

Measuring Complexity In X++ Code

Anders Tind Sørensen

Kongens Lyngby 2006
IMM-B.Eng-2006-42

2

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-B.Eng-2006-42: ISSN none

 3

Summary

Almost from the beginning of software development there has been a wish of being able to
measure the quality of the program code. One aspect that affects several areas of software
quality is the complexity of the code. Limiting the code complexity can lead to more
testable code, provides faster bug-fixing and makes it easier to implement new features.
The purpose of this project has been to find and implement relevant complexity metrics for
the programming language X++, which is a part of the Microsoft Dynamics AX ERP
system.

After some investigation the following ten metrics were selected: Source Lines Of Code,
Comment Percentage, Cyclomatic Complexity, Weighted Methods per Class, Depth of
Inheritance Tree, Number Of Children, Coupling Between Objects, Response For Class,
Lack of Cohesion in Methods and Fan In. They represent some of the most established
measures available and are a combination of traditional metrics and metrics designed
specifically for object-oriented languages.

Each of the chosen metrics was implemented as stipulated in the theory. Since X++
contains special language features (e.g. embedded SQL) that the original authors did not
describe, it was necessary to find out what the original intend of the metric was, and then
derive a reasonable solution.

The metrics has been integrated into the existing Best Practice tool, which allows
developers to check that their code adheres to certain non-syntax rules. This way they can
immediately determine if the complexity values of their code is outside acceptable ranges
and hence may need changes to reduce complexity.

In addition to the Best Practice checks, the metric values can be extracted as raw data for
statistical purposes. It is also possible to directly generate statistics on a team/module
level.

4

Acknowledgements

I would like to thank the following people:

• Michael Fruergaard Pontoppidan for being my mentor at Microsoft.
• Knud Smed Christensen for being my mentor at DTU.
• Hans Jørgen Skovgaard for suggesting this exiting topic.
• Ola Mortensen for review of report.
• Morten Gersborg-Hansen for review of report.
• Johannes C. Deltorp for review of report.
• Betina Jeanette Hansen & Victor for love and moral support.

 5

Resumé

Siden software udviklingens begyndelse har der eksisteret et ønske om at kunne måle
kvaliteten af en programkode. Et af de aspekter der påvirker flere områder af software-
kvaliteten er programkodens kompleksitet. Ved at begrænse kompleksiteten kan man få en
mere testbar kode og det bliver hurtigere at rette fejl og tilføje nye funktioner. Formålet
med dette projekt har været at finde og implementere relevante kompleksitetsmålemetoder
til programmeringssproget X++, som er en del af ERP systemet Microsoft Dynamics AX.

Efter nogle undersøgelser blev følgende ti målemetoder valgt: Source Lines Of Code,
Comment Percentage, Cyclomatic complexity, Weighted methods per Class, Depth of
Inheritance Tree, Number Of Children, Coupling Between Objects, Response For Class,
Lack of Cohesion in Methods og Fan In. Disse metoder repræsenterer nogle af de mest
etablerede målinger tilgængelige, og er en kombination af traditionelle metoder og metoder
der er designet specifikt til objektorienterede sprog.

Hver af de valgte målemetoder er blevet implementeret som teorien foreskriver. Da X++
indeholder specielle sprogkonstruktioner (f.eks. indlejret SQL) som de oprindelige
forfattere ikke har beskrevet, blev det nødvendigt at finde ud af hvad det oprindelige formål
med målingen var, og ud fra dette aflede en fornuftig løsning.

Målemetoderne er blevet integreret med det eksisterende Best Practice værktøj, som
tillader udviklere at kontrollere at deres programkode opfylder visse ikke-syntaks regler. På
denne måde kan de med det samme se hvis kompleksitetsmålingerne af deres kode
overskrider nogle grænseværdier og ændringer i koden derfor kan være nødvendige.

Ud over at indgå i Best Practice kontrollerne, kan værdierne fra kompleksitetsmålingerne
også trækkes ud som rå data til statistiske formål. Det er også muligt direkte at generere
statistikker på team/modul niveau.

6

Contents

Chapter 1 Introduction.. 3
Chapter 2 Project planning... 3

2.1 Schedule .. 3
2.2 Development method ... 3
2.3 Security procedures ... 3

Chapter 3 Complexity and metrics ... 3
3.1 Measurements & Metrics ... 3
3.2 Complexity.. 3
3.3 Metrics in Object-Oriented systems ... 3

Chapter 4 Functional specification ... 3
4.1 Abstract .. 3
4.2 Overview & Justification ... 3
4.3 Target Market ... 3
4.4 Pillars.. 3
4.5 High Level Requirements... 3
4.6 Overview Scenarios ... 3
4.7 Personas .. 3
4.8 Assumptions & Dependencies ... 3
4.9 Use Cases.. 3
4.10 Functional Requirements... 3
4.11 Error Conditions ... 3
4.12 Notifications ... 3
4.13 Fields table... 3
4.14 Reports .. 3
4.15 Testability... 3
4.16 Translation & Localization.. 3
4.17 Performance, Scalability & Availability (Client Apps)... 3
4.18 Setup (Client Apps).. 3
4.19 Security & Trustworthy Computing .. 3
4.20 Extensibility & Customization... 3
4.21 Technology Configurations & Platform Considerations 3
4.22 Sustainability Concerns ... 3
4.23 Supportability Concerns... 3
4.24 Upgrade & Maintenance .. 3
4.25 Monitoring & Instrumentation (i.e. Watson & SQM)... 3
4.26 Usability ... 3
4.27 Dev & Test Estimates .. 3

Chapter 5 Design.. 3
5.1 Basic class design.. 3
5.2 Integration with the Best Practice tool.. 3
5.3 Metric statistics... 3

 7

Chapter 6 Implementation .. 3
6.1 Project .. 3
6.2 Base classes .. 3
6.3 Integration with BP ... 3
6.4 Metric implementations .. 3
6.5 Statistics generation... 3

Chapter 7 Test.. 3
7.1 Unit tests .. 3
7.2 Functional test .. 3
7.3 Adherence to own rules ... 3

Chapter 8 Analysis of results.. 3
8.1 Results overview .. 3
8.2 Details .. 3
8.3 Comparison of selected modules... 3
8.4 Comparison by team .. 3

Chapter 9 Metric evaluation ... 3
Chapter 10 Future improvements .. 3

10.1 Open issues ... 3
10.2 New ideas .. 3

Chapter 11 Conclusion... 3
Chapter 12 Bibliography .. 3

Appendix A: Project diary
Appendix B: Source code
Appendix C: Setup instructions
Appendix D: CD with source code and the MBS Functional Specification

8 Introduction

Chapter 1 Introduction

The ERP system Microsoft Dynamics AX contains the powerful programming language
X++. This language enables users and vendors to create their own business objects and
functions. When writing the code, it can be interesting to measure just how “good” quality
the code is. According to [McConnell04] “good” code has the characteristics of being both
maintainable and testable. Complexity has a very high impact on both the testability and
maintainability of code, since developers who can easily understand how the code works,
will be less prone to make errors.

The purpose of this project is to clarify which form of complexity analysis (eg. cyclomatic
complexity, number of lines, lines with comments etc.) will be relevant to X++ code. The
most relevant measurements should then be implemented for X++. A part of the project will
be to design a solution that has the right level of integration with any existing tools inside
Dynamics AX.

The target audience for this report is people with basic knowledge about developing in
Dynamics AX.

 9

Chapter 2 Project planning

This chapter contains information relevant for the planning and execution of the project.
Please note that although this section was created in the beginning of the project it also
contains information added at the end of the project.

2.1 Schedule
The shown project schedule was created to get an overview of how the project should
elapse. The project is rated to 10 weeks, but due to a lot of holidays in the period, it
actually lasted a little longer. Please note that the week numbers are the official European
week numbers, and not the internal DTU.

Week Milestone Report Design Coding
18 Start 1/5 Project planning,

Theory
Relevant
metrics

19 Theory Integration with
existing tools

Test of existing
tools

20 Dev + syntax Basic solution
structure

Metrics Framework

21 All functionality Non-OO metrics
22 Non-OO metrics

4/6
 Non-OO metrics

23 Test Non-OO OO metrics
24 OO metrics
25 OO metrics 25/6 Implementation OO metrics
26 Test + analysis of

results
 GUI stuff

27 Code complete
9/7

Finalize report

28 Finalize report
29 Hand-in 17/7

An up to date project diary can be found in Appendix A. This shows that all milestones
were met on or ahead of time. The Non-OO metric implementations were completed by
May 31st and the rest of the implementations were completed by June 20th.

2.2 Development method
For this project I will use the Test-Driven Development (TDD) method, since this is
becoming more and more common at Microsoft. TDD is a part of what is called eXtreme
Programming (XP), and the main goal of TDD is not testing software, but helping the
programmer during the development process by having clear and unambiguous program
requirements. These requirements can be expressed in the form of tests, and when all
tests succeed the program is complete.

10 Project planning

When coding, the steps are:

• Write a test that specifies a small functional unit.
• Ensure that the test fails, since you haven't built the functionality yet
• Write only the code necessary to make the test pass
• Refactor the code, ensuring that it has the simplest design possible for the

functionality built to date

This is somewhat different from the traditional approach of first implementing and then
testing, but gives the benefit of more testable code since it has been targeted towards
testing right from the beginning. When adding new features later in the product cycle, one
can always run the collection of tests, to ensure that new functionality will not break any
existing functionality.

For at full explanation of TDD and its advantages/disadvantages, please refer to
[Newkirk04].

2.3 Security procedures
As the project period is very limited, it will be very critical to loose work from system
breakdown or theft of equipment. All the material for the project is stored in a single folder
on a laptop. At the end of every working day a backup of the contents will be written to a
CD that will be kept separate from the computer. Once a week a backup of the CD will be
saved on a separate server.

Since there is only one contributor of material on this project, it will not be a problem with
conflicting versions of documents or source code. However, every document (including the
source code) will have a version number and a last-changed date, to have a common
reference for review purposes.

 11

Chapter 3 Complexity and metrics

This chapter provides the reader with some theory regarding the field of software metrics
and complexity. A number of metrics will be introduced, including their definition and use.

3.1 Measurements & Metrics
Measurement has a long tradition in natural sciences. At the end of the 19th century the
physicist Lord Kelvin formulated the following about measurement: “When you can
measure what you are speaking about, and express it into numbers, you know something
about it; but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: It may be the beginning of knowledge,
but you have scarcely in your thoughts advanced to the stage of science.”

As the software development process matures, there is a bigger need to be able to
evaluate the software being created. As Lord Kelvin stated, this means that we must have
numerical values which describe the properties of the software. Many authors have
proposed desirable characteristics that these software metrics must posses: The value
must be computed in a precise manner; it should be reproducible; it must be intuitive and it
should provide some useful feedback to the user of the measure to allow him to get a
better understanding of how to make improvements. Also, a measure should be well suited
for statistical analysis.

3.2 Complexity
The word “complexity” is defined by [Encarta] as “the condition of being difficult to analyze,
understand, or solve”. Software complexity can be defined from a developer’s view, as the
complexity involved in developing and maintaining a software program. Figure 3-1 shows
that software complexity has three varieties: computational, psychological and
representational. The most important of these are probably the psychological, which is
composed of problem complexity, programmer characteristics and structural complexity.

Problem complexity reflects the difficulties in the problem space. The only measures of this
are subjective, as it will depend heavily on the observer’s insight into the problem area.
Also the programmer’s characteristics are hard to measure objectively, although some
sources argue that it can be measured using IQ and personality tests.

The software literature has, due to the above problems, been focused primarily on
developing structural complexity metrics which measures the internal program
characteristics. An internal attribute of a product can be measured in terms of the product
itself. All information that is needed to quantify the internal attribute is available from a
representation of the product. Therefore, internal attributes are measurable during and
after creation of the product. Internal attributes do however not describe any externally

12 Complexity and metrics

visible qualities of the product, but they can be used to get an estimate of some external
characteristics, such as testability or maintainability.

Figure 3-1 Classification of software complexity. Adapted from [Sellers96].

3.2.1 Effects on software quality
Figure 3-2 shows some of the elements that software quality consists of. The structural
complexity can have a direct impact on how easy the product will be to maintain, because
to maintain, one must first understand how the existing code works, then make the
required modifications and lastly verify that the changes are correct.
The lower the complexity, the more maintainable a system is, and thus it decreases the
time needed to fix bugs and speed up the integration/development of new features. Also,
the complexity will have an indirect influence on the reliability because the easier it is to
test a system the more errors are likely to be discovered before they reach the customer.
This will contribute further to the perceived quality of the product

Figure 3-2 Hierarchy of software quality

 13

3.3 Metrics in Object-Oriented systems
Traditional metrics have been applied to the measurement of software complexity of
structured systems since the early seventies. Many sets of metrics have been proposed,
and some have been established as de-facto standards, while some have only been used
for special purposes and programming languages.

Although Object-Oriented (OO) systems have things in common with structured systems
(e.g. basic algorithms), there are architectural differences that must be considered when
measuring OO systems. For example, in OO systems there is a focus on peer-to-peer
relationship rather than a hierarchical structure for control flow. Also, the presence of
inheritance structures and the effect it can have on the system’s complexity cannot be
described by any of the traditional metrics, hence there was a need to develop new metrics
that would better support the system’s special properties.

One application of metrics in both types of systems is in terms of a threshold value or
alarms. An alarm would occur whenever the value of a specific internal metric exceeds
some predetermined threshold. Values that are not within the acceptable range should be
used to draw attention to a particular anomalous part of the code. For many of the metrics
the alarm levels cannot be global absolute values, but are dependent on the particular
development environment and language constructs.

3.3.1 Traditional metrics
In this section some traditional code metrics are described. These have been chosen
based on how commonly they are mentioned in literature and based on review of what
other metric tools are using.

Note that in some of the theoretical descriptions of the metrics several ways to solve a
problem is discussed. Which method is actually chosen for the X++ implementation will be
stated in the Functional Specification.

3.3.1.1 Size (LOC/SLOC)
The size of the code is probably the oldest method of measuring how hard the code is to
understand, and the measurement hereof is mentioned in more than ten thousand
research papers. The size can be measured in many ways, where most of them include
some counting of the physical lines of code, e.g. how many “Carriage return/Line feed”
characters exists. Since most modern languages allows comments and blank lines in the
code, this Lines of Code (LOC) count has been further specialized as Source Lines of
Code (SLOC), where blank lines and comment-only lines will not be taken into account.
SLOC can both be counted at the module (class) and method level.

The problem with SLOC is, that it can be difficult to use to compare code written in different
languages, since the syntax may influence how much code is needed for a given
operation. Also, some languages can have more than one statement on each line, which
makes it hard to compare with more simple languages. The programmer’s personal coding

14 Complexity and metrics

style can also affect the outcome of SLOC, as there is usually more than one way to write
the needed code.

Despite these problems SLOC is still an easy-to-understand metric that gives a good hint
of the amount of effort that will be required to understand how a piece of code works.
SLOC can also be valuable for the management as size measurements can be used in
connection with resource allocation and estimation.

3.3.1.2 Comment Percentage (CP)
Comments in source code assist developers and maintainers in understanding the code.
The Comment Percentage metric can be calculated as the total number of lines with
comments divided by the total lines of code less the number of blank lines.

[Rosenberg97] states that NASA Software Assurance Test Center has found that a
comment percentage of about 30% is most effective. Other authors suggest numbers
ranging from 10% to 20%, but it will depend highly on the level of the programming
language and the complexity of the computational problem.

3.3.1.3 McCabe Cyclomatic Complexity (V(G))
According to [Sellers96], the most established measure of module complexity is the
Cyclomatic Complexity, which was introduced by Thomas McCabe in 1976.

Cyclomatic Complexity is computed using a graph that describes the control flow of a
module, as shown on Figure 3-3. A module corresponds to a single function or subroutine
and has a single entry and exit point. The nodes of the graph correspond to the commands
of the module. A directed edge connects two nodes if the second command might be
executed immediately after the first command. There are a couple of different definitions
for the Cyclomatic Complexity, but the most common is:

V(G) = e – n + 2

where G is a program’s flow graph, e is the number of edges (arcs) in the graph and n is
the number of nodes in the graph.

The word “cyclomatic” comes from the number of fundamental cycles in a connected,
undirected graph. A strongly connected graph is one where each node can be reached
from another node by following directed edges in the graph. The cyclomatic number in
graph theory is defined as e – n + 1. Program control flow graphs are not strongly
connected, but they become strongly connected when a “virtual edge” is added,
connecting the exit node to the entry node. Adding one to the graph theory definition to
represent the virtual edge makes the Cyclomatic Complexity equal to the maximum
number of independent cycles through the directed acyclic graph. Note that V(G) is not the
number of test paths through the code, since there are often additional paths to test
[Sellers96].

 15

Figure 3-3 Control flow graph with sequence (a), nested if (b) and sequential if (c)

Figure 3-3 shows three examples of control flow graphs and what their Cyclomatic
Complexity numbers are. As can been seen, a sequential program with no branches will
always have V(G) = 1, no matter how many nodes the program consists of. It does not
matter how any branches are structured: (b) has two nested ifs whereas in (c) they are
ordered sequentially, but still they have the same complexity number. Some argue, that
intuitively (b) is of greater complexity than (c), but this is not the case when using the V(G)
formula.

According to [McCabe96] there are several practical ways of computing the Cyclomatic
Complexity. Of course one could create a complete control flow graph with all the nodes
and edges and apply the V(G) formula directly. This approach can however require a great
amount of computational work, since we are actually only interested in the decisions in the
graph and not all the individual nodes. Instead we can take advantage of that most
programming language constructs has a direct mapping to the control flow graph, and
there by adds a fixed amount to complexity. I.e. an if statement, for statement, while
statement and so on, are binary decisions, and therefore add one to complexity.

Boolean operators will either add one or nothing to complexity, depending on whether they
have short-circuit evaluation semantics that can lead to conditional execution. For example
the X++ operator && will add one, since the second part of the && statement will only be
evaluated if the first part is true. Note that many implementations do not take these short-
circuit Boolean operators into account. If these are suppressed it means that the
Cyclomatic Complexity number will not be equal to the number of paths in the code, and
thereby can not be directly interpreted as a measure of the number of test paths needed to
fully cover the code. No matter which approach is taken, the important thing when
calculating complexity from source code is to be consistent with the interpretation of
language constructs in the flow graph.

16 Complexity and metrics

As with Boolean operators, there are also different opinions on how to treat multiway
decision constructs (like switch). Some argue, that since the switch statement only
evaluates one expression, the entire structure should only add one to the complexity. Also,
there is a discussion if the complexity contribution of the switch statement is exactly the
number of case-labeled statements, even in the case where several case labels apply to
the same program statement (fall-through). [McCabe96] recommends that the switch
statement only contribute with the number of edges out of the decision node, so that fall-
through case labels will not add to the complexity.

Values
A common application of the Cyclomatic Complexity is to compare it against a set of
threshold values. Table 3-1 shows such a set. As stated in section 3.2, it will depend very
much on the programmers experience and insight in the problem the code solves, how well
these threshold values apply, but [McCabe96] finds these guidelines appropriate.

Cyclomatic complexity Risk evaluation
1-10 Simple module without much risk
11-20 More complex, moderate risk
21-50 Complex, high risk
> 50 Un-testable module

Table 3-1 V(G) values

3.3.1.4 Function points (FP)
Function points are an ISO recognized software metric to size an information system
based on the functionality that is perceived by the user of the system, independent of the
technology used to implement the system. It is thereby probably the only metric that is not
restricted to code.

In FP, system size is based on the total amount of information that is processed, together
with a complexity factor that influences the size of the final product. The complexity factor
is based on these weighted items:

- Number of external inputs
- Number of external outputs
- Number of external inquiries
- Number of internal master files
- Number of external interfaces

The weights assigned to each item depend on the specific system being developed. This
is also one of the main arguments against FP, that two systems might not get the same
measurement, as the weights are a matter of individual interpretation.

 17

3.3.2 OO metrics
In this section, special metrics applying to Object-Oriented systems will be described. The
majority of the included metrics has been proposed by [Chidamber91].

3.3.2.1 Weighted methods per class (WMC)
A traditional metric suite for Non-OO systems often includes the Number of methods,
which is a simple count on how many methods a given code file contains. [Chidamber91]
introduces the Weighted Methods per Class (WMC) metric, which is the sum of the
complexities of the methods in a class. The complexity they mention can in principle be
calculated in a variety of ways, but for most applications the Cyclomatic Complexity V(G)
will be used. Some also sets the complexity per method to a fixed value of 1, which is
allowed according to the definition, thus making WMC = Number of methods.

The number of methods and the complexity of methods in a class is an indicator of how
much time and effort will be required to develop and maintain the class. The larger number
of methods in a class, the greater is the potential impact on its children, since the children
will inherit all the methods defined in the parent class. Also, classes with a large number of
methods are likely to be very application specific, which can limit the possibility of reusing
the class.

There are some problems in calculating WMC, since the metric does not specifically state
which type of methods to include (private, public, protected etc.). Also, it does not
distinguish class attributes (i.e. the “get” and “set” methods) from regular methods, so there
will be added one to the WMC count for each attribute.

Different limits for the WMC have been used in various metric tools. One way is to set the
WMC to a fixed maximum number, e.g. 50. Another way is to specify that a maximum of
10% of classes can have more than 20 methods. This allows some large classes but the
majority of classes should be small.

3.3.2.2 Response for a Class (RFC)
The metric Response for a Class (RFC) counts the number of methods (both internal and
external) in a class that can be potentially used by another class. If a large number of
methods can be invoked in response to a message to a class, the testing and debugging of
the class can become more complex, since it will require a greater level of understanding
from the tester or developer.

In [Chidamber91] RFC is defined as the number of distinct elements in RS (RFC = |RS|),
where the response set RS is expressed by:

RS = {Mi} Uall n {Rij}

where {Mi} = set of all methods in the class and {Rij} = set of methods called by {Mi}. The
response set can also be expressed as the number of local methods plus the number of
remote methods.

18 Complexity and metrics

Figure 3-4 RFC example illustration

In Figure 3-4 is shown classes A, B and C each containing four methods. The arrows show
method calls/usage from class A. The response set for the figure with regards to class A is
calculated as:

RS = {A1, A2, A3, A4} U {B1, B2} U {A2, B2, C1}
 = {A1, A2, A3, A4, B1, B2, C1}

From the above set will RFC equals 7, since it is calculated as the number of distinct
elements in the response set.

3.3.2.3 Lack of Cohesion in Methods (LCOM)
Cohesion measures to which degree the methods of a class are related to each other. A
cohesive class performs one function whereas a non-cohesive class performs two or more
unrelated functions. Correct object-oriented designs maximize cohesion since it promotes
encapsulation. A non-cohesive class might need to be refactored into two or more smaller
classes. Cohesion also has an impact on complexity, since well grouped functionality will
be easier to understand and maintain.

The original object-oriented cohesion metric was proposed by [Chidamber91] and
measures the inverse cohesion. They define Lack of Cohesion in Methods (LCOM) as the
number of pairs of methods on disjoint sets of instance variables (called P), reduced by the
number of method pairs acting on at least one shared variable (called Q). If P > Q then
LCOM=P-Q else LCOM=0. When LCOM equals zero it indicates that it is a cohesive class,
where as a number greater than zero indicates that the class may be split into two or more
classes.

For example, in class X of Figure 3-5, there are two pairs of methods accessing no
common instance variables (f,g and f,h), while one pair of methods (g and h) shares
variable E. This gives a LCOM of 2 – 1 = 1.

 19

Figure 3-5 LCOM example illustration

This original definition of LCOM has received a great deal of criticism from various authors.
Among these are the facts that LCOM gives a value of zero for very different classes, that,
since it is defined on direct variable access, it’s not well suited for classes that internally
access their data via properties, and that the resulting value of LCOM in some cases will
depend on the number of methods in the class.

To overcome the above-mentioned problems, several sources have suggested alternative
interpretations/methods for calculating LCOM. [Sellers96] proposes LCOM* defined as (m -
sum(mA)/a) / (m-1), where m=number of methods in the class, a=number of variables
(attributes) in the class and mA=number of methods that access a variable. LCOM*
decimal values will vary between 0 and 2, where 0 indicates high cohesion and 2 is
extreme lack of cohesion.

[Hitz95] changes the definition of LCOM to measure the number of connected components
in a class. A connected component is a set of related methods and class-level variables.
Methods a() and b() are related if they both access the same class-level variable, or a()
calls b() or b() calls a(). The “Improved LCOM” (ILCOM) equals the number of connected
groups of methods. ILCOM=1 indicates a cohesive class, which is the "good" class.
ILCOM>=2 indicates a problem, where the class should be split into several smaller
classes. ILCOM=0 happens when there are no methods in a class which is also a "bad"
class.

No matter which of the LCOM definitions one may choose, they all measures cohesion
between methods and data. In some cases data cohesion is not the right kind of cohesion.
Some argue that a class groups related methods, not necessarily data. If classes are used
as a way to group auxiliary procedures that does not work on class-level data, the
cohesion will be low. Although this is still a good cohesive way to code, it is not cohesive in
the "connected via data" way. A class that provides only storage will also get a low data-
cohesion, if it does not act on the data it stores.

3.3.2.4 Coupling Between Objects (CBO)
CBO is a count of the number of other classes to which a class is coupled. It is measured
by counting the number of distinct non-inheritance classes that a class depends on, i.e.
classes that are used either through local instance variables or used as parameters to the
methods of the class being measured.

20 Complexity and metrics

Excessive non-inheritance coupling between classes prevents reuse, since a more
independent class will be easier to reuse in another context. If a class has a high CBO it
will also be more sensitive to changes in other parts of the design and therefore
maintenance is more difficult. Also, strong coupling will make a class harder to understand
or change by itself, if it is related to other classes. Designing systems that have the
weakest possible coupling between modules, but where one still adheres to the general
rules of the object’s responsibility, can thus reduce complexity.

3.3.2.5 Depth of inheritance tree (DIT)
Many authors of OO metrics literature note the need to measure a system’s inheritance
structures. This is due to the fact that the deeper a class is in the hierarchy the greater the
number of inherited methods will be, making it more complex. The most common of these
inheritance measures is the Depth of Inheritance Tree (DIT) metric that counts how many
ancestors (parent, grand-parent etc.) a class has.

In many OO based languages all classes inherit from some super class often called
Object. This will result in all user created classes having a minimum DIT of 1, although
some authors argue that Object should not be included when computing the DIT metric.

A recommended value for DIT is 5 or less, although some sources allow up to 8. The
reason for these values is that very deep class hierarchies are complex to develop and
comprehend.

3.3.2.6 Number of Children (NOC)
The number of children is the number of immediate subclasses to a class in the hierarchy.
It is thereby a measure of how many subclasses are going to inherit the methods of the
parent class. [Chidamber91] states that it is generally better to have depth than breadth in
the class hierarchy, since it promotes reuse of methods through inheritance. However, if a
class has a large number of children, it may require more testing of the methods of that
class and hence will increase the testing time.

3.3.2.7 Fan-In / Fan-Out
Fan-Out is another name for the CBO metric. Fan-In measures the number of other
classes having a reference to the class. Since Fan-In in particular is a system metric, it
requires knowledge of all classes in the program, and cannot be measured by just
evaluating the source code of a single class. Despite the possible implementation
problems, Fan-In can be a very useful metric since it gives an indication of how high
impact a change in the class can potentially have. The more who uses the class, the more
caution and testing should be exercised when making a modification.

 21

Chapter 4 Functional specification

Microsoft Business Solutions (MBS) has created document templates for documenting all
steps in the software development process, right from the initial Quick Specification
(describing idea/concept of the functionality) to the final test specification. This helps to
ensure that when all sections of the template has been filled out, all aspects of the
respective step will have been taken into consideration and nothing has been forgotten.

This chapter contains the sections from the MBS Functional Specification template that I
have filled out. Please refer to the CD (Appendix D) for the complete specification
document with descriptions of the sections included.

Product: Microsoft Dynamics AX 4.01
Feature name: BP Complexity Check

4.1 Abstract
The main goal of the feature is to supply the developer with measurements of how
complex the code is.

4.2 Overview & Justification
When handing over code between teams, it is vital that the new developers quickly can
understand the functionality of the code, and how the code is related to and affects other
parts of the system. Also, Independent Software Vendors (ISV) must be able to understand
the existing code in order to extend the functionality. It has been shown in various studies
that the complexity of a piece of code has a great impact on the maintainability,
understandability and testability of the code.

The new Complexity Check tool will provide developers with information of how well the
code performs in connection with complexity- and other OO metrics. It can also be used for
finding candidates among old parts of the code that may need rewriting to live up to the
current coding standards.

The Best Practice (BP) framework already contains functionality for checking different rules
when a class/method is compiled. It will thus be natural for the new tool to be based on the
BP framework since developers are already familiar with this and since it will save some
development time.

4.3 Target Market
This tool will both be targeted towards internal use and as well as Dynamics AX
developers in all markets.

22 Functional specification

4.4 Pillars

MBS Pillar Release Theme Functionality Description
1. Best TCO Low maintenance It will decrease the Total Cost of Ownership by providing

information that can result in lower maintenance and testing
time

4.5 High Level Requirements

Number Category Requirement
0010 Required The developer must be able to select if the complexity check will be

included in the BP check
0020 Required The complexity checks must support all language constructs in

Dynamics AX version 4.0
0030 Required Must support both traditional and OO based metrics
0040 Required Outputs should be in the form of BP suppressible warnings and info.
0050 Required Output from BP must be in both human- and machine-readable

format so it can be post-processed automatically.
0060 Required Results of the complexity checks should be included in the

generation of the Best Practice Excel sheet.
0070 Optional It should be possible to create statistics on all metric values, and not

only those who causes BP warnings.

