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Abstract

This thesis deals with methods and techniques for music exploration, mainly focussing on
the task of music retrieval. This task has become an important part of the modern music
society in which music is distributed effectively via for example the Internet. This calls for
automatic music retrieval and general machine learning in order to provide organization and
navigation abilities.
This Master’s Thesis investigates and compares traditional similarity measures for audio
retrieval based on density models, namely the Kullback-Leibler divergence, Earth Mover
Distance, Cross-Likelihood Ratio and some variations of these are examined. The methods
are evaluated on a custom data set, represented by Mel-Frequency Cepstral Coefficients
and a pitch estimation. In terms of optimal model complexity and structure, a maximum
retrieval rate of ∼74-75% is obtained by the Cross-Likelihood Ratio in song retrieval, and
∼66% in clip retrieval.
An alternative method for music exploration and similarity is introduced based on a local
perspective, adaptive metrics and the objective to retain the topology of the original feature
space for explorative tasks. The method is defined on the basis of Information Geometry
and Riemannian metrics. Three metrics (or distance functions) are investigated, namely an
unsupervised locally weighted covariance based metric, an unsupervised log-likelihood based
metric and finally a supervised metric formulated in terms of the Fisher Information Matrix.
The Fisher Information Matrix is reformulated to capture the change in conditional prob-
ability of pre-defined auxiliary information given a distance vector in feature space. The
metrics are mainly evaluated in simple clustering applications and finally applied to the
music similarity task, providing initial results using such adaptive metrics. The results ob-
tained (max ∼69%) for the supervised metric are in general superior to or comparable with
the traditional similarity measures on the clip level depending on the model complexity.

Keywords: Music Similarity & Retrieval, Audio Features, Clustering, Classification, Learn-
ing Metric, Information Geometry, Fisher Information Matrix, Supervised Gaussian Mixture
Model.
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Resumé (Danish)

Dette eksamensprojekt omhandler metoder og teknikker til musikanalyse, med hovedfokus
p̊a musiksøgning. En s̊adan opgave er blevet en vigtig del af det moderne musiksamfund,
hvor musik distribueres effektivt via for eksempel Internettet. Det kræver kræver automa-
tisk søgning og s̊akaldt datamining for organiserings- og navigeringsform̊al.
Eksamensprojektet undersøger og sammenligner traditionelle similaritetsmål for audiosøgning
baseret p̊a sandsynlighedsmodeller, og Kullback-Leibler Divergens, Earth Mover Distance,
Cross-Likelihood Ratio og enkelte variationer af disse. Metoderne er evalueret p̊a et spe-
cialdesignet datasæt, beskrevet ved Mel-Frekvens Cepstral Koefficienter og et pitch estimat.
Ved optimal model kompleksitet og struktur opn̊as en maksimal søgningsrate p̊a ∼74-75%
for Cross-Likelihood Ratio ved søgning p̊a sange og ∼66% for søgning p̊a klip.
En alternativ metode til musiksøgning og datamining introduceres, baseret p̊a et lokalt
perspektiv og adaptive metrikker, med det formål at bevare topologien af det originale fea-
turerum for explorative formål. Metoden er defineret p̊a baggrund af Informations Geometri
og Riemannian metrikker. Tre metrikker er defineret, en unsupervised vægtet kovarians ma-
trix baseret metrik, en unsupervised log-likelihood baseret metrik, og endelig en supervised
metrik formuleret p̊a basis af Fishers Informations Matrix. Fishers Informations Matrix
er omformuleret til at afspejle ændringer i den konditionelle sandsynlighed for pre-defineret
auxiliary information givet en afstandsvektor i feature-rummet. Metrikkerne er hovedsagligt
evalueret i simple cluster-applikationer og endeligt anvendt i musiksøgning, hvilket giver ini-
tiale resultater ved brug af s̊adanne adaptive metrikker i musik. Resultaterne ved brug af en
supervised metrik (maksimalt ∼69%) er generelt bedre eller som minimum sammenlignelige
med de traditionelle similaritetsmål ved søgning p̊a musikklip afhængig af modelkomplek-
sitet.
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Chapter 1

Introduction

The Sound of the Information Society

The amount of data collected in today’s knowledge based society is tremendous. The data
spans from food recipes, brain scans to music and even complete books. The digitalization
of information is the main reason, since the information is compressed in a very convenient
and often distributed way.

In the good old days information was kept in paper books - novels, financial accounts etc. -
which naturally implied a limit to the degree of details in the information, since every entry in
for example an financial account, would have to be entered manually. It also meant that the
amount of information available was limited and therefore the task of getting an overview
of the data presented, would be a relatively easy task (of course with some exceptions).
With the digitization and an creating of the computer age, has the amount of detailed data
become enormous, and every little detail about, for example, a financial transaction is saved
for later potential retrieval.

Datamining

The availability of information or data is, of course, to some degree a very appealing thought.
However, what happens when you cannot find structure and overview in the data? This
could be due to some very complex structure in a small amount of data - but it could also
be because of the huge amount of data presented. This basically means that the information
is more or less useless in the complete form. The intuitive solution would be to split the
data up into smaller chunks and analyze it; however doing so might mean destroying some
important structural information in the data.



2 Introduction

...in a music database

Music plays an important role in the everyday life for many people, and with the digitaliza-
tion, music has a prime example of huge data collections and is basically available anytime
and everywhere. This has lead to music collections - not on the shelf in form of vinyl records
and CD’s - but on the hard drive and on the internet, to grow beyond what previously was
physical possible.

It has become impossible for humans to keep track of music and the relations between songs
and pieces, and this fact naturally calls for datamining and machine learning techniques to
assist in the navigation within the music world. The objective of the thesis is first of all to
explore methods of performing such datamining in music databases.

Traditionally, datamining comes with a rather large toolbox often involving methods for
tasks such as classification, regression and clustering, but one common thing is the problem
of representing the data at hand. In case of a music database this data can be many things;
the music itself, metadata such as the title of the songs or even statistics of how many people
have listened to a track.

This thesis will be limited to the music itself which will be represented in terms of suitable
low-level features (like the cepstral coefficients). This essentially means two different tasks
at hand: a feature extraction including the database creation, and a datamining part. While
the feature extraction is primarily based on traditional signal processing, the datamining is
a part of the area known as machine learning.

This involves statistical modelling and - in popular terms - some sort of artificial intelligence.
The purpose is to discover patterns and hidden links between the data available. Although
the pattern discovery might seem trivial for humans when dealing with certain (often limited
amounts of) music, machine learning techniques has yet to get the final breakthrough in the
machine/computer world when dealing with music. One main reason is that music - and
in particular music perception - is a quite complex subject, e.g. just think of the potential
difficult task of classifying a given song into one single genre. This problem is often referred
to as a lack of ground-truth, which implies that there may not exits a real way of performing
certain tasks, such as genre classification in which a hard genre taxonomy of music is assumed
to exist.

Project description

The purpose of this thesis is to take an other approach than the traditional hard classification
way to audio exploration, and focus on a more explorative approach. The focus will be on
individual songs or even clips using a custom data set in order to evaluate the methods
applied on a more solid ground-truth than e.g. an overall genre level.

The fuzzy term explorative used in the title of this project can be quite broad, and here
it is linked to an intrinsic problem in music datamining: when do two songs sound alike?
The human brain is for some reason ”designed” to pick up on such similarities between
individual tracks - or at least be trained to do so. This ability to give some sort of evaluation
of the similarity is in essence what this thesis is all about. Machine learning and datamining
techniques applied so far are often based on a density estimation in the so-called timbre space
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(see chapter 2 and 5) of each individual track. Various methods have then been suggested
in order to compare these density models, ranging from divergence based measures (e.g.
Kullback-Leibler divergence) or estimation of the cross-likelihood ratio based on sampling
(see further discussion in chapter 5).

In this thesis, these ideas will be examined, both in terms of model complexity and training,
which has been noted to be a general issue with these methods in previous evaluations. Fur-
thermore will an alternative direction in music exploration be explored based on a distance
in a geometric space, hence similar to the well-known K-Nearest-Neighbour family. However,
a density model will still be maintained to account for complex data relations, but now in a
global sense. Both an unsupervised approach and a supervised approach is investigated in
order to evaluate the effect of manually guiding the extraction of the distance between e.g.
two clips.

The new distance/similarity functions - also called metrics - are based on the concept of
Riemannian geometry in which such (local) metric can be generalized to the entire feature
space, providing a distance or similarity measure quite different from the well-know Euclidian
or Mahalanobis distance. The properties of these metrics will be evaluated through various
artificial examples and a real-world data set, in order to show the various benefits and
disadvantages of such an approach, including some approximations to their true formulation.

A special data set is constructed for the evaluation of the various techniques, described in
chapter 2. Although custom, the purpose is not to do a subjective experiment, and only
simple relationships between the tracks are considered based on associations such as artist.

Potential Applications

In relation to a music database the similarity function can be exploited in some very simple,
such as K-Nearest-Neighbour methods, and can provide an adaptive metric for various tasks
in music exploration and analysis.

It is the aim that the results - good or bad - can be used for the development and research into
a music search and exploration application. The current thesis deals, as already mentioned,
with the task of finding similar subjects in feature space, and will therefore contribute to
a kind of browser function where an user can ask the million dollar question: give me
something that sounds the same!.

Roadmap

This report, describing the work carried out in the project period, is organized in the fol-
lowing way.

Chapter 2 An introduction to the basic properties of music and the considerations made
about features. Furthermore the algorithms for features extraction will shortly be
described including a perceptual multipitch estimation algorithm for extracting the
two predominant fundamental frequencies (pitch), and the extraction of Mel-Frequency
Cepstrum Coefficients (MFCC).
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Chapter 3 A short description of the custom data set constructed for the evaluation of
similarity, mainly on clip level, including a visualization of the data.

Chapter 4 A methodology chapter describing the learning algorithms considered, including
a description of the Expectation-Maximization algorithm for both unsupervised and
supervised purposes, and a discussion of the practical approaches taken for overcoming
overfitting in the music data set.

The formulation and derivation of metric based learning, formulated on the theory of
Riemannian geometry. A relatively detailed insight into the properties and approx-
imations is provided, including experiments on various data sets, mainly performed
through K-means clustering.

Chapter 5 A chapter describing the similarity measures used. The traditional techniques
are described in detail, including description of simple Kullback-Leibler based methods,
Cross-Likelihood Ratio and the Earth Mover Distance.

Various considerations concerning the use of the metric learning principle in music in
described, and a simple suggestion of how to apply the geometric metrics in practice
is described.

Chapter 6 Providing results on the custom data set for the distribution based methods for
comparison. Includes a number of variations on the Earth Mover Distance compared
to previous reported results in music retrieval, including suggestions for using a BIC-
based model selection on a song level.

Providing initial, limited results using geometric measures based on both unsupervised
and supervised assumptions in audio set, through evaluation of the retrieval abilities
of the metrics using a rough vector quantization approach.

Chapter 7 Summery, Conclusion and a suggestions for improvements and further work.



Chapter 2

Music - Basic Properties

This chapter reviews some of the basic properties of music in order to motivate the choice
of features, and provide motivation for the task of similarity estimation and exploratory
datamining in music, based on the local meaning of the features.

Music is physically speaking changes in sound pressure, which is detected by the ear and
perceptual system for further processing further on in the auditory pathway. However, in
the mathematical sense the music can be described conveniently by a one-dimensional time
varying signal like shown in 2.1

In order to analyze the actual musical contents, the spectrum is often extracted using the
Fast Fourier Transform to show the contents in the frequency domain. In order to extend
this with temporal information, the spectrogram shows the changes in frequency content
over time.

The spectrogram shows all the details in frequency and time domain resulting from various
instruments, like a noisy guitar, singing voices etc., and each music piece or song, of course,
has its own signature in such a spectrogram. The spectrogram does provide a more or less
complete description of the music, including information not relevant to the actual task of
comparing e.g. different songs, and does furthermore only contain purely physical or even
mathematical attributes, hence not describing how the sounds are perceived and processed
by the listener.

In order to provide more practical and perceptual description in form of so-called features,
assumptions are often made about the perception of sounds - a fairly short review of relevant
properties of the human perceptual understanding of music is included for completeness and
motivation.
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Figure 2.1: A music signal and analysis options. Top shows the raw time domain signal. The
plot shows the spectrum, as magnitude vs. frequency (Hz). The bottom plots shows
the spectrogram.

2.1 Music Perception

In the human, subjective understanding of audio three different concepts are traditionally
found fundamentally important: pitch, loudness and timbre. The three concepts originates
from the perception of tones, i.e. not complete polyphonic music, and all of these have
undergone extensive research (overview in e.g. [9]). One more, perhaps, underestimated
attribute of audio in this context is temporal and structural information, like beat, rhythm,
and melody - which is omitted in this thesis, though.

2.1.1 Pitch

In spectral analysis, a fundamental frequency is often refereed to as the lowest (frequency
wise) component of harmonically related spectral components. In case of a musical signal,
this fundamental frequency will in some cases be referred to as the pitch. There is, however,
one catch: the human pitch perception is not as simple as initially implied by the definition
of a so-called fundamental frequency.

While fundamental frequency is a deterministic, physical attribute of a audio clip - often
extracted from the spectrum - pitch is a psychological phenomena, which is an extremely
complex perceptive and cognitive process. For example humans can perceive pitch, a so-
called virtual pitch, even though the fundamental component is not physically present [9, 22].
If for example listening to the notes C0, C1, G1, E2, G2 added one by one, a removal of C0

will not have any noticeable influence on the perceived pitch. And the same goes for C1 and
to a lesser extend G1.
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Various theories and models describing human pitch perception has been suggested, but not
one which can account for all reported experiments. Often a compromise will have to be
made in the model applied and the assumptions made, of which one such model will be
mentioned later, when considering a automatic pitch extraction algorithm.

An interesting concept in pitch theory is / at least in the western music - the composition
of music based on the octave system, in which an so-called octave is divided into twelve
tones/semitones like depicted in figure 2.2.

Figure 2.2: The concept of pitch as a scale (logarithmic) and as a helix, which illustrates the
notion of pitch ”height”. From [9]

Whether this geometric system of pitch structure is orthogonal, i.e. a simple translation of
the musical piece up an octave gives the same perceptual result is not conclusive [9, p. 375],
which can be proven with some fairly clever paradoxes (see e.g. [9, p 376]). In machine
learning such a translation could involve reducing a potential pitch description to a pitch
class, which is often referred to as tonality.

Critical Bandwidth Analysis

Humans have an (possible learned) ability to recognize the first 6-7 harmonics of a funda-
mental tone (single sine), however music and almost all other sounds are complex mixture
of different tones. In order to understand the pitch/frequency analysis part of the human
system, Fletcher as one of the first, did a number of test, in which a pure tone was mixed
with a band-limited white noise signal [22]. The pure tone amplitude was decreased until the
listener could not hear the tone. The noise-bandwidth was then decreased. The conclusion
was that a decrease in bandwidth (and thereby noise power) did not influence the perception
until a critical width. The experiment was then repeated for a number of frequencies and
the conclusion was that the critical bandwidth increased logarithmically with the increase
of the pure tone frequency (center frequency).

This observation has been extended and researched rigorously, and can also be explained
by the use of two pure tones played simultaneously (see e.g. [13, p. 74-79]). If these tones
are closely spaced in frequency (between 0.05-1/CB), i.e. within the critical bandwidth the
tones will be perceived as been rough combination of tones (also described as dissonance)
and when very close (<0.05/CB) a kind of beat is perceived (consonance). However, if
these tones are separated by more than the critical bandwidth the result is perceived as two
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separate tones and gives as smoother sound (consonance).

This effectively means that a perceptual filter is imposed on the signal, described by the
width of the critical frequency, which is fairly accurate when considering single pure tones.
Several computational models of this filtering-like operation has been constructed, and the
actual shape of the filters will ultimately depend on the application in which they are used.
In this thesis two variation of such filters will be applied, although for different purposes.

2.1.2 Loudness

When comparing two musical pieces the perceived loudness may have an profound influence,
however, the sensation of sounds are often dependent on the specific environment in which
the perceived sound is experienced.

An fundamental result, is the fact that the sensation (of pressure, loudness etc.) increase
logarithmical as the stimulus is increased. This is a well know experimental result, which
has been proven by several results [9, p. 99] - although often based on the idea of applying
a single tone as stimuli.

The absolute loudness perceived is very difficult to incorporate, since music is experienced in
a unlimited number of psychical situations, from a concert hall to elevator muzak. Therefore
this kind of absolute loudness description is rather impossible to include in the specific
context. There are however some psychological features, which could potentially be used,
namely the so-called sonogram, based on the sone scale. It gives a measure of how loudness
is perceived based on the energy of the signal.

In this thesis loudness will not be considered directly, however since the loudness is very
much depended on the energy in the signal, a energy measure will be included based on the
feature extraction of the timbre, described in the next section. Such a measure is definitely
not a perceptual motivated feature, but simply describes the overall energy of the signal (on
a short-time basis though).

2.1.3 Timbre

Timbre is a somewhat fuzzy concept and is often defined by what it is not:

”Timbre is that attribute of auditory sensation in terms of which a listener can
judge that two sounds similarly presented and having the same loudness and
pitch are dissimilar” (American National Standards Institute, 1960).

Timbre is also said to be the quality of the sound, and can in terms of the definition be seen
as the discriminating factor between two instruments playing a tone with the same pitch
and loudness, i.e. it identifies the source of the sound. This initially sounds ideal if we want
to be able to find a similarity between music, however the construction of a timbre feature
is perhaps not as simple as first implied.

Timbre description has undergone extensive research, not at least in the production of
electronic sounds, since the quality of the electronic/digital reproduction of instruments
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depends heavily on the timbre similarity between the true tone and artificial created version.
This has lead to different ways of analyzing and viewing timbre, which relates directly to
the feature extraction and in some sense datamining part, which will be evident later.
Furthermore timbre description has been the natural basis for music similarity applications,
which will be reviewed in chapter 5.

A spectral view : Timbre is often viewed as the spectral difference between instruments
(with same pitch and loudness), and does in some sense give the feeling of the music or
instrument based on the frequency contents.

Spectral analysis of timbre is often the predominant analysis technique used when consid-
ering the timbre attribute, but this approach has, however, also been shown to lack some
properties. One of the assumptions made, is in regards to the periodicity of the musical
tone/sound, relying only on the relative amplitude of frequency components in the spec-
trum analysis, thereby ignoring the temporal development of the tones. However, a musical
tone is often thought of as consisting of the attach/onset, steady state and the decay, and it
has been shown that the attach of an instrument contributes greatly to the human percep-
tion of the resulting sound (see e.g. [9, 13] and hence contributing to the timbre concept.
However, these aspects are not included in a basic spectral viewpoint.

Another critical point is the ability to recognize instruments even though the recording has
been altered (filtered) by e.g. a rooms acoustics. This illustrates that the spectrum may not
be the sole contributor to the timbre, leaving a gap to be filled in order to fully understand
the workings behind timbre.

Multidimensional scaling: The work performed by e.g. Grey (1977) [11] on multidimen-
sional scaling (MDS) applies a very subjective approach to timbre analysis and similarity
in order to understand the factors contributing to the perception. Based on various experi-
ments in which pitch, loudness and duration was constant various sounds were presented and
listeners were asked to describe the similarity. Grey then used so-called multi-dimensional
scaling with three dimensions in order to illustrate the difference between sounds. In this case
the similarity described by the listeners was interpretable against three physical attributes:
spectral energy distribution, transient synchrony spectral fluctuation and low-amplitude,
high frequency energy. Such a subjective evaluation is probably the only true indication
of similarity, but does lack a generalization ability in the sense that humans often perceive
sound and music differently.

This thesis deals with a complex mixture of tones, instruments and human singing and
improvisation in a machine learning application, where the analysis of each sound is sought
performed automatically. In such a setting, is the example of multidimensional scaling by
a subjective evaluation not an realistic option, which implies that the timbre description
in this thesis will be based on spectral properties as described in the following paragraph.
However, the principle behind multidimensional scaling of sounds are very much relevant,
since it is in essence what we are trying to do automatically by the use of a similarity function
defined in the feature space.



10 Music - Basic Properties

2.2 Features

In this thesis the representation of the musical signal will be based on the observations
described in the section above concerning auditory perception. By doing so, we often throw
some information away present in the original signal, and it is obviously crucial that the
most important information is retained in some manner.

Only a few sets of short-time features will be included, however these include a description of
the pitch and timbre of the music. In the setting of finding similarity, this is believed to be a
workable starting point. It is hereby indicated that features based on temporal information
such as, beat, rhythm and overall structure as been left out in this project.

Some of the simplest features are the purely statistical ones, which is based on the various low
order statistical moments, like the mean and variance. It often includes the well-known zero-
crossing rate (ZCR), root-mean-square (RMS) level, Spectral centroid, Bandwidth, Spectral
roll-off frequency, Band energy ratio, Delta spectrum magnitude etc. While such statistical
features may provide exceptional information for a pure classification application, they have
been omitted in this project, mainly due to the focus on similarity measures based on
perceptually motivated features.

2.2.1 Windowing

The signals considered here, are all audio signals, however audio signals are only considered
stable for a short period of time, which supports a short-time window for the extraction.

In order to calculate the features with this stability property in mind, the signal is divided
into overlapping frames of 20 ms. However, this truncation of the signal, does not comply
with the periodical assumption made by the fourier transform. In order to limit this trun-
cation effect a filter with attenuating side-lobes is applied and in this thesis a Hamming
window is used.

2.2.2 Pitch

Pitch is, as described, a fundamental property of music and perception, which have motivated
the selection of this feature to be included.

Most pitch estimators have been developed for speech signal in which a single speaker is
present (see e.g. M. Slaney [11]). Speech is often considered having one fundamental fre-
quency - music on the other hand is mixture of instruments potentially playing different
chords on different instruments etc.

Generally pitch is not easily extracted automatically in complex sounds with several instru-
ments, harmonics and pitches, but recently Klapuri [16] has suggested a pitch estimator
directly aimed at music applications, in which results of estimating two pitches (using a 92.8
ms window) vary from approx. 2-8% percent for a true two pitched signal.
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Correlation Based Method

In music signals the most predominant pitch estimations method is based on the autocor-
relation principle (see e.g. [11]), in which the outputs of a filterbank are autocorrelated, as
illustrated in figure 2.3
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Figure 2.3: Autocorrelation of individual subbands of Bachs’ Clavier Concerto in F minor. Il-
lustrated with the same auditory filter used in the method by Klapuri

While the autocorrelation provides information of all periodicals, recent techniques by Kla-
puri is able to extract estimations of the individual pitches. Based on initial trials and the
reported results in [16], this method has been adopted for the description of pitch in the
similarity experiments.

Figure 2.4: Multipitch estimation method overview. From [16, p. 292]

Auditory Model applied
The pitch model behind the extraction is somewhat more accurate than the one usually
applied in e.g. the extraction of the Mel-Frequency Cepstral Coefficients (MFCC) described
later. However, due to the objective of this thesis and the obviously important modelling of
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pitch perception, when directly estimating it; parameters such as filters, inner-ear compres-
sion etc. have not been changed compared to the original suggestion in [16].

The first step in the pitch extraction is a filter-bank based on the principles of critical
bandwidth described in section 2.1.1. The filters suggested are based on the gammatone
filter (see e.g. [9, 22, 16]). Due to the nature of pitch, i.e. the fact that higher order
components gets more and more spurious, and the more important fact that the human
phase-locking seems to break down at about 5 kHz ([9]), the highest filter frequency has a
center frequency at 5.2 kHz.

The filterbank provides the possibility to perform subband analysis, which is done by not-
ing the auditory functioning in which the mechanical vibrations in the basilar membrane
are transformed into a neural transducing. This is modeled by a compression, half-wave
rectifying and low-pass filtering (for details see [16]).

Periodical analysis The output of the auditory model is transformed into the frequency
domain in order to perform the needed periodic analysis, where the real difference between
Klapuri’s estimator and other’s work is found. The chosen method applies an iterative
approach developed through several experiments and papers. An overview is illustrated in
2.4. The basic idea is to locate the harmonics of the currently, predominant pitch and simply
cancel this estimate in the correlation.

The periodicity analysis is furthermore custom designed for the purpose of finding the har-
monic shapes through the use of the short-time inverse DFT and a specially shaped filter
function - however given the purpose of this thesis the details has been left out (see [16] for
further details).

The performance of the pitch estimator has only been carried out empirically on a small test
signals similar to the one illustrated in figure 2.5, and a number of smaller audio signals.
A real audio example is shown in figure 2.9. In short we rely on the quite promising
results reported in [16] to hold for this purpose, however the exact performance of i.e. an
individual window is not considered crucial in this work, since we are mainly interested in
the distribution of the estimation , which may very well change from e.g. song to song
despite the absolute value of the pitch. This is illustrated in chapter 3 plotting the pitch
distributions of the genres.

