, you save µ
minutes. A way to interpretate this price is: for how much extra time would
one let the regular caretaker travel compared to the non-regular caretaker to
reach the citizen? In the case with a shared visit, only one of two caretakers
needs to be regular in this problem to avoid paying the price µ.

2.1.8 Representation of a Solution

A way to represent a solution is by using a Gantt-diagram as in figure 2.5.
The time indicators for arrival time, waiting time, starting time and finishing
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time for visit i ∈ V are formalized with the mathematical terms li, wi, si

and fi. Figure 2.5 illustrates the terms. The solution in figure 2.5 only has
one route with two visits 1 and 2, where the first visit is at citizen z1 and
the second visit is at citizen z2.
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Time

PSfrag replacements

tz1,z2

a1

b1

a2

b2

w1

l1

s1

f1

d1

l2 = s2

f2

d2

Figure 2.5: An example of the time schedule, where the grey boxes indicate working
and the boxes with zigzag line are waiting time.

The caretaker on this route in figure 2.5 arrives at l1 to visit 1 and waits
for w1 minutes until he starts at s1 = a1, because the time window opens
at a1. Visit 1 takes d1 minutes and the caretaker finishes the visit at f1.
Afterwards the caretaker travels for tz1,z2 minutes until he reaches visit 2,
where he can start immediately at s2 = l2, because the time window opened
at a2. The visit 2 lasts for d2 minutes, and it is finished at f2. Notice that
all time windows are satisfied.

2.2 The Mathematical Model

The set of feasible solutions for the problem is named the solution space S,
where each solution in S is named x. Each feasible solution x has a cost
C(x).

The problem can be formulated as an optimization problem
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minC(x)

Subject to x ∈ S

which can be written in the short form min{C(x)|x ∈ S}. The objective of
the problem is to find the solution x ∈ S, where the cost C(x) is smallest.

The problem can the formulated as a mathematical flow model. The repre-
sentation of the problem is a complete graph G(V ∪ D, E) with the vertices
V ∪ D and the links E . A solution is a set of arcs, that form routes, where
all the nodes are contained in the routes.

Depot 1

Depot 4

Visit 1
Visit 2

Depot 3

Depot 2

Visit 3

Visit 4

Depot 1

Depot 4

Visit 1

Visit 4

Visit 2

Visit 3

Depot 3

Depot 2

Figure 2.6: The problem and a solution represented in a graph. The colored nodes are
depots, and the white nodes are visits.

To the left in figure 2.6 is an example of a problem. Between every pair of
vertices are two links, one in each direction. To the right in figure 2.6 is a
solution to the problem, where all the nodes are distributed in two routes.
Notice that the nodes are divided into two groups V and D; visits and depots.
A depot is where a caretaker starts or ends his route, and in most cases it is
at home. The depots are only considered in the mathematical formulation,
but will not be taken into account in the remaining part of this report.

The mathematical model formulation is very alike the formulation for the
Vehicle Routing Problem with Time Windows (VRPTW), which is an ex-
tension of the Capacitated Vehicle Routing Problem (CVRP). As the title of
the problem indicates this problem concerns routing vehicles with a capacity,
which is also the case in the VRPTW.

The mathematical model for VRPTW is introduced here to make a better
comparison to the VRPTWSV.

The group of vehicles is R, where r ∈ R. Each vehicle r has the start
depot D+

r and the end depot D−
r . There is also a group of customers in the
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problem situated at different locations. The group of customer is V. Each
of the customers should be serviced by one of the vehicles. Every customer
i ∈ V has a demand qi. The vehicle r has an upper limit Qr for the capacity.
Every customer i has a time window [ai, bi] for the service. The objective of
the VRPTW is to find the shortest total travelling time, where the travelling
time between two customers i and j is tij.

The first decision variables in the VRPTW is

xijr =

{

1 if the vehicle r uses the link between customer i and customer j
0 elsewise

which indicates if the vehicle r travels from customer i to customer j. An-
other decision variable is yir which is the load on the vehicle r when arriving
to customer i. The last decision variable is si, which is the starting time at
customer i.

min
∑

i∈V

∑

j∈V

∑

r∈R

cijrxijr (2.1)

∑

r∈R

∑

j∈V

xijr = 1 ∀ i ∈ V (2.2)

∑

j∈V

xD+
r jr = 1 ∀ r ∈ R (2.3)

∑

i∈V

xiD−
r r = 1 ∀ r ∈ R (2.4)

∑

i∈V

xikr −
∑

j∈V

xkjr = 0 ∀ k ∈ V, r ∈ R (2.5)

yD+
r r = 0 ∀ r ∈ R (2.6)

yD−
r r = 0 ∀ r ∈ R (2.7)

yir ≤ Qr ∀ k ∈ V, r ∈ R (2.8)

yir + qi −M(1 − xijr) ≤ yjr ∀ i, j ∈ V, r ∈ R (2.9)

si + tij −M(1 − xijr) ≤ sj ∀ i, j ∈ V, r ∈ R (2.10)

si ≥ ai ∀ i ∈ V (2.11)

si ≤ bi ∀ i ∈ V (2.12)

yir ≥ 0 ∀ i ∈ V, r ∈ R (2.13)

si ≥ 0 ∀ i ∈ V (2.14)

xijr ∈ {0, 1} ∀ i, j ∈ V, r ∈ R (2.15)
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Constraint (2.2) ensures that every customer is serviced, and (2.3) and (2.4)
ensure that each vehicle r leaves its start depot D+

r and enters its end depot
D−

r exactly once. The flow balance is kept by (2.5), where the flow into a
customer also should leave the customer. The load yir at the start depot D+

r

and at the end depot D−
r is set to zero for each vehicle r in (2.6) and (2.7).

The load should not exceed the capacity Qr for each vehicle r, which is
guaranteed by constraint (2.8). The constraint (2.9) describes how the load
on a vehicle r is evolving. The starting time si is found for every customers
i using constraint (2.10), where sj ≥ si + tij if the vehicle r travels from
customer i to j. The next constraints (2.11) and (2.12) ensure the starting
time si for every customer i to be within the time window [ai, bi].

The VRPTWSV is an extended version of the VRPTW, where the customers
correspond to the visits V and the vehicles correspond to the caretakers R.
The extension includes the shared visits, working hours and locked visits,
but the VRPTWSV does not involve capacity.

The decision variables are

xijr =

{

1 if the caretaker on route r uses the link between visit i and j,
0 elsewise,

si is the starting time at visit i and fi is the finishing time at visit i .

min
∑

r∈R

∑

i,j∈V

∑

z1,z2∈Z

σi
z1
σj

z2
tz1z2xijr + (2.16)

µ
∑

r∈R

∑

i,j∈V

∑

z∈Z

(1 − φi
r)(1 − τ r

z )(1 − ωij)σ
i
zxijr +

µ

2

∑

r1,r2∈R

∑

i,j∈V

∑

k1,k2∈V

∑

z∈Z

(1 − φi
r1

)(1 − φj
r2

)(1 − τ r1
z )(1 − τ r2

z )ωijσ
i
zxik1r1xjk2r2

= min C(X) = min T + µΨ
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∑

r∈R

∑

j∈V

xijr = 1 ∀ i ∈ V (2.17)

∑

j∈V

xD+
r jr = 1 ∀ r ∈ R (2.18)

∑

i∈V

xiD−
r r = 1 ∀ r ∈ R (2.19)

∑

i∈V

xikr −
∑

j∈V

xkjr = 0 ∀ k ∈ V, r ∈ R (2.20)

si + di = fj ∀ i ∈ V (2.21)

siωij ≤ sj ∀ i, j ∈ V (2.22)

xijrsi ≥ gr ∀ i, j ∈ V, r ∈ R (2.23)

xijrfj ≤ hr ∀ i, j ∈ V, r ∈ R (2.24)

fi +
∑

z1z2

σi
z1
σj

z2
tz1z2 −M(1 − xijr) ≤ sj ∀ i, j ∈ V, r ∈ R (2.25)

si ≥ ai ∀ i ∈ V (2.26)

si ≤ bi ∀ i ∈ V (2.27)
∑

j∈V

φi
rxijr = 1 ∀ i ∈ V r ∈ R (2.28)

si ≥ 0 ∀ i ∈ V (2.29)

xijr ∈ {0, 1} ∀ i, j ∈ V, r ∈ R (2.30)

The objective function in the mathematical model for VRPTWSV is differ-
ent from the objective function in VRPTW. It is split into three parts.

The first part concerns the total travelling time between the citizens corre-
sponding to the visits.

The second part concerns the number of unlocked and unshared visits, where
a non-regular caretaker is attending the visit. Splitting up the term gives
that (1−φi

r) = 1, when visit i is not locked by caretaker r, and (1− τ r
z ) = 1

when caretaker r is not regular at citizen z. The visits i are not shared when
(1 − ωij) = 1 for all visit j ∈ V. The citizen z is the citizen at visit i, when
σi

z = 1 and the visit i is actually attended by caretaker r, when xijr = 1 for
all visits j ∈ V.

The third and last part of the objective function concerns the number of
shared and unlocked visits, where neither of the caretakers r1 and r2 attend-
ing the shared visit are regular. This is the case, when (1−τ r1

z )(1−τ r2
z ) = 1.

Notice that there is only one citizen z for a shared visit. The price for a
shared visit without any regular caretaker is µ, but because a shared visit
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is divided into two visits, each shared visit appears twice in the objective
function. The last part of the objective function is therefore multiplied by
µ/2.

The objective function can also shortly be written as T + µΨ, where T is
the total travelling time, and Ψ is the number of unlocked visits without a
regular caretaker, and a shared visit only contributes by 1 in Ψ if none of
the two caretakers attending the visits are regular.

The capacity constraints (2.6), (2.7), (2.8) and (2.9) from the VRPTW
model are removed in the mathematical model for VRPTWSV.

All the other constraints in the VRPTW model are similar or the same with
a new interpretation in the mathematical model for VRPTWSV. Constraint
(2.17) ensures that every visit is done once by the caretaker r. Each caretaker
r starts in a origin point D+

r and ends in the destination point D−
r , which

is ensured by the constraints (2.18) and (2.19). The flow balance constraint
(2.20) ensures that when a caretaker comes to a visit k, he also leaves the
visit. The constraint (2.25) determines the starting times of the visits. If
the visit j is after visit i on route r, the starting time for visit j should be at
least the finishing time for visit i plus the travelling time tzizj

between the
citizen zi for visit i and the citizen zj for visit j. The constraint contains
a sufficient big number M . It is sufficient big if it equals the last finishing
time of all end depots. Every visit i has a hard time window [ai, bi] for the
starting time, and the constraints (2.26) and (2.27) ensure that the visit can
only start within its time window.

One of the new constraints in the model is (2.22). If the two visits i and j
constitute a shared visit, the constraint (2.22) ensures, that si = sj. The
caretakers r1 and r2 for the two visits i and j must be different, but this
is already ensured because the two visits start at the same time and the
constraint (2.25) ensures that a caretaker is not performing more than one
visit at the same time.

Two other new constraints are (2.23) and (2.24), which ensure no violation
of the earliest starting time gr or latest finishing time hr for each caretaker
r. The last new constraint is (2.28) on the locked visits. If a visit i is locked
to be attended by caretaker r, the constraint (2.28) makes sure it is satisfied.

2.3 Complexity

In this section the complexity theory is introduced and the complexity of
the VRPTWSV is found. The complexity theory is introduced in chapter
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6 in the book [Wol98] and it is the background for the introduction in this
section.

There are two types of problems: the optimization problem

min{C(x)|x ∈ S}

and its corresponding decision problem

Is there a solution x ∈ S with the value C(x) ≤ k?

The decision problems can have only two answers; a ”yes” or a ”no”. There
are different classes of decision problems.

NP is the class of decision problems, where it can be proven in polynomial
time, that the answer is ”yes”, if this is the case. The optimization
problem with a corresponding decision problem in the NP class can
be solved by answering the decision problem a polynomial number of
times.

P is the class of decision problems in NP that can be solved in polynomial
time.

NPC is the class of NP-complete decision problems, which is a subset of
NP . An instance of a problem in NP can be converted in polynomial
time to an instance of a problem in NPC. (The problems in NP
are polynomial reducible to the problems in NPC.) This means that
the problems in NP are not more difficult than the problems in NPC.
The optimization problem with a corresponding NP-complete decision
problem is NP-hard .

The big question is whether P = NP . If this is not the case then there exist
a set NP \ P with decision problems, which are not solvable in polynomial
time. Figure 2.7 illustrates this situation.

The collary 6.1 at page 85 in [Wol98] says that if any NP-complete decision
problem is solvable in polynomial time (P ∩ NPC 6= ∅) then P = NP.
The proof for this corollary is also given. Firstly suppose that the decision
problem Q is in the class P∩NPC and R ∈ NP . R is polynomially reducible
toQ, becauseQ ∈ NPC and by the definition of NPC. The decision problem
Q is also in P, and because R is polynomially reducible to Q, then R must
also lie in the class P according to lemma 36.3, page 931 in [CLR90]. This
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Figure 2.7: The decision problem classes, when P 6= NP

proves that NP ⊂ P and because it is already known by the definition of P
that P ⊂ NP then P = NP

It immidiately follows that if P 6= NP then all problems in NPC are not
solvable in polynomial time (P ∩ NPC = ∅) by using the fact that A ⇒ B
is logical equivalent to ¬B ⇒ ¬A.

It has not yet proven that P = NP nor P 6= NP . For all the problems
in NPC there have not yet been found polynomial solution methods, and
hence it is so far assumed that P 6= NP .

The VRPTW is a NP-hard optimisation problem, and because the VRPTWSV
is an extension of VRPTW, the VRPTWSV is also NP-hard.

2.4 Comments

The time between the arrival time and opening time of a visit is called
waiting time, but it should not always be considered as waiting time, because
the time often can be used efficiently at the previous citizen, or as individual
time for the caretaker. In my point of view it is very important to avoid stress
in the home care, because it affects some citizens in an unstable psychological
condition. The stress also has a negative effect on the caretakers, who may
have more days of illness, which is expensive to the employeers and tax
payers. The waiting time shall for this reason not be considered totally as
a waste of time.

There are different strategies for handling the shared visits. One option is
to fix the starting times by setting the time windows sufficient tight, but
this will decrease the solution space. Instead of splitting the visit up, one
could also handle it as a single visit. The flow of caretakers through the
node representing the visit will then be two in and two out.
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The VRPTWSV satisfies, that each caretaker is not doing more than one
visit at the time, but it does not satisfy that each citizen only has one visit
at the time. This may in some situations not be appropriate, for instance
if one caretaker comes to bandage a wound and another caretaker comes to
give the citizen a bath. Often these two demands are put together in one
visit, but not always, because the two demands may require very different
caretaker skills as in the example mentioned. It is possible to model that
some types of demands are not allowed to overlap at the same citizen, and
only when it is a shared visit it is allowed to be more than more caretaker
at the citizen.

2.5 Literature Review

The CVRP problem has been studied intensively over the last decades as
a problem in the area of operational research, because it has many ap-
plications. The book [TV01] gives a good overview over CVRP with its
applications, solution methods and variants such as VRPTW.

The special feature in VRPTWSV is the shared visit with two separate visits,
which can be viewed as two operations starting at the same time and having
the same duration. This special feature might be applicable in other areas
than home care, for instance when synchronizing chemical processes. It is
not possible to find any literature on this special feature. The applications
are probably in areas not well known to me, because I do not think that this
feature is only special in the home care sector.

To my knowledge there is little literature on the operational research meth-
ods developed for solving problems in the home care sector. The article
[EFR03] is one of the few on this subject. The problem is formulated as a
set partioning model. The constraints are very similar to the constraints in
the VRPTWSV. The additional constraints are

• Each visit has demands which must be met by the caretakers qualified
for the type of demands.

• Each caretakers has given working areas.

• Certain visits are grouped in such way that the same staff member
must do all those visits.

The interesting fact is that there are also shared visits in their problem. In
the article they also split up the shared visit in two parts, but they fix the
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starting times of each part to satisfy the constraint on their starting times.
This approach does not use the information on time windows for the shared
visit.

It is allowable in their methods to violate some of the constraints. They
operate with an individual penalty function for violating each type of con-
straint.

The method used to solve the problem is the repeated matching method.

Solving the first matching problem gives the next new matching problem
and so forth until the method reach a stopping criterion. The matching
problems are both solved by a heuristic and an exact method.

Initially when performing the repeated matching method there is one route
for each visit and also one route without any visits for each caretaker. The
routes with only one visit and no caretaker assigned are penalized very high
to force them to match with routes with caretakers. When combining two
routes all visits may go to one of the routes, or the visits can be mixed. The
repeated matching method stops, when no improvements are achieved.

The heuristic for finding matchings performs better than the exact method
in one case and the other way around in the other case.

The result is a saving about 20 % for the travelling time and the total
working time is reduced by 7 % because of less planning time.

Another article on home care is [BF05]. The article defines the a mathe-
matical problem, where both hard and soft time windows are declared for
both visits and caretakers. The soft time window can be violated by paying
a penalty.

The other properties in the model deviating from VRPTWSV are:

• The demands of the visits have to meet the qualifications of the care-
takers

• A soft constraint on preferences on citizens or certain demands, which
may be ignored by paying a penalty. The VRPTWSV only includes
preferences on the regular caretakers.

• A fair distribution of the difficult demands over all the caretakers

The model in the article does not include shared visits.

The solution method is split in two parts: one for assigning the visits to the
nurses and one for finding an optimal sequencing for the visits assigned to
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each caretaker. The first part is performed by using a heuristic for finding
an initial solution and two improvement heuristics. The second part is a
LP-problem, which is solved by an exact method.

The preprocessing finds the possible caretakers for each visit, and if there is
only one possible caretaker, the visit is assigned to her. The precedences of
the visits are also determined according to the time window. This correspond
to removing some of the directed arcs in a graph presentation of the problem.

The information on the precedences is used every time it is needed to find
the ordering of the visits within a route. All feasible permutations are
investigated to find the optimal solution to a LP problem. The optimal
solution gives the best starting times of the visits in a route given their
order.

Constraint programming is used for finding an initial solution, where the
visits are assigned to caretakers. The improvement heuristics used are Sim-
ulated Annealing and Tabu Search, where the move consists of removing
a visit from one position and inserting it in another position. The other
position may be in another route.

The methods are tested in different ways, both combined and separately.
The tabu search heuristic turns out to perform better than the simulated
annealing. The combination of the constraint programming with the tabu
search produces the best solutions for the test instances.
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Chapter 3

The Insertion Heuristic

A heuristic is a method for finding a good solution to a problem. The set of
feasible solutions for a problem is called a solution space. The heuristic does
not go through all solutions in the solution space, and the solution found at
the end is not guaranteed to be optimal.

This insertion heuristic is an extension of the method proposed in [PJM93],
where the routes are filled in parallel instead of filling the routes one by one.
When performing a insertion, it is possible to insert in one of all the routes
instead of not being able to choose the insertion route. The parallel insertion
method has to be extended because of the shared visits in the VRPTWSV
problem and the limited working hours for the caretakers.

The number of routes is fixed to m and there are n visits to insert in these
routes. The set of visits is V and it is divided into two subsets. The subset
V̄ contains all the visits not scheduled and the subset V contains all the
scheduled visits. Each route r correspond to a caretaker r. The fixed number
of routes m is found by looking at a previous found schedule and using the
number of the caretakers in that situation. If this number is not sufficient,
it is necessary to add extra caretakers until there are enough to cover all
visits. The number of visits on each route r is nr.

Initially all m routes contain at least one seed-visit . The seed-visits are the
visits at the office, which are locked to a certain caretaker r ∈ R. The
set V contains the seed-visits initially. Notice that the depots D+

r and D−
r

(which could be represented as the start and end visits in the homes of the
caretakers) in the mathematical model (2.16) - (2.30) would have been seed-
visits. These depots are not present in the data used for the results in chapter
6. The visits at the office can not count as depots in the mathematical model
of the problem, because they are not necessarily in the beginning and the
end of the routes e.g. a break is an intermediate visit on a route.
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Each initial route r with seed-visits forms a partial constructed route r, the
visits are named i0, . . . , inr−1. Initially all routes are feasible, because none
of the time windows nor working hours are violated and if there are any
shared visits, they start at the same time. A insertion is feasible if it does
not affect the feasibility of all routes.

The question in every iteration of the heuristic is which visit v should be
inserted, in which route r∗ and in which position pr∗ ? Which visit v to
insert in which route r is evaluated by calculating the extra travelling time
and adding extra time µ if the caretaker r∗ is not regular at visit v’s citizen
zv. If the insertion is not feasible, the extra time is set to a sufficiently high
number. The objective is to minimize the extra time, and therefore it is
chosen in each iteration to use the cheapest combination of v, r∗ and pr∗ in
comparison with other combinations for insertion.

The number of a candidate position corresponds to the position number the
visit would have, if it was inserted. If visit v is a candidate for position p it
will be placed between visit ip−1 and ip. Figure 3.1 illustrates an example
of this. Because the index of the positions starts with 0, the last visit has
index nr − 1. The number of candidate positions in route r can lie in the
interval 0, 1, . . . , nr, because it is possible to insert a visit as the first or
last visit in the route or as an intermediate visit.
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Figure 3.1: The numbering of the positions in a partially constructed route

If inserting v after ip−1 in route r∗ the arrival time lv for the visit v is set
to be the finishing time fip−1 of visit ip−1 plus the travelling time between
the two citizens zip−1 and zv. If the visit is inserted at position 0, then the
arrival time is set to the maximum of the visit’s opening time av and the
earliest starting time on the route gr∗ .

lv =

{

max{av, gr∗} if p = 0
fip−1 + tzv ,zip−1

if p ∈ {1, 2, . . . , nr∗} (3.1)

The starting time sv is the largest of the arrival time lv, the opening time
of the time window av and the starting time of the route gr∗ . The starting

22



CHAPTER 3. THE INSERTION HEURISTIC

time is set to the opening time av, if the caretaker arrives before the visit
v opens and the starting time is set to the arrival time lv, if the caretaker
arrives after the opening time.

sv = max{lv , av} (3.2)

After inserting the visit v in position p, the positions of the succeeding visits
will increment by one, and the new number of visits in route r∗ will be nnew

r∗ =
nr∗+1. The arrival and starting times of the succeeding visits may be pushed
forward to ensure feasibility, but if there already were sufficient waiting
time between visit ip−1 and ip, visit v can be inserted without pushing the
succeeding visits.

Inserting a shared visit is more complex, because it has to be inserted in two
distinct routes r1 and r2. The shared visit is split into two separate visits
with the same duration, time window and citizen. This makes it easier to
insert the shared visit into two routes.

PSfrag replacements

i0

i0

i0

i0

i1

i1

i1

i1

ipr1

ipr1

ipr1
−1ipr1

−1

ipr1
+1

inr1
−1 innew

r1
−1

ipr2

ipr2

ipr2
−1ipr2

−1

ipr2
+1inr2

−1 innew
r2

−1

A position pr1
in r1 and

pr2
in r2 candidate

Figure 3.2: The numbering of the positions in two routes r1 and r2

In figure 3.2 the scenario is shown, when a shared visit is inserted in position
pr1 on route r1 and position pr2 on route r2. The shared visit v is split in
two visits v1 and v2, and each of the visits should start at the same time.
The arrival time for each visit is calculated as in (3.1). This implies that
the arrival times on each of the two routes are not necessarily the same, for
instance if the shared visit is not inserted at the position 0 in neither of the
routes, and the finishing times of the previous visits plus the travelling times
are different.
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When inserting a shared visit into two routes containing a shared visit al-
ready, some positions are not feasible. The two routes rightmost in figure
3.2 contain a shared visit, and if a new shared visit v is inserted, both parts
of the shared visit v should be situated before or after ipr1

and ipr2
.

The starting time for a shared visit v is the maximum of the two arrival
times, the starting times for the two caretakers and the opening time of the
time window.

sv = max{lv1 , lv2 , av} (3.3)

After inserting the shared visit v, the succeeding visits on both routes may
have to be pushed forward.

When pushing the visits forward it is necessary to pay attention to those
visits, that are shared, because if one part of the shared visit is pushed
forward, then the other part should equally be pushed forward, if it not
already pushed forward. The other part is in another route, and therefore
the succeeding visits in the other route should also be pushed forward.
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Figure 3.3 shows a part of a route. If the node leftmost should be pushed,
the succeeding visits at the same route might be pushed and also the visits
after the shared visits on the two dotted routes a and b.

In some situations the shared visits and the succeeding visits are already
pushed. The figure illustrates how the route a can lead back the initial
route. If firstly the visits on the initial route are pushed and afterwards
the visits on route a, then shared visit v is already pushed one time, when
pushing the visits on route a, and may not need to be pushed more.PSfrag replacements

a v

Figure 3.4: The shared visit v is already pushed

Sometimes is it not feasible to insert a visit v in a position pr∗ . The opening
times of the visits and the earliest starting times for caretakers are never
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violated because of (3.2) and (3.3). The equal starting times for shared
visits are not violated either, because the starting times of the separated
parts v1 and v2 are set to sv.

One of the things that might cause infeasibility is the violation of the closing
time in the time window. The topic is treated in lemma 1.1 in [Sol87]. The
first part (3.4) of the lemma ensures that the starting time of visit v is before
the closing time of the time window.

sv ≤ bv (3.4)

The second part of the lemma checks the feasibility for the succeeding visits.
Inserting a visit v may cause the succeeding visits to be pushed forward.
Therefore (3.5) should be checked before inserting the visit.

sik + PFik ≤ bik , for pr∗ ≤ k ≤ nr∗ − 1 (3.5)

The other thing that might cause infeasibility is the violation of the latest
finishing hr time for each caretaker r. Let fr denote the finishing time of the
last visit in route r. Inequality (3.6) should be respected to ensure feasibility.

fr ≤ hr (3.6)

3.1 The Implementation of the Functions

All the functions are implemented in Java and the source code is found in
appendix B.1 and B.2. An overview of the heuristic is shown in figure 3.5,
where the connections between the subfunctions are depicted.

The heuristic contains two steps, one for calculating the insertion cost and
one for inserting the best visit. Each of the steps are furthermore divided
into two parts, one if the current visit is shared and one if it is not. Initially
all the unlocked visits are placed in the set V̄. For each v of the visits in
V̄ the additional cost of inserting it into a route is calculated. The costs
are calculated in almost the same way as in the article [PJM93], where
the additional travelling time t(v, r, pr) for inserting a visit v in route r at
position pr is calculated as
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t(v, r, pr) =











tzv,zipr
if pr = 0

tzipr−1
,zv + tzv,zipr

− tzipr−1
,zipr

if pr ∈ {1, 2, . . . , nr − 1}
tzipr−1

,zv if pr = nr

(3.7)

where zipr−1 , zv and zipr
denote the citizens at the visits ipr−1, v and ipr . If

the visit is inserted as a intermediate visit the previous travelling cost was
tzipr−1

,zipr
and the new travelling cost is tzipr−1

,zv + tzv ,zipr
. The difference

between the old and the new travelling time gives the extra travelling time
t(v, r, pr). If the visit v is inserted at start or last in the route, the new
travelling time is only tzv,zipr

or tzipr−1
,zv .

Some adjustments are made to calculate the additional cost, when the care-
taker is not regular or if the inserted visit is shared. When the visit v∗ with
the highest cost c2(v

∗) is found, it is inserted into the best position. The two
steps in the heuristic are repeated until all the visits are inserted or until it
is not possible to insert more visits. The functions for finding the insertion
costs contain a recursive help function, which examines if it is feasible to
push the succeeding visits forward. The functions for inserting a visit have
a similar function for pushing the succeeding visits forward.
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3.1.1 Finding the Cost of Inserting a Not Shared Visit

The not shared visit v for insertion is from the set visits V̄.

The additional cost for inserting visit v in position pr in route r takes its
starting point in the objective function (2.16). The additional travelling
time t(v, r, pr) is given in (3.7). Furthermore there might be an additional
cost of µ, if the caretaker r is not regular at citizen zv, which is indicated
by τ r

zv
= 0. The total addition of cost is in (3.8).

c1(v, r, pr) = t(v, r, pr) + µ(1 − τ r
zv

). (3.8)

where r ∈ R and pr ∈ {0, 1, . . . nr}.

If is not feasible to insert visit v at position pr, the cost c1(v, r, pr) is set to
a sufficiently high number M .

For each route r the best position p∗r is found, where

c1(v, r, p
∗
r) = min{c1(v, r, pr)|pr ∈ {0, 1, . . . , nr}} where r ∈ R.

Similarly the best route r∗ with its corresponding best position p∗r∗ is found,
where

c1(v, r
∗, p∗r∗) = min{c1(v, r, p∗r)|r ∈ R}

The regret measure is measuring how good the cost c1(v, r
∗, p∗r∗) is in com-

parison with the costs for the other routes.

c2(v) =
1

m− 1

∑

r 6=r∗

(c1(v, r, p
∗
r) − c1(v, r

∗, p∗r∗)) (3.9)

If only the route r∗ is feasible, the cost c2(v) is high and it is preferable to
insert visit v. As seen in figure 3.5 the visit v∗ with the highest cost c2(v)
is inserted.

The pseudo code for calculating the cost c2(v) is in algorithm 1. All the
costs c1(v, r, pr), c1(v, r, p

∗
r) and c1(v, r

∗, p∗r∗) are initially set to a sufficiently
big number M in line 15, 4 and 2. When the insertion in pr is found
feasible, the cost c1(v, r, pr) is calculated in line 17, otherwise it stays equal
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to M . For each route r the best position p∗r is found by comparing each
cost c1(v, r, pr) with the current best cost c1(v, r, p

∗
r) in line 19. Similarly

the best cost c1(v, r, p
∗
r) of each route r is compared with the currently best

cost c1(v, r
∗, p∗r∗) in line 21 to find the best route r∗.

Algorithm 1 findInsertionCostOneVisit(v)
1: feasibleInsertion = false
2: c1(v, r∗, p∗r∗) = M
3: for r ∈ R do

4: c1(v, r, p∗r) = M
5: for pr ∈ {0, 1, . . . , nr} do

6: Calculate l̂v and ŝv using (3.1) and (3.2)
7: feasiblePosition = true
8: if ŝv ≤ bv and ŝv + dv ≤ hr then

9: l̂ipr
= ŝv + dv + tzv ,zipr

10: PFipr
= max{0, l̂ipr

− lipr
− wipr

}
11: If pr < nr then feasiblePosition = isThePushForwardFeasible(PFip , pr, r,0,0)
12: else

13: feasiblePosition = false
14: end if

15: c1(v, r, pr) = M
16: if feasiblePosition then

17: feasibleInsertion = true and calculate c1(v, r, p) using (3.8)
18: end if

19: If c1(v, r, pr) < c1(v, r, p∗r) then set c1(v, r, p∗r) = c1(v, r, pr) and p∗r = p
20: end for

21: If c1(v, r, p∗r) < c1(v, r∗, p∗r∗) then set c1(v, r∗, p∗r∗) = c1(v, r, p∗r) and r∗ = r
22: end for

23: Calculate c2(v) using (3.9)
24: return c2(v), r∗, p∗r∗ and feasibleInsertion

In algorithm 1 it is investigated if it is feasible to place visit v in position
pr in route r. This investigation includes calculations of new arrival and
starting times, if the visit was inserted. All the new times are indicated by a
hat (ˆ), because it is only hypothetical. The new starting times have to be
within the time windows and the working hours, and if they do not satisfy
this, the insertion will not be feasible.

The arrival time l̂v and the starting time ŝv for the visit v is calculated in
line 6. It is a necessary condition that ŝv ≤ bv according to (3.4) for the
insertion to be feasible. It is also necessary that ŝv ≤ hr according to (3.6).

These are not the only conditions, because it should be investigated if the
succeeding visits can be pushed forward without violating any of conditions
(3.5) and (3.6). The arrival time l̂ipr

to the next visit ipr is calculated in
line 9 and the push forward of visit ipr is calculated in line 10. The push

forward is zero, if the caretaker was waiting more than l̂ipr
− lipr

minutes.

A push forward of the starting time will be performed, if l̂ipr
− lipr

> wipr
.

The push forward will be l̂ipr
− lipr

− wipr
.
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3.1.2 Finding the Cost of Inserting a Shared Visit

When inserting a shared visit v, the costs are calculated differently, because
the shared visits have to be inserted in two distinct routes. Instead of finding
the best route for the unscheduled visit, the best pair of routes is found.

The total additional travelling cost is found as t(v, r1, pr1) + t(v, r2, pr2)
using (3.7), and it is divided by 2 to make it comparable to the cost for a
not shared visit in (3.8), when choosing which visit to insert. If none of the
routes r1 and r2 has the regular caretaker for citizen zv, then the additional
cost is µ, because τ r1

zv
= 0 and τ r2

zv
= 0. If at least one of the caretakers is

regular at the citizen zv, there is no additional cost.

c1(v, r1, r2, pr1 , pr2) = (t(v, r1, pr1) + t(v, r2, pr2))/2 + (3.10)

µ(1 − τ r1
zv

)(1 − τ r2
zv

),

where r1 ∈ {j0, j1, . . . , jm−2}, r2 ∈ {r1 + 1, . . . , jm−1}, pr1 ∈ {0, 1, . . . nr1},
and pr2 ∈ {0, 1, . . . nr2}.

For each pair of routes r1 and r2 the best pair of positions p∗r1
and p∗r2

is
found.

c1(v, r1, r2, p
∗
r1
, p∗r2

) = min c1(v, r1, r2, pr1 , pr2)

st. pr1 ∈ {0, 1, . . . , nr1},
pr2 ∈ {0, 1, . . . , nr2},

where r1 ∈ {j0, j1, . . . , jm−2} and r2 ∈ {r1 + 1, . . . , jm−1}.

Afterwards the best combination of routes r∗1 and r∗2 is found with the cor-
responding best pair of positions p∗r∗1

and p∗r∗2
.

c1(v, r
∗
1 , r

∗
2, p

∗
r∗1
, p∗r∗2 ) = min c1(v, r1, r2, p

∗
r1
, p∗r2

)

st. r1 ∈ {j0, j1, . . . , jm−2},
r2 ∈ {r1, . . . , jm−1}.

The regret measure c2(v) is again calculated, and it is divided by the number
of combinations of two routes m(m−1)/2 minus 1. Notice that there should
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be more than two routes, otherwise it will not be possible to calculate the
regret measure.

c2(v) =
1

m(m− 1)/2 − 1

∑

r1 6=r∗1 ,r2 6=r∗2

(c1(v, r1, r2, p
∗
r1
, p∗r2

)−c1(v, r∗1 , r∗2, p∗r∗1 , p
∗
r∗2

))

(3.11)

The costs c1(v, r1, r2, pr1 , pr2), c1(v, r1, r2, p
∗
r1
, p∗r2

) and c1(v, r
∗
1 , r

∗
2, p

∗
r∗1
, p∗r∗2

)
are initially set to a sufficiently large number M in line 22, 5 and 2. After
each new combination of the positions pr1 and pr2 , it is investigated in line
24 if the new cost c1(v, r1, r2, pr1 , pr2) is smaller than the currently best
cost c1(v, r1, r2, p

∗
r1
, p∗r2

). Similarly after each combination of routes it is
investigated in line 29 if the cost of that combination c1(v, r1, r2, p

∗
r1
, p∗r2

) is
better than the currently best cost c1(v, r

∗
1 , r

∗
2, p

∗
r∗1
, p∗r∗2

).

In algorithm 2 it is investigated what would happen, if a visit would be in-
serted at position pr1 in route r1 and position pr2 in route r2. The caretaker
r1 arrives at l̂v1 and caretaker r2 arrives at l̂v1 , which is calculated in line 8
along with the hypothetical starting time ŝv.