4.6 Overview Scenarios
Simon is developing a new feature in Dynamics AX. During the development of the actual
code, he has set the compiler output level to 4, to enable automatic best practice checks
when he compiles the code. Also, he has enabled check of the complexity best practice
rules. This helps him to limit the complexity of the code he writes, by pointing out classes
or methods where certain criteria are not met. By reducing the complexity, debugging or
finding errors in the code at a later point in time will become much easier, as he can
quickly understand what the code does and what impact any changes might have on other
classes.

4.7 Personas

No. Persona Name Role Comments
1. Simon System Implementer
2. Ivar Inexp. VAR Sys implementer
3. Isaac ISV Biz App Dev
4. Mort IT Systems developer

All developers in general.
Will only use Simon as persona in the use cases.

4.8 Assumptions & Dependencies

No. Description Type
1. The new feature will (partly) be build on top of the existing Best Practice tool. Dependency

 23

4.9 Use Cases
With basis in the high level requirements and general domain knowledge, six separate use
cases have been identified for the new tool. The use cases are listed in Figure 4-1 and the
following sections will go through the details.

Figure 4-1 Use case diagram

4.9.1 Use Case 1: Select complexity check

4.9.1.1 Goals
Number Goal
0101 Enable the developer to select if the complexity check should be performed as part of the Best

Practice checks

4.9.1.2 Pre-conditions
Number Pre-condition
0201 Must have a developer license to Dynamics AX
0202 The Dynamics AX client should be opened

4.9.1.3 Post-conditions
Number Post-condition
0301 The user’s selection is saved in the database

4.9.1.4 Basic Flow
Step Number Action Reaction
0401 Open the BP setup form, by selecting the

menu Tools\Options… and clicking on the
Best Practices button.

The “Best Practice parameters” form opens.

0402 In the tree expand the nodes “Best Practice
checks”, “Specific checks” and “Classes”.

Tree expands to make the new complexity tree
node visible.

0403 User checks/unchecks the complexity tree Tree node gets checked/unchecked

24 Functional specification

Step Number Action Reaction
node.

0404 The user clicks the “OK” button to save the
changes.

Changes to selection gets saved

4.9.2 Use Case 2: Perform complexity check

4.9.2.1 Goals
Number Goal
0101 To perform the BP complexity check and have violations reported

4.9.2.2 Pre-conditions
Number Pre-condition
0201 Must have a developer license to Dynamics AX
0202 The Dynamics AX client should be opened
0203 The complexity check option must be selected (use case 1)

4.9.2.3 Post-conditions
Number Post-condition
0301 The complexity check has been performed and any violations to the complexity limits have been

reported.

4.9.2.4 Basic Flow
Step Number Action Reaction
0401 User right-click on a class in the Application

Object Tree (AOT) and selects Add-ins ->
Check best practices

The best practice complexity check will output
its results to the “Best practices” tab of the
compiler output window.

4.9.2.5 Variations (Sub Flows)
Step Number Condition Action Reaction
0401a Compiler output

level has been set to
higher than 3.

User performs an action that will
cause the class to be compiled. This
can be that he has edited the source
code of a class and selects “Save” in
the editor.

The class will be compiled
followed by a best practice
check as in flow 0401.

 25

4.9.3 Use Case 3: Investigate output

4.9.3.1 Goals
Number Goal
0101 Enable the developer to see where the metric violation occurs

4.9.3.2 Pre-conditions
Number Pre-condition
0201 The Dynamics AX client should be opened
0202 Must successfully have completed Use Case 2

4.9.3.3 Post-conditions
Number Post-condition
0301 The code that has violated the metric is visible

4.9.3.4 Basic Flow
Step Number Action Reaction
0401 Once the Best Practice has completed and

the Compiler output window has opened,
switch to the Best Practices tab

The Best Practice tab opens.

0402 For each of the errors/warnings in the grid,
double click on the line.

The code for the class/method that contains
the metric violation will be shown in the
MorphX Editor form.

4.9.3.5 Extensions (Alternative Flows)
Step Number Condition Action Reaction
0402a No Best Practice violations None, since the code has

passed the BP checks
None

4.9.4 Use Case 4: Generate BP Excel sheet

4.9.4.1 Goals
Number Goal
0101 To have the output from the complexity check included in the Excel workbook, when using the

CheckBestPractices startup command

4.9.4.2 Pre-conditions
Number Pre-condition
0201 Must have a developer license to Dynamics AX

26 Functional specification

4.9.4.3 Post-conditions
Number Pre-condition
0301 Any warnings or errors from the complexity check will appear in the Excel workbook

4.9.4.4 Basic Flow
Step Number Action Reaction
0401 Dynamics AX is started with the following parameter

-startupcmd=CheckBestPractices_<excel file>
All classes in the AOT are compiled
and the selected best practice checks
are performed. The results are then
grouped and inserted into the Excel
template workbook.

4.9.5 Use Case 5: Generate metric values

4.9.5.1 Goals
Number Goal
0101 Enable developers and managers to view metric values for a selected TreeNode and its

subnodes.

4.9.5.2 Pre-conditions
Number Pre-condition
0201 Must have a developer license to Dynamics AX
0202 The Dynamics AX client should be opened
0203 Cross references must be generated for the entire AOT

4.9.5.3 Post-conditions
Number Post-condition
0201 Metric values have been generated and are viewable in a form.

4.9.5.4 Basic Flow
Step Number Action Reaction
0401 Open the new form “Metric results” The “Metric results” form opens.
0402 Select or manually enter the path to an AOT

TreeNode from where the generation must
commence.

Start path has been selected

0403 User click the “Start generation” button Metric values are generated for the selected
TreeNode and all its subnodes. Afterwards the
grid in the form is refreshed with the new data.

 27

4.9.5.5 Extensions (Alternative Flows)
Step Number Condition Action Reaction
0403a The path given is not a

valid TreeNode
User click the “Start
generation” button

The error message ” Invalid
path to TreeNode” is shown

4.9.6 Use Case 6: Generate team statistics

4.9.6.1 Goals
Number Goal
0101 Enable developers and managers to view metric values for a selected TreeNode and its

subnodes.

4.9.6.2 Pre-conditions
Number Pre-condition
0201 Must have a developer license to Dynamics AX
0202 The Dynamics AX client should be opened
0203 Use case 5 “Generate metric values” must have completed with success

4.9.6.3 Post-conditions
Number Post-condition
0201 Metric statistics per prefix/team has been generated and is viewable in a form.

4.9.6.4 Basic Flow
Step Number Action Reaction
0401 Open the new form “Metric results” The “Metric results” form opens.
0402 Switch to the “Team statistics” tab The “Team statistics” tab is opened.
0403 Select or manually enter the filename/path to

a text file containing combinations of teams
and prefixes.

Filename has been entered

0404 User clicks the “Generate team statistics”
button

Statistics (average, minimum, maximum and
occurrences) are generated for the metric
values, using the selected filename as input.
Afterwards the grid in the form is refreshed
with the new data.

4.9.6.5 Extensions (Alternative Flows)
Step Number Condition Action Reaction
0404a The filename is not valid User click the “Generate team

statistics” button
The error message ” Invalid
filename” is shown

28 Functional specification

4.10 Functional Requirements
This section describes which metrics has been chosen and clarifies any open issues from
the theory section.

4.10.1 Chosen metrics
Since X++ is a highly Object-Oriented language, both traditional and OO metrics should be
used. In the table below can be seen which metrics must be implemented in the new
complexity metrics tool. Please refer to section 3.3 of this report for a detailed description
of the individual metrics.

Metric Level Measures Acceptable

range
SLOC – Source lines of code Method Size [1;40]
CP – Comment percentage Method Complexity [10%;100%]
V(G) – Cyclomatic complexity Method Complexity [1;10]
WMC – Weighted methods per class (1) Class Size and complexity [1;50]
DIT – Depth of inheritance tree Class Size [0;8]
NOC – Number of children Class Coupling/Cohesion [0;10]
CBO – Coupling between objects Class Coupling [0;20]
RFC – Response for class Class Communication and

complexity
[1:50]

LCOM - Lack of Cohesion in Methods Class Internal cohesion [1]
FI – Fan In Class Coupling [1:50]

Computational notes:
(1) Only methods (both private, public and protected) specified directly in a class are
included so any methods inherited from a parent are excluded. V(G) will be used as the
complexity number in WMC calculation.

As can be seen in the table, mostly the metrics proposed by [Chidamber94] (WMC, DIT,
NOC, CBO, RFC, LCOM) has be chosen for the OO part. Although many other metrics
could have been included, the ones proposed by [Chidamber94] has, since their invention,
been implemented in many metrics tools, so some statistical data will be available for
comparing the X++ code with other systems. Among the users of these metrics is NASA’s
Software Assurance Technology Center, which has found them quite useful. The Fan-In
has been included due to its unique ability to find classes that is not referenced from any
other classes (potentially dead code).

The SLOC, CP and V(G) metrics has been chosen because they are relatively easy to
understand, and although they are not directly aimed at OO systems, they still plays an
important part in evaluating method complexity. The Function Point metric described in the
theory section has not been included since it has a somewhat vague definition and is not
restricted to code only.

 29

4.10.2 Elements from the AOT to check
In Dynamics AX there is a distinction between “pure” code classes, and classes
concerning the graphical representation of data. They are separated into the two
Application Object Tree (AOT) nodes called “Classes” and “Forms”. Forms are mostly used
to view/edit data, and the controls on the forms are in most cases bound directly to fields
from a data source. Both classes and forms can contain general methods, but on forms,
each control and field on the data source has their own “methods” node. Since it is vital to
limit method complexity no matter what type of object the methods is attached to, the
method-level metrics (V(G), SLOC, CP) will be calculated for all methods.

In X++, classes have a special method named ClassDeclaration. This method contains
all class-level variables and the specification of the class (private/public + inheritance), but
no real code. This method should not be included in the method-level metrics, since it is a
class definition and not a regular method.

The class-level metrics will however only be calculated for the “pure” classes. This is
because on forms, a lot of the work is done by using the visual designer to set various
properties and not by creating code constructs. This means that the metric algorithms will
be really difficult to apply to forms without redefining the meaning of the metrics.

4.10.3 Handling methods within methods
As oppose to many other Object-Oriented languages, the X++ syntax gives access to
creating methods within other methods (referred to as “embedded methods”) like in C.
None of the algorithms for computing the metrics (this goes for both traditional and OO)
has taken this special case into account.

One of the main arguments for using embedded methods is that it can limit the use of the
embedded functionality to a specific method. It can however be argued, that if it is
necessary to have embedded methods to accomplish some functionality, then the outer
and the embedded method has higher coherency with each other than with the rest of the
methods in the class, and thus should be separated out in their own class. The use of
embedded methods is not yet considered a direct violation to the best practices however it
is generally not recommended when creating new functionality.

30 Functional specification

class A
{
 public void methodX()
 {
 int subMethodZ()
 {
 If (something)
 dothis;
 else
 dothat;
 }

 subMethodZ();
 subMethodZ();
 }

 public void methodY()
 {
 anotherCall();
 anotherCall();
 }
}

class A
{
 public void methodX()
 {
 methodZ();
 methodZ();
 }

 private int methodZ()
 {
 If (something)
 dothis;
 else
 dothat;
 }

 public void methodY()
 {
 anotherCall();
 anotherCall();
 }
}

Figure 4-2 Use of embedded method Figure 4-3 Use of private method

Figure 4-2 shows a class which uses an embedded method and Figure 4-3 shows its
equivalent class where the embedded method has been rewritten as a private method.
Converting from an embedded to a private method can be somewhat tricky, since an
embedded method has access to its outer method’s variables. However, having more
parameters in the new private method can solve this issue.

There are basically two approaches for dealing with embedded methods in the metrics
calculation: Either to see the embedded method as just a code block within the outer
method or to handle them as any other private method. If we “cut” out the code to convert it
to a private method, no complexity penalties will be given to a method that has embedded
methods, since calls to other methods do not contribute to the Cyclomatic Complexity
count. One could argue that this is intuitively incorrect since methods with embedded
methods will be of greater size and thus likely will require more effort to understand.

Using the first approach, where the embedded method is just considered a code block, will
result in methodX of Figure 4-2 having a higher complexity count (V(G)=2) than the
methodX of Figure 4-3 (V(G)=1), since the “if” in the embedded method will be included in
the count for methodX. If we however look at the sum of method complexities for the class,
using the “code block” approach, it will actually result in a lower total complexity than the
“cut” approach (V(G)=3 vs. V(G)=4), since the private methodZ will add 2 where the
embedded methodZ only will add 1 to the total V(G). This issue can be solved by letting
the “constructor” of the embedded methodZ add one to V(G) of methodX, the same way as
a normal method always has a V(G) of one. This will result in methodX of Figure 4-2
having V(G)=3, methodX of Figure 4-3 having V(G)=1 and both having a total class V(G) of
4.

 31

Another advantage of using the “code block” approach is that measurement of SLOC and
CP will also be more understandable and consistent than if we were to split the method
into two parts. The downside is that we need to recognize the embedded method
“constructors”, so we cannot use simple text search to find the code constructs (like “if”,
“while”) for the V(G) count. Since this is only a minor problem, the “code block” method will
be used in the implementation.

4.10.4 Handling SQL statements
Besides having embedded methods, X++ has another special language feature, which is
the ability to have SQL statements directly in the code. Like with embedded methods, none
of the sources discusses how to address this.

In Table 4-1 is given examples of SQL statements representing different combinations of
keywords. The V(G) column suggest how much each statement should contribute to the
Cyclomatic Complexity. The reasoning behind the suggested numbers will be explained
below.

Case V(G) Example
1 0 Select t1 where t1.f1 == x;
2 0 Select t1 where t1.f1 == x && t1.f2 == y || t1.f3 == z;
3 1 while select t1 where t1.f1 == x && t1.f2 == y || t1.f3 == z
4 1 Select t1 where t1.f1 == x

join t2 where t2.f1 = t1.f1;
5 2 while select t1 where t1.f1 == x && t1.f2 == y

join t2 where t2.f1 = t1.f1 && t2.f2 == z
6 0 delete_from t1 where t1.f1 == x && t1.f2 == y;
7 0 update_recordset t1 setting f1 = x where t1.f1 == y && t1.f2

== z;
8 0 insert_recordset t1 (f1, f2) select f11, f22 from t2 where

t2.f1 == y;
Table 4-1 Calculation of Cyclomatic Complexity for SQL statements

As can be seen in the above table, the basic select where does not add anything to the
complexity of the method. This is because it can be compared to retrieving a single object
from a regular function (e.g. a=method1();) which does not add to the complexity.

A while in front of the select will add one, since it will result in loop like a regular while
or for statement.

The Boolean operators && and || in the SQL statements do not add one to V(G), as
opposed to when they occur in normal expressions. The reason for this is that the SQL
statement is executed by the Object Server, and all the elements of the Boolean operators
will always be evaluated, so they can not be seen as short-circuit operators. Also, they can
be considered as just being parameters to a function.

32 Functional specification

The reason why the join also adds one is that it will result in an additional value being
returned. If we were to obtain the same without using the join, we would have to use a
nested while select statement, which also would have added one to the complexity.
However, if an exists or notexists keyword is in front of the join, then nothing should
be added, since no value then will be returned by the SQL statement.

The keywords delete_from, update_recordset and insert_recordset in case 6-8 can
be seen as bulk commands. This is equivalent to regular function calls with parameters,
and thus they do not add anything to V(G).

4.10.5 Handling Switch-statements
As described in section 3.3.1.3, there are different opinions on how to handle switch
statements when calculating the Cyclomatic Complexity. The solution suggested by
[McCabe96] will be adapted in the implementation, so switch statements add the number
of edges out of the decision node to the complexity count. Following this approach, the
code represented on the next page will result in V(G)=3.

switch(a)
{
 case 1:
 doOne();

break;
 case 2:
 case 3:
 doTwoThree();
 break;
 default:
 doSomething();
 break;
}

Please note, that even if we were to remove the “break;” from the code, it would still result
in the same complexity, although the first cases would fall through and result in all the code
being executed. The reason behind this is that a test would still require min. 3 different test
paths to verify its correctness, no matter if the “break;” were there or not.

4.10.6 Handling break and continue
In X++, keywords “break” and “continue” can be used within loops to either jump out of the
loop or to immediately go to the top of the loop. It is quite common to use “break” and it is
reasonably easy to understand when appearing in code, but the use of “continue” is not
that widespread and the use of it might lead to confusing code and is generally not well
seen in an object oriented language such as X++.

The keywords will most often appear as the result of a branch operation like “if”, since
otherwise the code below the keyword would be superfluous as it never would be
executed. The branch before the keyword will have added one to the Cyclomatic
complexity, and since the branch and break/continue can be seen as one path through the

 33

code, the actual keyword will not need to add additionaly to the Cyclomatic Complexity
count.

4.10.7 Handling Try-catch statements in V(G)
Error handling in X++ is done by surrounding code blocks by a try-catch statement. These
statements can be seen as binary decisions, since the “catch” part is only executed if a
certain (error) condition is met. As there can be more than one catch in the error handling
statement, each of the error types being caught will add one to the Cyclomatic Complexity
number.

4.10.8 Handling macros
In X++ macros can be defined the same way as in C. A macro is basically just a piece of
text that gets replaced in the source-code. Macros are usually used as a convenient way of
defining constants, but some macros also contains more complex code.

If the source code of a method is obtained by calling the AOTgetSource function on an
AOT node, the raw code without the macros expanded will be returned. If we however use
the SysScanner class to get the tokens, the macros will be expanded and any text from the
macro will be included in the tokens.

When calculating SLOC and CP, the macros should not be expanded, since one should
not get a line count penalty for declaring constants, which can make the source code a lot
more readable. In the V(G) calculation however, the macros should be expanded so all
branch keywords in the macro (if any) can be evaluated and included in the Cyclomatic
Complexity count. Although one could argue that the macro is just a method, having
application functionality outside well-defined objects is not in line with the Object-Oriented
philosophy. Also, hiding functionality in a macro can make it very difficult to use unit tests
to verify that the functionality works as intended. A “real” method should instead be added
to an object, so the function can be tested and verified as normal.

4.10.9 Types to include in Coupling Between Objects
As described in the theory section, the original definition for CBO states that it is a count of
the number of distinct classes that a class has references to. In X++ however, the
definition of a class is somewhat fluent, since classes can be divided into Class and Form
objects. Also, tables, extended data types and enumerations can be considered as a kind
of classes, since instances of these can be created directly in the code. As the purpose of
CBO is to identify classes which are coupled to a lot of other objects, the term “distinct
classes” in the definition of CBO will for X++ be interpreted as “distinct object types”, so
both regular classes, tables, forms, extended data types and so on, all will add to the CBO
count.

The CBO metric can be used to evaluate how sensitive a class is to changes in other
objects, and since the basic data types like int and str cannot be changed by the
developers, they will not be included in the CBO count. Also, the table fields will not add to

34 Functional specification

the CBO count, since these can be seen as just being methods/properties on the table, so
no matter how many fields of a table is referenced, the entire table will only contribute with
one to the count.

4.10.10 Calculation of LCOM
[Etzkorn97] compares some of the known interpretations of the LCOM metric, to find out
which one is most suitable. Their conclusion is that the LCOM as defined by Li and Henry
is properly the most accurate. They also states that the one proposed by [Hitz95] is the
same just calculated with basis in graph theory instead. Furthermore they have concluded
that the measure should not include inherited variables, but that any constructor methods
should be included in the calculations. The implementation will adhere to their conclusions
and use LCOM as defined by [Hitz95].

One thing [Etzkorn97] does not take into consideration is static methods. Per definition a
static method can not operate on instance variables, so a class with two independent static
methods will always have LCOM >= 2, which indicates that it should be split into two
separate classes. In X++ it is however common practice to group related static functions in
a single class. Also, many classes have a static method “description”, which is used for
reflection purposes. To avoid getting a misleading LCOM, the implementation should not
evaluate static methods.

Another issue is abstract methods. They can not contain any code, and thus will always
cause LCOM > 1 if they are included in the count. To avoid this problem, abstract methods
will not be included in the calculation of LCOM.

 35

4.11 Error Conditions
The new feature contains no error conditions or option boxes.

4.12 Notifications
All of the below mentioned notifications will appear in the Best Practices tab in the
Compiler Output window as warnings. They all have the developer as the recipient, have
no special requirements nor do they have any performance considerations. The
notifications will only appear if the complexity metrics have been enabled in the Best
Practices parameters window.

Notification name Source Lines of code
Trigger condition When BP check is run and the number of Source Lines of a class is

higher than a set threshold value.
Recipient(s) The developer
Notification content –
alert message (short
format)

The number of Source lines (SLOC) of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for SLOC
[Value] – The SLOC of the class, i.e. 438

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Comment Percentage
Trigger condition When BP check is run and the Comment Percentage of a class is lower

than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Comment Percentage (CP) of [Class name] is lower than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for CP
[Value] – The comment percentage of the class, i.e. 11%

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

36 Functional specification

Notification name Cyclomatic complexity
Trigger condition When BP check is run and the Cyclomatic Complexity of a method is

higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Cyclomatic Complexity (V(G)) of [Method name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Method name]– Name of the method that is evaluated
[Recommended] – The recommended value for V(G)
[Value] – The V(G) of the method, i.e. 12

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Weighted Method for Class
Trigger condition When BP check is run and the Weighted Methods for Class number of a

class is higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Weighted Methods for Class (WMC) number of [Class name] is
higher than [Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for WMC
[Value] – The WMC number for the class, i.e. 55

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Depth of Inheritance Tree
Trigger condition When BP check is run and the Depth of Inheritance Tree of a class is

higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short

The Depth of Inheritance Tree (DIT) of [Class name] is higher than
[Recommended]: [Value]

 37

format)

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for DIT
[Value] – The DIT value, i.e. 8

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Number of children
Trigger condition When BP check is run and the Number of children of a class is higher

than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Number Of Children (NOC) of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for NOC
[Value] – The NOC, i.e. 25

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Coupling Between Objects
Trigger condition When BP check is run and the Coupling Between Objects metric of a

class is higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Coupling Between Objects (CBO) metric for [Class name] is higher
than [Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended value for CBO
[Value] – The CBO value for the class, i.e. 15

Special requirements None

38 Functional specification

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Response For Class
Trigger condition When BP check is run and the Response For Class value of a class is

higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Response For Class (RFC) value of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended max. value for RFC
[Value] – The RFC value of the class, i.e. 20

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name Lack of Cohesion in Methods
Trigger condition When BP check is run and the Lack of Cohesion in Methods value for a

class is higher than a set threshold value.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Lack of Cohesion in Methods (LCOM) value for [Class name] is
higher than [Recommended]: [Value]

Replacement variable
definitions

[Class name]– Name of the class that is evaluated
[Recommended] – The recommended max. value for LCOM
[Value] – The LCOM value of the class, i.e. 3

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

 39

Notification name Fan In
Trigger condition When BP check is run and the Fan In of a class is zero.
Recipient(s) The developer

Notification content –
alert message (short
format)

The Fan-In of [Class name] is zero.

Replacement variable
definitions

[Class name]– Name of the class that is evaluated

Special requirements None

Performance and
scalability
considerations

None

Configuration options Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

4.13 Fields table

Fields Data

Type
Def.
Value

Req.
(Y/N)

Edit
(Y/N)

Save to
Templ.
(Y/N)

Size
constraint
in DB

Output
Format

Help text

SysBPParameters.
CheckComplexity

NoYes No N Y N Check class
complexity
metrics

4.14 Reports
The functionality will report its results through the compiler output window’s “Best
Practices” tab or the “Metric results” form, from which all the information can be sent to a
printer. Also, the Excel workbook generated (use case 4) can be printed or by other means
post-processed to form reports.

4.15 Testability
Using TDD will improve the potential for making the code testable through automation.
Also, most of the new functionality will be non-GUI oriented algorithms, which makes ideal
candidates for automated tests. To improve the testability the numeric values for each
metric should be obtained directly from a property on the classes.

4.16 Translation & Localization
No special considerations.
All texts must be defined as labels, like in the rest of the application.

40 Functional specification

4.17 Performance, Scalability & Availability (Client Apps)
The new feature should be fast, since it may be run every time a class is compiled (if
compiler is 4). The goal regarding performance is, that a best practice run on the entire
AOT, where only the complexity metric has been selected, should take no more than 45
minutes on a 3 GHz computer with 1 GB RAM.

This feature should have no impact on the scalability of Dynamics AX, since it only
operates on metadata and thus is independent on the amount of company specific
information in the database.

4.18 Setup (Client Apps)
User must have a regular Dynamics AX client deployed. In order to use the functionality, a
developer license must be installed.

4.19 Security & Trustworthy Computing
This tool will be used by developers who already have access to make changes in all parts
of the application X++ code, so it will not add any additional security risks to the program.

4.20 Extensibility & Customization
For some metrics the threshold (alarm) values are more or less static no matter who are
using them. Other threshold values will depend on specific company policies, which could
state that no methods over a certain size limit are allowed. Due to this, the threshold
values should be changeable on a company level.

Extensibility of the feature will happen through normal the layering strategy, where other
can add new classes in their own layer. To make it easy to add new metrics, the BP
complexity tool must be able to automatically find out which metrics exists across the
layers. This can be done by creating a super class from which all metric classes must
inherit.

4.21 Technology Configurations & Platform Considerations
The tool runs in the Dynamics AX client program, and thus it will have the same platform
limitations as the rest of the client. It will be written to support the syntax of Dynamics AX
4.0 and if any significant changes are made to the syntax in future releases, it will need to
be adjusted accordingly.

4.22 Sustainability Concerns
One of the goals of this tool is to help developers make code more understandable, and
thereby provide for an easier handover of code between teams. The code of this tool

 41

should itself comply with the new complexity checks, so the Sustained Engineering Team
(SE) should be able to quickly understand and work through the code to resolve any issues
or errors that might occur after it has been released.

4.23 Supportability Concerns
Both customers and support will probably have no knowledge of how the various metrics
are computed. If they are to validate the measures, it is important that the help file
contains information of how to manually compute each metric. The theory section from
the report can be more or less directly used as help text, although it might need to be
joined with the functional specification to be more practical applicable.

4.24 Upgrade & Maintenance
The feature will not have any negative effect on upgrade or maintenance, since it only
requires one new field in the database and doesn’t make any vital changes to the existing
functionality.

4.25 Monitoring & Instrumentation (i.e. Watson & SQM)
Dynamics AX uses Watson1 as default, so any errors that occur within Dynamics AX (and
hence in the new tool) will be reported automatically. Evaluation of usage-tracking is not
within the scope of this report.

4.26 Usability
By building upon the existing BP framework, it will provide a recognizable user experience,
since most developers are already familiar with the terminology and usage of the BP tool.

4.27 Dev & Test Estimates
Due to the use of TDD as the development method, the below mentioned Developer Hours
will include the time needed to produce the unit tests during development. Test Hours will
be used for running tests on large amounts of data and analyzing the results.

No. Feature Area Description UE FTE

Hours
UA FTE
Hours

Dev
Hours

Test
Hours

1. Traditional metrics 50 15
2. OO metrics 60 15

1 For more info about Dr. Watson go to
 http://support.microsoft.com/default.aspx?scid=kb;EN-US;308538

42 Design

Chapter 5 Design

The chapter provides an overview of the solution structure, and how the various
components are linked together. Many of the basic decisions were made in the functional
requirements (section 4.10), so the purpose of the solution design is to create an
appropriate program structure that will fulfill these requirements.

5.1 Basic class design
All metrics share certain common properties, no matter how they are computed and what
level (class/method) they operate on. They all perform their computations on an AOT
TreeNode, which will represent either a method or a class. Also, all of them must be able
to return a string that states if the element violates the acceptable value ranges, and thus
causes a best practice warning.

Figure 5-1 shows how these common properties are gathered in an abstract class called
CodeMetricBase. The classes CodeClassMetric and CodeMethodMetric are also
abstract and are used to divide the metrics into two groups, according to the level they
operate on. All metrics will hence get their own class which then inherits from one of these
two sub-base classes.

Figure 5-1 Basic class structure

 43

5.2 Integration with the Best Practice tool
In the existing best practice tool, each kind of AOT object has its own corresponding BP
class, which will check for problems that apply to the specific object type. They all inherit
from the class SysBPCheckBase, which contains common functionality needed by all
checks.

When a user starts a check of the best practices on a given node, the class SysBPCheck is
responsible for iterating through all child nodes. Based on the type of the child node,
SysBPCheck passes the TreeNode to the correct implementation of SysBPCheckBase and
calls the check method on the BP class. Due to performance considerations, only one
instance of each of the BP classes is created. A list with these instances is kept in
SysBPCheck, so the classes can be used whenever needed.

To add the new complexity checks, new functionality must be added to the BP classes
SysBPCheckClassNode (checks “pure” code classes) and SysBPCheckMemberFunction
(checks methods, no matter of what their parent’s type is). As stated in the functional
specification, it is important that it will be easy to add new complexity checks in the future.
To avoid hard coding the names of the metric classes, reflection can be used to find the
available metrics. That way new metrics will automatically be included in the checks, if they
just inherit from either CodeClassMetric or CodeMethodMetric. Since it can take some
time for the reflection API to actually find the correct implementations, the two BP classes
will each hold a list with instances of the appropriate metric classes, so only one lookup will
be needed.

5.3 Metric statistics
The reason that the CodeMetricBase in Figure 5-1 has an abstract method called
getValue is to accommodate for the generation of metric values as described in Use Case
6. Also, all metric implementations must override the method getDescription which
should return the short name (eg. “V(G)” or “WMC”) of the metric. This name will, along
with the treenode path and value, be inserted into a table when the treenode is processed.
After all values have been generated, they can be viewed in a grid on a form. The user can
then use the grid’s build-in filter and sorting functionality to find any interesting data.

There was a wish from the managers to get some statistical values (average value,
minimum value, maximum value, number of occurrences) for each metric per team and
module. Internally, Microsoft has a list of which classes belongs to which team. This list is
based on the prefix (first letters) or postfix (last letters) of the object names. If more than
one prefix matches the object name, then it’s the longest one that has the best match, and
if both a prefix and a postfix match then postfixes are considered as the best match.