2.2.3 Cepstrum analysis

The core idea in so-called cepstrum analysis applied to music is a smoothed spectral rep-
resentation. However the cepstrum analysis has first and foremost been a primary tool in
speech processing, in which a model is assumed consisting of slow varying part of the speech
due to the vocal tract, v(n), and a fast varying part due to the excitation signal, e(n) of of
the vocal tract, i.e. leading to a convolution in the time domain.

x (n) = e (n) ∗ v (n) (2.1)

The motivation for the use of the cepstrum in speech analysis is a desire to separate these
signals, which is done by a number of operations. First the power spectrum is found formally
using the discrete fourier transform (DFT)

|X(ω)| = |E(ω)| |V (ω)| (2.2)
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Figure 2.5: Simple test of the multi-pitch estimator for two harmonics (50 and 133 Hz) including
their 4 overtones. The frequency is increased by adding the original fundamental in each
step.

Then taking the logarithm to the power spectrum yields an additive result

log (|X(ω)|) = log (|E(ω)|) + log (|V (ω)|) (2.3)

The so-called cepstral coefficients are then found using the inverse DFT

c(n) =
1
2n

π∫

−π

log |X(ω)| ejωn (2.4)

The principle of the cepstrum approach is illustrated in figure 2.6 and it is seen that it is
possible to separate the excitation signal and the vocal contribution by a filtering in the
cepstrum domain.

Despite cepstrum analysis being formulated in terms of speech signals, it is highly appli-
cant to musical signals, in which the smoothed spectral representation can be used in the
similarity estimation considered in this project.

Mel-scale: Making perceptual features

Cepstrum analysis provides a smoothed spectral representation, but it does not really provide
any features in which the auditory models are included directly.

A popular approach to this task is the use of the critical band filters previously mentioned,
which in terms of cepstrum analysis, was done originally by the use of the so-called mel scale
(1 mel = 1000 Hz). This will emulate the single tone pitch perception by transforming the
power spectrum of the signal into the mel-scale (or sometimes Bark-scale). I.e. a number
of filters N are defined with a center frequency according to some definition of the critical
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Figure 2.6: The principle of Cepstrum analysis. From [22] (adapted slightly).

bandwidth in a given frequency region. The energy of the signal around this center frequency
is then included when filtering the spectrum.

The frequency transformation is done by a filter bank, however, there is no real consensuses
on the optimal definition of these filters. Various filter banks have be proposed in the music
retrieval and similarity estimation community (see e.g. [5, 3], but the overall structure is
the same: in the low frequency band a equally set of spaced relative narrow filters is placed.
From about 1 kHz, a set of logarithmical spaced filters is introduced in order to include a
rough description of the pitch (pure tone) perception.

The filters in this project are constructed using linearly-spaced filters below 1 kHz (133.33Hz
between center frequencies,) followed by log-spaced filters (separated by a factor of 1.0711703
in frequency1) as defined by Malcom Slaney (see e.g. [28]). The total log-energy in each
band is furthermore kept constant, providing a logarithmic decreasing in filter magnitude.
An example of this structure is illustrated in figure 2.7.2

The overall MFCC extraction is illustrated in figure 2.8

1The initially weird factor comes from the goal of going from 1kHz to 6.4 kHz in 27 steps [28]
2The Mel-Frequency Cepstral coefficients are calculated using the toolbox provided by Dan Ellis, con-

taining a wide variety of various filter proposals
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Figure 2.7: Filterbank for mel frequency transformation of the input signal. For illustration
purposes a 20 filter example is shown given a sampling rate of 10 kHz. The real data
set considered is sampled at 44.1 kHz and 40 filters will be used, in order to provide
reasonable resolution of the filters

Dynamic features

An quite important extension of the basic short time MFCC’s is the inclusion of dynamic
information in the form of the delta coefficients given by

∆ci(n) =
∑N

k=−N kci(n + k)
∑N

k=−N k2
(2.5)

Which is essentially a correlation between a straight line and the different coefficients. Al-
though mentioned due to their importance, the delta coefficients will not be applied in this
project, since the main objective is a basic comparison of methods.

2.2.4 Temporal features & Feature Integration on a short time basis

Only short time features will be investigated in this thesis in term of the similarity objective,
however temporal features such as tempo, beat and rhythm may very well be important
properties when considering the similarity of songs.

In stead of extracting individual descriptors of temporal information, a concept known as
feature integration can be applied to the short-time features described above to provide
temporal information of these. An interesting representation does also fall into this group
namely the Auto Regressive representation (AR) which originates from time-series analysis.
AR models is a stochastic model fitted to the given signal, i.e. the AR model can be applied
directly to the given signal (maybe windowed) or applied to other windowed features like the
well known MFCC’s (see e.g. [20]) in order to account for the dynamic long-term behavior.
But such an integration has also been left out.
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Figure 2.8: MFCC feature extraction. The pre-emphasis filter is usually used to emphasize
high.frequency contents, however this option has not be applied in this project.

2.3 Summary & Choice of features

This section included a short review of some of the properties of music, which serves as
motivation for the overall task of finding similarity in music. A few important properties,
namely timbre and pitch, where singled out as the two properties to examined in this thesis.
Based on this choice, a feature set consisting of the 8 first MFFC’s - including the 0th as
a measure of shot-time log-energy - and the two dominant fundamentals. The feature set
has been limited for the purpose of showing the properties of the measures and provide
some further insight - not into the very best obtainable - but into the difference between
techniques for music similarity.

The MFCC has been shown to provided a reliable retrieval rate in other similarity projects
(see e.g. [3, 2, 5]) focusing mainly on timbre similarity. In this thesis, a description of the
pitch was suggested based on a multi-pitch detector in order to extend the similarity exam-
ination from timbre space with another perceptual motivated feature. The pitch detector
was chosen based on promising results provided in [16], although no extensive testing was
performed. The inclusion of such an feature should be seen as ”just” another - possible great
- feature, as the motivation is mainly based to the investigation of similarity functions. The
pitch has an intrinsic property of being discrete in nature (see e.g. figure 2.9), which will
later prove quite challenging for the classic similarity methods presented in chapter 5.
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Figure 2.9: Illustration of the MFFC (including the 0th coefficient, as a log-energy measure)
and Pitch (two fundamentals) feature set used in the experiments. Notice the discrete
nature of the pitch. This is potentially a problem for the density model used to model
the distribution
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Chapter 3

Music Dataset

This chapter describes the custom data set used in the analysis of the various techniques
described later. The raw data is obtained from mp3-encoded music files sampled at 44.1
kHz, and is, after feature extraction, represented by the feature combination described above
(i.e. 8 MFCCs, incl. the 0th and two fundamentals).

The data set used in this thesis is inspired by a smaller data set used currently in the
Intelligent Sound Project at The Technical University of Denmark, and is based on the
ability to defined a ground-truth, i.e. define what is similar.

The data set is constructed on the main assumption that the hierarchy consisting of, Genre
− > Artist − > Track − > Clip, is obeyed, and i.e. no artist can produce music in another
genre. While this is obviously not true in general, the data set has been created with this
in mind. A 1000 clips (of 10 sec.) data set with 10 clips per song and 2 songs per artist,
i.e. 100 tracks, is constructed. The small data set is in contrast to the actual task of mining
in often large databases, however through a proper training and selection of models it will
give some hint of the generalization abilities of the techniques and first and foremost provide
an solid base for showing the properties of the various similarity measures and techniques
applied.

The tracks are represented by a 100 second continuous interval, divided into 10 clips of 10
seconds1. The features will be calculated using a 20 ms window with 10 ms overlap for the
MFCC extraction and a 92.8 ms (4096 samples) window for pitch estimation (based on the
results in [16]) .

The data set consist of five genres, and while the ground truth of genre classification is not
obvious, this data is considered adequate in terms of describing the characteristics of each
particular group.

1The actual splitting of the tracks is performed to account for any required overlap in the feature extrac-
tion part of the system
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Figure 3.1: The hierarchy of the data set, including the included track time per item (i.e. 10
sec./track

The genres are shortly describe for completeness:

Classical: Classical music covers a large time span in music history, and one main feature is
the lack of vocal (not considering opera), which does give a good separation in timbre
space (see e.g. figure H.2). Further is classical music often described by the use of
a limited number of classical instruments, leading to an assumption that the pitch is
fairy stable, and hence may offer a distinct distribution of the fundamental values.

Pop: Turn on the Radio and with a very high probability you will listen to a so-called
pop track. Pop is a abbreviation of ”popular music”, and every human raised in the
western world do have an very good idea of what pop music is - but it does to some
degree vary on the century.

Over the years, and especially by the late 1980’s and 1990’s the concept of pop music
have gotten its own meaning, which is very hard to describe in words, but in terms
of variation, the pop genre contains a large variation of instrumentation, vocal and
other general properties. Such a variation may introduce problem sin defining the
ground truth in this area of machine learning which quite difficult to obtain - perhaps
impossible for the so-called pop music. Despite this negative observation, a pop set
has been adopted (and adapted) which does seem to describe the current state of pop
music, obviously obtained trough half a decade.

The data set consist of 20 tracks from the 1980’s, the 1990’s and 2000’s and seem to
describe the paradox of pop music: it can contain everything from semi-hard rock like
Coldplay and U2 to Robbie Williams and Madonna.

In terms of the features used, this variation in both style and instrumentation leads
to an interesting genre, which will be used to show the abilities of certain traditional
and new similarity techniques described in chapter 4 and 5.
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HardRock (Heavy metal): Rock music is a very wide concept, but due to the extend of
this thesis a special subgenre of Rock as been included, namely Heavy Metal. However
while some subgenres are hard to define by common man, heavy metal is often quite
distinct in form of its noise high energy sound, which in terms of features this means
a high level of energy in a wise area of bands, although this effect is limited due to the
simplification of using only 8 MFFCs.

Electronic (Trance) : The history of the electronic music is not as defined as e.g. the
classical music, since it is a fairly new genre. However some of the sub-genres do
share some common grounds. Electronic music have a large number of sub-genres like,
dance,trance, hip-hop and even new age and in the present music culture it does affect
the so-called pop music in some manner.

Electronic music is obviously a wide concept, and in order to keep things relatively
simple, this thesis will only include one of the more distinct subgenres and perhaps
the one that differs the most from pop-dance music, namely: Trance.

Trance is characterized by its use of a very clear beat in terms of a deep bass, however
one of the more interesting attributes is the way it is composed. E.g. a majority of
trace artist do not rely on a singers abilities to carry the track, but composes the track
like a classical piece, where the use of tempo change, instrumentation and loudness
carries a great weight, which in terms of feature is often seen as a semi-disconnected
distributions.

Jazz: While pop music is often composed by following certain rules of harmony and melody,
jazz music has the a very distinct use of improvisation, which makes it both quite
interesting and difficult to handel in a machine learning environment. However, one
special attribute of jazz is the use of distinct and often limited acoustical instruments
like the saxophone seldom used in e.g. pop music, which often provides a distinct
signature in the MFCC distributions.

While the pieces and songs (referred to as tracks) by no means represent the complete
musical scene, they do however cover some of the more dominant ones, which can always be
found in larger sets.

3.1 Selected Feature Plots

During the creation of the data set the feature values were examined in a empirical fashion
based on a visualization of the feature space. A few informative plots are included in
figure H.2 in order to show the distribution of the features in terms of the individual genres
described above. The genre distributions does obviously only provide information of genre
separation, and is not optimal in the sense what we later consider the data set on the track
and clip level to be. However, a detailed plot has a tendency to become non-informative.
Due to a deeper insight into the POP genre a PCA plot is shown in appendix H.
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Figure 3.2: Histogram for the pitch feature(s). The histograms shows, as expected, a quite
skewed distribution towards the lower pitch range which in general is not a desirable
property when using gaussian distributions to model the data, which in this thesis is
songs, not genres. Although the mixture structure does improve this fact. Therefore
the logarithm is applied to obtain the final features used. However, despite the smooth
histogram shown, is the pitch a relatively discrete feature as previously noted.
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Figure 3.3: PCA projection of the genres using the MFCC and Pitch set. It is noticeable that
the classical genre provides good separation from the remanding four genres, which
are only partly separated. The separation of genres is of cause desirable when finding
similar items across genres, however the genre plots does not indicate the with-in genre
separation. Such a detailed plot is included in appendix H for the POP genre which will
be examined in-dept through experiments. The projection is performed on a normalized
data set, and a re-scaling may provide a better insight than the rather dense plot shown
here.
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Chapter 4

Learning in Music Databases

The concept of datamining and machine learning does to a large degree rely on the ability
to learn how data relates to each other or how the data was generated. As for instance
this thesis is motivated by the exploration of how data of one song, in terms of perceptual
motivated features relates to the features of an other song.

The learning concept is the main focus of this chapter and is often, quite reasonably, referred
to as machine learning. A huge number of techniques exist within this field, however, this
thesis is not a review of machine learning and only describes the parts relevant for this
project.

4.1 Learning by clustering

A very common tool in machine learning is so-called clustering, in which groups of data
are identified based on some similarity measure. There are a great number of more or less
custom clustering algorithms, however, in this thesis the focus is one a very basic clustering
algorithm namely the well-known K-means algorithm, in which a number of clusters, K,
is user defined. The basic K-means algorithm is a simple, but often applied clustering
algorithm, which has been used in a huge number of applications. It is also referred to as a
hard clustering algorithm compared to the EM (for GMM) later described, since it assigns
each sample to one cluster, and one cluster only, creating so-called Voronoi regions, which
are non-overlapping partitions in the feature space. The overall objective is to minimize the
following cost-function

E =
K∑

k=1

∑

xi∈Si

D (xi, µk)2

Where D (·, ·) is the distance function or metric, providing the distance from the cluster
centroids µk to the data points and for all disjoint sets Sj of the entire feature space and



26 Learning in Music Databases

for all clusters K (user defined). This optimization is obtained through a simple iterative
procedure.

The distance, D, is often defined to be the Euclidian distance. While this is an effective
measure in high-spherical situations with good separation between clusters, such a simple
distance measure is often too simple to account for the structure of the data. A large number
of other distances has been considered of which some are listed in table4.1.

By predefining the number of clusters, K, we effectively assume a given structure of the
data and the exploration idea might be somewhat fuzzy. In order to overcome this problem,
hierarchical clustering is often used. One approach to this is agglomerative hierarchical
clustering in which a large number of clusters are first fitted. These clusters are then
combined/merged based on some similarity function. Despite the nice explorative idea in
hierarchical clustering this will not be considered directly in this thesis which is aimed at a
more basic retrieval type of exploration - which in essence is a distance only between two
items. However, based on such a retrieval, a hierarchy can obviously be constructed, but
the aim is first and foremost to construct the basic distance function between data points
(or representations of these).

Minkowski (
∑ |xmi − xmj |p)1/p

Manhattan
∑ |xmi − xmj |2

Euclidian
√∑

(xmi − xmj)
2

Cosine cos(xi, xj) =
P

xmi·xmj√P
(xmi)

2P (xmj)
2

Mahalanobis
√

(xi − xj)T C−1(xi − xj)

Table 4.1: Distance function or metrics. The summation is over the dimensions M. C is covari-
ance matrix.

The Mahalanobis distance listed in the table is actually fairly closely related to the generic
formulation of a distance function or metric, in which all directions and linear combinations
of these, are weights to the Euclidian distance. This can be expressed as:

D(xi,xj)2 = (xi − xj)
T F (xi − xj)

Where the matrix F defines the weighting of the direction, or features. The F matrix is here
formulated as a constant matrix which in regards to the basic metrics is true, (i.e. the inverse
covariance in the Mahalanobis formulation), however as we shall se later a general distance
function can be expressed by a local F, i.e. F(x), which can then be generalized to the entire
space which will be describe in-depth later in this chapter. One major objective in this thesis
is to investigate such a local distance function with the purpose of doing explorative retrieval
in music based on the local properties of the feature space. The distance functions defined
later has intrinsic relations to clustering applications, and hence will be evaluated in such
a setting - of course compared to basic distance functions represented by the Euclidian and
the Mahalanobis.

In this thesis the K-means will furthermore be used to initialize a considerably more complex
algorithm, the EM-algorithm, described in section 4.2.1.
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4.2 Density Modeling using Gaussian Mixture Models

The K-means clustering described above is often an effective clustering algorithm, but we
are often interested in describing the way data was actually generated, i.e. form a model
that explains the data X from a generative and probabilistic viewpoint, where X is the set
of datapoints, i.e. X = {x1, ...,xN}, where N is the number of points.

This can be done in various ways, but one widely used approach is to use a density model,
i.e. a probabilistic model, describing the data by a distribution denoted as p (x|θ), where
θ = {θ1, ..., θM} are the parameters of the model.

Probably, the simplest option is to describe the data by a single, possibly multi-variate,
Gaussian probability distribution given by

p (x|θ) =
1√

(2π)M detC
exp

{
−1

2
(x− µ)T C−1 (x− µ)

}
(4.1)

Where θ is given by the paraments µ as the mean vector and C as the MxM positive
definite, covariance matrix C = E

{
(x− µ) (x− µ)T

}
. A single multivariate gaussian is

however, often too simple for modelling complex data, and a more flexible mixture model is
often preferred. In this thesis the focus will be on the well-known Gaussian Mixture Model
of the form

p(x) =
K∑

k=1

P (k)p (x|θk) (4.2)

Where θk denotes the parameters of component k, although this parametrization will in the
remaining text be denoted simply by p (x|k). K is the number of mixtures or components.
Furthermore

∑K
k=1 P (k) = 1 and 0 ≤ P (k) ≤ 1. p(x) is of course conditioned on the

combined set of θk’s.

The pdf, p (x|k), can in principle be any distribution, however the most common is to use
the Gaussian probability distribution in 4.1, which of course indicates the assumption that
the data is generated from a number of Gaussian Distributions, which might not always
be accurate. However given the central limit theorem, stating that the mean of N random
variables tends to by distributed by a Gaussian distribution, for N →∞, we can hope that
the data in some respect obeys by this generally stated theorem.

The Gaussian Mixture Model (GMM) is extremely flexible in the sense that the number of
components K is user-defined, i.e. one can in theory model each data point by its own pdf,
which will result in the likelihood L (θ) to go to infinity, however as discussed above this is
general not desirable since new data will most likely not be described well by such a model.

The number of components in the model is just one issue; another is the structure of the
covariance matrix, which has a large influence on the complexity of the overall model,
and it will later be demonstrated that certain traditional music similarity methods are very
dependent on the correct choice of covariance model (on the data set described in chapter 2).
Consider the following choices for each individual components and the number of parameters
to be estimated This leads to a variety of options, and the best choice often depends on the
data to be fitted and the noise in this respect. However, since the full covariance, does
encapsulate the special case, a full covariance structure has been the main focus in this
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Full K − 1 + K (M(M + 1)/2 + M
Diagonal K − 1 + KM + M
Spherical K − 1 + K + M

Table 4.2: Model complexity as a function of the number of components K and the dimension
M. The case of a common covariance/variance for all models has been left out.

thesis for reason regarding the formulation of an distance measure, in which the shapes
defined by the MxM covariance matrix C play an important role.

4.2.1 Maximum Likelihood learning - The EM algorithm

While the general formulation of the model was described in 4.2, the actual learning of the
parameters is of course another main issue. In case of GMM’s the far most predominantly
option is to use the so called Expectation-Maximization (EM) algorithm, first suggested in
1977 by Dempster et al [8].

When considering parameter estimation, a common idea is the maximum likelihood princi-
ple, which is formulated in terms of the likelihood of the parameters given the data X . The
probability of X can, if assumed being independently drawn, be written as the product of
individual probabilities of the data point xn ∈ X , and applying the logarithm (natural).

L (θ) = log
N∏

n=1

p (xn|θ) (4.3)

=
∑N

n=1
log (p(xn|θ)) (4.4)

Which is referred to as the log-likelihood of the data given the the model. When using the
Gaussian Mixture defined in 4.2 we get

L (θ) =
∑N

n=1
log

{
K∑

k=1

P (k)p (x|k)

}
(4.5)

(4.6)

This leads to the optimization problem defined by

θ∗ = arg maxL(θ)
θ∗

(4.7)

Often, the optimization is formulated as minimizing the negative log-likelihood, which gives
the same result due to the monotonic function. The solution to the maximization problem
is often formulated as a bound optimization problem using so-called hidden variables S, so
the likelihood can then be written based on the influence of these hidden variables and the
visible variables, i.e.

L (θ) = log p (S,X|θ) (4.8)

=
∫

p (S,X|θ) dS (4.9)

Introducing a set of distributional function q(·) over the hidden variables q(S), the log-
likelihood can be rewritten so a lower bound is introduced on the log-likelihood and making
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E-Step:

p(k|xn) =
p (xn|k) P (k)∑N

n=1 p (xn|k) P (k)

M-Step:

P (k) =
1
N

∑N

n=1
p (k|xn)

µk =
∑N

n=1 p (k|xn)xn∑N
n=1 p (k|xn)

Ck =
∑N

n=1 (xn − µk) (xn − µk)T
P (k|yn,xn)∑N

n=1 P (k|yn,xn)

Figure 4.1: EM algorithm for Gaussian Mixture Model. Notice that the estimated posterior
probability computed in the E-step is reused in the M-step, without explicit notation

an indirect optimization possible.

L (θ) = log
(∫

q (S)
p (S,X|θ)

q (S)
dS

)
(4.10)

≥
∫

q (S) log
p (S,X|θ)

q (S)
dS (4.11)

= F (q (S) , θ) (4.12)

where the inequality is introduced based on Jensen’s inequality and the coactivity of the
function. Noting than an optimization of F will also lead to a bounded optimization of the
log-likelihood L, the EM algorithm is formulated as an iterative method, by first optimizing
the distribution over hidden variables q(S) and then subsequently modifying the parameters
to reflect this change, i.e.

q (sk)(i+1) = arg max
q(sk)

F (
q (S) , θi

)
(4.13)

θ(i+1) = arg maxF
(
q (S)(i+1)

, θ
)

(4.14)

(4.15)

It can be shown that these updates guarantee convergence towards higher log-likelihood in
each combined iteration.

The Gaussian Mixture model is an excellent example of application of the EM algorithm, and
can be derived using the lower bound formulation above. The expectation steps estimates
the posteriors given the current parameters and the maximization step re-estimates the
parameters given the new posterior estimates. The actual updates equations are found by
differentiating the complete log-likelihood of S and X in regards to the individual parameters
and equating to zero, however this technical derivation has been left out. The algorithm for
the Gaussian Mixture case is outlined in 4.1

In terms of the likelihood, the EM algorithm is guaranteed to converge in each iteration, see
e.g.[8], however despite its wide use there are disadvantages. One of the more serious ones
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is the fact that the EM approach is not immune to local minima which can be seen from the
formal proof in Dempster [8], which implies a non-deterministic model if the initialization
of the parameters are based on random assignments.

Another disadvantage is the tendency to overfit which originates in the structure of the
model and the log-likelihood based cost-function1. The extreme overfitting example is when
a component describes a single point, i.e. L(xn) →∞, and this is not uncommon especially
using a full covariance model if attention is not drawn to solving this issue.

Overcoming overfitting and initialization issues

Various steps will be taken to approach the overfitting behavior of the EM approach as
mentioned previously in a practical sense. Due to the amount of models to be fitted (see
chapter 6), a manual inspection of all models is not in general possible and a robust form
of training is of course needed.

A common overfitting problem or indication of overfitting when using the full covariance
model is a ”collapse” of σ parameters, i.e. σi,j− > 0, where 1 < i, j ≤ M , leading to an
extremely spiked posterior probability. This issue is resolved with a reconstruction of the
covariance matrix back to e.g. the initial matrix when a collapse is observed (some threshold
value is reached). A quite similar approach used is a regularization of the covariance matrix
in order to avoid the collapse in the first place, i.e. Ci+1 = Ci+1 +αΣ where Σ can be both
a constant matrix, often the identity matrix, or the current covariance matrix Ci.

Another practical more or less ad-hoc approach based on the generalization aspect, is early
stopping. As the name suggests, does this involve stopping the EM algorithm when a certain
criterium is satisfied, here based on an estimation of the generalization error. This estimation
is based on a split of the training data X into two disjoint sets so X ≡ SA ∪SB . The choice
of SA and SB is described in section in connection with the models fitted.

The EM algorithm is guaranteed to have convergence towards lower negative log-likelihood,
i.e. a (local) maximum likelihood solution, however this formulation does not guarantee
convergence of the parameters, and a manual verification might be beneficial.