Afterwards the conditions (3.4) and (3.6) are checked for both caretakers on
the routes r1 and r2 in line 10. If the conditions are met, the investigation
continues. Firstly it is investigated if it is feasible to insert the visit at
position pr1 in route r1. The new arrival time l̂ipr1

to the next visit in route
r1 is calculated in line 11 and the push forward PFipr1

is calculated in line
12. It is in line 13 tried if the push forward is feasible. If it is feasible, it
is investigated if the visit can be inserted at position pr2 in route r2. It is
done in a similar manner by calculating the new arrival time l̂ipr2

for the
next visit in line 15 and the push forward PFipr2

in line 16. If the insertion

is infeasible then c1(v, r1, r2, pr1 , pr2) is set to M , otherwise it is calculated
as in (3.10).

3.1.3 When is it Feasible to Push a Visit Forward?

The conditions (3.4) and (3.6) are checked in algorithm 1 or 2. In algorithm
3 the other condition (3.5) of the feasibility conditions is checked together
with (3.6).

Algorithm 3 is a recursive function for checking the feasibility. In line 6 it
is checked if it is feasible to push visit ik forward. If it is a shared visit,
the function continues checking if it is feasible to push the other part ipr2

of
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Algorithm 2 findInsertionCostTwoEqualVisits(v)
1: feasibleInsertion = false
2: c1(v, r∗1 , p∗

r∗

1

, r∗2 , p∗
r∗

2

) = M

3: for r1 ∈ {j0, j1, . . . , jm−2} do

4: for r2 ∈ {r1 + 1, . . . , jm−1} do

5: c1(v, r1, r2, p∗r1
, p∗r2

) = M
6: for pr1

∈ {0, 1, . . . , nr} do

7: for pr2
∈ {0, 1, . . . , nr} do

8: Calculate l̂v1
and l̂v2

using (3.1) and ŝv using (3.3).
9: feasiblePosition = true
10: if ŝv ≤ bv and ŝv + dv ≤ min{hr1

, hr2
} then

11: l̂ipr1
= ŝv + dv + tzv,zipr1

12: PFipr1
= max{0, l̂ipr1

− lipr1
− wipr1

}

13: If pr1
< nr1

then feasiblePosition = isThePushForwardFeasible(PFipr1
,pr1

,

r1, r1,pr2
)

14: if feasiblePosition then

15: l̂ipr2
= ŝv + dv + tzv ,zipr2

16: PFipr2
= max{0, l̂ipr2

− lipr2
− wipr2

}

17: If pr2
< nr2

then feasiblePosition = isThePushForwardFeasi-

ble(PFipr2
,pr2

, r2,r1,pr1
)

18: end if

19: else

20: feasiblePosition = false
21: end if

22: c1(v, r1, r2, pr1
, pr2

) = M
23: If feasiblePosition = true then set feasibleInsertion = true and calculate

c1(v, r1, r2, pr1
, pr2

) using (3.10)
24: if c1(v, r1, r2, pr1

, pr2
) < c1(v, r1, r2, p∗r1

, p∗r2
) then

25: set c1(v, r1, r2, p∗r1
, p∗r2

) = c1(v, r1, r2, pr1
, pr2

) and p∗r1
= pr1

and p∗r2
= pr2

26: end if

27: end for

28: end for

29: if c1(v, r1, r2, p∗r1
, p∗r2

) < c1(v, r∗1 , p∗
r∗

1

, r∗2 , p∗
r∗

2

) then

30: set c1(v, r∗1 , p∗
r∗

1

, r∗2 , p∗
r∗

2

) = c1(v, r1, r2, p∗r1
, p∗r2

) and r∗1 = r1 and r∗2 = r2

31: end if

32: end for

33: end for

34: Calculate c2(v) using (3.11)
35: return c2(v), r∗1 , p∗

r∗

1

, r∗2 , p∗
r∗

2

and feasibleInsertion
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Algorithm 3 isThePushForwardFeasible(PFik , k, r, rf , kf )
1: feasible = true
2: if r = rf and k ≤ kf then

3: feasible = false
4: end if

5: if feasible and PFik
> 0 then

6: if sik
+ PFik

> bik
or sik

+ PFik
+ dik

> hr then

7: feasible = false
8: end if

9: if feasible and visit ik is shared with visit ipr2
in route r2 then

10: if sipr2
+ PFik

> bipr2
or sipr2

+ PFik
+ dipr2

> hr2
then

11: feasible = false
12: end if

13: if feasible and pr2
< nr2

− 1 then

14: PFipr2
+1

= max{0, PFik
− wipr2

+1
}

15: feasible = isThePushForwardFeasible(PFipr2
+1

, pr2
+ 1, r2, rf , kf )

16: end if

17: end if

18: if feasible and pr < nr − 1 then

19: PFik+1
= max{0, PFik

− wik+1
}

20: feasible = isThePushForwardFeasible(PFik+1
, k + 1, r, rf , kf )

21: end if

22: end if

23: return feasible

the visit equally forward. If this is feasible and ipr2
is not the last visit on

the route r2, the function investigates if the succeeding visits can be pushed
forward by calling itself with the next position and the push forward as
arguments in line 15.

If this also is feasible, and we are not at the end of route r the next push
forward is checked. The push forward of the next visit is calculated in line
19 as is it shown at page 256 in the article [Sol87].

PFik+1
= max{0, PFik − wik+1

}

If the waiting time at the next visit is greater than the length of the current
push forward, then the push forward is set to zero.

The numbers rf and kf indicate a forbidden route and position combination.
It is necessary to have this check in line 2, if the candidate routes r1 and r2
for a shared visit, already contain a shared visit.

The figure 3.6 illustrates a situation where a shared visit is tried inserted in
two routes r1 and r2, where there already is a shared visit. The candidate
positions are p1 and p2. If the other shared visit u is between p1 and p2 a
cycle can arise in algorithm 3, but this is avoided by defining position p2 in
route r2 as forbidden when pushing forward from position p1 in route r1.
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Figure 3.6: When pushing forward from position p1 in route r1 it is forbidden to meet
a position less than or equal to position p2 in route r2

If the push forward is not feasible or the visit investigated is at the end
of the route or the push forward is 0, then the recursion stops and returns
whether the push forward is feasible or not.

3.1.4 Inserting a Not Shared Visit

When inserting a not shared visit, its properties are set according to the
new position. The arrival, waiting, starting and finishing time are set in line
1, 2, 3 and 4 and v is inserted in line 5 in algorithm 4.

Algorithm 4 insertOneVisit(v, pr, r)
1: set lv and sv according to (3.1) and (3.2)
2: set sv = max{av , lv}
3: set wv = sv − lv
4: set fv = sv + dv

5: Insert v at position pr in route r
6: V̄ = V̄ \ v
7: V = V ∪ v
8: if pr < nr − 1 then

9: calculate l̂ipr+1
= fv + tzv ,zipr+1

10: PFipr
= max{0, l̂ipr+1

− lipr+1
− wipr+1

}

11: set lipr+1
= l̂ipr+1

12: pushTheSucceedingVisitsForward(PFipr+1
, pr + 2, r);

13: end if

In algorithm 4 the next visit is used to find the push forward in line 9. When
finding the push forward, the arrival, waiting, starting and finishing time for
the next visit is also set.

If the visit after the next visit is not the last visit in the route, the recursive
function in algorithm 6 is called.

3.1.5 Inserting a Shared Visit

The algorithm 5 corresponds very much to algorithm 4. The only difference
is that everything is done twice: once for each part v and w of the shared
visit.
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Algorithm 5 insertTwoEqualVisits(v, w, pr1 , pr2 , r1, r2)
1: set lv and lw according to (3.1)
2: set sv = sw according to (3.3)
3: set wv = sv − lv and ww = sw − lw
4: set fv = sv + dv and fw = sw + dw

5: Insert v at position pr1
in route r1

6: Insert w at position pr2
in route r2

7: set V̄ = V̄ \ {v, w}
8: set V = V ∪ {v, w}
9: if pr1

< nr1
− 1 then

10: calculate l̂ipr1
+1

= fv + tzv ,zipr1
+1

11: PFipr1
+1

= max{0, l̂ipr1
+1

− lipr1
+1

− wipr1
+1

}

12: set lipr1
+1

= l̂ipr1
+1

13: pushTheSucceedingVisitsForward(PFipr1
+1

, pr1
+ 1, r1);

14: end if

15: if pr2
< nr2

− 1 then

16: calculate l̂ipr2
+1

= fw + tzv ,zipr2
+1

17: PFipr2
+1

= max{0, l̂ipr2
+1

− lipr2
+1

− wipr2
+1

}

18: set lipr2
+1

= l̂ipr2
+1

19: pushTheSucceedingVisitsForward(PFipr2
+1

, pr2
+ 1, r2);

20: end if

3.1.6 Push the Succeeding Visits

The algorithm 6 calculates the current push forward PFipr
from the previous

push forward PFipr−1 as seen in line 6. The succeeding visits are pushed by
using the same function again. The algorithm is recursive and stops if the
end of a route is reached.

Algorithm 6 pushTheSucceedingVisits(PFipr
, pr, r)

1: set sipr
= sipr

+ PFipr

2: set wipr
= sipr

− lipr

3: set fipr
= fipr

+ PFipr

4: if pr < nr − 1 then

5: set lipr+1
= lipr+1

+ PFipr

6: PFipr+1
= max{0, PFipr

− wipr+1
}

7: pushTheSucceedingVisitsForward(PFipr+1
, pr + 1, r);

8: end if

9: if visit ipr is shared with visit ipr2
in route r2 then

10: PFipr2
= sipr

− sipr2

11: set sipr2
= sipr2

+ PFipr2
and set wipr2

= sipr2
− lipr2

12: set fipr2
= fipr2

+ PFipr2

13: if pr2
< nr2

− 1 then

14: set lipr2
+1

= lipr2
+1

+ PFipr

15: PFipr2
+1

= max{0, PFipr2
− wipr2

+1
}

16: pushTheSucceedingVisitsForward(PFipr2
+1

, pr2
+ 1, r2);

17: end if

18: end if

In algorithm 6 the current visit may be a shared visit.
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If one half of a shared visit is pushed, the other half should also be pushed,
if it is not already pushed forward. Therefore the push forward for the other
half equals the difference in starting times in line 10. Figure 3.7 illustrates
how firstly visit 1, 2, 3 and 4 are pushed forward. Afterwards visit 5, 6, 7
and 8 are pushed forward, and then the visits 3 and 4 once more.
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Figure 3.7: A shared visit may be pushed more than once

3.2 Example of the Heuristic

In this section the heuristic is illustrated by a small example. There are 5
citizens in the example. The locations of the citizens are displayed in figure
3.8.

Ingeborg

Villy
Erna

Henry

Margrethe

office

Figure 3.8: Map of the 5 citizens

and the corresponding distance matrix is in table 3.1

The properties of the visits are given in table 3.2. The time is relative and
it is set to the number of minutes after 8 am. For instance the time 480 is a
representation of the time 4 pm. Visit 12 and 13 constitute a shared visit,
and there is one visit 0 and 14 for each caretaker.

There are only two caretakers in this example, a substitute caretaker is
added, because it is not possible with the heuristic to put all the visits into
only two routes. The caretaker 0 is regular at citizen 1 and 2, the other
caretaker 1 is regular at citizen 3, 4 and 5, while the last caretaker 2 is not
regular at any of the citizens, because he/she is a substitute.
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Office Erna Ingeborg Villy Margrethe Henry

Office 0 4 8 7 6 7

Erna 4 0 5 7 15 10

Ingeborg 8 5 0 5 10 8

Villy 7 7 5 0 9 7

Margrethe 6 15 10 9 0 4

Henry 7 10 8 7 4 0

Table 3.1: The distances in the small example with 5 citizens

Visit i Opening time ai Closing time bi Duration di Citizen zi

0 0 0 0 Office

1 0 60 90 Erna

2 180 270 60 Erna

3 420 480 30 Erna

4 60 120 60 Ingeborg

5 270 300 30 Ingeborg

6 300 330 90 Ingeborg

7 0 60 50 Villy

8 240 330 30 Villy

9 30 90 30 Margrethe

10 390 360 60 Margrethe

11 180 270 60 Henry

12 0 120 60 Henry

13 0 120 60 Henry

14 480 480 0 Office

Table 3.2: The properties of the visits in the example

The extra cost µ is set to 15. This is the price in minutes for not having the
regular caretaker at a citizen.

Initially the three caretakers only have a start and an end visit at the office
in their routes. The initial schedule without the visits at the office is shown
in figure 3.9 and it is observed that the caretakers are only waiting. The
waiting time is illustrated as vertical zigzag lines.

The visit to be inserted is found by calculating the cost c2(v) as in (3.9).
Using (3.8) the costs c1(v, r, pr) are calculated. The visit 1 has the best route
r∗ = 0 with position p∗r∗ = 1, where the cost is c1(v, r

∗, p∗r∗) = c1(1, 0, 1) =
toffice,Erna + tErna,office − toffice,office = 8. If inserted in route r = 1 or
r = 2 the best and only position is p∗1 = p∗2 = 1. The costs are c1(1, r, p

∗
r) =
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Figure 3.9: The initial schedule for the 3 caretakers

c1(1, 1, 1) = c1(1, 2, 1) = 8 + 15 = 23.

c2(1) =
1

m− 1

∑

r 6=r∗

(c1(1, r, p
∗
r)− c1(1, r∗, p∗r∗)) =

1

3 − 1
(23− 8+23− 8) = 15

There are other visits with the same price, but visit 1 is the first, and hence
it is inserted as illustrated in figure 3.10, where the light grey box indicates
the working time.
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Figure 3.10: The schedule for the 3 caretakers with visit 1

After inserting more visits, the schedule is now as shown in figure 3.11

The shared visit v consists of visit 12 and 13. The citizen is Henry. The cost
of inserting visit 12 and 13 is found. There are m(m− 1)/2 = 3(3 − 1)/2 =
3 combinations of routes with the caretakers (0,1), (0,2) and (1,2). For
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Figure 3.11: The schedule for the 3 caretakers with more visits

instance the best positions in route 1 and 2 are p∗1 = 3 and p∗2 = 1. The cost
is calculated with (3.10)

c1(v, 1, 2, p
∗
1, p

∗
2) =

c1(v, 1, 2, 3, 1) = (tMargrethe,Henry + tHenry,Henry − tMargrethe,Henry

+tOffice,Henry + tHenry,Office − tOffice,Office)/2

+15(1 − 1)(1 − 0)

= (4 + 0 − 4 + 7 + 7 − 0)/2 + 0 = 7

All the other costs are

c1(v, 0, 1, p
∗
0, p

∗
1) = c1(v, 0, 1, 2, 3) = 10 and

c1(v, 0, 2, p
∗
0, p

∗
2) = c1(v, 0, 2, 2, 2) = 17

The best combination is r∗1 = 1 and r∗2 = 2 and c2(v) = 1
3−1(10−7+17−7) =

6.5. This is the largest value of c2(v) for the remaining not scheduled visits.
Therefore the visits 12 and 13 are inserted as in figure 3.12.

The final schedule is seen in figure 3.13, where luckily all the citizens get a
visit from their regular caretaker. Henry gets a shared visit from caretaker
1 and 2, where number 1 is regular, but number 2 is not regular. This is not
punished in the cost. It is enough if only one of them is regular.
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Figure 3.12: The schedule for the 3 caretakers with the shared visit consisting of visit
12 and 13
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Figure 3.13: The schedule for the 3 caretakers with all visits

3.3 Complexity

The worst case computation time is O(n4), because in each of the O(n)
iterations, it is tested for each of O(n) visits if can be inserted in one of the
O(n) positions. When testing if a visit can be inserted, the already inserted
visits can be pushed. In the worst case scenario O(n) visits are pushed.
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Chapter 4

Tabu Search

Tabu search is based on the concept of performing changes to a solution
in the attempt to obtain an improved solution. The change of a solution
is called a move from one solution to another. The solutions that can be
reached from a solution x by making moves is called a neighbourhood . More
formally a neighbourhood function N can be described as a mapping from
the solution space S to the same solution space S

N : S → S

The argument for the neighbourhood is a solution x ∈ S and the output is a
subset of S. The neighbourhood of x is denoted N(x), where each x̂ ∈ N(x)
is a neighbour to x.

The slides [Sti05] give a set of useful tools for evaluating neighbourhoods
and how they are used. The special issues to consider when using neigh-
bourhoods are.

Coverage: Whether the neighbourhood is able to cover the whole solution
space by one type of move, or if several types of moves are required.
It is not necessarily bad when the whole solution space can not be
reached, if the good solutions can be reached

Guidance: Should the best solutions in the neighbourhood be chosen? It
could have both advantages and disadvantages. An advantage would
be obtaining good solutions faster, but the disadvantages are more
computation time or maybe misleading the search.
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Continuity : Neighbourhood solutions should be related, otherwise the
search becomes random. A relationship could be that a good solu-
tion x implies a good neighbour x̂.

Size: The size of the neighbourhood is of importance, because it can both
be too small or too big. A neighbourhood too small can not perform
a good search and the risk of ending up in a locale optimum arises.
Neighbourhoods too large demand too much computational effort.

Feasibility : It should be considered whether the good solutions are on the
border to infeasibility, and if it should be avoided to obtain infeasible
solutions. In the case, where infeasible solutions are obtained, how
should they be handled?

Local search is based on the idea to find better solutions by making moves
and looking in the neighborhood for better solutions. There is a problem of
guidance if one always go from worse to better solution, because it is possible
to get stuck in a locale optimum. Figure 4.1 illustrates this situation, where
the local search is stuck in a valley.

Objective value

PSfrag replacements

x

Figure 4.1: A locale minimum

To avoid ending up in a locale optimum, it is allowed to go to worse solutions.
This may cause a new problem; cycling , which means that the search revisits
solutions, that have been visited before. This can be avoided by having a
tabu strategy . The tabu search has a tabu strategy, which for instance can
forbid the solutions in the last iterations or the last moves to be used again.
Which tabu strategy is best depends on the type of the problem.

Tabu search is a metaheuristic. A metaheuristic a heuristic, which can be
adapted to different problems. As other heuristics a metaheuristic does not
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necessarily find the optimal solution. The tabu search has showed to be very
efficient for many kinds of problems, and is therefore one of the most used
metaheuristics.

In the VRPTWSV, it is difficult to perform a move without violating any of
the constraints, hence it would be a good idea to allow infeasible solutions.
One might also expect the good solutions to lie on the border of feasibility.
The question is how to treat the infeasible solutions? The article [CLA01]
gives an answer to this question, where unified tabu search is introduced
on the VRPTW. The main feature of this method is that the problem is
relaxed in the same way as Lagrangean relaxation, where it is possible to
violate certain constraints, and the violation is penalized. The penalties
varies dependent on the number of times a certain constraint is violated.

In this case with VRPTWSV it is possible to violate the constraints (2.22),
(2.24) and (2.27).

Relaxing the constraint (2.27) involve accepting starting a visit later than
the latest starting time bi for every visit i ∈ V. The cost for every minute
of violation is α. The total violation is given in (4.1).

A(x) =
∑

i∈V

max{si − bi, 0} (4.1)

Relaxing the constraint (2.22) is the same as allowing the two separate
visits in a shared visit to start at different times. The price for this violation
is β per minute. The total violation is given in (4.2). Notice that the
multiplication by 1/2, which is applied, because every pair of visits (i,j) is
included twice in the summation.

B(x) =
1

2

∑

i,j∈V

ωij|si − sj| (4.2)

Relaxing the last constraint (2.24) is equivalent to allowing caretakers to
work later than the latest finishing time hr for every r ∈ R. The price per
minute for this violation is γ. The total violation is given in (4.3), where
fr = max{fi|i ∈ r}.

G(x) =
∑

r∈R

max{fr − hr, 0} (4.3)
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The prices α, β and γ are positive and they are modified after each iteration
in the search. The positive factor δ is the modification factor. If a constraint
among (2.27), (2.22) or (2.24) is violated, it implies that the corresponding
price α, β or γ is multiplied by (1 + δ). If the constraint is not violated, it
implies that the price will be divided by (1 + δ).

The already known cost function C(x) is given as T + µΨ in the objective
function (2.16) in the mathematical model for the VRPTWSV. The cost
C(x) forms together with A(x), B(x) and G(x) the new cost F (x) as in
(4.4). The use of F (x) is explained in section 4.4.

F (x) = C(x) + αA(x) + βB(x) + γG(x) (4.4)

Notice that the prices α, β and γ in the article [CLA01] correspond to
violations, that are different from the violations in this project, namely the
violation of the maximum load capacity at the vehicles, the violation of the
routes’ durations and the violation of the latest starting times at customers.

Algorithm 7 shows the pseudo code for the tabu search, where the method
starts in an initial solution x. In this project the initial solution is a feasible
solution found by the insertion heuristic described in chapter 3. The moves
and neighbourhood functions used in this project are introduced in section
4.1 and 4.2.

Algorithm 7 Tabu Search
1: x is a initial solution
2: x∗ is the best feasible solution currently
3: if x is feasible then

4: x∗ := x
5: C(x∗) := C(x)
6: else

7: C(x∗) := ∞
8: end if

9: while stop criterion not reached do

10: choose the best solution x̂ ∈ N(x), which is not tabu or satisfies the aspiration criteria
11: if x̂ is feasible and C(x̂) < C(x∗) then

12: x∗ := x̂
13: C(x∗) := C(x̂)
14: end if

15: Update α, β and γ
16: x := x̂
17: end while

For every iteration is the best non-tabu solution in the neighbourhood cho-
sen. The section 4.3 describes what characterizes a non-tabu solution. The
evaluation used for finding the best solution includes a factor for diversifying
the search, which will be introduced in the section 4.4. If the best solution
turns out to be tabu, it can still be chosen, if it satisfies the aspiration cri-
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terion described in section 4.5. The stopping criterion for the method is
introduced in section 4.6.

In the article [CLA01], they suggest violating the latest starting times for
visits, but not the earliest starting times, and this is discussed in section
4.7.

The section 4.8 contains a discussion on how the starting times of the visits
in a route are updated, when removing a visit from a route or inserting a
visit in a route.

4.1 Moves

A move is a way to get from one solution to another solution in the solution
space. It is important to ensure a continuity when going from one solution to
another, otherwise the search will be totally random. The moves represented
in this section ensure continuity. The primary moves in the VRPTW can
be split up into 3 different types

1. Relocating vertices

2. Exchanging vertices

3. Exchanging edges

These moves are described in [Sav92] page 151-153, where they are named
relocate, exchange and cross.

The relocation of vertices between routes is illustrated with two routes in
figure 4.2 where the vertex i is relocated from the upper route to the lower
route.
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Figure 4.2: Relocating vertex i

The relocation of vertices can also be applied within a route. When dealing
with VRPTW the relocation between routes is preferred, because of the time
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windows and the opportunity of exploring more different new solutions. By
performing the relocation between routes, one can also end up having made
a relocation within a route. Or considered a new variant of relocating in
[Or76], which introduced relocating a chain of consecutive vertices instead
of only moving one vertex.

Exchanging vertices are illustrated at figure 4.3, where the two vertices i and
j are exchanged. This correspond to performing a relocating twice, where
the vertex i is relocated in one move and the other vertex j is relocated in
the other move.
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Figure 4.3: Exchanging vertices

An extension of exchanging vertices could start in the idea of relocating
chains of vertices from one route to another, where a chain of the last visits
in one route is exchanged with another chain of the last visits in another.
This exchange corresponds to an exchange of edges also called a cross as
seen in figure 4.4, where the edges (i, i+1) and (j, j+1) are exchanged with
the edges (j, i + 1) and (i, j + 1).
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Figure 4.4: Exchanging edges

Exchanging two edges is also named a 2-opt exchange. This procedure can
also be expanded to for instance a 3-opt exchange and so on. These ex-
changes were introduced by Lin in [Lin65] For each move there are two op-
portunities for how to perform the move: within a route or between routes.
There first opportunity will only perform well in problems, where the time
windows of the visits are very wide. This opportunity will not be used,
because the VRPTWSV does not necessarily have wide time windows. The
other opportunity fits well the VRPTWSV, when the cost ψ is large, be-
cause one has the opportunity of moving visits from routes with non-regular
caretakers to routes with regular caretakers.
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All the moves presented here are all simple and quick moves, but the relo-
cating is the most simple, because the other two moves can be performed
by doing more than one relocation. The thesis [Brä01] compares different
between-routes improvement heuristics. The results of the comparison is
listed in table 9, page 116 in the thesis [Brä01]. The results for relocation,
exchanging of nodes or edges show that the relocation move seems to per-
form better than the other quick moves. Based on these good results, the
relocation move is chosen to be applied in the tabu search in this project.

4.1.1 The Implementation of a Move

In the VRPTWSV only the unlocked visits can be moved. The locked visits
e.g. start visits and breaks are locked to a caretaker, and can therefore not
be moved.

Performing a move involves two functions. One for removing a visit v from
a route r̄ and one for inserting the visit in another route r∗. The insertion
function in algorithm 4 in chapter 3 is used again without the sets V and V̄.
The push forward function in algorithm 6 is also used again with the change
that it only performs the push forward within one route. The push forward
does not pay attention to the starting time of the shared visits, because
the starting times do not need to be synchronous, when constraint (2.22) is
relaxed. The starting time of a inserted visit i is set to max{li, ai}, where
the arrival time li is given by (3.1). The insertion and push forward function
is changed to calculate the new total violations of latest starting times given
in (4.1), the new total violation of same starting times for shared visits given
in (4.2) and the new total violation of latest finishing times for the workers
given in (4.3).

The new total violation of latest starting time A(x̂) is calculated by adding
the differences between the old and the new violations for all visits in route r∗

succeeding the inserted visit, including the inserted visit v and the previously
succeeding visits in r̄. The calculation is

A(x̂) = A(x) +
∑

k

(max{ŝk − bk, 0} − max{sk − bk, 0}),

where k belongs to the set of visits including v and the succeeding visits in
route r∗ or the previously succeeding visits in route r̄.

The new total violation of the synchronous starting times for a shared visit
B(x̂) is only calculated if the inserted visit v or if one of the succeeding visits
i in the route r∗ or r̄ is shared. In such case the difference between the old
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and new violation of synchronous starting times for those eventually shared
visits is added to the total violation of the synchronous starting time for the
shared visits in this manner

B(x̂) = B(x) +
∑

k,j

(|ŝk − ŝj| − |sk − sj |)

where k is a visit in the set of the shared visits which may include v and the
succeeding visits in route r∗ or the previously succeeding visits in route r̄ if
they are shared and j is the other half of each eventually shared visit k.

The new total violation of the latest finishing time is calculated by finding
the old and new latest finishing times in the route r∗ and r̄. The difference
is added to the total violation of the latest finishing times

G(x̂) = G(x) + max{f̂r∗ − hr∗ , 0} − max{fr∗ − hr∗ , 0} +

max{f̂r̄ − hr̄, 0} − max{fr̄ − hr̄, 0}

where fr∗ is the finishing time of the last visit in route r∗ in the old solution
x and the f̂r∗ is the finishing time of the last visit in the route r∗ in the
solution x̂, which could be a new visit, if v is inserted at the last position.
The notation is similar for route r̄.

When removing the visit v, a push-back function is defined. It is very simple.
The visit after v has defined a new starting time, which is the maximum of
the new arrival time and the earliest starting time. The difference of the old
and the new starting time is the push backward for all the succeeding arrival
times in the route considered. The new starting times of the succeeding
visits k is max{lk, ak}. This push backward function does again not pay
any special attention to the shared visits, because the starting times do not
need to be synchronous, when constraint (2.22) is relaxed.

The push functions used in the implementation of a move do only pay atten-
tion to those times, that are delayed e.g. the starting times greater than the
latest starting times and the finishing times greater than the latest finishing
times. The push functions can not pay attention to the starting times, that
can be too early e.g. a part of a shared visit starts before the other. In sec-
tion 4.7 it is suggested how to avoid this problem by solving a LP-problem.
A comparison of the strategies is in section 4.8, where the problem with the
push functions is illustrated by an example in subsection 4.8.1.
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4.2 Neighbourhoods

The size of the neighbourhood can be too small or too big. Different sizes
of neighbourhoods are tried in this project for making a comparison.

The whole neighbourhood N(x) would be to take all unlocked visits in x
and try to relocate them to all other positions. This neighbourhood is very
big, because each visit v can be inserted in O(n) positions, and because
there are unlocked O(n) visits there would be O(n2) solutions in N(x). The
three neighbourhoods N1, N2 and N3, which are smaller parts of the whole
neighbourhood, are firstly investigated.

1. The first neighbourhood N1 takes a random visit among the unlocked
visits and finds a random route r∗ different from r̄ for insertion. There
are approximately n/m positions in a route, which is equivalent to ap-
proximately n/m solutions in N1(x), so the size of the neighbourhood
is O(n).

2. The second neighbourhood N2 also takes a random visit among the
movable visits and tries all other routes different from r̄ for insertion.
There are O(n) solutions in N2(x)

3. The last neighbourhood N3 takes a random route r̄ where it uses all
the visits in r̄ to be inserted in all other routes different from r̄. There
are approximately n2/m solutions in N3(x), so the size of the neigh-
bourhood is O(n2).

Using random functions for finding v, r̄ or r∗ ensures better coverage, where
solutions spread out in the solution space S can be reached.

Using the approach with smaller neighbourhoods N1, N2 and N3 turns out
not to be suitable for this type of problem, where it is possible to violate
both the latest starting times for the visits, the latest working hours for the
caretakers and the synchronous starting times for shared visits. The reason
for this is found in the randomness. In neighbourhood N1 the situation can
arise where many time windows are violated, but because of the random
function there is very little chance of finding all the visits, where the time
windows are violated, and move them in a better position.

In neighbourhood N2 the chance of finding the visits, where the time win-
dows are violated, is larger and it is even larger for the neighbourhood N3.
Equally the chance of finding the route, where the working times is violated
is also increasing from N1 to N2 and more to N3. The figure 4.5 shows an
instance, where the vertical axis show the total violations versus the number
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Figure 4.5: The solid line shows the violation on time windows, the dotted line shows
the violation on synchronous starting times for shared visits and the dashed line shows
the violation on working hours

of iterations. The instance is data from 17th of February, with µ = 15 and
the tabu search is performed with θ = 10, λ = 2 and δ = 1.

It is observed leftmost in figure 4.5 how the total violation for time windows,
the starting times for shared visits and workinghours is increasing very much.
In the middle in figure 4.5, the plot shows less increasing violations.

The rightmost plot shows how the total violations are variating much more,
but only initially they all are zero, which means no feasible solution is found.

The example in figure 4.5 illustrates why none of the neighbourhoods N1,
N2 or N3 are used for further research. Instead the whole neighbourhood is
used in the tabu search.

4.3 Tabu Strategy

The tabu strategy used in this project is the one represented in the article
[CLA01]. When removing a visit v from a route r̄, it is tabu to reinsert
the visit for the next θ iterations. This strategy is very appropriate for
the VRPTWSV, because it uses only a small part of the solutions without
saving the whole solution, which is another tabu strategy. The visit v in r̄
is called an attribute of the previous solution, and hence the tabu strategy
is based on attributes.

The number of iterations θ is static in the article and in this project, but
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one could think of situations, where a dynamic θ would be preferable e.g.
depending on the search. Good solutions can force a small θ and bad solution
can force a larger θ, see the article [CR97] on reactive tabu search.

4.4 Diversification

To ensure a coverage of the solution space, it is necessary to introduce a
diversification in the tabu search. In the article [CLA01] they introduce a
diversification based on the parameter ρv

r , which is the number of times a
visit v has been added to a route r during the search. For every solution
the values ρi

r are summed for the visits in all the routes.

Diversification also depends on the size of the problem indicated by
√
nm,

because the larger the problem is, the larger is the need for diversification.
The need for diversification is also larger if the solution value C(x̂) is large,
because the solution is of poor quality. The need for diversification is finally
also determined by a diversification factor λ, which is adjustable, because
the need for diversification can depend on the problem structure.

The total penalty function is

P (x̂) =

{

λC(x̂)
√
nm

∑

i,j∈V

∑

r∈R ρ
i
rxijk if F (x̂) ≥ F (x)

0 otherwise
(4.5)

The penalty function P (x̂) is zero, if the solution x̂ is as good or better than
the previous solution.

When choosing a solution x̂ in the neighbourhood N(x) the function F (x̂)
in 4.4 is used as well as a new penalty function P (x̂). The best solution in
the neighbourhood N(x) is the one with the smallest F (x̂) + P (x̂) value.

4.5 Aspiration Criterion

The aspiration criterion is the condition for when to override the tabu status
of a best solution x̂ in the neighbourhood N(x). Stefan Røpke suggests a
number of different conditions in the slides [Røp05].

• When the solution x̂ is the global best.

• When the solution x̂ is the best in the region, e.g. the region of certain
properties.
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• When the solution x̂ is the recent best in the recent iterations

The aspiration criterion gives a guidance to the search. The second aspira-
tion criterion is the one chosen in the article [CLA01] and is therefore also
used in this project, because the VRPTWSV is very similar to the problem
in the article. The first aspiration criterion has been tried in this project,
but is does not perform well, because the tabu strategy is based on the
attributes. If the costs F (x̂1) or F (x̂2) of the solutions x̂1 or x̂2 with v in
route r∗ or in r̄ are lower that the best known cost F (x∗), the visit v can be
moved back and forth between the routes r∗ and r̄ according to aspiration
criterion 1, for many iterations until α, β and γ are large enough for the
costs F (x̂1) or F (x̂2) not to be smaller than F (x∗) anymore. Therefore the
aspiration criterion should be based on the attributes. For each attribute is
the best known cost saved, and when an attribute is tabu, it is checked if
the solution cost is better than the best known for that attribute.

4.6 Stopping Criterion

There are many possibilities for stopping criterions, and some of them are
listed here.

• No. of iterations

• No. of iterations without improvement

• Time

The first stopping criterion is the one used in this project, because it is easy
to apply and interpretate.

4.7 A New Relaxation: LP-model

The tabu search includes push functions, which do only pay attention to
delayed starting times. Instead of using push functions, when inserting
or removing a visit, a LP-problem can be solved. The LP-model can be
modelled in order to pay attention to the starting times, which are too
early.

The tabu search heuristic uses the condition, that the good solutions may be
on the border to infeasilibity in the VRPTWSV. It only uses the part of the
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border where the latest starting time at a visit is violated, the latest finishing
time at a route is violated or the synchronous starting times for shared visits
are violated. The figure 4.6 illustrates the situation. The feasible solution
space is indicated by a thick line surrounding it. The thick line indicates
the border to infeasibility. The dotted line is the border surrounding the
solutions reached during the tabu search. Some of solutions were infeasible,
because they were outside the feasible solution space, but notice that the
border to infeasibility is not reached all over solution space.

Figure 4.6: The solution space

The rest of the border to infeasibility is used to spread the search, where also
the earliest starting time at visit can be violated and the earliest starting
time at a route can be violated. It correspond to removing the constraints
(2.26) and (2.23) in the mathematical model of the VRPTWSV model. The
figures 4.7, 4.8 and 4.9 illustrate the scenarios which can arise.

Instead of only violating the latest starting time for the visits, it could also
be possible to violate the earliest starting time as seen in figure 4.7, where
the three possible scenarios are depicted. The new total violation of the
time windows is Â.

Â(x) =
∑

i∈V

(max{ai − si, 0} + max{si − bi, 0}) (4.6)

As seen in figure 4.8 it is be possible to violate both the latest finishing time
and the earliest starting time. The earliest starting time is sr = min{si|i ∈
r} and the latest finishing time is fr = max{fi|i ∈ r}. The total violation
of the working hours is given in (4.7).