To generate the statistical team/prefix values, the list needs to be supplied as an ASCII
text file. Each line should consist of a team and prefix par, separated by semicolon, like
this:

SCM Tech;Sys

44 Implementation

Chapter 6 Implementation

This chapter explains how the different parts of the new complexity tool have been
implemented. Only fragments of the source code will be shown here. Please refer to
Appendix B for the complete source code listing.

6.1 Project
A new Private Project has been created in Dynamics AX, to hold all objects that are
created or modified as part of the new tool. By creating a new project it is easy to create
backups of the code, as one can merely export the private project as an xpo file. It also
makes it easier for others to quickly install the tool, by just importing a single file.

The new project called “Complexity” has the following folder structure and contents:

- Complexity (Main project folder)
 - Modified (Existing AOT objects that has been modified)
 - New (New objects)
 - Metric Framework (Base classes and enumerations)
 - Metric Implementations (Implementations of all ten metrics)
 - Other (Support code)
 - Statistics (Objects for creating statistics on the metrics)
 - Extended data types (Extended data types for statistics tables)
 - Test (Test main folder)
 - Test dummy classes (Nonsense classes for test purposes)
 - Unit tests (Unit tests for the new objects)
 - Unit test helper classes (Classes for initialization of common functionality)

6.2 Base classes
As mentioned in the design chapter, the basic metric framework consists of three abstract
classes: CodeMetricBase, CodeClassMetric and CodeMethodMetric. Although class-
and method level metrics are basically the same, they have individual needs.

Many of the class level metrics needs to have information about which other methods or
classes a class has references to. In Dynamics AX this sort of information is called “cross
references”. Cross references for a TreeNode can be generated using a build-in function,
and will be saved either to a single temporary table (which only exists as long as the
temporary table variable is in scope) or to a “real” set of tables. Using the temporary table
is somewhat faster than using the real tables, since writes to the database is avoided. In
principle, the temporary cross references could just be created in the individual metric
classes, but since it is needed for more than one metric, it is more effective if it can be
passed as a parameter to the classes implementing CodeClassMetric. The UML diagram
of Figure 6-1 shows the extra methods which have been added to CodeClassMetric to
accommodate for the cross references issue.

 45

Figure 6-1 Base classes

The private variable xRefIsInited in CodeClassMetric is set to false whenever a new
TreeNode is passed to the class. This is done by overriding the method setElement from
CodeMetricBase. When a class inheriting from CodeClassMetric needs to use the cross
references, it just calls the protected method initTmpXref to make sure that is has been
properly created. The source code for that method can be seen below. It uses the class
xRefUpdateTmpReferences to perform the actual update.

protected void initTmpXRef()
{
 xRefUpdateTmpReferences tmpUpdate;

 if (!xRefIsInited)
 {
 //Create tmp references for the entire class
 tmpUpdate = new xRefUpdateTmpReferences();
 tmpUpdate.fillTmpxRefReferences(node);
 tmpxRefReferences = tmpUpdate.allTmpxRefReferences();

 //Set the flag to true
 xRefIsInited = true;
 }
}

The method level metrics can have a need to use a scanner class to get the tokens of the
source code. When the metrics are checked as part of a best practice check, the
SysScannerClass have already been created, and since it might take a little time to create,
it would be beneficiary if the instance could be passed to implementations of the
CodeMethodMetric class, like with the cross references on the class level. Figure 6-1
shows which methods have been added to optimize the use of the SysScannerClass.

46 Implementation

6.3 Integration with BP
This section describes how the new tool integrates with the standard best practice tool.

6.3.1 Enabling the complexity checks
It can vary between the various VARs (Value Adding Reseller) and ISVs which best
practice checks they want to use, so each of the checks can be switched on and off. These
settings are saved in the table SysBPParameters and can be edited in the form
SysBPSetup.

A new YesNo field called CheckComplexity has been added to SysBPParameters. To
display it in the form, the following code has been added to the method
buildSelectionTree (where tmpNode is the parent node “Classes”):

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckComplexity),
parameter.CheckComplexity);

Figure 6-2 shows the modified form, where the complexity node has been added below the
“Classes” node. Although the complexity metrics are both on class and method level, only
one checkbox has been added. This could be divided into two, which would allow having
only method level checks turned on, but for simplicity only a single checkbox is used.

Figure 6-2 Best Practice parameters

6.3.2 Loading the metric classes
As stated in the design section, it is important that the names of the metric implementation
classes are not hard coded in the BP tool, which would make adding new metrics more
complicated. Since it can take a little while to find the classes which inherit from
CodeClassMetric or CodeMethodMetric, a new List have been added to both

 47

SysBPCheckClassNode and SysBPCheckMemberFunction. The instances of the metric
implementations in these lists will then be reused to avoid too much overhead creating
classes.

To fill the lists, a new utility class called ClassInstanciator has been created. So far, this
class only has a single static method createSubClassInstances. It takes a variable of
type classId as parameter and returns a List containing instances of classes that
implements the class with the specific id.

The utility class is used in the new method of classes SysBPCheckClassNode and
SysBPCheckMemberFunction, as shown below (from SysBPCheckClassNode):

protected void new()
{
 super();

 //Create a list that will hold instances of the metric classes

codeClassMetricList = ClassInstanciator::createSubClassInstances
(classNum(CodeClassMetric));

}

6.3.3 Performing the checks
Figure 6-3 gives an overview of which steps are involved in performing the BP complexity
checks. Please note that although the figure is for class level metrics, most of it also
applies to method level metrics.

The check method on SysBPCheckClassNode will be called from SysBPCheck (not shown).
If the complexity check has been enabled (see previous section), the method
checkComplexity is called. The source for this method is listed below:

void checkComplexity()
{
 CodeClassMetric codeMetric;
 ListEnumerator enum;
 str errMessage;
 xRefUpdateTmpReferences tmpUpdate;
 xRefTmpReferences tmpxRefReferences;
 ;

 //Create tmp references for the entire class (for optimization)
 tmpUpdate = new xRefUpdateTmpReferences();
 tmpUpdate.fillTmpxRefReferences(sysBPCheck.treeNode());
 tmpxRefReferences = tmpUpdate.allTmpxRefReferences();

 //Loop through all the metric classes that are available
 enum = codeClassMetricList.getEnumerator();
 while(enum.moveNext())
 {
 //Cast as CodeClassMetric
 codeMetric = enum.current();

48 Implementation

 //Pass the tree node of the method to check
 codeMetric.setElement(sysBPCheck.treeNode());

 //Pass the tmp references already generated
 codeMetric.setXRefTmpReferences(tmpxRefReferences);

 //Perform the check
 errMessage = codeMetric.getBPStr();

 //If the errMessage is not empty then add a new BP message
 if (errMessage != '')
 {
 //Find out what to do with the message
 switch(codeMetric.getBPSeverity())
 {
 case BPSeverity::Info:

sysBPCheck.addInfo(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Warning:

sysBPCheck.addWarning(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Error:

sysBPCheck.addError(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 }
 }
 }
}

The first thing this method does is to create the temporary cross references for the current
TreeNode (which is a class-type node). Then the following is done for each of the class
level metric implementations: First, the current TreeNode is passed on to the metric class
by using the setElement method and the cross references are passed on by using the
setXRefTmpRefenreces method. Then the method getBPStr on the metric implementation
is called, and if it results in an error message, the static method getBPSeverity on the
metric object is called to determine if an info, warning or error should be added to the list of
the best practice deviations.

In SysBPCheckClassNode the deviations are added by using one of the methods addInfo,
addWarning or addError from the class SysBPCheck. For the memberfunction checks
however, the method addSuppressableWarning or addSuppressableError on
SysBPCheckMemberFunction is used to add the deviations. Doing this enables the
developers to suppress the warning or error in the code should they wish to do so.

 49

Figure 6-3 Sequence diagram for checking class node

50 Implementation

6.4 Metric implementations
In the following sections, the code for calculating each of the ten metrics will be explained
in depth.

Although the calculation part is different for each metric, the basic structures of the
methods are more or less the same for all implementations. They all override three
methods from CodeMetricBase, which basically just returns constants. The code shown
below is from the class CodeMetricSLOCMethod, but could be from any of the
implementations:

public str getDescription()
{
 //Source Lines of Code
 return 'SLOC';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricSLOCMethod;
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

Another method that looks more or less the same is getBPStr. Normally this starts with
calling the class’ getValue method. Then it compares the resulting value with a predefined
threshold limit from a local macro, and if necessary creates a string with the best practice
message.

public str getBPStr()
{
 str ret;
 int slocVal;

 //Get the value for SLOC
 slocVal = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (slocVal > #MaxSLOCValue)
 ret = strfmt('The number of Source lines (SLOC) of method %1 is %2

 (Max. recommended %3)',node.treeNodeName(),int2str(slocVal)
 ,int2str(#MaxSLOCValue));

 return ret;
}

 51

In some metrics, the main computational function is a static method which takes some kind
of parameter. The reason for this is that the metric computation is used as a part of
another metric. The overridden instance method getValue, will then create the required
parameter object and then call the static method. Below is shown an example of this from
the V(G) calculation.

int getValue()
{
 //Return the value for V(G) for the source code
 return CodeMetricVGMethod::calcVG(this.getScanner());
}

6.4.1 SLOC (CodeMetricSLOCMethod)
Obtaining the source code for a method is very simple, since it is just a matter of calling the
method AOTGetSource on the current TreeNode. To calculate the number of source code
lines, all comments must be removed from the code. When this is done, one can simply
count the number of carriage returns (‘\n’), less the number of blank lines. The primary
method for calculating SLOC is shown below:

public static int calcSLOC(str sourcecode)
{
 int sloc;
 TextBuffer textBuffer;
 str cfcode;
 str line;
 ;

 //Create TextBuffer and fill with comment-free source code
 cfcode = CodeMetricSLOCMethod::removeComments(sourcecode);
 textBuffer = new TextBuffer();
 textBuffer.setText(cfcode);

 //Get first line
 line = textBuffer.nextToken(false,'\n');

 //Loop through lines
 while(line)
 {
 //If the line is not blank then increase SLOC
 if(strrem(line, ' ') != '')
 sloc++;

 //Read next line
 line = textBuffer.nextToken(false,'\n');
 }

 return sloc;
}

52 Implementation

The above method uses a TextBuffer to read through the lines of comment-free source
code. Each time a new non-blank line is fetched the SLOC count is increased.

To be able to remove comments from the source code, a new class SourceCodeChunker
has been created (see Figure 6-4 for an overview of the class). As the name suggests, its
job is to scan through some code to provide chunks of source code and comments. Each
time the method moveNext is called, it will fetch the next available source code and/or
comment. So, to remove comments from a piece of code, one simply can keep calling
moveNext and currentCodeChunk, until moveNext returns false. The method
removeComments in CodeMetricSLOCMethod does exactly that, as shown in the code
snippet below:

Figure 6-4 Overview of CodeMetricSLOCMethod and SourceCodeChunker

public static str removeComments(str sourceCode)
{
 str cfcode = ''; //Comment-free code
 SourceCodeChunker chunker = new SourceCodeChunker(sourceCode);
 ;

 //Get all code chunks
 while(chunker.moveNext())
 cfcode += chunker.currentCodeChunk();

 //Return the comment-free code
 return cfcode;
}

 53

6.4.1.1 SourceCodeChunker
When scanning though the source code for comments there are a number of scenarios
that need to be taken into consideration:

• Two kind of comments

Multi-line comments starts with /* and ends with */.
Single-line comments starts with // and ends when a newline ‘\n’ character is reached.

• Comments in comments
Comments might include other comments.

• Comment-characters inside strings
When regular comment character sequences appears inside a string (enclosed by
either “ ” or ‘ ’), they should not be treated as comments.

The example method shown below (extracted from one of the unit tests) illustrates the
above mentioned challenges. It furthermore includes escaped characters and quotes (also
in combination with verbose strings starting with @), which can all pose problems when
trying to find the end of a string.

/*Starting comment
 Comment line 2
 // */
int MyMethod()
{
 int a; //Comment here
 str s= '/* hello */ // “ \' ';
 /*comment*/ int c; //Line ends with comment
 s=@'hello \';
 ;
 if (a==1)
 this.doSomething();

 //Only comment line /* more comments */
}

The getNext method of the SourceCodeChunker (see next page) starts by clearing the
private output variables. It then calls the private method scanForCommentsAndQuotes,
which finds the first occurrence (position) of one of the following character(s): /*, //, ’, ”.

If a multi-line or single-line comment is found, then the variable currentCode is set to
contain all code from the last known end-position to the newly found position. Then the end
of the comment is found by searching for either */ or a newline character, the comment is
extracted, and the end-position is saved.

If the start of a string is found (double or single quote character), then the method
findStrEnd is called, to find the position where the string ends. Then
scanForCommentsAndQuotes is called again, starting at the end of the string. This will keep
repeating until a comment has been found or the end of the code is reached.

54 Implementation

public boolean moveNext()
{
 int scanPos;

 //Reset the output variables
 this.resetOutput();

 if(fromPos < sourcelen)
 {
 //Scan for comments and strings
 scanPos = this.scanForCommentsAndQuotes();

 //Repeat until we have found a comment
 while(scanpos > 0 && currentComment == '')
 {
 switch(substr(source,scanpos,#commentLength))
 {
 case '/*':
 //Start of multi line comment found, so insert the
text and search for comment end
 currentCode += substr(source,fromPos,scanPos-frompos);
 fromPos = strscan(source,'*/',scanPos,sourcelen -
scanPos)+#commentLength;
 currentComment = substr(source,scanPos,frompos-
scanPos);
 break;

 case '//':
 //Start of multi line comment found, so insert the
text and search for line end
 currentCode += substr(source,fromPos,scanPos-frompos);
 fromPos = strscan(source,'\n',scanPos,sourcelen -
scanPos) > 0 ? strscan(source,'\n',scanPos,sourcelen - scanPos) :
sourcelen +1;
 currentComment = substr(source,scanPos,frompos-
scanPos);
 break;

 default:
 //All text until the next quote pos will be included,
regarding if it is a comment
 scanPos = this.findStrEnd(source,
scanPos+1,substr(source,scanpos,1),substr(source,scanpos-1,1));
 currentCode += substr(source,fromPos,scanPos-
fromPos+1);
 fromPos = scanPos + 1;
 }

 //Rescan
 scanPos = this.scanForCommentsAndQuotes();
 }

 if (currentComment == '')
 {

 55

 //No comments was found, so we must copy the last part of the
sourcecode to the currentCode
 currentCode += substr(source,fromPos,sourcelen-frompos+1);
 fromPos = sourceLen;
 }

 //Add to the linecount
 lineCount += StringUtil::CountOccurences(currentCode,'\n');
 startLineComment = lineCount;
 lineCount += StringUtil::CountOccurences(currentComment,'\n');

 return true;
 }

 return false;
}

6.4.2 CP (CodeMetricCPMethod)
To calculate the comment percentage, three numbers are needed: Total number of lines in
source code, number of blank lines and number of lines containing comments. By using
the SourceCodeChunker these can be obtained quite easily.

The method calcCP of class CodeMetricCPMethod (see code on next page) starts by
initializing a new SourceCodeChunker. Then it keeps calling the moveNext method of the
chunker, until it returns false and the end of the source code is reached. Each time a
comment is fetched, the position of it is evaluated to find out if the comment is on the same
line as a previous comment, and thus if it should add to the number of comment lines.

To find the number of blank lines in a code chunk, all spaces are removed from it and the
number of ‘\n\n’ character sequences is counted. Since no standard functionality for
counting occurrences in a string exists, a new class StringUtil with the static method
CountOccurences has been created. This method just uses the build-in method strscan
to find the wanted sequence, and each time this happens, an integer variable is increased.

public static int calcCP(str sourceCode)
{
 int cp;
 int newlinesInComment;
 int linesWithComments;
 int blankLines;
 int lastCommentLine;

 str tmp;

 SourceCodeChunker chunker = new SourceCodeChunker(sourceCode);
 ;

 //Loop through code/comment chunks
 while(chunker.moveNext())
 {
 if (chunker.currentCommentChunk() != '')

56 Implementation

 {
 newlinesInComment =
StringUtil::CountOccurences(chunker.currentCommentChunk(),'\n');

 if(chunker.commentStartLine() > lastCommentLine)
 linesWithComments += newlinesInComment + 1;
 else
 linesWithComments += newlinesInComment;

 lastCommentLine = chunker.commentStartLine() +
newlinesInComment;
 }

 //Remove spaces from the source code chunk
 tmp = strrem(chunker.currentCodeChunk(),' ');

 //Add the number of blank lines in the chunk
 blankLines += StringUtil::CountOccurences(tmp,'\n\n');
 }

 //Calculate CP
 if((chunker.lineCount() - blankLines) > 0)
 cp = (linesWithComments / (chunker.lineCount() - blankLines))*100;

 return cp;
}

6.4.3 V(G) (CodeMetricVGMethod)
The primary method of the class CodeMetricVGMethod is calcVG. This static method takes
an instance of a SysScannerClass as an argument, and returns the Cyclomatic complexity
value.

The scanner class provides a simple way of obtaining tokens from the source code of a
TreeNode. For each token, both a symbol number and the actual text can be retrieved. All
symbol numbers have been predefined in the macro TokenTypes, which makes it relatively
easy to decode the numbers.

As described in the theory section and in the functional specification, it is not necessary to
build the entire control flow graph when calculating V(G), so a scan for certain
combinations of symbols/keywords will be enough to find the loops and branches. Table
6-1 gives a list of the keyword combinations that are scanned for. Each of the
combinations will add one to the complexity count. Please note that although the table
shows the actual keywords, the symbol number is used instead in most cases.

 57

Keyword combination Conditions
?
&&
||

Not inside a SQL statement

<st_end> <type> <identifier> (The <type> must be a simple datatype, void or the
name of a TreeNode object.

<st_end> if
<st_end> while
<st_end> for
<st_end> case
<st_end> default
<st_end> try
else if
join <identifier> Must not be prefixed by “exists” or “notexists”

Table 6-1 List of keywords

The <st_end> denotes the beginning of a new statement. This is actually found by
searching for the end of a previous statement or the beginning of a new block, indicated by
the symbols “{“, “}” or “;”

To prevent the calcVG method from becoming too big and complex, many of the symbol
combination checks has been split out into separate static functions. Since up to four
symbols are needed for detecting the combinations, a list of the four previous read
symbols and strings are preserved. These historical values can then be passed on to the
functions as needed. Below is an example of the function that determines if the current
symbol (symbol_1) is within a SQL statement. The parameter isSQL will normally be the
result of the last call to the function.

public static boolean isSQLStatement(boolean isSQL, int symbol_1, int
symbol_2)
{
 boolean ret = isSQL;
 ;

 if (isSQL && (symbol_1 == #LEFTBR_SYM || symbol_1 == #SEMICOLON_SYM))
 {
 //The SQL statement has ended
 ret = false;
 }
 else if(!isSQL)
 {
 //Its the first word of an expression
 if(CodeMetricVGMethod::isStatementBeginEnd(symbol_2))
 {
 //Its a SQL symbol
 switch(symbol_1)
 {
 case #SEARCH_SYM: //select
 case #DELETE_SYM: //delete

58 Implementation

 case #UPDATE_SYM: //update_recordset
 case #INSERT_SYM: //insert_recordset
 ret = true;
 }
 }
 //while select
 else if(symbol_2 == #WHILE_SYM && symbol_1 == #SEARCH_SYM)
 ret = true;
 }

 return ret;
}

6.4.4 WMC (CodeMetricWMC)
In the functional specification it was decided that the Weighted Methods for Class metric
should use the Cyclomatic Complexity. So, since V(G) is already implemented, calculating
WMC can simply be done by looping through all methods on a class and summing op the
complexities.

Below is shown the overridden method getValue of class CodeMetricWMC:

int getValue()
{
 CodeMetricVGMethod vgMetric = new CodeMetricVGMethod();
 int sumVG = 0;
 TreeNode child;
 ;

 //Loop through all child methods
 child = node.AOTfirstChild();
 while(child)
 {
 if (child.treeNodeName() != 'classDeclaration')
 {
 //Pass the method to CodeMetricCCMethod
 vgMetric.setElement(child);

 //Get the value
 sumVG += vgMetric.getValue();
 }

 //Get next child method
 child = child.AOTnextSibling();
 }

 //Return sum of complexities
 return sumVG;
}

 59

6.4.5 DIT (CodeMetricDIT)
The implementation of the Depth of Inheritance Tree metric uses the build-in DictClass.
The DictClass can provide a number of different metadata of a “pure” code class: if it is an
abstract class, which static and object methods it has and, what’s most interesting in this
case, which class it directly extends. To find the total depth of the tree, we must keep
iterating through the parent classes until the top class is reached. The depth is initialized to
one since all classes implicit inherit from object. This however, means that if object is
explicitly stated then we should not add an extract to the count. The source code for the
getValue function is listed below.

public int getValue()
{
 DictClass dict = new DictClass(node.applObjectId());
 int depth = 1; //All classes inherit from Object
 ;

 //Repeat as long as we can go up in the hierarchy
 while(dict.extend())
 {
 //Increase depth if its not object
 if (dict.extend() != classNum(object))
 {
 depth++;
 }

 //Create a DictClass for the parent
 dict = new DictClass(dict.extend());
 }

 return depth;
}

6.4.6 NOC (CodeMetricNOC)
Obtaining the Number Of Children can also be done by using the DictClass. This is a
matter of creating a new instance of the DictClass and then calling the method
extendedBy. It will return a list of all classes that extends the class, both direct and indirect
descendants. Each of the nodes in the list is then examined further, and if it is a direct
descendant then one is added to the NOC count. The getValue method of
CodeMetricNOC is shown below.

int getValue()
{
 DictClass dict;
 DictClass subDict;
 Enumerator enum;
 int noc = 0;
 ;
 //Create a new dict class
 dict = new DictClass(node.applObjectId());
 //Get an enumerator containing all subclasses

60 Implementation

 enum = dict.extendedBy().getEnumerator();

 //Loop through all subclasses
 while(enum.moveNext())
 {
 subDict = new DictClass(enum.current());

 //If the class in an immediate child then increase the count
 if (subDict.extend() == node.applObjectId())
 noc++;
 }
 return noc;
}

6.4.7 CBO (CodeMetricCBO)
To find the amount of Coupling Between Objects the temporary cross references table is
used. All references of type xRefReference::Read are evaluated, and the name of the
object is taken from either the ParentName field or, if there is no parent, the name field. To
make sure each object is only counted once, the found object names are kept in a Map. A
Map is like a hash table where the key field can be of an arbitrary type. The map is then
queried to see if the name already exists, otherwise it is inserted into the map. This way,
when all records in the table have been processed, the CBO count equals the number of
elements in the map. The getValue method of CodeMetricCBO is shown below:

int getValue()
{
 xRefTmpReferences thisRefererences;
 Map map;
 str typeName;
 ;

 //Make sure xRef is updated for this class
 this.initTmpXRef();

 //Create a map for holding the type names
 map = new Map(Types::String,Types::String);

 //Get the paths of the objects used
 thisRefererences.setTmpData(tmpxRefReferences);
 while select thisRefererences where thisRefererences.Reference ==
xRefReference::Read
 {
 //Get the type name (path)
 if (thisRefererences.ParentName == '')
 typeName = thisRefererences.name;
 else
 typeName = thisRefererences.ParentName;

 //If the type does not already exists in the map then insert it
 if (!map.exists(typeName))
 map.insert(typeName,typeName);
 }

 61

 //CBO = number of distinct types
 return map.elements();
}

6.4.8 RFC (CodeMetricRFC)
Computation of the Response For Class is somewhat similar to CBO, since it also uses the
temporary cross references table and a map. In this case the map just holds
objectname\methodname, and uses references of type xRefReference::Call. As the
response set should include the class’ own methods, an additional loop has been added,
where the DictClass is used for iterating through the class’ methods and inserting their
names into the map.

6.4.9 LCOM (CodeMetricLCOM)
The LCOM metric as defined by [Hitz95] is the number of connected components in a
class. Figure 6-5 shows an example of how the functions in a class might be connected to
each other. The class has three variables (a,b,c)and four methods (f,g,h,x). The arrows in
the figure represent usage/call of other variables or methods. Note, that when determining
which components are connected in the LCOM metric, the direction of the relation does not
matter.

Figure 6-5 LCOM directed graph

It is intuitively clear that the LCOM of Figure 6-5 must be two, since there are two sets of
components. To implement this distinction in code however, some kind of undirected graph
algorithm is needed to detect how many separate sub-graphs the graph is made from. The
Depth First Search (DFS) graph algorithm is ideal for this purpose, as it will traverse
through all nodes in the graph and record each node’s parent node. After the DFS has
completed, the LCOM number will be equal to the number of nodes without a parent node.

Since there were no existing classes in Dynamics AX for representing graphs, the three
new classes shown in Figure 6-6 have been implemented.

62 Implementation

Figure 6-6 Graph classes

A GraphNode is simply a data container which can carry some payload (data). In addition it
has some instance variables that are needed when performing the DFS routine. A
GraphEdge connects two nodes. The endpoints of the edge are simply called node1 and
node2, since no specific direction is needed. The GraphUndirected contains a list of
nodes and edges and has methods for executing the DFS (runDFS). Since the
implementation of the DFS is standard text book material from [Cormen01] it will not be
further explained here. The only two non-standard methods that GraphUndirected has are
findNodeOnData, which will search for a node in the graph based on the node’s data, and
nodesWithoutParent, which will return the number of nodes that has no parent.

To build the graph, the getValue method of CodeMetricLCOM uses the temporary cross
references. Each reference is treated as follows: If it is the definition of a class level
variable or the definition of a non-static method then a new node is added to the graph. If
the reference is a call to an internal method of if it is a read/write of a class level variable,
then a new edge is added. The code for the getValue method is listed below.

int getValue()
{
 GraphUndirected graph = new GraphUndirected();
 xRefTmpReferences thisRefererences;

 str graphNodeVal;
 GraphNode fromGraphNode;
 GraphNode toGraphNode;

 //Make sure xRef is updated for the class
 this.initTmpXRef();

 thisRefererences.setTmpData(tmpxRefReferences);
 while select thisRefererences order by Reference
 {

 //Declaration of class level variables so add node
 if(this.isClassLevelVar(thisRefererences))
 {
 graphNodeVal = thisRefererences.name;
 graph.addNode(graphNodeVal);
 }

 63

 //Definition of class method so add node
 else if(this.isMethodDef(thisRefererences))
 {
 graphNodeVal = thisRefererences.Path;
 graph.addNode(graphNodeVal);
 }
 //Call to class method so add edge
 else if(this.isInternalMethodCall(thisRefererences))
 {
 fromGraphNode = graph.findNodeOnData(thisRefererences.Path);
 toGraphNode = graph.findNodeOnData(node.treeNodePath() + '\\'
+ thisRefererences.name);

 //If toGraphNode is null then it is a call to an inherited
method, else it is a regular internal method call
 graph.addEdge(fromGraphNode,toGraphNode);
 }
 //Read or write of variable
 else if(thisRefererences.Reference == xRefReference::Read ||
thisRefererences.Reference == xRefReference::Write)
 {
 //If the variable can be found as a node, then it must be a
class-level variable
 toGraphNode = graph.findNodeOnData(thisRefererences.name);
 fromGraphNode = graph.findNodeOnData(thisRefererences.Path);

 graph.addEdge(fromGraphNode,toGraphNode);
 }
 }

 //Start a Depth First Search on the graph
 graph.runDFS();

 //LCOM = the number of connected components = the number of sub-graphs
 return graph.nodesWithoutParent();
}

6.4.10 FI (CodeMetricFI)
As the only of the chosen metrics, Fan-In is a system level metrics. As mentioned in the
theory section 3.3.2.7, computing this metric requires that all relations in the code have
been established. In the other class level metrics, the temporary references were used, but
since they are only created on a per-class basis, we need to use the full-blown cross
reference tables here. The problem with using these tables is that we cannot be sure that
they are up-to-date or if the cross references have been created at all. Of course, the
entire cross references could be created each time the FI metric is computed, but since
this operation would take 3-4 hours to complete each time, this is not a feasible solution.
Due to this, it is assumed that the cross references are up-to-date when the CodeMetricFI
needs it, and it will then be up to the users to make sure that this is so.

When the cross references are at hand, it is quite simple to find out which other classes
have references to a class. As can be seen in the source code below, it can be done by

64 Implementation

building a select statement that finds the references where the path includes the class’
treenode path.

int getValue()
{

 xRefReferences xReferences;
 xRefPaths xPaths;
 xRefPaths xFromPaths;
 xRefPath toLikePath;

 str typeName;
 Map map;
 ;

 //Create a map for holding the type names
 map = new Map(Types::String,Types::String);

 //Add * in the end of the path for node to find, and double the amout
of \
 //This is needed to make the "like" work correctly
 toLikePath = strReplace(node.treeNodePath() + '*','\\','\\\\');

 /* Since Fan-In is a system-level measure, we need to use x-ref from
the normal tables,
 and not from the temporary xref
 */
 while select xFromPaths
 join xReferences where xFromPaths.RecId == xReferences.xRefPathRecId
&&
 (xReferences.Reference == xRefReference::Declaration
||
 xReferences.Reference == xRefReference::Call)
 join xPaths where xPaths.RecId == xReferences.referencePathRecId &&
 (xPaths.Path == node.treeNodePath() ||
 xPaths.Path like toLikePath
)
 {
 //Get the name of the class/form/table
 typename = SysTreeNode::applObjectPath(xFromPaths.Path);

 //Insert the found type(class) name into the map if it's not
already there
 //and if it is not the class itself
 if (!map.exists(typeName) && typeName != node.treeNodePath())
 map.insert(typeName,typeName);
 }

 //FI = number of other types having a reference to this class
 return map.elements();
}

 65

6.5 Statistics generation
The following sections provide details of the Tables, Classes and Form used to implement
the metric statistics.