Another way used to ensure a relatively robust EM training is by proper initialization, which
in this thesis will be performed by the K-means algorithm, initialized by a given random
set of parameters based on the overall mean and variance of the complete data set. In
this setting we ensure fairly stable convergence of the subsequent EM-training. An initial
study showed a general improvement in both convergence speed and the consistency of the
models returned, although they can still converge to suboptimal parameters, which for the
experiments represented in chapter 6, will be handled by the multiple training of a model,
and post-selecting the best model, based on a criterion presented in section 4.4.

1A Bayesian approach has been formulated which will either include Monte-Carlo sampling methods
or a variational approach in which the lower-bound defined by Jensens inequality in the EM-derivation is
addressed though variational methods.
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4.3 Supervised Gaussian Mixture Model

In machine learning a classic paradox is the distinction between unsupervised learning -
as considered above - and supervised learning in which human supervision is performed
indirectly, often in the form of labeled data, i.e. a data point is defined by its vec-
torial data and class/label xi,yi, where y is a value from the set of labels, i.e. yi ∈
{yi, y2, .., y = Y }corresponding to a predefined class.

The use of supervised learning does seem attractive in some cases, since the objective is
now based, not solely on the data, but also on the defined property of these data. However,
this can also lead to a very bad generalization since the supervised data available, may not
provide the sufficient, or even correct, information of the underlying problem in order to
create a general model for this underlying process.

The supervised formulation considered here is based on [17] is a fairly natural extension of
the Gaussian Mixture Model and the EM-algorithm also considered in [21]. The model is
formulated in terms of the joint posterior probability of data x and class labels y, i.e 2

p (x, y) =
K∑

k=1

p (x|k) P (k) p (y|k) (4.16)

Where p(x|k) still refers to the gaussian component parameterized by θk. The class probabil-
ity p(y|k) is included in order to account for the labeled data. Furthermore the parameters
of the individual Gaussians are now given by θk = {P (y|k), µk, Ck, P (k)} and we restrict
ourselves to cases where

∑Y
y=1 P (y|k) = 1.

The supervised model will effectively be used to model, not the joint probability distribution
of y and x, but the conditional distribution p(y|x), which can be found from the joint
distribution though Bayes theorem.

p (y|x) =
p (y,x)
p (x)

(4.17)

=
K∑

k=1

p (y|k) p (k|x) (4.18)

=
K∑

k=1

p (y|k)
p (x|k)P (k)

p (x)
(4.19)

=
K∑

k=1

p (y|k)
p (x|k)P (k)∑K

k′=1 p (x|k′)P (k′)
(4.20)

=

K∑
k=1

p (y|k) p (x|k)P (k)

K∑
k=1

p (x|k)P (k)
(4.21)

The training algorithm is based on the standard EM-algorithm for the unsupervised case.
While [21] considers both unlabeled and labeled data, only the labeled data is considered

2While one often denotes the class by c, y is maintained due to a later conceptual distinction between
the defined classes c and relevant information defined in terms of the assigned labels y. Although they do
effectively reflects the same information.
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here and the log-likelihood becomes.

L = log p(X|θ) (4.22)

=
∑

n∈X
log

K∑

k=1

P (yn|k)p(xn|k)P (k)

The learning is again based on the EM algorithm with p(y|x) being estimated simply as the
ratio of posterior component probabilities assigned a given label to the overall probability
of the label. The basic unsupervised EM-algorithm, does have an unattractive tendency

E - step

P (k|yn,xn) =
P (yn|k)p(xn|k)P (k)

K∑
k=1

P (yn|k)p(xn|k)P (k)
, ∀n ∈ X

M-Step

µk =
∑

n xnP (k|yn,xn)∑
n P (k|yn,xn)

, ∀k

Ck =
∑

n SknP (k|yn,xn)∑
n P (k|yn,xn)

, ∀k

with Skn = (xn − µk)(xn − µk)T

P (k) =
∑

n P (k|yn,xn)
N

, ∀k

P (y|k) =

∑
n

δ (y − yn) P (k|yn,xn)
∑
n

P (k|yn,xn)
, ∀k

Figure 4.2: Supervised Gaussian Mixture Model: EM training using a purely supervised ap-
proach.

to overfit (see e.g. [6]). Using a supervised algorithm does not improve this fact, on the
contrary. By forcing the learning of the labeled training set, we very much assume that
novel data comes from the exact distribution learned.

In order to provide better generalization the generalized mixture model has been suggested,
in which a splitting of the data set is performed so the mean and covariances are estimated
on two independent data sets. This approach was examined using a custom implementation
of the algorithm in [17], however it was noticed that the convergence did not comply with
the expected decrease in training error. Therefore the approach to better generalization
is again performed by the early stopping criterium based on a validation set, and together
with covariance regularization this has provided the expected behavior of training error, and
found more beneficial in the situations encountered, since the deterministic behavior of the
training error can also be exploited for other stopping criteria such as relative decrees in
negative log-likelihood.

In this thesis the supervised algorithm will be used in a metric learning formulation, in
which the metric is based on the change in posteriors class probability, 4.21, which of course
requires an estimation of p (y|x).
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4.4 Bayesian Learning & Approximations

The maximum likelihood objective which was used in the formulation of the well-known EM
algorithm, is a quite way of estimating the model parameters. However, the problem with
overfitting is quite serious, and a few practical solutions was mentioned. The formulation
of the density model does not include the model complexity as such, which obviously has
an extreme influence on the ability to overfit, with one mixture per data point being the
extreme case.

While the optimal way to estimate the parameters is through a Bayesian formulation, i.e.
by enforcing a prior on the parameters, it might not be worth applying this principle. In a
mixture model trained using EM, the Bayesian approach can be approximated by looking at
the lower bound introduced on the error, i.e. Jensen’s equality. This leads to the Variational
Bayes EM algorithm.

While this variational Bayes approach might seem optimal, another more practical approx-
imation will be used. While the K-means and other non-probabilistic algorithms are simple
and often provides quite fast convergence. The probabilistic nature of the Gaussian Mixture
Model, does provide a direct advantage 3 because a Bayesian method of model selection can
be used, although only approximately in this case.

When using Bayesian techniques for model comparison, we often assume a flat prior, i.e.
no preference for either model. In this context the Bayesian Information Criterion can be
derived.

Consider two models H1 and H2 . Using Bayes theorem the posterior probability of the
data being generated from hypothesis is written as

p(Hk|X ) =
p (X|Hk) p (Hk)

p (X|H1) p (H1) + p (X|H2) p (H2)
(4.23)

or
p (H1|X )
p (H2|X )

=
p (X|H1) p (H1)
p (X|H2) p (H2)

(4.24)

where the factor p (X|H1)/p (X|H2) is named the Bayes factor. Furthermore the factor
p(H1)/p(H2) is seen to be a prior factor. So given the Bayes factor between H1 and H2,

B12 =
p (X|H1)
p (X|H2)

(4.25)

we are interested in estimating the likelihood of the data, X , given the two models. When
dealing with the mixture models, parameterized by the components θk we generally need
to estimate the marginal distribution given by the integral over the conditional probability
multiplied with the prior distribution,

p(H1|X ) =
∫

p(X|Hk, θk)p(θk,Hk)dθk (4.26)

In general this is not a trivial task and various approximations are suggested (see e.g. [32]),
of which the following is often applied. Consider ignoring the prior distributions directly

3The K-Means ”model” can also be formulated as mixture model with a given likelihood, but the training
of course remains ”hard”, i.e. based on individual instances
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and defining the following,

S12 = log p(X|H1), θ̂1 − log p(X|H2), θ̂2 − 1
2

(M1 −M2) log N (4.27)

Where θ̂ is the maximum likelihood estimation of the true θ and Mk is the dimension of θ̂k.
Furthermore N is the sample size. The Schwarz criterion is then defined when N →∞, to
satisfy

S12 − log B12

log B12
→ 0 for N →∞ (4.28)

For multi model comparison we split the expression into two S12 = S1−S2 and the individual
contribution from each model is then given by

Sk = log p(X|Hk, θ̂k)− 1
2
Mk log N (4.29)

The model, k, with the largest S is then preferred. It is custom to define a variant called
the Bayesian Information Criterion as twice the negative Schwarz criterion, i.e.

BIC ≡ −2 log p(X|Hk, θ̂k) + Mk log N (4.30)

Where the preferred model with the highest evidence is chosen as the one with lowest BIC
value.

While BIC is based on a Bayesian approach, other evaluation measures exist which in turn
is not. One of these is the Akaike Information Criterion. The deviation results in a criterion
quite similar to BIC

AIC ≡ −2 log p(X|Hk, θ̂k) + 2Mk (4.31)

The only difference between BIC and AIC is clearly the log N factor in the penalty term,
which will make the AIC suggest a more complex model than BIC.

AIC and BIC can be used to support the choice of model complexity in terms of number
of components in the mixture model, and potentially the parametrization of the covariance
matrices. While BIC and AIC are obviously nice guides in model selection, the real test
for a given model is its ability to generalize in terms of new data. However this kind of
evaluation is often quite time consuming, and obviously BIC provides an easy estimation,
which will later be used for two main purposes: First in discarding badly initialized models
by multiple training on the same data, in order to avoid the computational demanding task
of calculating music similarity on all models. Furthermore BIC will be tested as a complexity
indicator for music in which variable sized models may prove beneficial for well-known music
similarity techniques presented in chapter 5.
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4.5 Learning Using Metrics

Machine learning and datamining can in a very rough taxonomy be divided into probabilis-
tic methods or instance based methods as previously mentioned, where the gaussian density
model obviously is a probabilistic modelling technique. In such a relatively high-level de-
scription of the data in a given feature space we tend to abandon the meaning of the features
in a local sense, and for example describe the audio clip by a gaussian distribution with a
given covariance and centroid. The covariance obviously describes the more important di-
rections or features for the given audio clip assuming an individual gaussian is fitted to each
clip individually. As we shall see later such a description can be used directly to compare
the clips, however comparing distributions directly may not directly reveal in an intuitive
sense what makes one song more similar (or close) than another. Further a comparison
of individual distributions does not directly account for the influence of other data points
(maybe audio clips).

Based on the observations above, an alternative learning approach is taken in this section,
dealing with an formal geometric view of the feature space on a somewhat lower level than the
density models. However, a global density model is still maintained to describe the overall
nature of the feature space. A local perspective is then constructed by the formulation of a
so-called metric, which depending on the formulation describes the local importance of each
direction in feature space. If the original feature space is retained (i.e. not projected) we
hereby obtain a local importance of the features in each location from the metric.

−1

0

1

2

3

4

−1
0

1
2

3
4

0

0.1

0.2

0.3

0.4

0.5

Figure 4.3: The ”topology” of a density model. The log-likelihood is used as the description
of the topology. The red line shows how a strath-line approximation leads to a non-
Euclidian distance if integrating the change in log-likelihood along the path. This is
effectively the Rattray metric.

The learning and datamining part can then be defined in terms of this local distance depend-
ing on the task at hand. As in many other machine learning applications, we are primarily
focused on the distance between data points, like in a simple clustering algorithm. Given the
metric (as a function of x) we consider this along a curve between the two data points. This
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is illustrated using a basic formulation of a metric (Rattray’s metric) in figure 4.3, in which
a density model provides a kind of height information of the feature space which effectively
alters the inter-point distance, formally expressed by the MxM matrix G(x) (the metric
at x), where M is the dimension of the space. Figure 4.3 clearly shows the topology in this
case defined as the change in log-likelihood given the probability model.

4.5.1 Metrics, Distances & Riemannian Geometry

In general we define a metric or distance function as a function d defined in a set X , with
four basic properties:

1. d is nonnegative and finite: d(xi,xj) < ∞∀x1,x2 ∈ X
2. d(xi,xj) = 0 if and only if xi = xj

3. d is symmetric: d(xi,xj) = d(xj ,xi).

4. The triangle inequality holds: d(xi,xj) ≤ d(xi,xk) + d(xk,xj)∀xi,xj ,xk ∈ X .

A metric (or distance function) always define a topology in the space X . The formal concept
behind topology is rather complex (see i.e. [31, 1]), but the intuitive feeling of a map is quite
applicant for many purposes since the main idea can be considered as an investigation of
geometry (see e.g. for an in-depth treatment [10, 1]).

The properties listed above are both locally and global properties which must be obeyed
also when generalizing the local metric to the global case, and does indeed hold for the very
basic metrics defined in table 4.1. The following describes the theoretical steps in such a
generalization.

The idea of defining a local metric and distance based on the topology or geometry of the
space, is based upon the formal mathematical description of differential geometry, however
a large part of the formal mathematical background is left out and only the absolute basic
concepts will be included in order to formulate the idea of local metrics leading to global
distances.

Given a certain level of abstraction and two points, a and b4, in a Riemannian manifold (see
e.g. [10, p.500]), S, connected by a curve, γ, we define the length of the curve based on an
inner product, g(u, v), between tangent vectors v and u to the curve γ at t. The length of a
tangent vector is

√
g (v, v) and the length of the curve parameterized by t with γ(t = 0) = a

and γ(t = 1) = b is given by

‖γ‖ =

1∫

0

∥∥∥∥
dγ

dt

∥∥∥∥dt =

1∫

0

√
gγ(t)

(
dγ (t)

dt
,
dγ (t)

dt

)
dt (4.32)

The minimum length curve from a to b is defined as infinum of the curve lengths, i.e.

d (a, b) = inf |γ|
{γ|γ(0)=a,γ(1)=b}

(4.33)

4Denoted a,b in order to specify that it is not necessarily a Euclidian space
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which indicates that there is obviously more than one route between the points [a, b] on S,
of which we are, as a starting point, interested in the minimum, denoted the distance, d.

In physics the length of the curve is often expressed in terms of the local coordinates (see
e.g. [1, p. 6-12], but the abstraction above is quite sufficient for the purpose in this thesis.

Given an arbitrary local metric F(x), with the elements in F defined as an inner product
between tangent vectors, in an assumed Euclidian space, we can we parameterize the curve
γ from xi to xj as a straight line by x = xi + t(xj − xi) where t ∈ [0, 1] in order to obtain
an expression for the distance between the points. Based on the definition given in 4.32 of
the distance between two points on the manifold, the global distance given a general metric
F(x) becomes:

D(xi,xj) =

1∫

t=0

[∇tx(t)T F(t)∇tx
]1/2

(4.34)

where ∇tx(t) = [∂x1/∂t, ∂x2/∂t, ..., ∂xd/∂t]T . Even though appearing fairly simple, the
integral in 4.34 is often analytically intractable, however there are different approaches to
solving this problem of which some will be described and used for the demonstration of
metrics in clustering examples and further on, in music retrieval.

The assumption of a Euclidian space is often a huge simplification given the true geometry of
the space, but it is a convenient approximation to a true curve. A method for approximating
the true minimum length curve, the geodesic, will be described later in this chapter.

The objective of using a local metric which is then generalized to the entire space, is based
upon the idea that features does not mean the same at all points in space - i.e. we effectively
weight the various directions differently in all points of the space, where the weighting is
given by the topology of the space. This can be interpreted as a non-linear mapping of the
original feature space, which could be performed using e.g. a neural network. However,
the primary objective using a metric is the preservation of the topology, i.e. we maintain
the meaning of the original features. This property is quite relevant in music based on
meaningful perceptual features in which local metric can for example be used to describe
the local meaning of the features in a point x as the relative relevance in a direction along
the coordinate axis l, i.e.

rl (x) =

√
eT

l J (x) el∑M
m eT

mJ (x) em

(4.35)

This basic result can potentially be used to analyze the features on a low level, e.g. could
indicate whether or not the pitch is important in the similarity estimation between two audio
clips.

The formulation leading to the illustration in 4.3 was defined using the change in log-
likelihood p(x|θ) of a mixture model as the descriptor of the feature space. This, as well
as two other formulations, will be considered in details in the following. For now they are
described by

• Tipping: Locally weighted covariance based metric

• Rattray: Log-likelihood based metric

• Fisher/Kaski: Supervised metric based on the Fisher Information Matrix and change
in so-called auxiliary information (class/labels)
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The metrics are denoted by either J(x) for the metric based on Fishers Information Ma-
trix (later described), or G(x) for the two metrics based on an unsupervised (heuristic)
formulation. Furthermore, the general reference to the various metrics will be based on the
originators of the three formulations (Tipping, Rattray and Fisher/Kaski5).

4.5.2 Tipping’s Riemannian distance measure

The metric defined by Mike Tipping [29]is based on a pure clustering perspective in which,
the foundation is the Mahalanobis distance, which is invariant to any non-singular scaling
due to the covariance weighting (given a maximum likelihood estimate). However, the
Mahalanobis distance, based on a global estimation and in terms of mixture models, is not
applicant.

Therefore Tipping suggests using a heuristic metric, defined as a local weighting of the
covariance matrices of a basic Gaussian Mixture Model. I.e. on the manifold, S, we define a
metric based on a very general heuristic observation regarding the local contribution of the
covariance weighted by the component posterior at a local point in data space:

G(x) =
K∑

k=1

p(k|x)Ck
−1 (4.36)

where Ck is the covariance for each component. This means the metric is a weighted average
of the inverse covariance matrices.

In general, this is still invariant to non-singular transformations and in the (perhaps local)
limit where K → 1 where we obtain the standard Mahalanobis distance. As with all other
theory based on mixture models, there is the risk of poor local minima and a bad model
will of course degrade the performance, for which reason certain measures was taken in
the fitting process. While the local Tipping metric is rather intuitive, it does have to be
generalized to the global feature space, which is done through the use of the straight line
approximation described by 4.34. This is intractable in this case and an approximation will
need to be formulated. In this thesis an analytical approximation will be investigated, which
is suggested by Tipping, and further more will numerical integration methods be applied in
subsequent sections.

Analytical Approximation

Tipping [29] suggests two major simplifications in order to obtain an analytical approxi-
mation of the Gaussian Mixture Model. First thing is to switch the order of the square
root and the integral in 4.34. Furthermore the posterior conditional probability p(k|x) =
p(x|k)P (k)/p(x) is replaced by the approximation p(x|k)P (k). No evaluation of the sim-
plification consequences are provided in [29], which will be performed through numerical
evaluation in this thesis.

5The supervised metric is based on the Fisher Information Matrix, however the concrete application has
been developed in several papers of which S. Kaski is the consistent author, hence the supervised metric
will be refereed to as Fisher/Kaski or simply Kaski when the reference makes more sense in term of the
formulation
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Figure 4.4: The local scaling in the Tipping Metric. Clock-wise from the top the three
equally spaced distributions have the following parameters: P(n)=[1/3,2/3,2/3], σ =
[0.3, 0.7, 0.7]

Since ∇tx(t) = (xi − xj), we get

D =

1∫

t=0

[
(xi − xj)

T G(t) (xi − xj)
]1/2

dt (4.37)

=

1∫

t=0

[
(xi − xj)

T

[
K∑

k=1

C−1
k p(k|x(t))

]
(xi − xj)

]1/2

dt (4.38)

and applying the approximations yields

D2 ≈
1∫

t=0

(xi − xj)
T

[
K∑

k=1

Ck
−1p(k|x(t))

]
(xi − xj)dt (4.39)

≈
1∫

t=0

(xi − xj)
T




K∑

k=1

Ck
−1 p(x(t)|k)P (k)∑

K

p(x(t)|k)P (k)


 (xi − xj)dt (4.40)

This integral has no closed form solution which makes it analytically intractable. The sum-
factor still has dependence on t, so in order obtain a trackable expression, the posterior
conditional probability of component k, p(k|x), is approximated by P (k)p(x|k), i.e. neglect-
ing the normalization in Bayes theorem.

D2 ≈
1∫

t=0

(xi − xj)
T

[
K∑

k=1

Ck
−1P (k)p(x(t)|k)

]
(xi − xj)dt (4.41)

The expression still has dependence on t in the sum, so the G(x) expression (brackets)
is made constant by making a probabilistic weighted average of the individual covariance
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matrices along the straight line approximation, based on the approximation of p(k|x). This
is formulated as

D∗(xi,xj)2 = (xi − xj)
T G∗ (xi − xj)

1∫

0

dt (4.42)

= (xi − xj)
T G∗ (xi − xj) (4.43)

G∗ =

K∑
k=1

Ck
−1P (k)

∫ xj

x=xi
p(x|k)dx

K∑
k=1

P (k)
∫ xj

x=xi
p(x|k)dx

(4.44)

Since p(x|k) is a single gaussian component of the mixture model, we can find a closed form
solution to the approximation. The integral in 4.44 is the path integral from xi to xj along
the straight path. After writing the parameterized pdf as a quadratic form and utilizing the
error function, the following expression is found,

xj∫

x=xi

p(x|k) dx =

√
πb2

2
exp {−Z/2}

[
erf

(
1− a√

2b2

)
− erf

( −a√
2b2

)]
(4.45)

With erf being the error function defined as

erf(y) =
2√
2

y∫

t=0

e−t2dt (4.46)

Furthermore a,b and Z are given by:

b2 =
(
vTC−1

k v
)−1

(4.47)

a = b2vT C−1
k u (4.48)

Z = uTC−1
k u− b2

(
vTC−1

k u
)2

(4.49)

It is very difficult to evaluate the consequences of this approximation in a general setting,
and the final conclusion is almost entirely based on the results obtained through practical
simulations in the end of this section.

4.5.3 Rattray’s Riemannian distance metric

Tipping’s metric as defined above has a somewhat heuristic formulation in terms of weighted
covariance matrixes. Rattray [26] has suggested a different metric also aimed at clustering
based on the assumption that a cluster is a homogeneous, connected region. The metric itself
can then be defined from a viewpoint saying that it should reflect the change in log-likelihood
of the data, so the distance is given by the incremental change in log-likelihood:

ds = |log p(x + dx)− log p(x)| (4.50)
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By assuming the incremental distance dx is small enough we can write

ds '
∣∣dxT∇x log p(x)

∣∣ (4.51)

=
√

dxT∇x log p(x) (∇x log p(x))T
dx (4.52)

=
√

dxT∇xG(x)dx (4.53)

With the Riemannian metric given as

G(x) = ∇x log p(x) (∇x log p(x))T (4.54)

A metric based directly on the log-likelihood and the assumption that the data is grouped
or clustered in high-density areas will inevitable be sensitive to situations in which these
assumptions break down. This can happen when either the model is a poor reflection of the
true data, e.g. in cases of overfitting or local minima will a point described by its own pdf
have a long distance to all other points regardless of these being relatively close or not.

The metric can furthermore be seen (illustrated in figure 4.5) to reward high density areas
where the local scaling is insignificant.

In order to improve the performance of the log-likelihood based metric, Rattray suggests
using a shortest distance search algorithm to find the shortest distance between two points
using other points, again supporting the high-density idea. This algorithm will be applied
to all three metrics and described later.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
Local scaling of the Rattray Metric

Figure 4.5: The local scaling in the Rattray Metric. Clock-wise from the top the three
equally spaced distributions have the following parameters: P(n)=[1/3,2/3,2/3], σ =
[0.3, 0.7, 0.7]
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Modeling with Gaussian Mixtures Models

Although not formulated in terms of mixture models, this model is applied in [26], and
outlined below. The metric can, using the GMM, be expanded:

∂

∂x
log p(x) =

1
p(x)

∂

∂x

∑

K

P (k)p(x|k) (4.55)

=
1

p(x)
∂

∂x

∑

K

P (k)
1√

(2π)d det C−1

exp
{
−1

2
(x− µk)T C−1

k (x− µk)
}

(4.56)

=
1

p(x)

∑

K

−P (k)C−1 (x− µk)
1√

(2π)d detC−1
k

exp
{
−1

2
(x− µk)T C−1

k (x− µk)
}

(4.57)

=
1

p(x)

∑

K

−P (k)p(x|k)C−1
k (x− µk) (4.58)

=
∑

K

−P (k)p(x|k)
p(x)

C−1
k (x− µk) (4.59)

Through Bayes theorem we find p(k|x) = P (k)p(x|k)/p(x) and the expression can be sim-
plified to yield:

∂

∂x
log p(x) =

∑

K

−p(k|x)C−1
k (x− µk) (4.60)

Since (AB)T = BT AT and C is symmetrical, so
(
C−1

)T =
(
C−1

)
, we get the following

expression for the metric:

G = ∇x log p(x) (∇x log p(x))T (4.61)

=
K∑

k=1

−p(k|x)C−1
k (x− µk)

(
K∑

l=1

−p(l|x)C−1
l (x− µl)

)T

(4.62)

=
K∑

k=1

K∑

l=1

p(k|x)p(l|x)C−1
k (x− µk) (x− µl)

T C−1
l (4.63)

Globalizing this metric using the integral in 4.34, again yields an untractable integral which,
as in the Tipping case, calls for analytical and numerical solutions.