Ĝ(x) =
∑

r∈R

(max{gr − sr, 0} + max{fr − hr, 0}) (4.7)
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The violation of the synchronous starting time for shared visits is already
seen in the beginning of this chapter, and is displayed in figure 4.9. The
total violation of this constraint is still

B̂(x) = B(x) =
1

2

∑

i,j∈V

ωij|si − sj|

Time
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Figure 4.9: The two scenarios for the couple of shared visits i and j

When inserting a visit v in a given position in a route r∗, the starting time
of the inserted visit can be set in various ways. The starting time of the visit
interacts with the other visits in the route r∗. Instead of ”just” setting the
starting time for v and letting the other visits adapt (be pushed forward)
to that starting time, the LP-model (4.8)-(4.13) finds the starting times for
all the visits in the route where the objective is to minimize the violation
of the time windows, working hours and starting times for shared visits for
that route.

minα
∑

i∈r∗

(ui + yi) + β
∑

i∈r∗

qi + γ(er∗ + kr∗) (4.8)
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si + di = fi ∀ i ∈ route r∗ (4.9)

fi +
∑

z1z2

σiz1σjz2tz1z2 −M(1 − xijr∗) ≤ sj ∀ i, j ∈ route r∗(4.10)

ai − si ≤ ui ∀ i ∈ route r∗ (4.11)

si − bi ≤ yi ∀ i ∈ route r∗ (4.12)

gr∗ − si ≤ er∗ ∀ i ∈ route r∗ (4.13)

fi − hr∗ ≤ kr∗ ∀ i ∈ route r∗ (4.14)

(si − sj)ωij ≤ qi ∀ i ∈ route r∗ (4.15)

(sj − si)ωij ≤ qi ∀ i ∈ route r∗ (4.16)

si, ui, yi, qi, er∗ , kr∗ ≥ 0 ∀ i ∈ route r∗ (4.17)

The model uses the information on the order of the visits in the route to
decide when to let the visits start. The model is also used for the route
r̄, where the visit v is removed, instead of ”just” pushing the visits back.
Notice that if the visits i and j constitute a shared visit, the starting time
sj for the other visit is a parameter.

4.7.1 Implementation of a Move

The solution x is changed to the solution x̂ by performing a move consisting
of removing visit v from route r̄ and inserting it in route r∗. The LP-model
(4.8)-(4.13) can be solved to optimality for both the route r̄ and r∗ using a
solver, e.g. Cplex .

After solving the LP-problems the total violations Â(x), B̂(x) and Ĝ(x)
are updated in another way than the one represented in subsection 4.1.1,
because not only the succeeding visits in r∗ after v change their starting
times and the previously succeeding visits in r̄, but all visits in both r∗ and
r̄.

The total violation of the time windows is updated by calculating the dif-
ference between the old and the new violation of the time windows for all
the visits in the routes r∗ and r̄. The difference is added to Â.

Â(x̂) = Â(x) +
∑

i∈r∗,r̄

(ûi − ui + ŷi − yi)

where ui = max{ai − si, 0} and yi = max{si − bi, 0}, which are given in the
optimal solutions for the LP-problem in (4.8)-(4.13).
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The updating of the time differences between the shared visits is calculated
using the old and new violation for the shared visits in the routes r∗ and r̄.

B̂(x̂) = B̂(x) +
∑

i∈r∗,r̄

(q̂i − qi)

The total violation of working hours is updated after inserting visit v in
route r∗ by using the old and the new violation in that route.

Ĝ(x̂) = G(x) +
∑

r∈{r∗,r̄}

(k̂r − kr + êr − er)

The optimal solutions found by a solver will be used for setting the start
values for the visits in the routes r∗ and r, and there is no need for a push
forward or backward function. This tabu search approach with solving a LP-
model is implemented, but because of lack of time, it has not been tested.

4.8 The Strategies for Inserting and Removing a

Visit

When inserting visit v in route r∗ or removing v from route r̄, new starting
times for some of the visits are found. There are different strategies for
finding the new starting times. In this section 3 kinds af strategies will be
compared.

Strategy 1: The starting times for the visit v, the succeeding visits in
route r∗ and the previously succeeding visits in route r̄ are found by
using push functions.

Strategy 2: The starting times for all visits in route r∗ or r̄ are found by
using a LP-model.

Strategy 3: The starting times for all visits in all routes are found by
using a LP-model.

4.8.1 Strategy 1

When inserting a visit v, its new starting time is found, while the succeeding
visits are just pushed forward. The same problem arises when removing a
visit from route r̄. The succeeding visits in route r̄ are just pushed backward.
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The new starting times found are the earliest possible, and in this subsection
it is shown how it in some cases is the best and in other cases it is not the
best.

If there are no shared visits in the data, the solution can only be infeasible
when the latest starting time bi or the latest finishing time hr is violated.
This is only true, when the arrival times are set according to (3.1) and the
starting times are max{li, ai}. The starting times are set to be as soon as
possible, which is also a good idea, if one wants to minimize the violations.
The example in the figures 4.10 and 4.11 explains why.
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Figure 4.10: The cost

The example in figure 4.10 shows how the visit 1 is inserted in route r∗ before
visit 2, which is pushed forward. Their time windows are [a1, b1] and [a2, b2].
The latest finishing time hr∗ for this route r∗ is assumed to be sufficiently
late to avoid being violated.

The price α for violating a latest starting time bi is set to α = 2. The
figure 4.11 shows the violation cost for violating the latest starting times as
a function of the starting time s1. When inserting the visit 1 at its earliest
feasible insertion time s1 = 0, the violation costs are zero, as shown in
figure 4.11. After 5 minutes b2 is violated and the cost increases, and after
10 minutes also b1 is violated and the slope of the cost function increases
again.

This example in the figures 4.10 and 4.11 illustrates, why the best starting
time is earliest possible when it is only possible to violate the latest starting
time at a visit and the latest finishing time at a route.

In the first tabu search, it was possible to violate the latest starting time bi,
the latest finishing time fr and that the starting times for the shared visits
have to be synchronous. The earliest possible starting time max{li, ai} is
used when inserting visits, even though the following example in figure 4.12
and 4.13 shows, that it is not always the best.
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When the data includes shared visits, and it is possible to violate the syn-
chronous starting times for shared visits the violation cost is not necessarily
increasing monotonously. An example could be having a shared visit in a
route, where a visit is inserted before the shared visit. The shared visit
on this current route starts too early in comparison with the other part of
the shared visit, which is placed in another route. Therefore it might be
preferable to start the inserted visit later to push the shared visit closer to
its other half.

The figure 4.12 shows an example of how the visits can be situated after
inserting visit 1 at its earliest possible starting time.

The visits 1 and 3 are not shared visits with the time windows [a1, b1] and
[a3, b3]. The visits 2, 4, 5 and 6 in figure 4.12 are shared visits and their
time windows are assumed to be wide enough for not being violated in this
example. The other halfs of the shared visits are named 2̂, 4̂, 5̂ and 6̂ and
their starting times are 35, 85, 110 and 135. The latest finishing time hr∗

for this route r∗ is also assumed to be late enough to avoid being violated
in this example.

For every starting time s1 a violation cost is defined. The violation cost is
only calculated for route r∗ as the violation of the latest starting times for
visit 1 and 3 and difference in starting times from their other part in the
shared visits 2, 4, 5 and 6, when α = 2 and β = 10. The figure 4.13 shows
the violation cost as a function of s1, where the origin is set to the first
feasible insertion time.

The cost in figure 4.13 is monotonously decreasing from s1 = 0 to 15. This
is caused by the fact that visit 2 is moved closer to s2̂. Within this interval
small changes in the slope occurs to make the cost less decreasing. The
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changes occur after s1 = 5 because visit 3 starts too late and after s1 = 10
when visit 1 starts too late. After 16 the cost increases, when visit 2 is
pushed away from s2̂. After s1 = 20 the cost decreases again, because the
visits 4,5 and 6 are pushed closer to 4̂, 5̂ and 6̂. At s1 = 25 a global minimum
is reached when the visits 4, 5, and 6 reach 4̂, 5̂ and 6̂. Afterwards the costs
only increases as the shared visits 4, 5 and 6 are pushed away from the other
halfs.

The changing of the parameters α, β and γ complicate the situation even
more, because in some cases it would be preferable to have big time differ-
ences between the starting times of shared visits and less violation of the
latest starting times on visits, but in the next iterations, it might not be
that preferable anymore. The positive property of this insertion strategy
is that it can be done in approximately constant time, and if there are not
many shared visits, it also performs well. For this reason it is chosen as the
strategy used in the tabu search.

4.8.2 Strategy 2

The tabu search with the LP-model introduced in section 4.7 finds the best
starting times for all the visits in route r̄ or r∗, when taking the violation
of the time windows, working hours and starting times for the shared visits
into account. This gives a violation cost, which is better or the same as in
strategy 1.

The LP-problem is solved in polynomial time, but the tabu search performs
slow, because of the interaction between the solver and the main function.

4.8.3 Strategy 3

The optimal insertion strategy is to find new starting times for all visits in
all routes, when inserting or removing a visit. This strategy should minimise
the violation cost. The strategy gives the best violation cost. This problem
demands a greater computational effort, but is still solved in polynomial
time.
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The ABP Programme

The abbreviation ABP is short for Automatic Visit Scheduling (in Dan-
ish ”Automatisk BesøgsPlanlægning”). René Munk Jørgensen and Jesper
Larsen from DTU have developed the ABP programme for scheduling visits
in the home care sector. This programme was initiated as a research project
for the company Zealand Care in September 2004 and taken over 20th De-
cember 2005. The programme is tested in Søllerød municipality January -
March 2006. There is a very short introduction on the company Zealand
Care in section 5.1

The insertion heuristic and tabu search introduced in chapter 3 and 4 are
compared with the ABP programme. The problem in ABP is explained in
section 5.2 and the solution method used in ABP is described in section 5.3.

5.1 Who is Zealand Care?

The company is described at the homepage [Car]. It is a Danish joint-
stock company with 132 employees at the end of 2004. The company was
founded in 1995. The company is centered on the social- and health care
industry. The main business activities concern disability equipment services,
consulting and information technology.

5.2 The ABP Problem Compared with the VRPTWSV

The purpose of the programme is to make a long term schedule for the visits
in a home care district subject to a number of constraints. The value of a
schedule is determined by different objectives.
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It is possible to adjust the parameters for the visits, citizens and caretakers
and thereby changing the constraints and objectives in the ABP problem.
Because the VRPTWSV is a problem with less constraints than the one
solved by ABP, some of the parameters are set to zero or switched of to
make a fair comparison of the methods.

5.2.1 The Constraints

There are more constraints in the ABP problem than in the VRPTWSV.
A solution for the ABP problem is always a solution in VRPTWSV. Figure
5.1 is a plot of the solution space S2 for the ABP problem and the solution
space S1 for the VRPTWSV.

PSfrag replacements
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S2

Figure 5.1: Solution spaces

In S1 it could be possible to get a better solution value than in S2, because
there are the same and more solutions. To make a better comparison of the
solution methods for the two problems, the ABP problem is relaxed, which
means that the solution space S2 is enlarged to almost reach S1.

In the following the constraints for the ABP problem are described. It is
explained for each constraint if it is relaxed in the comparison and how it is
done.

Visits’ Time Windows For each visit is a time window, which indicates
the earliest starting time and latest finishing time. The time windows
in the VRPTWSV indicate the earliest and latest starting time. This
first type of time window is converted to the latter one in the compar-
ison by subtracting the duration of the visit from the latest finishing
time.

Locking Visits It is possible to lock a visit in different ways. It can be
locked to a specific caretaker to ensure the same caretaker is attending
the visit always. The visit can also be locked by time, and will therefore
always be performed at the same time. Finally it can also be locked
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to be performed in a certain time period of minimum one day. The
start visits and the breaks will be locked by caretaker, but all the other
visits will remain unlocked in the comparison case.

Series of Visits In ABP it is possible as mentioned before to make a sched-
ule for more than one day. It is possible to design series of visits. A
series could for instance be a cleaning visit Thursday afternoon every
second week, or help with personal hygiene every morning all week.
Because the VRPTWSV only focuses on one day, this will not affect
the comparison.

Overlap of Visits Visits with certain kinds of demands may overlap. An
example could one caretaker cleaning the house and another caretaker
giving the citizen a bath. Because the VRPTWSV does not operate
with demands, this is not possible when making the comparison.

Shared Visits It is possible to create a shared visit by making two visits
and linking them together. They can be linked in different ways for
instance if the caretakers have to start at the same time or if one of
the caretakers has to start minimum half an hour before the other
caretaker. In the comparison only the linking with caretakers starting
at the same time was intended to be used, because the VRPTWSV
does only take this situation into account. Unfortunately this function
was not working in ABP, when the comparison was made.

Extra Time Between Visits A minimum extra time between the visits
can be set. The function will not be used in the comparison.

Forbidden Caretakers at Citizens Some caretakers do not want to visit
a citizen because of a social factor or other factors. The other factor
could be if the citizen has pets and the caretaker is allergic to pets.
This can also be the other way around if the citizen does not want
visits from a specific caretaker. Such relationships are not present
in the VRPTWSV, and the lists of forbidden relationships between
caretakers and citizens are emptied in the comparison.

Succeeding Visits Two citizens could live together. In such situation it
is possible to assure, that the two citizens get a visit right after each
other by the same caretaker. This function is not used, when the
comparison is done.

Caretakers’ Working Hours Each caretaker has an earliest starting time
and a latest finishing time. These working hours are equivalent to
the ones in the VRPTWSV, and are therefore not changed in the
comparison.
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Caretakers’ Transportation Means It is possible to set the type of trans-
portation mean for each caretaker. In the comparison there is no
discrimination between different kind of transportation means, and
therefore all transportation means are set to cars in the comparison.

The solution space S1 is enlarged to almost reach S2 by performing the
changes listed above.

5.2.2 The Objectives

There are two special issues to take into consideration when comparing the
solutions found by the methods in the ABP programme and the solutions
found by the methods in this project.

1. The objective function in the VRPTWSV is used for comparison, be-
cause the objective function in ABP is not known exactly. This may
cause a poor comparison, and therefore to make the comparison as
good as possible the objective function in ABP is approximated to the
objective function in the VRPTWSV

2. There may arise a problem, if the good solutions with respect to the
objective function in the VRPTWSV is situated in the solution space
S1 \ S2. This will only be a problem if S1 ⊂ S2.

There are given examples of what can happen if the objective function in
ABP is different from the objective function in the VRPTWSV, and exam-
ples of how the difference between S1 and S2 can give a poor comparison.

At the end of this subsection it is explained how the objective function
in the ABP programme is approximated to the objective function in the
VRPTWSV.

It it easier to compare the two objective functions, if we assume the two
solution spaces S1 and S2 to be equal. In figure 5.2 it is illustrated how
there could be two objective functions; one for the ABP problem and one
for VRPTWSV.

The two optimal solutions are x∗1 and x∗2 with the values c∗1 and c∗2. The
two solutions have to be compared. Because only the formula for objective
function in VRPTWSV is known it is used for comparison. The solution
value for x∗2 is c2, which is worse than c∗1 in the example in figure 5.2.
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Figure 5.2: Two optimal solutions compared with the objective function in VRPTWSV,
when the solution spaces are equal.

The optimal solution value c2 will not necessarily always be worse than c∗1,
it could also be just as good, but never better.

If the solutions x̂1 and x̂2 with the values ĉ1 and ĉ2 are found but not
necessarily are the optimal solutions, one can not be sure that c2 ≥ ĉ1.
Figure 5.3 depicts an example of this.
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Figure 5.3: Two solutions compared with the objective function in VRPTWSV, when
the solution spaces are equal.

It shall be kept in mind, that when performing the method in ABP for
finding the solution x̂2 it is not known that the comparative objective value
is c2 and not ĉ2 and the method might therefore go to the ”wrong” places
searching for a good solution x̂2.

Now follows an example of what can happen if S1 \ S2 6= ∅ and the good
solutions are situated in S1\S2. Then the method in ABP has worse changes
of searching the right places for good c2 values. An example of this is in
figure 5.4, where the horizontal axis illustrates the solution space S1.

Figure 5.4 shows how it could be not possible to find a solution x̂2 with good
values for the objective function in VRPTWSV.
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Figure 5.4: Two solutions compared with the objective function in VRPTWSV, when
the solution spaces are not equal

In the following the objective function in the ABP problem is described. It
is explained how it is approximated to the objective function in VRPTWSW
if it is necessary for the comparison.

Demand and Priority for Visits Each visit has a type of demand, which
for instance could be personal hygiene or cleaning. The priority of
a visit is determined by the type of demand e.g. personal hygiene
could be more important than cleaning. The objective is to schedule
the most important visit, when not all visits can be scheduled. The
VRPTWSV does not distinguish between different types of visits, and
therefore all visits are set to have the same demand, which is practical
help, when performing the comparison.

Regular Caretakers at Citizens Each citizen has three regular caretak-
ers. The regular caretakers are weighted equal or higher than the non
regular caretakers to be the ones performing the visits at each citizen.
The weights can be set as parameters, and they are set at different
levels in the comparison.

Minimize Caretakers’ Travel Time Each caretaker should travel as short
time a possible. This objective is the same in the VRPTWSV and will
not influence the comparison.

Caretakers’ Qualifications and Fitness of Visits’ Demands The care-
takers can be categorized according to different qualifications. The
categories are for instance helpers, assistants and nurses. Each cat-
egory has different qualifications in different areas such as cleaning,
normal personal hygiene, complex personal hygiene etc. A helper is
for instance preferred for practical help such as cleaning. An objective
is that the qualifications fit the demands as well as possible. There
are no demands or qualifications in the VRPTWSV. All demands are
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set to practical help in the comparison. All caretakers are defined as
helpers to avoid that some caretakers are preferable to others in the
comparison.

Caretakers Cost A cost is defined for letting a caretaker start, which is
minimized. This cost is set to zero in the comparison.

Caretakers’ Spare Time after last Visit The ABP maximizes the spare
time after the last visit for each caretaker. The VRPTWSV does not
take that into a account, and therefore the solution methods for the
VRPTWSV have an advantage when the comparison is done with the
objective function in the VRPTWSV.

The weights in the objective functions are difficult to approximate to each
other, and hence different parameter settings are tried. The other difference
between the objective functions is the maximization of the spare time after
the last visit.

5.3 The Solution Method

The method is described in the Programme for Development, which is not
yet published and hence not available. It consists of several phases, where
the main ideas will be explained in this section.

The first two phases form a two-phase method as described by Olli Bräysy
on page 23 in [Brä01]. In the first phase the vertices are assigned to vehicles,
and in this case it corresponds to assigning the visits to caretakers. Which
visit to assign to which route is determined by a score. The score reflects the
different factors such as if the caretaker is regular at the visit, the travelling
time, the caretakers qualifications and other factors.

The second phase schedule the route for each caretaker. Scheduling the
visits in a route is a travelling salesman problem. Finding a solution involves
finding the order of the visits and their starting times, such that the time
windows are not violated.

The last phases have three purposes: inserting the remaining visits, adapt
the solution to the demands or inexpediences and reoptimize the solution.

When performing the two first phases not all visits are necessarily inserted
in the solution. There are different approaches to insert the visits. One
approach is trying to insert the remaining visits immediately after the first
two phases or when there is more space after a reoptimization. Another
approach is to remove some of the already inserted visits with worst scores
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to give space for the remaining visits. Those removed visits will be tried
inserted later. The insertion of a not scheduled visit is done in such manner
that the visits with best scores are tried inserted first. This insertion strategy
is the same and independent of whether some visits were removed first.

The two first phases do not take into consideration the connection between
shared visits nor the connection between days. Some of the demands may
be violated and there may also be inexpediences. Therefore the solution is
adapted to respect the demands and take the inexpediences into considera-
tion.

The method also contains phases for improvement of the solution. The
inter-route exchange such as described on page 152 in [Sav92] is used. The
concept is illustrated in figure 5.5.

i−1 i+1 i−1 i+1

j

j+1

j

j+1

j−1 j−1

i i

Figure 5.5: Swap the two visits i and j

Two visits in two different routes exchange position as illustrated in figure
5.5. The improvement is done for routes within days and between days.

The solution method is iterative and uses tools from different areas in oper-
ational research, because there are many different types of demands to take
into consideration.
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Results

The insertion heuristic and the tabu search is tested. The data used for the
tests is described in 6.1. The sections 6.2 and 6.3 contain information about
how the data is preprocessed and the data instances.

The insertion heuristic is tested in section 6.4. Before testing the tabu search
in section 6.6, the parameters are tuned in section 6.5.

The results are compared with the results from ABP in section 6.7.

6.1 Description of the Data

The data used for parameter tuning and performance testing is from Søllerød
municipality in Denmark. The municipality had 31900 habitants by the end
of 2005, where 6572 of these were above 64 years old. It corresponds 20,6 %
of the population, which is higher than the average percentage in Denmark.
There were around 1300 citizens, that received home care at that time.
These informations on the Søllerød municipality are found at the home page
[Ban].

The ABP system has a data bank with informations on visits, citizens and
caretakers in one home care district in Søllerød municipality. Some of the
data in the data bank was not available when the ABP was developed,
because the time windows or the regular caretakers were not defined in that
district. These informations are therefore estimated by Zealand Care by
using the old schedules, which show when the visits were attended previously
and by whom. The time window for a visit is therefore set according to when
the visit was attended previously or by defining a time window for each type
of demand e.g. a bath in the morning should start between 8 am. and 10
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am. The regular caretakers are also assigned to citizens according to whom
were visiting the citizen often previously and also by paying attention to
the citizens’ demands and the caretakers qualifications. There is not payed
attention to the locations of the citizens, where a caretaker is regular, and
there might therefore be a long distance between them.

The ABP is set to produce text files with the data relevant for this project:
travelling times between citizen locations, time windows of visits, duration
of visits, the relationship between visits and citizen locations, working hours
for the caretakers and the regular caretakers for the visits. The data is read
using Java functions, see section B.4.

Identifying a citizen is not done directly from the input file, but by find-
ing unique combinations of location numbers and three regular caretakers.
There may be more than one citizen living at a address, but it is not sure
that they have the same three regular caretakers. If they have, then they
are considered as one citizen when reading the data.

6.2 Preprocessing of the Data

The data is changed to be able to find a feasible schedule for the visits with
the insertion heuristic, which needs seed visits (start visits and breaks). The
data is also changed in order to investigate how the methods perform on data
with shared visits.

Add shared visits: Two of the citizens in the data are given two shared
visits each. It is chosen only to have two citizens, that need shared
visits, because a shared visit does not appear often normally. A citizen
who needs to be lifted, normally needs the help every day, and hence
the shared visits are the same every day.

Changing time windows: The time windows are as before mentioned esti-
mated. Sometimes they conflict with the travelling times. There are
for instance visits that can only start 5 minutes after the start visit
finishes, but they are situated more than 5 minutes away from the
office. In such a situation the time window is changed in order for
the caretaker to be able to there on time. Other visits can only be
attended at the same time as the break, and in such case, the time
window is changed as well.

Add a sufficient number of caretakers: Firstly the number of caretakers
is decreased to a point, where some of the visits are not scheduled.
Afterwards the number of caretakers is increased iteratively by one
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caretaker at the time until the number of caretakers is sufficient for
finding an initial feasible solution.

Adjust the number of start visits: The number of start visits does not
correspond with the necessary number of caretakers. The start visit
starts at 7:45 and continues for 15 minutes, and every caretaker being
at work at 7:45 is given a start visit.

Adjust the number of breaks: The number of breaks does not correspond
with the number of caretakers working until at least when the break
finishes. The break starts at 12.00 and last for 30 minutes. All the
caretakers working until at least until 12:30 are given a break. The
group has a weekly meeting on Wednesdays, which will be considered
as break in the sense that everybody working until at least the finishing
time of the meeting have to be there.

Changing the working time: If a worker only works between 8 am and 12
am, she can not have a start visit or a break. Therefore her earliest
starting time is set to 7:45. In this way she will also get all the news
on the citizens, before starting visiting the citizens.

Set the transportation mean to car : The travelling time between two visits
is estimated in ABP by using the distance between the visits. The
estimation also uses informations on the average speed if the trans-
portation mean is a bicycle or informations on the speed limits on the
roads used to come from one visit to another if the transportation
mean is a car. To always have the same travelling times between a
pair of visits, the transportation mean is set to a car for all caretakers.

The data is also changed in the manner explained in chapter 5. The changes
to the data set from week 11 are made in the graphical user interface in the
ABP, which is made by Claus Pedersen. The changes made in the data from
week 9 and 10 are made when reading the data, because it is a very time
consuming process to change the properties of all the visits manually in the
GUI. The addition of shared visits are done when reading the data in all
instances.

The data set is realistic with the adjustments made, because the changes
made are not deviating from what a planner should do in practice, when a
schedule is made, and the distance between the citizens in the district are
of an order, that makes it necessary for all caretakers to travel in car.
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6.3 The Data Instances

The data used for results is from week 9, 10 and 11 in this year 2006. Only
the week days are used, because they include more visits and the visits vary
more.

The table 6.1 displays all the problems considered, where shared visits are in
the data set. Every day there are 4 shared visits, except the 16th and 17th,
March, where one of the two citizens with shared visits does not receive
any help, maybe because she is in the hospital. The number of caretakers,
citizens, visits, start visits and breaks are displayed in table 6.1. The number
of visits also include the start visits, breaks and both parts in the shared
visits. The number of citizens also includes the office as one citizen.

Day Number Total Number Number Number Lower Upper Average

in of number of of of bound bound travel-

year caretakers of start break citizens on on ling

2006 visits visits visits Ψ T time

27.02a 20 166 19 16 106 23 2090 5.80

28.02a 19 169 18 14 108 27 1975 5.59

01.03a 19 168 16 19 92 18 2101 5.70

02.03a 19 185 17 17 111 31 2452 5.79

03.03a 20 185 18 18 118 25 2369 5.74

06.03a 18 162 17 15 97 21 1991 5.81

07.03a 18 173 17 15 106 23 2040 5.77

08.03a 18 165 16 19 93 19 2090 5.52

09.03a 19 180 17 18 104 31 2301 5.69

10.03a 19 179 17 18 100 22 2335 5.68

13.03a 19 165 17 16 92 22 2104 5.84

14.03a 18 166 16 14 100 27 2021 5.70

15.03a 18 151 16 18 83 16 1861 5.73

16.03a 14 139 13 13 94 23 1755 5.71

17.03a 15 145 14 14 96 22 1847 5.76

Average 17.0 166.5 16.5 16.3 100.0 21.9 2088.8 5.72

Table 6.1: The data from week 9, 10 and 11 with shared visits, 2006

The upper bound for total travelling time T is found by sorting all the
distances between all visits, and adding up the n − m highest distances.
The lower bound for the number Ψ of unlocked visits without a regular
caretaker is found by going through all visits and checking if their regular
caretaker is working on that current day. If there is a shared visit it is only
counted once if the regular caretaker is not at work that day. The start
visits and breaks are not counted in Ψ, because these visits are locked.
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The average travelling time is found by finding all the distances between all
visits on the day considered and dividing it by the total number of distances.
It is very important to notice that the average of the average distance is 5.7,
which will be used as an estimate of the mean value.

The table 6.2 displays a modified version of the data set in table 6.1. This
dataset gives the opportunity of evaluating how the shared visits affect the
insertion heuristic and the tabu search. This data set also has another pur-
pose, because ABP is not able to handle shared visits at the time of writing,
and hence the data set without shared visits is used for the comparison with
the method in ABP.

Day Number Total Number Number Number Lower Upper Average

in of number of of of bound bound travel-

year caretakers of start break citizens on on ling

2006 visits visits visits Ψ T time

27.02b 20 166 19 16 106 23 2090 5.80

28.02b 19 161 18 14 108 27 1886 5.57

01.03b 19 160 16 19 92 18 1995 5.72

02.03b 19 177 17 17 111 31 2324 5.80

03.03b 20 177 18 18 118 25 2224 5.74

06.03b 18 154 17 15 97 21 1903 5.83

07.03b 18 165 17 15 106 23 1943 5.63

08.03b 18 157 16 19 93 19 1968 5.78

09.03b 19 172 17 18 104 31 2178 5.70

10.03b 19 179 17 18 100 22 2232 5.69

13.03b 19 157 17 16 92 22 1935 5.86

14.03b 18 158 16 14 100 27 1910 5.71

15.03b 18 143 16 18 83 16 1781 5.75

16.03b 14 135 13 13 94 23 1699 5.72

17.03b 15 141 14 14 96 22 11785 5.75

Average 17.0 160.1 16.5 16.3 100.0 21.9 1990.2 5.74

Table 6.2: The data from week 11 without shared visits, 2006

The difference between the datasets with and without the shared visits is
found in the number of visits, the upper bound on T and the average travel-
ling time. The lower bounds on Ψ in table 6.1 and 6.2 are the same, because
at least one of regular caretakers for all the shared visits were at work in the
data instances.

Notice that the days with shared visits are marked with an ”a” and the days
without shared visits are marked with a ”b”.
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6.4 The Performance of the Insertion Heuristic

The insertion heuristic only has one parameter µ, which indicates how much
longer time a planner would let a regular caretaker drive to reach a citizen,
where the caretaker is regular. For every visit, where the caretaker is not
regular the cost µ is added.

min C(x) = T + µΨ

Variating the parameter µ gives different results. It is decided to set µ at
three different levels.

µ = 0: It is very interesting to consider what will happen if µ = 0, because
it implies that only the travelling time will be minimized. It can be
used as a bench mark when evaluating how the travelling time might
increase, then the cost µ increases.

µ = 5.7: This is the value of the estimate for the average travelling time
between two visits. It can be interpreted as the minimization of the
travelling time is just as important as minimizing the number of visits
with a regular caretaker. This value is very interesting, because the
result of a questionnaire investigation described in the report [Tho05]
showed that the citizens found it equally important to have a regular
caretaker and that was extra time. The extra time can be gained by
minimizing the total travelling time.

µ = 11.4: This value is used to find the results, if one consider the regular
caretakers twice as important as the travelling time.

The insertion heuristic is run on a SUN Fire 3800, with a 1200 Mhz Sun
SPARC processor, and the run times are in the interval from 0.5 to 2.6
seconds for test instances, where the average is approximately 1.1 seconds.

6.4.1 The Data with Shared Visits

The results when using the insertion heuristic for the problems with shared
visit from week 9, 10 and 11 are displayed in table 6.3.

It is found in table 6.3 that the total travelling time is much lower than the
upper bound for all values of µ, but it not possible to tell, how good T is
on basis of the upper bound, because the upper bound is calculated without
paying attention to the structure of the problems.
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Day µ = 0 µ = 5.7 µ = 11.4

T Ψ C(x) T Ψ C(x) T Ψ C(x)

27.02a 583 115 583 613 72 1023.4 653 66 1405.4

28.02a 563 123 563 619 89 1126.3 635 90 1661.0

01.03a 539 108 539 603 75 1030.5 652 56 1290.4

02.03a 600 133 600 626 82 1093.4 647 70 1445.0

03.03a 608 134 608 652 91 1170.7 702 70 1500.0

06.03a 558 111 558 603 74 1024.8 635 57 1284.8

07.03a 592 121 592 622 71 1026.7 634 60 1318.0

08.03a 580 109 580 581 73 997.1 612 63 1330.2

09.03a 584 123 584 676 76 1109.2 665 62 1371.8

10.03a 656 132 656 653 65 1023.5 704 50 1274.0

13.03a 548 115 548 564 67 945.9 595 46 1119.4

14.03a 563 111 563 560 66 942.2 617 56 1255.4

15.03a 508 99 508 516 59 854.3 547 48 1094.2

16.03a 414 93 414 488 67 869.9 500 52 1092.8

17.03a 474 105 74 485 58 815.6 543 43 1033.2

Average 558.4 108.8 558.4 554.4 72.3 1003.6 622.7 59.2 1298.4

Table 6.3: The initial solutions found by the insertion heuristic for the data instances
with shared visits.

When µ increases one observes in table 6.3, that Ψ decreases, while the total
travelling time T is increasing in the most cases. This is not surprising since
there is a conflict between minimizing the total travel time and minimizing
the number of visits without regular caretaker. When the problem is re-
laxed by setting µ = 0, the optimal solution value of T will be the same or
decreased compared to when µ > 0.

It would be interesting to see what would happen for more values of µ, and
hence a small example is made. The µ value is increased from 0 to 50 when
using the insertion heuristic on the data instance 27.02a. The plot to the
left in figure 6.1 shows T as a function of µ and the plot to the right shows
Ψ as a function of µ.

This example shows how there is a tendency of increasement for T , while
there is a tendency of decreasement for Ψ, when µ is increased, but the
functions are not monotonous increasing or decreasing. At µ = 1 there is a
reduction in the total travelling time T in the graph to the left in figure 6.1,
which may be caused by finding a good total travelling time, while looking
for a solution with less visits without a caretaker. The example in figure
6.1 shows, that the two objectives of minimizing T and Ψ are not always
conflicting, when using the insertion heuristic, which do not necessarily find

75



CHAPTER 6. RESULTS

0 5 10 15 20 25 30 35 40 45 50
570

580

590

600

610

620

630

640

650

660

mu

Tr
av

el
lin

g 
tim

e

0 5 10 15 20 25 30 35 40 45 50
60

70

80

90

100

110

120

mu

P
si

Figure 6.1: How the total travelling time and the number of visits without a regular
caretaker evolves when varying the parameter µ, in the dataset 27.02a

the optimal solutions.

6.4.2 The Data without the Shared Visits

The insertion heuristic may perform differently on data without shared vis-
its, and hence the data without shared is also used for testing the insertion
heuristic.

In table 6.4 it is observed, that the average cost C(x) is reduced. The reason
for this is the reduced total number of visits, because the shared visits are
removed. For this reason T and Ψ are also decreased.

The conclusion drawn on this test, is that the shared visits do not seem to
have any impact on the results found by using the insertion heuristic.

6.5 The Parameter Tuning

The parameters in the tabu search are tuned to perform better, when testing
it on the data from week 11. The data used for the parameter tuning is from
week 9 and 10. It is important to notice, that the data set is split in two
parts, and the part used for the parameter tuning is not used for the testing.

The tabu search is set to run for 100 iterations in the parameter tuning and
in the test.

The parameters interesting for tuning are listed below with the test values.
It is interesting to follow, how the changes on these parameters effect the
tabu search.
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Day µ = 0 µ = 5.7 µ = 11.4

T Ψ C(x) T Ψ C(x) T Ψ C(x)

27.02b 526 117 526 584 73 1000.1 597 60 1281.0

28.02b 554 123 554 571 87 1066.9 617 84 1574.6

01.03b 549 108 549 565 69 958.3 593 49 1151.6

02.03b 583 131 583 622 88 1123.6 672 67 1435.8

03.03b 594 124 594 633 79 1083.3 652 77 1529.8

06.03b 533 103 533 559 71 963.7 600 49 1158.6

07.03b 560 116 560 582 72 992.4 594 54 1209.6

08.03b 548 110 548 555 71 959.7 583 53 1187.2

09.03b 574 125 574 596 76 1029.2 583 53 1187.2

10.03b 581 119 581 597 62 950.4 658 42 1136.8

13.03b 543 109 543 554 59 890.3 602 40 1058.0

14.03b 518 115 518 489 66 865.0 539 48 1086.2

15.03b 484 99 484 516 49 795.3 527 33 903.2

16.03b 442 97 442 577 57 801.9 486 51 1067.4

17.03b 471 100 471 501 43 746.1 523 37 944.8

Average 537.3 113.1 537.3 560.1 68.1 948.4 554.1 53.1 1195.5

Table 6.4: The initial solutions found by the insertion heuristic for the data set without
shared visits

• δ has the test values {0.00, 0.25, 0.50, . . . , 2.50}. It is the factor for
managing the values of α, β and γ.