6.5.1 TmpCodeMetrics (table)
This table is used for storing the raw values for each of the measurements being made.
Since the metrics operates on application code with are shared between all companies in
the system, the data in the TmpCodeMetrics table is not saved per company.

To follow the Best Practice guidelines, new extended data types have been created for
each of the fields. By using the extended data types we make sure that the same logical
type of information stored in different tables also will have the same format, length, display
adjustment and so on.

Field name (Extended) Data type Default value
TreeNodePath TreeNodePath (str 400) ’’
Metric Metric (str 10) ’’
Value MetricValue (int) 0

6.5.2 TmpCodeMetricsTeamStat (table)
This table stores statistics values summed up per Metric, Team and Prefix.

Field name (Extended) Data type Default value
Metric Metric (str 10) ’’
Team TeamName (str 25) ’’
Prefix PrefixName (str 50) ’’
Occurences MetricOccurences (int) 0
MinValue MetricValue (int) 0
MaxValue MetricValue (int) 0
ValueSum MetricValue (int) 0
AverageValue MetricAverage (real) 0.0

6.5.3 CodeMetricGenerator (class)
The purpose of this class is to get the metric values for all classes/methods from a given
starting point, and insert the values into the table TmpCodeMetrics. The main static
method is called generateMetrics, and takes a start TreeNode as parameter. This
method starts by creating two lists containing instances of the available class- and method-
level metrics. This is done by using the ClassInstanciator::createSubClassInstances
method, the same way as in the BP classes. Then a TreeNodeTraverser is used to iterate
through all the treenode’s subnodes. Depending of the type of the node, either the
doMethodMetric or the doClassMetric static method is called with the appropriate metric
list as argument.

66 Implementation

public static void generateMetrics(TreeNode startnode)
{
 //Create lists with instances of CodeMethodMetric/CodeClassMetric
classes
 List codeMethodMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeMethodMetric));
 List codeClassMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeClassMetric));

 TreeNode treeNode;
 TreeNodeTraverser treeNodeTraverser;

 #avifiles
 SysOperationProgress simpleProgress;
 ;

 //Create a progress indicator
 simpleProgress = SysOperationProgress::newGeneral(#aviUpdate,
'Metrics', startnode.AOTchildNodeCount());

 //Traverse the startnode
 treeNodeTraverser = new TreeNodeTraverser(startnode);
 while (treeNodeTraverser.next())
 {
 //Get the current node
 treeNode = treeNodeTraverser.currentNode();

 //Increment and set text on progress
 simpleProgress.incCount();
 simpleProgress.setText(treeNode.treeNodePath());

 //Perform different actions depending on the type of TreeNode
 switch (treeNode.handle())
 {
 case classnum(MemberFunction):
 if (treeNode.treeNodeName() != 'classDeclaration')
 CodeMetricGenerator::doMethodMetric(treeNode,
codeMethodMetricList);
 break;
 case classnum(ClassNode):
 CodeMetricGenerator::doClassMetric(treeNode,
codeClassMetricList);
 break;
 }
 }

 //Done!!
}

The functionality of methods doMethodMetric and doClassMetric are very similar to the
checkComplexity method of the BPCheckMemberFunction and BPCheckClassNode, since
in both cases all metric classes in the list is looped through, and passed the TreeNode and
the scanner or cross references. The common job of actually retrieving the value and

 67

inserting the information into the table is handled by the static method saveInDB, which
must have the metric instance and the path to the TreeNode passed on. The source code
for saveInDB is shown below:

public static void saveInDB(CodeMetricBase codeMetric, TreeNodePath path)
{
 TmpCodeMetrics tmpCodeMetrics;
 ;

 //Perform the check
 tmpCodeMetrics.Value = codeMetric.getValue();

 //Add standard info and insert into the table
 tmpCodeMetrics.Metric = codeMetric.getDescription();
 tmpCodeMetrics.TreeNodePath = path;
 tmpCodeMetrics.insert();
}

6.5.4 CodeMetricTeamStatGenerator, CodeMetricStatItem (class)
The purpose of the class CodeMetricTeamStatGenerator is to group the raw data from
the table TmpCodeMetrics per metric/team/prefix. The information is saved in a
datastructure as shown in Figure 6-7. It consists of an outer map, where the key is the
name of the metric. Inside that map is another map, which has the prefix name as key.
This inner map stores elements of the class CodeMetricStatItem. The reason for using
the Map datastructure, is that it allows for fast lookups, which is a necessity since there
might be a lot of raw data to be processed (currently some 419.000 records).

Figure 6-7 Temporary storage of team statistics

To start the generation of team statistics, the static method statByTeam on
CodeMetricTeamStatGenerator must be called with the filename of the file containing
combinations of team and prefix names (as explained in section 5.3). The information from

68 Implementation

the file is loaded into a Map by the method loadPrefixMap. This map is then passed on to
initStatMap which will use it to initialize the data structure from Figure 6-7.

For each record in the TmpCodeMetrics table, the prefixmap is searched to find the best
matching prefix. This prefix, along with the metric name, can then be used to lookup the
correct CodeMetricStatItem from the data structure. The method addValue on the item
will then be called with the measured value, so the minValue, maxValue, valueSum and
itemCount can be updated.

public static Map statByTeam(str _teamFileName)
{
 //Load map with prefix/team pairs from file
 Map teamPrefixMap =
CodeMetricTeamStatGenerator::loadPrefixMap(_teamFileName);

 //Get map to hold maps of CodeMetricStatItems per team per metric
 Map statMap =
CodeMetricTeamStatGenerator::initStatMap(teamPrefixMap);
 Map metricMap;
 CodeMetricStatItem statItem;

 str path = '';
 str team;
 str prefix;

 TmpCodeMetrics result;

 #avifiles
 SysOperationProgress simpleProgress;
 ;

 //Create a progress indicator
 select count(value) from result;
 simpleProgress = SysOperationProgress::newGeneral(#aviUpdate,
'Statistics', result.Value);

 //Loop through all records in tmpCodeMetrics to decide which
prefix/metric map they should be added to
 while select result order by TreeNodePath, Metric
 {
 if (result.TreeNodePath != path)
 {
 //Save the path
 path = result.TreeNodePath;

 //Find the team name from prefix map
 prefix = CodeMetricTeamStatGenerator::findPrefix(path,
teamPrefixMap);
 }

 //Increment and set text on progress
 simpleProgress.incCount();
 simpleProgress.setText(path);

 69

 //Get the map for the metric (ie. SLOC)
 metricMap = statMap.lookup(result.Metric);

 //Get statItem from prefix
 statItem = metricMap.lookup(prefix);

 if (statItem != null)
 {
 //Update item
 statItem.addValue(result.Value);
 }
 }

 return statMap;
}

6.5.5 CodeMetricResults (form)
The form CodeMetricResults displays data from the two statistics tables. It has two tabs:
Raw data (TmpCodeMetrics table) and Team Statistics (TmpCodeMetricsTeamStat table).

On the “Raw data” tab a generation of values can be started by selecting a start node from
the drop down and the pressing the button “Start generation”. When the button is pressed
the form method startGeneration will be called. This starts by deleting all data from the
TmpCodeMetrics table, and then calls CodeMetricGenerator::generateMetrics which
does the actual work. When that has completed the grid’s data source is refreshed to show
the new values. Figure 6-8 shows what the “Raw data” tab looks like (in this case a user
filter has been applied to the grid).

Figure 6-8 Metric results - Raw data

70 Implementation

Figure 6-9 shows the “Team statistics” tab of CodeMetricResults. This has a button that
will trigger generation of the team/prefix statistics, based on the selected prefix file. After
the CodeMetricTeamStatGenerator::statByTeam method returns, the mentioned data
structure is inserted into the TmpCodeMetricsTeamStat, by looping through the items in
the two nested maps, and the grid is refreshed to show the new data.

Figure 6-9 Metric results - Team statistics

 71

Chapter 7 Test

This chapter describes what has been done to verify that the new tool work as intended
and that the metrics are computed correct according to the theory. Please refer to
Appendix C for instructions of how to install the tool.

7.1 Unit tests
As mentioned in section 2.2, Test Driven Development has been used for this project. This
has led to the development of 21 unit test classes with a total of 58 test methods. As the
complexity project contains 25 non-test non-form classes, tests for four classes are
missing: CodeMetricBase, CodeClassMetric, CodeMethodMetric and SysBPCheckBase.
The first three framework classes are abstract, and such it is impossible to instantiate them
directly. Although SysBPCheckBase is not declared abstract and thus could be
instantiated, it does not make sense to test it directly. However, the methods that the four
classes contain have all been indirectly tested, since they are used by some of the classes
which have been tested.

No unit tests have been created for the form CodeMetricResults, since it can be very
difficult to write code that tests how the graphical user interface works. The methods on the
form rely on functionality from the “pure” code classes, which have already been tested, so
the primary purpose of a test of the form is to confirm that the code classes and methods
are invoked correct.

Not every class method has been given its own test method. This is because some of the
methods rely on data being setup, and as such it does not make sense to do a stand-alone
test. One example of this is the method testAddValue from the test class
CodeMetricStatItemTest, which is shown below. This tests the interaction between the
addValue method and the “get” methods like getAvg.

void testAddValue()
{
 //Create new item
 CodeMetricStatItem statItem = new
CodeMetricStatItem('group','prefix');

 //Check that no values are added, and that the initialize values are
correct
 this.assertEquals(0,statItem.getItemCount(),"Zero items should be
added");
 this.assertEquals(0,statItem.getAvg(),"Average should be 0");
 this.assertEquals(0,statItem.getMax(),"Max value should be 0");
 this.assertNotEqual(0,statItem.getMin(),"Min value should not be 0");
 this.assertEquals(0,statItem.getSum(),"Sum should be 0");

 //Add the first value
 statItem.addValue(100);

72 Test

 //Check that the correct values are computed
 this.assertEquals(1,statItem.getItemCount(),"One item should be
added");
 this.assertEquals(100.00,statItem.getAvg(),"Average should be 100");
 this.assertEquals(100,statItem.getMax(),"Max value should be 100");
 this.assertEquals(100,statItem.getMin(),"Min value should be 100");
 this.assertEquals(100,statItem.getSum(),"Sum should be 100");

 //Add another value
 statItem.addValue(200);

 //Check again
 this.assertEquals(2,statItem.getItemCount(),"Two items should be
added");
 this.assertEquals(150.00,statItem.getAvg(),"Average should be 150");
 this.assertEquals(200,statItem.getMax(),"Max value should be 200");
 this.assertEquals(100,statItem.getMin(),"Min value should be 100");
 this.assertEquals(300,statItem.getSum(),"Sum should be 300");
}

During the development two Dynamics AX XUnit tools have been used: One is the
XUnitToolbar and the other is the XUnitTestBrowser. The toolbar is very handy for
repeating running a single test, while the test browser can be used for running all the unit
tests at once. Figure 7-1 shows the result of all the unit tests, where it can be seen that all
58 tests have completed with success.

 73

Figure 7-1 Results of unit tests

7.2 Functional test
To find out if the functionality of the new tool is correct, all items stated in the functional
specification must be verified. The table below shows how each of the high level
requirements have been fulfilled or implemented.

Number Solution
0010 The developer is able to select if the complexity check will be included in the BP check by

selecting/deselecting the “Complexity” node in the tree in the “Best Practices parameters” form.
0020 The complexity checks supports all language constructs in Dynamics AX version 4.0
0030 Both traditional (method level) and OO based (class level) metrics have been implemented.
0040 Outputs are shown in the best practice tab in the compiler output window.
0050 The output from BP can be machine post-processed by using the error code to distinguish

between the metrics.
0060 The warnings generated by the BP Complexity checks will automatically be included in the Best

Practice Excel sheet, since this just selects all warnings from the SysCompilerOutput table.
0070 Metric values can be extracted by using the “Metric results” form. Values can be grouped per

metric/team/prefix level.

74 Test

Of all the items in the functional specification, there is one that has not been fulfilled, and
that has to do with the performance of the tool. It was the goal that a complexity-only best
practice run on the entire AOT should take no more than 45 minutes on a 3 GHz computer
with 1 GB RAM. A test of this has showed that it takes around 3½ hours to run on a laptop
with a 1,6 GHz processor and 1 GB RAM, so although it was a somewhat slow processor,
the requirement is not likely to be met. This speed requirement was set by me as a
qualified guess, so further end-user investigation is needed to find out if the current speed
is fast “enough” or if optimizations of the tool are necessary.

7.3 Adherence to own rules
As stated in the functional specification, the code for the new tool should of course not
generate any complexity best practice warnings, errors or info messages. To verify this, a
best practice check has been started from the top node of the new project. However, doing
this revealed a lot of best practice deviations, 987 in total. These will be explained further
below.

The vast majority of the deviations come from the following areas:
• Use of single quoted texts and constants, mostly in the unit tests (361 deviations).
• Classes prefixed with CodeMetricDummy resulted in 115 deviations. This is intentional

since they are used to test that the metrics checks works correctly.
• 207 of the deviations came from the modified objects, but not from the methods that

have been added or changed as part of this tool.
• Missing labels and help texts on the two tables TmpCodeMetrics and

TmpCodeMetricsTeamStat and the form CodeMetricResults (52 deviations).
• 56 warnings because the test methods are not directly referenced by anone.
• 77 messages of how to set method availability to private
• 93 misc. info messages

The last 26 messages are violations of the LCOM metric. All of the unit tests which have
more than one method (14) will get LCOM > 1, due to the way the unit test framework is
constructed. Each of the test methods in a xUnitDevTest class must be independent of
each other, so the data cohesion of the class is of course very low. Having a LCOM > 1
indicates that the test classes should be split into multiple smaller classes. Although this
could be done, the semantic coherence of the unit test classes is still valid so there is
actually no need to split them up.

LCOM is 5 and 2 for the two new classes GraphNode and GraphEdge. As mentioned in the
theory (section 3.3.2.3), LCOM has a problem with classes that acts purely as data
containers, which is exactly what GraphEdge and GraphNode do, so these can also safely
be ignored.

Each of the 10 metric implementations also gets LCOM deviations, because of the
overridden methods like getDescription, which does not operate on any instance
variables. These methods are semantic correct so the can also be ignored.

The conclusion to this test is that the new tool adheres nicely to the best practice rules,
both the existing and the new complexity related rules.

 75

Chapter 8 Analysis of results

To extract some statistics about the various metrics, I have used the new form “Metric
results” to start a generation of metrics for all objects in the entire AOT. This took around
3½ hours to complete on a regular Laptop with 1GB RAM, and resulted in more than
419.000 measurements being inserted into the TmpCodeMetrics table.

8.1 Results overview
An overview of the results can be seen in Table 8-1. The three method level metrics CP,
SLOC and V(G) have been run on a total of 127.650 methods. As mentioned in the
functional specification, the method level metrics are not limited to “pure” class methods,
but also include methods on Tables, Forms and so on. The class level metrics WMC, DIT,
NOC, CBO, RFC, LCOM and FI have been executed on 5.162 pure code classes.

Violations
Metric Range Count Avg. Max. Count %

SLOC [1;40] 127.650 13,04 1.152 6.709 5,26
CP [10;100] 127.650 4,41 98 101.684 79,66

V(G) [1;10] 127.650 2,54 358 3.912 3,06
WMC [1;50] 5.162 35,98 1.280 950 18,40
DIT [0;8] 5.162 2,34 8 0 0,00
NOC [0;10] 5.162 0,73 344 42 0,81
CBO [0;20] 5.162 21,43 232 1.903 36,87
RFC [1:50] 5.162 36,84 548 1.095 21,21
LCOM [1] 5.162 4,75 123 3.496 67,73
FI [1:50] 5.162 6,36 5.137 76 1,47

Table 8-1 Results overview

8.2 Details
This section will go into detail with the results for each of the metrics implemented. Some
of the details of the results have been found by creating various SQL queries against the
TmpCodeMetrics table, while others come from the table TmpCodeMetricsTeamStat,
which contains statistics based on the prefix/postfix of the object names.

8.2.1 SLOC
On average, the number of source lines per method is 13 which is well under the maximum
recommended limit of 40. The reason for this low average number may be due to the fact
that Dynamics AX has a lot of methods (28%) with only 4 lines of code, and thus helps
drive the average down. These methods are most likely getters/setters which are used to
expose class level variables to the public.

76 Analysis of results

A total of 6.709 methods are over the limit, and more than 1.100 methods have a SLOC
count of more than 100. Nearly all of these methods at the same time have a V(G) of more
than 10, so many of these methods are definitely candidates for a rewrite or at least a
thorough inspection.

8.2.2 CP
Nearly 80% of the methods contain less than 10% comments and thus will create a Best
Practice warning.

A total of 93.469 methods (73%) do not have any comments at all. Approx. 1/3 of the
methods without any comments are probably used as simple getters/setters of class
instance variables or are returning a constant, as they have only have 5 or less source
lines. However more than 3.000 methods are especially critical, as they both violates
SLOC (>40) and still have no comments.

8.2.3 V(G)
As a whole, the average Cyclomatic complexity is acceptable. Even if we do not take the
many getters/setters into account, it is still only 3,19. Only little more than 3% of the
methods are violating the constraint.

In Table 8-2 is shown the top 15 with regards to the Cyclomatic complexity, which all have
more than 10 times the recommended limit. These objects also have a really high SLOC,
especially method setAllocationDimension in class COSCalculationRun, which is the
owner of the overall highest SLOC value (28 times the SLOC limit!).

V(G) SLOC Path
358 644 \Classes\LedgerSIEExportFile\getSRU
247 476 \Classes\SysContextMenu\verifyItem
173 625 \Forms\SysInetCSSEditor\Methods\updateProperties
170 1152 \Classes\COSCalculationRun\setAllocationDimension
155 428 \Classes\WebFormHtml\initVersion
150 755 \Data Dictionary\Tables\InventItemBarcode\Methods\findItemDimensions
139 709 \Classes\CustVendSettle\settleNow
128 823 \Forms\SysInetCSSEditor\Methods\loadProperties
122 550 \Classes\smmSalesManagementQueries\defaultQuery
117 480 \Classes\XBRLProcessor\importLinkbase
114 225 \Forms\SysInetHTMLEditor\Methods\runTool
111 657 \Data Dictionary\Tables\InventSum\Methods\findSum
110 109 \Classes\SysSpellChecker\wordLanguageId
108 644 \Classes\ReleaseUpdateDB39_PBA\updatePBAValidationRules
102 476 \Classes\CCAdoSqlScanner\tokenStr

Table 8-2 Methods with V(G) > 100

 77

8.2.4 WMC
The average sum of complexities per class is 35,98 which is an adequate number. Around
18% of the classes exceed the limit for WMC of 50, and 349 classes have as WMC greater
than 100 and should therefore be further evaluated to see if it is possible to separate some
of their functionality out into other classes.

8.2.5 DIT
The Depth of Inheritance Tree is the only metric where no classes violate the constraint of
a maximum depth of eight. In Figure 8-1 a histogram for the DIT values can be seen. No
classes have a DIT of zero since they all explicitly inherit from Object. 74% (3.808) of the
classes inherit from something other than Object, and only one of these has the maximum
depth allowed. These numbers all indicate that in Dynamics AX the use of inheritance is
well thought out as many classes inherit, but the trees do not get excessively deep.

Depth of Inheritance Tree

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8
Depth

C
o

u
n

t

Figure 8-1 Histogram for the DIT metric

8.2.6 NOC
17% (881) of the pure code classes are being extended by another class. 531 are only
extended by one or two classes, while others are being heavily used. In Table 8-3 the top
ten most extended classes is shown. Many of these are part of the AX framework so it is
quite natural that they are heavily used.

78 Analysis of results

NOC Path

344 \Classes\RunBase
209 \Classes\RunBaseBatch
140 \Classes\SysCOMBase
64 \Classes\AxInternalBase
58 \Classes\SysConsistencyCheck
44 \Classes\ImageListAppl
40 \Classes\VendOutPaymRecord
39 \Classes\RunBaseReport
37 \Classes\VendOutPaym
35 \Classes\SysWizard

Table 8-3 Top 10 NOC

8.2.7 CBO
On average, the Coupling Between Objects is too high, and 36% of all the classes has
exceeded the maximum allowed value for CBO. This indicates that a lot of references to
other classes are needed to perform a function, and that the various modules/components
rely very much on each other.

A suggestion to solve this issue might be to make greater use of Façade patterns, so the
modules can have a much sharper distinction between them. This way, developers do not
need to know exactly how the referenced modules are internally structured they just need
to know which methods to call.

8.2.8 RFC
In Figure 8-2 a histogram for RFC is shown. As can be seen, around 50% of the classes
can potentially invoke less than 25 distinct methods. 21% violates the maximum RFC of
50, and 10% of the classes has a RFC of 80 or more.

Response For Class

0

100

200

300

400

500

600

700

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 50-55 56-60 61-65 66-70 71-75 76-80 > 80

C
o

u
n

t

Figure 8-2 Histogram of RFC

 79

8.2.9 LCOM
The average value for LCOM is more than 4 times higher than the recommended value. In
theory this should mean, that there should be four times as many classes, as all classes
with a LCOM > 1 should be split into smaller classes. This might not be the case, as
coherence can be something else than the data cohesion that the LCOM metric measures.
Each of the classes with LCOM higher than one should however be manually inspected by
someone with both domain- and programming knowledge, to asses if the coherence is
sufficient.

8.2.10 FI
On average, each class is being referenced by 6 other classes. This relatively high number
is due to some classes having an extremely high FI. The most used is the Global class
which really brings up the average. In Table 8-4 is shown the ten highest classes with
regards to FI. Please note that the number of Fan-Ins per class is counted not only from
the pure code classes, but also from other objects like Forms and tables.

FI Path
5137 \Classes\Global
1339 \Classes\RunBase
1036 \Classes\Dialog
926 \Classes\DialogRunbase
916 \Classes\DialogField
588 \Classes\SysQuery
451 \Classes\RunBaseBatch
437 \Classes\ClassFactory
411 \Classes\Box
368 \Classes\RunbaseProgress

Table 8-4 Top 10 FI

8.3 Comparison of selected modules
In Table 8-5 the results (average values) are compared by module (prefix). Please note
that this is not a complete list of the modules, since objects in Dynamics AX are split into
422 modules based on the object name prefix. All the selected modules have lots of
classes, so a fair average value can be obtained.

As can be seen DSO and Web are at the opposite ends of the scale. This is because
classes prefixed DSO acts as simple wrappers for COM objects which is most evident in
SLOC = 4 and V(G) = 1, which basically means that each method only has one “real” line
of code. Web, on the other hand, contains quite big methods that are somewhat complex.

The classes prefixed with Ax also stand out, as they have the highest WMC. The V(G) is
not particularly high, hence each of the classes contains lots of methods. One other thing
to notice is that despite the high WMC and CBO, there are almost no comments (0,1%).

80 Analysis of results

Prefix/Metric SLOC CP V(G) WMC DIT NOC CBO FI RFC LCOM
DSO 4,00 17,99 1,00 37,73 2,00 0,00 8,33 2,71 68,78 37,68
COS 19,03 4,07 2,81 36,39 2,14 0,27 20,88 1,74 21,89 2,86
Vend 10,82 6,30 1,94 18,36 4,07 0,83 13,27 0,89 26,46 3,72
Invent 11,72 3,21 2,47 37,22 2,57 0,66 22,33 6,99 36,96 4,30
Ledger 15,35 2,81 2,94 39,39 2,38 0,59 23,81 3,51 35,04 3,37
Proj 11,57 2,58 2,56 36,55 2,53 0,71 23,00 3,21 34,42 6,60
Sys 14,40 6,75 2,68 27,22 1,81 0,77 15,70 6,97 29,97 3,54
Ax 10,13 0,10 2,33 177,76 2,08 0,13 40,76 2,33 109,11 2,68
Web 20,63 4,02 4,12 63,09 2,17 1,02 22,66 9,45 51,19 4,41

Table 8-5 Comparison of results by modules (prefix)

8.4 Comparison by team
Table 8-6 shows the average values for each of the metrics by teams. One of the teams
that stand out negatively is SCM Collaboration. They have somewhat big classes (WMC)
and very low comment percentage. Also their RFC value is not good. This might be
somewhat concerning since Fan-In is high, which means that a lot of other classes are
depending on the functionality they provide.

Team/Metric SLOC CP V(G) WMC DIT NOC CBO FI RFC LCOM
AID 20,94 6,65 3,33 49,88 2,29 0,93 29,52 2,95 47,23 6,61
AIF 15,31 9,59 2,73 23,71 1,13 0,00 18,92 5,58 27,87 2,26
All 10,96 7,11 2,02 10,04 2,42 0,20 8,16 1,89 14,67 2,09
Business Intel. 8,35 13,76 1,69 45,58 1,77 0,11 15,00 3,36 58,98 21,89
Circle Capital 12,83 2,85 2,51 25,10 2,07 0,26 20,74 1,67 30,81 2,59
Circon 19,03 4,07 2,81 36,39 2,14 0,27 20,88 1,74 21,89 2,86
Client and EP 17,44 3,76 3,38 43,23 2,17 0,76 21,33 5,72 41,42 3,39
FIM 14,23 3,99 2,59 31,32 2,87 0,72 22,40 3,15 33,19 3,78
Fixed Assets 15,66 6,82 2,97 33,10 2,04 0,55 20,75 2,70 30,22 3,17
GDL 12,77 6,46 2,43 34,77 2,41 2,23 23,99 9,46 38,21 4,50
MSO 13,68 4,78 2,70 46,98 2,31 0,36 28,71 2,38 46,65 4,11
Project 11,43 2,51 2,52 32,65 2,65 0,71 20,58 2,92 31,25 6,44
SCM 11,87 2,66 2,47 35,16 2,49 0,66 22,04 4,79 36,91 4,29
SCM Collab. 11,17 0,81 2,43 90,39 1,95 0,46 29,72 16,92 68,88 3,31
SCM Tech 14,80 6,31 2,82 28,97 1,84 0,67 15,56 18,97 29,56 3,01
Server & Tools 14,91 4,92 2,73 34,54 1,71 0,31 17,59 10,53 34,11 2,48
Tectura 12,40 1,69 2,42 26,46 2,11 0,68 20,40 2,52 31,38 3,03
Thy 15,16 3,66 2,95 30,13 2,38 0,13 23,76 1,90 30,50 3,04

Table 8-6 Comparison of results by teams

 81

Chapter 9 Metric evaluation

In the beginning of this project ten metrics were selected and implemented in X++ as
described previously in this report. After having used the new tool and analyzed the
generated data, it has become clear that not all the ten selected metrics are equally useful,
or at least that they have different target groups.

The three traditional metrics SLOC, CP and V(G) have proven quite easy to understand
and once the relatively simple rules has been studied and are in the back of the developers
minds, they will automatically begin to write code of a lower complexity. And should they
forget the rules, the issued BP deviations will help them remember.

The WMC metric is very useful for evaluating the total complexity of a class. When a class
with a high WMC is identified, a good strategy for solving the problem, is to use the new
form “Metric results” to find out if a single method in the class contributes with a very high
V(G) number and should be rewritten, or if the high WMC is due to a high number of small
methods which should be split into separate classes.

The CBO and RFC are good for pinpointing classes with excessive coupling. If a developer
gets a BP deviation for these metrics he should consider using a Facade pattern to simplify
the class’ communication.

The DIT metric will most likely be used by the developer to find out how many ancestors a
new class will get. Most of the classes in Dynamics AX do not have a very deep hierarchy,
so in most cases the depth will not become a problem.

Fan In and NOC are probably most useful for the Dev Leads, as the developers will
seldom see the BP deviations issued. The reason for this is that when creating a new
class, the FI and NOC metric on that class will not trigger, since it’s the FI and NOC metric
of the referenced or parent class that will be affected by the change. Both of these metrics
do not directly help in reducing the class complexity, but can nevertheless provide
information of how high effect a change in the class will have. This may be used in
connection with a source control system where the most vital classes could be given a
higher security level.

As section 7.3 revealed, the metric implementations do not themselves adhere to the
LCOM metric, as they have LCOM = 3 or 4. The people who reviewed the classes agreed
that the classes have a correct OO design and are semantically coherent. This raises the
question if LCOM is able to measure the coherence in real OO systems. The current
implementation of the LCOM metric has been found to be unsuitable in a number of cases:
• A method, which only operates on data defined in a parent class will be treated as a

separate component and adds to the LCOM value.
• If a method does not use any instance variable at all, it will add to the LCOM. This

happens frequently when a method from a parent class (e.g. getDescription) is
overridden.

82 Metric evaluation

• A class that is only used for data-storage and which does not operate on the data but
merely uses get/set methods for the instance variables will get a very high LCOM
value, although it is perfectly alright to have such a class according to the OO
principles.

• If all instance values of a class are initialized in the constructor (new) method, then the
class will nearly always get LCOM=1, because all variables are then connected. This
should indicate that it has perfect coherence, but this is not always the case.

One of the dangers of having a metric that is somewhat misleading is that developers
might be tempted to write bad code that satisfies the metric rules, instead of writing correct
OO code that then causes BP complexity deviations. It is therefore recommended that the
current LCOM metric is excluded from a retail version of the BP complexity tool.

 83

Chapter 10 Future improvements

After having finished the implementation some open issues still remains. These could or
should be solved if the code is to be included in the retail version of Dynamics AX. The
following section describes these issues and suggests possible solutions.

10.1 Open issues
• All hardcoded texts should be replaced by the use of labels, so they can be localized

according to the functional specification.

• As mentioned in the previous chapter, the LCOM metric may be removed to avoid

unnecessary or even incorrect re-factoring.

• All users are generating metric statistics into the same table. Although its name starts

with “Tmp” it is not a real temporary table, since it exists as a physical table in the
database. The reason it is not a real temporary table, is that the metric generation
takes quite some time, and it would be annoying to loose all the data when the form is
closed. This has the downside that if two users are generating metrics at the same
time, they might overwrite each others changes. The problem could be solved by
saving all metric data per user, although this would increase the storage space
needed.