Analytical Approximation

The same approximations used by Tipping, are suggested by Rattray in [26]. This again
involves finding a constant metric along the path as with the Tipping metric, so the integral
can be calculated without numerical computation.

G∗ (xi,xj) =

P
k,l

P (k)P (l)C−1
k AklC

−1
lP

k,l

P (k)P (l)akl
(4.64)

where the integral over individual components are given by

akl =
1∫

t=0

p (x|k) p (x|l)dt (4.65)
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and

Akl =
1∫

t=0

(x− µk) (x− µk)T
p (x|k) p (x|l)dt (4.66)

Obviously these integrals are to be evaluated over the two components versus one in the
Tipping case. This again calls for a rewrite into quadratic forms and calls for partial integral,
which has been verified to yield the following simplified results:

akl = e
−

γ
2

(2π)d
√
|Ck||Cl|

f (α, β) (4.67)

Akl = e
−

γ
2

(2π)d
√
|Ck||Cl|

(
wkwT

l f (α, β)− (
vwT

l + wT
k vT

) ∂f(α,β)
∂β + vvT ∂2f(α,β)

∂β

)
(4.68)

With α, β and γ given by

α = vT
(
C−1

k + C−1
l

)
v (4.69)

β = vT
(
C−1

k wk + C−1
l wl

)
(4.70)

γ = wT
k C−1

k wk + wT
l C−1

l wl (4.71)

and f is then expressed by

f (α, β) =

1∫

t=0

e−
αt2
2 −βtdt =

√
π

2α
e

β2

2α

[
erf

(
β − α√

2α

)
− erf

(
β√
2α

)]
(4.72)

The derivative of f , originating from the partial integration can be simplified to yield,

∂f (α, β)
∂β

=
1
α

[
βf (α, β) + e−

α
2−β − 1

]
(4.73)

∂2f (α, β)
∂β2

=
1
α

[
β

∂f (α, β)
∂β

+ f (α, β)− e−
α
2−β

]
(4.74)

This rather involved approximation and subsequent implementation, is validated on a simple
1D example and the real-world data set considered later on.

4.5.4 Supervised Riemannian Metric

While the formulations provided by Tipping and Rattray are based on purely unsupervised
approaches, an obvious idea is to include available knowledge about the data in the form
of so-called auxiliary information into the metric learning, effectively turning it into a su-
pervised metric. In a music context this could be the information that some data point
originates from e.g. a certain song, genre or artist, however it need not be formulated with
the objective to classify into these classes, as explained later.

This idea has first been formulated by Kaski et al and described in several places [25, 15, 14].
The basic idea is to use the conditional probability of the class/label given the data vector,
i.e p(y|x) and define the metric in terms of change in this conditional distribution.
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While Rattray’s formulation was based on a simple use of Riemannian manifold without
considering any parametrization of the space and only considering the topology provided
by the log-likelihood, the supervised approach parameterizes the feature space by the use of
the classes or as joined auxiliary information in e.g. [15], which here will be denoted y in
order to underline that it is not necessarily the original classes of the data we are interested
in, but some defined relevance, which could span several the original determined classes of
the data.6

The metric is formulated in terms of the distributional ”distance” between the conditional
probability distributions p(y|x) and p(y|x+ dx), which in the context of information theory
naturally leads to the use of the Kullback-Leibler divergence, and the distance becomes

DKL (p (y|x) ||p (y|x + dx)) =
∫

p (y|x) log
p (y|x)

p (y|x + dx)
dx (4.75)

If assuming p(y|x) is differentiable, it can be shown that local Kullback-Leibler divergence
between the the two distributions p(y|x) and p(y|x + dx) is given by (a proof is outlined in
appendix A for completeness)

d2 (x,x + dx) = DKL (p (y|x) , p (y|x + dx)) (4.76)
= 1

2dxT J(x)dx (4.77)

7 Where J(x) is the Fisher Information Matrix given by

J(x) = Ep(y|x)

{
∂ log p (y|x)

∂x

(
∂ log p (y|x)

∂x

)T
}

(4.78)

Information geometry is used as a statistical inference method, and often used to describe the
topology of a space described by a parametrization θ and in general information geometry
the Fisher Information matrix is the natural metric describing a change in the distribution
given an incremental change in the parameters θ, i.e. the objective is to investigate models
in a geometric sense.

In this project we are interested in a distance, not between models, but between points in
feature space given the knowledge of the posterior class probability p (y|x). Therefore the
classic distribution, p(x|θ), usually of interest in traditional information geometry is replaced
by p (y|x), which results in the Fisher Information Matrix in 4.78.

The conditional probability p (y|x) of course has to be estimated or modelled for all x.
There are several ways of estimating this posterior, ranging from Parzen estimators to a
direct modelling of

∏
N

p (y|xn) for all data points N , which is solved by a gradient decent

optimization [25].

This thesis is limited to the investigation of the supervised Gaussian Mixture Model in 4.16,
in which Bayes theorem can be used to give an estimate of p (y|x) (see later). However
before considering this (in this context advanced model), a simple example will be given
explaining the implications of using the Fisher Metric (Kaski and Fisher metric is used
interchangeably).

6Obviously a redefinition of an original class will lead to the same result, and y is simply introduced for
the purpose of distinction between concepts

7It should be noted that the constant is ignored in the further calculations, but this only changes the
absolute size of the metric, not the relative distance between data points.
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Example: Two-class Linear Discriminant in the Fisher/Kaski metric

In order to illustrate the properties of the Fisher/Kaski metric in a simple and easy inter-
pretable situation, the metric is derived and illustrated for a two-class problem, using the
simple linear discriminant with the logistic activation function (see e.g. [6]), which despite
yielding an obvious result, does serve as an excellent example.

The linear discriminant function for a two-class problem is given by ϕ(x) = wT x + w0, and
for ϕ(x) > 0 the class is one. While such a binary classification is desirable in some cases,
one desirable property in statistical modelling is the interpretation of probabilities, which is
also required in the formulation of the Fisher/Kaski Metric. Therefore the logistic sigmoid
activation function (softmax for multi class problems) is applied. It is in general given by
g (a) = 1/1 + e−a, where a is the activation.

In the two class problem the activation function can be expressed by the discriminant func-
tion ϕ(x) if we interpret the output as the probability of class one (y = 1), i.e.

p (y = 1|x) =
1

1 + e−ϕ(x)
(4.79)

However, the symmetry of the two class problem can be expressed by p (y = 2|x) = 1 −
p (y = 1|x). This naturally also extend to the derivative of logp (y|x) used in 4.78

∂ log p (y = 2|x)
∂x

= −∂ log p (y = 1|x)
∂x

(4.80)

Using the fact that ∂ log p(y|x)
∂x = 1

p(y|x)
∂p(y|x)

∂x we get for the Fisher/Kaski metric in 4.78

J (x) =
2∑

y=1

p (y|x)
1

p (y|x)
∂ log p (y|x)

∂x
1

p (y|x)

(
∂ log p (y|x)

∂x

)T

(4.81)

=
2∑

y=1

1
p (y|x)

∂ log p (y|x)
∂x

(
∂ log p (y|x)

∂x

)T

(4.82)

=
1

p (y = 1|x)
∂p (y = 1|x)

∂x

(
∂p (y = 1|x)

∂x

)T

+
1

p (y = 2|x)
∂p (y = 2|x)

∂x

(
∂p (y = 2|x)

∂x

)T

(4.83)

=
[

1
p (y = 1|x)

+
1

1− p (y = 1|x)

]
∂p (y = 1|x)

∂x

(
∂p (y = 1|x)

∂x

)T

(4.84)

= p (y = 1|x) (1− p (y = 1|x))
∂ϕ (x)

∂x

(
∂ϕ (x)

∂x

)T

(4.85)
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Figure 4.6: The gradient of p (y|x) illustrated. The maximum of p (y|x) is obtained when

p (y|x) = 1/2 leading to a maximum of ∂p(y|x)
∂x

= 1/4. The principle is shown through
the three example point in which the distance from x1 to x2 is zeros due to the non-
changing gradient, and x1 to x3 seen to cross the decision border leading to a non-zeros
result, depending on the properties of the vector w

since

∂

∂x
1

1 + e−ϕ(x)
=

1(
1 + e−ϕ(x)

)2 e−ϕ(x) ∂ϕ (x)
∂x

(4.86)

=
e−ϕ(x)

(
1 + e−ϕ(x)

)2

∂ϕ (x)
∂x

(4.87)

=
e−ϕ(x)

1 + e−ϕ(x)

1
1 + e−ϕ(x)

∂ϕ (x)
∂x

(4.88)

= p (y = 2|x) p (y = 1|x)
∂ϕ (x)

∂x
(4.89)

= (1− p (y = 1|x)) p (y = 1|x)
∂ϕ (x)

∂x
(4.90)

Plugging the above and ∂ϕ (x)/∂x = w into 4.78, we obtain

J (x) = (1− p (y = 1|x)) p (y = 1|x)wwT (4.91)

The squared incremental distance d2 is then expressed by

d2(x,x + dx) = dxT J (x) dx (4.92)
= dxT (1− p (y = 1|x)) p (y = 1|x) wwT dx (4.93)

or more perhaps more informative in the sense that the absolute value can been seen to be
directly dependent on the direction, due to the scalar product of the weight vector w and
dx

d2(x,x + dx) = (1− p (y = 1|x)) p (y = 1|x)
(
dxwT

)2
(4.94)

The analysis of d2(x,x + dx) is quite intuitive, although important for the following discus-
sions: Consider a dx vector lying parallel with the contours of (1− p (y = 1|x)) p (y = 1|x).
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In this case there is no change in p (y = 1|x) (and the vector product dxT w is zero as well),
hence d(x,x + dx) = 0, as illustrated going from x1 to x2 in figure 4.6. The same results is
obtained if dx is located in the flat area of the gradient which occurs when p (y = 1|x) = 0
or p (y = 2|x) = 0, i.e. there is no change in the label y. Generally these two intuitively easy
situations implies that the distance reflects the original labeling of the data i.e. it maintains
a zero distance with the class if no change in p(y|x) is observed along the path of travel.

A much more interesting situation is encountered if dx is perpendicular to the decision
boundary and hence parallel to w. In this case we experience a change in (1− p (y = 1|x)) p (y = 1|x)
as seen in figure 4.6 going from x1 to x3. While the incremental change dx gives the (very)
local distance in a given direction, the global distance from e.g. x1 to x3 will have to be
obtained through integration over x along the path as previously mentioned.

This small example shows the main idea behind the Fisher/Kaski metric, i.e. that we obtain
a non-zero distance in areas of changing class probability, provided we travel in a direction
of change. The extreme case is obtained when fully crossing the decision boundary - and a
perhaps more interesting intuitive result is when crossing two thought decision boundaries
we end up with twice the distance (provided the decision boundary is of the same shape).
This is in contrast to a normal classification which will discussed trough an example later.

Modeling with supervised Gaussian Mixture Models

The simple two class linear discriminant example above serves an a nice introduction to the
properties of the Fisher/Kaski metric, but it is hardly applicant for many purposes. For a
multi class problem, several methods can be used to model the conditional density, however
here the proposal is to model p (y,x) with the following previously described supervised
mixture model describing the joint probability of {xn, yn}

p(x, y) =
K∑

k=1

p(x|k)P (k)p(y|k) (4.95)

With p(x|k) being the individual gaussian component parameterized by θk. Using Bayes
theorem we get, as previously mentioned

p (y|x) =
p (y,x)
p (x)

(4.96)

=

K∑
k=1

p (y|k) p (x|θk)P (k)

K∑
k=1

p (x|θk)P (k)
(4.97)

Differentiating this expression is a rather involved task and the full derivation has been
included in the appendix, expanding the derivation in [14] to a full covariance model used
later on. The resulting metric is given by,

∂ log p (y|x)
∂x

=
K∑

k=1

− [p (k|x, y)− p (k|x)]C−1
k (x− µk) (4.98)

Plugging this into the Fisher Information matrix in 4.78 we get

∂ log p (y|x)
∂x

(
∂ log p (y|x)

∂x

)T

=
K∑

k,l=1

[p (k|x, y)− p (k|x)] [p (l|x, y)− p (l|x)]Qkl (4.99)
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Figure 4.7: The local scaling in the Fisher Metric. Clock-wise from the top the three
equally spaced distributions have the following parameters: P(n)=[1/3,2/3,2/3], σ =
[0.3, 0.7, 0.7]

where Qkl = C−1
k (x− µk) (x− µl)

T C−1
l

Taking the expectation with regards to p (y|x)

J (x) = Ep(y|x)





K∑

k,l=1

[p (k|x, y)− p (k|x)] [p (l|x, y)− p (l|x)]Qkl



 (4.100)

=
Y∑

n=1

p (yn|x)
K∑

k,l=1

[p (k|x, yn)− p (k|x)] [p (l|x, yn)− p (l|x)]Qkl (4.101)

Note that an extra sum is introduced due to the expectation which together with the extra
computation needed to find p (k|x, y) adds to the computational load.

No analytical approximation of the integral in 4.34 is suggested when using the Fisher/Kaski
metric in the original papers, and none is attempted within the context of this thesis. 8

4.5.5 Computational approximation to path integrals

A more or less ad hoc analytical approximation is provided for the Tipping and Rattray
metrics when used in a global sense, i.e. by the use of path integrals in 4.34. No evaluation
of these approximations is provided, but several computational/numerical approximations
can be made to the rather demanding integral, when dealing with intractable expressions as
in our case.

8Other possibilities has not been investigated in-dept, though, due to the relatively late inclusion of the
interesting supervised metric.
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The intractability is sometimes considered a tabu in statistical machine learning - however
the interesting nature of the metric surpasses the computational problem - and we are forced
into numerical and computational approximations (at least for the Fisher Metric) -or in case
of the two unsupervised metrics, an analytical approximation can fairly easy be constructed.

Numerical Integration

In this thesis a numerical evaluation of the original - in general - intractable integral in 4.34
will be performed in order to evaluate the effect of the approximations in a practical setting.
An adaptive Simpson quadrature algorithm will be used. A review of this algorithm can be
found in [16].

An issue with this basic numerical integration - and any subsequent T-points approximations
methods - is if the curve, along which the integration is performed, contains highly peaked
values. In relation to the integral this means a large gradient of either p(x) or especially
p(c|x) which may have a large gradient due to a sharp decision boundary between the defined
classes.

T-Point Approximations

The path integral used in the Riemannian measure/distance can be approximated by a T-
Point approximation, also suggested in [25] in which the path is represented by T-points
from xi to xj ,

DT (xi,xj) =
T∑

t=1
d1

(
x1 + t−1

T v,x1 + t−1
T v

)

v = xi − xj

Obviously the simplest case yields a 1-point approximation, which though is found not to
perform well in a K-nearest neighbour classifier (see e.g. [25]), however in [25] the approxi-
mation was made at t = 0 assuming the interesting area to be just around x, but this may
not be the general case, and in this thesis we define the T-point approximations to be made
at t = 0.5 i.e. in between the T points on the straight line approximation. This has two
main advantages in the authors mind. The main advantage is the fact that it symmetrizes
the T-point approximation, so it obtains true metric properties (see 4.5.1), and it does not
favour the one point used as reference over the other, which is considered an advantage when
using it for retrieval, but in a clustering situation this argument may not be valid, since the
reference point is now a cluster centroid.

In applications where the exact distance is important a more accurate approximation is
suggested here, which is a quite obvious extension to the basic T-points approximation.
By the definition of a number of points per unit distance, instead of a fixed value, an
adaptive T-point approximation can be constructed9. This will guarantee a uniform accuracy
throughout the space.

9This is the equivalent of using a numerical integration method with low resolution, corresponding to the
numerical of T-points per unit distance
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Figure 4.8: The geodesic path between the two points (solid line) are approximated by the
dashed line in the right figure. In a Euclidean space the geodesic path is the straight
line showed in both figures [adapted from [26]]

Graph Approximations to Geodesic Paths

The definition of a distance on a Riemannian manifold is not limited to straight Euclidean
path between points, as seen in the genral definition of the curve length 4.32 and 4.33,
but is actually given by the so-called geodesic path - which for the Euclidian vector space
is the straight line. However, on a Riemannian manifold this is not necessarily the case
given the non-linearities of the metric. In order to approximate the geodesic path, a graph
approximation can be used.

An edge in the graph is represented by the pair-wise distance between two arbitrary points,
which effectively means two other data points as shown in figure 4.8.

Using this approximation the geodesic path on the manifold can be found by the use of a
dynamic programming algorithm in order to solve the following

Dfloyd (xi,xj) = min
M,X∈{x1,...,x

′
M}

d
(
xi,x

′
i

)
+

∑M−1

m=1
d

(
x
′
mx

′
m+1

)
+ d

(
x
′
Mxj

)

This problem can be solved with e.g. Floyd’s algorithm. The approach is very computational
heavy since it scales like O (

n3
)
, and is therefore only applicant in real-world cases in which

the inter-point distances do not change, i.e. a one time computation is performed of all pair-
wise distances. Furthermore it is obviously only relevant in cases where there are points in
the proximities (in the metric sense) in order to construct the approximating graph.

4.5.6 Examples and evaluation in 1D

In order to evaluate the effect of applying model based metrics, a simple 1-D problem
is considered. The model consists of two classes described by three Gaussian’s, with the
middle distribution being the second class with only one gaussian. These labeled classes
will obviously only influence the supervised Fisher Metric. The dotted line in figure 4.9
shows how the decision boundary between the classes. As shown using the local metric as
an indicator in figure 4.7, and the argument given in the linear discriminant example, does
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Figure 4.9: The Riemannian based metric distances evaluated using numerical integration.
The model is given as σ(k) = [0.1, 0.02, 0.01], µ(k) = [−0.5, 0.45, 0.8], P (k) =
[0.2, 0.6, 0.2] The red dashed line shows the hard classification border, while the dotted
line shows the actual posterior p(y|x) . The distances are evaluated from x = 0

the Fisher/Kaski distance only change in the vicinity of the decision boundary and when
crossing it.

An quite interesting property to be noted is the Fisher/Kaski metric. Despite the point of
reference is x = 0, i.e. in class 1, the distance to the other class 1 distribution is not zero,
as would be the case in a pure classification measure. Furthermore it is again noted that
the Fisher metric does not change within the class except at the decision boundary, which
in this simple example is limited to a narrow area, but in a general case this can be a quite
big area as seen in the clustering examples later.

The Tipping and Rattray measures are naturally unaffected by the exact point of sepa-
ration between classes, but are not invariant to the in-class covariance contribution and
log-likelihood changes, which obviously reflects the two (unsupervised) formulations.

Approximations in 1D

The analytical approximations made by Tipping and Rattray to their respective metrics,
are evaluated in the simple 1D case (and later in a clustering example). The results of this
can be seen for a few selected cases in figure 4.10.

It is seen that the Tipping approximation - compared with the numerical integration in
figure 4.9 - in this simple case seems to be valid. Despite the same approximations being
made to the Rattray formulation it seems the extra complexity of the metric derived for
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Figure 4.10: The Riemannian based metric evaluated in terms of their approximations which
will be applied to the music set in chapter 6. The distances are evaluated from x=0

mixture models 4.63 adds to the error introduced by the analytical approximation. The
reason for this has not been investigated further, though. The T=5 point approximations
all seem to provide a good approximation to the ”true” numerical integration, but a final
conclusion should be based on the individual data set and fitted model, since this very small
example obviously does not encapsulate all special cases.

While the T-point approximations are not particular exact at far away distances, due to the
lower resolution of points along the straight line approximation - it should be noted that
the approximations do hold for points close by due to the basic properties the dxF(x) dx ,
which is an important point in applications of data mining where the closer points are often
the ones of interest (e.g to a cluster center), and the distant points need not be calculated
with high precision, which is one of the circumstances justifying application of the rather
crude approximations.
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4.6 Clustering with local metrics

In order to examine the actual ”learning” properties of the metrics and evaluate the per-
formance of various choices of approximations of distances on actual data sets, a number of
clustering experiments are presented, which show the advantage of local metrics compared
to Euclidian based distances. The data consists of two artificially generated sets in order
to view the particular properties in various interesting cases. Further more a real-life set is
used, namely the Phoneme data set.

The clustering is performed using the K-means algorithm described in 4.1, although the
computational load of the metrics (especially the numerical integration) is quite demanding
and the centroid of the clusters are limited to the data points themselves. This implies that
inter-point distances need only be computed once, which is found acceptable for the purpose
of investigating the metrics against each other.

In this toy setup we evaluate the performance of a resulting clustering C primarily by the
purity of the clusters, evaluated against the true cluster configuration E generating the data.

Purity is defined by considering all points of a cluster ci ∈ C as being classified as members
of ci’s primary/dominant class, which is the class εj ∈ E, with which ci shares maximal
number of elements. For cluster ci purity is defined as the ratio between those elements
shared by ci and εj , to the total number of elements in ci providing the maximum number
of shared members, i.e.

Purity (ci|E)=
1
|ci| max

εj∈E
{|ci ∩ εj |} (4.102)

where |ci| is the number of points in cluster i and |ε| is the number of points in the true
class j. |c ∩ εj | is the number of elements shared by ci and εj . For an overall evaluation
of the final results the individual clusters are weighted by the number of members in the
cluster, which results in the following

Purity (C|E) =
1
N

∑

ci∈C

max
εj∈E

{|ci ∩ εj |} (4.103)

where N is the total number of points. Certain classes ε may not share maximal number
of elements with any cluster given the above formulation, hence several different clusters
may share the maximal intersection with the same class. In the primary evaluation of the
metrics, we limit the clustering to be performed only with the true number of clusters, and
indirectly ensuring that only one cluster shares the maximal intersection with a class, mainly
for the purpose of illustration.

When dealing with multiple clusters in which the true number of clusters is unknown or
can not be checked, clusters may share the maximal intersection with the same class and
the purity measure can provide misleading results (same happens if the number of clusters
grows), since the final clustering C may not reflect the true configuration but still return a
large purity. In trivial and simple situations (like the two first presented) the purity may be
sufficient, but in more complex situations, like the real-world example demonstrated later,
a more strict measure is needed to easily evaluate the correspondence between the true con-
figuration and the one obtained through clustering. For this purpose the Jaccard coefficient
is used, which measures the agreement between an evaluated clustering configuration C and
a pre-defined clustering E on assigning pairs of data to the same cluster versus different
clusters.
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The following hard valued functions (0/1), are defined for every pair of data x and x’:

Co−AssignC(x, x′) = 1 if there exist ci ∈ C, such that (x, x′) ∈ ci otherwise 0

Co−AssignE(x, x′) = 1 if there exist εi ∈ E, such that (x, x′) ∈ εj otherwise 0

A set of counts is then defined based on the co-assigned functions for each pair

A11 =
∑

(x,x′)∈C

min {Co−AssignC(x, x′), Co−AssignE(x, x′)}

The number of relevant pairs assigned into the same cluster by both E and C;

A10 =
∑

(x,x′)∈C

min {Co−AssignC(x, x′), 1− Co−AssignE(x, x′)}

The number of pairs that have been assigned into the same cluster by C but not by E.

A01 =
∑

(x,x′)∈C

min {1− Co−AssignC(x, x′), Co−AssignE(x, x′)}

The number of pairs that have been assigned into the same cluster by E but not by C. Then
the Jaccard coefficient, ignoring the A00 term:

Jaccard (C|E) =
A11

A11 + A01 + A10
(4.104)

Which is considered to be a good measure - combined with the purity measure for given
purpose of evaluation the metrics.

The initialization of the cluster centroids has been observed to have a significant influence on
the final results as in almost all K-means configurations, therefore several (ten) initializations
are performed and an estimation of the sensitivity to the initialization is performed based
on the realistic initializations, which can be interpreted as loose estimation of the metrics
robustness to the extract point of reference - relevant for further discussions concerning
the retrieval in music. Moreover is various model sizes considered in order to evaluate -
especially the supervised metric.

Clustering with metrics I: Curved data

This data set consists of two quite complex distributions, responsible for generating the
curved data illustrated in figure 4.11(a) on which various sized models are fitted and a 14
components are shown in figure 4.11(b).

This example is mainly created to show the properties of the three metrics and Floyd’s
algorithm on a challenging data set and quite a few interesting situations can be explained
through the use of this set especially in relation to the Fisher/Kaski metric, including various
perhaps unfortunate properties of using numerical approximations.