• λ has the test values {0, 5, 10, 15, 20}. It is the diversification factor.

• θ has the test values {0, 5, 10, 15, 20}. It is the number of number
iterations, where it is forbidden to reinsert a visit i into route r̄.

The parameters α, β and δ are not tuned.

• α is the price for violating the time windows, and it is set to the fixed
value 1.

• β is the price for violating the equal starting times for shared visits
and it is also set to 1.

• γ is the price for violating the working hours, and it is as the other
prices also set to 1.

The problem in [CLA01] is very similar to the VRPTWSV, and hence it is
reasonable to use the same conditions as in the article. All the prices α,
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β and γ are set to 1 in the article, and this procedure is followed in this
project.

The tabu search method is parameter tuned for the values 0, 5.7 and 11.4
of µ.

6.5.1 The Data with Shared Visits and µ = 0

The table 6.5 gives an overview over the range of the solutions found by
the tabu search. The solutions with the smallest improvement of the initial
solution are the worst solutions found in the tabu search. Similarily the
solutions with the largest improvement of the initial initial are the best
solutions found in the tabu search.

Day Worst solution found xo Best solution foundx∗

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02a 576 115 576 1.2 % 468 117 468 19.7 %

28.02a 558 123 558 0.9 % 498 124 498 11.5 %

01.03a 539 108 539 0.0 % 472 109 472 12.4 %

02.03a 598 133 598 0.3 % 533 133 533 11.2 %

03.03a 601 134 601 1.2 % 567 134 567 6.7 %

06.03a 555 110 555 0.5 % 513 109 513 8.1 %

07.03a 558 121 558 5.7 % 507 125 507 14.4%

08.03a 576 109 576 0.7 % 500 109 500 13.8%

09.03a 564 123 564 3.4 % 499 121 499 14.6%

10.03a 649 131 649 1.1 % 573 130 573 12.7%

Average 1.5 % 12.5 %

Table 6.5: The worst and best solution with µ = 0

In one case the tabu search does not find an improvement of the original
solution. The largest improvement on 19.7 % is reached for the first day
27th, February. The figures A.1 and A.2 show where the best and worst
solution values are found for combinations of λ, θ and δ. The best solutions
have the value C(x∗) and the worst solutions have the solution value C(xo).

The figure A.1(e) is not used for finding the best combination of λ, θ and
δ, because the range from the worst solution value to the best is not big
enough to see any variation. The remaining figures show how the best set
of parameters is very dependent on the problem considered. Only small
tendencies can be observed. The figures show how the parameter δ is very
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important for the solutions found within one day, because the good solutions
tend to be in a horizontal layer in the figures. In most cases the good
solutions are situated with δ = 1.25 as a center. There also seem to be
a small tendency to get good solution values for higher values of θ, and
the good solutions are seldom found at θ = 0, which indicates that the tabu
criterion answers its purpose. The interesting issue is that the diversification
parameter λ does not have any effect, which may be caused by the fact, that
the tabu search only runs for 100 iterations.

6.5.2 The Data with Shared Visits and µ = 5.7

When the parameter µ is increased, it is interesting to see how the quality
of the solutions evolve. The best solutions are only improved by 10.1 %.
The solutions found for the data set from the 9th March are not used in the
evaluation of the best set of parameters, because the best solution found
only is 4 % better than the worst and initial solution.

Day Worst solution found (xo) Best solution found (x∗)

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02a 610 72 1020.4 0.3 % 536 56 855.2 16.4 %

28.02a 611 89 1118.3 0.7 % 567 78 1011.6 10.2 %

01.03a 603 75 1030.5 0.0 % 573 62 926.4 10.1 %

02.03a 626 82 1093.4 0.0 % 584 68 971.6 11.1 %

03.03a 651 90 1164.0 0.6 % 649 75 1076.5 8.1 %

06.03a 595 94 1016.8 0.8 % 561 67 942.9 8.0 %

07.03a 662 71 1026.7 0.0 % 549 61 896.7 12.7 %

08.03a 577 73 993.1 0.4 % 543 63 902.1 9.5 %

09.03a 676 76 1109.2 0.0 % 615 65 985.5 11.2 %

10.03a 653 65 1023.5 0.0 % 646 59 982.3 4.0%

Average 0.3 % 10.1 %

Table 6.6: The worst and best solution with µ = 5.7

The figures A.3 and A.4 illustrate how the best solutions are situated for
each set of the parameters δ, λ and θ. They do not show one single area,
where all good solutions are gathered. The good solutions are spread out
over the whole domain. The good solutions are both placed above and
under δ = 1.25. The parameter θ does not seem to have much influence on
the value of the solutions found. It is only possible to conclude that the θ
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parameter, should not be set to 0, because the good solutions are seldom at
θ = 0.

6.5.3 The Data with Shared Visits and µ = 11.4

The parameter µ is raised to 11.4, and the average improvement of the
best solution found is raised to 11.8%. The positions of the good values
in different parameter settings can be found in the figures A.5 and A.6.
The data from the 6th March is not used in the parameter tuning, because
the span between the values of the best solutions and the worst solution is
much lower than the average span for the other data sets used. The figures
A.5 and A.6 do not give a clear idea of where the best set of parameters is
situated. This may indicate, that the best parameter setting is very problem
dependent. The best parameter setting may depend on the positions of the
shared visits. If they situated in routes, where many visits are inserted or
removed, it is more difficult for the tabu search to find a feasible solution,
because the push forward and push backward function do not pay attention
to the shared visits.

Day Worst solution found (xo) Best solution found (x∗)

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02a 647 66 1399.4 0.4 % 635 45 1148.0 18.3 %

28.02a 635 90 1661.0 0.0 % 585 66 1337.4 19.5 %

01.03a 646 56 1284.4 0.4 % 664 43 1154.2 9.7 %

02.03a 647 70 1445.0 0.0 % 634 59 1306.6 9.6 %

03.03a 706 68 1481.2 1.3 % 671 64 1400.6 6.6 %

06.03a 630 57 1278.9 0.5 % 600 56 1238.4 3.6 %

07.03a 634 60 1318.0 0.0 % 612 42 1090.8 17.2 %

08.03a 612 63 1330.2 0.0 % 603 50 1173.0 11.8 %

09.03a 665 62 1371.8 0.0 % 658 44 1159.6 15.5 %

10.03a 704 50 1274.0 0.0 % 662 46 1186.4 6.9 %

Average 0.3 % 11.8 %

Table 6.7: The worst and best solution with µ = 11.4

If the best parameter setting is problem dependent, it is also interesting to
see if the same parameter setting for one data instance is the best for all the
used values of µ. The parameter tuning for the day 27th February, shows
that the best parameter setting is δ = 0.75, θ in the interval 5 to 30 and the
parameter λ free. The same tendency is observed for the other days, which
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indicates, that the best parameter setting depends more on the data, than
the value µ.

6.5.4 The Data without Shared Visits and µ = 0

The structure of the data without shared visits is different, and hence the
tabu search may perform differently. The table 6.8 shows how the best
solutions found are improved much from the initial solutions.

Day Worst solution found (xo) Best solution found (x∗)

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02b 510 116 510 3.0 % 413 116 413 21.5 %

28.02b 544 123 544 1.8 % 436 118 436 21.3 %

01.03b 546 108 546 0.5 % 439 111 439 20.0 %

02.03b 579 131 579 0.7 % 446 133 446 23.5 %

03.03b 582 124 582 2.0 % 526 121 526 11.4 %

06.03b 519 103 519 2.6 % 425 105 425 20.3 %

07.03b 534 116 534 4.6 % 438 117 438 21.8 %

08.03b 530 110 530 3.3 % 430 113 430 21.5 %

09.03b 558 124 558 2.8 % 443 126 443 22.8 %

10.03b 567 119 567 2.4 % 524 116 524 9.8 %

Average 2.4 % 19.4 %

Table 6.8: The worst and best solution with µ = 0

The figures A.7 and A.8 show how good solutions are obtained for almost
all investigated parameter settings of δ, λ and θ. The worst solutions found
tend to be at θ = 0 and δ = 0, which again shows that the tabu criterion
satisfy its purpose. It also shows that variating the costs α and γ is a good
idea. The parameter β is not variating, because there are no shared visits.

6.5.5 The Data without Shared Visits and µ = 5.7

The table 6.9 shows how the tabu search performs, when the parameter µ
is raised to 5.7. The best average improvement from the initial solution is
still just under 20 %.

The figures A.9 and A.10 show that the good solutions are still situated
outside θ = 0 and δ = 0. The figure A.10(b) has a group of good solutions for
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Day Worst solution found(xo) Best solution found (x∗)

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02b 581 72 991.4 0.9 % 488 49 767.3 23.3 %

28.02b 560 87 1055.9 1.0 % 484 65 854.5 19.9 %

01.03b 558 67 939.9 1.9 % 508 48 781.6 18.4 %

02.03b 620 88 1121.6 0.2 % 581 63 940.1 16.3 %

03.03b 618 76 1051.2 3.0 % 549 52 845.4 22.0 %

06.03b 541 64 905.8 6.0 % 484 49 763.3 20.8 %

07.03b 571 72 981.4 1.1 % 485 51 775.7 21.8 %

08.03b 555 71 959.7 0.0 % 524 45 780.5 18.7 %

09.03b 586 74 1007.8 7.7 % 521 47 788.9 27.8 %

10.03b 567 63 926.1 2.6 % 542 46 804.2 15.4 %

Average 2.4 % 18.4 %

Table 6.9: The worst and best solution with µ = 5.7

high values δ. It may be caused by the fact, that it is not possible to violate
the constraint on synchronous starting times for shared visits. This implies
less possibilities for violations, and each violation will have to penalized more
relatively to the solution value C(x) in (4.4), to be eliminated. The figures
A.9(d) and A.9(e) do not not give the same result, because bad solutions
are situated for high values of δ. For this reason it is not possible to set the
δ at a good value, and it is only possible to determine from the figures that
a good value of δ is different from 0.

6.5.6 The Data without Shared Visits and µ = 11.4

The table 6.10 contains an overview over the solutions found by using tabu
search with the parameter µ = 11.4. The improvements from the initial
solutions are better than those observed in table 6.8 and 6.9.

The data set from the 6th of March will not be used for the parameter tuning,
because the range between the good and bad solutions is small relatively to
the ranges obtained for the other data sets.

The figures A.11 and A.12 have more bad solutions for the settings of the
parameters than for µ = 0 and µ = 5.7. Especially the data set from the
7th March has many bad solutions, and the best solutions are situated for
δ = 2. This δ value gives bad solutions for the data from the 27th and 28th
February, which is conflicting. It can be concluded that the relationship
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Day Worst solution found (xo) Best solution found (x∗)

T Ψ Cost Improvement T Ψ Cost Improvement

from the initial from the initial

solution solution

27.02a 585 59 1257.6 1.8 % 575 31 928.4 27.5 %

28.02a 609 67 1372.8 12.8 % 568 50 1138.0 27.7 %

01.03a 593 49 1151.6 0.0 % 606 28 925.2 19.7 %

02.03a 672 67 1435.8 0.0 % 602 42 1080.8 24.7 %

03.03a 652 77 1529.8 0.0 % 616 47 1151.8 24.7 %

06.03a 600 49 1158.6 0.0 % 586 29 916.0 20.9 %

07.03a 584 53 1188.2 1.8 % 551 35 950.0 21.5 %

08.03a 578 47 1113.8 6.2 % 549 27 856.8 27.8 %

09.03a 602 53 1206.2 0.0 % 584 40 1040.0 13.0 %

10.03a 655 42 1133.8 0.3 % 642 37 1063.8 6.4 %

Average 2.3 % 21.4 %

Table 6.10: The worst and best solution with µ = 11.4

between the structures of the problems and the good parameter setting is a
subject of future investigation, because the results are not convincing when
only variating µ.

6.6 The Performance of the Tabu Search

The parameter setting is chosen to cover all instances of µ and both data
sets with or without shared visits. Based on the observations on the data
with shared visits it is chosen to set the parameter δ in the middle of the
interval, because both good solutions are found above and below δ = 1.25.
The value of λ seems not to matter much for the quality of the solutions,
and is for this reason also set in the middle λ = 10. The last parameter θ is
set as high as possible (θ = 30), because there is a tendency of finding good
solutions for higher values of θ.

The data from week 11 is used for testing the performance of the tabu search,
and the tabu search is run for 100 iterations. The test is also performed on
a SUN Fire 3800 computer, with a 1200 Mhz Sun SPARC processor, and
the run times are in the interval from 13 to 31 seconds for test instances,
where the average is approximately 19 seconds.

Firstly the data set with shared visits and µ = 0 is tested. The total travel-
ling time T and number Ψ of unlocked visits without a regular caretaker in

83



CHAPTER 6. RESULTS

Day T Ψ Cost Improvement

from the initial

solution

13.03a 530 114 530 3.2 %

14.03a 503 111 503 10.7 %

15.03a 483 97 483 4.9 %

16.03a 406 93 406 1.9 %

17.03a 458 105 458 3.4 %

Average 476.0 104.0 476.0 4.8%

Table 6.11: The solution found with µ = 0

the solutions found with the chosen parameter setting are displayed in table
6.11. The average improvement is 4.8 %, which a relative low improvement.

When the value µ is increased to 5.7, the average improvement is also in-
creased to 6.0 %, which is indicated in table 6.12.

Day T Ψ Cost Improvement

from the initial

solution

13.03a 558 65 928.5 1.8 %

14.03a 530 58 860.6 8.7 %

15.03a 516 55 829.5 2.9 %

16.03a 439 64 803.8 7.6 %

17.03a 478 46 740.2 9.2 %

Average 504.2 57.6 832.5 6.0 %

Table 6.12: The solution found with µ = 5.7

The average improvement is increased to 10.2 %, when the value µ is in-
creased to 11.4, see the table 6.13. There might be a relationship between
the average improvement and the value µ, because it is easier to find better
solutions, if the cost of having a visit in the ”wrong” route with a not regular
caretaker is very high. Moving this visit to a route with a regular caretaker
implies a large decrease in the objective function value.

The tabu search is also tested on the data set without the shared visits.
The table 6.14 contains the results, and it shows that the average improve-
ment is high for µ = 0. Comparing this with table 6.11, where the average
improvement was 4.8 %, this result with an average improvement on 17.6
% indicates how the tabu search is better designed for problems without
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Day T Ψ Cost Improvement

from the initial

solution

13.03a 577 29 907.6 18.9 %

14.03a 615 50 1185.0 5.6 %

15.03a 576 34 963.6 14.4 %

16.03a 503 43 993.2 9.1 %

17.03a 534 41 1001.4 3.1 %

Average 561.0 39.4 1010.6 10.2 %

Table 6.13: The solution found with µ = 11.4

shared visits, because the push forward and backward functions are more
appropriate, when it is only possible to violate the latest starting times for
visits and the latest finishing times for caretakers.

Day T Ψ Cost Improvement

from the initial

solution

13.03b 439 111 439 19.2 %

14.03b 404 114 404 22.0%

15.03b 395 94 395 18.4 %

16.03b 388 99 388 12.2 %

17.03b 395 99 395 16.2%

Average 404.2 103.4 404.2 17.6 %

Table 6.14: The solution found with µ = 0

The table 6.15 contains the results from the tests, when µ is increased to
5.7. The results show that the average improvement is increased from 17.6
% to 22.2 %.

The last test performed on the tabu search is with µ increased to 11.4, and
the results are displayed in table 6.16. These results show that the average
improvement is not increased from µ = 5.7, which may be caused by good
initial solutions.

The best improvement reached for the data with shared visits is 19 % for
the instance 13.03a and µ = 11.4, and the best improvement reached for the
data without the shared visits is 27 % for the instance 13.03a and µ = 11.4.
These results show, how the push functions do not pay attention to the
shared visits.
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Day T Ψ Cost Improvement

from the initial

solution

13.03b 487 44 737.8 17.1 %

14.03b 468 49 747.3 24.1%

15.03b 480 33 668.1 16.0 %

16.03b 385 39 607.3 24.3 %

17.03b 444 35 643.5 14.8 %

Average 452.8 40 680.8 22.2 %

Table 6.15: The solution found with µ = 5.7

Day T Ψ Cost Improvement

from the initial

solution

13.03b 538 26 834.4 26.8 %

14.03b 518 31 871.4 19.8 %

15.03b 515 29 845.6 6.4 %

16.03b 448 37 869.8 18.5 %

17.03b 483 31 836.4 11.5 %

Average 412.4 30.8 851.5 16.6 %

Table 6.16: The solution found with µ = 11.4

The figure 6.6 shows how the total violations vary. The instance is from the
13th, March, with shared visits and the chosen parameter setting.

It is observed in figure 6.6 how the violations are changing through the
iterations. It is important to notice, that in some of the iterations, all the
violations are zero, and there the tabu search has found a feasible solution.

It has to be emphasized, that performing the tabu search is slower than
finding the initial solution with the insertion heuristic, and hence the tabu
search can only be applied, if the planner of the routes has extra time or
patience to wait for better solutions.

6.7 Comparison with the Solutions From the ABP

The solutions in the tables 6.3-6.4 and 6.11 -6.16 found by the methods in
this project are compared with the solutions found by the ABP programme
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Figure 6.2: The solid line shows the violation on time windows, the dotted line shows
the violation on the synchronous starting times for shared visits and the dashed line shows
the violation on the working hours

for the test data in week 11. When comparing the results it has to be
taken into consideration, that the ABP programme is very restricted on the
runtime. The run time of the programme is approximately 100 milliseconds,
and additional time is used for reading from the data base and plotting the
solution graphically. Another issue to take into consideration is that the
ABP programme tries to maximize the spare time after the last visit in each
route, with the purpose to let the caretaker go home, when he has finished
his last visit.

In ABP it is possible to set 3 parameters for weighting the importance of
three different issues:

1. The total travelling time

2. The regular caretakers

3. The qualications of the caretaker compared with the demands of the
visits.

The weights have to sum up to 100, and the last parameter is always set
to 0 in these tests. The three different settings of the parameters used are:
(100,0,0), (50,50,0) and (33,67,0). The parameter µ used in VRPTWSV and
the parameters in ABP are only comparable, in the situation when µ = 0
and (100,0,0). Hence the results from each setting of the parameters in ABP
is compared with µ = 0, 5.7 and 11.4 in the VRPTWSV. The comparison is
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performed by calculating the deviations from the T and Ψ in the solutions
found by ABP.

In table 6.17 a comparison between ABP and the insertion heuristic is per-
formed. The most interesting comparison is made with the performance of
the insertion heuristic and µ = 0, because both methods try only to min-
imize the total travelling time. The insertion heuritic finds solutions, that
are 25% better on average. The table also contains the results of the com-
parison, when µ = 7.4 and µ = 11.4, because it can be observed that the
total travelling time is still better in the solutions found by the insertion
heuristic, when it also tries to minimize Ψ.

ABP Insertion µ = 0 Insertion µ = 5.7 Insertion µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 734 108 - 26.0 % + 0.9 % - 24.5 % - 45.4 % - 18.0 % - 63.0 %

14.03b 743 112 - 30.3 % + 2.7% - 33.0 % - 41.1 % - 27.5 % - 57.1 %

15.03b 620 100 - 21.9 % - 1.0 % - 16.8 % - 51.0 % - 15.0 % - 67.0 %

16.03b 589 100 - 25.0 % - 3.0 % - 19.0 % - 43.0 % - 17.5 % - 49.0 %

17.03b 601 141 - 21.6 % - 29.1 % - 16.6% - 69.5 % - 13.0 % - 73.8 %

Average 647.4 112.2 - 25.0 % - 5.9 % - 22.0 % - 50.0 % - 18.2 % - 62.0 %

Table 6.17: The ABP solutions with the weights (100,0,0)

ABP Tabu Search µ = 0 Tabu Search µ = 5.7 Tabu Search µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 734 108 - 40.2 % + 2.8 % - 33.7 % - 59.3 % - 26.7 % - 75.9 %

14.03b 743 112 - 45.6 % + 1.8 % - 37.0 % - 56.3 % - 30.3 % - 72.3 %

15.03b 620 100 - 36.3 % - 6.0 % - 22.6 % - 67.0 % - 16.9 % - 71.0 %

16.03b 589 100 - 34.1 % - 1.0 % - 34.6 % - 61.0 % - 23.9 % - 63.0 %

17.03b 601 141 - 34.3 % - 29.8 % - 26.1 % - 75.2 % - 19.6 % - 78.0 %

Average 657.4 122.2 - 38.1 % - 6.4 % - 28.8 % - 63.8 % - 23.5 % - 72.0 %

Table 6.18: The ABP solution with the weights (100,0,0)

The parameters in ABP are set to 50 for the first parameter and also 50
for the second parameter. The solutions are described in table 6.19 and
6.20. It is observed, that the number Ψ of unlocked visits without regular
caretakers is decreased, but the insertion heuristic with µ = 5.7 performs
better, because Ψ is decreased by 37.2 % on average and T is decreased by
34.1 % on average.

This comparison is not fair, because setting the parameters to (50,50,0) does
not mean, that the regular caretakers are as important as the travelling time.
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On purpose the travelling time is set to be weighted higher than the regular
caretakers. This adjustment of the parameters is performed, because ABP
has its focus on the ATA time. The abbreviation is short for ”face to face”
time (in Danish ”Ansigt Til Ansigt tid”), and hence the programme mainly
focuses on minimizing the total travelling time. The users of the programme
are thereby motivated to assign the regular caretakers in a manner, which
minimizes the total travelling time e.g. a caretaker is only set to be regular
for citizens situated with small distances between them. It is possible to
change the adjustment of the parameters, but it is not performed in these
tests, because the tests should show how the programme performs with the
adjustments chosen to use in practice.

ABP Insertion µ = 0 Insertion µ = 5.7 Insertion µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 835 99 - 35.0 % + 10.1 % - 33.7 % - 40.4 % - 27.9 % - 59.6 %

14.03b 782 100 - 33.8 % + 15.0 % - 37.5 % - 41.0 % - 31.1 % - 52.0 %

15.03b 805 81 - 39.9 % + 22.2 % - 35.9 % - 35.9 % - 34.5 % - 59.3 %

16.03b 690 85 - 35.9 % + 14.1 % - 30.9 % - 32.9 % - 29.6 % - 40.0 %

17.03b 742 84 - 36.5 % + 19.0 % - 32.5 % - 32.1 % - 29.5 % - 56.0 %

Average 770.8 89.8 - 36.2 % + 16.1 % - 34.1 % - 37.2 % - 30.5 % - 53.4 %

Table 6.19: The ABP solutions with the weights (50,50,0)

ABP Tabu Search µ = 0 Tabu Search µ = 5.7 Tabu Search µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 835 99 - 47.4 % + 12.1 % - 41.7 % - 55.6 % - 35.6 % - 73.7 %

14.03b 782 100 - 48.3 % + 14.0 % - 40.2 % - 51.0 % - 33.8 % - 69.0 %

15.03b 805 81 - 50.9 % + 16.0 % - 40.4 % - 59.3 % - 36.0 % - 64.2 %

16.03b 690 85 - 43.8 % + 16.5 % - 44.2 % - 54.1 % .35.1 % - 56.5 %

17.03b 742 84 - 46.8 % + 17.9 % - 40.2 % - 58.3 % 34.9 % - 63.1 %

Average 770.8 89.8 - 47.4 % + 15.3 % - 41.3 % - 55.7 % - 35.1 % - 65.0 %

Table 6.20: The ABP solutions with the weights (50,50,0)

When the parameters are changed from (50,50,0) til (33,67,0) a small effect
is seen on average of Ψ, which decreases from 89.8 to 88.2. The reason for
this is the focus on the ATA time. The insertion heuristic with µ = 5.7
performs better than the ABP with (33,67,0), because the T is decreased by
34% on average and Ψ is decreased by 38 % on average.

The comparison with the tabu search illustrates how much the solution can
be improved by allowing a longer computation time. In table 6.18 a average
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ABP Insertion µ = 0 Insertion µ = 5.7 Insertion µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 845 100 - 35.7 % + 9.0 % - 34.4 % - 41.0 % - 28.8 % - 60.0 %

14.03b 807 101 - 35.8 % + 13.9 % - 39.4 % - 34.7 % - 33.2 % - 52.5 %

15.03b 789 76 - 38.7 % + 30.3 % - 34.6 % - 35.5 % - 33.2 % - 56.6 %

16.03b 667 87 - 33.7 % + 11.5 % - 28.5 % - 34.5 % - 27.1 % - 41.4 %

17.03b 747 77 - 36.9 % + 29.9 % - 32.9 % - 44.2 % - 30.1 % - 51.9 %

Average 771.0 88.2 - 36.2 % + 18.9 % - 34.0 % - 38.0 % - 30.5 % - 52.5 %

Table 6.21: The ABP solutions with the weights (33,67,0)

improvement on 38 % of T is obtained, when µ = 0. In the tables 6.20 and
6.22 the improvement are large also for µ = 7.4 and µ = 11.4. The number
Ψ is reduced by more than 50 % and T is reduced by more than 40 % in
table 6.22 for µ = 5.7.

ABP Tabu Search µ = 0 Tabu Search µ = 5.7 Tabu Search µ = 11.4

Day T Ψ T Ψ T Ψ T Ψ

13.03b 845 100 - 48.0 % + 11.0 % - 42.4 % - 56.0 % - 36.3 % - 73.0 %

14.03b 807 100 - 49.9 % + 14.0 % - 42.0 % - 51.0 % - 35.8 % - 69 %

15.03b 789 76 - 49.9 % + 23.7 % - 39.2 % - 56.6 % - 34.7 % - 61.8 %

16.03b 667 87 - 41.8 % + 13.8 % - 42.3 % - 55.2 % - 32.8 % - 57.5 %

17.03b 747 77 - 47.1 % + 28.6 % - 40.6 % - 54.5 % - 35.3 % - 59.7 %

Average 771.0 88.2 - 47.3 % + 18.2 % - 41.3 % - 54.7 % - 35.0 % - 64.2 %

Table 6.22: The ABP solutions with the weights (33,67,0)

The performance of the insertion heuristic is better than the ABP pro-
gramme in all cases. There are many reasons to this. One reason is the
restricted computation time provided for ABP, and another reason is that
the ABP is designed to take more constraints into consideration. The in-
sertion heuristic in this project is more advanced, because it uses a regret
measure.

These tests show, that when simplifying problem, solutions of higher qual-
ity can be reached. The next question is whether the insertion heuristic
described in this project can be applied in the ABP programme. It would
demand an improvement of the running time, especially when the heuristic
has to take more constraints into consideration.

The method in ABP is used in various ways, where planning one day is a
less demanding task on the number of computations. The task of planning
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all the visits of new citizen is a very demanding task on the number of
computations, because all the new visits have to inserted in each week in
period of 8 weeks, where some visits have several days as an option for
insertion. If the running time of the insertion heuristic can not improved
sufficiently for being applied for planning all the visits for a new citizen,
it might be applicable for scheduling the visits one day with the necessary
extensions on more constraints made. The issue on a low running time is
very important for the ABP programme to be well received in the offices in
the different home care districts.

The solutions used before the ABP was developed were in many cases in-
feasible, because many visits on a route were overlapping, and the caretaker
was scheduled to do more than one thing at the time. The solutions found
with the ABP or the insertion heuristic in this project can not be compared
with infeasible solutions.
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Discussion

This is an discussion on how methods from operations research can be ap-
plied in the home care sector, because good solutions do not necessarily
imply applications of the methods.

The administration staff in the home care sector normally have no knowledge
on operational research, and this may turn out to be a barrier, if one wants to
apply the methods from operational research in the home care sector. They
will not have the ability to validate if a solution is good. Their validations
are based on a comparison with the usual applied solutions, which might
not be very good, and hence a solution of poor quality will be chosen.

Some of the terms in operational research are new to the administration
staff. For instance a time window is a new conception to many people,
and hence they will not take advantage of it, because they do not know it.
Instead they lock the visits to be performed at a given time, which implies
solutions of lower quality. In the ABP system it is possible to choose to lock
the time for a visit. This function is superfluous, because the time can be
locked, by setting the time window as tight as the duration of the visit.

The whole concept of computing may also be new to many in an admini-
stration staff, because they do not know or do not care about that providing
a longer computation time often gives better solutions.

It needs to be considered how the staff can gain useful information on how to
validate a solution or set time windows. One way is by arranging seminars
on the topic.

The wishes of the caretakers, citizens and employers are often many and
conflicting. For instance when citizens want to have same caretaker always,
and the caretakers want to change the citizens sometimes.
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The danger of making it possible to fulfill too many wishes is that the
administration staff is not able to handle them, because considering how to
set the parameters and setting them is a demanding task.

ABP weights the importance of the three regular caretakers, where the first
one is the most important. I would suggest when applying ABP, that the
first caretaker is also responsible for following the situation at the citizen.
Normally the situation at each citizen is written down in a journal, but by
making one caretaker responsible for checking the situation, the caretaker
gets more responsibility and the situation is better observed.

The topic on how to apply the methods from operational research is very
complex, because of different wishes from the tax payers, the citizens and
the caretakers. This project has mainly focused on the citizens by including
the regular caretakers, which showed to give good results.
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Further Investigation

Future work could be to develop alternative methods for solving the VRPTWSV
introduced in chapter 2. The column generation is proposed as an alterna-
tive method in section 8.1. The VRPTWSV is just one kind of a problem
in the home care sector, and section 8.2 presents other problems.

8.1 Other Methods: Column Generation

The column generation is a method, which splits up a problem in two parts:
a subproblem and a master problem. The solutions found in the subproblem
are used as parameters in the master problem and the dual variables found in
the master problem are used as parameters in the subproblem. The figure 8.1
illustrates this interaction between the master- and subproblem. The next
subsections will go into deeper detail on how the master- and subproblem can
be formulated in the VRPTWSV. Three different approaches are introduced.

MASTERPROBLEM

SUBPROBLEM

variables
dual

solutions

Figure 8.1: Column Generation
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8.1.1 The Master Problem

The master problem can be formulated as a mathematical model with legal
routes. A legal route r performed by caretaker o is a route that starts in
D−

o and ends in D+
o , where D−

o and D+
o could be the home of the caretaker.

The visits in a legal route are sequenced and they start within their time
windows. They are also scheduled to be attended by the caretaker o within
the working hours of the caretaker o, and if any visits are locked to a specific
caretaker, it is also satisfied.

The binary decision variable in the master problem is given by

yo
r =

{

1 if caretaker o performs route r
0 otherwise.

The parameter κi
r is given by

κi
r =

{

1 if visit i is in route j
0 otherwise

The starting time for a visit i in route r is the parameter si
r.

The objective of the master problem is to choose the best set of legal routes
without violating a number of constraints. The price for caretaker o doing
route r is po

r, which is given in the objective function (2.16). The price po
r is

the total travelling time on the route r plus a penalty µ if the caretaker o is
not regular at some of the visits in the route. The penalty for a shared visit
without any regular caretaker is µ in (2.16), but in this master problem the
penalty is set to µ for each non regular caretaker to avoid having a price
depending on the combination of routes and thereby objective function is
simplified.

The mathematical model for the master problem is

min
∑

r,o p
o
ry

o
r (8.1)

st
∑

r,o y
o
rκ

i
r ≥ 1 ∀ i ∈ V (πi) (8.2)

∑

r y
o
r ≤ 1 ∀ o ∈ O (µo) (8.3)

ωpq
∑

o∈O(yo
r1
κp

r1s
p
r − yo

r2
κq

r2s
q
r) ≤ 0 ∀ p, q ∈ V, (8.4)

∀ r1, r2 ∈ R̂ (ηijr1r2)
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The constraint (8.2) ensures that all visits are attended and constraint (8.3)
ensures that each caretaker o does not perform more than one route. The
constraint (8.4) ensures, that both parts p and q of a shared visit start at
the same time. Notice that if visit p is in route r1 and this route is actually
performed by any caretaker then

∑

o∈O y
o
r1
κp

r1 = 1.

The dual variables πi, µo or ηijr1r2 measure how much the objective function
value of a solution would marginally change, if the right hand side of (8.2),
(8.3) or (8.4) is marginally changed.

Each column in the master problem correspond to one legal route. The set
R of legal routes is very huge, and it would be preferable only to have a
subset of legal routes R̂, when solving the master problem.

8.1.2 An Initial Solution to the Master problem

It is necessary to have an initial feasible solution to the master problem to
be able to calculate the dual variables. Some of the initial routes in R̂ routes
are already given, because some of the visits are locked to caretakers. All
the visits locked to the same caretaker are put into the same route.

All the remaining unlocked visits are inserted in dummy routes, R̃ in the
following way: let every route r̃ consist of one visit. In this way route r̃1

consists of visit v1 and route r̃2 consists of visit v2 etc. for all the remaining
visits. The decision variables will be

κv1
r̃1

= κv2
r̃2

= · · · = 1

The starting time for every visit in all the routes R̂ is set to the opening
time of the time window.

si
r = ai ∀ i ∈ V, ∀ r ∈ R̂ if κi

r = 1

The constraint (8.4) in the master problem will not be violated, when setting
the starting times as above, because the both parts p and q in a shared visit
have equal time windows.

It will be necessary to include a set of dummy caretakers, Õ in the set O
to ensure the initial solution to be feasible. The total number of caretakers
m in O has to be equal to the number of routes in R̂ initially, because
each caretaker can only perform one route and all visits have to be attended
according to (8.3) and (8.2). The cost põ

r for assigning a dummy caretaker õ
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to any route is set very high, and equally po
r̃ for assigning any caretaker to

a dummy route r̃ is also set very high. This implies, that the dual variables
µõ and πi initially will be very high, when the dummy caretakers and the
dummy routes are in the initial solution.

When performing the column generation with shared visits, there is a de-
pendency between the columns. One has to consider what happens every
time a new column is generated in the subproblem.

Problem with shared visits: If the route contains a part p of shared visits
with the starting time sp

r then there should be a route r2 in the subset
R̂, where the other part q of the shared visit starts at the same time.
Otherwise no feasible solution can be found for the master problem.
The paradox is that parameter ηpqrr2 in the subproblem rewards a
starting time sp

r different from sq
r2 , see (8.5) .

The initial starting time of the shared visit will never change, because the
subproblem only finds one new route and it can not violate the constraint
(8.4) on synchronous starting times for each shared visit. This may prevent
the column generation from finding the optimal solution, because it will not
be able to search in the whole solution space.

To avoid this problem, one can initially add a new kind of dummy routes
to R̂ in the master problem for every possible starting time for all parts of
the shared visits. If there are bp − ap possible starting times for the part p
in a shared visit, then bp − ap routes only containing visit p is added, where
p starts at different times are added. The costs po

r̃ of these routes are set
very high, which implies that the dual variable πp also will be high, if these
dummy routes are in the solution.

8.1.3 The Subproblem

The subproblem generates the columns for the master problem by finding
legal routes. The best route is defined as the one with most negative reduced
cost according to Dantzig’s rule.

The reduced cost is calculated using the dual variables in the master prob-
lem, and the reduced cost for letting caretaker o do route r is

p̂r
o = pr

o −
∑

i∈V

κi
rπi − µo − ωij

∑

r2∈R̂

∑

i,q∈V

(κi
rs

i
r − κq

r1
sq
r2

)ηiqrr2 , (8.5)

97



CHAPTER 8. FURTHER INVESTIGATION

where πi is the cost of every visit i included in route r and ηiqrr2 is the cost
of making the starting times between the parts p and q in a shared visit
different, where q is situated in a route r2 among the routes in R̂. The
negative reduced cost for a variable yr

o, which is not in the solution indicates
how much po

r can be decreased before the optimal solution would change
and yr

o is > 0 in an optimal solution, see page 96 in [Mar04].