• When generating metric statistics the program starts with deleting all data in the

TmpCodeMetrics table. This makes it impossible to generate statistics for a selected
number of classes, since only one starting node can be selected from the AOT. This
could be solved by letting the user decide if the table should be wiped before starting a
new metric generation.

• Calculation of WMC and V(G) should be optimized, since the Cyclomatic complexity is

actually calculated twice per method: one time as part of the WMC and one time as the
“stand alone” V(G). It could be done by running the V(G) BP check as we process the
individual methods in the WMC calculation. Then V(G) should somehow be excluded
from the method-level checks, but only if the check was started at class level or higher
and only if the method belongs to a class (and not to a Form, Table etc.).

• All code for the new tool has been developed in the “usr” layer. The code should be

transferred to the “sys” layer where the rest of the build-in system functionality resides.

• Microsoft might encounter a legal issue, if the tool is included in a release version of

Dynamics AX, due to the great number of Best Practice warnings that will be
generated. This could make the customers/partners sue MS for bad code quality,
because the specific ranges for the metrics are not met. This issue could be resolved
by changing the BP warnings to info messages instead, and/or by not specifically

84 Future improvements

stating the maximum recommended value (instead write “Low is good” or “High is
good”).

10.2 New ideas
• An internal presentation of the new tool was held for the entire Dynamics AX

Development management. During the great discussion of the prospects for the tool
there was an idea to couple the findings of the new tool to Product Studio (internal
Microsoft bug tracking tool) to see/verify if there is a connection between the number
of bugs and the complexity of a module. There might be some technical challenges to
get this feature to work, but it would be of great value to management.

 85

Chapter 11 Conclusion

Process
Although I have tried to use Test Driven Development as much as possible, I have not
completely adhered to this (for me) new development method. I have however found it very
useful to have unit tests for most of the methods, since there has been a lot of refactoring
during the process. These tests really help ones peace of mind with ensuring that a
change does not break existing functionality.

In the beginning of this project, I set up a time schedule, where important milestones were
highlighted. Every day I wrote in a Project Diary about what was accomplished. This has
really helped track the progress and been an important tool in assuring that I was not
behind schedule. In fact, for the first time I have been ahead of schedule, thereby having
more time to test and document the product.

Product
The new tool can asses the complexity of classes and individual methods. Three traditional
(method level) metrics and seven object-oriented (class level) metrics have been
implemented. Although more than 200 different metrics have been identified in literature,
the chosen ten metrics are all more or less accepted as being valid measures of
complexity. For some of the metrics there was an issue with how to handle specific X++
syntax, since the language contains some constructs (e.g. embedded SQL) that the
original authors did not take into account. This was solved by finding out what the original
intend of the metric was, and then deriving a reasonable solution from this.

On each level (class and method), a new check has been added to the existing Best
Practice tool. This check computes the metric values and, if the values are not within an
acceptable range, a BP warning or info message is asserted. This information can then
directly help the developer to find out what areas can be improved to decrease complexity
and thereby increase the quality of the code.

In connection with an intermediate presentation of this project, I found a need to extract
statistics for the metrics, which would also include methods/classes that did not create BP
warnings. The new form “Metric results” can generate and show raw metric data that are
computed from a specific starting point (node) in the AOT. The form also contains
functionality to group the metric values based on the object’s prefix. This allows the
creation of team/module based statistical values.

86 Conclusion

Findings
To get an overview of how the measures perform in general for the X++ code, a generation
of values was started for the entire AOT. Several interesting observations were made. The
main points are

• More than 100.000 methods did not have the required amount of comments.
• Although the average Cyclomatic complexity was low, some methods had extremely

high numbers (more than 10 times the accepted limit)
• Depth of Inheritance Tree was the only metric where no classes violated the

constraint.
• A comparison of the modules and teams revealed big differences.

After having worked with the new tool and analyzed the data of the metrics, I have found
that not the all the chosen metrics are equally useful in practice. The values of the LCOM
metric may be so misleading that I recommend that LCOM is not included in a retail
version of the complexity tool.

 87

Chapter 12 Bibliography

[Chidamber91]
Title: Towards A metrics suite for Object Oriented Design
Author: Shyam R.Chidamber, Chris F. Kemerer
Published: ACM Sigplan Notices 26(11), P.197-211, 1991

[Chidamber94]
Title: A metrics suite for Object Oriented Design
Author: Shyam R.Chidamber, Chris F. Kemerer
Published: IEEE Transactions on Software Engineering, P.476-493, June 1994

[Cormen01]
Title: Introduction to Algorithms, Second Edition
Author: Thomas H. Cormen, Charles E. Leis
Published: The MIT Press, 2001

[Encarta]
Page name: MSN Encarta Dictionary
URL: http://encarta.msn.com/encnet/features/dictionary/dictionaryhome.aspx

[Etzkorn97]
Title: A Statistical Comparison of Various Definitions of the LCOM Metric
Author: Letha Etzkorn, Carl Davis, Wei Li
Published: University of Alabama in Huntsville, Computer Science Dept., 1997

[Hitz95]
Title: Measuring Coupling and Cohesion In Object-Oriented Systems.
Author: Martin Hitz, Behzad Montazeri
Published: Proc. Int. Symposium on Applied Corporate Computing, Oct. 25-27 1995

[Hudli94]
Title: Software Metrics for Object-Oriented Designs
Author: Hudli, R.V.; Hoskins, C.L.; Hudli, A.V.
Published: IEEE Comput. Soc. Press, P.492-495, 1994

[ISO03]
Title: Software engineering – product quality: Part 3: Internal Metrics
Author: British Standards Institution
Published: ISO/IEC 9126-3:2003

[McCabe96]
Title: Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric
Author: Arthur H. Watson, Thomas J. McCabe

88 Bibliography

Published: Computer Systems Laboratory, National Institute of Standards and Technology,
1996

[MSDN06]
Page name: X++ grammar
URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
 us/Axapta/Appendix_about_EBNF/LANG_X++grammar.asp

[McConnell04]
Title: Code Complete, Second edition
Author: Steve McConnell
Published: Microsoft Press, 2004

[Newkirk04]
Title: Test-Driven Development in Microsoft.Net
Author: James W. Newkirk; Alexei A. Vorontsov
Published: Microsoft Press, 2004

[Rosenberg97]
Title: Software Quality Metrics for Object-Oriented Environments
Author: Dr. Linda H. Rosenberg, Lawrence E. Hyatt
Published: NASA Software Assurance Technology Center, 1997

[Sellers96]
Title: Object-Oriented Metrics – Measures Of Complexity
Author: Brian Henderson-Sellers
Published: Prentice Hall, 1996

 A 1

Appendix A: Project diary

The following project diary has been continuously updated during the project period, so I
have been able to track the progress.

Week 18
Mon 1/5 Start of project. Installation of Ax on my laptop. Report template created.

Project schedule determined. Theory section started.
Tue 2/5 Work on theory section. Meeting with MFP where we discussed how the

solution could be integrated with the BP tool. Also decided that I will use Test-
Driven Development when that time comes. Got the MS templates for writing
the functional specification.

Wed 3/5 Researching. Added to theory section. Meeting with Smed discussing report
contents and general questions.

Thu 4/5 Theory work
Fri 5/5 Theory work

Week 19
Mon 8/5 Theory work + beginning functional specification.
Tue 9/5 More work on the functional specification. Installed the unit test framework and

read about how to use it.
Wed 10/5 Discussed the functional specification with MFP and got some great inputs.
Thu 11/5 Functional specification and beginning overall solution design
Fri 12/5 Holiday: Store bededag

Week 20
Mon
15/5

Functional specification.

Tue 16/5 Created dummy classes for test. Design of class structure.
Wed
17/5

Deciding what to do about embedded methods and how to handle Forms.
Status meeting with Smed.

Thu 18/5 Got a Virus so formatted and reinstalled the laptop. Merged the Functional
Specification into main report.

Fri 19/5 Exam of ITU project

Week 21
Mon 22/5 Job interview at MS. Added “Select statements” to the functional requirements.
Tue 23/5 Started on implementing SLOC
Wed 24/5 Finished SLOC
Thu 25/5 Holiday: Kr. Himmelfartsdag
Fri 26/5 Started on implementing V(G)

Week 22
Mon 29/5 Implementing V(G). Implemented the framework for methods.
Tue 30/5 Finished implementing V(G). Found and corrected errors in implementation of

A 2 Project diary

SLOC. Started on implementing CP.
Wed 31/5 Finished implemented CP. All traditional metrics complete!!!! Started on

implementing metrics calculation outside of the BP framework, for easier
access to creating statistics.

Thu 1/6 Ran calculation of V(G), SLOC & CP metrics on 75.000 methods (!) and
analyzed the data.

Fri 2/6 Created powerpoint presentation for Mid-way presentation

Week 23
Mon 5/6 Holiday: 2. Pinsedag
Tue 6/6 Mid-way presentation for Smed, Fruergaard and Ola. Discussed some issues

regarding SQL, classDeclaration, break and continue. Changed the program
so classDeclaration methods are not used in calculating method metrics.

Wed 7/6 Changed calculation of V(G) to reflect yesterdays discussion.
Thu 8/6 Implemented DIT. Started on WMC
Fri 9/6 Finished WMC. Started on CBO.

Week 24
Mon 12/6 Finished CBO. Implemented RFC.
Tue 13/6 Started on LCOM.
Wed 14/6 Implemented a support class for doing DFS on graphs.
Thu 15/6 Changed class level metrics so they use temporary xRef. Continued LCOM

implementation.
Fri 16/6 Finished LCOM. Implemented NOC.

Week 25
Mon 19/6 Started on implementing FI
Tue 20/6 All implementation complete!!!!
Wed 21/6 Implemented creation of statistics on team/prefix level
Thu 22/6 Data analysis
Fri 23/6 Prepared powerpoint presentation of results for Sunday
Sat 24/6 -
Sun 25/6 Presentation of results for all Dynamics Ax developer-leads

Week 26
Mon 26/6 Documentation: Analysis of results
Tue 27/6 Documentation: Analysis of results, Future improvements
Wed 28/6 Cleaning up source code. Documentation: Adherence to own rules
Thu 29/6 Documentation: Design
Fri 30/6 Documentation: Implementing base classes and BP integration

Week 27
Mon 3/7 Documentation: Integration with BP, SLOC, CP
Tue 4/7 Documentation: V(G), WMC, DIT, NOC
Wed 5/7 Documentation: CBO, RFC, LCOM, FI
Thu 6/7 Documentation: Statistics implementation
Fri 7/7 Documentation: Unit tests, functional test, Conclusion
Sat 8/7 Documentation: Summary. Report version 1 is ready for review!

 A 3

Week 28
Mon 10/7 Proof-reading report.
Tue 11/7 Review of report with Michael Fruergaard, Ola Mortensen & Morten Gersborg-

Hansen. Report updated with spelling and phrasing.
Wed 12/7 Method names of SourceCodeChunker changed. retrieveAndInsert removed

from sysBPCheckBase and similar functionality implemented in XXX. Report,
figures and appendixes updated to reflect this change.

Thu 13/7 New Metric evaluation chapter added and reviewed
Fri 14/7 Printing and final check.

Week 29
Mon 17/7 Report hand-in!

A 4 Project diary

B 1

Appendix B: Source code

Modified... 3

Class: SysBPCheckMemberFunction... 3
Class: SysBPCheckClassNode .. 5
Macro: SysBPCheck ... 7
Form: SysBPSetup ... 7

Metric Framework.. 12
Class: CodeMetricBase .. 12
Class: CodeClassMetric.. 12
Class: CodeMethodMetric .. 13
Enumeration: BPSeverity.. 14

Metric Implementations ... 15
Class: CodeMetricCPMethod ... 15
Class: CodeMetricVGMethod ... 16
Class: CodeMetricSLOCMethod... 20
Class: CodeMetricFI ... 22
Class: CodeMetricNOC... 23
Class: CodeMetricLCOM .. 24
Class: CodeMetricRFC ... 26
Class: CodeMetricCBO... 28
Class: CodeMetricWMC.. 29
Class: CodeMetricDIT... 30

Other ... 32
Class: GraphUndirected.. 32
Class: GraphEdge... 35
Class: GraphNode .. 36
Class: ClassInstanciator ... 37
Class: StringUtil .. 38
Class: SourceCodeChunker ... 38

Statistics .. 43
Form: CodeMetricsResults ... 43
Class: CodeMetricGenerator .. 46
Class: CodeMetricStatItem ... 48
Class: CodeMetricTeamStatGenerator... 49

Unit tests ... 53
Class: CodeMetricTeamStatGeneratorTest.. 53
Class: CodeMetricGeneratorTest ... 53
Class: CodeMetricStatItemTest .. 54
Class: CodeMetricFITest .. 55
Class: CodeMetricNOCTest ... 56
Class: GraphEdgeTest.. 57
Class: GraphUndirectedTest .. 57
Class: GraphNodeTest ... 60

B 2 Source code

Class: CodeMetricLCOMTest ... 60
Class: CodeMetricRFCTest .. 61
Class: CodeMetricCBOTest.. 62
Class: CodeMetricWMCTest .. 64
Class: CodeMetricDITTest.. 65
Class: ClassInstanciatorTest .. 66
Class: StringUtilTest ... 66
Class: SourceCodeChunkerTest .. 67
Class: CodeMetricCPMethodTest .. 69
Class: CodeMetricVGMethodTest .. 70
Class: CodeMetricSLOCMethodTest.. 71
Class: SysBPCheckMemberFunctionTest.. 73
Class: SysBPCheckClassNodeTest ... 74

Test classes .. 76
Class: CodeMetricDummy1 .. 76
Class: CodeMetricDummy2 .. 79
Class: CodeMetricDummy3 .. 79
Class: CodeMetricDummy4 .. 79

Unit test helper classes ... 80
Class: SysBPCheckComplexityEnabler.. 80

B 3

Modified
This section contains any existing items that have been modified to make the new tool.
Please note that only the methods that have been modified/added will appear in this
document! Existing code is marked with grey color and new code is black.

Class: SysBPCheckMemberFunction
class SysBPCheckMemberFunction extends SysBPCheckBase
{
 SysMethodInfo sysMethodInfo;
 SysScannerClass scanner;
 xRefTmpReferences tmpxRefReferences; // the source, as the xRef sees it
 MemberFunction memberFunction;
 boolean xRefIsInited;
 UtilElementType parentType;
 identifiername parentName;
 boolean allowHardcodedTexts;

 //
 //Do not dispose these maps as their content is static
 //
 Map CASServerMapInstance;
 Map CASServerMapStatic;
 Map CASAllMapInstance;
 Map CASAllMapStatic;

 //List with instances of classes that inherits from CodeMethodMetric
 List codeMethodMetricList;

 #define.del('DEL_')
}

public void check()
{
 super();

 if (sysMethodInfo.compiledOk() && memberFunction.AOTgetSource())
 {
 this.checkSource();
 this.checkUseLocalObjects();
 this.checkIndentation();
 this.checkConstants();

 if (parameters.CheckTwC)
 {
 this.checkUseOfDangerousClasses();
 this.checkUseOfDangerousFunctions();
 this.checkUseOfCASProtectedAPIs();
 }

 if (parameters.CheckEmptyMethods)
 {
 this.checkEmptyMethod();
 }

 if (parameters.CheckDate)
 {

B 4 Source code

 this.checkDate();
 }

 if (parameters.CheckAOS)
 {
 this.checkUseOfFieldLists();
 }

 if (parameters.CheckPrivacy)
 {
 this.checkAccessSpecifier();
 }

 if (parameters.CheckDiscontinuation)
 {
 this.checkDiscontinuation();
 }

 if (parameters.CheckFutureReservedWords)
 {
 this.checkFutureReservedWord();
 }

 if (parameters.CheckVariables)
 {
 this.checkVariables();
 }

 if (parameters.CheckSourcePrintAndPause)
 {
 this.checkUseOfPrintAndPause();
 }

 if (parameters.CheckComplexity)
 {
 this.checkComplexity();
 }

 }
}

void checkComplexity()
{
 CodeMethodMetric codeMethodMetric;
 ListEnumerator enum;
 str errMessage;
 ;

 if (sysBPCheck.treeNode().treeNodeName() != 'classDeclaration')
 {

 //Loop through all the metric classes that are available
 enum = codeMethodMetricList.getEnumerator();
 while(enum.moveNext())
 {
 //Cast as CodeMethodMetric
 codeMethodMetric = enum.current();

 //Pass the tree node of the method to check
 codeMethodMetric.setElement(sysBPCheck.treeNode());

B 5

 //Pass the scanner already created
 codeMethodMetric.setScanner(scanner);

 //Perform the check
 errMessage = codeMethodMetric.getBPStr();

 //If the errMessage is not empty then add a new BP message
 if (errMessage != '')
 {
 //Find out what to do with the message
 switch(codeMethodMetric.getBPSeverity())
 {
 case BPSeverity::Info:

sysBPCheck.addInfo(codeMethodMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Warning:

this.addSuppressableWarning(codeMethodMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Error:

this.addSuppressableError(codeMethodMetric.getErrorCode(),0,0,errMessage);
 break;
 }
 }

 }
 }

}

protected void new()
{
 ;
 super();

 //Create a list that will hold instances of the metric classes
 codeMethodMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeMethodMetric));
}

Class: SysBPCheckClassNode
class SysBPCheckClassNode extends SysBPCheckBase
{
 SysDictClass sysDictClass;

 //List with instances of classes that inherits from CodeMethodMetric
 List codeClassMetricList;
}

public void check()
{
 super();

 this.checkRunMode();
 this.checkNamingConventions();

B 6 Source code

 if (parameters.CheckRunBaseImplementation)
 {
 this.checkRunBaseImplementation();
 this.checkPackable();
 }

 if (parameters.CheckMissingMember)
 {
 this.checkMissingMember();
 }

 if (parameters.CheckClassAbstract)
 {
 this.checkAbstract();
 }

 if (parameters.CheckConstructors)
 {
 this.checkConstructors();
 }
 if (parameters.CheckTableAxBCParmFields)
 {
 this.checkAxBCParmFields();
 }

 if (parameters.CheckComplexity)
 {
 this.checkComplexity();
 }
}

void checkComplexity()
{
 CodeClassMetric codeMetric;
 ListEnumerator enum;
 str errMessage;
 xRefUpdateTmpReferences tmpUpdate;
 xRefTmpReferences tmpxRefReferences;
 ;

 //Create tmp references for the entire class (for optimization)
 tmpUpdate = new xRefUpdateTmpReferences();
 tmpUpdate.fillTmpxRefReferences(sysBPCheck.treeNode());
 tmpxRefReferences = tmpUpdate.allTmpxRefReferences();

 //Loop through all the metric classes that are available
 enum = codeClassMetricList.getEnumerator();
 while(enum.moveNext())
 {
 //Cast as CodeClassMetric
 codeMetric = enum.current();

 //Pass the tree node of the method to check
 codeMetric.setElement(sysBPCheck.treeNode());

 //Pass the tmp references already generated
 codeMetric.setXRefTmpReferences(tmpxRefReferences);

 //Perform the check
 errMessage = codeMetric.getBPStr();

B 7

 //If the errMessage is not empty then add a new BP message
 if (errMessage != '')
 {
 //Find out what to do with the message
 switch(codeMetric.getBPSeverity())
 {
 case BPSeverity::Info:
 sysBPCheck.addInfo(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Warning:

sysBPCheck.addWarning(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 case BPSeverity::Error:
 sysBPCheck.addError(codeMetric.getErrorCode(),0,0,errMessage);
 break;
 }
 }
 }
}

protected void new()
{
 super();

 //Create a list that will hold instances of the metric classes
 codeClassMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeClassMetric));
}

Macro: SysBPCheck
Note: Only the added lines are shown here

// Complexity metrics
#define.BPErrorCodeMetric(880)
#define.BPErrorCodeMetricSLOCMethod(881)
#define.BPErrorCodeMetricVGMethod(882)
#define.BPErrorCodeMetricCPMethod(883)
#define.BPErrorCodeMetricDIT(884)
#define.BPErrorCodeMetricWMC(885)
#define.BPErrorCodeMetricNOC(886)
#define.BPErrorCodeMetricCBO(887)
#define.BPErrorCodeMetricRFC(888)
#define.BPErrorCodeMetricLCOM(890)
#define.BPErrorCodeMetricFI(891)

Form: SysBPSetup
private void buildSelectionTree()
{
 int nodeRoot;
 int nodeGeneral;
 int nodeSpecific;
 int tmpNode;
 ;

B 8 Source code

 nodeRoot = element.addNode(selectionTree.getRoot(), 0, #disabled, #gotChilds,
"@SYS70918");

 // General Checks
 nodeGeneral = element.addNode(selectionTree.getRoot(), 0, #disabled, #gotChilds,
"@SYS72390");

 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckProperties),
parameter.CheckProperties);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAOTPathUnique),
parameter.CheckAOTPathUnique);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckObjectId),
parameter.CheckObjectId);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAOS),
parameter.CheckAOS);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckTwC),
parameter.CheckTwC);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckUsed),
parameter.CheckUsed);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckReferences),
parameter.CheckReferences);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckDiscontinuation),
parameter.CheckDiscontinuation);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters,
CheckTableAndRecIdReferences), parameter.CheckTableAndRecIdReferences);

 // Keys
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckConfigurationKeys),
parameter.CheckConfigurationKeys);
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckSecurityKeys),
parameter.CheckSecurityKeys);

 // Labels
 tmpNode = element.addNode(nodeGeneral, 0, #disabled, #gotChilds, "@SYS13322");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckLabelUse),
parameter.CheckLabelUse);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckHelpUse),
parameter.CheckHelpUse);

 // Analysis Visibility
 element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAnalysisVisibility),
parameter.CheckAnalysisVisibility);

 // Specific Checks
 nodeSpecific = element.addNode(selectionTree.getRoot(), 0, #disabled, #gotChilds,
"@SYS72391");

B 9

 // Tables
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS9678");
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldPnameUniqueness), parameter.CheckTableFieldPnameUniqueness);

 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableIndexUse),
parameter.CheckTableIndexUse);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableDeleteActions),
parameter.CheckTableDeleteActions);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableTitleFields),
parameter.CheckTableTitleFields);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableFormRef),
parameter.CheckTableFormRef);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableAxBCParmFields), parameter.CheckTableAxBCParmFields);

 // Table Fields
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldIsFieldGroupMember), parameter.CheckTableFieldIsFieldGroupMember);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldHasSameNameAsMethod),
parameter.CheckTableFieldHasSameNameAsMethod);

 // Table Fields Group
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldGroupNumberOfFields),
parameter.CheckTableFieldGroupNumberOfFields);

 // Analysis Behavior, Totaling, CurrencyCodeFields and CurrencyDateFields
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableAnalysisBehavior
), parameter.CheckTableAnalysisBehavior);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCurrencyCodeFields), parameter.CheckTableCurrencyCodeFields);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCurrencyDateFields), parameter.CheckTableCurrencyDateFields);

 // Table Relations
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableRelations),
parameter.CheckTableRelations);

 // Table Collections
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS25433");
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCollectionRelation), parameter.CheckTableCollectionRelation);
 // Maps

 // Views

B 10 Source code

 // Extended Data Types

 // Classes
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS60851");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckClassAbstract),
parameter.CheckClassAbstract);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckRunBaseImplementation), parameter.CheckRunBaseImplementation);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckMissingMember),
parameter.CheckMissingMember);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckConstructors),
parameter.CheckConstructors);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckComplexity),
parameter.CheckComplexity);

 // Methods (Member Functions)
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS25613");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckEmptyMethods),
parameter.CheckEmptyMethods);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckDate),
parameter.CheckDate);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckPrivacy),
parameter.CheckPrivacy);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckSourcePrintAndPause),
parameter.CheckSourcePrintAndPause);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckVariables),
parameter.CheckVariables);
 element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckFutureReservedWords), parameter.CheckFutureReservedWords);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTextInSingleQuotes),
parameter.CheckTextInSingleQuotes);

 // Forms
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS98083");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormSize),
parameter.CheckFormSize);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckDisablingTechnique),
parameter.CheckDisablingTechnique); // CheckFormControlDisablingTechnique
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormControlNames),
parameter.CheckFormControlNames);
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormTabPages),
parameter.CheckFormTabPages);

 // Labels
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #gotChilds, "@SYS83850");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckSpelling),
parameter.CheckSpelling);

B 11

 // Perspectives
 tmpNode = element.addNode(nodeSpecific, 0, #disabled, #gotChilds, "@SYS94647");
 element.addNode(tmpNode, fieldnum(SysBPParameters, CheckPerspectives),
parameter.CheckPerspectives);

 SysFormTreeControl::setTreeStateImage_CheckBox(selectionTree, nodeRoot);

 selectionTree.expand(nodeRoot);
 selectionTree.expand(nodeGeneral);
 selectionTree.expand(nodeSpecific);
}

B 12 Source code

Metric Framework

Class: CodeMetricBase

public abstract class CodeMetricBase
{
 //Import macro SysBPCheck
 #SysBPCheck

 //The node to run the metric calculations on
 TreeNode node;
}

//Return the BP info/warning string if the value violates the limits
public abstract str getBPStr()
{
}

//The calculated metric value should be returned
public abstract int getValue()
{
}

void setElement(TreeNode _node)
{
 //Saves the node for later use
 node = _node;
}

public BPSeverity getBPSeverity()
{
 //Return info as default severity level
 return BPSeverity::Info;
}

public str getDescription()
{
 //Blank as default value.
 return '';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetric;
}

Class: CodeClassMetric

public abstract class CodeClassMetric extends CodeMetricBase
{
 xRefTmpReferences tmpxRefReferences;
 boolean xRefIsInited;
}

protected void initTmpXRef()

B 13

{
 xRefUpdateTmpReferences tmpUpdate;

 if (!xRefIsInited)
 {
 //Create tmp references for the entire class
 tmpUpdate = new xRefUpdateTmpReferences();
 tmpUpdate.fillTmpxRefReferences(node);
 tmpxRefReferences = tmpUpdate.allTmpxRefReferences();

 //Set the flag to true
 xRefIsInited = true;
 }
}

void setElement(TreeNode _node)
{
 super(_node);

 //Reset the flag for generation of tmpXref
 xRefIsInited = false;
}

public void setXRefTmpReferences(xRefTmpReferences _ref)
{
 //Save the tmp ref in class level variable and set flag to true
 tmpxRefReferences = _ref;
 xRefIsInited = true;
}

Class: CodeMethodMetric

public abstract class CodeMethodMetric extends CodeMetricBase
{
 //Scanner class used for reading symbols of the method source code
 SysScannerClass scanner;
}

protected SysScannerClass getScanner()
{
 //If no scanner class have been provided, then generate a new scanner class
based on the TreeNode
 if (scanner == null)
 {
 scanner = new SysScannerClass(node);
 }

 //Returns the scanner with information of method symbols
 return scanner;
}

void setElement(TreeNode _node)
{
 super(_node);

 //Reset the scanner
 scanner = null;
}

B 14 Source code

public void setScanner(SysScannerClass _scanner)
{
 //Save to local variable
 scanner = _scanner;
}

Enumeration: BPSeverity
 ENUMTYPE #BPSeverity
 PROPERTIES
 Name #BPSeverity
 UseEnumValue #Yes
 ENDPROPERTIES

 TYPEELEMENTS
 #None
 PROPERTIES
 Name #None
 Label #None
 EnumValue #0
 ENDPROPERTIES

 #Info
 PROPERTIES
 Name #Info
 Label #Info
 EnumValue #1
 ENDPROPERTIES

 #Warning
 PROPERTIES
 Name #Warning
 Label #Warning
 EnumValue #2
 ENDPROPERTIES

 #Error
 PROPERTIES
 Name #Error
 Label #Error
 EnumValue #3
 ENDPROPERTIES

 ENDTYPEELEMENTS
 ENDENUMTYPE

B 15

Metric Implementations

Class: CodeMetricCPMethod
class CodeMetricCPMethod extends CodeMethodMetric
{
 //The minimum allowed Comment Percentage
 #define.MinCPValue(10)
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()
{
 str ret;
 int cpVal;

 //Get the value for CP for the source code
 cpVal = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (cpVal < #MinCPValue)
 ret = strfmt('The Comment Percentage (CP) of method %1 is %2 (Min.
recommended %3)',node.treeNodeName(),int2str(cpVal),int2str(#MinCPValue));

 return ret;
}

public str getDescription()
{
 //Comment Percentage
 return 'CP';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricCPMethod;
}

int getValue()
{
 //Return the value for CP for the source code
 return CodeMetricCPMethod::calcCP(node.AOTgetSource());
}

public static int calcCP(str sourceCode)
{
 int cp;
 int newlinesInComment;
 int linesWithComments;
 int blankLines;
 int lastCommentLine;

B 16 Source code

 str tmp;

 SourceCodeChunker chunker = new SourceCodeChunker(sourceCode);
 ;

 //Loop through code/comment chunks
 while(chunker.moveNext())
 {
 if (chunker.currentCommentChunk() != '')
 {
 newlinesInComment =
StringUtil::CountOccurences(chunker.currentCommentChunk(),'\n');

 if(chunker.commentStartLine() > lastCommentLine)
 linesWithComments += newlinesInComment + 1;
 else
 linesWithComments += newlinesInComment;

 lastCommentLine = chunker.commentStartLine() + newlinesInComment;
 }

 //Remove spaces from the source code chunk
 tmp = strrem(chunker.currentCodeChunk(),' ');

 //Add the number of blank lines in the chunk
 blankLines += StringUtil::CountOccurences(tmp,'\n\n');
 }