The example included here is based on a 14 component mixture which provides reasonable
results for all metrics, but results for 6,8,10,12 and 16 components are aggregated in tables
in appendix E.
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Training data

(a)

Test Data & Decision Boundry
14 components

(b)

Figure 4.11: Curved Data: (a) Training data (b) Example model fitted with 14 componnets
resulting in a quite complex decision border at p(y|x) = 1/2 between the two cluster-
s/classes. The black countours are the changes in p(y|x) (logarithm)

The data is illustrated in figure 4.11(a) along with the decision boundary, furthermore the
gradient of p(y|x) is illustrated using the contour lines (logarithm applied first). This shows
a quite complex nature of ∂p(y|x)/∂x and the distance between two points within the same
class is not zero due to the changes in ∂p(y|x)/∂x. The situation is complicated further by
the fact that the curved data combined with the straight line approximation can cause an
inter-point distance to include two crossings of the decision boundary, obviously resulting
in a point in the other class being closer. However, due to the K-means optimization
of the centroids, such a situation does not generally occur when clustering, although the
approximation may induce similar situations.

K=14 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.51±0.056

0.57
Mahalanobis 0.56±0.14

0.72
Tipping 0.43±0.12 0.5±0.083 0.42±0.13 0.49±0.046 0.47±0.081

0.63 0.64 0.52 0.64 0.64
Tipping-Floyd 0.56±0 0.58±0.058 0.58±0.058 0.58±0.058 0.58±0.058

0.56 0.6 0.6 0.6 0.6
Rattray 0.57±0.1 0.76±0 0.69±0.0084 0.68±0.022 0.68±0.028

0.67 0.76 0.69 0.69 0.69
Rattray-Floyd 0.57±0.23 0.97±0.097 1±0 1±0 1±0

0.91 1 1 1 1
Kaski 1±0 0.87±0 0.86±0.013 0.86±0.017

1 0.87 0.87 0.87
Kaski-Floyd 1±0 1±0 1±0 1±0

1 1 1 1

Table 4.3: Curved Data I: K = 14. Purity of the classes over 10 different K-means initializations
including the maximum obtained (as second row)

In order to visualize the clustering, a few examples are included. The ”true” behavior in
terms of the numerical integration will be illustrated for each metric, including the Floyd
version, for the 14 component case. Furthermore the T=15 point approximation is included
and comments attached in a general sense also relating to the overall results.
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Euclidian
Analytical / Approximation

14 components
Class purity:0.45333

Class 1
Class 2

(a)

Mahalanobis
Analytical / Approximation

14 components
Class purity:0.34667

Class 1
Class 2

(b)

Figure 4.12: Example of basic metric. (a) Euclidian, obviously does not depend on the model,
but varies only in the initializations. (b) Mahalanobis, generally a fair improvement
over the Euclidian for the best initialization. However, when dealing with complex
data the Mahalanobis is seldom sufficient as metric

Tipping
Nummerical Integration (1e−06)

14 components
Class purity:0.52

Class 1
Class 2

(a)

Tipping−Floyd
Nummerical Integration (1e−06)

14 components
Class purity:0.6

Class 1
Class 2

(b)

Tipping
T−point (15)

14 components
Class purity:0.48

Class 1
Class 2

(c)

Figure 4.13: Example of Tipping metric. (a) Basic Tipping. All Tipping cases seems to per-
form poorly on this data set, indicating that such complex data is not beneficial to the
weighted covariance formulation. (b) Tipping With Floyd (c) T-point (15) approxi-
mation

Rattray
Nummerical Integration (1e−06)

14 components
Class purity:0.76

Class 1
Class 2

(a)

Rattray−Floyd
Nummerical Integration (1e−06)

14 components
Class purity:1

Class 1
Class 2

(b)

Rattray
T−point (15)

14 components
Class purity:0.69333

Class 1
Class 2

(c)

Figure 4.14: Example of Rattray metric. (a) Basic Rattray. Generally very dependent on the
model, however not consistent since depends on the local log-likelihood - not the
overall likelihood. (b) Rattray with Floyd almost always results in perfect clustering on
this set (c) T-point (15) approximation of Rattray metric without Floyd, suggesting
a more spurious result. However, T-point approximation often results in a slightly
better result than numerical integration, which can be explained by lower sensitivity to
non-representative changes in log-likelihood, i.e. a smoothing of the provided model.
Generally the Rattray metric is highly dependent on a good, high density model and
Floyd’s algorithm in order to perform well.

The model based metrics does, except for the Tipping metric, provide a superior performance
compared to standard metrics, like the Euclidian and Mahalanobis. It is noted that the
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Kaski
Nummerical Integration (1e−06)

14 components
Class purity:1

Class 1
Class 2

(a)

Kaski−Floyd
Nummerical Integration (1e−06)

14 components
Class purity:1

Class 1
Class 2

(b)

Kaski
T−point (15)

14 components
Class purity:0.86667

Class 1
Class 2

(c)

Figure 4.15: Example of Fisher/Kaski metrics. (a) Basic Kaski/Metric: Seen to cluster perfectly
with the ”true” metric (numerical integration).(b) With Floyd, obviously the same
(c) T-point (15) approximation of Kaski/Metric without Floyd, illustrating the lower
performance of the T-point approximation. Applying Floyd to this case, results in
perfect clustering (see table) which is consistent for reasonable models.

mixture model fitted does have a relatively large influence on the results. It is especially
noted that the numerical evaluation of the Rattray metric shows that the individual model
determines the purity of the cluster. However, applying Floyd is justified using the Rattray
metric leading to a perfect clustering regardless of the spurious clustering provided by the
non-Floyd approach.

By the use of the purity measure it is noted that the performance of the T-point approxi-
mations in general shows equal performance when considering the best result obtained. In
terms of standard deviation, the different T-point approximations also provide comparable
results. However, one important example of better performance is obtained by the use of a
T=15 approximation, i.e. when the model complexity seems to degrade robustness of the 1
and 5 point for the Fisher/Kaski metric at K=16. This indicates that higher dimensionality
and hence more complex models will depend on the T-point approximation applied.

The analytical approximations provided by Tipping and Rattray, does with a few exceptions,
provide lower purity of the clusters, which is quite disappointing, since a 1-point approxima-
tion is generally just as fast in a 2D situation as the evaluation of the error function necessary
in the approximations. A final conclusion can again only be based on the individual data
set.

The Fisher/Kaski metric is of course dependent on the model complexity and the basic
T-point approximations generally favoring a quite complex model, but when applying Floyd
to the Fisher/Kaski metric the model complexity plays a crucial role in the sense that
a too complex model totally degrades the performance. Hence, the Floyd algorithm seems
applicant only to the approximations when a reasonable model size is considered (here K=14
and K=16).

In conclusion: The Rattray and Fisher/Kaski metric provides superior performance com-
pared to basic distance functions, with Kaski providing perfect clustering for the numerical
integration over all models. However, generally highly dependent on the model for a perfect
T-point performance This is the case for both basic T-point and and Floyd cases. Rattray
is dependent on the Floyd’s algorithm to provide the basis for the density formulation to
hold, i.e. a connected high-density area. Tipping in general performs quite poorly on this
data set.
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Clustering with metrics II: Simple Gaussians

This toy data set consist of three pre-defined classes, created by 4 partly overlapping gaussian
components (i.e. two are in the same class) as seen in figure 4.16(a). While the curved set
was considered at a large range of component complexity, is the purpose here mainly to
examine the metrics when a supervised approach intuitively should perform better, due to
the gap between same class components. The data is furthermore generated to show the
properties of the metrics versus the standard Euclidian like distances in situations where
the individual directions of feature space have a profound influence on the clustering.

The training of the density models is performed on a 400 sample data set, and tested via
clustering on another 200 point set. The BIC-optimal model of five is selected as represen-
tative.
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Training data
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Test Data
7 components

−3 −2 −1 0 1 2 3 4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

Figure 4.16: Simple Gaussians: (a) Training data. Notice the scale of the axis and the fact that
the clusters are overlapping. (b) Example model fitted with 7 components resulting in
a quite complex decision border which has been left out of illustration purposes. The
gray contour lines depicts the changes in p(y|x) (logarithm applied first)

The resulting clustering has primarily been evaluated using only the true number of clusters,
i.e. three, using the purity measure, since this is believed to provide the best insight into
especially the supervised metric. However, a few examples using a cluster per component is
covered later in this section.

A number of selected results are shown in the table and illustrated in figure 4.17 to figure
4.20 for 7 components, which together with the accompanying comments covers the more
interesting results.

A large number of interesting points can be drawn from the tables and examples, but only
the main point will be mentioned.

The results generally shows that the true Fisher/Kaski (numerical) metric provides the
marginally better result overall, considering the maximum purity and standard deviation
obtained, however the simpler unsupervised metrics do in certain cases - although all highly
dependent on the initializations - provide just as good results. This is is not surprising since
the Tipping metric in essence is a locally weighted covariance metric, which for this data
set is just what is needed. The model furthermore seems to provide the required connected,
high density areas for the Rattray metric to perform well in the case of proper initialization.
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K=7 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.62±0.12

0.67
Mahalanobis 0.74±0.064

0.78
Tipping 0.84±0.13 0.76±0.11 0.8±0.11 0.77±0.13 0.76±0.12

0.96 0.9 0.9 0.9 0.9
Tipping-Floyd 0.85±0.13 0.76±0.12 0.84±0.12 0.8±0.13 0.8±0.13

0.94 0.93 0.92 0.92 0.92
Rattray 0.84±0.081 0.69±0 0.71±0.093 0.7±0.08 0.74±0.077

0.89 0.69 0.85 0.85 0.84
Rattray-Floyd 0.81±0.093 0.78±0.14 0.79±0.1 0.7±0.15 0.74±0.063

0.86 0.96 0.96 0.96 0.96
Kaski 0.97±0 0.89±0.12 0.89±0.12 0.93±0.02

0.97 0.95 0.96 0.94
Kaski-Floyd 0.77±0.18 0.42±0.098 0.43±0.1 0.44±0.11

0.97 0.62 0.62 0.62

Table 4.4: Simple Gaussians: K = 7. Purity of the classes over 10 different K-means initializa-
tions including the maximum obtained (as second row)

Euclidian
Analytical / Approximation

7 components
Class purity:0.645 

Cluster 1

Cluster 2

Cluster 3

(a)

Mahalanobis
Analytical / Approximation

7 components
Class purity:0.615 

Cluster 1

Cluster 2

Cluster 3

(b)

Figure 4.17: Example of basic metrics. (a) Euclidian. The very stretched components are too
much for the Euclidian metric and despite being fixed to the data vectors, crosses the
gap. The performance can be argued being worse than the purity value, due to this
crossing. (b) Mahalanobis, does to some extend help on this set, however due to the
three clusters the performance is limited (see later for example using four clusters)

However, due to the high-density areas, Rattray often finds the wrong configuration as shown
in the examples and seen on the standard deviation.

One important factor in this context, is the sensitivity to the initializations in which only
the basic Fisher/Kaski metric shows consistent results, due to the supervised approach as
expected. In regards to the Fisher/Kaski metric it is noticeable that the Floyd shortest
path approximation, does not generally help the T-point approximations, as seen in the
illustration in figure 4.20(c).

Like in the curved data example above, does the T-point approximations provide quite
consistent, best results independent of the number of points applied. However, the sensitivity
to initialization is larger on this data set favoring a T=15 point approximation for the Kaski
metric, which is due to the added number of decision boundaries and hence changes in the
gradient of p(y|x).

The cluster configuration with 3 cluster, was chosen to reflect the supervised metrics ability
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Tipping
Nummerical Integration (1e−06)

7 components
Class purity:0.895 

Cluster 1

Cluster 2

Cluster 3

(a)

Tipping−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.91 

Cluster 1

Cluster 2

Cluster 3

(b)

Tipping−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.68 

Cluster 1

Cluster 2

Cluster 3

(c)

Figure 4.18: Example of the Tipping metric. (a) Basic Tipping. Showing that a local covariance
weighting improves the global weighting performed by the Mahalanobis. (b) Tipping
with Floyd does not improve the result significantly. (c) Example showing that the
Tipping metric can provide a very pure clustering, however it does not reflect the
original classes, and the purity is penalized. In general this calls for a supervised
approach due to the gap between the class consisting of two components

Rattray
Nummerical Integration (1e−06)

7 components
Class purity:0.685 

Cluster 1

Cluster 2

Cluster 3

(a)

Rattray−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.69 

Cluster 1

Cluster 2

Cluster 3

(b)

Rattray−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.96 

Cluster 1

Cluster 2

Cluster 3

(c)

Figure 4.19: Example of Rattray metric. (a) Basic Rattray. At this example shows the lower
performance of the Rattray metric. The purity of the clusters could be argued to be
high however since the clustering does not reflect the original classes it is reduced,
which shows the need for a supervised approach on this data set for consistent per-
formance (b) Rattray with Floyd, not improving the basic result (c) An example of
the Rattray metric with Floyd actually reflecting the true classes, however this is not
generally the case as seen from the aggregated results

to handle such a situation, hence the evaluation was also based on the assumption that the
clusters should reflect the true classes (the purity is reported in this assumption). How-
ever, this may not necessarily reflect the unsupervised metrics ability to generally find such
stretched clusters and therefore a configuration with 4 clusters has been evaluated. A few
examples shows how the metrics behave in such a situation, where the number of cluster
does not match the defined ones. A more elaborate evaluation could potentially be per-
formed using hierarchial clustering, in which the clusters are combined, but this is beyond
the purpose and reasonable interpretation of this small example.

In conclusion: As shown using the curved data set the metrics are of course dependent on the
model size, which makes the performance quite susceptible to overfitting etc. The learning
metrics provide superior performance over the basic Euclidian and Mahalanobis. The use
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Kaski
Nummerical Integration (1e−06)

7 components
Class purity:0.975 

Cluster 1

Cluster 2

Cluster 3

(a)

Kaski−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.975 

Cluster 1

Cluster 2

Cluster 3

(b)

Kaski−Floyd
Nummerical Integration (1e−06)

7 components
Class purity:0.79 

Cluster 1

Cluster 2

Cluster 3

(c)

Figure 4.20: Example of Fisher/Kaski metrics. (a) Basic Fisher/Kaski metric. Perfect clustering
(b) Fisher/Kaski with Floyd. Again providing perfect clustering, however this is only
due to the numerical integration. As the aggregated results shows, does the T-point
approximations degrade the performance dramatically when applying Floyd. This is
mainly due to the case where the inter-point distance between two points (or more)
of originally different clusters is not calculated correctly, due to a very sharp change in
p(y|x). This causes the Floyd algorithm to perform very poorly since a short distance
can now be constructed to another class, which causes the inclusion of many point
in the other cluster if no significant p(y|x) change is present within this cluster (see
4.16(b). (c) Example showing the problem of applying Floyd to the Fisher/Kaski
metric on this data set, when using less precise T-point approximations.

of Floyd using the Fisher/Kaski metric and T-point approximations is quite destructible,
as noted in the figure captions. The benefits of using a better T-point approximation for
the Fisher/Kaski metric was more predominant on this set (shown on the sensibility to
initializations).
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Figure 4.21: Clustering with 4 clusters. (a) Euclidian. Shows problems due to the stretched
clusters (b) Mahalanobis. Seems to provide a some what better results than the
Euclidian due to the global weighting. (c) Tipping-Floyd. Works very well, since
the four clusters matches the stretched configuration. The basic Tipping does also
perform quite good. (d) Rattray-Floyd. Same as Tipping providing a almost perfect
clustering, given four clusters. (e) Kaski-Floyd. As seen in other Kaski-Floyd results,
does the metric have a tendency to reduce one cluster to a minimum, which obviously
is a good result and in a general exploration application such a behavior might reveal
a with-in class cluster - effectively providing some sort of exploration
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Clustering Real-world data set: The Phoneme Dataset

The phoneme data set considered here, is based on Finnish natural speech, in which 20
phoneme classes are identified and described by there mel-frequency cepstral coefficients
in twenty dimensions. The phoneme data set originally consisted of two times 1828 data
points, intended as one set for training and one for testing. In the context of examining the
properties of the metrics via clustering, the data set is pruned to only 13 reasonable sized
classes and ten dimensions. Further more the test set is halved in order to minimize the
computational time10 needed for the experiments.

The training is based on the best (BIC-wise) of five models, and only a 13 and a 20 component
model is considered using a 5 and a 10 T-point approximation. However, in this case, both
a diagonal and a full covariance model is considered in order to evaluate the effect of model
structure/complexity in a data set with some relations to the music set of interest. The
results are reported using both the purity and the Jaccard coefficients. The visualization
of the ”clustering” is done through a distance matrix showing the various cluster structures
and inter-point distances for the best obtained result (Fisher/Kaski with diagonal, T=10)
in figure 4.22

K=13 Diagonal Full
T=5 T=10 T=5 T=10

Euclidian 0.72±0.033 (0.77)
0.54±0.053 (0.59)

Maha- 0.67±0.04 (0.75)
lanobis 0.34±0.021 (0.37)
Tipping 0.77±0.031 (0.83) 0.76±0.029 (0.8) 0.75±0.03 (0.79) 0.74±0.029 (0.78)

0.59±0.11 (0.73) 0.58±0.1 (0.72) 0.61±0.098 (0.73) 0.62±0.11 (0.74)
Tipping- 0.77±0.03 (0.83) 0.76±0.029 (0.8) 0.75±0.03 (0.79) 0.74±0.029 (0.78)
Floyd 0.59±0.11 (0.73) 0.58±0.1 (0.72) 0.61±0.097 (0.73) 0.62±0.11 (0.74)
Rattray 0.67±0.038 (0.71) 0.68±0.029 (0.71) 0.64±0.024 (0.68) 0.69±0.02 (0.71)

0.28±0.031 (0.34) 0.3±0.027 (0.34) 0.44±0.042 (0.49) 0.44±0.037 (0.5)
Rattray- 0.69±0.04 (0.77) 0.71±0.045 (0.76) 0.64±0.053 (0.72) 0.69±0.033 (0.73)
Floyd 0.3±0.032 (0.35) 0.31±0.019 (0.34) 0.39±0.065 (0.48) 0.42±0.062 (0.51)
Kaski 0.75±0.03 (0.8) 0.76±0.016 (0.79) 0.68±0.036 (0.73) 0.74±0.04 (0.78)

0.7±0.1 (0.76) 0.71±0.087 (0.76) 0.39±0.024 (0.43) 0.63±0.13 (0.74)

Kaski- 0.74±0.035 (0.8) 0.78±0.018 (0.8) 0.75±0.041 (0.84) 0.74±0.025 (0.79)
Floyd 0.65±0.13 (0.76) 0.7±0.087 (0.76) 0.26±0.05 (0.34) 0.4±0.054 (0.47)

Table 4.5: Phoneme clustering, 13 components: Both purity (first row) and Jaccard coefficients
(second row) are shown, with the Jaccard being in bold letters. The mean and stan-
dard deviation over 10 random initializations are shown along with the maximum value
obtained (in parentheses). See main text for comments

A few very notable results can be obtained from the tables considering the Jaccard coeffi-
cients, i.e. the correspondence between the true classes and the found clusters.

The Rattray metric is first of all very poor on this data set, and performs worse than the
Euclidian distance in terms of the Jaccard coefficient. But looking at the purity gives a
different answer, in which all measures (except a few) provides fairly pure clusters, but
as mentioned, this is not the objective with this example. One problem with the Rattray
formulation is the assumption of a high density area and considering this data set with many
different sizes of clusters may violate this assumption, however this has not been considered
further.

10The distance calculations on this data set has been performed individually on a x86 2.8 GHz machine
still amounting 72-120 hours, dependent on the model size/complexity and approximation!
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K=20 Diagonal Full
T=5 T=10 T=5 T=10

Euclidian 0.72±0.033 (0.77)
0.54±0.053 (0.59)

Maha- 0.67±0.04 (0.75)
lanobis 0.34±0.021 (0.37)
Tipping 0.77±0.016 (0.79) 0.75±0.033 (0.79) 0.74±0.017 (0.78) 0.75±0.021 (0.79)

0.63±0.099 (0.75) 0.63±0.077 (0.73) 0.64±0.088 (0.72) 0.59±0.1 (0.74)
Tipping- 0.77±0.016 (0.79) 0.75±0.033 (0.79) 0.74±0.02 (0.78) 0.76±0.026 (0.79)
Floyd 0.63±0.099 (0.75) 0.63±0.077 (0.73) 0.64±0.084 (0.72) 0.58±0.1 (0.74)
Rattray 0.65±0.053 (0.74) 0.71±0.029 (0.74) 0.64±0.02 (0.67) 0.66±0.026 (0.69)

0.3±0.036 (0.35) 0.32±0.025 (0.36) 0.44±0.047 (0.49) 0.45±0.061 (0.53)
Rattray- 0.67±0.042 (0.72) 0.73±0.027 (0.77) 0.65±0.031 (0.7) 0.64±0.04 (0.71)
Floyd 0.29±0.02 (0.31) 0.33±0.021 (0.36) 0.41±0.058 (0.49) 0.47±0.067 (0.55)
Kaski 0.8±0.021 (0.83) 0.82±0.022 (0.85) 0.63±0.039 (0.68) 0.72±0.026 (0.75)

0.72±0.056 (0.76) 0.71±0.062 (0.78) 0.43±0.068 (0.52) 0.69±0.082 (0.76)

Kaski- 0.76±0.028 (0.79) 0.81±0.03 (0.85) 0.68±0.015 (0.7) 0.68±0.039 (0.73)
Floyd 0.57±0.043 (0.62) 0.7±0.065 (0.77) 0.22±0.02 (0.25) 0.42±0.064 (0.5)

Table 4.6: Phoneme clustering, 20 components: : Both purity (first row) and Jaccard coeffi-
cients (second row) are shown, with the Jaccard being in bold letters. The mean and
standard deviation over 10 random initializations are shown along with the maximum
value obtained (in parentheses). See main text for comments.

Disregarding the Rattray metric and looking at the Fisher/Kaski metric, a quite distinct dif-
ference in robustness to initializations is obtained, favoring the diagonal covariance structure
in almost all cases. The model complexity is also noticed when evaluating the approxima-
tions, in which case, a T=10 point is required for the full covariance case. The difference
between the 5 and the 10 point approximation is quite insignificant using a diagonal covari-
ance matrix. Despite the diagonal case obviously providing a more robust clustering, the
full covariance is still capable of achieving almost the same Jaccard ratio (74 vs. 76 for the
20 component case)

The Tipping measure is quite interesting in the sense that it is capable of achieving good
maximum results, but it is considered rather un-robust across initializations. The relatively
large difference between the Jaccard and the purity measure for the Tipping metric, reflects
the unsupervised nature of this metric.

In conclusion: The phoneme set was used to evaluated the metrics in a real-world setting. It
was shown that the supervised metric provides the better result in terms of the correspon-
dence between the true classes and the found clusters, as expected. The example furthermore
showed that the larger model slightly improves the performance of the Fisher/Kaski metric,
although, the optimal model is not claimed to be found. The full covariance model provides
a more complex decision boundary and the T=10 approximation provides the better results
in this case.

As seen in the simpler examples, does the Floyd algorithm not necessarily help the metrics
if the assumptions made in the formulation do not hold, e.g. a good model with connected
high density areas for the Rattray metric and in general, a precise distance approximation,
and this is not generally improved by the removal of half the data set for the metrics highly
dependent on connected density areas.
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Kaski−Floyd − T−point (10)
T−point approximation (T=10)
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Figure 4.22: Example of distance matrix for the phoneme set. Shows the distance matrix for
the Fisher/Kaski metric with a 20 component model, a T=10 point approximation
and diagonal covariance matrix.
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4.7 Metric Learning vs. Related Methods

While the intuitive feeling of the Euclidian distance is fairly clear - at least if the features
have some degree of conceptual meaning - the use of a local metric describing the local
variance or relevance can seem quite distant to other machine learning methods.

The focus in this thesis is on the explicit estimation of the local metric, J(x) and G(x),
where the supervised metric J(x) was based on a local approximation to the Kullback-
Leibler (KL) divergence. However, it is possible, as described in [24], to formulate a other
supervised approach aimed at clustering, named discriminative clustering (DC) [24]. This
approach is based on a direct minimization of a KL-divergence based cost function, but such
an use of the principle will not be used here, since an explicit estimation of J(x) is believed
to provide better insight into the local properties of the feature space. Furthermore, can the
use of the explicit measure, J(x)), in the K-means algorithm also be seen as a discriminative
clustering technique [24], obtaining similar abilities as the formal formulation of DC.

Other approaches with objectives relevant to the metric principle, includes the use of linear
and non-linear projections methods. Some of these include the option of a supervised la-
beling, such as partial least squares (PLS) and canonical correlation analysis (CCA) (very
close related to PLS), while others are purely data driven, like principle component anal-
ysis (PCA). CCA, for example, is intended at analyzing associations between two sets of
variables in terms of the cross-covariance between the two sets, leading to the concept of a
latent subspace, in which the maximum cross-covariance is obtained. This in essence results
in a possible projection of the first variable, i.e. the primary data, onto this subspace for
further exploration in terms of both the labeled and true data space (see e.g. [30]). However,
as with other projection methods this tend to destroy the meaning of the original space,
assumed to be of crucial importance in the formulation of the Fisher/Kaski metric.