The mathematical formulation for the subproblem contains the constraints
(2.18) - (2.30) except (2.22), which are

• Each caretaker only starts once in his start depot.

• Each caretaker also finishes once in his end depot.

• When a caretaker arrives to a visit, different from the end depot, the
caretaker should also leave the visit.

• Each caretaker has an earliest starting time.

• Each caretaker also has a latest finishing time.

• A visit is only allowed to start when the previous visit is finished and
the caretaker has travelled from the previous visit to the current visit.

• Each visit has an earliest starting time

• Each visit has a latest starting time

• The visits locked to a caretaker are performed by the caretaker, they
are locked to.

Finding the best legal route is a NP-hard problem, because it is a modified
version of the shortest path problem with time windows - a problem which is
already NP-hard. The subproblem does also try to minimize the travelling
time, because po

r describes the travelling time and is in the objective function,
but it also has other objectives. The modification from the shortest path
problem with time windows is also found in the constraints on locked visits,
working times and shared visits.

The parameters κi
r and si

r are the decision variables in this subproblem, and
when a solution is found, κi

r and si
r are given to the master problem.

The interaction between the master- and subproblem as illustrated in figure
8.1 continues until, no more routes with negative reduced costs can be found,
and thereby the optimal solution is found.
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8.1.4 A Second Way to Handle the Shared Visits in Column
Generation

The constaint (8.4) in the master problem makes the problem harder to
solve, and therefore a new idea would be to the relax master problem, where
(8.4) is removed. The initial solution is again found in the way proposed in
subsection 8.1.2.

A procedure for forcing the solution in the master problem to be integral is
needed. The column generation is initially run without paying attention to
the starting times of the shared visits. When no more routes with negative
reduced costs can be found, it is investigated if the solution is feasible. It is
feasible if all pairs of parts p and q in shared visits start at the same time
without using any of the dummy routes, where p or q starts at all possible
times. To obtain a feasible solution it may be necessary to make pushes
forward and backward in the routes in the solution. The pushes can of
cause only be done in a manner where none of the time windows or working
hours are violated. If it is not possible to obtain a feasible solution, because
the starting times for a pair p and q can not be set equal, the method forces
the starting times to be equal, by adding the constraint

ωpq

∑

o∈O

(yo
r1
κp

r1
sp
r − yo

r2
κq

r2
sq
r) ≤ 0 ∀ r1, r2 ∈ R̂ (ηijr1r2) (8.6)

to the master problem. The columns generated previously are not removed
because they may be a part of an optimal solution. Actually it could be that
the optimal set of routes are among the previously generated routes, but they
were not chosen in the first round, when it was possible to violate (8.6). If
the optimal set of routes is not among the previously generated routes, the
column generation starts again with the interaction between the master- and
subproblem with the new constraint in the master problem. Because of the
high costs of the dummy columns with the parts p of shared visits starting at
all possible times, the dual variables πp are very high, if the dummy columns
are in the solution. This implied that the subproblem will find new columns
replacing the dummy columns. The whole set of replacement columns for
p and q will contain pairs of routes where the newly added constraint is
satisfies. When no more routes with negative reduced cost are found it is
again investigated whether the solution found is feasible as it was done in the
previous round. The method continues until an optimal solution is found.
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8.1.5 A Third Way to Handle Shared Visits in Column Gen-
eration

A third way to handle the shared visits is by defining a new master- and
subproblem. Each column in the masterproblem should correspond to a
pair of routes. The set of paired routes in the master problem is R̂2. This
change makes it possible to have a pair of routes r1 and r2 with a shared
visit, where one part p is in r1 and the other part q is in r2. There should
though still be payed attention to the other shared visits, because route r1

could for instance contain another shared visit where the part l is in a third
route r3. The figure 8.2 illustrates such situation. Then one has to ensure
that R̂2 has a pair of routes where l starts at the same time as k. This
is ensured by making the initial solution as proposed in subsection (8.1.2),
where the shared visits in pairs of routes start at all possible times.

PSfrag replacements

r1

r2

r3

p

q

k

l

Figure 8.2: The three routes r1, r2 and r3

These thoughts on how to use column generation for finding a solution to
the VRPTWSV show, that it is very complex, because of the dependence
between the columns.

8.2 Other Problems

In the home care sector, there are many other problems, which can be solved
using methods from operational research. Some of those problems are pre-
sented in this section.

8.2.1 Extending the VRPTWSV

The VRPTWSV can be extended to include the types of demands for each
visit and the qualifications of the caretakers. Another extension could be
to include priorities on visits. The extensions can be performed in a similar
way like the regular caretakers are included in the problem.
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8.2.2 Disruption

The daily work in the home care sector is very dynamic. There may happen
all kinds of events both before and after starting attending the visits.

The kinds of events, that may happen before attending the first visits, can
be taken into account when scheduling the daily plan. Such event could be a
caretaker calling to say he is ill and can not go to work, or a message saying
that a citizen is coming home from the hospital.

All kinds of other events can also happen during the execution of daily plan.

Typical events are visits which last longer than expected. The durations
of the visits used in the scheduling phase in the morning, are therefore not
valid any longer. The duration of a visit increases for instance if somebody
forgot to close a catheter well, and there is urine all over the floor, which
have to be washed.

Another kind of event is if a citizen suddenly needs more visits, if the situ-
ation of the citizen gets worse and he needs more help.

An interruption model would take the events into consideration and make
a new plan for the remaining part of the daily plan with the objective to
make as few changes as possible.

8.2.3 Rosters

Another problem is to schedule the rosters for the caretakers. The schedul-
ing of the rosters should both depend on the wishes of the caretakers and the
demands of the citizens. For instance a caretaker should have his weekly day-
off on Wednesdays, if none of his regular citizens need help on Wednesdays.
Another example is a caretaker, who wishes to finish early on Mondays. A
good roster would set her finishing time at 1 pm. if that is feasible. A
cost of giving in to wishes could be included in the model. As it is today
in Søllerød municipality, the rosters for the caretakers are given by KMD
(former Kommune Data).
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Conclusion

In this thesis the problem of scheduling the routes in the home care is con-
sidered. The problem is limited to only take some of the conditions into
consideration. The conditions included are the time windows of the visits,
the working hours of the caretakers, the visits locked to careatakers, and the
shared visits. The special feature in the problem is the shared visit, which
is a visit where two caretakers start and finish the visit at the same time.
These shared visits imply a dependence between the routes. The problem
has two objectives. One objective is to minimize the total travelling time
and the other objective is to minimize the number of visits without a regular
caretaker.

The aim of this thesis is fulfilled by developing methods for solving the
problem. An insertion heuristic is extended to handle the shared visits
in an intelligent way. To determine the best insertion positions, a regret
measure is used.

A tabu search heuristic is also changed to be applied to the problem. The
tabu search allows infeasible solutions, where the violations are penalized by
costs, which are not constant. The violations are allowed for time windows
of the visits, the working hours of the caretakers and the starting times of
the shared visits.

The move used in the tabu search is the relocation of a visit from one route
to another. Neighbourhoods of smaller size have been tried, but without
good results, because the violations were increasing too much without the
search reached a feasible solution. The implemented tabu search uses the
whole neighbourhood.

It is considered how one could use different strategies for finding the new
starting times times in the route where a visit is removed or in the route,
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where a visit is inserted. The strategy applied in this thesis includes push
forward and backward functions. This strategy is chosen because of a short
run time and good results, when there are few shared visits as there are
in the data instances. The disadvantage of this strategy is that the push
functions do not pay attention to the shared visits, and another strategy
including a LP-model is suggested.

The developed solution methods are tested, and it is found, that the perfor-
mance of the insertion heurisic does not depend on the shared visits in the
test instances. The running time of the insertion heuristic in approximately
1.1 seconds. An example showed that the minimizing the total travel time
and the number of visits without a regular caretaker is not always conflicting,
when using the insertion heuristic.

When tuning the parameters for the tabu search, the best settings of the
parameters turned out to depend on the problem structure, and hence more
investigation can be performed in this area.

The tabu search performed best on the data instances without shared visits,
where an improvement up to 27 % is reached. For the data with shared
visits, the best improvement reached is 19 %. The reason for this is, that
the push forward and backward functions do not pay attention to the shared
visits.

The solution methods are compared with the programme ABP developed
for more complex problems, and the tests showed that the solutions found
by both the insertion heuristic and the tabu search are better than the
solutions obtained in ABP. When only considering the total travelling time
the solutions found the insertion heuristic gave an improvement average of
25% and tabu search gave an improvement average on 38 %. The number
of visits without a regular caretaker in the solutions can not be compared
directly, because the ABP focuses more on the travelling time. The results
show, that the number of visits without a regular caretaker can be improved,
while the total travelling time is also improved. All the results show how it
is possible to get high quality solutions, if the problem is limited.
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Appendix A

The Figures for Parameter
Tuning

The figures in this chapter are used for the parameter tuning. All the figures
are 3-d plots, because the parameter tuning involve three parameters δ, θ
and λ. The solution value of each solution is indicated using a scala with
colors and symbols, which is explained in table A.1.

Symbol Color Interval for the solution value

Star (*) Red [C(x∗), C(x∗) + (C(xo) − C(x∗))/4[

Diamond (�) Pink [C(x∗) + (C(xo) − C(x∗))/4, C(x∗) + (C(xo) − C(x∗))/2[

Square (�) Blue [C(x∗) + (C(xo) − C(x∗))/2, C(x∗) + 3(C(xo) − C(x∗))/4[

Circle (◦) Green [C(x∗) + 3(C(xo) − C(x∗))/4, C(xo)]

Table A.1: The symbols used for the figures in the parameter tuning, where C(x∗) is
the cost of the best solution found and C(xo) is the cost of the worst solution found

In the figures the parameter µ is changing between the values 0, 5.7 and
11.4. For each setting of the parameter µ, two data sets are used; one with
shared visits and one without.
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(a) Monday 27th, February 2006.
The best solution has the cost 468.
The worst solution has the cost 576
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The worst solution has the cost 539
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worst solution has the cost 598
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(e) Friday 3rd, March 2006. The
best solution has the cost 567. The
worst solution has the cost 601

Figure A.1: The results from parameter tuning with µ = 0, week 9, where data contain
shared visits.
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(a) Monday 6th, March 2006. The
best solution has the cost 513. The
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(e) Friday 10th, March 2006. The
best solution has the cost 573. The
worst solution has the cost 649

Figure A.2: The results from parameter tuning with µ = 0, week 10, where data contain
shared visits
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(a) Monday 27th, February 2006.
The best solution has the cost 855.2.
The worst solution the cost 1020.4
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The best solution has the cost 926.4.
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(d) Thursday 2nd, March 2006. The
best solution has the cost 971.6. The
worst solution has the cost 1093.4
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(e) Friday 3rd, March 2006. The
best solution has the cost 1076.5.
The worst solution has the cost 1164

Figure A.3: The results from parameter tuning with µ = 5.7, week 9, and where data
contain shared visits.
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(a) Monday 6th, March 2006. The
best solution has the cost 942.9. The
worst solution has the cost 1016.8
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(d) Thursday 9th, March 2006. The
best solution has the cost 985.5. The
worst solution has the cost 1109.2
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(e) Friday 10th, March 2006. The
best solution has the cost 982.3. The
worst solution the cost 1023.5

Figure A.4: The results from parameter tuning with µ = 5.7, week 10, and where data
contain shared visits.
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The best solution has the cost
1148.0. The worst solution the cost
1399.4.
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(d) Thursday 2nd, March 2006. The
best solution has the cost 1306.6.
The worst solution the cost 1445.0.
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(e) Friday 3rd, March 2006. The
best solution has the cost 1400.6.
The worst solution the cost 1481.2.

Figure A.5: The results from parameter tuning with ψ = 11.4, week 9 and where data
contain shared visits
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(a) Monday 6th, March 2006. The
best solution has the cost 1238.4.
The worst solution the cost 1278.9.
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(c) Wednesday 8th, March 2006.
The best solution has the cost
1330.2. The worst solution the cost
1173.0.
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(d) Thursday 9th, March 2006. The
best solution has the cost 1159.6.
The worst solution the cost 1371.8.
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(e) Friday 10th, March 2006. The
best solution has the cost 1186.4.
The worst solution the cost 1274.0.

Figure A.6: The results from parameter tuning with ψ = 11.4, week 10, and where data
contain shared visits
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(a) Monday 27th, February 2006.
The best solution has the cost 413.
The worst solution has the cost 510
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The worst solution has the cost 546
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(d) Thursday 2nd, March 2006. The
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(e) Friday 3rd, March 2006. The
best solution has the cost 582. The
worst solution has the cost 526

Figure A.7: The results from parameter tuning with µ = 0, week 9. The data do not
contain shared visits.
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(a) Monday 6th, March 2006. The
best solution has the cost 425. The
worst solution has the cost 519
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The best solution has the cost 430.
The worst solution has the cost 530
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(d) Thursday 9th, March 2006. The
best solution has the cost 443. The
worst solution has the cost 558
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(e) Friday 10th, March 2006. The
best solution has the cost 524. The
worst solution has the cost 567

Figure A.8: The results from parameter tuning with ψ = 0, week 10. The data do not
contain shared visits.
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(a) Monday 27th, February 2006.
The best solution has the cost 767.3.
The worst solution has the cost 991.4
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(c) Wednesday 1st, March 2006.
The best solution has the cost 781.6.
The worst solution has the cost 939.9
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(d) Thursday 2nd, March 2006. The
best solution has the cost 940.1. The
worst solution has the cost 1121.6
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(e) Friday 3rd, March 2006. The
best solution has the cost 845.4. The
worst solution has the cost 1051.2

Figure A.9: The results from parameter tuning with µ = 5.7, week 9. The data do not
contain shared visits.
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(a) Monday 6th, March 2006. The
best solution has the cost 763.3. The
worst solution has the cost 905.8
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(b) Tuesday 7th, February 2006.
The best solution has the cost 775.7.
The worst solution has the cost 981.4

0
10

20

0510152025300

0.5

1

1.5

2

2.5

lambdatheta

de
lta

(c) Wednesday 8th, March 2006.
The best solution has the cost 780.5.
The worst solution has the cost 959.7

0
10

20
0510152025300

0.5

1

1.5

2

2.5

lambdatheta

de
lta

(d) Thursday 9th, March 2006. The
best solution has the cost 788.9. The
worst solution has the cost 1007.8
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(e) Friday 10th, March 2006. The
best solution has the cost 804.2. The
worst solution has the cost 926.1

Figure A.10: The results from parameter tuning with ψ = 5.7, week 10. The data
include no shared visits.
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(a) Monday 27th, February 2006.
The best solution has the cost 928.4.
The worst solution the cost 1257.6.
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(b) Tuesday 28th, February 2006.
The best solution has the cost
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(c) Wednesday 1st, March 2006.
The best solution has the cost
1151.6. The worst solution the cost
925.2.
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(d) Thursday 2nd, March 2006. The
best solution has the cost 1435.8.
The worst solution the cost 1080.8.
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(e) Friday 3rd, March 2006. The
best solution has the cost 1529.8.
The worst solution the cost 1151.8.

Figure A.11: The results from parameter tuning with ψ = 11.4, week 9. The data is
without shared visits.

117



APPENDIX A. THE FIGURES FOR PARAMETER TUNING

0 10 20
051015202530

0

0.5

1

1.5

2

2.5

lambdatheta

de
lta

(a) Monday 6th, March 2006. The
best solution has the cost 1158.6.
The worst solution the cost 916.0.
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(b) Tuesday 7th, February 2006.
The best solution has the cost
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(c) Wednesday 8th, March 2006.
The best solution has the cost 856.8.
The worst solution the cost 1113.8.
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(d) Thursday 9th, March 2006. The
best solution has the cost 1040.0.
The worst solution the cost 1206.2.
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(e) Friday 10th, March 2006. The
best solution has the cost 1063.8.
The worst solution the cost 1133.8.

Figure A.12: The results from parameter tuning with ψ = 11.4, week 10. The data is
without shared visits.
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The Source Code

B.1 The Source Code for the Objects

B.1.1 Citizen.java

import java.util.*;

public class Citizen{

private int num; //the number of the citizen

private int distanceNum; // The original numbe of the citizen

private Worker worker1; // the number of the first regular worker

private Worker worker2; // the number of the second regular worker

private Worker worker3; // the number of the third regular worker

public Citizen(int n1, Worker w1, Worker w2, Worker w3, int n2){

num = n1; worker1 = w1; worker2 = w2; worker3 = w3; distanceNum = n2;

}

public Citizen(int n, Worker w1, Worker w2, Worker w3){

num = n; worker1 = w1; worker2 = w2; worker3 = w3; distanceNum = -1;

}

public Citizen() {

num = -1; worker1 = new Worker(); worker2 = new Worker(); worker3 = new Worker(); distanceNum = -1;

}

public boolean isTheWorkerRegular(Worker w){

boolean answer = false;

int n = w.number();

int n1 = worker1.number();

int n2 = worker2.number();

int n3 = worker3.number();

if( (n == n1 | n == n2) | n == n3){

answer = true;

}

return answer;

}

public int number(){return num;}

public void setNumber(int n){num = n;}

public int distanceNumber(){return distanceNum;}

public void setDistanceNumber(int n){distanceNum = n;}
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public Worker worker1(){return worker1;}

public void setWorker1(Worker w1){

worker1 = w1;

}

public Worker worker2(){return worker2;}

public void setWorker2(Worker w2){

worker2 = w2;

}

public Worker worker3(){return worker3;}

public void setWorker3(Worker w3){

worker3 = w3;

}

public Citizen copy(){

Citizen newCitizen = new Citizen();

newCitizen.setNumber(num);

newCitizen.setDistanceNumber(distanceNum);

Worker newWorker1 = worker1.copy();

newCitizen.setWorker1(newWorker1);

Worker newWorker2 = worker2.copy();

newCitizen.setWorker2(newWorker2);

Worker newWorker3 = worker3.copy();

newCitizen.setWorker3(newWorker3);

return newCitizen;

}

public String toString(){

String output = "citizen "+ num + "/" + distanceNum;

output += "("+ worker1.number() + "," + worker2.number() + "," + worker3.number() + ")";

return output;

}

//public String toString(){String output = "citizen "+ originalNum; return output;}

}

B.1.2 Route.java

import java.math.*;

import java.util.*;

public class Route {

public Vector v = new Vector();

private int num; // The number of the visit.

private Worker work; // The worker doing this route.

public Route(int n, Worker w){num = n; work = w;}

public Route(){num = -1; work = new Worker();}

//Insert a visit in the route

public void insert(int i, Visit vi){v.add(i, vi);}

// Remove a visit in a route

public void removeVisitAt(int i){v.removeElementAt(i);}

public void remove(Visit vi){boolean bool = v.remove(vi);}

//Number of visits in the route

public int length(){return v.size();}

//Get Visit at position i in the path

public Visit get(int i){return (Visit) v.get(i);}

public void empty(){v.clear();}

public int number(){return num;}

public void setNumber(int n){num = n;}
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public Worker worker(){return work;}

public void setWorker(Worker w){work = w;}

public double violation(){

int l = v.size();

Visit lastVisit = (Visit) v.get(l-1);

double finish = lastVisit.finish();

double violation = Math.max(finish-work.finish(),0);

return violation;

}

public Route copy(){

Route newRoute = new Route();

// Copy the visits in the vector

for(int i = 0; i < v.size(); i++){

Visit currentVisit = (Visit) v.get(i);

Visit newVisit = currentVisit.copy();

newRoute.insert(i,newVisit);

}

// Copy the numbers

newRoute.setNumber(num);

//Copy the worker

Worker newWorker = work.copy();

newRoute.setWorker(newWorker);

return newRoute;

}

public String toString(){

int l = v.size();

Visit lastVisit = (Visit) v.get(l-1);

double finish = lastVisit.finish();

double violation = Math.max(finish-work.finish(),0);

String output = "ROUTE " + num + "/" + work.originalNumber() + ": [" + work.start()+ ", " + work.finish()+"]";

output += ", violation = " + violation + "\n";

//String output = "ROUTE " + work.originalNumber() + ": [" + work.start()+ ", " + work.finish()+"]\n";

for(int i=0; i<l; i++)

{

Visit current = (Visit) v.get(i);

output += current.toString() + "\n";

}

return output;

}

public String toString(double[][] distance){

int l = v.size();

Visit lastVisit = (Visit) v.get(l-1);

double finish = lastVisit.finish();

double violation = Math.max(finish-work.finish(),0);

String output = "ROUTE " + num + "/" + work.originalNumber() + ": [" + work.start()+ ", " + work.finish()+"]";

output += ", violation = " + violation + "\n";

//String output = "ROUTE " + work.originalNumber() + ": [" + work.start()+ ", " + work.finish()+"]\n";

for(int i=0; i<l; i++)

{

Visit current = (Visit) v.get(i);

double travel = 0;

if(i < l-1){

Visit next = (Visit) v.get(i+1);

travel = distance[current.citizen().number()][next.citizen().number()];

}

output += current.toString() + ", travel = " + travel + "\n";

}
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return output;

}

}

B.1.3 Visit.java

import java.math.*;

public class Visit {

private double open; //the relative time in minutes when the time window starts

private double closed; //the relative time in minutes when the time window ends

private double duration; //the duration of the visit in minutes

private Citizen citizen; //the number of the citizen

private int number; //the number of the visit

private boolean byTwo; //alpha = 1 if the visit is done by two persons, 0 otherwise

private boolean removable; // Indicates whether it is possible to move the visit

// For instance, break is not removable

private boolean isPlanned; // Indicate whether the visit is scheduled

// VARIABLES TO BE SET

private double arrival; // Arrival Time

private double wait; // Waiting Time

private double start; //s_i The starting time for the visits.

private double finish; // Finish time

// The position of the visit when it is inserted

private int routeNumber;

private int position;

public Visit(){

open = -1; closed = -1; duration = -1; citizen = new Citizen(); number = -1;

arrival = -1; wait = -1; start = -1; finish = -1; byTwo = false; removable = true;

routeNumber = -1; position = -1; isPlanned = false;

}

public Visit( int n, double o, double cl, double d, Citizen c){

open = o; closed = cl; duration = d; citizen = c; number = n;

arrival = -1; wait = -1; start = -1; finish = -1; byTwo = false; removable = true;

routeNumber = -1; position = -1; isPlanned = false;

}

public Visit( int n, double o, double cl, double d, Citizen c, boolean two, boolean remove){

open = o; closed = cl; duration = d; citizen = c;

number = n; arrival = -1; wait = -1; start = -1; finish = -1;byTwo = two; removable = remove;

routeNumber = -1; position = -1; isPlanned = false;

}

public Visit( int n, double o, double cl, double d, Citizen c, boolean two, boolean remove, double a,

double w, double s, double f){

open = o; closed = cl; duration = d; citizen = c; number = n;

arrival = a; wait = w; start = s; finish = f; byTwo = two; removable = remove;

routeNumber = -1; position = -1; isPlanned = false;

}

public Visit( int n, double o, double cl, double d, Citizen c, boolean two, boolean remove, double a,

double w, double s, double f, int r, int p){

open = o; closed = cl; duration = d; citizen = c; number = n;

arrival = a; wait = w; start = s; finish = f; byTwo = two; removable = remove;

routeNumber = r; position = p; isPlanned = false;

}

public Visit( int n, double o, double cl, double d, Citizen c, boolean two, boolean remove, double a,

double w, double s, double f, int r, int p, boolean i){

open = o; closed = cl; duration = d; citizen = c; number = n;

arrival = a; wait = w; start = s; finish = f; byTwo = two; removable = remove;

routeNumber = r; position = p; isPlanned = i;

}

public void setOpen(double o){open = o;}

public double open(){return open ;}
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public void setClosed(double cl){closed =cl;}

public double closed(){return closed;}

public void setDuration(double d){duration = d;}

public double duration(){return duration;}

public void setCitizen(Citizen c){citizen = c;}

public Citizen citizen(){return citizen;}

public void setNumber(int n){number = n;}

public int number(){return number;}

public void setArrival(double a){arrival = a;}

public double arrival(){return arrival;}

public void setWaitingTime(double w){wait = w;}

public double waitingTime(){return wait;}

public void setStart(double s){start = s;}

public double start(){return start;}

public void setFinish(double f){finish = f;}

public double finish(){return finish;}

public void setIsShared(boolean two){byTwo = two;}

public boolean isShared(){return byTwo;}

public boolean removable(){return removable;}

public void setRemovable(boolean remove){

removable = remove;}

public int routeNumber(){return routeNumber;}

public void setRouteNumber(int r){routeNumber = r;}

public int position(){return position;}

public void setPosition(int p){position = p;}

public boolean isPlanned(){return isPlanned;}

public void setIsPlanned(boolean i){isPlanned = i;}

public double violation(){

double violation;

violation = Math.max(start-closed,0);

return violation;

}

public Visit copy(){

Visit newVisit = new Visit();

newVisit.setOpen(open);

newVisit.setClosed(closed);

newVisit.setDuration(duration);

Citizen newCitizen = citizen.copy();

newVisit.setCitizen(newCitizen);

newVisit.setNumber(number);

newVisit.setArrival(arrival);

newVisit.setWaitingTime(wait);

newVisit.setStart(start);

newVisit.setFinish(finish);

newVisit.setIsShared(byTwo);

newVisit.setRemovable(removable);

newVisit.setRouteNumber(routeNumber);

newVisit.setPosition(position);

newVisit.setIsPlanned(isPlanned);

return newVisit;

}

public String toString(){

double violation = Math.max(start-closed,0);

String output = " Visit " + number + " with " + citizen.toString();

output += ", arrive " + arrival + ", wait " + wait + ", start " + start;

output += ", [" + open + "," + closed + "]";

output += ", last " + duration + ", finish " + finish;

output += ", route " + routeNumber + ", pos "+ position ;

output += ", violation = " + violation;
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if(byTwo){

output += " *";

}

//output += "\n";

return output;}

}

B.1.4 Worker.java

import java.util.*;

public class Worker{

private int num; //the number of the worker

private int originalNum; // The number in the data set

private double start; // the starting time

private double finish; // the finishing time

public Worker(int n1, double s, double f, int n2){

num = n1; start = s; finish = f; originalNum = n2;

}

public Worker(int n, double s, double f){

num = n; start = s; finish = f; originalNum = -1;

}

public Worker(){

num = -1; start = -1; finish = -1; originalNum = -1;

}

public int number(){return num;}

public void setNumber(int n){num = n;}

public int originalNumber(){return originalNum;}

public void setOriginalNumber(int n){originalNum = n;}

public double start(){return start;}

public void setStart(double s){start = s;}

public double finish(){return finish;}

public void setFinish(double f){finish = f;}

public Worker copy(){

Worker newWorker = new Worker();

newWorker.setNumber(num);

newWorker.setOriginalNumber(originalNum);

newWorker.setStart(start);

newWorker.setFinish(finish);

return newWorker;

}

public String toString(){String output = "worker "+ num; return output;}

}

B.1.5 Solution.java

import java.util.*;

public class Solution{

// All the routes

private Route[] allRoutes;

// All the visits

private Visit[] allVisits;
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// The costs

private Cost cost;

// Is the solution feasible

private boolean isTheSolutionFeasible;

// The constructor

public Solution(Route[] a1, Visit[] a2, boolean i, Cost c){

allRoutes = a1;

allVisits = a2;

isTheSolutionFeasible = i;

cost = c;

}

// The constructor

public Solution(Route[] a1, Visit[] a2, boolean i){

allRoutes = a1;

allVisits = a2;

isTheSolutionFeasible = i;

cost = new Cost();

}

// Overloading the constructor again

public Solution(){

allRoutes = new Route[0];

allVisits = new Visit[0];

isTheSolutionFeasible = true;

cost = new Cost();

}

public void setAllRoutes(Route[] a){

allRoutes = a;}

public Route[] allRoutes(){

return allRoutes;}

public void setAllVisits(Visit[] a){allVisits = a;}

public Visit[] allVisits(){return allVisits;}

public void setCost(Cost c){

cost = c;}

public Cost cost(){

return cost;}

public void setIsFeasible(boolean i){

isTheSolutionFeasible = i;}

public boolean isFeasible(){

return isTheSolutionFeasible;}

public void setTotalTravelTime(double t){

cost.setTotalTravelTime(t); }

public double totalTravelTime(){return cost.totalTravelTime();}

public void setNoOfVisitsWithoutRegularWorker(int n){

cost.setNoOfVisitsWithoutRegularWorker(n);}

public int noOfVisitsWithoutRegularWorker(){return cost.noOfVisitsWithoutRegularWorker();}

public void setDifferenceStartingTimesSharedVisits(double d){

cost.setDifferenceStartingTimesSharedVisits(d);}

public double differenceStartingTimesSharedVisits(){

return cost.differenceStartingTimesSharedVisits();}

public void setViolationOfTimeWindows(double v){

cost.setViolationOfTimeWindows(v);}

public double violationOfTimeWindows(){

return cost.violationOfTimeWindows();}

public void setViolationOfWorkingHours(double v){

cost.setViolationOfWorkingHours(v);}

public double violationOfWorkingHours(){

return cost.violationOfWorkingHours();}

public double c(double psi){

double c;

c = cost.totalTravelTime() + psi*cost.noOfVisitsWithoutRegularWorker();

return c;

}

public double f(double psi, double alpha, double beta, double gamma){

double f;

f = cost.totalTravelTime() + psi*cost.noOfVisitsWithoutRegularWorker();

f += alpha*cost.violationOfTimeWindows() ;
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f += beta*cost.differenceStartingTimesSharedVisits();

f += gamma*cost.violationOfWorkingHours();

return f;

}

public Solution copy(){

Solution newSolution = new Solution();

// Copy all routes

Route[] newAllRoutes = new Route[allRoutes.length];

for(int i = 1; i < allRoutes.length; i++){

Route currentRoute = allRoutes[i];

Route newRoute = currentRoute.copy() ;

newAllRoutes[i] = newRoute;

}

newSolution.setAllRoutes(newAllRoutes);

// Copy all the visits

Visit[] newAllVisits = new Visit[allVisits.length];

for(int j = 1; j < allVisits.length; j++){

//System.out.println("j = " + j);

Visit currentVisit = allVisits[j];

//System.out.println("currentVisit = " + currentVisit);

Visit newVisit = currentVisit.copy();

newAllVisits[j] = newVisit;

}

newSolution.setAllVisits(newAllVisits);

// Copy the costs

Cost newCost = cost.copy();

newSolution.setCost(newCost);

// Copy the feasibility

newSolution.setIsFeasible(isTheSolutionFeasible);

return newSolution;

}

}

B.1.6 Cost.java

import java.util.*;

public class Cost{

// The costs

private double totalTravelTime;

private int noOfVisitsWithoutRegularWorker;

private double differenceStartingTimesSharedVisits;

private double violationOfTimeWindows;

private double violationOfWorkingHours;

// The constructor

public Cost(double t, int n, int d, double v1, double v2){

totalTravelTime = t;

noOfVisitsWithoutRegularWorker = n;

differenceStartingTimesSharedVisits = d;

violationOfTimeWindows = v1;

violationOfWorkingHours = v2;

}

public Cost(double t, int n){

totalTravelTime = t;

noOfVisitsWithoutRegularWorker = n;

differenceStartingTimesSharedVisits = 0;

violationOfTimeWindows = 0;

violationOfWorkingHours = 0;

}

// Overloading the constructor again

public Cost(){

totalTravelTime = 0;

noOfVisitsWithoutRegularWorker = 0;

differenceStartingTimesSharedVisits = 0;

violationOfTimeWindows = 0;

violationOfWorkingHours = 0;
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}

public void setTotalTravelTime(double t){

totalTravelTime = t; }

public double totalTravelTime(){return totalTravelTime;}

public void setNoOfVisitsWithoutRegularWorker(int n){

noOfVisitsWithoutRegularWorker = n;}

public int noOfVisitsWithoutRegularWorker(){return noOfVisitsWithoutRegularWorker;}

public void setDifferenceStartingTimesSharedVisits(double d){

differenceStartingTimesSharedVisits = d;}

public double differenceStartingTimesSharedVisits(){

return differenceStartingTimesSharedVisits;}

public void setViolationOfTimeWindows(double v){

violationOfTimeWindows = v;}

public double violationOfTimeWindows(){

return violationOfTimeWindows;}

public void setViolationOfWorkingHours(double v){

violationOfWorkingHours = v;}

public double violationOfWorkingHours(){

return violationOfWorkingHours;}

public double c(double psi){

double cost;

cost = totalTravelTime + psi*noOfVisitsWithoutRegularWorker;

return cost;

}

public double f(double psi, double alpha, double beta, double gamma){

double cost;

cost = totalTravelTime + psi*noOfVisitsWithoutRegularWorker;

cost += alpha*violationOfTimeWindows ;

cost += beta*differenceStartingTimesSharedVisits;

cost += gamma*violationOfWorkingHours;

return cost;

}

public Cost copy(){

Cost newCost = new Cost();

// Copy the costs

newCost.setTotalTravelTime(totalTravelTime);

newCost.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

newCost.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

newCost.setViolationOfTimeWindows(violationOfTimeWindows);

newCost.setViolationOfWorkingHours(violationOfWorkingHours);

return newCost;

}

}

B.2 The Source Code for the Insertion Heuristic

B.2.1 Insertion.java

import java.util.*;

import java.math.*;

class Insertion{

public int nCitizens; //The number of citizens

public int nVisits; //The number of visits

public int maxVisitNumber; //The largest visit number

public int nRoutes; //The number of routes

public int nWorkers; // The nuber of workers

public double[][] distance; //The distances in minutes between citizens

public Visit[] allVisits; // Array with all the visits

public Vector allVisitsVector; // Vector with all the initial visits

public int nStartVisits; // Number of start visits
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public int nBreakVisits; // Number of breaks

//public int firstStartVisitNumber; // The number of the first start visit. The rest is increasing by 1

//public int firstBreakVisitNumber; // The number of the first break;

public Worker[] allWorkers; // Array with all workers

public int[] theOtherVisit; // What is the number of the corresponding visit, if the visit is shared.

public Vector allNotPlannedVisits = new Vector(); //Vector with all not planned visits

public Vector allPlannedVisits = new Vector(); //Vector with all planned visits

public Route[] allRoutes; //Array with all routes

public double totalTravelTime;

public int noOfVisitsWithoutRegularWorker;

public double priceNotRegularWorker;

// The number of iterations

public int nIterations;

public Insertion(Data data){

nCitizens = data.nCitizens();

maxVisitNumber = data.maxVisitNumber();

nWorkers = data.nWorkers();

nRoutes = data.nRoutes();

distance = data.distance();

allVisits = data.allVisits();

allWorkers = data.allWorkers();

allRoutes = data.allRoutes();

theOtherVisit = data.theOtherVisit();

nBreakVisits = data.nBreakVisits();

nStartVisits = data.nStartVisits();

nVisits = data.nVisits();

}

public Solution start(double price){

//System.out.println("maxVisitNumber = " +maxVisitNumber);

// Make a vector with visits not scheduled

for(int i = 1; i <= maxVisitNumber; i++){

Visit currentVisit = allVisits[i];

//System.out.println("currentVisit.number() = " + currentVisit.number());

// If the visit is not removed or simply not there

if(!currentVisit.isPlanned()){

allNotPlannedVisits.add(currentVisit);

}

}

/*// PRINT OUT THE ROUTES

System.out.println("\n INITIAL ROUTES \n");

for(int j = 1; j <= nRoutes; j++){

Route currentRoute = allRoutes[j];

// PRINT OUT THE ROUTES

System.out.println(currentRoute.toString() + "\n");

}*/

//System.out.println("allNotPlannedVisits.size() = " + allNotPlannedVisits.size());

// A function to check the lower bound of how many visits there are visits their regular worker at work

// which do have the regular worker at job.

int noOfVisitsWithoutRegularWorkerAtWork_LB = 0;

int noOfVisitsWithRegularWorkerAtWork = 0;

Vector allVisitsNotInvestigated = new Vector();

// Make a vector with the not investigated visits

for(int i = 1; i <= maxVisitNumber; i++){

Visit currentVisit = allVisits[i];

// If the visit is not removed or simply not there

if(!currentVisit.isPlanned()){

allVisitsNotInvestigated.add(currentVisit);

}

}

while(allVisitsNotInvestigated.size() != 0){

Visit currentVisit = (Visit) allVisitsNotInvestigated.get(0);

Citizen currentCitizen = currentVisit.citizen();

// While we have not found a regular worker

boolean isThereARegularWorker = false;

int j = 1;

while(!isThereARegularWorker & j <= nWorkers){
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Worker currentWorker = allWorkers[j];

// Indication whether the current worker is equal to one of the regular workers

isThereARegularWorker = currentCitizen.isTheWorkerRegular(currentWorker);

j++;

}

if(!isThereARegularWorker){

noOfVisitsWithoutRegularWorkerAtWork_LB++ ;

}else{

noOfVisitsWithRegularWorkerAtWork++;

}

if(currentVisit.isShared()){

int theOtherVisitNumber = theOtherVisit[currentVisit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

allVisitsNotInvestigated.remove(theOtherVisit);

}

allVisitsNotInvestigated.remove(currentVisit);

}

//System.out.println("noOfVisitsWithoutRegularWorkerAtWork_LB = " + noOfVisitsWithoutRegularWorkerAtWork_LB);

//System.out.println("noOfVisitsWithRegularWorkerAtWork = " +noOfVisitsWithRegularWorkerAtWork);

// The costs

totalTravelTime = 0;

noOfVisitsWithoutRegularWorker = 0;

priceNotRegularWorker = price;

nIterations = 0;

// When to stop the while loop

boolean stop = false;

//Initial time

Date startTime = new Date();

// HERE THE INSERTION STARTS!!

while(allNotPlannedVisits.size() != 0 & !stop){

//while(nIterations < 12){

// Is set to true, when a feasible insertion is found

boolean thereIsAFeasiblePosition = false;

//// System.out.println("\n Iterations = " + nIterations + "\n");

// PRINT OUT THE ROUTES

//for(int j = 1; j <= nRoutes; j++){

// Route currentRoute = allRoutes[j];

// PRINT OUT THE ROUTES

//// System.out.println(currentRoute.toString() + "\n");

//}

Visit bestVisit = (Visit) allNotPlannedVisits.get(0);

double bestCost = -1000; // For comparison

int bestPosition1 = 0;

int bestPosition2 = 0;

int bestRouteNumber1 = 1;

int bestRouteNumber2 = 1;

// FOR ALL THE NOT SCHEDULED VISITS:

for(int u = 0; u < allNotPlannedVisits.size(); u++ ){

//// System.out.println("u = " + u);

///System.out.println("allNotPlannedVisits.size() = " + allNotPlannedVisits.size());

// Which visit is currently observed?