 //Calculate CP
 if((chunker.lineCount() - blankLines) > 0)
 cp = (linesWithComments / (chunker.lineCount() - blankLines))*100;

 return cp;
}

Class: CodeMetricVGMethod
class CodeMetricVGMethod extends CodeMethodMetric
{
 //Explanations of the symbol values
 #TokenTypes

 //The maximum allowed value for the Cyclomatic Complexity
 #define.MaxCCValue(10)

}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()
{
 str ret;
 int ccVal;

 //Get the value for V(G) for the source code
 ccVal = this.getValue();

B 17

 //If the value exceeds the threshold limit, return an error string
 if (ccVal > #MaxCCValue)
 ret = strfmt('The Cyclomatic Complexity of method %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(ccVal),int2str(#MaxCCValue));

 return ret;
}

public str getDescription()
{
 //Return the description
 return 'V(G)';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricVGMethod;
}

int getValue()
{
 //Return the value for V(G) for the source code
 return CodeMetricVGMethod::calcVG(this.getScanner());
}

/*-------------
 Need to look for:

 statementbeginend typename + identifier + "(" -> Definition of embedded
method

 "&&" -> Conditional operator, must not
be within SQL
 "||" -> Conditional operator, must not
be within SQL
 "?" -> Inline If branch

 statementbeginend + "if" -> If Branch
 statementbeginend + "while" -> Either normal or SQL while Loop
 statementbeginend + "for" -> For Loop
 statementbeginend + "case" -> Non-fallthrough label in switch
 statementbeginend + "default" -> Non-fallthrough default in
switch
 statementbeginend + "try" -> Try/catch

 "join" + name -> SQL Branch (must be followed by
a class or variable name)

 The statementbeginend is one of the following synbols: "{" "}" ";"
 The not(indicates that it must not be followed by "("

*/

public static int calcVG(SysScannerClass scanner)
{
 int cc, symbol, symbolHist_4, symbolHist_3, symbolHist_2, symbolHist_1;
 str strHist_4, strHist_3, strHist_2, strHist_1;
 boolean isSQL = false;

B 18 Source code

 //Initialize cc to 1
 cc = 1;

 //Loop through all synbols in the source
 symbol = scanner.firstSymbol();
 while (symbol)
 {
 //Add the new symbol to the symbol and string history
 symbolHist_4 = symbolHist_3;
 symbolHist_3 = symbolHist_2;
 symbolHist_2 = symbolHist_1;
 symbolHist_1 = symbol;

 strHist_4 = strHist_3;
 strHist_3 = strHist_2;
 strHist_2 = strHist_1;
 strHist_1 = scanner.strValue();

 //Find embedded method definitions
 if (CodeMetricVGMethod::isEmbMethodDef(symbolHist_1, symbolHist_2,
symbolHist_3, symbolHist_4, strHist_3))
 cc++;

 //Find out if we are in a SQL statement
 isSQL = CodeMetricVGMethod::isSQLStatement(isSQL, symbolHist_1,
symbolHist_2);

 //Find single symbols that will count towards cc, if they are not with a
SQL statement
 if (isSQL == false)
 switch(symbolHist_1)
 {
 case #QUEST_SYM: case #AND_SYM: case #OR_SYM:
 cc++;
 }

 //Find cases where the first symbol of the statement matches our list
 if (CodeMetricVGMethod::isStatementBeginEnd(symbolHist_2))
 switch(symbolHist_1)
 {
 case #IF_SYM: case #WHILE_SYM: case #FOR_SYM: case #CASE_SYM: case
#DEFAULT_SYM: case #CATCH_SYM:
 cc++;
 }

 //Find else if
 if (CodeMetricVGMethod::isElseIf(symbolHist_1, symbolHist_2))
 cc++;

 //Find SQL "join" constructs
 if (CodeMetricVGMethod::isSQLJoin(symbolHist_1, symbolHist_2,
symbolHist_3))
 cc++;

 //Get the next symbol from the scanner
 symbol = scanner.nextSymbol();
 }

 return cc;

B 19

}

public static boolean isDataType(int symbol)
{
 boolean ret = false;
 ;

 //Return true if the symbol is a simple datatype
 switch(symbol)
 {
 case #VOID_TYPE_SYM: //void
 case #INT_TYPE_SYM: //int
 case #INT64_TYPE_SYM: //int64
 case #DBL_TYPE_SYM: //real
 case #DATE_TYPE_SYM: //date
 case #STR_TYPE_SYM: //str
 case #GUID_TYPE_SYM: //guid
 ret = true;
 }

 return ret;
}

public static boolean isElseIf(int symbol_1, int symbol_2)
{
 //Return true if the symbols are "else if"
 return symbol_2 == #ELSE_SYM && symbol_1 == #IF_SYM;
}

public static boolean isEmbMethodDef(int symbol_1, int symbol_2, int symbol_3, int
symbol_4, str strVal_3)
{
 boolean ret=false;
 ;

 //Must end with "("
 if (symbol_1 == #LEFT_PAR_SYM)
 {
 //2nd last must be a identifier like "Method1"
 if (symbol_2 == #STD_ID)
 {
 //Before the method definition starts an end of the last statement must
be present
 if (CodeMetricVGMethod::isStatementBeginEnd(symbol_4))
 {
 //Check that there is a valid return type present
 if (TreeNode::isValidObjectName(strVal_3) ||
CodeMetricVGMethod::isDataType(symbol_3))
 {
 //We have an embedded method definition!!!
 ret = true;
 }
 }
 }
 }

 return ret;
}

public static boolean isSQLJoin(int symbol_1, int symbol_2, int symbol_3)
{

B 20 Source code

 ;

 //![exitsts||notexists] join name
 return (symbol_1 == #STD_ID && symbol_2 == #JOIN_SYM && symbol_3 != #EXISTS_SYM
&& symbol_3 != #NOTEXISTS_SYM);
}

public static boolean isSQLStatement(boolean isSQL, int symbol_1, int symbol_2)
{
 boolean ret = isSQL;
 ;

 if (isSQL && (symbol_1 == #LEFTBR_SYM || symbol_1 == #SEMICOLON_SYM))
 {
 //The SQL statement has ended
 ret = false;
 }
 else if(!isSQL)
 {
 //Its the first word of an expression
 if(CodeMetricVGMethod::isStatementBeginEnd(symbol_2))
 {
 //Its a SQL symbol
 switch(symbol_1)
 {
 case #SEARCH_SYM: //select
 case #DELETE_SYM: //delete
 case #UPDATE_SYM: //update_recordset
 case #INSERT_SYM: //insert_recordset
 ret = true;
 }
 }
 //while select
 else if(symbol_2 == #WHILE_SYM && symbol_1 == #SEARCH_SYM)
 ret = true;
 }

 return ret;
}

public static boolean isStatementBeginEnd(int symbol)
{
 ;
 //Return true, if the symbol is "{", "}" or ";"
 return (symbol == #LEFTBR_SYM || symbol == #RIGHTBR_SYM || symbol ==
#SEMICOLON_SYM);
}

Class: CodeMetricSLOCMethod
class CodeMetricSLOCMethod extends CodeMethodMetric
{
 //The maximal allowed val for SLOC
 #define.MaxSLOCValue(40)
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

B 21

public str getBPStr()
{
 str ret;
 int slocVal;

 //Get the value for SLOC
 slocVal = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (slocVal > #MaxSLOCValue)
 ret = strfmt('The number of Source lines (SLOC) of method %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(slocVal),int2str(#MaxSLOCValue));

 return ret;
}

public str getDescription()
{
 //Source Lines of Code
 return 'SLOC';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricSLOCMethod;
}

public int getValue()
{
 //Get the value for SLOC for the source code
 return CodeMetricSLOCMethod::calcSLOC(node.AOTgetSource());
}

public static int calcSLOC(str sourcecode)
{
 int sloc;
 TextBuffer textBuffer;
 str cfcode;
 str line;
 ;

 //Create TextBuffer and fill with comment-free source code
 cfcode = CodeMetricSLOCMethod::removeComments(sourcecode);
 textBuffer = new TextBuffer();
 textBuffer.setText(cfcode);

 //Get first line
 line = textBuffer.nextToken(false,'\n');

 //Loop through lines
 while(line)
 {
 //If the line is not blank then increase SLOC
 if(strrtrim(strltrim(line)) != '')
 sloc++;

 //Read next line
 line = textBuffer.nextToken(false,'\n');
 }

B 22 Source code

 return sloc;
}

public static str removeComments(str sourceCode)
{
 str cfcode = ''; //Comment-free code
 SourceCodeChunker chunker = new SourceCodeChunker(sourceCode);
 ;

 //Get all code chunks
 while(chunker.moveNext())
 cfcode += chunker.currentCodeChunk();

 //Return the comment-free code
 return cfcode;
}

Class: CodeMetricFI
class CodeMetricFI extends CodeClassMetric
{
 //The maximum allowed value for Fan In
 #define.MaxFIValue(50)
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for FI for the class
 val = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (val > #MaxFIValue)
 ret = strfmt('Fan In (FI) of class %1 is %2 (Max. recommended
%3)',node.treeNodeName(),int2str(val),int2str(#MaxFIValue));

 return ret;
}

public str getDescription()
{
 //Fan In
 return 'FI';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricFI;
}

int getValue()
{

 xRefReferences xReferences;
 xRefPaths xPaths;
 xRefPaths xFromPaths;

B 23

 xRefPath toLikePath;

 str typeName;
 Map map;
 ;

 //Create a map for holding the type names
 map = new Map(Types::String,Types::String);

 //Add * in the end of the path for node to find, and double the amout of \
 //This is needed to make the "like" work correctly
 toLikePath = strReplace(node.treeNodePath() + '*','\\','\\\\');

 /* Since Fan-In is a system-level measure, we need to use x-ref from the normal
tables,
 and not from the temporary xref
 */
 while select xFromPaths
 join xReferences where xFromPaths.RecId == xReferences.xRefPathRecId &&
 (xReferences.Reference == xRefReference::Declaration ||
 xReferences.Reference == xRefReference::Call)
 join xPaths where xPaths.RecId == xReferences.referencePathRecId &&
 (xPaths.Path == node.treeNodePath() ||
 xPaths.Path like toLikePath
)
 {
 //Get the name of the class/form/table
 typename = SysTreeNode::applObjectPath(xFromPaths.Path);

 //Insert the found type(class) name into the map if it's not already there
 //and if it is not the class itself
 if (!map.exists(typeName) && typeName != node.treeNodePath())
 map.insert(typeName,typeName);
 }

 //FI = number of other types having a reference to this class
 return map.elements();
}

Class: CodeMetricNOC
class CodeMetricNOC extends CodeClassMetric
{
 //The maximum allowed value for the Number Of Children
 #define.MaxNOCValue(10)
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for NOC for the class
 val = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (val > #MaxNOCValue)
 ret = strfmt('The Number Of Children (NOC) of class %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(val),int2str(#MaxNOCValue));

B 24 Source code

 return ret;
}

public str getDescription()
{
 //Number of children
 return 'NOC';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricNOC;
}

int getValue()
{
 DictClass dict;
 DictClass subDict;
 Enumerator enum;
 int noc = 0;
 ;

 //Create a new dict class
 dict = new DictClass(node.applObjectId());

 //Get an enumerator containing all subclasses
 enum = dict.extendedBy().getEnumerator();

 //Loop through all subclasses
 while(enum.moveNext())
 {
 subDict = new DictClass(enum.current());

 //If the class in an immediate child then increase the count
 if (subDict.extend() == node.applObjectId())
 noc++;
 }

 return noc;
}

Class: CodeMetricLCOM
class CodeMetricLCOM extends CodeClassMetric
{
 #define.LCOMValue(1)
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for LCOM for the node
 val = this.getValue();

 //If the value is greater then #LCOMValue, return an error string
 //We will also allow value of zero, since this might indicate a collection of
static methods
 if (val > #LCOMValue)

B 25

 ret = strfmt('The Lack of Cohesion Of Methods (LCOM) of class %1 is %2
(Recommended %3)',node.treeNodeName(),int2str(val),int2str(#LCOMValue));

 return ret;
}

public str getDescription()
{
 //Lack of Cohesion Of Methods
 return 'LCOM';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricLCOM;
}

int getValue()
{
 GraphUndirected graph = new GraphUndirected();
 xRefTmpReferences thisRefererences;

 str graphNodeVal;
 GraphNode fromGraphNode;
 GraphNode toGraphNode;

 //Make sure xRef is updated for the class
 this.initTmpXRef();

 thisRefererences.setTmpData(tmpxRefReferences);
 while select thisRefererences order by Reference
 {

 //Declaration of class level variables so add node
 if(this.isClassLevelVar(thisRefererences))
 {
 graphNodeVal = thisRefererences.name;
 graph.addNode(graphNodeVal);
 }
 //Definition of class method so add node
 else if(this.isMethodDef(thisRefererences))
 {
 graphNodeVal = thisRefererences.Path;
 graph.addNode(graphNodeVal);
 }
 //Call to class method so add edge
 else if(this.isInternalMethodCall(thisRefererences))
 {
 fromGraphNode = graph.findNodeOnData(thisRefererences.Path);
 toGraphNode = graph.findNodeOnData(node.treeNodePath() + '\\' +
thisRefererences.name);

 //If toGraphNode is null then it is a call to an inherited method, else
it is a regular internal method call
 graph.addEdge(fromGraphNode,toGraphNode);
 }
 //Read or write of variable
 else if(thisRefererences.Reference == xRefReference::Read ||
thisRefererences.Reference == xRefReference::Write)
 {

B 26 Source code

 //If the variable can be found as a node, then it must be a class-level
variable
 toGraphNode = graph.findNodeOnData(thisRefererences.name);
 fromGraphNode = graph.findNodeOnData(thisRefererences.Path);

 graph.addEdge(fromGraphNode,toGraphNode);
 }
 }

 //Start a Depth First Search on the graph
 graph.runDFS();

 //LCOM = the number of connected components = the number of sub-graphs
 return graph.nodesWithoutParent();
}

private boolean isClassLevelVar(xRefTmpReferences thisRefererences)
{
 ;
 //Declaration of class level variables
 return (thisRefererences.Reference == xRefReference::Declaration &&
thisRefererences.Path == node.treeNodePath() + '\\classDeclaration');
}

private boolean isInternalMethodCall(xRefTmpReferences thisRefererences)
{
 ;
 //Call to class method
 return (thisRefererences.Reference == xRefReference::Call &&
thisRefererences.ParentName == node.treeNodeName());
}

private boolean isMethodDef(xRefTmpReferences thisRefererences)
{
 boolean ret = false;
 SysMethodInfo sysMethodInfo;
 ;
 //Definition of class method
 if (thisRefererences.Reference == xRefReference::Definition &&
thisRefererences.Kind == xRefKind::ClassInstanceMethod)
 {
 //Get method info to find out if the method is abstract
 sysMethodInfo = new
SysMethodInfo(UtilElementType::ClassInstanceMethod,0,'');
 sysMethodInfo.setMethod(TreeNode::findNode(thisRefererences.Path));

 if (!sysMethodInfo.isAbstract())
 ret = true; //It must be a "normal" method
 }

 return ret;
}

Class: CodeMetricRFC
class CodeMetricRFC extends CodeClassMetric
{
 #define.MaxRFCValue(50)
}

public BPSeverity getBPSeverity()

B 27

{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for RFC for the source code
 val = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (val > #MaxRFCValue)
 ret = strfmt('The Response For Class (RFC) of class %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(val),int2str(#MaxRFCValue));

 return ret;
}

public str getDescription()
{
 //Response For Class
 return 'RFC';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricRFC;
}

int getValue()
{
 xRefTmpReferences thisRefererences;

 DictClass dict;
 int methodNo;

 Map map;
 str methodName;
 ;

 //Make sure xRef is updated for this class
 this.initTmpXRef();

 //Create a map for holding the method names
 map = new Map(Types::String,Types::String);

 //Add all the methods of the class to the list
 dict = new DictClass(node.applObjectId());
 for(methodNo = 1;methodNo <= dict.objectMethodCnt();methodNo++)
 {
 //The classDeclaration should not be included
 if (dict.objectMethod(methodNo) != 'classDeclaration')
 {
 methodName = node.treeNodeName() + '\\' + dict.objectMethod(methodNo);
 map.insert(methodName, methodName);
 }
 }

B 28 Source code

 //Get the paths of the objects used
 thisRefererences.setTmpData(tmpxRefReferences);
 while select thisRefererences where thisRefererences.Reference ==
xRefReference::Call
 {
 //Get the method name (path)
 methodName = thisRefererences.ParentName + '\\' + thisRefererences.name;

 //If the type does not already exists in the map then insert it
 if (!map.exists(methodName))
 map.insert(methodName,methodName);

 }

 //RFC = number of distinct possible method calls
 return map.elements();

}

Class: CodeMetricCBO
class CodeMetricCBO extends CodeClassMetric
{
 #define.MaxCBOValue(20)
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for CBO for the source code
 val = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (val > #MaxCBOValue)
 ret = strfmt('The Coupling Between Objects (CBO) of class %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(val),int2str(#MaxCBOValue));

 return ret;
}

public str getDescription()
{
 //Coupling Between Objects
 return 'CBO';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricCBO;
}

B 29

int getValue()
{
 xRefTmpReferences thisRefererences;

 Map map;
 str typeName;
 ;

 //Make sure xRef is updated for this class
 this.initTmpXRef();

 //Create a map for holding the type names
 map = new Map(Types::String,Types::String);

 //Get the paths of the objects used
 thisRefererences.setTmpData(tmpxRefReferences);
 while select thisRefererences where thisRefererences.Reference ==
xRefReference::Read
 {
 //Get the type name (path)
 if (thisRefererences.ParentName == '')
 typeName = thisRefererences.name;
 else
 typeName = thisRefererences.ParentName;

 //If the type does not already exists in the map then insert it
 if (!map.exists(typeName))
 map.insert(typeName,typeName);

 }

 //CBO = number of distinct types
 return map.elements();

}

Class: CodeMetricWMC
class CodeMetricWMC extends CodeClassMetric
{
 #define.MaxWMCValue(50)
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()
{
 str ret;
 int val;

 //Get the value for WMC for the class
 val = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (val > #MaxWMCValue)

B 30 Source code

 ret = strfmt('The Weighted Methods per Class (WMC) of class %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(val),int2str(#MaxWMCValue));

 return ret;
}

public str getDescription()
{
 //Weighted Methods per Class
 return 'WMC';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricWMC;
}

int getValue()
{
 CodeMetricVGMethod vgMetric = new CodeMetricVGMethod();
 int sumVG = 0;
 TreeNode child;
 ;

 //Loop through all child methods
 child = node.AOTfirstChild();
 while(child)
 {
 if (child.treeNodeName() != 'classDeclaration')
 {
 //Pass the method to CodeMetricCCMethod
 vgMetric.setElement(child);

 //Get the value
 sumVG += vgMetric.getValue();
 }

 //Get next child method
 child = child.AOTnextSibling();
 }

 //Return sum of complexities
 return sumVG;
}

Class: CodeMetricDIT
class CodeMetricDIT extends CodeClassMetric
{
 //The maximum allowed value for the Depth of Inheritance Tree
 #define.MaxDITValue(8)
}

public BPSeverity getBPSeverity()
{
 //Warning
 return BPSeverity::Warning;
}

public str getBPStr()

B 31

{
 str ret;
 int ditVal;

 //Get the value for DIT for the class
 ditVal = this.getValue();

 //If the value exceeds the threshold limit, return an error string
 if (ditVal > #MaxDITValue)
 ret = strfmt('The Depth of Inheritance Tree (DIT) of class %1 is %2 (Max.
recommended %3)',node.treeNodeName(),int2str(ditVal),int2str(#MaxDITValue));

 return ret;
}

public str getDescription()
{
 //Depth of Inheritance Tree
 return 'DIT';
}

public int getErrorCode()
{
 //Errorcode defined in macro SysBPCheck
 return #BPErrorCodeMetricDIT;
}

public int getValue()
{
 DictClass dict = new DictClass(node.applObjectId());
 int depth = 1; //All classes inherit from Object
 ;

 //Repeat as long as we can go up in the hierarchy
 while(dict.extend())
 {
 //Increase depth if its not object
 if (dict.extend() != classNum(object))
 {
 depth++;
 }

 //Create a DictClass for the parent
 dict = new DictClass(dict.extend());
 }

 return depth;
}

B 32 Source code

Other

Class: GraphUndirected
class GraphUndirected
{
 List nodes; //List of nodes
 List edges; //List of edges

 int dfsTime; //For time-keeping in DFS

 #define.white(0)
 #define.grey(1)
 #define.black(2)

}

public GraphEdge addEdge(GraphNode node1, GraphNode node2)
{
 GraphEdge edge = null;
 ;

 //If there is no edge with that that already, then create a new
 if (node1 != null && node2 != null)
 {
 if (!this.findEdge(node1, node2))
 {
 edge = new GraphEdge();
 edge.setNode1(node1);
 edge.setNode2(node2);

 //Add the edge to the list
 edges.addEnd(edge);
 }
 }

 return edge;
}

public GraphNode addNode(anytype data)
{
 GraphNode newNode = null;

 //Try to find an existing node with the same data
 newNode = this.findNodeOnData(data);

 //If the data is not present in a node, then create a new node
 if (newNode == null)
 {
 newNode = new GraphNode();
 newNode.setData(data);

 //Add to the list
 nodes.addEnd(newNode);
 }

 return newNode;
}

B 33

private void DFS(GraphNode node)
{
 List neighbours;
 GraphNode neighbourNode;
 ListEnumerator enum;
 ;

 //Set the start time and change color to grey
 dfsTime++;
 node.setTimeDiscovered(dfsTime);
 node.setColor(#grey);

 //Get the list of neighbours to this node
 neighbours = this.getListOfNeighbours(node);
 if (neighbours.elements() > 0)
 {
 enum = neighbours.getEnumerator();

 //Loop through all the neighbours
 while(enum.moveNext())
 {
 neighbourNode = enum.current();

 //If the neighbour has not been discovered then perform DFS recursively
 if (neighbourNode.getColor() == #white)
 {
 neighbourNode.setParent(node);
 this.DFS(neighbourNode);
 }
 }
 }

 //Node completed so set finish time and change color to black
 dfsTime++;
 node.setTimeFinished(dfsTime);
 node.setColor(#black);

}

public GraphEdge findEdge(GraphNode node1, GraphNode node2)
{

 ListEnumerator enum = edges.getEnumerator();
 GraphEdge edge;
 int edgeNum;

 //Loop through all the edges
 while(enum.moveNext())
 {
 edge = enum.current();

 //If the edge contains the two nodes then we're done
 if ((edge.getNode1() == node1 && edge.getNode2() == node2) ||
 (edge.getNode1() == node2 && edge.getNode2() == node1))
 return edge;
 }

 return null;

}

B 34 Source code

public GraphNode findNodeOnData(anytype findData)
{
 ListEnumerator enum = nodes.getEnumerator();
 GraphNode node;
 int nodeNum;

 //Loop through all the nodes
 while(enum.moveNext())
 {
 node = enum.current();

 //If the node contains the data that we're done
 if (node.getData() == findData)
 return node;
 }

 return null;
}

public List getListOfNeighbours(GraphNode node)
{
 ListEnumerator enum = edges.getEnumerator();
 GraphEdge edge;
 int edgeNum;

 //Create new list to hold the found nodes
 List neighbours = new List(Types::Class);

 //Loop through the edges
 while(enum.moveNext())
 {
 edge = enum.current();

 //If node1 or node2 equals the node, then add the other end of the edge to
the list
 if (edge.getNode1() == node)
 neighbours.addEnd(edge.getNode2());
 else if (edge.getNode2() == node)
 neighbours.addEnd(edge.getNode1());
 }

 return neighbours;
}

public List getNodes()
{
 //Return the list of nodes
 return nodes;
}

void new()
{
 ;

 //Initialize the lists of nodes and edges
 nodes = new List(Types::Class);
 edges = new List(Types::Class);
}

public int nodesWithoutParent()

B 35

{
 ListEnumerator enum = nodes.getEnumerator();
 GraphNode node;
 int nodeNum;
 int noParent = 0;

 //Loop through all the nodes
 while(enum.moveNext())
 {
 node = enum.current();

 //Increase the count if the parent is null
 if (node.getParent() == null)
 noParent++;
 }

 return noParent;
}

public void runDFS()
{
 ListEnumerator enum = nodes.getEnumerator();
 GraphNode node;
 int nodeNum;

 //Loop through all the nodes and initialize
 while(enum.moveNext())
 {
 node = enum.current();
 node.setColor(#white);
 node.setParent(null);
 }

 //Reset time
 dfsTime = 0;

 //Loop through the nodes again and perform DFS is the color is white
 enum = nodes.getEnumerator();
 while(enum.moveNext())
 {
 node = enum.current();
 if (node.getColor() == #white)
 this.DFS(node);
 }

}

Class: GraphEdge
class GraphEdge
{
 GraphNode node1;
 GraphNode node2;
}

public GraphNode getNode1()
{
 //Return the first node
 return node1;

B 36 Source code

}

public GraphNode getNode2()
{
 //Return the second node
 return node2;
}

public void setNode1(GraphNode _node1)
{
 //Save in class variable
 node1 = _node1;
}

public void setNode2(GraphNode _node2)
{
 //Save in class variable
 node2 = _node2;
}

Class: GraphNode
class GraphNode
{
 anytype data; //Payload

 int color; //For graph traversal
 int timeDiscovered; //For graph traversal
 int timeFinished; //For graph traversal
 GraphNode parent; //For graph traversal
}

public int getColor()
{
 //Return color for graph travsersal
 return color;
}

public anytype getData()
{
 //Return the payload
 return data;
}

public GraphNode getParent()
{
 //Return the parent
 return parent;
}

public int getTimeDiscovered()
{
 //Return the timeDiscovered
 return timeDiscovered;
}

public int getTimeFinished()
{
 //Return the timeFinished
 return timeFinished;
}

B 37

public void setColor(int _color)
{
 ;
 //Save color in class variable
 color = _color;
}

public void setData(anytype _data)
{
 //Save in class variable
 data = _data;
}

public void setParent(GraphNode _parent)
{
 //Save in class variable
 parent = _parent;
}

public void setTimeDiscovered(int _timeDiscovered)
{
 //Save in class variable
 timeDiscovered = _timeDiscovered;
}

public void setTimeFinished(int _timeFinished)
{
 //Save in class variable
 timeFinished = _timeFinished;
}

Class: ClassInstanciator
class ClassInstanciator
{
}

static List createSubClassInstances(classId superClassId)
{
 List instanceList;

 Set set;
 SetEnumerator enumerator;
 SysDictClass dictClass;
 ;

 //Create a list that will hold instances of the classes
 instanceList = new List(Types::Class);

 //Get a Set containing the ids for classes that implements the superclass
 set = SysDictClass::getImplements(superClassId);
 enumerator = set.getEnumerator();
 while(enumerator.moveNext())
 {
 //Create a new SysDictClass for the classid
 dictClass = new SysDictClass(enumerator.current());

 if (dictClass.id() != superClassId)
 {

B 38 Source code

 //Add a new instance of the implementing class to the
codeMethodMetricList
 instanceList.addEnd(dictClass.makeObject());
 }
 }

 return instanceList;
}

Class: StringUtil
class StringUtil
{
 //No class level variables, since this class is used for grouping of related
string function
}

public static int CountOccurences(str sourcetxt, str findtxt)
{
 int cnt = 0;
 int scanpos = 1;
 ;

 //Find first occurence
 scanpos = strscan(sourcetxt,findtxt,scanpos,strlen(sourcetxt) - scanpos + 1);
 while(scanpos > 0)
 {
 //Add one to the count
 cnt++;

 //Rescan
 scanpos = strscan(sourcetxt,findtxt,scanpos+1,strlen(sourcetxt) - scanpos);
 }

 return cnt;
}

Class: SourceCodeChunker
class SourceCodeChunker
{
 str source; //Source code to work on
 int sourcelen; //Length of the source code, so we don't need to use
strlen(sourcecode) all the time

 int fromPos; //The current position in the source code
 int linecount; //Number of lines (newline characters) read

 str currentCode; //Last created code chunk
 str currentComment; //Last created comment chunk

 int startLineCode; //The line number where the code starts
 int startLineComment; //The line number where the comment starts

 #define.commentLength(2) //For use with the getNext function
}

public int codeStartLine()
{
 //Return the line number where the code chunk starts

B 39

 return startLineCode;
}

public int commentStartLine()
{
 //Return the line number where the code chunk starts
 return startLineComment;
}

public str currentCodeChunk()
{
 //Returns the last created code chunk
 return currentCode;
}

public str currentCommentChunk()
{
 //Returns the last created comment chunk
 return currentComment;
}

//Finds the minimum value, where value <> 0
private int findMinPos(container vals)
{
 int minval = 0;
 int val;
 int i;
 ;

 //Loop for all value in the container
 for(i=1;i<=conlen(vals);i++)
 {
 //Get value from container
 val = conpeek(vals,i);

 //Check if the val is a new minimum
 if (val < minval && val != 0 || minval == 0)
 minval = val;
 }

 return minval;
}

//Finds the end of a quoted or double-quoted string
private int findStrEnd(str sourceCode, int startPos, str quote, str presymbol)
{
 #define.escapedWidth(2)
 int endPos=startPos;
 ;

 while(endPos <= strlen(sourceCode))
 {
 //Done when we find the end quote
 if (substr(sourceCode,endPos,1) == quote)
 break;

 //Verbose strings has no escape characters
 if (presymbol != '@')
 {
 //If \ or ' is escaped then ignore the next character
 switch(substr(sourceCode,endPos,#escapedWidth))

B 40 Source code

 {
 case '\\\\':
 case '\\' + quote:
 endPos++;
 }
 }

 //Next character
 endPos++;
 }

 return endPos;
}

int lineCount()
{
 //Number of lines (newline characters) read
 return lineCount;
}

public boolean moveNext()
{
 int scanPos;