A supervised non-linear approach, which has already been applied to the music similarity
task is the use of neural networks for a (supervised) non-linear mapping into a so-called an-
chor space [4] for further similarity estimation using a potentially simple measure. However,
one issue is the interpretation of such a neural network, which is not always trivial due to
the generally complex structure of these highly non-linear networks (see e.g. [6]).

The use of purely supervised methods for distance measures could be based directly on
the conditional class probability, p(y|x), and may seems quite obvious in some application.
Certainly compared to the rather involved task of path integration of this conditional prob-
ability distribution. However, as already argued: it does not provide a distance directly in
relation to the original feature space like the supervised Fisher/Kaski metric does. In some
cases a classification based measure will even give a totally different response due to the
crossing of several decision borders, as in the 1D example describe in this chapter. This
will later be described for a hypothetical music situation. Depending on the task, a classi-
fication approach may be preferable, such as genre classification for example, for example.
But when the objective is to locate similar songs based on a combination of both the defied
relevance and the signal contents, one might prefer the option of a exploratory metric like
the Fisher/Kaski formulation. An unsupervised alternative is then given by the Tipping
and Rattray metrics, obviously depending on the task and feature space.

Projection methods and variations do often provide either dimensionality reduction and/or
possibly a ”simpler” feature space for a similarity measure, however they do not in general
preserve the topology and in some sense destroys the meaning of the originally formulated
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features. This is one of the reasons for formulating only perceptually motivated features in
this project - in which case the Riemannian metric formulation can be considered an ideal
choice for exploratory analysis; but hardly the first option considered, though.

One major problem using the metric approach, is the computational complexity due to the
density estimation and the general formulation of the metrics, which will be discussed in the
specific real-world context of music similarity (chapter 6)

4.8 Summary

In this chapter, the well-known Gaussian Mixture Model was described, for use in modelling
music data. A supervised variant was presented based on modelling the joint probability of
the data and labels i.e. p(x, y).

Considerations about practical training, in terms of overfitting and model selection was
described, and a general setting using covariance regularization and early stopping was
adopted as the predominant way of avoiding overfitting. The derivation of the Bayesian
Information Criterion, was outlined and the BIC measure will be used in the actual fitting
of music. In particular it is the hope that the use of BIC can improve well-known ways of
music retrieval, described in chapter 5 and 6.

An alternative machine learning techniques was presented, based on the objective to provide
better clustering and/or construct a more explorative datamining method. First two purely
unsupervised metrics were described, which were able to locally weight the contribution of
feature directions based on a Gaussian Mixture Model.

Furthermore a supervised approach was derived based on an already described approach
by Kaski et al [14] extended with the option of a full covariance model for the gaussian
mixture model. The supervised approach is based on estimating the Fisher Information
Matrix formulated in terms of an indirect classification of data in feature space, i.e. the
conditional probability p(y|x).

While the formal, theoretical formulation of the three metrics themselves, i.e. G(x) and
J(x), results in a trackable solution using the mixture models the required path integral
adds a rather complicated dimension to the appealing theoretical formulation. The path
integral was approximated for the two unsupervised metrics based on previous work, to yield
a constant metric along a Euclidian straight line approximation. Furthermore, the gain of
performing integration along a geodesic path was evaluated using a dynamic programming
algorithm, namely Floyd’s algorithm for a shortest-path search.

The approximations mentioned are all based on an engineering approach and the perfor-
mance will in the end depend on the data considered. It is demonstrated that all metric
based distances are capable of clustering data better than both the Euclidian and Maha-
lanobis distance - although quite dependent on the data set and model. The supervised
metric showed superior performance across data sets, as expected, and on the audio data
set provided some initial results on data relatively close to the one described in chapter 2
and 3.
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Chapter 5

Music Similarity

A main motivation of this thesis is the examination of different ways of comparing and
exploring music, i.e. formulated as finding a suitable similarity measure based on the two
perceptually motivated feature types (Mel-frequency Cepstral Coefficients and two dominant
pitches).

In the last few yeas a great deal of research and experimentation has gone into examining
various aspect of music classification and retrieval. One of the main areas of interests is
genre classification which has been the driving force in audio mining for quite a while. The
results have only within the last few years shown to exceed 70-80% correct classification on
a reasonable data set, which compared to for example speaker and speech recognition is a
bit on the low side.

The tools used in this context spans from simple linear classifiers, K-Nearest neighbour
to general non-linear models like Gaussian Mixture Models and neural-networks. Lately a
discriminant classifier, the Support Vector Machines have shown to produce quite reasonable
results on the good side of 70%.

As previously mentioned, does this thesis - and subsequent this chapter - not take the genre
classification viewpoint defined as a hard assignment to a class in which the audio track
is compared directly to a predefined genre (or artist). Although not totally detached from
genre classification, the viewpoint is of a more exploratory nature, in which the clips and
songs are compared to each other, i.e. the outcome will be a similarity measure. This
measure can obviously be used in post-processing to do a K-Nearest Neighbor classification.
The difference between the pure classification and explorative viewpoint should be seen in
the quest for something that sounds similar and a desire to make exciting discoveries in the
music which e.g. can be used to create a map as the example shown in figure 5.1 based on
the idea of an Island of Music concept [23].

A variety of existing measure and distance functions have previously been examined in this
context, spanning from simple Euclidean and Mahalanobis distances in feature space to
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Figure 5.1: Example of one version of a music map. The artist are indirectly classified in terms
of their genre defined in the appendix. The map reflects both the challenges in terms
of the potential borders of i.e. genres, but is also illustrates the task of defining which
is closer. If considering the Euclidian distance in example map we end up with ColdPlay
being slightly closer to Brian Adams than Gun N Roses. One of the ideas in this thesis
is to use the Riemannian metric defined as the basis for constructing these distances,
but in the true feature space, retaining the meaning of the varios directions.. X

information theoretic measure like the Earth Mover Distance and Kullback-Leibler (see e.g.
[5]). Regardless of the final measure, a major trend in the music retrieval community has
been to use a density model of the features (often timbre space defined by MFCC’s), like
presented in chapter 4. The main task of comparing e.g. two models has then been handled
in different ways and is obviously the more interesting task. The trivial case of a single
multivariate gaussian fitted to e.g each song (many data points) does call for the, in this
context natural measure, namely the Kullback-Leibler divergence.

Aucouturier and Pachet [3, 2] suggests using the computational expensive sampling of the
likelihood of one song given the other, which will also be used on the expanded feature set
in this thesis. Pamptak [19] furthermore suggested using a vector quantization approach
in which a signature of the song is described in terms of the cluster centers of a K-Means
model and the likelihood is then estimated based on the centroids of the clusters, i.e. the
code words. Mandel and Ellis proposes an even simpler approach using only one Gaussian
component and comparing them using the Kullback-Leibler Divergence (see e.g. [5]). This
idea is quite fundamental, and will be used and a variation of the Kullback-Leibler divergence
- the Divergence Shape Distance [19] used in speech analysis - will be applied to the custom
data set.

A different technique quite relevant to this project is the so-called anchor space, already
mentioned, proposed by Berenzweig et. al. [4], in which a supervised mapping of music
features is performed through a multi-layer neural network. This could be considered a
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preprocessing step, but does potentially provide a anchor space in which the similarity
measure is simple to calculate. This idea is actually quite different from others in the sense
that a direct non-linear mapping is performed on each data sample, into a new space. The
non-linear projection is in [4] performed using a neural network. One of the disadvantages
using such a technique is the interpretation of the structure of the network, i.e. the task of
analyzing the reason for a data point being transformed into a certain region is not easily
extracted. In a large scale evaluation and application this might - and is quite acceptable -
but on a smaller scale it could potentially be an important property to know the exact reason
for a song being closer to one and not the other e.g. artist. The anchor space mapping is
suggested trained using a set of subjective measures, such as rhythm and melody, which is
conceptually quite close to the multi-dimensional scaling mentioned in chapter 2.

The performance of all these former attempts, ranging from density models and non-linear
mapping based on density modelling and direct comparison of models has several places
been noted not to be particular impressive on reasonable data sets (a glass ceiling of about
65% R-precision exits, and most pessimistic is the work presented in [3], which takes about
the glass ceiling. The goal of the similarity aspect of this thesis is as mentioned not to
solve this problem and provide an all time best, but to provide some insight into the details
of both model structure and behavior of these well-known similarity functions given some
variations of models etc.

In order to provide an alternative to the traditional methods, will the last part of this chapter
address the problem of retaining the original space in audio mining and the principle of
Riemannian based metrics will be used, primarily based on the assumption that the benefit
of retaining the original feature space, as shown in the previous chapter, is beneficial to the
given task at hand - which it very well could be in music, where one issue is to determine
which features differentiates e.g. Brian Adams from U2.

5.1 Information theoretic measures

Similarity can be defined in many ways, and in this section the focus will be on some of the
proposals made relating to information theory, in which the entropy and Kullback-Leibler
plays an fundamental role.

5.1.1 Kullback-Leibler

The Kullback-Leibler divergence is a very fundamental concept in information theory, due
to its relations with mutual information and coding theory. It is defined by:

DKL(p1||p0) =
∫

p1(x) ln
p1(x)
p0(x)

dx (5.1)

The divergence is however not symmetrical, i.e. DKL(p1||p0) 6= DKL(p0||p1), which is
required by the general formulation of a metric, and various attempts have been made
to make symmetric - or distance measures - based on the fundamental Kullback-Leibler
divergence.

Although not intended as a distance measure, the KL-divergence was symmetrized by cal-
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culating the average between the two possible divergences, i.e.

D =
DKL(p1||p0) + DKL(p0||p1)

2
(5.2)

In the special case of a gaussian probability distribution this symmetrized divergence can
be written explicit as
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With M being the dimension and tr is the trace operator. The derivation of this quite
fundamental result is presented in the appendix.

Recently it has been suggested using a reduced Kullback-Leibler distance coined divergence
shape distance (see e.g. [19]) in which the shape of the distribution and not its mean is
included. This results in the following

DSD =
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(5.4)

One fundamental limitation relating to all variants of the basic Kullback-Leibler is the fact
that no analytical solution exits for mixtures of distributions. This limits the possibility to
model complex data directly. There are various techniques to overcome this, like the Earth
Mover Distance described next, which will also be used in this thesis, and applied to the
custom database.

5.1.2 Earth Mover Distance

The Earth Mover Distance (EMD) is an attempt to overcome the restriction of the basic
Kullback-Leibler divergence. The Earth Mover Distance originates from the image retrieval
community, and has proven to work well for image retrieval applications and was original
proposed in [27].

The idea is to define the work required to ”move” one distribution into the other. In terms
of two Gaussian Mixture Models p and q the EMD can be formulated as follows.

EMD =

∑K
i=1

∑L
j=1 fijd (pi, qj)∑K

i=1

∑L
j=1 fij

(5.5)

where d (pi, qj) is the ground-distance between component pi and qj . Furthermore [F ]ij =
fij is optimized as a basic linear programming problem, subject to the following constraints

fij ≥ 0, 1 ≤ i ≤ K, 1 ≤ j ≤ L (5.6)
∑K

i=1 fij ≤ wpi (5.7)
∑L

j=1 fij ≤ wqj (5.8)
∑K

i=1

∑L
j=1 fij = min

(∑K
i=1 wpi ,

∑L
i=1 wqj

)
(5.9)

Futhermore

wp =
∑K

i=1
wpi , wq =

∑L

j=1
wqj (5.10)
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The optimization of [F ] is done with use of a standard simplex algorithm which is provided
by the author of [27].

The ground distance d, can in principle be any positive metric between two components,
however dealing with individual Gaussian components, the natural choice is the Kullback-
Leibler divergence, and since this thesis only considerers similarity measures in which the
symmetry property holds, the symmetrical version of the Kullback-Leibler divergence defined
in 5.3 is taken to be the ground-distance d(pi, qj) between components. Furthermore the
EMD is extended with the Divergence Shape Distance, which to the authors knowledge has
not be examined on a music set before.

The EMD has previously been used in the music retrieval community by Logan and others
[18, 5]. In [5] EMD variations using various model complexities were compared, and it was
concluded that a simple K-means training with a diagonal covariance matrix, yielded better
results than a more advanced EM training with full covariance matrix. Such an investigation
is of course interesting in the sense that it relates to the robustness of the metric.

The full covariance model using the EM algorithm has, however, been used in several image
retrieval applications (e.g. [32]), although often using the asymmetric Kullback-Leibler
divergence, which in turn results in an asymmetric distance function i.e. d(p||q) 6= d(p|q)),
which is not considered here. A full covariance structure is examined for the EMD distance
using the KL divergence and is compared to the diagonal case on the custom data set, and
the outcome of using the full covariance model is dependent on the feature space provided
by the MFCC’s and pitch.

While e.g. [5] and [18] only considers fixed model sizes for the EMD, a variable model
size for each item has previously been used in image/texture classification (e.g. [32]) using
the EMD, which will also be examined on one example in this project, through empirical
experiments by the use of the Bayesian Information Criterion as the selection criterion.

5.2 Cross-Likelihood Ratio

A very popular method in the music retrieval community is to describe each song by a
density model (often a Gaussian Mixture Model), and then compare the log-likelihood of
one song given the other and vice versa. This is known as the (symmetric) Cross-Likelihood
Ratio defined as:

d(MA,MB) = L (XA|θA) + L (XB |θB)− L (XB |θA)− L (XA|θB)

Where Mn is the model (of a clip/song) with the parametrization θn

The likelihood of the data can in principle be calculated from the real data - but given the
often large databases a sampling is performed for each song (often 1500-2500 samples per
song). Since most results [3, 5] are reported using a sampling approach, this approach will
also be applied in this project, mainly to evaluate the effect of the pitch inclusion and to
provide a reference for the metric based method describe in the next section.
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5.3 Metric Based Retrieval & Datamining in music

The traditional audio similarity measures described above are all based directly on the indi-
vidual density model and does, as described, consider the songs in a one-to-one comparison
of the distribution and hence does not include the potential influence of another song/clip
which might be close by in feature space. This roughly means that we are comparing density
models not songs - although these are of course very tightly linked.

As mentioned several times, does this project consider a more local approach in which the
effect of other items, e.g. songs, are included based on the local topology of the feature
space (see chapter 4). Obviously such a metric requires a point of reference, which in the
clustering examples was the centroid of the cluster and each individual data point. In the
case of exploration by retrieval, which this thesis is limited to, such an individual approach is
not applicant since all inter-point distances would have to be calculated (for this data set we
are dealing with 1000 points pr clip). Several techniques exist of solving such a problem, of
which the simplest is to represent the clip by its empirical mean, which is also the approach
applied in the initial experiment considered in this thesis. So the final comparison between
clips becomes a vector comparison of the vector pair {xclip1,xclip2}

Formally this is considered a very rough vector quantization in which the next step would be
to use a better quantization consisting of more representative (more than one) so-called code
words for each clip, leading to more points of reference. Such a vector quantization is usually
performed using the K-means algorithm, but we have already enforced a mixture model on
the training data, and the code words (in the form of centers) defined for this potentially
supervised model, can be used as points of reference if the relationship between songs and
component centers is known, e.g. p(y|µk). However, only the empirical mean approach is
taken in the experiments provided in the next chapter, due to the novel approach of music
similarity which needs to be examined in simple terms, but this could easily be extended to
more points using e.g. vector quantization.

A quite similar approach to the use of metric learning in audio is as already mentioned to use
e.g. a neural network method or potentially another projection method, like partially least
squares or canonical correlation analysis; however this is not explored in-dept here. Such a
projection could obviously be put into the framework of learning metrics for the audio case,
and clips can again be compared using a vector quantization approach and metrics.

Another approach which might be considered also in similarity and mining applications is
the use of a conditional probability comparison, perhaps formulated as a genre classification
task. Considering a classification or using the continuous probability p(y|x) as a measure
of how close two songs are based one some model, we generally obtain the similarity only
in relations to this model and the objective which underlies the training, which could be
genre classification, but two songs can in theory be in the same genre without being close
in feature space, which again relates to the principle of topology preservation. Consider
the example in figure 5.2, in which a number of distributions - possible songs - are located
in such a way that they are disconnected in feature space. A pure classification approach,
e.g. using the mixture model, will result in all A-songs being classified as such. However
using the supervised metric to calculate the similarity from A1 to to A3 will result in a
double crossing of a decision boundary (assuming a straight line approximation, otherwise
the B-circle must be entirely closed). This will lead to A1 being closer to B1 then A3 - but
A1 is still closer to A2 than B1, which makes perfect sense if considering the local features.
Using a Euclidian metric will also lead to B1 being closer to A1 than A3, but unlike the
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A1 A2
A3

B1

B3

B2

Figure 5.2: Example on the difference in a highly hypothetical situation. Similar aspects of this
situation is actually present in the curved data set used for clustering, since a straight
line approximation can risk crossing two decision borders leading to a ”exploration” in
terms of the features

Fisher/Kaski metric will A2 be further away than B1.

The example should only serve as motivation for exploring the metrics described in this the-
sis. The application of the metrics and especially the Fisher/Kaski metric can be extended
much further than the simple retrieval task, on which the metrics is applied/evaluated - and
possibly not optimized for. It was for example shown, through the clustering examples, that
the Rattray metric was quite dependent on a quite good model and the Floyd algorithm,
but using an extreme vector quantization we effectively remove this options and the Rat-
tray metric hence the Rattray metric is not expected to perform well in a simple retrieval
situation. The Tipping metric on the other hand shows a quite robust behavior and may
be considered a local Mahalaobis distance which could potentially prove efficient as music
similarity metric.

5.4 Summary

A number of well-known methods for comparing music in terms of similarity based on density
models was described in this chapter, mainly the Kullback-Leibler based methods, and the
Earth Mover Distance for mixture models. The Divergence Shape Distance - as a special
case of the Kullback-Leibler Divergence - lately applied with success to audio segmentation
applications, was introduced. Furthermore a well-known method based directly on the log-
likelihood of the individual data samples was presented, namely the Cross Likelihood Ratio.

The possibility of using the metric distances formulated and derived in chapter 4, section
4.5, was discussed, and a proposition of quantizing the audio clip to its empirical mean
vector for a simple retrieval situation, will be demonstrated in the following chapter.
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Chapter 6

Experiments

This chapter contains the results obtained in a ”explorative” setting, defined as the task
of music retrieval. The traditional divergence based similarity functions (divergence based
and Cross-Likelihood Ratio (CLR) will be applied with the purpose of evaluating various
parameter choices and the feature set, in terms of the pitch feature and the ongoing problem
of an normalized feature space versus un-normalized features.

After as short introduction to the evaluation approach, are the results presented and dis-
cussed in the following order

Song Retrieval The data set presented in chapter 2 is fitted with models on the song level,
i.e. a gaussian density model is fitted to each individual song, for the evaluation of
the traditional measures and their variations described in chapter 5.

Clip Retrieval The properties of the metric based distances are examined on the data
set, although only one genre has been considered in this setting. The results will be
compared with the well-known methods described in chapter 5.

6.1 Evaluation Methods

One of the difficult issues in music datamining is the lack of ground truth for a number of
applications. In this context we need some idea of when music pieces are similar.

The data will, within this project, be processed by the hieratical assumption that a song is
always closer to album than to an artist and an album is closer to an artist than a genre
etc. This provides some (perhaps wrong) ground truth, in order to evaluate the results,
but considered an relative logical choice based on the construction of the custom dataset in
chapter 3.
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6.1.1 Recall/Precision & R-Precision

A commonly used evaluation method in Information Retrieval (IR) systems is the use of
the Recall and Precision paradigm, somewhat standardized in connection with TREC (Text
REtrieval Conference) [7]. Given a database with a arbitrary number of documents N .
Moreover a set of relevant documents, R, is identified. The cardinality of R is | R |. The set
of retrieved documents, A (answer set), is compared with the number of relevant documents
in the retrieved set. Using the cardinalities of the sets we obtain the following semi-objective1

RA AR

Collection

Figure 6.1: The concept of Recall and Precision. The set R, is the set relevant to a given query,
and the set A is the set returned by a query.

evaluation measures,

Recall =
|RA|
|R|

Precision =
|RA|
|A|

with |RA| = |A ∩R| - or in words

Precision The ability to retrieve top-ranked documents that are mostly relevant.

Recall The ability of the query to retrieve all of the relevant items in the collection.

These measures give different values depending on how many retrieved documents is need-
ed/wanted for a given query, which results in a series of Recall/Precision results. In order
to get an general result the values are averaged over all possible queries, and then plotted.

While the individual evaluation of queries in term of Recall/Precision does provide insight
into the specific detail of the retrieved documents we define the final evaluation measure,
namely the R-precision, which is defined a the Recall value obtain at the precision of which
the number of relevant items (user defined) is retrieved.

1The term semi-objective is attached since the relevant set is still defined by human hand.
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6.2 Results

This section provides the actual results obtained through a quite extensive investigation
into the various properties of the traditional similarity measures, supplemented with initial
results using the Riemannian based metrics. The investigation was initially based on the
traditional audio similarity and density models with full covariance structure for retrieval
of songs and clips. By using an initial data set, this setup was found to produce fairly
robust results by selecting the BIC-optimal models among five trained, with same number
of components.

This, however, proved to be an optimistic assumption in the full evaluation, especially for the
EMD measure and the investigation was therefore extended with the option of a diagonal
covariance matrix providing more robust results, as will be shown and further discussed.
This obviously leads to a large variety of results of which the better are included in this
section, while others are mentioned, but figures etc. are placed in appendix F.

In regards to the retrieval using the Riemannian based metrics only initial results will be
presented due to the time frame of this project. The metrics will be evaluated in a clip
retrieval setup and compared with the traditional measures.

6.2.1 Song Level Retrieval

The traditional measures, divergence based and Cross-Likelihood Ratio (CLR), are evaluated
on the custom data set described in chapter 3. The following setups are considered:

Relevance The relevant set in the R-precision measure is defined as being the artist, i.e.
the measure must return a song for the same artist.

Structure Covariance structure: Full / Diagonal

Size Number of components in the model (fixed for all songs)

Features Two feature set are evaluated, one using only the MFCCs and one also the pitch.
Further more the normalization issues often considered in machine learning is again
evaluated on the similarity measures.

BIC-selection across model sizes A BIC-selection suggestion is tested on the best ob-
tained results from the above, in which the BIC-optimal model is selected for each song
across all model sizes. This approach has been used in e.g. image/texture retrieval
using the EMD [32].

The setup basically results in a total of eight individual complexity curves, 4 for each co-
variance structure. Despite the extra space required, it has been decided to include them
all in order to illustrate the differences in a very visual and easily comparable way.

The models are trained five times for the same model size with random initialization of the
K-means/EM algorithm. The BIC-optimal model (for each song of same size) is then selected
as the one used for the similarity calculation. This BIC-approach was chosen based on the
option of either reducing the number of setups, or neglecting the model variations returned
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Figure 6.2: Song Retrieval: Full Covariance. The performance is very dependent on the indi-
vidual model. It is noticeable that the CLR returns the best result using both a full
covariance and the pitch features. Further does the KL and the DSD provide the overall
best in this full covariance setting, suggesting that the potential of using a full covari-
ance could be justified if a proper robust training is ensured. The EMD is very unreliable
using the full covariance which is a general tendency through out the results. The EMD
does only in a very few cases provide superior performance over the basic divergence,
i.e. using one component. The performance of the simple KL is seen to be relatively
high with 71% for the pitch case and 69% for the non-pitch case, indicating a small
gain os using the pitch in this specific case. The BIC-optimal model being selected as
the best of five, does not seem to improve the consistency across model size, and only
the overall trend should be considered. There is no significant difference, considering
the fluctuation, between the normalized and un-normalized data set.

by the EM algorithm. It was - due to the curiosity of the author - chosen to examine the
mentioned model structures and settings leading to a single run of the measures utilizing only
the BIC-optimal model for fixed sizes. Therefore must the comparison be made with this
BIC selection in mind when considering the obtained quite fluctuating results. A different
approach might have been preferable, however the trend of the results have been verified
on a few individual setups, by avenging over random models, suggesting similar results in
term of both the trend and absolute value obtained. An average over two runs, based on a
test and a training set is then performed on the clip level, providing a smoother result, as
described later.
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Figure 6.3: Song Retrieval: Diagonal Covariance. The consistency and robustness is seen to be
better using the simpler covariance structure, and the EMD distance performs performs
more as supposed to, i.e. better than the trivial ground distance, when not usign
the apparently destructive pitch. No significant difference between the normalized and
not-normalized data set.