Visit currentVisit = (Visit) allNotPlannedVisits.get(u);

//System.out.println("currentVisit = " + currentVisit);

double currentCost;

boolean feasibleVisit;

int position1;

int position2;

int routeNumber1;

int routeNumber2 ;

if(currentVisit.isShared()){

InsertionCostTwoVisits currentInsertionCost = findInsertionCostTwoEqualVisits(currentVisit);
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currentCost = currentInsertionCost.cost();

feasibleVisit = currentInsertionCost.isThereAFeasiblePosition();

position1 = currentInsertionCost.bestPosition1();

position2 = currentInsertionCost.bestPosition2();

routeNumber1 = currentInsertionCost.bestRouteNumber1();

routeNumber2 = currentInsertionCost.bestRouteNumber2();

if(feasibleVisit){

thereIsAFeasiblePosition = true;

// Find the best visit number

// System.out.println(">currentCost =" + currentCost);

if(currentCost > bestCost){

bestCost = currentCost;

// System.out.println(">bestCost =" + bestCost);

bestVisit = currentVisit;

// System.out.println(">bestVisit.number() ="+ bestVisit.number());

bestPosition1 = position1;

// System.out.println(">bestPosition1 ="+ bestPosition1 );

bestPosition2 = position2;

// System.out.println(">bestPosition2 ="+ bestPosition2 );

bestRouteNumber1 = routeNumber1;

// System.out.println(">bestRouteNumber1 ="+ bestRouteNumber1 );

bestRouteNumber2 = routeNumber2;

//System.out.println(">bestRouteNumber2 ="+ bestRouteNumber2 );

}

}

}

else{

InsertionCostOneVisit currentInsertionCost = findInsertionCostOneVisit(currentVisit);

currentCost = currentInsertionCost.cost();

feasibleVisit = currentInsertionCost.isThereAFeasiblePosition();

position1 = currentInsertionCost.bestPosition();

routeNumber1 = currentInsertionCost.bestRouteNumber();

if(feasibleVisit){

thereIsAFeasiblePosition = true;

//// System.out.println("Feasible solution, >currentCost =" + currentCost);

// Find the best visit number

if(currentCost > bestCost){

bestCost = currentCost;

//// System.out.println(">bestCost ="+ bestCost);

bestVisit = currentVisit;

//// System.out.println(">bestVisit.number() ="+ bestVisit.number());

bestPosition1 = position1;

//// System.out.println(">bestPosition1 ="+ bestPosition1 );

bestRouteNumber1 = routeNumber1;

//// System.out.println(">bestRouteNumber1 ="+ bestRouteNumber1 );

}

}

}

}

if(thereIsAFeasiblePosition){

if(bestVisit.isShared()){

// How to find the other visit!!

int theOtherVisitNumber = theOtherVisit[bestVisit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

//// System.out.println("the other visit number = " + theOtherVisit.number());

insertTwoEqualVisits(bestVisit, theOtherVisit, bestPosition1, bestPosition2,

bestRouteNumber1, bestRouteNumber2);

}

else{

//// System.out.println(">bestVisit ="+ bestVisit);

//// System.out.println(">bestPosition1 ="+ bestPosition1);

//// System.out.println(">bestRouteNumber1 ="+ bestRouteNumber1);

insertOneVisit(bestVisit, bestPosition1, bestRouteNumber1);

}

}

else{

System.out.println("IT IS NOT POSSIBLE TO SCHEDULE ALL VISITS");

System.out.println("There are " + allNotPlannedVisits.size() + " missing");

for(int i = 0; i < allNotPlannedVisits.size(); i++){

Visit currentNotPlannedVisit = (Visit) allNotPlannedVisits.get(i);

System.out.println(currentNotPlannedVisit);

}

stop = true;

}
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nIterations++;

}

Date stopTime = new Date();

long time = stopTime.getTime()-startTime.getTime();

// PRINT OUT THE ROUTES

System.out.println("\n FINAL ROUTES \n");

for(int j = 1; j <= nRoutes; j++){

Route currentRoute = allRoutes[j];

// PRINT OUT THE ROUTES

System.out.println(currentRoute.toString(distance) + "\n");

}

// CHECK THE TRAVELLING TIME

double totalTravelTimeCheck = 0;;

for(int j = 1; j <= nRoutes; j++){

Route route = allRoutes[j];

for(int p = 1; p < route.length(); p++){

Visit visit = (Visit) route.get(p);

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The current visit

visit = (Visit) route.get(p);

Citizen citizen = visit.citizen();

// Calculate travel time

totalTravelTimeCheck += distance[previousCitizen.number()][citizen.number()];

}

}

System.out.println("Total travelling time check= " + totalTravelTimeCheck);

System.out.println("The solution is found in the time " + time);

// When stop is false -> there s a feasible solution

// When stop is true -> the solution is not feasible

Solution initialSolution;

initialSolution = new Solution(allRoutes, allVisits, !stop);

initialSolution.setTotalTravelTime(totalTravelTime);

initialSolution.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

Vector allVisitsDuringTheDay = new Vector();

for(int j = 1; j <= nRoutes; j++){

Route currentRoute = allRoutes[j];

for(int i = 0; i < currentRoute.length(); i++){

Visit currentVisit = (Visit) currentRoute.get(i);

allVisitsDuringTheDay.add(currentVisit);

}

}

/*

System.out.println("nVisits = " + nVisits);

System.out.println("nWorkers = " + nWorkers);

System.out.println("nStartVisits = " + nStartVisits);

System.out.println("nBreakVisits = " + nBreakVisits);

System.out.println("nCitizens = " + nCitizens);

// Find out how many of the citizens are visited on that day!!

int[] isTheCitizenVisitedThatDay = new int[nCitizens+1];

int nCitizensOnThatDay = 0;

for(int i = 0; i < allVisitsDuringTheDay.size()-1; i++){

Visit visit = (Visit) allVisitsDuringTheDay.get(i);

Citizen citizen = visit.citizen();

int citizenNumber = citizen.number();

if(isTheCitizenVisitedThatDay[citizenNumber] == 0){

isTheCitizenVisitedThatDay[citizenNumber] = 1;

nCitizensOnThatDay++;

}

}

System.out.println("Number of citizens visited on that day = " + nCitizensOnThatDay);

// The total number of arcs necessary is nVisits - nRoutes

int nArcsNecessary = nVisits-nRoutes;

System.out.println("nArcsNecessary = " + nArcsNecessary);

double nArcsDouble = (allVisitsDuringTheDay.size()-1)*allVisitsDuringTheDay.size();

131



APPENDIX B. THE SOURCE CODE

int nArcs = (int) nArcsDouble;

System.out.println("nArcs = " + nArcs);

double[] sortedDistances = new double[nArcs];

// Find the nArcs shortest arcs (e.g. travelling times between citizens of the visits)

int nDistances = 0;

double sumDistances = 0;

for(int i = 0; i < allVisitsDuringTheDay.size()-1; i++){

Visit visit1 = (Visit) allVisitsDuringTheDay.get(i);

Citizen citizen1 = visit1.citizen();

int citizen1number = citizen1.number();

for(int j = i+1; j < allVisitsDuringTheDay.size(); j++){

Visit visit2 = (Visit) allVisitsDuringTheDay.get(j);

Citizen citizen2 = visit2.citizen();

int citizen2number = citizen2.number();

double distanceForth = distance[citizen1number][citizen2number];

double distanceBack = distance[citizen2number][citizen1number];

sumDistances += distanceForth+distanceBack ;

int d = 0;

// the distances are sorted in decreasing order!

while(distanceForth < sortedDistances[d]){d++;}

//push forward

for(int k = nDistances; k >= d; k-- ){

if(d != 0){

sortedDistances[k] = sortedDistances[k-1];

}

}

sortedDistances[d] = distanceForth;

nDistances++;

d = 0;

// the distances are sorted in decreasing order!

while(distanceBack < sortedDistances[d]){d++;}

//push forward

for(int k = nDistances; k >= d; k-- ){

if(d != 0){

sortedDistances[k] = sortedDistances[k-1];

}

}

sortedDistances[d] = distanceBack;

nDistances++;

}

}

// for(int k = 0; k < nDistances; k++){

//System.out.print( sortedDistances[k] + ",");

//}

//System.out.println( "\n");

//System.out.println("sortedDistances.length = "+sortedDistances.length);

double totalDistanceLB = 0;

double totalDistanceUB = 0;

for(int i = 0; i < nArcsNecessary; i++){

totalDistanceUB += sortedDistances[i];

totalDistanceLB += sortedDistances[nArcs-i-1];

}

System.out.println("noOfVisitsWithoutRegularWorkerAtWork_LB = " + noOfVisitsWithoutRegularWorkerAtWork_LB);

System.out.println("noOfVisitsWithRegularWorkerAtWork = " +noOfVisitsWithRegularWorkerAtWork);

System.out.println("totalDistanceLB = " + totalDistanceLB);

System.out.println("totalDistanceUB = " + totalDistanceUB);

System.out.println("nDistances = " + nDistances);

System.out.println("sumDistances = " + sumDistances);

*/

// A CHECK FOR VIOLATION

double violationRoute = 0;

double violationVisits = 0;

double violationSharedVisits = 0;

for(int j = 1; j <= nRoutes; j++){

Route currentRoute = allRoutes[j];

violationRoute += currentRoute.violation();

for(int i = 0; i < currentRoute.length(); i++){

Visit currentVisit = (Visit) currentRoute.get(i);

violationVisits += currentVisit.violation();

if(currentVisit.isShared()){

int theOtherVisitNumber = theOtherVisit[currentVisit.number()];

Visit theOther = allVisits[theOtherVisitNumber];

violationSharedVisits += currentVisit.start() - theOther.start();
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}

}

}

boolean feasible = false;

if(!stop & violationRoute == 0 & violationVisits == 0 & violationSharedVisits == 0){

feasible = true;

}

initialSolution.setIsFeasible(feasible);

System.out.println("The solution is feasible = " + initialSolution.isFeasible());

return initialSolution;

}

// **************** COST OF SINGLE VISIT ****************************

//

// Is there a feasible position for the visit ?

// If yes! where? In which route and in which position ?

// What is the cost of this best position ?

//

// ******************************************************************

private InsertionCostOneVisit findInsertionCostOneVisit(Visit visit){

Citizen citizen = (Citizen) visit.citizen();

int citizenNumber = citizen.number();

// If there is somewhere in a route in a position a feasible insertion.

// When a feasible insertion position is met, this indicator is set to true.

boolean feasibleInsertion = false;

// For comparision within all the routes

double bestRouteCost = 1000; // c_1(v,r^*,p_{r^*}^*)

// The cost of each route

double[] routeCost = new double[nRoutes+1]; // c_1(v,r,p_r^*)

int[] bestRoutePosition = new int[nRoutes+1]; //p_r^*

int bestRouteNumber = 1 ; //r^*

// FOR EACH ROUTE

for(int r = 1; r <= nRoutes; r++){

// Which route is currently observed?

Route route = allRoutes[r];

// Who drives on this route?

Worker worker = route.worker();

//Is she/he the regular worker for currentCitizen?

int theta = 0;

if(citizen.isTheWorkerRegular(worker)){

theta = 1;

}

// The cost if not feasible to insert the visit

routeCost[r] = 1000;

// FOR EACH PLACEMENT/POSITION IN THE CURRENT ROUTE

for(int p = 0; p <= route.length(); p++){

//>>> THE START TIME <<<<<<

double startVisit;

if(p == 0){

startVisit = Math.max(visit.open(), worker.start());

}else{

// The previous visit p-1

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();

// New starting time

double arrivalVisit = previousVisit.finish() + distance[previousCitizenNumber][citizenNumber];

startVisit = Math.max(visit.open(), arrivalVisit );

}

//>>> INDICATION WHETHER THE POSITION IS FEASIBLE <<<<<<
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boolean feasiblePosition = true;

if(p < route.length()){

// Check lemma 1.1, page 256 in Solomon1987 to see if the insertion position is feasible

if(startVisit <= visit.closed() & startVisit + visit.duration() <= worker.finish()){

// The immidiately next visit p

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// Push forward time

double arrivalNextVisit = startVisit + visit.duration() + distance[citizenNumber][nextCitizenNumber];

double pushForward = Math.max(0, arrivalNextVisit - nextVisit.arrival() - nextVisit.waitingTime());

/* if(nIterations == 23 & visit.number() == 37 & r ==11 & p == 2){

System.out.println("\nstart\n " );

}*/

// Check the next positions with push forward starting with the next visit currently in position k

// The visit is not inserted yet, and therefore the next visit is the one situated at position p

feasiblePosition = isThePushForwardFeasible(pushForward, p, r,0,0);

}

else{ feasiblePosition = false;}

}else{

// Check lemma 1.1, page 256 in Solomon1987 to see if the insertion position is feasible

if(startVisit <= visit.closed() & startVisit + visit.duration() <= worker.finish()){

feasiblePosition = true;

}

else{

feasiblePosition = false;

}

}

// >>>> THE TOTAL COST <<<<<<

// If the position was feasible

double positionCost = 1000; //c_1(v,r,p_r) the cost if not feasible

if(feasiblePosition) {

feasibleInsertion = true;

//>>>> THE DISTANCE COST <<<<<<<<<<

double distanceCost = 0;

if(p == 0){

// The immidiately next visit p

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// The distance-cost (xtra travel time)

distanceCost = distance[citizenNumber][nextCitizenNumber];

}

if(p < route.length() && p > 0){

// The previous visit p-1

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();

// The immidiately next visit p

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// The distance-cost (xtra travel time)

double newDistance = distance[previousCitizenNumber][citizenNumber] +

distance[citizenNumber][nextCitizenNumber];

double oldDistance = distance[previousCitizenNumber][nextCitizenNumber] ;

distanceCost = newDistance - oldDistance;

}

if(p == route.length()){

// The previous visit p-1

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();
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// The distance-cost (xtra travel time)

distanceCost = distance[previousCitizenNumber][citizenNumber] ;

}

positionCost = distanceCost + priceNotRegularWorker*(1-theta);

}

//System.out.println("positionCost = " + positionCost + ", position = " + p);

if(positionCost < routeCost[r]){

routeCost[r] = positionCost;

bestRoutePosition[r] = p;

}

}

// The cost of this current route = lowest positionCost

if(routeCost[r] < bestRouteCost){

bestRouteCost = routeCost[r];

bestRouteNumber = r;

}

}

// The cost for this visit is the sum of the routes ’ deviations from the best route.

//// System.out.println("\n THE COSTS");

double visitCost = 0;

for(int r = 1; r <= nRoutes; r++){

if(r != bestRouteNumber){

visitCost = visitCost + routeCost[r] - bestRouteCost;

}

}

// The average deviation

visitCost = visitCost/(nRoutes-1);

InsertionCostOneVisit cost = new InsertionCostOneVisit(bestRouteNumber, bestRoutePosition[bestRouteNumber],

visitCost, feasibleInsertion);

return cost;

}

// ******************** COST OF A VISIT PAIR ***********************************************

//

// If there are two workers at the same visit, the visit is split up into a pair of visits

// The time window, citizen and duration are the same for the two visits.

// Is there feasible positions for the a pair of visits.

// If yes! where? In which routes and in which positions ?

// What is the cost of these best positions ?

//

// ******************************************************************

private InsertionCostTwoVisits findInsertionCostTwoEqualVisits(Visit visit){

// If there is somewhere in two route two position a feasible insertion.

// When a feasible insertion position is met, this indicator is set to true.

boolean feasibleInsertion = false;

// The two visits have the same citizen

Citizen citizen = (Citizen) visit.citizen();

int citizenNumber = citizen.number();

int visitNumber = visit.number();

int theOtherVisitNumber = theOtherVisit[visitNumber];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

// The costs

double[][] twoRoutesCost = new double[nRoutes+1][nRoutes+1]; //c_1^*(v,r_1,r_2,p_{r_1}^*,p_{r_2}^*)

Positions[][] bestPositions = new Positions[nRoutes+1][nRoutes+1];

for(int route1number = 0; route1number < nRoutes+1; route1number++){

for(int route2number = 0; route2number < nRoutes+1; route2number++){

Positions positions = new Positions();

bestPositions[route1number][route2number] = positions;

//positions.setPosition1(0);

//positions.setPosition2(0);

}

}

int bestRoute1Number = 0; // r_1^*

int bestRoute2Number = 0; // r_2^*

// For comparison to find the lowest twoRoutesCost

double bestTwoRoutesCost = 1000; //c_1(v,r_1^*,r_2^*,p_{r_1^*}^*,p_{r_2^*}^*)

// FOR EACH ROUTE

for(int r1 = 1; r1 <= nRoutes-1; r1++){
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Route route1 = allRoutes[r1];

// Who has this route 1

Worker worker1 = route1.worker();

//Is she/he the regular worker for currentCitizen?

int theta1 = 0;

if(citizen.isTheWorkerRegular(worker1)){

theta1 = 1;

}

// FOR THE OTHER ROUTES

for(int r2 = r1+1; r2 <= nRoutes; r2++){

Route route2 = allRoutes[r2];

// Who has this route 2

Worker worker2 = route2.worker();

//Is she/he the regular worker for currentCitizen?

int theta2 = 0;

if(citizen.isTheWorkerRegular(worker2)){

theta2 = 1;

}

// For comparison within all the positions

// The cost if not feasible to insert the visit

twoRoutesCost[r1][r2] = 1000; // c_1^*(v,r_1,r_2,p_{r_1}^*,p_{r_2}^*) = 1000

// The position in the first route

for(int p1 = 1; p1 <= route1.length(); p1++){

// The position in the second route

for(int p2 = 1; p2 <= route2.length() ; p2++){

// >>> THE ARRIVAL TIMES <<<<

double arrivalVisit1;

double arrivalVisit2;

if(p1 == 0){

arrivalVisit1 = Math.max(visit.open(),worker1.start());

}else{

// The previous visit

Visit previousVisit1 = (Visit) route1.get(p1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

// The arrival time to currentVisit1

arrivalVisit1 = previousVisit1.finish() + distance[previousCitizenNumber1][citizenNumber];

}

if(p2 == 0){

arrivalVisit2 = Math.max(visit.open(),worker2.start());

}else{

// The previous visit on route 2

Visit previousVisit2 = (Visit) route2.get(p2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

// The arrival time to currentVisit2

arrivalVisit2 = previousVisit2.finish() +

distance[previousCitizenNumber2][citizenNumber];

}

// >> THE STARTING TIME <<<<<<<<<<<<

double latestArrivalVisit = Math.max(arrivalVisit1, arrivalVisit2);

double startVisit = Math.max(visit.open(), latestArrivalVisit);

// >>> INDICATION WHETHER THE POSITION IS FEASIBLE <<<<<<<<<<<<<<<

boolean feasiblePosition = true;

double finishVisit = startVisit + visit.duration();

double minWorkerFinish = Math.min(worker1.finish(), worker2.finish());

if(p1 < route1.length()){

// Check lemma 1.1, page 256 in Solomon1987

if(startVisit <= visit.closed() & finishVisit <= minWorkerFinish){

// The immidiately next visit on route 1
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Visit nextVisit1 = (Visit) route1.get(p1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();

// Push forward time on route 1

double arrivalNextVisit1 = startVisit + visit.duration()+

distance[citizenNumber][nextCitizenNumber1];

double pushForward1 = Math.max(0, arrivalNextVisit1 -

nextVisit1.arrival() - nextVisit1.waitingTime());

// Is the push forward feasible on route 1

feasiblePosition = isThePushForwardFeasible(pushForward1, p1, r1, r2, p2);

}

else{

feasiblePosition = false;

}

}else{

// Check lemma 1.1, page 256 in Solomon1987

if(startVisit > visit.closed() | finishVisit > minWorkerFinish){

feasiblePosition = false;

}

}

// Do we want to check the other route as well??

// We do not need to check lemma 1.1, because

// if it feasible => startingTime < closingTime, because the two visits have same starting and closing times

if(feasiblePosition){

// THE POSITION p2 IS NOT THE LAST ON THE ROUTE

if(p2 < route2.length()){

// The immidiately next visit on route 2

Visit nextVisit2 = (Visit) route2.get(p2);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();

// Push forward time on route 2

double arrivalNextVisit2 = startVisit + visit.duration()+

distance[citizenNumber][nextCitizenNumber2];

double pushForward2 = Math.max(0, arrivalNextVisit2 -

nextVisit2.arrival() - nextVisit2.waitingTime());

// Is the push forward feasible on route 2

feasiblePosition = isThePushForwardFeasible(pushForward2, p2, r2,r1,p1);

}

}

// >>>> THE TOTAL COST <<<<<<

// If the position was feasible

double positionCost = 1000; // c_1(v,r_1,r_2,p_{r_1},p_{r_2} ) (if the insertion is not feasible)

if(feasiblePosition){

feasibleInsertion = true;

// >>> DISTANCE COST 1 <<<<<

double distanceCost1 = 0;

if(p1 == 0){

// The immidiately next visit on route 1

Visit nextVisit1 = (Visit) route1.get(p1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();

// The distance-cost (xtra travel time)

distanceCost1 = distance[citizenNumber][nextCitizenNumber1];;

}

if(p1 < route1.length() && p1 > 0){

// The previous visit

Visit previousVisit1 = (Visit) route1.get(p1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

// The immidiately next visit on route 1

Visit nextVisit1 = (Visit) route1.get(p1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();
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// The distance-cost (xtra travel time)

double newDistance1 = distance[previousCitizenNumber1][citizenNumber] +

distance[citizenNumber][nextCitizenNumber1];

double oldDistance1 = distance[previousCitizenNumber1][nextCitizenNumber1] ;

distanceCost1 = newDistance1 - oldDistance1;

}

if(p1 == route1.length()){

// The previous visit

Visit previousVisit1 = (Visit) route1.get(p1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

// The distance-cost (xtra travel time)

distanceCost1 = distance[previousCitizenNumber1][citizenNumber] ;

}

// >>> DISTANCE COST 2 <<<<<<<

double distanceCost2 = 0;

if(p2 == 0){

// The immidiately next visit on route 2

Visit nextVisit2 = (Visit) route2.get(p2);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();

//The distance cost

distanceCost2 = distance[citizenNumber][nextCitizenNumber2];

}

if(p2 < route2.length() && p2 > 0){

// The previous visit on route 2

Visit previousVisit2 = (Visit) route2.get(p2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

// The immidiately next visit on route 2

Visit nextVisit2 = (Visit) route2.get(p2);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();

// The distance-cost (xtra travel time)

double newDistance2 = distance[previousCitizenNumber2][citizenNumber] +

distance[citizenNumber][nextCitizenNumber2];

double oldDistance2 = distance[previousCitizenNumber2][nextCitizenNumber2] ;

distanceCost2 = newDistance2 - oldDistance2;

}

if(p2 == route2.length()){

// The previous visit on route 2

Visit previousVisit2 = (Visit) route2.get(p2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

// The distance-cost (xtra travel time)

distanceCost2 = distance[previousCitizenNumber2][citizenNumber] ;

}

positionCost = (distanceCost1 + distanceCost2)/2 + priceNotRegularWorker*(1-theta1)*(1-theta2);

}

if(positionCost < twoRoutesCost[r1][r2]){

twoRoutesCost[r1][r2] = positionCost;

Positions positions = bestPositions[r1][r2];

positions.setPosition1(p1);

positions.setPosition2(p2);

}

}// End position 2 loop

}// End position 1 loop

if(twoRoutesCost[r1][r2] < bestTwoRoutesCost){

bestTwoRoutesCost = twoRoutesCost[r1][r2];

bestRoute1Number = r1;

bestRoute2Number = r2;
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}

} // End route 2 loop

} // End route 1 loop

double visitCost = 0;

for(int r1 = 0; r1 < nRoutes-1; r1++){

for(int r2 = r1+1; r2 < nRoutes; r2++){

if((r1 != bestRoute1Number) || (r2 != bestRoute2Number)){

visitCost = visitCost + twoRoutesCost[r1][r2] - bestTwoRoutesCost;

}

}

}

// The number of combinations of route 1 and 2

// (equal to number of element in upper triangle without the diagonal)

int numberOfCombinations = nRoutes*(nRoutes-1)/2;

//// System.out.println("numberOfCombinations= " + numberOfCombinations);

// The average deviation

visitCost = visitCost/(numberOfCombinations-1);

int bestPosition1 = bestPositions[bestRoute1Number][bestRoute2Number].position1();

int bestPosition2 = bestPositions[bestRoute1Number][bestRoute2Number].position2();

InsertionCostTwoVisits cost;

cost = new InsertionCostTwoVisits(bestRoute1Number, bestRoute2Number, bestPosition1,

bestPosition2, visitCost, feasibleInsertion);

return cost;

}

// *************************************************************

// Is it possible to push the visit in a certain position

// and in a certain route a certain number of minutes forward ?

//

// *************************************************************

private boolean isThePushForwardFeasible(double currentPushForward, int currentPosition, int currentRouteNumber,

int forbiddenRouteNumber, int forbiddenPosition){

Route currentRoute = allRoutes[currentRouteNumber];

Worker worker = currentRoute.worker();

boolean feasible = true;

Visit currentVisit = (Visit) currentRoute.get(currentPosition);

if(currentRouteNumber == forbiddenRouteNumber & currentPosition <= forbiddenPosition){

feasible = false;

}

if(feasible & currentPushForward > 0){

double newStart = currentVisit.start() + currentPushForward;

// Check current visit

if(newStart > currentVisit.closed() | newStart + currentVisit.duration() > worker.finish() ){

feasible = false;

}

// Check the other part of the visit, if it is shared

if(currentVisit.isShared() & feasible){

int currentVisitNumber = currentVisit.number();

int theOtherVisitNumber = theOtherVisit[currentVisitNumber];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

Worker theOtherWorker = theOtherRoute.worker();

int theOtherPosition = theOtherVisit.position();

double theOtherNewStart = theOtherVisit.start() + currentPushForward;

if( theOtherNewStart > theOtherVisit.closed() |

theOtherNewStart + currentVisit.duration() > theOtherWorker.finish()){

feasible = false;

}
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if(theOtherPosition < theOtherRoute.length()-1 & feasible){

int nextPositionTheOtherRoute = theOtherPosition +1;

Visit nextVisitTheOtherRoute = (Visit) theOtherRoute.get(theOtherPosition +1);

double nextPushForwardTheOtherRoute = Math.max(0, currentPushForward - nextVisitTheOtherRoute.waitingTime());

feasible = isThePushForwardFeasible(nextPushForwardTheOtherRoute, nextPositionTheOtherRoute,

theOtherRouteNumber,forbiddenRouteNumber,forbiddenPosition);

}

}

// Check the succeeding visits in the current route

if(feasible & (currentPosition < currentRoute.length()-1)){

int nextPosition = currentPosition + 1;

Visit nextVisit = (Visit) currentRoute.get(nextPosition);

double nextPushForward = Math.max(0, currentPushForward - nextVisit.waitingTime());

feasible = isThePushForwardFeasible(nextPushForward, nextPosition, currentRouteNumber,

forbiddenRouteNumber,forbiddenPosition);

}

}

return feasible;

}

private void insertOneVisit(Visit visit, int position, int routeNumber){

Citizen citizen = (Citizen) visit.citizen();

int citizenNumber = citizen.number();

Route route = allRoutes[routeNumber];

// >>> THE NUMBER OF VISITS WITHOUT REGULAR CARETAKER

Worker worker = route.worker();

if(!citizen.isTheWorkerRegular(worker)){

noOfVisitsWithoutRegularWorker++;

}

// >>> THE ARRIVAL AND STARTING TIMES <<<<<

double arrivalVisit;

double startVisit;

if(position == 0){

// Find the properties

arrivalVisit = Math.max(visit.open(),worker.start());

startVisit = arrivalVisit;

}

else{

// The previous visit

Visit previousVisit = (Visit) route.get(position-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();

// Find the properties

arrivalVisit = previousVisit.finish() + distance[previousCitizenNumber][citizenNumber];

startVisit = Math.max(visit.open(), arrivalVisit);

}

// >>>> SET THE PROPERTIES <<<<<

visit.setArrival(arrivalVisit);

visit.setStart(startVisit);

visit.setWaitingTime(visit.start() - visit.arrival());

visit.setFinish(startVisit + visit.duration());

// >>>> INSERT THE VISIT <<<<

route.insert(position,visit);

allNotPlannedVisits.remove(visit); // Not good, goes trough all elements to find visit

allPlannedVisits.add(visit);

// >>> SET THE ROUTE NUMBER AND POSITION

visit.setRouteNumber(routeNumber);

visit.setPosition(position);

visit.setIsPlanned(true);

// >>>> PUSH FORWARD <<<<<<<

if(position < route.length()-1){

// The next visit

Visit nextVisit = (Visit) route.get(position+1);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// How much should the next visit be pushed forward
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double arrivalNextVisit = visit.finish() + distance[citizenNumber][nextCitizenNumber];

double pushForward = Math.max(0, arrivalNextVisit - nextVisit.arrival() - nextVisit.waitingTime());

// Change the arrival properties for the next visit

nextVisit.setArrival(arrivalNextVisit);

// Go further. We are sure not to be at the end

pushTheSucceedingVisitsForward(pushForward, position + 1, route);

}

// >>>> ADDITION OF TRAVEL TIME <<<<<<<<<<<<<

if(position == 0){

// The next visit

Visit nextVisit = (Visit) route.get(position+1);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// The addition of travel time

totalTravelTime += distance[citizenNumber][nextCitizenNumber];

}

if(position < route.length()-1 && position > 0){

// The previous visit

Visit previousVisit = (Visit) route.get(position-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();

// The next visit

Visit nextVisit = (Visit) route.get(position+1);

Citizen nextCitizen = (Citizen) nextVisit.citizen();

int nextCitizenNumber = nextCitizen.number();

// The addition of travel time

double oldDistance = distance[previousCitizenNumber][nextCitizenNumber];

double newDistance = distance[previousCitizenNumber][citizenNumber] +

distance[citizenNumber][nextCitizenNumber];

totalTravelTime += newDistance - oldDistance;

}

if(position == route.length()-1){

// The previous visit

Visit previousVisit = (Visit) route.get(position-1);

Citizen previousCitizen = (Citizen) previousVisit.citizen();

int previousCitizenNumber = previousCitizen.number();

// The addition of travel time

totalTravelTime += distance[previousCitizenNumber][citizenNumber];

}

}

private void insertTwoEqualVisits(Visit visit1, Visit visit2, int position1, int position2,

int routeNumber1, int routeNumber2){

// The citizen is the same for both visits

Citizen citizen = (Citizen) visit1.citizen();

int citizenNumber = citizen.number();

// The routes 1 and 2

Route route1 = allRoutes[routeNumber1];

Route route2 = allRoutes[routeNumber2];

Worker worker1 = route1.worker();

Worker worker2 = route2.worker();

// >>> THE NUMBER OF VISITS WITHOUT REGULAR CARETAKER <<<<<<

if(!citizen.isTheWorkerRegular(worker1) & !citizen.isTheWorkerRegular(worker2)){

noOfVisitsWithoutRegularWorker += 1;

}

// >>> THE ARRIVAL AND STARTING TIMES <<<<<

double arrivalVisit1;

double arrivalVisit2;

if(position1 == 0){

arrivalVisit1 = Math.max(visit1.open(), worker1.start());

}else{

// The previous visit on route 1
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Visit previousVisit1 = (Visit) route1.get(position1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

arrivalVisit1 = previousVisit1.finish() + distance[previousCitizenNumber1][citizenNumber];

}

if(position2 == 0){

arrivalVisit2 = Math.max(visit2.open(),worker2.start());

}else{

// The previous visit on route 2

Visit previousVisit2 = (Visit) route2.get(position2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

arrivalVisit2 = previousVisit2.finish() + distance[previousCitizenNumber2][citizenNumber];

}

double latestArrivalVisit = Math.max(arrivalVisit1, arrivalVisit2);

double startVisit = Math.max(visit1.open(), latestArrivalVisit);

// >>> SET THE PROPERTIES <<<<<

visit1.setArrival(arrivalVisit1);

visit2.setArrival(arrivalVisit2);

visit1.setStart(startVisit);

visit2.setStart(startVisit);

visit1.setWaitingTime(startVisit - arrivalVisit1);

visit2.setWaitingTime(startVisit - arrivalVisit2);

visit1.setFinish(startVisit + visit1.duration());

visit2.setFinish(startVisit + visit2.duration());

// >>> INSERT IN THE ROUTES <<<<

route1.insert(position1,visit1);

route2.insert(position2,visit2);

allNotPlannedVisits.remove(visit1); // Not good, goes trough all elements

allNotPlannedVisits.remove(visit2); // Not good, goes trough all elements

allPlannedVisits.add(visit1);

allPlannedVisits.add(visit2);

// >>> SET THE ROUTE NUMBER AND POSITION <<<

visit1.setRouteNumber(routeNumber1);

visit2.setRouteNumber(routeNumber2);

visit1.setPosition(position1);

visit2.setPosition(position2);

visit1.setIsPlanned(true);

visit2.setIsPlanned(true);

// >>> PUSH FORWARD <<<<<<<

if(nIterations == 36){

System.out.println("hej");

}

if(position1 < route1.length()-1){

// The next visit

Visit nextVisit1 = (Visit) route1.get(position1+1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();

// How much should the next visits be pushed forward

double arrivalTimeNextVisit1 = visit1.finish() + distance[citizenNumber][nextCitizenNumber1];

//double newStartNextVisit1 = Math.max(nextVisit1.open(), arrivalTimeNextVisit1);

//double pushForward1 = newStartNextVisit1 - nextVisit1.start();

//double arrivalNextVisit = visit.finish() + distance[citizenNumber][nextCitizenNumber];

double pushForward1 = Math.max(0, arrivalTimeNextVisit1 - nextVisit1.arrival() -

nextVisit1.waitingTime());

// Change the arrival properties for nextVisit1 and nextVisit2

nextVisit1.setArrival(arrivalTimeNextVisit1);

// Go further. We are sure not be at the end at route 1 nor route 2

pushTheSucceedingVisitsForward(pushForward1, position1+1, route1);

}

if(position2 < route2.length()-1){

// The next visit
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Visit nextVisit2 = (Visit) route2.get(position2+1);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();

// How much should the next visits be pushed forward

double arrivalTimeNextVisit2 = visit2.finish() + distance[citizenNumber][nextCitizenNumber2];

// double newStartNextVisit2 = Math.max(nextVisit2.open(), arrivalTimeNextVisit2);

//double pushForward2 = newStartNextVisit2 - nextVisit2.start();

//double arrivalNextVisit = visit.finish() + distance[citizenNumber][nextCitizenNumber];

double pushForward2 = Math.max(0, arrivalTimeNextVisit2 - nextVisit2.arrival() - nextVisit2.waitingTime());

// Change the arrival properties for nextVisit1 and nextVisit2

nextVisit2.setArrival(arrivalTimeNextVisit2);

// Go further. We are sure not be at the end at route 1 nor route 2

pushTheSucceedingVisitsForward(pushForward2, position2+1, route2);

}

// >>>> THE ADDITION OF TRAVELLING TIME ON ROUTE 1 <<<<<<

if(position1 == 0){

// The next visit

Visit nextVisit1 = (Visit) route1.get(position1+1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();

totalTravelTime += distance[citizenNumber][nextCitizenNumber1];

}

if(position1 < route1.length()-1 && position1 > 0){

// The previous visit

Visit previousVisit1 = (Visit) route1.get(position1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

// The next visit

Visit nextVisit1 = (Visit) route1.get(position1+1);

Citizen nextCitizen1 = (Citizen) nextVisit1.citizen();

int nextCitizenNumber1 = nextCitizen1.number();

// The addition of travel time

double oldDistance1 = distance[previousCitizenNumber1][nextCitizenNumber1];

double newDistance1 = distance[previousCitizenNumber1][citizenNumber] +

distance[citizenNumber][nextCitizenNumber1];

totalTravelTime += newDistance1 - oldDistance1 ;

}

if(position1 == route1.length()-1){

// The previous visit

Visit previousVisit1 = (Visit) route1.get(position1-1);

Citizen previousCitizen1 = (Citizen) previousVisit1.citizen();

int previousCitizenNumber1 = previousCitizen1.number();

// The addition of travel time

totalTravelTime += distance[previousCitizenNumber1][citizenNumber];

}

// >>> THE ADDITION OF TRAVELLING TIME ON ROUTE 2

if(position2 == 0){

// The next visit

Visit nextVisit2 = (Visit) route2.get(position2+1);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();

totalTravelTime += distance[citizenNumber][nextCitizenNumber2];

}

if(position2 < route2.length()-1 && position2 > 0){

// The previous visit

Visit previousVisit2 = (Visit) route2.get(position2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

// The next visit

Visit nextVisit2 = (Visit) route2.get(position2+1);

Citizen nextCitizen2 = (Citizen) nextVisit2.citizen();

int nextCitizenNumber2 = nextCitizen2.number();
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// The addition of travel time

double oldDistance2 = distance[previousCitizenNumber2][nextCitizenNumber2];

double newDistance2 = distance[previousCitizenNumber2][citizenNumber] +

distance[citizenNumber][nextCitizenNumber2];

totalTravelTime += newDistance2 - oldDistance2 ;

}

if(position2 == route2.length()-1){

// The previous visit

Visit previousVisit2 = (Visit) route2.get(position2-1);

Citizen previousCitizen2 = (Citizen) previousVisit2.citizen();

int previousCitizenNumber2 = previousCitizen2.number();

// The addition of travel time

totalTravelTime += distance[previousCitizenNumber2][citizenNumber];

}

}

// *************************************************************

// Push the visit in a certain position

// and in a certain route a certain number of minutes forward.