 //Reset the output variables
 this.resetOutput();

 if(fromPos < sourcelen)
 {
 //Scan for comments and strings
 scanPos = this.scanForCommentsAndQuotes();

 //Repeat until we have found a comment
 while(scanpos > 0 && currentComment == '')
 {
 switch(substr(source,scanpos,#commentLength))
 {
 case '/*':
 //Start of multi line comment found, so insert the text and
search for comment end
 currentCode += substr(source,fromPos,scanPos-frompos);
 fromPos = strscan(source,'*/',scanPos,sourcelen -
scanPos)+#commentLength;
 currentComment = substr(source,scanPos,frompos-scanPos);
 break;

 case '//':
 //Start of multi line comment found, so insert the text and
search for line end
 currentCode += substr(source,fromPos,scanPos-frompos);
 fromPos = strscan(source,'\n',scanPos,sourcelen - scanPos) > 0
? strscan(source,'\n',scanPos,sourcelen - scanPos) : sourcelen +1;
 currentComment = substr(source,scanPos,frompos-scanPos);
 break;

 default:
 //All text until the next quote pos will be included, regarding
if it is a comment
 scanPos = this.findStrEnd(source,
scanPos+1,substr(source,scanpos,1),substr(source,scanpos-1,1));
 currentCode += substr(source,fromPos,scanPos-fromPos+1);

B 41

 fromPos = scanPos + 1;
 }

 //Rescan
 scanPos = this.scanForCommentsAndQuotes();
 }

 if (currentComment == '')
 {
 //No comments was found, so we must copy the last part of the
sourcecode to the currentCode
 currentCode += substr(source,fromPos,sourcelen-frompos+1);
 fromPos = sourceLen;
 }

 //Add to the linecount
 lineCount += StringUtil::CountOccurences(currentCode,'\n');
 startLineComment = lineCount;
 lineCount += StringUtil::CountOccurences(currentComment,'\n');

 return true;
 }

 return false;
}

void new(str sourceCode)
{
 ;

 //Set source and calculate sourcelen
 source = sourceCode;
 sourcelen = strlen(source);

 //Initialize the counters
 fromPos = 1;
 linecount = 1;

 //Reset all the output variables
 this.resetOutput();
}

private void resetOutput()
{
 //Clear all the output variables
 currentCode = '';
 currentComment = '';
 startLineComment = lineCount;
 startLineCode = lineCount;
}

private int scanForCommentsAndQuotes()
{
 int singlePos, multiPos, quotePos, doubleQuotePos;
 ;

 //Find the next positions of comments and quotes
 multiPos = strscan(source,'/*',fromPos,sourcelen);
 singlePos = strscan(source,'//',fromPos,sourcelen);
 quotePos = strscan(source,'\'',fromPos,sourcelen);
 doubleQuotePos = strscan(source,'"',fromPos,sourcelen);

B 42 Source code

 //Return the first position that is not zero
 return this.findMinPos([multiPos, singlePos, quotePos, doubleQuotePos]);
}

B 43

Statistics

Form: CodeMetricsResults
public class FormRun extends ObjectRun
{
}

void startGenerateTeamStats(str filename)
{
 Map statMap;
 MapIterator metricIterator;
 MapIterator itemIterator;
 str metric;

 CodeMetricStatItem item;
 TmpCodeMetricsTeamStat stat;

 if (filename != '')
 {
 //Start calculation
 statMap = CodeMetricTeamStatGenerator::statByTeam(filename);

 //Clear the team statistics table
 delete_from stat;

 metricIterator = new MapIterator(statMap);
 while(metricIterator.more())
 {
 metric = metricIterator.key();

 itemIterator = new MapIterator(metricIterator.value());
 while(itemIterator.more())
 {
 item = itemIterator.value();

 //Clear record
 stat.clear();

 //Fill with values
 stat.Metric = metric;
 stat.Team = item.getName();
 stat.Prefix = item.getPrefixName();
 stat.Occurences = item.getItemCount();
 stat.ValueSum = item.getSum();
 stat.AverageValue = item.getAvg();
 stat.MaxValue = item.getMax();

 if (item.getItemCount() == 0)
 stat.MinValue = 0;
 else
 stat.MinValue = item.getMin();

 //Insert into table
 stat.insert();

 //Get next item
 itemIterator.next();

B 44 Source code

 }

 metricIterator.next();
 }

 //Refresh grid datasource
 tmpCodeMetricsTeamStat_ds.research();
 }
}

container fileNameLookupFilter()
{
 #File
 Filename filepath;
 Filename filename;
 Filename fileExtention;

 //Extract path, filename and extension from any existing filename
 [filepath, fileName, fileExtention] =
Global::fileNameSplit(teamFileName.text());

 //Set default file extension to .txt
 if (!fileExtention)
 {
 fileExtention = #txt;
 }

 return [WinAPI::fileType(fileExtention),#AllFilesName+fileExtention,
#AllFilesExt, #AllFilesType];
}

// AOSRunMode::client
str fileNameLookupInitialPath()
{
 #WinAPI

 Filename filepath;
 Filename filename;
 Filename fileType;

 [filepath, fileName, fileType] = Global::fileNameSplit(teamFileName.text());

 // Default path
 if (!filePath)
 {
 filePath = WinAPI::getFolderPath(#CSIDL_Personal);
 }

 return filepath;
}

// AOSRunMode::client
str fileNameLookupTitle()
{
 return teamFileName.label();
}

str fileNameLookupFilename()
{
 Filename filepath;
 Filename filename;

B 45

 Filename fileType;

 //Split name into the tree parts
 [filepath, fileName, fileType] = fileNameSplit(teamFileName.text());

 return fileName + fileType;
}

void startGeneration()
{
 TreeNode startNode;
 ;

 startNode = TreeNode::findNode(treePath.text());
 if (startNode)
 {
 //Clear the data first
 ttsbegin;
 delete_from TmpCodeMetrics;
 ttscommit;

 //Start generating
 CodeMetricGenerator::generateMetrics(startNode);

 //Update the grid
 tmpCodeMetrics_ds.research();
 grid.update();
 }
 else
 {
 error('Invalid path to TreeNode');
 }

}

public int mouseDblClick(int _x, int _y, int _button, boolean _ctrl, boolean
_shift)
{
 int ret;
 TreeNode node;

 ret = super(_x, _y, _button, _ctrl, _shift);

 //Find the treenode that corresponds to line that was clicked
 node = TreeNode::findNode(tmpCodeMetrics.TreeNodePath);

 //Edit the node
 node.AOTedit();

 return ret;
}

void clicked()
{
 super();

 //Start the generation
 element.startGeneration();
}

void clicked()

B 46 Source code

{
 super();

 //Call method to start generation of statistics per team/prefix
 element.startGenerateTeamStats(teamFileName.text());
}

Class: CodeMetricGenerator
class CodeMetricGenerator
{
 //No instance variables, since all methods are static
}

public static void doClassMetric(TreeNode treeNode, List codeMetricList)
{
 CodeClassMetric codeMetric;
 ListEnumerator metricEnum;

 xRefUpdateTmpReferences tmpUpdate;
 xRefTmpReferences tmpxRefReferences;
 ;

 //Create tmp cross references for the entire class (for optimization)
 tmpUpdate = new xRefUpdateTmpReferences();
 tmpUpdate.fillTmpxRefReferences(treeNode);
 tmpxRefReferences = tmpUpdate.allTmpxRefReferences();

 //Loop through all the metric classes that are available
 metricEnum = codeMetricList.getEnumerator();
 while(metricEnum.moveNext())
 {
 //Cast as CodeClassMetric
 codeMetric = SysDictClass::as(metricEnum.current(),
classNum(CodeClassMetric));

 //Pass the tree node of the class to check
 codeMetric.setElement(treeNode);

 //Pass the cross references to the metric class
 codeMetric.setXRefTmpReferences(tmpxRefReferences);

 //Get the value and insert into database
 codeMetricGenerator::saveInDB(codeMetric, treeNode.treeNodePath());
 }
}

public static void doMethodMetric(TreeNode treeNode, List codeMetricList)
{
 CodeMethodMetric codeMetric;
 ListEnumerator metricEnum;

 SysScannerClass scanner;
 ;

 //Create scanner
 scanner = new SysScannerClass(treeNode);

 //Loop through all the metric classes that are available
 metricEnum = codeMetricList.getEnumerator();
 while(metricEnum.moveNext())

B 47

 {
 //Cast as CodeMethodMetric
 codeMetric = SysDictClass::as(metricEnum.current(),
classNum(CodeMethodMetric));

 //Pass the tree node of the class to check
 codeMetric.setElement(treeNode);

 //Pass the scanner for optimization
 codeMetric.setScanner(scanner);

 //Get the value and insert into database
 codeMetricGenerator::saveInDB(codeMetric, treeNode.treeNodePath());
 }
}

public static void generateMetrics(TreeNode startnode)
{
 //Create lists with instances of CodeMethodMetric/CodeClassMetric classes
 List codeMethodMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeMethodMetric));
 List codeClassMetricList =
ClassInstanciator::createSubClassInstances(classNum(CodeClassMetric));

 TreeNode treeNode;
 TreeNodeTraverser treeNodeTraverser;

 #avifiles
 SysOperationProgress simpleProgress;
 ;

 //Create a progress indicator
 simpleProgress = SysOperationProgress::newGeneral(#aviUpdate, 'Metrics',
startnode.AOTchildNodeCount());

 //Traverse the startnode
 treeNodeTraverser = new TreeNodeTraverser(startnode);
 while (treeNodeTraverser.next())
 {
 //Get the current node
 treeNode = treeNodeTraverser.currentNode();

 //Increment and set text on progress
 simpleProgress.incCount();
 simpleProgress.setText(treeNode.treeNodePath());

 //Perform different actions depending on the type of TreeNode
 switch (treeNode.handle())
 {
 case classnum(MemberFunction):
 if (treeNode.treeNodeName() != 'classDeclaration')
 CodeMetricGenerator::doMethodMetric(treeNode,
codeMethodMetricList);
 break;
 case classnum(ClassNode):
 CodeMetricGenerator::doClassMetric(treeNode, codeClassMetricList);
 break;
 }
 }

 //Done!!

B 48 Source code

}

public static void saveInDB(CodeMetricBase codeMetric, TreeNodePath path)
{
 TmpCodeMetrics tmpCodeMetrics;
 ;

 //Perform the check
 tmpCodeMetrics.Value = codeMetric.getValue();

 //Add standard info and insert into the table
 tmpCodeMetrics.Metric = codeMetric.getDescription();
 tmpCodeMetrics.TreeNodePath = path;
 tmpCodeMetrics.insert();
}

Class: CodeMetricStatItem
class CodeMetricStatItem
{
 str prefixName;
 str groupName;
 int itemCount;
 int minValue;
 int maxValue;
 int valueSum;

 #define.infinity(9999999)
}

public void addValue(int value)
{
 //Increase count
 itemCount++;

 //Add value to sum
 valueSum += value;

 //Set min and max
 if(value < minValue)
 minValue = value;
 if(value > maxValue)
 maxValue = value;
}

public real getAvg()
{
 real avgvalue = 0;

 //If the itemCount is greater than zero, then calculate the average value
 if (itemCount > 0)
 avgValue = valueSum / itemCount;

 return avgvalue;
}

int getItemCount()
{
 //Return the number of items
 return itemCount;
}

B 49

int getMax()
{
 //Return the maximum value recorded
 return maxValue;
}

int getMin()
{
 //Return the minimum value recorded
 return minValue;
}

str getName()
{
 //Return the name of the team
 return groupName;
}

public str getPrefixName()
{
 //Return the name of the prefix
 return prefixName;
}

int getSum()
{
 //Return the sum of recorded values
 return valueSum;
}

void new(str _groupName, str _prefixName)
{
 ;

 //Initialize values
 prefixName = _prefixName;
 groupName = _groupName;
 maxValue = 0;
 valueSum = 0;
 itemCount = 0;

 //Set the minvalue to a high number so we can track the actual min value
 minValue = #infinity;
}

Class: CodeMetricTeamStatGenerator
class CodeMetricTeamStatGenerator
{
}

static str findPrefix(str path, Map teamPrefixMap)
{
 #define.firstPostFixPos(2)

 str prefix = '';
 str okPrefix = '';
 boolean ok;
 int pos;

B 50 Source code

 //Get the object name from the path
 str objName = SysTreeNode::applObjectName(path);

 //Loop through all prefixes in the map
 MapIterator prefixIterator = new MapIterator(teamPrefixMap);
 while(prefixIterator.more())
 {
 prefix = prefixIterator.key();
 ok = false;

 if (strscan(prefix,'*',1,1) == 1)
 {
 //Is really a postfix
 pos = strscan(objname, substr(prefix,#firstPostFixPos,strlen(prefix)-
1),1,strlen(objName));
 if (pos > 0 && pos == (strlen(objName) - strlen(prefix) +
#firstPostFixPos))
 ok = true;
 }
 else if (strscan(objName,prefix,1,strlen(objName)) == 1)
 ok = true;

 //If match found and its longer than the previous one, and a prefix is not
overriding a postfix
 if (ok == true && strlen(prefix) >= strlen(okPrefix) && !(
(strscan(okPrefix,'*',1,1) == 1 && strscan(prefix,'*',1,1) == 0)))
 okPrefix = prefix;

 //Read the nex prefix
 prefixIterator.next();
 }

 //Return the found prefix
 return okPrefix;
}

public static Map initStatMap(Map teamPrefixMap)
{
 CodeMetricStatItem newItem;

 //Create new map for holding maps of CodeMetricStatItems per metric
 Map metricStatMap = new Map(Types::String,Types::Class);

 Map statMap; //Map for holding CodeMetricStatItems per team
 MapIterator iterator; //Iterator for looping through prefix/team names

 SetEnumerator metricEnumerator;
 DictClass dict;
 str metric;

 //Loop through avalible metrics
 metricEnumerator =
SysDictClass::getImplements(classNum(CodeMetricBase)).getEnumerator();
 while(metricEnumerator.moveNext())
 {
 //Get metric name
 dict = new DictClass(metricEnumerator.current());
 metric = dict.callStatic('getDescription');

 //New map for this metric

B 51

 statMap = new Map(Types::String,Types::Class);

 //Loop through team names
 iterator = new MapIterator(teamPrefixMap);
 while(iterator.more())
 {
 //Create new CodeMetricStatItem and insert int map
 newItem = new CodeMetricStatItem(iterator.value(),iterator.key());
 statMap.insert(newItem.getPrefixName(),newItem);

 iterator.next();
 }

 //Add statMap to metricStatMap
 metricStatMap.insert(metric, statMap);
 }

 return metricStatMap;
}

public static Map loadPrefixMap(str _fileName)
{
 #define.prefixrecordLen(2)
 #file

 Map map = new Map(Types::String,Types::String);
 Io file;
 container data;

 //Check that the file exists
 if (WinAPI::fileExists(_fileName))
 {
 file = new TextIo(_fileName, #io_read);

 //Each record is on a single line, and field are delimeted by ';'
 file.inRecordDelimiter('\r\n');
 file.inFieldDelimiter(';');

 //Loop through all lines in the file
 while(file.status() == IO_Status::Ok)
 {
 data = file.read();
 if (conlen(data) == #prefixrecordLen)
 {
 map.insert(conpeek(data,#prefixrecordLen),conpeek(data,1));
 }
 }
 }

 return map;
}

public static Map statByTeam(str _teamFileName)
{
 //Load map with prefix/team pairs from file
 Map teamPrefixMap =
CodeMetricTeamStatGenerator::loadPrefixMap(_teamFileName);

 //Get map to hold maps of CodeMetricStatItems per team per metric
 Map statMap = CodeMetricTeamStatGenerator::initStatMap(teamPrefixMap);
 Map metricMap;

B 52 Source code

 CodeMetricStatItem statItem;

 str path = '';
 str team;
 str prefix;

 TmpCodeMetrics result;

 #avifiles
 SysOperationProgress simpleProgress;
 ;

 //Create a progress indicator
 select count(value) from result;
 simpleProgress = SysOperationProgress::newGeneral(#aviUpdate, 'Statistics',
result.Value);

 //Loop through all records in tmpCodeMetrics to decide which prefix/metric map
they should be added to
 while select result order by TreeNodePath, Metric
 {
 if (result.TreeNodePath != path)
 {
 //Save the path
 path = result.TreeNodePath;

 //Find the team name from prefix map
 prefix = CodeMetricTeamStatGenerator::findPrefix(path, teamPrefixMap);
 }

 //Increment and set text on progress
 simpleProgress.incCount();
 simpleProgress.setText(path);

 //Get the map for the metric (ie. SLOC)
 metricMap = statMap.lookup(result.Metric);

 //Get statItem from prefix
 statItem = metricMap.lookup(prefix);

 if (statItem != null)
 {
 //Update item
 statItem.addValue(result.Value);
 }
 }

 return statMap;
}

B 53

Unit tests

Class: CodeMetricTeamStatGeneratorTest
class CodeMetricTeamStatGeneratorTest extends XUnitDevTest
{
 #define.TeamPrefixFile('c:\\teamlist.txt')
}

void testFindPrefix()
{
 Map prefixMap = CodeMetricTeamStatGenerator::loadPrefixMap('c:\\teamlist.txt');

 //Test of prefixes
 this.assertEquals('',
CodeMetricTeamStatGenerator::findPrefix('\\Classes\\kjhadkjhasdkjashd',
prefixMap),'No prefix should be found');
 this.assertEquals('SysSign',
CodeMetricTeamStatGenerator::findPrefix('\\Classes\\SysSignDialogForm',
prefixMap),'SysSign should be found');
 this.assertEquals('Sys',
CodeMetricTeamStatGenerator::findPrefix('\\Classes\\SysShell', prefixMap),'Sys
should be found');

 //Test of postfixes
 this.assertEquals('*FI',
CodeMetricTeamStatGenerator::findPrefix('\\Classes\\PaymMoneyTransferSlip_FI',
prefixMap),'*FI should be found');

}

void testInitStatMap()
{

 Map prefixMap = CodeMetricTeamStatGenerator::loadPrefixMap(#TeamPrefixFile);

 //Check that a map with the statistics is actually created
 Map statMap = CodeMetricTeamStatGenerator::initStatMap(prefixMap);
 this.assertNotEqual(0,statMap.elements(),'Map with statictics should not be
empty');
}

void testLoadPrefixMap()
{

 //Load the prefix map and check that it is not empty
 Map result = CodeMetricTeamStatGenerator::loadPrefixMap(#TeamPrefixFile);
 this.assertNotEqual(0,result.elements(),'Map with team/prefixes should not be
empty');
}

Class: CodeMetricGeneratorTest
class CodeMetricGeneratorTest extends XUnitDevTest
{
}

void testGenerateMetrics()

B 54 Source code

{
 TmpCodeMetrics tmp;

 //Make sure to clean up the TmpCodeMetrics before we start
 delete_from tmp;

 //Start a generation of metrics

CodeMetricGenerator::generateMetrics(TreeNode::findNode(@'\Classes\CodeMetricDummy1
'));

 //Check that 22 metrics (7 class level + 5*3 method level) has been generated
 select count(Value) from tmp;
 this.assertEquals(22,tmp.Value,"Incorrect number of metrics generated");
}

Class: CodeMetricStatItemTest
class CodeMetricStatItemTest extends XUnitDevTest
{
}

void testNew()
{
 CodeMetricStatItem statItem;

 //Create new item
 statItem = new CodeMetricStatItem('group','prefix');

 //Check that the correct group and prefix are saved/returned correct
 this.assertEquals('group',statItem.getName(),"Group name not saved/fetched
correct");
 this.assertEquals('prefix',statItem.getPrefixName(),"Prefix name not
saved/fetched correct");
}

void testAddValue()
{
 //Create new item
 CodeMetricStatItem statItem = new CodeMetricStatItem('group','prefix');

 //Check that no values are added, and that the initialize values are correct
 this.assertEquals(0,statItem.getItemCount(),"Zero items should be added");
 this.assertEquals(0,statItem.getAvg(),"Average should be 0");
 this.assertEquals(0,statItem.getMax(),"Max value should be 0");
 this.assertNotEqual(0,statItem.getMin(),"Min value should not be 0");
 this.assertEquals(0,statItem.getSum(),"Sum should be 0");

 //Add the first value
 statItem.addValue(100);

 //Check that the correct values are computed
 this.assertEquals(1,statItem.getItemCount(),"One item should be added");
 this.assertEquals(100.00,statItem.getAvg(),"Average should be 100");
 this.assertEquals(100,statItem.getMax(),"Max value should be 100");
 this.assertEquals(100,statItem.getMin(),"Min value should be 100");
 this.assertEquals(100,statItem.getSum(),"Sum should be 100");

 //Add another value

B 55

 statItem.addValue(200);

 //Check again
 this.assertEquals(2,statItem.getItemCount(),"Two items should be added");
 this.assertEquals(150.00,statItem.getAvg(),"Average should be 150");
 this.assertEquals(200,statItem.getMax(),"Max value should be 200");
 this.assertEquals(100,statItem.getMin(),"Min value should be 100");
 this.assertEquals(300,statItem.getSum(),"Sum should be 300");

}

Class: CodeMetricFITest
class CodeMetricFITest extends XUnitDevTest
{
 #SysBPCheck

 CodeMetricFI fiClass;
}

void testGetBPStr()
{
 CodeMetricFI fi;
 str bp;
 ;

 //FI for the class CodeMetricFI = 1 should not result in BP warning
 fi = new CodeMetricFI();
 fi.setElement(TreeNode::findNode(@'\Classes\CodeMetricFI'));
 bp = fi.getBPStr();
 this.assertEquals('',bp,"FI for CodeMetricFI should not result in BP warning");

 //FI for the class BOX = 411 should result in BP warning
 fi.setElement(TreeNode::findNode(@'\Classes\Box'));
 bp = fi.getBPStr();
 this.assertNotEqual('',bp,"FI for Box should result in BP warning");

}

void testGetDescription()
{
 CodeMetricFI fi = new CodeMetricFI();

 ;
 //Call instance method to get description
 this.assertEquals('FI', fi.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricFI fi = new CodeMetricFI();

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricFI, fi.getErrorCode(), 'Wrong errorcode');
}

void testGetValue()

B 56 Source code

{
 CodeMetricFI fi;
 int val;
 ;

 //FI for CodeMetricFITest should be 0
 fi = new CodeMetricFI();
 fi.setElement(TreeNode::findNode(@'\Classes\CodeMetricFITest'));
 val = fi.getValue();
 this.assertEquals(0,val,"FI for CodeMetricFITest should be 0");

 //FI for CodeMetricFI should be 1, since CodeMetricFITest has a dependency on
it
 fi.setElement(TreeNode::findNode(@'\Classes\CodeMetricFI'));
 val = fi.getValue();
 this.assertEquals(1,val,"FI for CodeMetricFI should be 1");

}

Class: CodeMetricNOCTest
class CodeMetricNOCTest extends XUnitDevTest
{
 #SysBPCheck
}

void testGetBPStr()
{
 CodeMetricNOC noc;
 str bp;
 ;

 //NOC for the class CodeMetricBase = 2 should not result in BP warning
 noc = new CodeMetricNOC();
 noc.setElement(TreeNode::findNode(@'\Classes\CodeMetricBase'));
 bp = noc.getBPStr();
 this.assertEquals('',bp,"NOC for CodeMetricBase should not result in BP
warning");

 //NOC for the class AxInternalBase = 64 should result in BP warning
 noc.setElement(TreeNode::findNode(@'\Classes\AxInternalBase'));
 bp = noc.getBPStr();
 this.assertNotEqual('',bp,"NOC for AxInternalBase should result in BP
warning");

}

void testGetDescription()
{
 CodeMetricNOC noc = new CodeMetricNOC();

 ;
 //Call instance method to get description
 this.assertEquals('NOC', noc.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricNOC noc = new CodeMetricNOC();

B 57

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricNOC, noc.getErrorCode(), 'Wrong
errorcode');
}

void testGetValue()
{
 CodeMetricNOC noc;
 int val;
 ;

 //NOC for \Classes\CodeMetricDummy4 should be 0
 noc = new CodeMetricNOC();
 noc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy4'));
 val = noc.getValue();
 this.assertEquals(0,val,"NOC for CodeMetricDummy4 should be 0");

 //NOC for \Classes\CodeMetricBase should be 2
 noc.setElement(TreeNode::findNode(@'\Classes\CodeMetricBase'));
 val = noc.getValue();
 this.assertEquals(2,val,"NOC for CodeMetricBase should be 2");
}

Class: GraphEdgeTest
class GraphEdgeTest extends XUnitDevTest
{
}

void testSetNode1()
{
 GraphNode node1 = new GraphNode();
 GraphNode node2 = new GraphNode();
 GraphEdge edge = new GraphEdge();

 //Set the two nodes in the edge
 edge.setNode1(node1);
 edge.setNode2(node2);

 //Check that we can retrieve them again
 this.assertEquals(node1, edge.getNode1(), 'getNode1 did not return the correct
value');
 this.assertEquals(node2, edge.getNode2(), 'getNode2 did not return the correct
value');
}

Class: GraphUndirectedTest
class GraphUndirectedTest extends XUnitDevTest
{
}

void testAddEdge()
{
 GraphUndirected graph = new GraphUndirected();
 GraphNode node1;
 GraphNode node2;

B 58 Source code

 GraphEdge edge;

 //Add two nodes
 node1 = graph.addNode('hello');
 node2 = graph.addNode('world');

 //Add edge between nodes
 edge = graph.addEdge(node1, node2);

 this.assertEquals(1, edge != null, 'new edge should be added');
 this.assertEquals(node1, edge.getNode1(), 'node1 not added correct');
 this.assertEquals(node2, edge.getNode2(), 'node2 not added correct');

 //Try to add the same nodes as an edge again
 edge = graph.addEdge(node1, node2);
 this.assertEquals(1, edge == null, 'new edge should not be added');

}

void testAddNode()
{
 GraphUndirected graph = new GraphUndirected();
 GraphNode node;
 str testStr = 'hello world';

 //Test for empty when initialized
 this.assertEquals(0, graph.getNodes().elements(), 'graph should not contain any
elements');

 //Add an element and test that is was added
 node = graph.addNode(testStr);
 this.assertEquals(1, node != null, 'node should be added');
 this.assertEquals(1, graph.getNodes().elements(), 'graph should contain one
element');

 //Find the node containing 'hello world'
 node = graph.findNodeOnData(testStr);
 this.assertEquals(1, node != null, 'node should be found');

}

void testGetListOfNeighbours()
{
 GraphUndirected graph = new GraphUndirected();
 GraphNode node1;
 GraphNode node2;
 GraphNode node3;

 GraphEdge edge13;
 GraphEdge edge32;

 List neighbours;

 //Add nodes and edges
 node1 = graph.addNode('hello');
 node2 = graph.addNode('world');
 node3 = graph.addNode('today');
 edge13 = graph.addEdge(node1, node3);
 edge32 = graph.addEdge(node3, node2);

 //Get the neighbours of node1

B 59

 neighbours = graph.getListOfNeighbours(node1);
 this.assertEquals(1, neighbours.elements(), 'node1 should have 1 neighbour');

 //Get the neighbours of node3
 neighbours = graph.getListOfNeighbours(node3);
 this.assertEquals(2, neighbours.elements(), 'node3 should have 2 neighbours');

 //Get the neighbours of node2
 neighbours = graph.getListOfNeighbours(node2);
 this.assertEquals(1, neighbours.elements(), 'node2 should have 1 neighbour');

}

void testRunDFS()
{
 ListEnumerator enum;
 GraphNode node;
 int nodesWithOutParent;

 GraphUndirected graph = new GraphUndirected();

 /*The test graph consists of two disconnected parts:

 A - B - C
 | /
 E D - F

 */

 GraphNode nodeA = graph.addNode('A');
 GraphNode nodeB = graph.addNode('B');
 GraphNode nodeC = graph.addNode('C');
 GraphNode nodeD = graph.addNode('D');
 GraphNode nodeE = graph.addNode('E');
 GraphNode nodeF = graph.addNode('F');

 //Add the edges
 graph.addEdge(nodeA, nodeE);
 graph.addEdge(nodeA, nodeB);
 graph.addEdge(nodeB, nodeC);
 graph.addEdge(nodeD, nodeF);

 //Before we run the DFS none of the nodes should have a parent
 this.assertEquals(6, graph.nodesWithoutParent(), 'nodesWithoutParent should
equal the number of nodes before runDFS');

 //Do the DFS
 graph.runDFS();

 //Check that only two nodes does not have a parent
 this.assertEquals(2, graph.nodesWithoutParent(), 'nodesWithoutParent did not
return the correct value, so runDFS must have failed');

}

B 60 Source code

Class: GraphNodeTest
class GraphNodeTest extends XUnitDevTest
{
}

void testSetAndGet()
{
 GraphNode gnode = new GraphNode();
 GraphNode gnodeParent = new GraphNode();

 //Add some data and retrive it again
 gnode.setData(gnodeParent);
 this.assertEquals(gnodeParent, gnode.getData(), 'getData did not return the
correct value');

 //Add the color and retrive it again
 gnode.setColor(2);
 this.assertEquals(2, gnode.getColor(), 'getColor did not return the correct
value');

 //Set timediscovered and retrive it again
 gnode.setTimeDiscovered(3);
 this.assertEquals(3, gnode.getTimeDiscovered(), 'getTimeDiscovered did not
return the correct value');

 //Set time finished and retrive it again
 gnode.setTimeFinished(4);
 this.assertEquals(4, gnode.getTimeFinished(), 'getTimeFinished did not return
the correct value');

 //Set parent and retrive it again
 gnode.setParent(gnodeParent);
 this.assertEquals(gnodeParent, gnode.getParent(), 'getParent did not return the
correct value');

}

Class: CodeMetricLCOMTest
class CodeMetricLCOMTest extends XUnitDevTest
{
 #SysBPCheck
}

void testGetBPStr()
{
 CodeMetricLCOM lcom;
 str bp;
 ;