Summary of song results
The results generally shows a very fluctuating response and the main findings for each setup
is summarized in the figure captions. The main findings can be summarized as follows:

• The best individual result is obtained using a full covariance model. However this is
based on a single run on the BIC optimal model (of five). This seems to suggest, that
a full covariance is the better choice for the semi-discrete pitch feature, although the
CLR using a diagonal covariance provides a best results very close to that of the full
structure.

• The diagonal covariance structure provides more stable performance of the EMD com-
pared to a full structure when not considering pitch hence providing the more robust
models. The diagonal case shows equal performance using un-normalized versus nor-
malized feature space.

• The Cross-Likelihood Ratio shows consistent, fairly robust results across all setups,
around 73-75 % in retrieval rate.
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• EMD is very dependent on the model applied, only working fully as intended using
a diagonal covariance structure without pitch. The best obtained results using di-
vergence based metrics is obtained using the basic ground distance, Kullback-Leibler
and Divergence shape distance, with a full covariance, suggesting a very good relative
result around 69-71%. This indicates some gain in including the pitch features if a
proper, robust model can be constructed

• The use of the Divergence Shape distance does not provide any gain whatsoever over
the standard Kullback-Leibler divergence, which has been seen in audio segmentation
[19]. This is only considered as a minor result, and has not been investigated further.

In order to provide a BIC-optimal model across sizes (not variation in covariance structure),
is the result using a diagonal covariance without pitch (figure 6.3(d)) singled out. This
will only provide an indication of the model selection potential on the data set. The small
experiment is quite extensive in terms of computation, since it - given the approach chosen
- requires five models to be trained in the predefined interval from 1 to 40 components. The
histogram of the returned model sizes is depicted in figure 6.4. The resulting R-precision,
yields 0.7 for CLR, 0.67 for EMD and 0.62 for the EMD-DSD, which does not reach the
maximum obtained using fixed model sizes.

The rather negative result should not be over-interpreted, and the evaluation should be
performed on other setups. However, it does indicate that the BIC measure might not be
optimal in the model selection for the similarity measures.
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Figure 6.4: Histogram of the BIC-optimal models sizes for the diagonal case in a pure MFCC
feature space. The majorty of the 100 models seems to provide the minimum BIC value
at around 10 components
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6.2.2 Clip Level Retrieval (Pop genre)

The traditional measures are evaluated on the clip level for the Pop genre, i.e. one model
per clip, using the same setups as above (except a BIC-selection across model size). The
setup was defined as

Relevance The relevant set in the R-precision measure is defined as being the artist, i.e. the
measure must return a clip of one of two songs from the artist consisting of originally
20 clips, but due to a splitting (see later) this becomes 10 clips (5 for each song).

Structure Covariance structure: Full / Diagonal

Size Number of components in the model (fixed for all songs)

Features Two feature sets are evaluated, one using only the MFCCs and one including the
pitch. Further more the normalization issues often considered in machine learning is
again evaluated on the similarity measures.

The metric based similarity functions are evaluated using a T=5 point approximation for
each formulation, i.e. Tipping, Rattray and Fisher/Kaski, and the analytical approximation
of Tipping and Rattray. This parameter ”tuning” is based on initial verification of both time
consumption and precision, of which the first was prioritized higher, since the computation
of a similarity matrix scales like n2 with n being the number of clips. It is furthermore
noted that the T=5 point approximations, did provide reasonable result when using it in
clustering. Although the Phoneme set indicating some degradation in performance when
comparing the 5-pint against the 10-point approximation.

The main objective is to verify, that the metrics are applicant in the music feature space,
and to suggest a model structure (full/diagonal), and general motivation for further explo-
ration using the metric approach. The metrics will furthermore be compared with each
other; however models will be fitted using the supervised mixture model - which due to
the restriction

∑Y
y=1 p(y|k) = 1, can not be fitted with model size below K = Y . This

potentially favors the supervised metric - which are thereby defined as the most interesting
metric in this setup.2.

The clips, for each song, were divided into a training and a test set in order to provide an
unbiased estimation of the generalization abilities of the metrics. The main motivation is
based on the song retrieval results, which provided a rather fluctuating result and the fact
that the metrics are based directly on the data set, i.e. the mean of one clip. However, no
evaluation of the variation due to model uncertainty is provided and the BIC-selection of
five trained models is still used. This is again done to save computational time of calculating
the rather demanding similarity matrix between the 100 clips. Overall this should indicate
that the estimation of the test error should not be over-interpreted. The relevant number
of clips becomes - due to the splitting of the data set - five per song, as already mentioned.
This means the labels/classes defined in the supervised training is the artist labels of which
10 exist for the individual genres.

Only the best/informative results for various covariance structures are illustrated for the
metric and traditional measure, respectively. The left out results are included in appendix

2This approach was also taken in the clustering examples, but the size of the problem could in these cases
be seen not to favor the supervised, except partly in the Phoneme data set
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Figure 6.5: Clip Retrieval using Metrics: Full Covariance. The full covariance structure seems
to work better for the metric case. Using the pitch, Kaski is better in the un-normalized
space providing the best results overall, along with the normalized pure MFCC case. The
performance of the Fisher/Kaski metric is quite good, benefiting from the conditional
probability and performs better or equal to that of CLR in all cases. It is noticeable
that the Tipping metric seems to obtain the same results as the Kaski metric in certain
cases. It should also be noted that the Tipping metric may prefer smaller models than
the used here as mentioned in the main text.

F, figure F.1 and F.2,respectively. The included results are for the local metric case a full
covariance structure 6.5 and for the traditional a diagonal covariance structure, 6.6.

Summary of clip result: The results are, as mentioned, based on a split of the songs into
2x5 clips in order to provide some evaluation of the generalization error for the metrics based
similarity measures. This approach ultimately results in a much more smoother response
from the traditional similarity measures, and thus provides some idea of the performance in
a general sense on this level.

The overall findings are:

• The supervised metric is generally the superior providing results on the good side of
65% (max 69%) for the full covariance models, while the diagonal does not seem to
provide a suitable model for the T=5 approximation.
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Figure 6.6: Clip Retrieval: Diagonal Covariance. Generally the diagonal covariance provides
significant gain in the maximum obtained retrieval rate for CLR, but it does indicate -
the main reason for including the structure investigation - that the EMD does perform
slightly better in terms of its defined ground distance. However the absolute rate
obtained is quite disappointing for the EMD distances since a smaller model in terms
of components is seen to outperform the divergence based metrics when using a full
covariance model. A further model simplification may be the way for improving the
performance of the EMD, however the change must be quite large to reach the level of
the full covariance using a single component.

• Rattray’s metric performs quite poorly on the music set - which was also seen on the
Phoneme set.

• The trends from the song retrieval is reflected in the traditional based similarity func-
tions, in which the EMD has problems using a full covariance structure, but provides
the better results. The CLR is again fairly consistent over all setups obtaining results
in the range 63-65% with a full covariance structure being slightly better.

• The Fisher/Kaski and Tipping metric obtains significantly higher rater than the tra-
ditional measures including tractional geometric measures like the basic Euclidian,
Cosine and Mahalanobis.

• Floyd generally does not aid the metrics, which is due to two main factors. One being
the use of approximation which was shown to degrade the performance of Floyd using
the approximations in the clustering examples. The other main reason lies in the
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fact that we effective remove all the data points and the geodesic path can only be
computed via the vector quantization representation of the clips.

• The inclusion of pitch using metrics is not consistent, but using the unnormalized space
does indicate a small potential improvement (1%), but not generally significant. The
traditional methods are generally unaffected by the normalization on the clip level.

Based on the fact, that the unsupervised metrics may provide better performance on smaller
models, was the full covariance setup repeated using unsupervised training (the results are
available in appendix F figure F.3. This test showed no improvement in the general level
of Rattray’s metric (best at one component), and the Tipping metric showed a trend in the
test error towards models of size 8-10 or above, however, at no point did the unsupervised
Tipping reach the level and general trend returned by the supervised training (maximum of
Tipping metric is around 63-64%), indicating that the supervised training is beneficial also
to unsupervised metrics, however the details should be exploited further.
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6.3 Summary & Discussion

This chapter presented the experiments conducted on the custom data set. Two levels
in the hierarchy was considered, namely the song level, which is comparable with other
reported results on music similarity, e.g. [3, 2]. Several setups was considered, based on these
previously reported results which mainly suggest simpler model structure, when using the
EMD and the Cross-likelihood Ratio. The objective is to evaluate aspects model complexity,
feature normalization and secondly the inclusion of an extra perceptual feature, i.e. the pitch.

It was found, using the custom data set, that the EMD is extremely sensitive to the model
fitted, resulting in suboptimal, i.e. worse than the ground-distance, performance when
considering all but a pure MFCC space and diagonal covariance structure. However, the
performance in this situation did not reach that of the ground-distance - mainly the Kullback-
Leibler (KL) divergence - using a full covariance matrix. A reletively good results was
obtained for the KL divergence for the both the pitch and non-pitch cases - but best for
the pitch case ( 71 %). This result is taken to imply that the inclusion of pitch may prove
valuable if a suitable model can be fitted to the discrete like feature - or perhaps even more
relevant; the raw pitch can potentially be applied in a pure discriminative model in which
the discrete like nature is not critical setup (e.g. linear discriminant). The Divergence Shape
Distance proved to be quite irrelevant in this similarity experiments.

Comparing with other similar experiments reveals a relatively good correspondence between
this small setup and larger experiments [5], when considering the over all best. However,
the performance obtained using the ground-distance in the full covariance setup is of course
noticeable specially when considering the low cost of computing the KL-divergence, com-
pared to the higher complexity of the EMD. This indicates, that the justification for using
the computational heavier EMD over basic KL divergence, will depend on the models fitted
and obviously not justified on this data set, when using a full covariance model. However,
such a conclusion must be based on the individual data. Some guidance can of course be
extracted based on the included results.

The CLR showed a quite high robustness in the song retrieval to both normalization, model
structure, model size and feature set, mainly because it is based directly on the likelihood
of the data given the models. It returned a quite high retrieval rates (73-75 %), compared
with other experiments ( 65%, [3]). This, of course, is not generalizable due to the small
data set considered. Furthermore, does the choice of a single run for each model size, based
on the BIC-optimal model, not provide the most robust results for a final conclusion, but
the overall trend is quite evident, though. A suggestion of using the BIC-optimal model for
each across model size, proved to provide no gain, on the single example considered. Other
selection criterions may improve the performance.

A major focus in this project is the application and properties of the local metrics described
in chapter 4. The basic properties was illustrated through experiments in chapter 4, and the
relatively good results - especially using the supervised Fisher/Kaski metric has motivated
the use of these on the music data set. This is done though a direct comparison in feature
space, providing a more explorative measure based on the defined auxiliary information (i.e.
artist). The comparison was made using a crude vector quantization of the clips, combined
with an unbiased estimation of the test error.

The results obtained in this low level test, showed the metric based similarity measures
(Tipping and Kaski) to have superior performance over the traditional methods, given a full
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covariance. The inclusion of pitch did not reveal any overall gain across setups - although
this aspect has not been investigated further. However, a single result indicated that a good
model may benefit from this feature given a optimal model, obtaining the best result of 69%
R-precision.

The use of a full covariance structure is in contrast to the clustering results obtained in
chapter 4, however, the objective is somewhat different in this point-to-point comparison,
and the feature space is moreover different in the sense that the cepstral coefficients in the
Phoneme set are not calculated using the setup described in chapter 2. The retrieval was
based on a T=5 point approximation and a more accurate retrieval is most likely bound
to yield even better results, which was demonstrated using the Phoneme set, were a T=10
point approximation was needed for good results on the more advanced model. Furthermore,
is a better representation of the clip expected to pride a more informative exploration an
possibly retrieval rate.

One important issue in regards to the music similarity discussion is the time consumption
and scalability of the techniques, which was prioritized lower in the basic investigation of the
metrics. General idea behind the metrics are of a global nature calling for a global density
model describing all points and hence classes in feature space. Due to the relatively bad
scalability of the EM algorithm, this very much limits the size of the problems, which can
be analyzed with the metrics, at least without applying a more clever training. The metrics
are in this thesis formulated in terms such a global model, and due to the estimation of
the posterior component probabilities, the class probability (Fisher/Kaski case) and sum-
mation(s), will an increase in the model size contribute considerably to the computational
load, independent of the numerical approximation applied. The metrics, however, scales
linearly with the number of T-points (5 used here), but combined with the n2-scaling in
calculating a similarity matrix with n being the number of songs/clips, will the T-value have
a significant influence on the overall time required. The T=5 point approximation was found
reasonable for the purpose of illustrating the basic properties in music. In general is the pop
genre problem considered to be on the limit of what is reasonable for a general retrieval task,
when using the implemented EM algorithm and the metrics. A detailed complexity analysis
including the influence the model complexity and numerical approximation is recommended
for similar problems in order to evaluate the justification of applying such a learning metric
approach - since it is definitely not insignificant as hereby noted - but more or less ignored
in order to provide these basic results.3

A solution to the computational problems of both estimating the model and the similarity
calculating, could be provided by a different estimation/model of the conditional distribu-
tion. It is, as previously mentioned, suggested by the original researchers due use a direct
estimating of p(y|x) using a gradient descent optimization, which will obviously be a natural
next step from the initial results provided here. Such approach will probably show higher
robust ness to the discrete like feature, compared with the supervised mixture model used
in this initial examination.

All-in-all, does the standard measures perform relatively good, although with the EMD
requiring a robust feature space and corresponding diagonal covariance model - and the
CLR showing superior performance over the divergence based measures (EMD, KL, DSD)
in the song retrieval. Initial results for the the local metrics, using only one approximation
for the comparison, was found quite interesting for the Tipping and Fisher/Kaski metric,

3The computational time required in order to both fit a medium size model (K=20-30) and the subsequent
similarity estimation, spans from approximately 8 to 15 hours on a Sun ∼1Ghz server using a Matlab
implementation
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based on a crude quantization of the clips. Superior performance was generally obtained
using the supervised metric, which in essence is based on a indirect classification, and hence
is expected to perform better in such a retrieval task.
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Chapter 7

Summary & Conclusion

Summary

This thesis was aimed at providing some insight into the similarity measures currently used
for music retrieval and exploratory datamining. This has involved the examination of the
basic properties of music and relevant features for such a investigation. This lead to the
choice of only using perceptually motivated features, namely the mel-frequency cepstral
coefficients (MFCC), and the two estimated pitches, chosen as a supplement to the MFCC’s
for the similarity task. A custom data set was constructed, and described in chapter 2.

The traditional similarity measures are all based on density estimations, and for this purpose
a well-known Gaussian Mixture Model was described in terms of formulation and training. A
supervised density model was furthermore investigated and implemented, aimed at describ-
ing the joint probability between the primary data and the classes/labels. The supervised
model is finally reformulated to describe the change in conditional probability of the labels
given the data.

An alternative machine learning approach is then described based on the desire to create
better clustering and other explorative techniques. The principle is based on Riemannian
geometry and metrics applied to the feature space. Three metrics was descried, of which
two was purely unsupervised metrics based on a locally weighted covariance formulation and
the local changes log-likelihood, respectively. Finally, the perhaps more challenging choice
of an supervise metric was described and derived in terms of the supervised mixture model,
originally based on a reformulation of the Fisher Information Matrix.

The metrics were implemented and verified on a few simple data sets. The metrics and a
few approximations were applied to basic clustering applications and three data sets were
clustered, showing various properties of the metrics - overall suggesting the performance of
a supervised clustering to be more robust and provide a better clustering in terms of purity,
than the two unsupervised, which was also expected based on the formulation.
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The focus was then shifted to the task of music similarity, originally motivating the ex-
amination of the learning metrics. The various similarity methods were evaluated on the
custom data set using a variety of model structures and feature combinations, showing the
sensitivity and perhaps unfortunate properties of the Earth Mover Distance compared with
the simpler Kullback-Leibler divergence using a full covariance matrix. The results showed a
maximum song retrieval rate of approximately 74-75% for a single model evaluation (CLR)
using a full covariance model in an original unnormalized feature space including the pitch.
The Cross-Likelihood Ratio showed relatively robust performance across setups.

The main results consisting of the clip level evaluation was then performed in the Pop genre,
mainly to show the abilities of the learning metric, and especially the supervised metric.
The performance trends of the traditional methods was repeated on this level, with a lower
absolute level (maximum of 66% for the CLR). The potential of using the learning metrics in
music mining and exploration was demonstrated and the Tipping metric, and especially the
supervised Fisher/Kaski metric, showed superior performance over the traditional similarity
measures (maximum of 69% for the Fisher/Kaski metric), indicating the potential of using
a metric based approach.

Conclusion

The main contribution of this Master’s Thesis lies in the challenging area of examining and
applying the learning metric principle to music data. The conclusion, in this regard, is based
on the initial results obtained through a similarity experiment, and hence only constitutes
preliminary results using such metrics in music. However, the Tipping and especially the
Fisher/Kaski metric is indeed concluded to generally provide superior retrieval results on
the limited data set, justifying the use of the advanced methods - at least when not con-
sidering the computational issues. Due to the current computational load and numerical
approximations, such a conclusion is difficult to transfer to music sets considerably larger
than the one considered.

A final conclusion in regards to the performance of traditional measures and variations is
primarily based on the more robust results obtained through averaging, and the robustness
and performance of the Cross-Likelihood Ratio is concluded to provide the better option of
the traditional measures on this data set. The main contribution of the thesis in this regard,
lies in the examination of the model structure for the widely applied measures, and it must
be concluded that the Earth Mover Distance is extremely sensitive to the covariance model
used on the custom data set. On the custom dataset can the EMD only be justified if a
full covariance model is not obtainable, since the performance of the basic Kullback-Leibler
using a full covariance model. However, this will again depend on the data set and hence
feature space considered.

Overall, this thesis has contributed with insight into a new metric based, explorative method
for use in audio applications and a comparison of this technique with existing methods, defi-
nitely showed the potential of a more data driven approach. However, certain computational
issues, in term of numerical approximation and computation resources, needs to be handled
in order to a provide a generally feasible method for music similarity.
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Further work

The main contribution of this thesis is in the metric learning area, and the reported results
reflects the limited time frame of this project. Therefore is a number of suggestions for
further research provided, based on the problems and limitations identified - especially in
relation to the supervised Fisher/Kaski metric.

More Music Exploration The task of data exploration, was in this thesis limited to the
relatively simple task of retrieval (and a few other examples), which is essence only
indicates the true exploration properties of the learning metric principle. Further
investigation into the explorative nature of the metric for music is an obvious next
step from the basic investigation performed in this thesis.

A visualization of the results, was originally planed to appear in this text, which based
on a Sammon mapping visualized the clips based on the calculated features. However,
this explorative visualization did not make the final version, due to time constraints -
but is an obvious next step.
Other potential experiments include a deeper analysis of e.g. the pop genre, than
performed here. Using the local metric an obvious option would be to analysis the
individual clips in terms of feature separating them from others - possibly providing a
deeper in-sight into both the feature space and the music itself.

Projection with learning metrics and other methods In this thesis the supervised
learning metric was limited to the explicit estimation of the metric, given by J(x).
However, as described in e.g. [24], is an implicit exploration possibly by formulating a
projection, which indirectly obtains the same result as the explicit estimation. Such an
approach might prove valuable in the analysis of music, but requires a further insight
into the nature of learning metrics.

Projections are in general a interesting area, and as mentioned previously, does other
linear and non-linear projection methods exist with relevance to this area. E.g. neural
networks, principle component analysis, partially least squares and canonical correla-
tion analysis.

Computational issues The experiments and conclusion above was based on the assump-
tion that the computational load of the similarity estimation and dataming techniques
does not matter. However as discussed in chapter 6, is the calculation of the metric
based distances orders of magnitudes larger than e.g. a simple Euclidian distance,
effectively limiting the type of datamining application in which the learning metric
principles can be applied. The number of experiments in this thesis was limited be-
cause of this, and the amount of data present in the pop genre is on the limit what
is reasonable given the current implementation1. This obviously calls for optimized
implementations, and it is probably worth considering an analytical approximation of
the Fisher/Kaski metric, which has not investigated further in this thesis.

Traditional Similarity Methods The number of experiments using the traditional meth-
ods was in this thesis limited to the custom data set used. However, based on the
results obtained here - mainly the fact that the EMD does not provide a generally
robust measure - calls for a large scale evaluation with the same setup as described in
chapter 6, if the deeper implications are to be evaluated.

1The code is implemented in Matlab - not providing the best performance when inner loops are required,
as with the metrics describe in this thesis.
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General Machine Learning Using Learning Metric The application of the learning
metric principle, limited to the Fisher/Kaski metric, has been reported in e.g. [24, 14]
for e.g. bankruptcy analysis and text clustering. However, due the interesting nature
of the metrics and the preserved topology, it is believed that such a method can
provide insight into many other problems - of which the music provides an very relevant
example.
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Appendix A

Relation between Kullback-Leibler
divergence and Fisher”s

Information Matrix

This proofs follows one presented in [24].

Consider to close by distribution p and q. The Kullback-Leibler divergence can then be
approximated in term of its Taylor expansion in regards to ei = pi − qi. Doing so around
zero can be expressed by [24]

DKL (p, q) =
∑

y

(pi − qi)
2

2pi
+O

(
max

i
|pi − qi|3

)
(A.1)

If considering the conditional distributions, p becomes p = p (y|x) and q becomes q =
p (y|x′), where x′ = x + dx. If applying yet another Taylor expansion for the difference
between p and q, p(y|x′)− p(y|x) becomes

p (y|x′)− p (y|x) = (x′ − x)
∂

∂x
p (y|x) +O

(
‖x′ − x‖2

)

Combining the two Taylor expansions, yields

DKL (p (y|x) , p (y|x′)) =
∑

y

(x′ − x)T ∂
∂xp (y|x)

(
∂

∂xp (y|x)
)T

(x′ − x)
2p (y|x)

+
∑

y

2O
(
‖x′ − x‖2

)
(x′ − x)T

(
∂

∂xp (y|x) +O
(
‖x′ − x‖2

))2

2p (y|x)

+O
(
max

i
|p (y|x)− p (y|x′)|3

)
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Where the first term is a quadratic form given by 1
2dxT J(x)dx Considering The second term,

the gradient of p(y|x) is considered constant around the expansion and the term becomes
O

(
‖x′ − x‖3

)
. The third terms is also O

(
‖x′ − x‖3

)
since p(y|x′)−p(c|x) contributes with

each O (‖x′ − x‖) for each y. I.e. the expression becomes

DKL (p (y|x) , p (y|x′)) =
1
2
dxT J(x)dx +O

(
‖dx‖3

)

Which gives the results in 4.77.
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Derivation of the Fisher/Kaski
metric

B.1 Supervised Riemannian Metric

This section contains the full proof of the supervised metric based on the supervised gaussian
mixture model.

The metric is defined from the Fisher Information matrix in 4.78 and repeated here for
convenience

J(x) = Ep(y|x)

{
∂ log p (y|x)

∂x

(
∂ log (p (y|x))

∂x

)T
}

(B.1)

=
∫

y∈Y

p(y|x)
∂ log p (y|x)

∂x

(
∂ log (p (y|x))

∂x

)T

dy (B.2)

Where Y is the set of labels Y = {y1, y2...yn}, and the integral effectively becomes a sum
over the discrete values of y.