//

// *************************************************************

private void pushTheSucceedingVisitsForward(double currentPushForward,

int currentPosition, Route currentRoute){

Visit currentVisit = (Visit) currentRoute.get(currentPosition);

// Change the properties for the currentVisit

currentVisit.setStart(currentVisit.start() + currentPushForward);

currentVisit.setWaitingTime(currentVisit.start() - currentVisit.arrival());

currentVisit.setFinish(currentVisit.finish() + currentPushForward);

// Change the position for the currentVisit

currentVisit.setPosition(currentPosition);

// Go further

if(currentPosition< currentRoute.length()-1){

Visit nextVisit = (Visit) currentRoute.get(currentPosition+1);

double nextPushForward = Math.max(0, currentPushForward - nextVisit.waitingTime());

double arrivalTimeNextVisit = nextVisit.arrival() + currentPushForward;

nextVisit.setArrival(arrivalTimeNextVisit);

pushTheSucceedingVisitsForward(nextPushForward, currentPosition+1, currentRoute);

}

// If the visit has another half (another person is doing the same visit)

if(currentVisit.isShared()){

int theOtherVisitNumber = theOtherVisit[currentVisit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

int theOtherPosition = theOtherVisit.position();

// Change the properties for theOtherVisit

// The arrival time and the position do not change

//theOtherVisit.setStart(theOtherVisit.start() + currentPushForward);

double pushForwardTheOther = currentVisit.start()-theOtherVisit.start();

theOtherVisit.setStart(theOtherVisit.start() + pushForwardTheOther);

theOtherVisit.setWaitingTime(theOtherVisit.start() - theOtherVisit.arrival());

theOtherVisit.setFinish(theOtherVisit.finish() + currentPushForward);

// Go further. The last visit on a route has position route.length()-1

if(theOtherPosition < theOtherRoute.length()-1){

Visit nextVisit2 = (Visit) theOtherRoute.get(theOtherPosition+1);

double nextPushForward2 = Math.max(0, currentPushForward - nextVisit2.waitingTime());

double arrivalTimeNextVisit2 = nextVisit2.arrival() + currentPushForward;

nextVisit2.setArrival(arrivalTimeNextVisit2);

pushTheSucceedingVisitsForward(nextPushForward2, theOtherPosition+1, theOtherRoute);

}

}

}

}
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B.2.2 InsertionCostOneVisit.java

public class InsertionCostOneVisit {

// VARIABLES TO SET

private int r; //the best route number

private int p; //the best position (equal to the position of the visit before)

private double c; //the cost of the visit

private boolean feasible; //If there is a feasible position;

public InsertionCostOneVisit(int ro, int po, double co, boolean f ){

r = ro; p = po; c= co; feasible = f;

}

public int bestRouteNumber(){return r ;}

public int bestPosition(){return p ;}

public double cost(){return c ;}

public boolean isThereAFeasiblePosition(){return feasible;}

}

B.2.3 InsertionCostTwoVisits.java

public class InsertionCostTwoVisits {

// VARIABLES TO SET

private int r1; //one of the best route number

private int r2; //the other one of the best route number

private int p1; //the best position in route r1

private int p2; //the best position in route r1

private double c; //the cost of inserting the pair of visits

private boolean feasible; //If there are two feasible positions;

public InsertionCostTwoVisits(int ro1, int ro2, int po1, int po2, double co, boolean f ){

r1 = ro1; r2 = ro2; p1 = po1; p2 = po2; c= co; feasible = f;

}

public int bestRouteNumber1(){return r1 ;}

public int bestRouteNumber2(){return r2 ;}

public int bestPosition1(){return p1 ;}

public int bestPosition2(){return p2 ;}

public double cost(){return c ;}

public boolean isThereAFeasiblePosition(){return feasible;}

}

B.2.4 Positions.java

import java.math.*;

import java.util.*;

public class Positions{

private int position1;

private int position2;

public Positions(){

position1 = -1;

position2 = -1;

}

public Positions(int p1, int p2){

position1 = p1;

position2 = p2;

}

public int position1(){return position1;}
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public void setPosition1(int p1){ position1 = p1;}

public int position2(){return position2;}

public void setPosition2(int p2){ position2 = p2;}

public Positions copy(){

Positions newPositions = new Positions();

newPositions.setPosition1(position1);

newPositions.setPosition2(position2);

return newPositions;

}

public String toString(){

String output = "";

output += "position1 =" + position1;

output += " position2 =" + position2;

return output;

}

}

B.3 The Source Code for the Tabu Search

B.3.1 TabuSearch.java

import java.io.*;

import java.util.*;

import java.math.*;

import java.util.Random;;

/*

This local search takes all routes route and finds the best one

of the visits in route to put into a new random route.

When a visit i is removed from a route r, it forbidden for the next theta iterations

to put the visit back.

The cost of the solution depends on the visits in the solution.

How many times have each of the visits been added to the route, in which they are situated.

In this way the function will tru to find unexplores solutions

*/

/*

There are two routes

-route1 where the visit v is removed

-route2 where the visit is inserted

There are 3 phases

- PHASE1 initial

- PHASE2 v is removed from route1

- PHASE3 v is inserted in route2

*/

class TabuSearch{

// THE VARIABLES FROM THE DATA

public int nCitizens; //The number of citizens

public int nVisits; //The number of visits

public int maxVisitNumber; // The largest number a visit can have

public int nRoutes; //The number of routes

public double[][] distance; //The distances in minutes between citizens

public int[] theOtherVisit; // What is the number of the corresponding visit, if the visit is shared.

// THE PRICES

public double alpha; // price of violation of closing times

public double beta; // price of difference in starting times

public double gamma; // prive in violation of working hours
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public double psi; //price for a not regular caretaker

// A TABU LIST

public int theta; // The length of the tabu

public int[][] previousIteration;

// The aspiration criterion

public Cost[][] bestCostForEachAttribute;

// The number of times a attribute has been used

public int[][] rho;

// The sum of the rho values is initially set to zero

int rhoSum = 0;

// The parameter to control the intensity of the diversification

double lambda;

// The modification factor

double delta;

// Initialize the random number generator

long seed = 1;

public Random rand = new Random();

//public Random rand = new Random(seed);

// Fandt bedre løsning med seed = 1, alpha, beta,gamma = 1, lambda = 0, theta = 1, og delta = 1.5

// A number of iterations

int nIterations ;

int maxIterations = 100;

public Improvement4Fast(Data data){

nCitizens = data.nCitizens();

nVisits = data.nVisits();

maxVisitNumber = data.maxVisitNumber();

nRoutes = data.nRoutes();

distance = data.distance();

theOtherVisit = data.theOtherVisit();

}

public Solution start(Solution initialFeasibleSolution, double alpha, double beta, double gamma,

double psi, int theta, double lambda, double delta){

//System.out.println("FAST");

System.out.println("ite\tA\tB\tG\ttrav\tnoReg\tC\tv\troute1\troute2\tpos\talpha\tbeta\tgamma");

// The last iteration is set to -theta

// The best solution for each attribute is set to be really bad!!

Cost initialBestCostForEachAttribute = new Cost();

initialBestCostForEachAttribute.setTotalTravelTime(Double.MAX_VALUE);

initialBestCostForEachAttribute.setNoOfVisitsWithoutRegularWorker(nVisits);

initialBestCostForEachAttribute.setDifferenceStartingTimesSharedVisits(Double.MAX_VALUE);

initialBestCostForEachAttribute.setViolationOfTimeWindows(Double.MAX_VALUE);

initialBestCostForEachAttribute.setViolationOfWorkingHours(Double.MAX_VALUE);

previousIteration = new int[maxVisitNumber+1][nRoutes+1];

bestCostForEachAttribute = new Cost[maxVisitNumber+1][nRoutes+1];

for(int i = 1; i <= maxVisitNumber; i++){

for(int r = 1; r <= nRoutes; r++){

previousIteration[i][r] = -theta;

bestCostForEachAttribute[i][r] = initialBestCostForEachAttribute;

}

}

// Now overwrite the bestSolutionForEachAttribute for these attributes in initialFeasibleSolution

Route[] allRoutesInitialFeasibleSolution = initialFeasibleSolution.allRoutes();

for(int r = 1; r <= nRoutes; r++){

Route route = allRoutesInitialFeasibleSolution[r];

for(int i = 0; i < route.length(); i++){

Visit visit = (Visit) route.get(i);

bestCostForEachAttribute[visit.number()][r] = initialFeasibleSolution.cost();

}

}

// A counter of iterations

nIterations = 0;

// The currently best solution (s*)

Solution bestFeasibleSolution = new Solution();

bestFeasibleSolution = initialFeasibleSolution.copy();

double best_c = bestFeasibleSolution.c(psi);
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//// System.out.println("best_c = " + best_c);

// The first solution (s)

Solution solutionPHASE1 = initialFeasibleSolution.copy();

Cost costPHASE1 = solutionPHASE1.cost();

double current_f = solutionPHASE1.f(psi,alpha,beta,gamma);

//// System.out.println("current_f = " + current_f);

// The number of times the attribute has been added to the solution

rho = new int[maxVisitNumber+1][nRoutes+1];

// Choose a stop criterion

while(nIterations < maxIterations){

nIterations++;

//// System.out.println("\nnIterations = " + nIterations + "\n");

// The current routes and visits

Route[] allRoutesPHASE1 = solutionPHASE1.allRoutes();

Visit[] allVisitsPHASE1 = solutionPHASE1.allVisits();

costPHASE1 = solutionPHASE1.cost();

// Indicates whether a new solution is found

boolean foundNewSolution = false;

// The route number for the random route

int bestRoute1number = 0;

// The position in route 1

int bestPositionRoute1 = 0;

// The route number for the other part of the route, if the visit v is shared

int theOtherRouteNumber = 0;

// The best route number different from the random route number

int bestRoute2number = 0;

// The best position for the visit v in route 2

int bestPositionRoute2 = 0;

// The best visit number from the random route

int bestVisitNumber = 0;

// The temporary sum of rhos is used until a new solution is found

int tempRhoSum;

// The currently best cost in the neighbourhood

double bestNeighbourhoodCost;

// The best cost/solution found

Cost bestSolutionInNeighbourhoodCost = new Cost();

// The forbidden visit numbers (if the best is tabu)

int[] forbiddenVisitNumbers = new int[nVisits];

int nForbiddenVisits = 0;

// and their forbidden routes

int[] forbiddenRoute2numbers = new int[nRoutes+1];

int nForbiddenRoutes2 = 0;

// The best position solution in the neighbourhood ( \bar{s})

// Solution bestSolutionInNeighbourhood = solutionPHASE1.copy();

// Remember that the properties are still the ones for currentSolution

while(!foundNewSolution){

// INITILIZE EVERY THING

bestRoute1number = 0;

bestPositionRoute1 = 0;

theOtherRouteNumber = 0;

bestRoute2number = 0;

bestPositionRoute2 = 0;

bestVisitNumber = 0;

tempRhoSum = 0;

bestNeighbourhoodCost = Double.MAX_VALUE;

bestSolutionInNeighbourhoodCost = new Cost();

for(int route1number = 1; route1number <= nRoutes; route1number++){

//// System.out.println("randomRouteNumber = " + randomRouteNumber);

Route route1 = allRoutesPHASE1[route1number];
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// For all the visits in the route

for(int positionRoute1 = 0; positionRoute1 < route1.length(); positionRoute1++){

Visit currentVisit = (Visit) route1.get(positionRoute1);

int currentVisitNumber = currentVisit.number();

//// System.out.println("currentVisitNumber = " + currentVisitNumber);

if(currentVisit.isShared()){

int theOtherVisitNumber = theOtherVisit[currentVisitNumber];

Visit theOtherVisit = allVisitsPHASE1[theOtherVisitNumber];

theOtherRouteNumber = theOtherVisit.routeNumber();

}

// If the visit is removable

if(currentVisit.removable()){

Cost costPHASE2 = costRemoveVisit(allRoutesPHASE1, allVisitsPHASE1, route1number, positionRoute1,costPHASE1);

for(int route2number = 1; route2number <= nRoutes ; route2number++){

if((route2number != route1number) && (route2number != theOtherRouteNumber)){

boolean theMoveIsForbidden = false;

for(int v = 0; v < nForbiddenVisits; v++){

for(int r = 0; r < nForbiddenRoutes2; r++ ){

if(forbiddenVisitNumbers[v] == currentVisitNumber & forbiddenRoute2numbers[r] ==route2number ){

theMoveIsForbidden = true;

}

}

}

if(!theMoveIsForbidden){

// The route that we will try for insertion

Route route2 = allRoutesPHASE1[route2number];

// Try all the positions in that route

for(int positionRoute2 = 0; positionRoute2 <= route2.length(); positionRoute2++){

// Insert the random visit in the random route

Cost costPHASE3 = costInsertVisit(allRoutesPHASE1, allVisitsPHASE1, currentVisitNumber,

route2number, positionRoute2,costPHASE2);

// c(\bar{s})

double c = costPHASE3.c(psi);

// f(\bar{s}) = c(\bar{s}) + \alpha q(\bar{s}) + \beta d(\bar{s}) + \gamma w(\bar{s})

double f = costPHASE3.f(psi,alpha,beta,gamma);

///// System.out.println("f = " + f);

// The penalty to diversify the search p(\bar{s})

// The attribute value rho[currentVisitNumber][r] is raised by one

// The attribute value rho[currentVisitNumber][randomRouteNumber] is removed

double p;

if(f >= current_f){

tempRhoSum = rhoSum + rho[currentVisitNumber][route2number]+1 - rho[currentVisitNumber][route1number];

p = lambda*Math.sqrt(nVisits*nRoutes)*tempRhoSum;

}else{

p = 0;}

//// System.out.println("penalty = " + penalty);

// f(\bar{s}) + p(\bar{s})

double cost_f_plus_p = f + p;

//// System.out.println("cost_f_plus_p = " + cost_f_plus_p );

// Is the cost of this position better??

if( cost_f_plus_p < bestNeighbourhoodCost){

bestRoute1number = route1number;

bestRoute2number = route2number;

bestPositionRoute1 = positionRoute1;

bestPositionRoute2 = positionRoute2;

bestVisitNumber = currentVisitNumber;

bestNeighbourhoodCost = cost_f_plus_p;

bestSolutionInNeighbourhoodCost = costPHASE3;

//// System.out.println("bestNeighbourhoodCost = " + bestNeighbourhoodCost);
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//// bestSolutionInNeighbourhood = solutionPHASE3.copy();

}

}

}

}

}

}

}

}

// If the new attribute IS NOT tabu

if(nIterations - previousIteration[bestVisitNumber][bestRoute2number] > theta){

//System.out.println("bestVisitNumber = " + bestVisitNumber);

//System.out.println("bestRoute2number = " + bestRoute2number);

// try if the cost for this attribute is better the one registred in bestCostForEachAttribute

if(bestSolutionInNeighbourhoodCost.f(psi,alpha,beta,gamma) <

bestCostForEachAttribute[bestVisitNumber][bestRoute2number].f(psi,alpha,beta,gamma)){

bestCostForEachAttribute[bestVisitNumber][bestRoute2number] = bestSolutionInNeighbourhoodCost;

}

foundNewSolution = true;

}

// The new attribute IS tabu!

else{

if(bestSolutionInNeighbourhoodCost.f(psi,alpha,beta,gamma) <

bestCostForEachAttribute[bestVisitNumber][bestRoute2number].f(psi,alpha,beta,gamma)){

// System.out.println("Aspiration");

bestCostForEachAttribute[bestVisitNumber][bestRoute2number] = bestSolutionInNeighbourhoodCost;

foundNewSolution = true;

}

// If it is not better, we have to find the next best solution

else{

foundNewSolution = false;

forbiddenVisitNumbers[nForbiddenVisits] = bestVisitNumber;

nForbiddenVisits++;

forbiddenRoute2numbers[nForbiddenRoutes2] = bestRoute2number;

nForbiddenRoutes2++;

}

}

}

// Remove bestVisitNumber from bestRoute1 and insert it in bestRoute2

Solution solutionPHASE2 = removeVisit(solutionPHASE1, bestRoute1number, bestPositionRoute1);

Solution solutionPHASE3 = insertVisit(solutionPHASE2, bestVisitNumber, bestRoute2number, bestPositionRoute2);

// The number of times this attribute has been added to the solution

rho[bestVisitNumber][bestRoute2number]++;

// The sum of the rhos is set to the temperary sum of rhos

rhoSum += rho[bestVisitNumber][bestRoute2number] - rho[bestVisitNumber][bestRoute1number];

//Change the previous iteration for the removed attribute

// So that that it is forbidden to add this attribute the next theta iterations.

previousIteration[bestVisitNumber][bestRoute1number] = nIterations;

// Is the solution feasible

if(solutionPHASE3.isFeasible() && solutionPHASE3.c(psi) < best_c){

bestFeasibleSolution = solutionPHASE3.copy(); // s* = \bar{s}

best_c = solutionPHASE3.c(psi) ; // c(s*) = c(\bar{s})

}

/*Route[] allRoutesPHASE3 = solutionPHASE3.allRoutes();

double violationRoute = 0;

double violationVisits = 0;

for(int j = 1; j <= nRoutes; j++){

Route currentRoute = allRoutesPHASE3[j];

violationRoute += currentRoute.violation();

for(int i = 0; i < currentRoute.length(); i++){

Visit currentVisit = (Visit) currentRoute.get(i);

violationVisits += currentVisit.violation();

}

} */

String str = nIterations+"";

str += "\t"+solutionPHASE3.violationOfTimeWindows();

str += "\t"+solutionPHASE3.differenceStartingTimesSharedVisits();

str += "\t"+solutionPHASE3.violationOfWorkingHours();

/* str += "\t"+solutionPHASE3.totalTravelTime();

str += "\t"+solutionPHASE3.noOfVisitsWithoutRegularWorker();
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str += "\t"+solutionPHASE3.c(psi);

str += "\t"+bestVisitNumber;

str += "\t"+bestRoute1number;

str += "\t"+bestRoute2number;

str += "\t"+bestPositionRoute2;

str += "\t"+alpha;

str += "\t"+beta;

str += "\t"+gamma;

str += "\t"+bestCostForEachAttribute[bestVisitNumber][bestRoute2number].f(psi,alpha,beta,gamma);*/

//str += ", violationRoute = " + violationRoute;

//str += ", violationVisits = " + violationVisits;

//str += "\t"+solutionPHASE3.f(psi,alpha,beta,gamma);

//str += "\t\t"+(short)alpha+"\t\t"+(short)beta+"\t\t"+(short)gamma;

System.out.println(str);

// Update the prices, update alpha

if(solutionPHASE3.violationOfTimeWindows() == 0 ){

alpha = alpha/(1+delta);

}else{

alpha = alpha*(1+delta);

}

//// System.out.println("alpha = " + alpha);

// Update beta

if(solutionPHASE3.differenceStartingTimesSharedVisits() == 0){

beta = beta/(1+delta);

}else{

beta = beta*(1+delta);

}

//// System.out.println("beta = " + beta);

// Update gamma

if(solutionPHASE3.violationOfWorkingHours() == 0){

gamma = gamma/(1+delta);

}else{

gamma = gamma*(1+delta);

}

// The current solution is now the one found is the neighbourhood

solutionPHASE1 = solutionPHASE3.copy(); // s = \bar{s}

current_f = solutionPHASE1.f(psi,alpha,beta,gamma);

//// System.out.println("current_f = " + current_f);

}

return bestFeasibleSolution;

}

// A function to CALCULATE the addition of cost when inserting one visit in position p in route r

private Cost costInsertVisit(Route[] allRoutes, Visit[] allVisits, int visitNumber, int routeNumber,

int p, Cost c){

Cost cost = c.copy();

// The cost

double totalTravelTime = cost.totalTravelTime();

int noOfVisitsWithoutRegularWorker = cost.noOfVisitsWithoutRegularWorker();

double differenceStartingTimesSharedVisits = cost.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = cost.violationOfTimeWindows();

double violationOfWorkingHours = cost.violationOfWorkingHours();

// The route

Route route = allRoutes[routeNumber];

// The visit

Visit visit = allVisits[visitNumber];

// The citizen at the visit

Citizen citizen = visit.citizen();

// The worker on the route

Worker worker = route.worker();

// CALCULATE THE NUMBER OF VISITS WITHOUT THE REGULAR WORKER

// If it is a shared visit

if (visit.isShared()){
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int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

Worker theOtherWorker = theOtherRoute.worker();

// The citizen is the same (of cause!! )

if(!citizen.isTheWorkerRegular(worker) & !citizen.isTheWorkerRegular(theOtherWorker)){

noOfVisitsWithoutRegularWorker++;

}

}

// If it is not a shared visit

else{

if(!citizen.isTheWorkerRegular(worker)){

noOfVisitsWithoutRegularWorker++;

}

}

cost.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

// >>>> THE ARRIVAL AND STARTING TIMES <<<<<<<<<

double start;

double arrival;

if(p == 0){

arrival = Math.max(visit.open(),worker.start());

start = arrival;

}

else{

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

arrival = previousVisit.finish() + distance[previousCitizen.number()][citizen.number()];

start = Math.max(visit.open(), arrival);

}

// >>>> THE ADDITION OF TRAVEL TIME <<<<<<<<<

// The route will never be empty because of the seed-visits

// Remember that the visit is not inserted yet, therefore the next visit is at position p

if(p == 0){

// The next visit

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

totalTravelTime += distance[citizen.number()][nextCitizen.number()];

}

if(p > 0 & p < route.length()){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The next visit

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

// The distance-cost (xtra travel time)

double newDistance = distance[previousCitizen.number()][citizen.number()] +

distance[citizen.number()][nextCitizen.number()];

double oldDistance = distance[previousCitizen.number()][nextCitizen.number()] ;

totalTravelTime += newDistance - oldDistance;

}

if(p == route.length()){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

totalTravelTime += distance[previousCitizen.number()][citizen.number()];

}

cost.setTotalTravelTime(totalTravelTime);

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes;

cost.setViolationOfTimeWindows(violationOfClosingTimes);

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?
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if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits;

cost.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// >>>>>> PUSH FORWARD THE NEXT VISIT <<<<<<<<<<<<<<<<

// The next visit is at position p

if(p < route.length()){

// The next visit

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

double arrivalNextVisit = start + visit.duration() + distance[citizen.number()][nextCitizen.number()];

double pushForward = Math.max(0, arrivalNextVisit - nextVisit.arrival() - nextVisit.waitingTime());

cost = costPushForward(allRoutes,allVisits, pushForward, routeNumber, p, cost);

}else{

Visit oldLastVisit = route.get(p-1);

Visit newLastVisit = visit;

// CALCULATE THE DEVIATIONS FROM WORKING TIME

double oldViolationAfter = Math.max(oldLastVisit.finish() - route.worker().finish() ,0);

double newViolationAfter = Math.max(start + visit.duration() - route.worker().finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

cost.setViolationOfWorkingHours(violationOfWorkingHours);

}

return cost;

}

// A function to CALCULATE the addition of cost when pushing the visits forward

private Cost costPushForward(Route[] allRoutes,Visit[] allVisits, double pushForward,

int routeNumber, int p, Cost c){

Cost cost = c.copy();

// The cost

double differenceStartingTimesSharedVisits = cost.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = cost.violationOfTimeWindows();

double violationOfWorkingHours = cost.violationOfWorkingHours();

// The route

Route route = allRoutes[routeNumber];

// The current visit

Visit visit = (Visit) route.get(p);

// The new starting time

double start = visit.start() + pushForward;

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits -

oldDifferenceStartingTimesSharedVisits;

cost.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes - oldViolationOfClosingTimes ;

cost.setViolationOfTimeWindows(violationOfClosingTimes);

// Go further

if(p < route.length()-1){

Visit nextVisit = (Visit) route.get(p+1);
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double nextPushForward = Math.max(0, pushForward - nextVisit.waitingTime());

cost = costPushForward(allRoutes,allVisits,pushForward, routeNumber, p +1,cost);

}

else{

// CALCULATE THE DEVIATIONS FROM WORKING TIME

double oldViolationAfter = Math.max(visit.finish() - route.worker().finish() ,0);

double newViolationAfter = Math.max(start + visit.duration() - route.worker().finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

cost.setViolationOfWorkingHours(violationOfWorkingHours);

}

return cost;

}

// A function to CALCULATE the addition of cost when removing one visit in position p in route r

private Cost costRemoveVisit(Route[] allRoutes, Visit[] allVisits, int routeNumber, int p, Cost c){

Cost cost = c.copy();

// The cost

double totalTravelTime = cost.totalTravelTime();

int noOfVisitsWithoutRegularWorker = cost.noOfVisitsWithoutRegularWorker();

double differenceStartingTimesSharedVisits = cost.differenceStartingTimesSharedVisits();

double violationOfWorkingHours = cost.violationOfWorkingHours();

double violationOfClosingTimes = cost.violationOfTimeWindows();

// The route

Route route = allRoutes[routeNumber];

// The visit

Visit visit = (Visit) route.get(p);

// The citizen at the visit

Citizen citizen = visit.citizen();

// The worker on the route

Worker worker = route.worker();

// CALCULATE THE NUMBER OF VISITS WITHOUT THE REGULAR WORKER

// If it is a shared visit

if (visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

Worker theOtherWorker = theOtherRoute.worker();

// The citizen is the same (of cause!! )

if(!citizen.isTheWorkerRegular(worker) & !citizen.isTheWorkerRegular(theOtherWorker)){

noOfVisitsWithoutRegularWorker--;

}

}

// If it is not a shared visit

else{

if(!citizen.isTheWorkerRegular(worker)){

noOfVisitsWithoutRegularWorker--;

}

}

cost.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

// >>>> SUBTRACTION OF TRAVEL TIME <<<<<<<<<

// If you want to remove a visit from an empty, then en travel time does not change

if(route.length() > 1){

if(p == 0){

// The next visit

Visit nextVisit = (Visit) route.get(p+1);

Citizen nextCitizen = nextVisit.citizen();

totalTravelTime -= distance[citizen.number()][nextCitizen.number()];

}

if(p > 0 & p < route.length()-1){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The next visit

Visit nextVisit = (Visit) route.get(p+1);
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Citizen nextCitizen = nextVisit.citizen();

// The distance-cost (xtra travel time)

double newDistance1 = distance[previousCitizen.number()][citizen.number()] +

distance[citizen.number()][nextCitizen.number()];

double oldDistance1 = distance[previousCitizen.number()][nextCitizen.number()] ;

totalTravelTime -= newDistance1 - oldDistance1;

}

if(p == route.length()-1){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

totalTravelTime -= distance[previousCitizen.number()][citizen.number()];

}

}

cost.setTotalTravelTime(totalTravelTime);

// THE CHANGE IN VIOLATION OF THE CLOSING TIMES

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

violationOfClosingTimes -= oldViolationOfClosingTimes;

cost.setViolationOfTimeWindows(violationOfClosingTimes);

// THE DIFFERENCE IN STARTING TIMES

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

differenceStartingTimesSharedVisits -= oldDifferenceStartingTimesSharedVisits;

cost.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// THE REMOVAL OF THE VISIT

//route.removeVisitAt(p);

// THE SUCCEEDING VISITS WILL BE PUSHED BACKWARD.

// The next visit is at position p+1

if(p < route.length()-1){

Visit nextVisit = (Visit) route.get(p+1);

Citizen nextCitizen = nextVisit.citizen();

double arrivalNextVisit;

if(p == 0){

arrivalNextVisit= Math.max(nextVisit.open(),worker.start());

}

else{

// The previous vist

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

arrivalNextVisit = previousVisit.finish() + distance[previousCitizen.number()][nextCitizen.number()];

}

double newStartNextVisit = Math.max(arrivalNextVisit,nextVisit.open());

double pushBackward = nextVisit.start() - newStartNextVisit;

cost = costPushBackward(allRoutes,allVisits, pushBackward, routeNumber, p+1,cost);

}else{

Visit oldLastVisit = route.get(route.length()-1);

Visit newLastVisit = route.get(route.length()-2);

// CALCULATE THE DEVIATIONS FROM WORKING TIME

double oldViolationAfter = Math.max(oldLastVisit.finish() - route.worker().finish() ,0);

double newViolationAfter = Math.max(newLastVisit.finish() - route.worker().finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

cost.setViolationOfWorkingHours(violationOfWorkingHours);

}

return cost;

}

// A function to CALCULATE the addition of cost when pushing the visits back ward
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private Cost costPushBackward(Route[] allRoutes, Visit[] allVisits, double pushBackward,

int routeNumber, int p, Cost c){

Cost cost = c.copy();

// The cost

double differenceStartingTimesSharedVisits = cost.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = cost.violationOfTimeWindows();

double violationOfWorkingHours = cost.violationOfWorkingHours();

// The route

Route route = allRoutes[routeNumber];

// The current visit

Visit visit = (Visit) route.get(p);

// The new starting time

double start = Math.max(visit.arrival()-pushBackward, visit.open());

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits -

oldDifferenceStartingTimesSharedVisits;

cost.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes - oldViolationOfClosingTimes ;

cost.setViolationOfTimeWindows(violationOfClosingTimes);

// Go further

if(p < route.length()-1){

Visit nextVisit = (Visit) route.get(p+1);

double arrivalTimeNextVisit = nextVisit.arrival() - pushBackward;

cost = costPushBackward(allRoutes,allVisits,pushBackward, routeNumber, p +1,cost);

}

else{

// CALCULATE THE DEVIATIONS FROM WORKING TIME

double oldViolationAfter = Math.max(visit.finish() - route.worker().finish() ,0);

double newViolationAfter = Math.max(start + visit.duration() - route.worker().finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

cost.setViolationOfWorkingHours(violationOfWorkingHours);

}

return cost;

}

//////// ACTUAL INSERTION!!!!!!!!!!!!