 //LCOM for the class CodeMetricDummy4 = 2 should result in BP warning
 lcom = new CodeMetricLCOM();
 lcom.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy4'));
 bp = lcom.getBPStr();
 this.assertNotEqual('',bp,"LCOM for CodeMetricDummy4 should result in BP
warning");

 //LCOM for the class SourceCodeChunker = 1 should not result in BP warning

B 61

 lcom = new CodeMetricLCOM();
 lcom.setElement(TreeNode::findNode(@'\Classes\SourceCodeChunker'));
 bp = lcom.getBPStr();
 this.assertEquals('',bp,"LCOM for SourceCodeChunker should not result in BP
warning");

}

void testGetDescription()
{
 CodeMetricLCOM lcom = new CodeMetricLCOM();

 ;
 //Call instance method to get description
 this.assertEquals('LCOM', lcom.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricLCOM lcom = new CodeMetricLCOM();

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricLCOM, lcom.getErrorCode(), 'Wrong
errorcode');
}

void testGetValue()
{
 CodeMetricLCOM lcom;
 int val;
 ;

 /* LCOM for CodeMetricDummy4 = 2:
 a b c
 | | |
 f() - g() - h() x()
 |__________|
 */

 lcom = new CodeMetricLCOM();
 lcom.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy4'));
 val = lcom.getValue();
 this.assertEquals(2,val,"LCOM for CodeMetricDummy4 should be 2");
}

Class: CodeMetricRFCTest
class CodeMetricRFCTest extends XUnitDevTest
{
 #SysBPCheck
}

void testGetBPStr()
{
 CodeMetricRFC rfc;
 str bp;
 ;

 //RFC for the class CodeMetricDummy3 = 6 should not result in BP warning
 rfc = new CodeMetricRFC();

B 62 Source code

 rfc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy3'));
 bp = rfc.getBPStr();
 this.assertEquals('',bp,"RFC for CodeMetricDummy3 should not result in BP
warning");

 //RFC for the class SysStartupCmdCheckBestPractices should result in BP
warning
 rfc = new CodeMetricRFC();

rfc.setElement(TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices'));
 bp = rfc.getBPStr();
 this.assertNotEqual('',bp,"RFC for SysStartupCmdCheckBestPractices should
result in BP warning");
}

void testGetDescription()
{
 CodeMetricRFC rfc = new CodeMetricRFC();

 ;
 //Call instance method to get description
 this.assertEquals('RFC', rfc.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricRFC rfc = new CodeMetricRFC();

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricRFC, rfc.getErrorCode(), 'Wrong
errorcode');
}

void testGetValue()
{
 CodeMetricRFC rfc;
 int val;
 ;

 /*RFC for the class CodeMetricDummy3 = 6:
 \Classes\CodeMetricDummy3\methodX

 \Classes\DictClass\new
 \Classes\ClassInstanciator\createSubClassInstances
 \Classes\List\elements
 \Classes\List\addEnd
 \Classes\CodeMethodMetric\new
 */

 rfc = new CodeMetricRFC();
 rfc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy3'));
 val = rfc.getValue();
 this.assertEquals(6,val,"RFC for CodeMetricDummy3 should be 6");
}

Class: CodeMetricCBOTest
class CodeMetricCBOTest extends XUnitDevTest
{
 #SysBPCheck

B 63

}

void testGetBPStr()
{
 CodeMetricCBO cbo;
 str bp;
 ;

 //CBO for the class CodeMetricDummy3 = 9 should not result in BP warning
 cbo = new CodeMetricCBO();
 cbo.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy3'));
 bp = cbo.getBPStr();
 this.assertEquals('',bp,"CBO for CodeMetricDummy3 should not result in BP
warning");

 //CBO for the class SysStartupCmdCheckBestPractices should result in BP
warning
 cbo = new CodeMetricCBO();

cbo.setElement(TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices'));
 bp = cbo.getBPStr();
 this.assertNotEqual('',bp,"CBO for SysStartupCmdCheckBestPractices should
result in BP warning");

}

void testGetDescription()
{
 CodeMetricCBO cbo = new CodeMetricCBO();

 ;
 //Call instance method to get description
 this.assertEquals('CBO', cbo.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricCBO cbo = new CodeMetricCBO();

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricCBO, cbo.getErrorCode(), 'Wrong
errorcode');
}

void testGetValue()
{
 CodeMetricCBO cbo;
 int val;
 ;

 /*CBO for the class CodeMetricDummy3 = 10:
 \Classes\Address
 \Classes\AddressWizard
 \Classes\ClassInstanciator
 \Classes\CodeMethodMetric
 \Classes\CodeMetricDummy2
 \Classes\StringUtil
 \Data Dictionary\Tables\Address
 \Data Dictionary\Tables\CustTable

B 64 Source code

 \System Documentation\Classes\DictClass
 \System Documentation\Classes\List
 */

 cbo = new CodeMetricCBO();
 cbo.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy3'));
 val = cbo.getValue();
 this.assertEquals(10,val,"CBO for CodeMetricDummy3 should be 10");
}

Class: CodeMetricWMCTest
class CodeMetricWMCTest extends XUnitDevTest
{
 #SysBPCheck
}

void testGetBPStr()
{
 CodeMetricWMC wmc;
 str bp;
 ;

 //WMC for the class CodeMetricDummy1 = 33 should not result in BP warning
 wmc = new CodeMetricWMC();
 wmc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1'));
 bp = wmc.getBPStr();
 this.assertEquals('',bp,"WMC for CodeMetricDummy1 should not result in BP
warning");

 //WMC for the class SysStartupCmdCheckBestPractices should result in BP
warning
 wmc = new CodeMetricWMC();

wmc.setElement(TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices'));
 bp = wmc.getBPStr();
 this.assertNotEqual('',bp,"WMC for SysStartupCmdCheckBestPractices should
result in BP warning");

}

void testGetDescription()
{
 CodeMetricWMC wmc = new CodeMetricWMC();

 ;
 //Call instance method to get description
 this.assertEquals('WMC', wmc.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricWMC wmc = new CodeMetricWMC();

 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricWMC, wmc.getErrorCode(), 'Wrong
errorcode');
}

B 65

void testGetValue()
{
 CodeMetricWMC wmc;
 int val;
 ;

 //WMC for the class CodeMetricDummy1 = 9 + 5 + 2 + 16 + 1 = 33
 wmc = new CodeMetricWMC();
 wmc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1'));
 val = wmc.getValue();

 //Test that we get the correct value
 this.assertEquals(33,val,"WMC for CodeMetricDummy1 should be 33");

}

Class: CodeMetricDITTest
class CodeMetricDITTest extends XUnitDevTest
{
 #SysBPCheck
}

void testGetBPStr()
{
 CodeMetricDIT dit;
 str val;
 ;

 //DIT.GetBpStr for the class CodeMetricDIT = ''
 dit = new CodeMetricDIT();
 dit.setElement(TreeNode::findNode(@'\Classes\CodeMetricDIT'));
 val = dit.getBPStr();
 this.assertEquals('',val,'getBPStr for CodeMetricDIT should be blank');

 //DIT.GetBpStr for the class CodeMetricDummy2 != ''
 dit.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy2'));
 val = dit.getBPStr();
 this.assertNotEqual('',val,'getBPStr for CodeMetricDummy2 should not be
blank');

}

void testGetDescription()
{
 CodeMetricDIT dit = new CodeMetricDIT();
 ;

 //Call instance method to get description
 this.assertEquals('DIT', dit.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricDIT dit = new CodeMetricDIT();
 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricDIT, dit.getErrorCode(), 'Wrong
errorcode');

B 66 Source code

}

void testGetValue()
{
 CodeMetricDIT dit;
 int val;
 ;

 //DIT for the class CodeMetricDummy1 = 1
 dit = new CodeMetricDIT();
 dit.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1'));
 val = dit.getValue();
 this.assertEquals(1,val,"getValue for CodeMetricDummy1 should be 1");

 //DIT for the class CodeMetricDIT = 3
 dit = new CodeMetricDIT();
 dit.setElement(TreeNode::findNode(@'\Classes\CodeMetricDIT'));
 val = dit.getValue();
 this.assertEquals(3,val,"getValue for CodeMetricDIT should be 3");

 //DIT for the class CodeMetricDummy2 = 9
 dit = new CodeMetricDIT();
 dit.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy2'));
 val = dit.getValue();
 this.assertEquals(9,val,"getValue for CodeMetricDummy2 should be 9");
}

Class: ClassInstanciatorTest
class ClassInstanciatorTest extends xUnitDevTest
{
}

void testCreateSubClassInstances()
{
 List list;
 ;

 //Check that it will return an empty list if no subclasses exists
 list =
ClassInstanciator::createSubClassInstances(classnum(ClassInstanciatorTest));
 this.assertEquals(0, list.elements(), 'List should be empty');

 //Check that the list is not empty, when called with the CodeMethodMetric id
 list = ClassInstanciator::createSubClassInstances(classnum(CodeMethodMetric));
 this.assertNotEqual(0, list.elements(), 'List should contain elements');

}

Class: StringUtilTest
class StringUtilTest extends xUnitDevTest
{
}

void testCountOccurences()
{

B 67

 str orgtext = ' \n\n\n \n ';
 ;

 //Test of finding single character
 this.assertEquals(4, StringUtil::CountOccurences(orgtext, '\n'),
'StringUtil::CountOccurences failed on finding single character');

 //Test of finding multiple character sequence
 this.assertEquals(2, StringUtil::CountOccurences(orgtext, '\n\n'),
'StringUtil::CountOccurences failed on finding multiple character sequence');

 //Test of finding character sequence that does not exist
 this.assertEquals(0, StringUtil::CountOccurences(orgtext, 'hello'),
'StringUtil::CountOccurences failed on finding character sequence that does not exist');
}

Class: SourceCodeChunkerTest
class SourceCodeChunkerTest extends xUnitDevTest
{
 str orgCode;
}

public void setUp()
{
 super();

 /*Create dummy code for test
 Is in setup since it is shared by various tests
 */
 orgCode = '/*Starting comment\n'
 + ' Comment line 2*/\n'
 + 'int MyMethod()\n'
 + '{\n'
 + ' int a;\n'
 + ' int b; //Comment here\n'
 + ' str s=\'/* hello */ \\\\ // \\\' \';\n'
 + ' /*comment*/ int c; //Line ends with comment\n'
 + '\n'
 + ' s=@\'hello \\\';\n'
 + ' ;\n'
 + ' if (a==b)\n'
 + ' this.doSomething();\n'
 + '\n'
 + ' //Only comment line\n'
 + '}\n';

}

void testGetNext()
{
 str newCode;
 SourceCodeChunker chunker = new SourceCodeChunker(orgCode); //Use the code from
variable orgCode
 ;

 //Get the first chunk

B 68 Source code

 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 1');
 this.assertEquals('', chunker.currentCodeChunk(),
'SourceCodechunker.currentCodeChunk failed on call 1');
 this.assertEquals('/*Starting comment\n Comment line 2*/',
chunker.currentCommentChunk(), 'SourceCodechunker.currentCommentChunk failed on
call 1');
 this.assertEquals(1, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 1');
 this.assertEquals(1, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 1');

 //Get and test subsequent chunks
 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 2');
 this.assertEquals('\nint MyMethod()\n{\n int a;\n int b; ',
chunker.currentCodeChunk(), 'SourceCodechunker.currentCodeChunk failed on call 2');
 this.assertEquals('//Comment here', chunker.currentCommentChunk(),
'SourceCodechunker.currentCommentChunk failed on call 2');
 this.assertEquals(2, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 2');
 this.assertEquals(6, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 2');

 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 3');
 this.assertEquals('\n str s=\'/* hello */ \\\\ // \\\' \';\n ',
chunker.currentCodeChunk(), 'SourceCodechunker.currentCodeChunk failed on call 3');
 this.assertEquals('/*comment*/', chunker.currentCommentChunk(),
'SourceCodechunker.currentCommentChunk failed on call 3');
 this.assertEquals(6, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 3');
 this.assertEquals(8, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 3');

 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 4');
 this.assertEquals(' int c; ', chunker.currentCodeChunk(),
'SourceCodechunker.currentCodeChunk failed on call 4');
 this.assertEquals('//Line ends with comment', chunker.currentCommentChunk(),
'SourceCodechunker.currentCommentChunk failed on call 4');
 this.assertEquals(8, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 4');
 this.assertEquals(8, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 4');

 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 5');
 this.assertEquals('\n\n s=@\'hello \\\';\n ;\n if (a==b)\n
this.doSomething();\n\n ', chunker.currentCodeChunk(),
'SourceCodechunker.currentCodeChunk failed on call 5');
 this.assertEquals('//Only comment line', chunker.currentCommentChunk(),
'SourceCodechunker.currentCommentChunk failed on call 5');
 this.assertEquals(8, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 5');
 this.assertEquals(15, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 5');

 this.assertEquals(true, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 6');

B 69

 this.assertEquals('\n}\n', chunker.currentCodeChunk(),
'SourceCodechunker.currentCodeChunk failed on call 6');
 this.assertEquals('', chunker.currentCommentChunk(),
'SourceCodechunker.currentCommentChunk failed on call 6');
 this.assertEquals(15, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 6');
 this.assertEquals(17, chunker.commentStartLine(),
'SourceCodechunker.commentStartLine failed on call 6');

 //We should now have reached the end of the source code, so any subsequent
calls to getNext should return false!
 this.assertEquals(false, chunker.moveNext(), 'SourceCodechunker.moveNext failed
on call 7');
}

Class: CodeMetricCPMethodTest
class CodeMetricCPMethodTest extends xUnitDevTest
{
 #SysBPCheck
}

void testCalcCP()
{

 TreeNode node;
 int value;
 ;

 /* Calculation for: \Classes\CodeMetricDummy1\method1

 Lines with comments = 16
 Total lines = 34
 Blank lines = 6

 CP=(16/(34-6))*100 = 57%
 */
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1');
 value = CodeMetricCPMethod::calcCP(node.AOTgetSource());
 this.assertEquals(57, value, 'CP of CodeMetricDummy1.method1 not correct');

}

void testGetBPStr()
{
 CodeMetricCPMethod cp;
 str val;
 ;

 //No best practice message should occur
 cp = new CodeMetricCPMethod();
 cp.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1'));
 val = cp.getBPStr();
 this.assertEquals(val,"","getBPStr for CodeMetricDummy1\method1 should be
blank");

 //A best practice warning should occur
 cp.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1\noComments'));

B 70 Source code

 val = cp.getBPStr();
 this.assertNotEqual(val,"",@"getBPStr for CodeMetricDummy1\noComments should
result in a BP warning");
}

void testGetDescription()
{
 CodeMetricCPMethod cp = new CodeMetricCPMethod();

 ;
 //Call instance method to get description
 this.assertEquals('CP', cp.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricCPMethod cp = new CodeMetricCPMethod();
 ;
 //Call static method to get errorcode
 this.assertEquals(#BPErrorCodeMetricCPMethod, cp.getErrorCode(), 'Wrong
errorcode');
}

Class: CodeMetricVGMethodTest
class CodeMetricVGMethodTest extends XUnitDevTest
{
 #SysBPCheck
}

void testCalcVG()
{

 TreeNode node;
 SysScannerClass scanner;
 int value;
 ;

 //V(G) with two embedded methods, and all other code-constructs (besides SQL)
that will add to the CC
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\method2');
 scanner = new SysScannerClass(node);
 value = CodeMetricVGMethod::calcVG(scanner);
 this.assertEquals(16, value, 'V(G) of CodeMetricDummy1.method2 not correct');

 //V(G) with just one embedded method.
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1');
 scanner = new SysScannerClass(node);
 value = CodeMetricVGMethod::calcVG(scanner);
 this.assertEquals(2, value, 'V(G) of CodeMetricDummy1.method1 not correct');

 //Test of V(G) in SQL
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\if');
 scanner = new SysScannerClass(node);
 value = CodeMetricVGMethod::calcVG(scanner);
 this.assertEquals(5, value, 'V(G) of CodeMetricDummy1.if not correct');

 //Test of method definitions
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\abc');
 scanner = new SysScannerClass(node);
 value = CodeMetricVGMethod::calcVG(scanner);

B 71

 this.assertEquals(9, value, 'V(G) of CodeMetricDummy1.abc not correct');

}

void testGetBPStr()
{
 CodeMetricVGMethod vg;
 str val;
 ;

 //No best practice message should occur, since the CC value=2
 vg = new CodeMetricVGMethod();
 vg.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1'));
 val = vg.getBPStr();
 this.assertEquals(val,"","getBPStr for CodeMetricDummy1\method1 should be
blank");

 //A best practice message should occur, since the CC value=16
 vg.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1\method2'));
 val = vg.getBPStr();
 this.assertNotEqual(val,"","getBPStr for CodeMetricDummy1\method2 should not be
blank");

}

void testGetDescription()
{
 CodeMetricVGMethod vg = new CodeMetricVGMethod();

 //Call instance method to get description
 this.assertEquals('V(G)', vg.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricVGMethod vg = new CodeMetricVGMethod();
 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricVGMethod, vg.getErrorCode(), 'Wrong
errorcode');
}

Class: CodeMetricSLOCMethodTest
class CodeMetricSLOCMethodTest extends XUnitDevTest
{
 #SysBPCheck
}

public void testCalcSLOC()
{
 TreeNode node;
 int value;
 ;

 //Load treenode and call static method to calculate SLOC
 node = TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1');
 value = CodeMetricSLOCMethod::calcSLOC(node.AOTgetSource());

 this.assertEquals(15, value, 'SLOC of CodeMetricDummy1.method1 not correct');
}

B 72 Source code

void testGetBPStr()
{

 CodeMetricSLOCMethod sloc;
 str val;
 ;

 //No best practice message should occur
 sloc = new CodeMetricSLOCMethod();
 sloc.setElement(TreeNode::findNode(@'\Classes\CodeMetricDummy1\method1'));
 val = sloc.getBPStr();
 this.assertEquals(val,"","getBPStr for CodeMetricDummy1\method1 should be
blank");

 //A best practice warning should occur

sloc.setElement(TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices\updat
eExcelWorkbook'));
 val = sloc.getBPStr();
 this.assertNotEqual(val,"",@"getBPStr for
SysStartupCmdCheckBestPractices\updateExcelWorkbook should result in a BP
warning");

}

void testGetDescription()
{
 CodeMetricSLOCMethod sloc = new CodeMetricSLOCMethod();

 ;
 //Call instance method to get description
 this.assertEquals('SLOC', sloc.getDescription(), 'Wrong description');
}

void testGetErrorCode()
{
 CodeMetricSLOCMethod sloc = new CodeMetricSLOCMethod();
 ;
 //Call instance method to get errorcode
 this.assertEquals(#BPErrorCodeMetricSLOCMethod, sloc.getErrorCode(), 'Wrong
errorcode');
}

public void testRemoveComments()
{
 str orgCode;
 str expectedNewCode;
 str newCode;
 ;

 //Check of code with comments
 orgCode = "/* hello */\nprivate int something{\n int x; //comment\n /*1\n
2*/\n\n /* 123 // */x=4;/* 123 */\n}";
 expectedNewCode = "\nprivate int something{\n int x; \n \n\n x=4;\n}";
 newCode = CodeMetricSLOCMethod::removeComments(orgCode);
 this.assertEquals(expectedNewCode, newCode, 'Removal of comments failed');

 //Check of code without any comments
 orgCode = "\nprivate int something{\n int x; \n \n\n x=4;\n}";

B 73

 expectedNewCode = orgCode;
 newCode = CodeMetricSLOCMethod::removeComments(orgCode);
 this.assertEquals(expectedNewCode, newCode, 'Code contains no comments but has
changed anyway!');

 //Check of code with strings containing escaped comment chars
 orgCode = 'int MethodA{ \n str a; \n \n a = \'\'\'; a = \'*/\'; a = \'\\\\\'
}';
 expectedNewCode = orgCode;
 newCode = CodeMetricSLOCMethod::removeComments(orgCode);
 this.assertEquals(expectedNewCode, newCode, 'Code containing escaped comment
chars!');

 //Check where code end with sigle comment and no newlines
 orgcode = '// Start comment \n'
 + 'void method1() \n'
 + '{\n'
 + '}\n'
 + '// End comment';
 expectedNewCode = '\n'
 + 'void method1() \n'
 + '{\n'
 + '}\n';
 newCode = CodeMetricSLOCMethod::removeComments(orgCode);
 this.assertEquals(expectedNewCode, newCode, 'Code ending with single comment
and no newlins');

}

Class: SysBPCheckMemberFunctionTest
class SysBPCheckMemberFunctionTest extends XUnitDevTest
{
}

void testCheckComplexity()
{
 #SysBPCheck

 TreeNode testNode =
TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices\updateExcelWorkbook')
;
 SysCompilerOutput output;
 TmpCompilerOutput tmpout;

 int bpcount;
 ;

 //Start by enabling the complexity check
 SysBPCheckComplexityEnabler::setBPComplexity(true);

 //Clear the output
 infolog.clear(0);

 //Do the check
 SysBPCheck::checkTreeNode(testNode);

 //Get output
 output = infolog.compilerOutput();

B 74 Source code

 tmpout = output.compilerOutput();

 while select tmpout
 where tmpout.SysCompilerOutputTab == SysCompilerOutPutTab::BestPractices
 && (tmpout.CompileErrorCode == #BPErrorCodeMetricSLOCMethod
 || tmpout.CompileErrorCode == #BPErrorCodeMetricVGMethod
 || tmpout.CompileErrorCode == #BPErrorCodeMetricCPMethod)
 {
 bpcount++;
 }

 //Check that three BP deviations occured
 this.assertEquals(3,bpcount,@'3 BP complexity deviations should occur for
method \Classes\SysStartupCmdCheckBestPractices\updateExcelWorkbook');

}

Class: SysBPCheckClassNodeTest
class SysBPCheckClassNodeTest extends XUnitDevTest
{
}

void testCheckComplexity()
{
 #SysBPCheck

 TreeNode testNode =
TreeNode::findNode(@'\Classes\SysStartupCmdCheckBestPractices');
 SysCompilerOutput output;
 TmpCompilerOutput tmpout;

 int bpcount;
 ;

 //Start by enabling the complexity check
 SysBPCheckComplexityEnabler::setBPComplexity(true);

 //Clear the output
 infolog.clear(0);

 //Do the check
 SysBPCheck::checkTreeNode(testNode);

 //Get output
 output = infolog.compilerOutput();
 tmpout = output.compilerOutput();

 while select tmpout
 where tmpout.SysCompilerOutputTab == SysCompilerOutPutTab::BestPractices
 && tmpout.CompileErrorCode >= #BPErrorCodeMetricDIT
 && tmpout.CompileErrorCode <= #BPErrorCodeMetricFI
 {
 bpcount++;
 }

 //Check that only BP deviations occured
 this.assertEquals(3,bpcount,@'3 BP complexity deviations should occur for class
\Classes\SysStartupCmdCheckBestPractices (WMC, CBO, RFC)');

B 75

}

B 76 Source code

Test classes

Class: CodeMetricDummy1
class CodeMetricDummy1 extends object
{
}

void abc()
{
 //Each of these embedded methods adds one to CC
 int a() { ;return 1;}
 int64 b() { ;return 2;}
 boolean c() { ;return true;}
 real d() { ;return 3.0;}
 date e() { ;return today();}
 timeofday f() { ;return timenow();}
 str g() { ;return 'hello';}
 guid h() { ;return str2guid('hello');}
 ;

 //These should not add anything to CC
 startLengthyOperation();
 endLengthyOperation(true);

 //Here CC=9
}

void if(str someval)
{
 CustTable cust;
 ContactPerson contact;
 ;

 //Adds 0 to CC
 select cust where Cust.AccountNum == "4000";

 //Adds 0 to CC
 select cust where Cust.AccountNum == "4000" && cust.Name == "Hello" ||
cust.BankAccount == "123456";

 //Adds 1 to CC
 while select cust where Cust.AccountNum == "4000" && cust.Name == "Hello" ||
cust.BankAccount == "123456"
 {
 print cust.NameAlias, " ", cust.Phone, '\n';
 }

 //Adds 1 to CC
 select cust where cust.AccountNum == "4000"
 join contact where contact.Address == cust.Address;

 //Adds 2 to CC
 while select cust where Cust.AccountNum == "4000" && cust.Name == "Hello"
 join contact where contact.Address == cust.Address && contact.AssistantName ==
"World"
 {

B 77

 print cust.NameAlias, " ", cust.Phone, '\n';
 }

 //Adds 0 to CC
 delete_from cust where cust.AccountNum == "4000" && cust.Name == "HelloWorld";

 //Adds 0 to CC
 update_recordset cust setting Name = 'NewName' where cust.AccountNum == "4000"
&& cust.Name == "HelloWorld";

 //Adds 0 to CC
 insert_recordset cust (Name, Address) select Name, Address from contact;

 //Here CC=5
}

/*Comment before method name
 Comment line 2* //
*/
public void method1()
{
 str thisname; //in-line comment followed by 3 blanks
 int x;

 //Comment before method in method
 int plus(int a, int b)
 {
 /*Comment indside method in method

 */
 int z;
 z = b+a;

 return z;
 }
 //Comment right after method in method

 ;
 thisname = methodStr(CodeMetricDummy1, method1);
 /* comment before code*/x = plus(plus(1,2),3);/*comment after code*/

 Box::info('x in the method ' + thisname + ' exuals ' + int2str(x)); /*
multiline comment start here

 and ends
 }
 // after here
 */

}

public int method2()
{
 //CC=1
 int a=4;
 int i;

 //This adds 2 to CC
 int embedMethod(int x)
 {

B 78 Source code

 if (x==1)
 return x*x;
 else
 return x;
 }

 //This adds 1 to CC
 SysBPCheckBase getBase()
 {
 return SysBPCheckBase::construct();
 }
 ;

 //This adds nothing to CC
 this.if('hello world');
 i = embedMethod(a);
 getBase();

 //This adds 1 to CC
 for (i=0;i<1;i++)
 {
 a++;
 }

 //This adds 2 to CC
 while(a==2 || a==3)
 {
 a--;
 }

 //This adds 1 to CC
 do
 {
 a++;
 }while(a==0);

 //This adds 4 to CC
 switch(a)
 {
 case 1:
 a=1;
 case 2:
 {
 a=2;
 }
 case 3:
 case 4:
 a=2+3;
 default:
 a=99;
 }

 //The try/catch adds 1 to CC
 try
 {
 //This adds 3 to CC
 if(a==1 && a==2 || a==3)
 a=0;
 else
 a=1;
 }

B 79

 catch(Exception::Error)
 {
 print 'error';
 }

 //Here CC=16

 return a;
}

int noComments(int x)
{
 ;

 return x+x;
}

Class: CodeMetricDummy2
class CodeMetricDummy2 extends ProdJournalCheckPostRouteJob
{
}

Class: CodeMetricDummy3
class CodeMetricDummy3
{
 CodeMetricDummy2 d2;
 Address add;

 #SysBPCheck
}

public AddressWizard methodX(int a, StringUtil b)
{
 DictClass dict;
 CustTable cust;
 List list;
 int xx;
 ;

 dict = new DictClass(classNum(CodeMetricDummy2));

 select cust where Cust.AccountNum == "4000";

 list = ClassInstanciator::createSubClassInstances(classNum(CodeMethodMetric));
 if (list.elements() == 0)
 list.addEnd(new CodeMetricSLOCMethod());

 return null;
}

Class: CodeMetricDummy4
class CodeMetricDummy4
{
 int a,b,c;

}

B 80 Source code

void f()
{
 a = a + 1;
 this.g();
}

void g()
{
 int localvar;
 localvar = 2;
}

void h()
{
 b = b + 2;
 this.f();
 this.g();
}

void x()
{
 c = c + 4;
}

Unit test helper classes

Class: SysBPCheckComplexityEnabler
class SysBPCheckComplexityEnabler
{
}

static void setBPComplexity(boolean complexity_enabled=false)
{
 SysBPParameters parameters;
;
 ttsbegin;
 parameters = SysBPParameters::find(curuserid(), true);

 //Enable all best practice checks
 parameters.initValue();

 //Enable/disable the complexity check
 parameters.CheckComplexity = complexity_enabled;

 //Report all
 parameters.WarningLevel = SysBPWarningLevel::All;

 //Save the new settings
 parameters.update();

 //Enable best practice check in compiler
 xUserInfo::compilerWarningLevel(CompilerWarningLevel::Level4);

 ttscommit;

 //Let the compiler output get the new parameters
 SysCompilerOutput::updateParm();
}

C 1

Appendix C: Setup instructions

The following document gives step-by-step instructions of how to install the BP complexity
tool.

Prerequisites
• Dynamics AX 4.0 Client must be installed on the machine and be connected to an AX

Object Server.
• Developer license must be installed
• The SysTest (previously named XUnit) framework must be imported
• Make sure that any source control in Dynamics AX has been disabled

Import XPO file
1. Open the Dynamics AX Client.
2. Open the Application Object Tree (AOT), by pressing <CTRL+D>.
3. Click the Import button in the AOT.
4. In the Import form, enter the path and filename of the complexity xpo file (e.g.

PrivateProject_Complexity final version.xpo).
5. Press the Import button to start the import.
6. The result of the import can be seen in the Infolog.

Enable complexity check
1. Select the menu item Tools -> Options …
2. In the Options form, press the Best Practices button
3. In the Best Practice parameters form, set the warning level to “All”
4. In the treeview on the Best Practice parameters form, check the node

Best Practice checks -> Specific checks -> Classes -> Complexity
5. Press the OK button to save the parameters.
6. Restart the Dynamics AX Client for the changes to take effect

Appendix D: CD

Contents of CD

 Appendix B – SourceCode.doc
 MBS Functional Specification - Complexity.doc

 PrivateProject_Complexity final version.xpo

CD