The conditional probability given the supervised mixture model modelling the joint proba-
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bility p(x, y), can be written as

p (y|x) =
p (y,x)
p (x)

(B.3)

=
K∑

k=1

p (y|k) p (k|x) (B.4)

=
K∑

k=1

p (y|k)
p (x|k) P (k)

p (x)
(B.5)

=
K∑

k=1

p (y|k)
p (x|k) P (k)∑K

k′=1 p (x|k′)P (k′)
(B.6)

=

K∑
k=1

p (y|k) p (x|k) P (k)

K∑
k=1

p (x|k) P (k)
(B.7)

Using the basic chain rule in regards to the partial derivative

∂ log (p(y|x))
∂x

=
1

p(y|x)
∂p(y|x)

∂x
(B.8)

(B.9)

Using basic rule for differentiating factions and plugging in p (y|x) from B.7

∂p(y|x)
∂x

=
∂
PK

k=1 p(y|k)p(x|k)P (k)

∂x

∑K
k=1 p (x|θk)P (k)

(∑K
k=1 p (x|θk) P (k)

)2

−
∂
PK

k=1 p(x|k)P (k)

∂x

∑K
k=1 p (y|k) p (x|k)P (k)

(∑K
k=1 p (x|k)P (k)

)2 (B.10)

First term, numerator: Differentiating and sums are interchangeable, i.e

∂
∑K

k=1 p (y|k) p (x|k) P (k)
∂x

=
∑K

k=1

{
P (k) p (y|k)

∂p (x|k)
∂x

}
(B.11)

Second term, numerator:

∂
∑K

k=1 p (x|k) P (k)
∂x

=
∑K

k=1

{
P (k)

∂p (x|k)
∂x

}
(B.12)
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Substituting B.11 and B.12 into B.10 yields (after a small rearrangement of factors)

∂p(y|x)
∂x

=

K∑
k=1

p (x|k)P (k)
K∑

k=1

P (k) p (y|k) ∂p(x|θk)
∂x

(∑K
k=1 p (x|k) P (k)

)2

−

K∑
k=1

p (y|k) p(x|k)P (k)
K∑

k=1

P (k) ∂p(x|θk)
∂x

(∑K
k=1 p (x|k)P (k)

)2 (B.13)

=

K∑
k=1

{
P (k) p (y|k) ∂p(x|k)

∂x

}
− p (y|x)

K∑
k=1

{
P (k) ∂p(x|k)

∂x

}

∑K
k=1 p (x|k)P (k)

(B.14)

Since p(y|x) is constant in regards to k

∂p(y|x)
∂x

=

K∑
k=1

P (k) [p (y|k)− p (y|x)] ∂p(x|k)
∂x

K∑
k=1

p (x|k) P (k)

=
K∑

k=1

P (k)
[p (y|k)− p (y|x)]∑K
k′=1 p (x|k′) P (k′)

∂p (x|k)
∂x

(B.15)

We get the following temporary expression for the partial derivative

∂ log p (y|x)
∂x

=
∑K

k=1

[
P (k) p (y|k)− P (k) p (y|x)

p (y|x)
∑K

k′=1 p (x|k′)P (k′)

]
∂p (x|k)

∂x
(B.16)

The factor in the brackets can be simplified by noting that the derivative of the pdf is

∂p (x|k)
∂x

= −C−1
k (x− µk) p (x|k) (B.17)

and

p (y|x) =
∑K

k=1 p (y|k) p (x|k)P (k)
p (x)

(B.18)

Using the above and multiplying the p(x|k) factor from the pdf derivative in B.17 into the
brackets in B.16 we get to the simplification

p (x|k)
P (k) p (y|k)− P (k) p (y|x)

p (y|x) p(x)
=

p(x)P (k) p (y|k) p (x|k)

p(x)
∑K

k=1 p (y|k) p (x|k) P (k)
− P (k) p (x|k)

p (x)

=
P (k) p (y|k) p (x|k)∑K

k=1 p (y|k) p (x|k)P (k)
− P (k) p (x|k)∑K

k=1 p (x|k) P (k)
= p (k|x, y)− p (k|x) (B.19)

The full derivative of the conditional probability can be now written as

∂ log p (y|x)
∂x

=
K∑

k=1

− [p (k|x, y)− p (k|x)]C−1
k (x− µk) (B.20)
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and

∂ log p (y|x)
∂x

(
∂ log p (y|x)

∂x

)T

=
K∑

k=1

K∑

l=1

[p (k|x, y)− p (k|x)] [p (l|x, y)− p (l|x)]Qkl (B.21)

with Qkl = C−1
k (x− µk) (x− µl)

T C−1
l . Now the expectation i.r.t p (y|x) is taken i.e.

J (x) = Ep(y|x)

{
K∑

k=1

K∑

l=1

[p (k|x, y)− p (k|x)] [p (l|x, y)− p (l|x)]Qkl

}
(B.22)

or when dealing with discrete values of y, as in this case

J (x) =
Y∑
n

p (yn|x)
K∑

k=1

K∑

l=1

[p (k|x, yn)− p (k|x)] [p (l|x, yn)− p (l|x)]Qkl (B.23)



Appendix C

Kullback-Leibler Divergence

This appendix contains a derivation of the analytical Kullback-Leibler divergence. The proof
follows one in [12]

DKL (p (x|k) ||p (x|l)) =
R

p (x|k) ln p(x|k))
p(x|l) dx

DJ = 1
2

R
p (x|k) ln p(x|k)

p(x|l) dx + 1
2

R
p (x|l) ln p(x|l))

p(x|k)
dx

The Gaussian pdf’s are given by

p (x|k) = (2π)−
M
2 |Ck|−

1
2 exp

�
− 1

2
(x− µk)T Ck (x− µk)

�
p (x|l) = (2π)−

M
2 |Cl|−

1
2 exp

�
− 1

2
(x− µl)

T Ck (x− µl)
�

Considering the faction given in the KL expression yields, by inserting the pdf’s

ln
p (x|l))
p (x|k)

= ln
(2π)−

M
2 |Ck|−

1
2 exp

�
− 1

2
(x− µk)T C−1

k (x− µk)
�

(2π)−
M
2 |Cl|−

1
2 exp

�
− 1

2
(x− µl)

T C−1
l (x− µl)

�
=

1

2
ln (|Cl|)− 1

2
ln (|Ck|)− 1

2
(x− µk)T C−1

k (x− µk)− 1

2
(x− µl)

T C−1
l (x− µl)

Since

(x− µ)T C−1 (x− µ) = tr
�
C−1 (x− µ) (x− µ)T

�
(C.1)

we obtain R
p (x|k) ln p(x|k)

p(x|l) dx = 1
2

R
p (x|k) ln |Cl| dx

− 1
2

R
p (x|l) ln |Ck| dx

− 1
2

R
p (x|k) (x− µk)T C−1

k (x− µk) dx

+ 1
2

R
p (x|k) (x− µl)

T C−1
l (x− µl) dx
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Furthermore exploiting the linearity of the trace operator the integral becomes

− 1

2

Z
p (x|k) (x− µk)T C−1

k (x− µk) dx = −
Z

1

2
p (x|k) tr

�
C−1

k (x− µk) (x− µk)T
�

dx

= −1

2
tr

�
C−1

k

Z
p (x|k) (x− µk) (x− µk)T dx

�
= −1

2
tr
�
C−1

k Ck

�
= −M

2

1

2

Z
p (x|k) (x− µl)

T C−1
l (x− µl) dx =

1

2

Z
p (x|k) tr

�
C−1

l (x− µl) (x− µl)
T
�

dx (C.2)

=
1

2

Z
p (x|k) tr

�
C−1

l (x− µl) (x− µl)
T
�

dx (C.3)

=
1

2
tr

�
C−1

l

Z
p (x|k) (x− µl) (x− µl)

T dx

�
(C.4)

=
1

2
tr

�
C−1

l

Z
p (x|k) ((x− µk) (µk − µl)) ((x− µk) (µk − µl))

T dx

�
(C.5)

=
1

2
tr
�
C−1

l

Z
p (x|k)

�
(x− µk) (x− µk)T (C.6)

+ (x− µk) (µk − µl)
T + (µk − µl) (x− µk)T + (µk − µl) (µk − µl)

T
�
dx
�

(C.7)

=
1

2
tr
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C−1
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T
��
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=
1

2
tr
�
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l Ck

�
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2
(µk − µl)

T C−1
l (µk − µl) (C.9)

Now the KL divergence can be expressed byZ
p (x|k) ln

p (x|k)

p (x|l) dx =
1

2
ln (|Cl|)− 1

2
ln (|Ck|)− 1

2
tr
�
C−1
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�
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1
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In order to finally obtain

Dsym =
1

2

Z
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(C.16)



Appendix D

Path Integral Approximations - 1D
Evaluation

This appendix contain supplementary evaluation of various T-point approximations for the
three metrics, futher comments can be found in chapter 4.
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Figure D.1: Tipping approximations.
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Figure D.2: Rattray approximations.
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Figure D.3: Kaski approximations.



Appendix E

Extended Clustering Results

This appendix contains the clustering results, obtained in the evaluation of the metrics in
chapter 4.

E.1 Curved Data

K=6 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.54±0.042

0.57
Mahalanobis 0.57±0.1

0.72
Tipping 0.65±0.095 0.52±0 0.52±0 0.52±0 0.52±0

0.76 0.52 0.52 0.52 0.52
Tipping-Floyd 0.62±0.0088 0.59±0.02 0.6±0.028 0.59±0.027 0.6±0.028

0.64 0.61 0.63 0.63 0.63
Rattray 0.58±0.037 0.65±0 0.69±0.036 0.71±0.037 0.7±0.041

0.59 0.65 0.73 0.73 0.73
Rattray-Floyd 1±0 0.99±0 0.99±0 0.99±0 0.99±0

1 0.99 0.99 0.99 0.99
Kaski 1±0 0.8±0.085 0.83±0 0.8±0.092

1 0.83 0.83 0.83
Kaski-Floyd 1±0 0.64±0 0.64±0 0.64±0

1 0.64 0.64 0.64

Table E.1: Curved Data I: K = 6. Purity of the classes over 10 different k-means initializations
including the maximum obtained (as second row)
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K=8 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.5±0.063

0.57
Mahalanobis 0.59±0.085

0.72
Tipping 0.5±0.048 0.49±0.056 0.52±0 0.52±0 0.51±0.046

0.56 0.59 0.52 0.52 0.52
Tipping-Floyd 0.48±0 0.67±0.013 0.65±0.025 0.65±0.028 0.66±0.024

0.48 0.68 0.68 0.68 0.68
Rattray 0.76±0 0.71±0 0.71±0.093 0.71±0.087 0.73±0.076

0.76 0.71 0.8 0.8 0.8
Rattray-Floyd 1±0 1±0 1±0 1±0 1±0

1 1 1 1 1
Kaski 0.99±0.007 0.84±0 0.84±0 0.84±0

1 0.84 0.84 0.84
Kaski-Floyd 1±0 0.64±0 0.64±0 0.64±0

1 0.64 0.64 0.64

Table E.2: Curved Data: K = 8. Purity of the classes over 10 different k-means initializations
including the maximum obtained (as second row)

K=10 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.53±0.048

0.57
Mahalanobis 0.55±0.11

0.72
Tipping 0.53±0.02 0.52±0.093 0.56±0.074 0.6±0.033 0.61±0.028

0.55 0.65 0.68 0.68 0.64
Tipping-Floyd 0.52±0.009 0.69±0.084 0.83±0.046 0.81±0.059 0.8±0.061

0.53 0.72 0.85 0.85 0.85
Rattray 0.62±0.099 0.68±0 0.7±0.033 0.71±0.031 0.71±0.022

0.79 0.68 0.72 0.72 0.72
Rattray-Floyd 0.63±0 1±0 1±0 1±0 1±0

0.63 1 1 1 1
Kaski 0.99±0.007 0.84±0 0.84±0 0.84±0

1 0.84 0.84 0.84
Kaski-Floyd 1±0 0.59±0 0.59±0 0.59±0

1 0.59 0.59 0.59

Table E.3: Curved Data: K = 10. Purity of the classes over 10 different k-means initializations
including the maximum obtained (as second row)

K=12 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.55±0.043

0.57
Mahalanobis 0.57±0.1

0.72
Tipping 0.51±0.053 0.55±0.047 0.55±0.049 0.52±0.024 0.51±0.095

0.59 0.6 0.6 0.71 0.71
Tipping-Floyd 0.59±0 0.63±0.007 0.62±0.064 0.57±0.098 0.65±0.013

0.59 0.64 0.65 0.65 0.65
Rattray 0.67±0.047 0.79±0 0.8±0.083 0.76±0.053 0.87±0.071

0.69 0.79 0.91 0.91 0.91
Rattray-Floyd 0.99±0 1±0 1±0 1±0 1±0

0.99 1 1 1 1
Kaski 1±0 0.86±0.017 0.85±0.017 0.83±0.065

1 0.87 0.87 0.87
Kaski-Floyd 1±0 1±0 1±0 1±0

1 1 1 1

Table E.4: Curved Data I: K = 12. Purity of the classes over 10 different k-means initializations
including the maximum obtained (as second row)
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K=14 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.51±0.056

0.57
Mahalanobis 0.56±0.14

0.72
Tipping 0.43±0.12 0.5±0.083 0.42±0.13 0.49±0.046 0.47±0.081

0.63 0.64 0.52 0.64 0.64
Tipping-Floyd 0.56±0 0.58±0.058 0.58±0.058 0.58±0.058 0.58±0.058

0.56 0.6 0.6 0.6 0.6
Rattray 0.57±0.1 0.76±0 0.69±0.0084 0.68±0.022 0.68±0.028

0.67 0.76 0.69 0.69 0.69
Rattray-Floyd 0.57±0.23 0.97±0.097 1±0 1±0 1±0

0.91 1 1 1 1
Kaski 1±0 0.87±0 0.86±0.013 0.86±0.017

1 0.87 0.87 0.87
Kaski-Floyd 1±0 1±0 1±0 1±0

1 1 1 1

Table E.5: Curved Data I: K = 14. Purity of the classes over 10 different K-means initializations
including the maximum obtained (as second row)

K=16 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.49±0.077 0±0 0±0 0±0 0±0

0.57 0 0 0 0
Mahalanobis 0.49±0.15 0±0 0±0 0±0 0±0

0.72 0 0 0 0
Tipping 0.59±0.19 0.39±0 0.42±0.058 0.44±0 0.44±0

0.77 0.39 0.44 0.44 0.44
Tipping-Floyd 0.57±0.0067 0.43±0 0.48±5.9e-017 0.48±5.9e-017 0.48±5.9e-017

0.57 0.43 0.48 0.48 0.48
Rattray 0.31±0.13 0.44±0 0.51±0.02 0.55±0.1 0.54±0.11

0.53 0.44 0.83 0.83 0.83
Rattray-Floyd 0.33±0.026 0.46±0.19 0.89±0 0.89±0 0.89±0

0.87 0.71 0.89 0.89 0.89
Kaski 0±0 1±0 0.84±0.11 0.88±0.031 0.89±0

0 1 0.91 0.91 0.91
Kaski-Floyd 0±0 1±0 0.42±0.2 0.42±0.19 0.47±0.15

0 1 0.52 0.52 0.52

Table E.6: Curved Data: K = 16. Purity of the classes over 10 different k-means initializations
including the maximum obtained (as second row)
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E.2 Simple Gaussians

K=5 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.61±0.12

0.67
Mahalanobis 0.72±0.076

0.81
Tipping 0.8±0.13 0.83±0.082 0.83±0.11 0.85±0.094 0.86±0.095

0.97 0.88 0.95 0.95 0.9
Tipping-Floyd 0.81±0.2 0.8±0.19 0.75±0.15 0.82±0.16 0.87±0.12

0.96 0.96 0.95 0.95 0.95
Rattray 0.86±0.08 0.57±0.13 0.71±0.12 0.76±0.1 0.75±0.097

0.93 0.69 0.89 0.89 0.88
Rattray-Floyd 0.76±0.2 0.85±0.16 0.77±0.15 0.82±0.15 0.83±0.12

0.92 0.97 0.98 0.98 0.98
Kaski 0.97±0 0.88±0.17 0.96±0.012 0.96±0.012

0.97 0.97 0.97 0.97
Kaski-Floyd 0.75±0.091 0.57±0.1 0.49±0.14 0.46±0.13

0.8 0.63 0.63 0.63

Table E.7: Simple Gaussians: K = 5. Purity of the classes over 10 different k-means initializa-
tions including the maximum obtained (as second row)

K=7 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.62±0.12

0.67
Mahalanobis 0.74±0.064

0.78
Tipping 0.84±0.13 0.76±0.11 0.8±0.11 0.77±0.13 0.76±0.12

0.96 0.9 0.9 0.9 0.9
Tipping-Floyd 0.85±0.13 0.76±0.12 0.84±0.12 0.8±0.13 0.8±0.13

0.94 0.93 0.92 0.92 0.92
Rattray 0.84±0.081 0.69±0 0.71±0.093 0.7±0.08 0.74±0.077

0.89 0.69 0.85 0.85 0.84
Rattray-Floyd 0.81±0.093 0.78±0.14 0.79±0.1 0.7±0.15 0.74±0.063

0.86 0.96 0.96 0.96 0.96
Kaski 0.97±0 0.89±0.12 0.89±0.12 0.93±0.02

0.97 0.95 0.96 0.94
Kaski-Floyd 0.77±0.18 0.42±0.098 0.43±0.1 0.44±0.11

0.97 0.62 0.62 0.62

Table E.8: Simple Gaussians: K = 7. Purity of the classes over 10 different K-means initializa-
tions including the maximum obtained (as second row)
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K=10 Analyt Num (1e-6) T=1 T=5 T=15
Euclidian 0.58±0.14

0.67
Mahalanobis 0.68±0.13

0.78
Tipping 0.76±0.083 0.7±0.021 0.68±0.098 0.71±0 0.71±0

0.94 0.75 0.73 0.73 0.73
Tipping-Floyd 0.71±0.19 0.71±0.034 0.65±0.089 0.68±0 0.68±0

0.88 0.76 0.68 0.68 0.68
Rattray 0.83±0.074 0.77±0.19 0.76±0.18 0.87±0.13 0.83±0.14

0.89 0.95 0.95 0.95 0.95
Rattray-Floyd 0.74±0.088 0.69±0.17 0.59±0.14 0.74±0.15 0.68±0.13

0.81 0.95 0.95 0.95 0.95
Kaski 0±0 0.95±0.017 0.7±0.14 0.77±0.047 0.74±0.062

0 0.95 0.82 0.82 0.83
Kaski-Floyd 0.97±0 0.48±0.071 0.46±0.11 0.44±0.13

0.97 0.64 0.64 0.64

Table E.9: Simple Gaussians: K = 10. Purity of the classes over 10 different k-means initial-
izations including the maximum obtained (as second row)
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Appendix F

Retrieval Results - Extra Results

This appendix contains retrieval results left-out in chapter 6

F.1 Clip Retrieval
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Figure F.1: Clip Retrieval using Metrics: Diagonal Covariance. Generally not a good per-
formance compared with the full covariances, which is somewhat in contrast to the
phoneme data set. It is worth noticing that the non-pitch results provides the better
results, indicating that the diagonal models are not able to capture the the discrete-like
nature of the pitch.
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Figure F.2: Clip Retrieval: Full Covariance. The EMD again has problems with the full covari-
ance, however the basic ground distance, KL and DSD provides a absolute higher than
the diagonal case, which is quite noticeable since the EMD in essence becomes more
or less useless compared to the choice of using a single full covariance gaussian on the
current data set. The maximum obtained results for the CLR is approx. the same as
the full covariance but the model sizes tends to be lower (based on the normalized data
set).
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Figure F.3: Clip Retrieval using Metrics: Full Covariance - only unsupervised metrics. The plots
show a verification of the unsupervised metrics using smaller models, since the training
using supervised models indicated a better performance and trend towards lower model
sizes. The results obtained shows that utilizing smaller models does only improve
the overall trend of the Rattray metric, which still has major problems in the music
set except for the trivial case of one component. The Tipping metric converges to a
maximum at around 10 components, at which point we have results from the supervised
training. Although an interpolation of results across model types is very dangerous is it
still noticeable that the maximum is obtained at 10 components leading to the unsafe
conclusion that Tipping does has its maximum at 10 components for the corresponding
supervised model and hence does not provide better results than the supervised metric
despite the trend of the curve.



Appendix G

Music Dataset - Artists, Songs
and Genres

Genre Artist/Composer

Classical
bach00-09 J.S.Bach Clavier Concerto in F minor Presto
bach10-19 J.S.Bach Concerto in C major for two claviers Overture
chop00-09 Chopin Scherzo #2, B minor, Op. 31 - Presto
chop10-19 Chopin Ballade #4, F minor, Op. 52 - Andante con moto
hayd00-09 Haydn Symph. #6 - Le Matin - Adagio Andante Adagio
hayd10-19 Haydn Symph. #8 - Le Soir - Allegro Molto
lisz00-09 Liszt Symphonic Poem No. 4
lisz10-19 Liszt Hungarian Rhapsody for Piano No. 5 in e minor
morz00-09 Mozart Symph. #45, D major, K.46 III. Menuetto-Trio
morz10-19 Mozart Symph. #46 C major, K.96 III. Menuetto-Trio
niel00-09 C. Nielsen Symph. #2 - Allegro comodo e flemmatico
niel10-19 C. Nielsen Symph. #1 - Allegro orgoglioso
tcha00-09 Tchaikovsky The Nutcracker - Waltz of the Flowers
tcha10-19 Tchaikovsky The Swan Lake - Waltz
tele00-09 Telemann Suite in G major
tele10-19 Telemann Suite in B flat major
viva00-09 A. Vivaldi Spring (Concerto #1, E Major, Op. 8,1) Allegro
viva10-19 A. Vivaldi Autumn (Concerto #3, F Major, Op. 8,3) Allegro
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Heavy/HardRock
bsab00-09 Black Sabbath Under The Sun
bsab10-19 Black Sabbath Iron Man
dist00-09 Distributed Prayer
dist10-19 Distributed Breathe
down00-09 System Of A Down Know
down10-19 System Of A Down Darts
fear00-09 Empty Vision Fear Factoty
fear10-19 Millinium Fear Factoty
guns00-09 Gun’s N’ Roses Right Next Door To Hell
guns10-19 Gun’s N’ Roses Don’t Damn Me
iron00-09 Iron Maiden Aces High
iron10-19 Iron Maiden The Number of The beast
juda00-09 Judas Priest Hell Patrol
juda10-19 Judas Priest Night Crawler
korn00-09 Korn Here To Stay
korn10-19 Korn Bottled Up Inside
mans00-09 Marilyn Manson Get Your Gunn
mans10-19 Marilyn Manson Dogma
metl00-09 Metallica Cure
metl10-19 Metallica Ronnie

Jazz
cart00-09 Benny Carter Come On Back
cart10-19 Benny Carter Titmouse
chet00-09 Chet Baker Tadd’s Delight
chet10-19 Chet Baker Mating Call
davi00-09 Miles Davis The Shrpent’s Tooth
davi10-19 Miles Davis No Line
duke00-09 Duke Ellington The Tattooed Bride
duke10-19 Duke Ellington Vagabonds
evan00-09 Bill evans Peri’s Scope
evan10-19 Bill evans Blue In Garden
fats00-09 Fats Waller Functionizn’
fats10-19 Fats Waller Sugar Rose
larm00-09 Louis Armstrong It’s All in the Game
larm10-19 Louis Armstrong Angle Chile
osca00-09 Oscar Peterson Blues for Smedley
osca10-19 Oscar Peterson Squeaky’s Blues
venu00-09 Joe Venuti Samba de Orpheus
venu10-19 Joe Venuti Take The A Train
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Trance
daru00-09 Darude Exstacy
daru10-19 Darude Sandstorm
fait00-09 Faithless God Is A DJ
fait10-19 Faithless Insomnia
ianv00-09 Ian van Dahl Castles In the Sky
ianv10-19 Ian van Dahl I Can’t Let You Go
infi00-09 Infinity (Juan Atkis) Skyway
infi10-19 Infinity (Juan Atkis) Body Oil
infr00-09 Infernal Kalinka
infr10-19 Infernal Hammond Place
paul00-09 Paul Van Dyk Autumn
paul10-19 Paul Van Dyk Out There
perx00-09 Percy X Break It Down
perx10-19 Percy X By Night
sduo00-09 Safri Duo Amazonas
sduo10-19 Safri Duo Prelude
svgi00-09 Svenson & Gielen The Beauty of Silence
svgi10-19 Svenson & Gielen Twisted
sysf00-09 System F Soul on Soul
sysf10-19 System F Out Of The Blue

Pop/SoftRock
adam00-09 Brian Adams Summer of ’69
adam10-19 Brian Adams Run to you
card00-09 Cardigans Erase and rewind
card10-19 Cardigans Hanging Around
cold00-09 Coldplay Low
cold10-19 Coldplay Talk
eury00-09 Eurytmics Thor In My Side
eury10-19 Eurytmics When Tomorrow Comes
garb00-09 Garbage Special
garb10-19 Garbage Temptation Waits
inxs00-09 INXS Suicide Blonde
inxs10-19 INXS Heaven Sent
mado00-09 Madonna Like a Virgin
mado10-19 Madonna Papa Don’t Preach
robw00-09 Robbie Williams Hot Fudge
robw10-19 Robbie Williams Rock DJ
stmc00-09 Stereo MC Fade Away
stmc10-19 Stereo MC Step It Up
utwo00-09 U2 Zoo Station
utwo10-19 U2 Even Better Than the real thing
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Appendix H

Feature Plots - Detailed view of
the POP genre

Figure H.1: PCA projection of the pop genre. Songs (from the same artist (two) are the same
color/nuance, only differenc eis the marker style.



124 Feature Plots - Detailed view of the POP genre

Figure H.2: PCA projection of the pop genre. Songs (from the same artist (two) are the same
color/nuance, only differenc eis the marker style.