// A function to CALCULATE the addition of cost when inserting one visit in position p in route r

// This function actually inserts a visit in the route and returns a solution

private Solution insertVisit(Solution solution, int visitNumber, int routeNumber, int p){

// The solution is copied into a new solution, because we do not want the solution changed

// Only the new solution will be operated on

Solution newSolution = solution.copy();

// All the routes and visits in the solution

Route[] allRoutes = newSolution.allRoutes();

Visit[] allVisits = newSolution.allVisits();

// The cost

double totalTravelTime = newSolution.totalTravelTime();

int noOfVisitsWithoutRegularWorker = newSolution.noOfVisitsWithoutRegularWorker();

double differenceStartingTimesSharedVisits = newSolution.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = newSolution.violationOfTimeWindows();

double violationOfWorkingHours = newSolution.violationOfWorkingHours();

// The route

Route route = allRoutes[routeNumber];
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// The visit

Visit visit = allVisits[visitNumber];

// The citizen at the visit

Citizen citizen = visit.citizen();

// The worker on the route

Worker worker = route.worker();

// CALCULATE THE NUMBER OF VISITS WITHOUT THE REGULAR WORKER

// If it is a shared visit

if (visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

Worker theOtherWorker = theOtherRoute.worker();

// The citizen is the same (of cause!! )

if(!citizen.isTheWorkerRegular(worker) & !citizen.isTheWorkerRegular(theOtherWorker)){

noOfVisitsWithoutRegularWorker++;

}

}

// If it is not a shared visit

else{

if(!citizen.isTheWorkerRegular(worker)){

noOfVisitsWithoutRegularWorker++;

}

}

newSolution.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

// >>>> THE ARRIVAL AND STARTING TIMES <<<<<<<<<

double start;

double arrival;

if(p == 0){

arrival = Math.max(visit.open(),worker.start());

start = arrival;

}

else{

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

arrival = previousVisit.finish() + distance[previousCitizen.number()][citizen.number()];

start = Math.max(visit.open(), arrival);

}

// >>>> THE ADDITION OF TRAVEL TIME <<<<<<<<<

// The route will never be empty because of the seed-visits

// Remember that the visit is not inserted yet, therefore the next visit is at position p

if(p == 0){

// The next visit

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

totalTravelTime += distance[citizen.number()][nextCitizen.number()];

}

if(p > 0 & p < route.length()){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The next visit

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

// The distance-cost (xtra travel time)

double newDistance = distance[previousCitizen.number()][citizen.number()] +

distance[citizen.number()][nextCitizen.number()];

double oldDistance = distance[previousCitizen.number()][nextCitizen.number()] ;

totalTravelTime += newDistance - oldDistance;

}

if(p == route.length()){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);
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Citizen previousCitizen = previousVisit.citizen();

totalTravelTime += distance[previousCitizen.number()][citizen.number()];

}

newSolution.setTotalTravelTime(totalTravelTime);

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes;

newSolution.setViolationOfTimeWindows(violationOfClosingTimes);

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits;

newSolution.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// CALCULATE THE DEVIATIONS FROM WORKING TIME

// Is it possible to find the correct route???

Visit oldLastVisit = route.get(route.length()-1);

double oldViolationAfter = Math.max(oldLastVisit.finish() - worker.finish() ,0);

// >>>> SET THE PROPERTIES <<<<<

visit.setArrival(arrival);

visit.setStart(start);

visit.setWaitingTime(visit.start() - visit.arrival());

visit.setFinish(start + visit.duration());

// >>>> INSERT THE VISIT <<<<

route.insert(p,visit);

// Change the position and route number for the currentVisit

visit.setRouteNumber(routeNumber);

visit.setPosition(p);

// >>>>>> PUSH FORWARD THE NEXT VISIT <<<<<<<<<<<<<<<<

if(p < route.length()-1){

// The next visit

Visit nextVisit = (Visit) route.get(p+1);

Citizen nextCitizen = nextVisit.citizen();

double arrivalNextVisit = start + visit.duration() + distance[citizen.number()][nextCitizen.number()];

double pushForward = Math.max(0, arrivalNextVisit - nextVisit.arrival() - nextVisit.waitingTime());

nextVisit.setArrival(arrivalNextVisit);

newSolution = pushForward(newSolution, pushForward, routeNumber, p+1);

}

// CALCULATE THE DEVIATIONS FROM WORKING TIME

// Is it possible to find the correct route???

//Visit newFirstVisit = route.get(0);

Visit newLastVisit = route.get(route.length()-1);

double newViolationAfter = Math.max(newLastVisit.finish() - worker.finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

newSolution.setViolationOfWorkingHours(violationOfWorkingHours);

// Set the cost

//newSolution.setCost(newSolution.totalTravelTime() + psi*newSolution.noOfVisitsWithoutRegularWorker());

// Find out if the solution is feasible

if(newSolution.violationOfTimeWindows() == 0 && newSolution.violationOfWorkingHours() == 0 &&

newSolution.differenceStartingTimesSharedVisits() == 0){

newSolution.setIsFeasible(true);

}else{

newSolution.setIsFeasible(false);

}

return newSolution;

}

// A function to CALCULATE the addition of cost when pushing the visits forward

private Solution pushForward(Solution solution, double pushForward, int routeNumber, int p){
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// All the routes and visits in the solution

Route[] allRoutes = solution.allRoutes();

Visit[] allVisits = solution.allVisits();

// The cost

double differenceStartingTimesSharedVisits = solution.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = solution.violationOfTimeWindows();

// The route

Route route = allRoutes[routeNumber];

// The current visit

Visit visit = (Visit) route.get(p);

// The new starting time

double start = visit.start() + pushForward;

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits -

oldDifferenceStartingTimesSharedVisits;

solution.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes - oldViolationOfClosingTimes ;

solution.setViolationOfTimeWindows(violationOfClosingTimes);

// Change the properties for the currentVisit

visit.setStart(start);

visit.setWaitingTime(start - visit.arrival());

visit.setFinish(visit.finish() + pushForward);

// Change the position for the currentVisit

visit.setPosition(p);

allVisits[visit.number()] = visit;

// Go further

if(p < route.length()-1){

Visit nextVisit = (Visit) route.get(p+1);

double nextPushForward = Math.max(0, pushForward - nextVisit.waitingTime());

double arrivalTimeNextVisit = nextVisit.arrival() + pushForward;

nextVisit.setArrival(arrivalTimeNextVisit);

solution = pushForward(solution,pushForward, routeNumber, p +1);

}

return solution;

}

// A function to CALCULATE the addition of cost when removing one visit in position p in route r

// and actually REMOVING IT

private Solution removeVisit(Solution solution, int routeNumber, int p){

// There should not be done anything to solution

// Therefore the solution is copied into a new route, which is the one operated on

Solution newSolution = new Solution();

newSolution = solution.copy();

// All the routes and visits in the solution

Route[] allRoutes = newSolution.allRoutes();

Visit[] allVisits = newSolution.allVisits();

// The cost

double totalTravelTime = newSolution.totalTravelTime();

int noOfVisitsWithoutRegularWorker = newSolution.noOfVisitsWithoutRegularWorker();

double differenceStartingTimesSharedVisits = newSolution.differenceStartingTimesSharedVisits();

double violationOfWorkingHours = newSolution.violationOfWorkingHours();

double violationOfClosingTimes = newSolution.violationOfTimeWindows();

// The route

Route route = allRoutes[routeNumber];
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// The visit

Visit visit = (Visit) route.get(p);

// The citizen at the visit

Citizen citizen = visit.citizen();

// The worker on the route

Worker worker = route.worker();

// CALCULATE THE NUMBER OF VISITS WITHOUT THE REGULAR WORKER

// If it is a shared visit

if (visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

int theOtherRouteNumber = theOtherVisit.routeNumber();

Route theOtherRoute = allRoutes[theOtherRouteNumber];

Worker theOtherWorker = theOtherRoute.worker();

// The citizen is the same (of cause!! )

if(!citizen.isTheWorkerRegular(worker) & !citizen.isTheWorkerRegular(theOtherWorker)){

noOfVisitsWithoutRegularWorker--;

}

}

// If it is not a shared visit

else{

if(!citizen.isTheWorkerRegular(worker)){

noOfVisitsWithoutRegularWorker--;

}

}

newSolution.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

// >>>> SUBTRACTION OF TRAVEL TIME <<<<<<<<<

// If you want to remove a visit from an empty, then en travel time does not change

if(route.length() > 1){

if(p == 0){

// The next visit

Visit nextVisit = (Visit) route.get(p+1);

Citizen nextCitizen = nextVisit.citizen();

totalTravelTime -= distance[citizen.number()][nextCitizen.number()];

}

if(p > 0 & p < route.length()-1){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The next visit

Visit nextVisit = (Visit) route.get(p+1);

Citizen nextCitizen = nextVisit.citizen();

// The distance-cost (xtra travel time)

double newDistance1 = distance[previousCitizen.number()][citizen.number()] +

distance[citizen.number()][nextCitizen.number()];

double oldDistance1 = distance[previousCitizen.number()][nextCitizen.number()] ;

totalTravelTime -= newDistance1 - oldDistance1;

}

if(p == route.length()-1){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

totalTravelTime -= distance[previousCitizen.number()][citizen.number()];

}

}

newSolution.setTotalTravelTime(totalTravelTime);

// THE CHANGE IN VIOLATION OF THE CLOSING TIMES

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

violationOfClosingTimes -= oldViolationOfClosingTimes;

newSolution.setViolationOfTimeWindows(violationOfClosingTimes);

// THE DIFFERENCE IN STARTING TIMES

if(visit.isShared()){
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int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

differenceStartingTimesSharedVisits -= oldDifferenceStartingTimesSharedVisits;

newSolution.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// THE VIOLATION OF WORKING HOURS

//Visit oldFirstVisit = route.get(0);

Visit oldLastVisit = route.get(route.length()-1);

//double oldViolationBefore = Math.max(worker.start()-oldFirstVisit.start(),0);

double oldViolationAfter = Math.max(oldLastVisit.finish() - worker.finish() ,0);

// THE REMOVAL OF THE VISIT

route.removeVisitAt(p);

// THE SUCCEEDING VISITS WILL BE PUSHED BACKWARD. (p is now the next position !!!)

if(p < route.length()){

Visit nextVisit = (Visit) route.get(p);

Citizen nextCitizen = nextVisit.citizen();

double arrivalNextVisit;

if(p == 0){

arrivalNextVisit= Math.max(nextVisit.open(),worker.start());

}

else{

// The previous vist

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

arrivalNextVisit = previousVisit.finish() + distance[previousCitizen.number()][nextCitizen.number()];

}

nextVisit.setArrival(arrivalNextVisit);

double newStartNextVisit = Math.max(arrivalNextVisit,nextVisit.open());

double pushBackward = nextVisit.start() - newStartNextVisit;

newSolution = pushBackward(newSolution, pushBackward, routeNumber, p);

}

// CALCULATE THE DEVIATIONS FROM WORKING TIME

// Is it possible to find the correct route???

if(route.length() > 0){

//Visit newFirstVisit = route.get(0);

Visit newLastVisit = route.get(route.length()-1);

//double newViolationBefore = Math.max(worker.start()-newFirstVisit.start(),0);

double newViolationAfter = Math.max(newLastVisit.finish() - worker.finish() ,0);

violationOfWorkingHours += newViolationAfter - oldViolationAfter;

newSolution.setViolationOfWorkingHours(violationOfWorkingHours);

}

else{

violationOfWorkingHours -= oldViolationAfter;

newSolution.setViolationOfWorkingHours(violationOfWorkingHours);

}

// Set the cost

//newSolution.setCost(newSolution.totalTravelTime() + psi*newSolution.noOfVisitsWithoutRegularWorker());

// Find out if the solution is feasible

if(newSolution.violationOfTimeWindows() == 0 && newSolution.violationOfWorkingHours() == 0 &&

newSolution.differenceStartingTimesSharedVisits() == 0){

newSolution.setIsFeasible(true);

}else{

newSolution.setIsFeasible(false);

}

return newSolution;

}

// A function to CALCULATE the addition of cost when pushing the visits back ward

// and actually PUSHING BACK WARD

private Solution pushBackward(Solution solution, double pushBackward, int routeNumber, int p){

// All the routes and visits in the solution

Route[] allRoutes = solution.allRoutes();

Visit[] allVisits = solution.allVisits();
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// The cost

double differenceStartingTimesSharedVisits = solution.differenceStartingTimesSharedVisits();

double violationOfClosingTimes = solution.violationOfTimeWindows();

// The route

Route route = allRoutes[routeNumber];

// The current visit

Visit visit = (Visit) route.get(p);

// The new starting time

double start = Math.max(visit.arrival(), visit.open());

// IS THERE A DIFFERENCE IN STARTING TIME IF IT IS A SHARED VISIT?

if(visit.isShared()){

int theOtherVisitNumber = theOtherVisit[visit.number()];

Visit theOtherVisit = allVisits[theOtherVisitNumber];

double oldDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - visit.start());

double newDifferenceStartingTimesSharedVisits = Math.abs(theOtherVisit.start() - start);

differenceStartingTimesSharedVisits += newDifferenceStartingTimesSharedVisits -

oldDifferenceStartingTimesSharedVisits;

solution.setDifferenceStartingTimesSharedVisits(differenceStartingTimesSharedVisits);

}

// HOW MUCH IS THE CURRENT VISIT OUTSIDE ITS TIME WINDOWS ?

double oldViolationOfClosingTimes = Math.max(visit.start() - visit.closed(),0);

double newViolationOfClosingTimes = Math.max(start - visit.closed(),0);

violationOfClosingTimes += newViolationOfClosingTimes - oldViolationOfClosingTimes ;

solution.setViolationOfTimeWindows(violationOfClosingTimes);

// Set the properties

visit.setStart(start);

visit.setWaitingTime(start - visit.arrival());

visit.setFinish(start + visit.duration());

visit.setPosition(p);

allVisits[visit.number()] = visit;

// Go further

if(p+1 < route.length()){

Visit nextVisit = (Visit) route.get(p+1);

double arrivalTimeNextVisit = nextVisit.arrival() - pushBackward;

nextVisit.setArrival(arrivalTimeNextVisit);

solution = pushBackward(solution,pushBackward, routeNumber, p +1);

}

return solution;

}

}

B.4 The Source Code for Reading Data

import java.io.*;

import java.util.*;

class Data{

public int nCitizens = 0;

public int nVisits = 0;

public int nWorkers = 0;

public int nRoutes = 0;

// The distance matrix between the ditsIDs

public double[][] distanceDIST = new double[2000][2000];

public double[][] distance;

// All the visits

public Visit[] allVisits = new Visit[400];

// All the routes
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public Route[] allRoutes;

// The largest visit number

public int maxVisitNumber = 0;

// All the workers

public Worker[] allWorkers = new Worker[200];

// All the citizens

public Citizen[] allCitizens = new Citizen[200];

// The number of the other part of a shared visit

public int[] theOtherVisit = new int[400];

// From an ID to a number

public int[] id2workerNumber = new int[3000];

//public int[] workerNumber2id = new int[200];

// The number of initial breaks and start visits

public int nInitialBreakVisits = 0;

public int nInitialStartVisits = 0;

// Number of removed visits for other causes

public int nRemovedVisits = 0;

// Number of non-existent visits

public int nNonExistentVisits = 0;

// Number of added shared visits

public int nAddedSharedVisits = 0;

// The number of breaks

public int nBreakVisits =0;

public int nStartVisits =0;

// Constructor (input could be a string)

public Data(String distFileName, String resourcesFileName, String visitFileName){

// Find allWorkers[] and nWorkers

// The workers are initialized

readResources(resourcesFileName);

// Find allCitizens[], nCitizens, allVisits[] and nVisits

// The citizens and the visits are initialized.

readVisits(visitFileName);

// Find distance[][]

readDistances(distFileName);

}

public void addExtraWorkersAndAttachAllWorkersToRoutes(int nExtraWorkers){

// More workers

if(nExtraWorkers > 0){

// A substitute worker with number nWorkers+1 which available from 450 to 930

for(int i = 0; i <nExtraWorkers; i++){

nWorkers++;

Worker substitute = new Worker(nWorkers, 465, 930);

allWorkers[nWorkers] = substitute;

}

}

// Less workers

if(nExtraWorkers < 0){

nWorkers += nExtraWorkers;

}

//System.out.println("nWorkers = " + nWorkers);

// Attach the workers to the routes

nRoutes = nWorkers;

allRoutes = new Route[nRoutes+1];

for(int r = 1; r <= nRoutes; r++){

Route currentRoute =new Route(r,allWorkers[r]);

allRoutes[r] = currentRoute;

}

}

public void removeStartVisits(int nStartVisits, int firstStartVisitNumber){

nInitialStartVisits += nStartVisits;
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// Remove the breaks

for(int b = 0; b < nStartVisits; b++){

Visit currentVisit = allVisits[firstStartVisitNumber + b];

currentVisit.setRemovable(false);

currentVisit.setIsPlanned(true);

allVisits[firstStartVisitNumber + b] = currentVisit;

}

}

public void removeBreakVisits(int nBreakVisits, int firstBreakVisitNumber){

nInitialBreakVisits += nBreakVisits;

// Remove the breaks

for(int b = 0; b < nBreakVisits; b++){

Visit currentVisit = allVisits[firstBreakVisitNumber + b];

currentVisit.setRemovable(false);

currentVisit.setIsPlanned(true);

allVisits[firstBreakVisitNumber + b] = currentVisit;

}

}

public void removeVisits(int[] visitNumbers){

nRemovedVisits += visitNumbers.length;

for(int i = 0; i < visitNumbers.length; i++){

int currentVisitNumber = visitNumbers[i];

Visit currentVisit = allVisits[currentVisitNumber];

currentVisit.setRemovable(false);

currentVisit.setIsPlanned(true);

allVisits[currentVisitNumber] = currentVisit;

}

}

public void nonExistentVisits(int[] visitNumbers){

nNonExistentVisits += visitNumbers.length;

Visit dummyVisit = new Visit();

dummyVisit.setRemovable(false);

dummyVisit.setIsPlanned(true);

for(int i = 0; i < visitNumbers.length; i++){

int currentVisitNumber = visitNumbers[i];

allVisits[currentVisitNumber] = dummyVisit;

}

}

public void nonExistentVisit(int visitNumber){

nNonExistentVisits++;

Visit dummyVisit = new Visit();

dummyVisit.setRemovable(false);

dummyVisit.setIsPlanned(true);

allVisits[visitNumber] = dummyVisit;

}

public void addNewStartVisitsAndBreaksToTheRoutes(double durationBreakVisit){

// The start time for the start visit

double openStartVisit = 465;

double closedStartVisit = 465;

double durationStartVisit = 15;

// The start time for the break

double openBreakVisit = 720;

double closedBreakVisit = 720;

// A dummy worker

//Worker dummyWorker = new Worker(0, 0, 2000);

Citizen office = new Citizen();
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// Find the office with the distance number 528

boolean foundOffice = false;

int j = 1;

while(!foundOffice & j <=nCitizens){

Citizen currentCitizen = allCitizens[j];

if(528 == currentCitizen.distanceNumber()){

office = currentCitizen;

foundOffice = true;

}

j++;

}

// The number of breaks

nBreakVisits = 0;

// The number of start Visits

nStartVisits = 0;

// New start visits and breaks are made, because the data set might not contain sufficient of these

for(int r = 1; r <= nRoutes; r++){

// The current route

Route currentRoute = allRoutes[r];

// The current worker

Worker worker = currentRoute.worker();

// The current position in the route

int currentPosition = 0;

if(openStartVisit >= worker.start()){

nStartVisits++;

// Set the properties for the start visit

maxVisitNumber++;

Visit startVisit = new Visit(maxVisitNumber,openStartVisit,

closedStartVisit,durationStartVisit,office);

startVisit.setArrival(openStartVisit);

startVisit.setStart(openStartVisit);

startVisit.setWaitingTime(0);

startVisit.setFinish(openStartVisit + durationStartVisit);

startVisit.setRemovable(false);

startVisit.setIsPlanned(true);

// Insert the start visit

currentRoute.insert(currentPosition,startVisit);

startVisit.setRouteNumber(r);

startVisit.setPosition(currentPosition);

// Insert the visit in the array of all visits

allVisits[maxVisitNumber] = startVisit;

currentPosition++;

}

if(openBreakVisit + durationBreakVisit <= worker.finish()){

// Raise the number of breaks by 1

nBreakVisits++;

// Set the properties for the break

maxVisitNumber++;

Visit breakVisit = new Visit(maxVisitNumber,openBreakVisit,

closedBreakVisit,durationBreakVisit,office);

breakVisit.setArrival(openStartVisit + durationStartVisit);

breakVisit.setStart(openBreakVisit);

breakVisit.setWaitingTime(openBreakVisit - breakVisit.arrival());

breakVisit.setFinish(openBreakVisit + durationBreakVisit);

breakVisit.setRemovable(false);

breakVisit.setIsPlanned(true);

// Insert the break

currentRoute.insert(currentPosition,breakVisit);

breakVisit.setRouteNumber(r);

breakVisit.setPosition(currentPosition);

// Insert the visit in the array of all visits

allVisits[maxVisitNumber] = breakVisit;

}
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}

}

public void calculateTheNumberOfVisitsAndRemoveSuperFlousElements(){

// The last visits in the array "allVisits" are removed

// As well as the visits removed previously (e.g. breaks and start visits)

Visit[] allVisitsTemp = new Visit[maxVisitNumber+1];

nVisits = maxVisitNumber - nInitialStartVisits-nInitialBreakVisits - nRemovedVisits - nNonExistentVisits;

// Calculate the total number of visits

for(int i = 1; i <= maxVisitNumber; i++){

Visit currentVisit = allVisits[i];

//// System.out.println("currentVisit = " + currentVisit);

allVisitsTemp[i] = currentVisit;

}

//System.out.println("nVisits = " + nVisits);

// Overwrite the old allVisits with the new

allVisits = new Visit[maxVisitNumber+1];

allVisits = allVisitsTemp;

}

public void makeSharedVisit(int visitNumber1, int visitNumber2){

Visit visit1 = allVisits[visitNumber1];

visit1.setIsShared(true);

Visit visit2 = allVisits[visitNumber2];

visit2.setIsShared(true);

theOtherVisit[visitNumber1] = visitNumber2;

theOtherVisit[visitNumber2] = visitNumber1;

}

public void addSharedVisit(int distIDCitizen, int workerID1, int workerID2, int workerID3,

double open, double closed, double duration){

int worker1number = id2workerNumber[workerID1];

int worker2number = id2workerNumber[workerID2];

int worker3number = id2workerNumber[workerID3];

Citizen citizen = new Citizen();

// Find corresponding citizen

boolean foundCitizen = false;

int j = 1;

while(!foundCitizen & j <=nCitizens){

Citizen currentCitizen = allCitizens[j];

if(distIDCitizen == currentCitizen.distanceNumber()){

int currentWorker1number = currentCitizen.worker1().number();

int currentWorker2number = currentCitizen.worker2().number();

int currentWorker3number = currentCitizen.worker3().number();

if( worker1number == currentWorker1number & worker2number == currentWorker2number &

worker3number == currentWorker3number){

foundCitizen = true;

citizen = currentCitizen;

}

}

j++;

}

nAddedSharedVisits++;

maxVisitNumber++;

Visit visit1 = new Visit(maxVisitNumber,open,closed,duration,citizen);

visit1.setIsShared(true);

allVisits[maxVisitNumber] = visit1;

nAddedSharedVisits++;

maxVisitNumber++;

Visit visit2 = new Visit(maxVisitNumber,open,closed,duration,citizen);

visit2.setIsShared(true);

allVisits[maxVisitNumber] = visit2;
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theOtherVisit[visit1.number()] = visit2.number();

theOtherVisit[visit2.number()] = visit1.number();

}

public void changeDistance(int citizenNumber1, int citizenNumber2, double newDistance){

distance[citizenNumber1][citizenNumber2] = newDistance;

}

public void changeTimeWindow(int visitNumber, double open, double closed){

Visit visit = allVisits[visitNumber];

visit.setOpen(open);

visit.setClosed(closed);

}

public int nCitizens(){

return nCitizens;}

public int nVisits(){

return nVisits;}

public int maxVisitNumber(){

return maxVisitNumber;}

public int nWorkers(){

return nWorkers;}

public int nRoutes(){

return nRoutes;}

public int nBreakVisits(){

return nBreakVisits;

}

public int nStartVisits(){

return nStartVisits;

}

public double[][] distance(){

return distance;}

public Visit[] allVisits(){

return allVisits;}

public Route[] allRoutes(){

return allRoutes;}

public Worker[] allWorkers(){

return allWorkers;}

public int[] theOtherVisit(){

return theOtherVisit;}

private void readDistances(String distFileName){

// Open the file

InputFile input = new InputFile(distFileName);

input.skipFirstLine();

while(input.getTokenType() != StreamTokenizer.TT_EOF){

int distID1 = (int) input.getTokenNumber();

boolean flag1 = input.next();

boolean flag2 = input.next();

int distID2 = (int) input.getTokenNumber();

boolean flag3 = input.next();

boolean flag4 = input.next();

double dist = input.getTokenNumber();

//System.out.print("distID1 = " + distID1 + " | ") ;

//System.out.print("distID1 = " + distID2 + " | ") ;

//System.out.println("dist = " + dist) ;

//System.out.print("citizenNumber1 = " + citizenNumber1 + " | ") ;
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//System.out.print("citizenNumber2 = " + citizenNumber2 + " | ") ;

//System.out.println("dist = " + dist + "\n") ;

// The distance is rounded down

distanceDIST[distID1][distID2] = Math.floor(dist);

// The flag for the next line

boolean flagNextLine = input.next();

}

// Insert the distance in the distance matrix for the citizens

distance = new double [nCitizens+1][nCitizens+1];

for(int i = 1; i <= nCitizens; i++ ){

Citizen citizen1 = allCitizens[i];

int citizen1number = citizen1.number();

int distID1 = citizen1.distanceNumber();

for(int j = 1; j<= nCitizens; j++ ){

Citizen citizen2 = allCitizens[j];

int citizen2number = citizen2.number();

int distID2 = citizen2.distanceNumber();

//System.out.println("citizen1number = " + citizen1number);

//System.out.println("citizen2number = " + citizen2number);

//System.out.println("distID1 = " + distID1);

//System.out.println("distID2 = " + distID2);

//System.out.println(" = " + distanceDIST[distID1][distID2]);

distance[citizen1number][citizen2number] = distanceDIST[distID1][distID2];

}

}

}

private void readResources(String resourcesFileName){

InputFile input = new InputFile(resourcesFileName);

input.skipFirstLine();

while(input.getTokenType() != StreamTokenizer.TT_EOF){

int id = (int) input.getTokenNumber();

boolean flag1 = input.next();

boolean flag2 = input.next();

double start = input.getTokenNumber();

boolean flag3 = input.next();

boolean flag4 = input.next();

double finish = input.getTokenNumber();

//System.out.print("distID = " + distID + " | ") ;

//System.out.print("start = " + start + " | ") ;

//System.out.print("finish = " + finish + " \n");

nWorkers++;

id2workerNumber[id] = nWorkers;

//workerNumber2id[nWorkers] = id;

// Find all the workers

Worker w = new Worker(nWorkers, start, finish,id);

allWorkers[nWorkers] = w; // The number of workers start by 1

// The flag for the next line

boolean flagNextLine = input.next();

}

}

private void readVisits(String visitsFileName){

InputFile input = new InputFile(visitsFileName);

StreamTokenizer st = input.getStream();

input.skipFirstLine();

//allCitizens = new Citizen[nCitizens+1];

// A dummy worker (to be regular at the office)

Worker dummyWorker = new Worker(0, 0, 2000,-1);

while(input.getTokenType() != StreamTokenizer.TT_EOF){
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maxVisitNumber++;

int visitNumber = (int) input.getTokenNumber();

boolean flag1 = input.next();

boolean flag2 = input.next();

int idCitizen = (int) input.getTokenNumber();

boolean flag3 = input.next();

boolean flag4 = input.next();

int idWorker1 = (int) input.getTokenNumber();

boolean flag5 = input.next();

boolean flag6 = input.next();

int idWorker2 = (int) input.getTokenNumber();

boolean flag7 = input.next();

boolean flag8 = input.next();

int idWorker3 = (int) input.getTokenNumber();

boolean flag9 = input.next();

boolean flag10 = input.next();

double start = input.getTokenNumber();

boolean flag11 = input.next();

boolean flag12 = input.next();

double finish = input.getTokenNumber();

boolean flag13 = input.next();

boolean flag14 = input.next();

double duration = input.getTokenNumber();

// The time window in the data set require the whole visit to be inside

// Here we demand the starting time to be within the time window.

// The latest starting time is the old time windows finish time minus the duration

double newFinish = finish - duration;

//System.out.print("visitNumber = " + visitNumber + " | ") ;

// System.out.print("distIDCtizen = " + distIDCitizen + " | ") ;

// System.out.print("distIDWorker1 = " + distIDWorker1 + " | ") ;

// System.out.print("distIDWorker2 = " + distIDWorker2 + " | ") ;

// System.out.print("distIDWorker3 = " + distIDWorker3 + " | ") ;

// System.out.print("start = " + start + " | ") ;

// System.out.print("finish = " + finish + " | ");

// System.out.print("duration = " + duration + " \n ") ;

// The citizen

Citizen citizen = new Citizen();

// Find corresponding citizen

boolean foundCitizen = false;

int j = 1;

while(!foundCitizen & j <=nCitizens){

Citizen currentCitizen = allCitizens[j];

if(idCitizen == currentCitizen.distanceNumber()){

int currentWorker1number = currentCitizen.worker1().originalNumber();

int currentWorker2number = currentCitizen.worker2().originalNumber();

int currentWorker3number = currentCitizen.worker3().originalNumber();

if( idWorker1 == currentWorker1number & idWorker2 == currentWorker2number

& idWorker3 == currentWorker3number){

foundCitizen = true;

citizen = currentCitizen;

}

}

j++;

}

// System.out.print("citizenNumber= " + citizenNumber + " \n ") ;

// if the citizen is not inserted yet in allCitizens

if(!foundCitizen){

nCitizens++;

Worker worker1, worker2, worker3;

// The citizens are initialized

// There might not be a favorible worker: distIDWorker1 = -1

if(idWorker1 == -1 ){

worker1 = dummyWorker;

}

else{

int workerNumber1 = id2workerNumber[idWorker1];
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// The worker 1 might not be at work that day : allWorkers[workerID1] = null

if(allWorkers[workerNumber1] == null){worker1 = dummyWorker; }

else{worker1 = allWorkers[workerNumber1]; }

}

if(idWorker2 == -1){

worker2 = dummyWorker;

}

else{

int workerNumber2 = id2workerNumber[idWorker2];

// The worker 2 might not be at work that day : allWorkers[workerID1] = null

if(allWorkers[workerNumber2] == null){worker2 = dummyWorker; }

else{worker2 = allWorkers[workerNumber2]; }

}

if(idWorker3 == -1){

worker3 = dummyWorker;

}

else{

int workerNumber3 = id2workerNumber[idWorker3];

// The worker 3 might not be at work that day : allWorkers[workerID1] = null

if(allWorkers[workerNumber3] == null){worker3 = dummyWorker; }

else{worker3 = allWorkers[workerNumber3]; }

}

citizen = new Citizen(nCitizens, worker1, worker2, worker3, idCitizen);

// System.out.print("worker1.number() = " + worker1.number() + " | ") ;

// System.out.print("worker2.number() = " + worker2.number() + " | ") ;

// System.out.println("worker3.number() = " + worker3.number()) ;

// Put in the citizen

allCitizens[citizen.number()] = citizen;

}

// The visitID to set the number of the line

Visit v = new Visit(visitNumber, start, newFinish, duration, citizen);

allVisits[visitNumber] = v; // The number of visits start by 1

// The flag for the next line

boolean flagNextLine = input.next();

}

//System.out.println("maxVisitNumber in file= " + maxVisitNumber + "\n") ;

//for(int i = 1; i <= nCitizens; i++){

// System.out.println(allCitizens[i].toString());

//}

}

public Solution readPlan(String planFileName){

InputFile input = new InputFile(planFileName);

input.skipFirstLine();

// All the routes

Route[] allRoutes = new Route[nWorkers +1];

// The cost

double totalTravelTime = 0;

int noOfVisitsWithoutRegularWorker = 0;

double cost;

// THE INITIAL SOLUTION

for(int r = 1; r <= nWorkers; r++){

Route currentRoute = new Route(r,allWorkers[r]);

allRoutes[r] = currentRoute;

}

int counter = 0;

int nScheduledVisits = 0;

while(input.getTokenType() != StreamTokenizer.TT_EOF){

//for(int i = 1; i < 2; i++){

int idWorker = (int) input.getTokenNumber();
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boolean flag1 = input.next();

boolean flag2 = input.next();

int visitNumber = (int) input.getTokenNumber();

boolean flag3 = input.next();

boolean flag4 = input.next();

int distIDcitizen = (int) input.getTokenNumber();

boolean flag5 = input.next();

boolean flag6 = input.next();

double start = input.getTokenNumber();

//// System.out.print("distIDworker = " + distIDWorker + " | ") ;

//// System.out.print("visitNumber = " + visitNumber + " | ") ;

//// System.out.print("distIDcitizen = " + distIDcitizen + " | ") ;

//// System.out.println("start = " + start) ;

counter++;

// If the worker is on job

if(idWorker != -1){

nScheduledVisits++;

int workerNumber = id2workerNumber[idWorker]; // Equals the route number

Worker worker = allWorkers[workerNumber];

Route route = allRoutes[worker.number()];

Visit visit = allVisits[visitNumber];

Citizen citizen = visit.citizen();

// SET THE ROUTE NUMBER

visit.setRouteNumber(route.number());

// THE NUMBER OF VISITS WITHOUT THE REGULAR CARETAKER

// Do not count the start visits and the breaks

//System.out.println("Visit.number() = " + visit.number());

//System.out.println("Visit.isPlanned() = " + visit.isPlanned());

//System.out.println("Worker.number() = " + worker.number());

//System.out.println("Citizen.number() = " + citizen.number());

//System.out.println("citizen.isTheWorkerRegular(worker) = " + citizen.isTheWorkerRegular(worker));

if(!citizen.isTheWorkerRegular(worker) & !visit.isPlanned()){

noOfVisitsWithoutRegularWorker++;

//System.out.println("noOfVisitsWithoutRegularWorker = " +noOfVisitsWithoutRegularWorker );

}

// THE POSITION FOR THE VISIT

int position = 0;

boolean stop = false;

if(route.length() >0){

Visit nextVisit = (Visit) route.get(position);

while(start > nextVisit.start() & !stop){

position++;

if(position < route.length()){

nextVisit = (Visit) route.get(position);

}

else{

stop = true;

}

}

}

// >>> SET THE START AND FINISH TIME

visit.setStart(start);

visit.setFinish(start + visit.duration());

// >>>> INSERT THE VISIT <<<<

route.insert(position,visit);

}

// The flag for the next line

boolean flagNextLine = input.next();

}

// SET THE POSITIONS, TRAVEL TIME, ARRIVAL AND WAITING TIME

for(int j = 1; j <= nWorkers; j++){

Route route = allRoutes[j];

if(route.length() > 0){

int p = 0;

Visit visit = (Visit) route.get(p);
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// Set the position

visit.setPosition(p);

// Set the arrival

visit.setArrival(visit.start());

// Set the waiting time

visit.setWaitingTime(0);

for(p = 1; p < route.length(); p++){

// The previous visit

Visit previousVisit = (Visit) route.get(p-1);

Citizen previousCitizen = previousVisit.citizen();

// The current visit

visit = (Visit) route.get(p);

Citizen citizen = visit.citizen();

// Set the position

visit.setPosition(p);

// Calculate travel time

totalTravelTime += distance[previousCitizen.number()][citizen.number()];

// Set the arrival

double arrival = previousVisit.finish() +

distance[previousCitizen.number()][citizen.number()];

visit.setArrival(arrival);

// Set the waiting time

visit.setWaitingTime(visit.start()-visit.arrival());

}

}

}

// PRINT OUT THE ROUTES

for(int j = 1; j <= nWorkers; j++){

Route currentRoute = allRoutes[j];

// PRINT OUT THE ROUTES

System.out.println(currentRoute.toString(distance) + "\n");

}

System.out.println("nScheduledVisits = " + nScheduledVisits + "\n");

Solution solution;

solution = new Solution(allRoutes, allVisits, true);

solution.setTotalTravelTime(totalTravelTime);

solution.setNoOfVisitsWithoutRegularWorker(noOfVisitsWithoutRegularWorker);

return solution;

}

}
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