Measuring Complexity In X++ Code

Anders Tind Sgrensen

Kongens Lyngby 2006
IMM-B.Eng-2006-42

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-B.Eng-2006-42: ISSN none

Summary

Almost from the beginning of software development there has been a wish of being able to
measure the quality of the program code. One aspect that affects several areas of software
quality is the complexity of the code. Limiting the code complexity can lead to more
testable code, provides faster bug-fixing and makes it easier to implement new features.
The purpose of this project has been to find and implement relevant complexity metrics for
the programming language X++, which is a part of the Microsoft Dynamics AX ERP
system.

After some investigation the following ten metrics were selected: Source Lines Of Code,
Comment Percentage, Cyclomatic Complexity, Weighted Methods per Class, Depth of
Inheritance Tree, Number Of Children, Coupling Between Objects, Response For Class,
Lack of Cohesion in Methods and Fan In. They represent some of the most established
measures available and are a combination of traditional metrics and metrics designed
specifically for object-oriented languages.

Each of the chosen metrics was implemented as stipulated in the theory. Since X++
contains special language features (e.g. embedded SQL) that the original authors did not
describe, it was necessary to find out what the original intend of the metric was, and then
derive a reasonable solution.

The metrics has been integrated into the existing Best Practice tool, which allows
developers to check that their code adheres to certain non-syntax rules. This way they can
immediately determine if the complexity values of their code is outside acceptable ranges
and hence may need changes to reduce complexity.

In addition to the Best Practice checks, the metric values can be extracted as raw data for
statistical purposes. It is also possible to directly generate statistics on a team/module
level.

Acknowledgements

| would like to thank the following people:

Michael Fruergaard Pontoppidan for being my mentor at Microsoft.
Knud Smed Christensen for being my mentor at DTU.

Hans Jgrgen Skovgaard for suggesting this exiting topic.

Ola Mortensen for review of report.

Morten Gersborg-Hansen for review of report.

Johannes C. Deltorp for review of report.

Betina Jeanette Hansen & Victor for love and moral support.

Resumeé

Siden software udviklingens begyndelse har der eksisteret et gnske om at kunne male
kvaliteten af en programkode. Et af de aspekter der pavirker flere omrader af software-
kvaliteten er programkodens kompleksitet. Ved at begreense kompleksiteten kan man f& en
mere testbar kode og det bliver hurtigere at rette fejl og tilfaje nye funktioner. Formalet
med dette projekt har vaeret at finde og implementere relevante kompleksitetsmalemetoder
til programmeringssproget X++, som er en del af ERP systemet Microsoft Dynamics AX.

Efter nogle undersggelser blev fglgende ti malemetoder valgt: Source Lines Of Code,
Comment Percentage, Cyclomatic complexity, Weighted methods per Class, Depth of
Inheritance Tree, Number Of Children, Coupling Between Objects, Response For Class,
Lack of Cohesion in Methods og Fan In. Disse metoder repreesenterer nogle af de mest
etablerede malinger tilgeengelige, og er en kombination af traditionelle metoder og metoder
der er designet specifikt til objektorienterede sprog.

Hver af de valgte malemetoder er blevet implementeret som teorien foreskriver. Da X++
indeholder specielle sprogkonstruktioner (f.eks. indlejret SQL) som de oprindelige
forfattere ikke har beskrevet, blev det ngdvendigt at finde ud af hvad det oprindelige formal
med malingen var, og ud fra dette aflede en fornuftig lgsning.

Malemetoderne er blevet integreret med det eksisterende Best Practice veerktgj, som
tillader udviklere at kontrollere at deres programkode opfylder visse ikke-syntaks regler. P4
denne made kan de med det samme se hvis kompleksitetsmalingerne af deres kode
overskrider nogle graenseveerdier og aendringer i koden derfor kan veere ngdvendige.

Ud over at indgd i Best Practice kontrollerne, kan veerdierne fra kompleksitetsmalingerne
ogsa treekkes ud som ra data til statistiske formal. Det er ogsd muligt direkte at generere
statistikker pa team/modul niveau.

Contents

L aF-T o] (=] o A [o1 o o (U T3 1 o ISR
Chapter 2 ProjeCt Planning.........uueeiieiiiiiiiieie e e e e e e e e e e e
2.1 SCREAUIE ... e
2.2 Development MEethoduvviiiii i e e
2.3 SECUILY PIrOCEAUIES ...oieiiiiiiieiee e e e ettt e e e e e e ettt e e e e e e e e aanbbe e e e e e e e e s annbeeeeaaaeesansenneeas
Chapter 3 Complexity @and MELIICSoiieiiieiiie et a e
3.1 Measurements & MELIICSc..ueuiiiiiieei et e e e e e e e e e e e e e e nnes
R I ©70] 1 41 0] (= (] 7 PP SUTPERRP
3.3 Metrics in Object-Oriented SYSIEMSuuiiiiiiiie e
Chapter 4 Functional SPeCIfiCationueiiiiiiiiiiiie e
A1 ADSITACT ...t
4.2 Overview & JUSHIfICALIONcoiviiiiieiiie et
G TN I Vo 1= 1Y/ = Vg PSR
A4 PUlIAIS . ..eee it
4.5 High Level REQUINEMENTSciciiiieiee et e e s s see e e e e e e st e e e e e e s s eeeaee s
4.6 OVEIVIEW SCENAIIOS . ..utetieiiieeeiaiitttieeeaa e s e e aatbeee e e e e e s s e asabbeeeaaaeeeaaasnbbeeeaaaeasaannnbreeeaaaaaas
A7 PEOISONAS ...t s
4.8 AsSSUMPLIONS & DEPENUEINCIESuiiiiiieiiiiiiiiet et ee e e e
4.9 USE CASES ... s
4.10 Functional REQUIFEMENTSuiiiiiiiiiiieei e a e
411 =g (o] g @To] 3o [1io] o F- 3PP
4.12 NOBFICALIONS ..
4.13 FIEIS TADIE.....cceeeee e
4.14 REPOITS e e e
4.15 B =153 = o111 S
4.16 Translation & LOCAlIZAtION..........c.coiiiiiieieie e
417 Performance, Scalability & Availability (Client APPS)....ccceeveeverieerieeeeiiiiieeeeeeen,
4.18 Y= U] o (4 11T o LY o] o 1) T PP
4.19 Security & Trustworthy COMPULINGoooeiiiiiiieeee e
4.20 Extensibility & CUSTOMIZALION.........ccoiiiiiiiiiiii e
4.21 Technology Configurations & Platform Considerations.............cccuveeeieiininiinnenn.
4.22 Sustainability CONCEINScooiiiiiiiiie et a e
4.23 SUPPOrtability CONCEINSciiiiiiiieite ettt e e e e aeeeea e
4.24 Upgrade & MaiNTENANCEuvviiieeeeeiiiiiiieee e e e e e e e e e e s s s e e e e e e s ennaranereaeees
4.25 Monitoring & Instrumentation (i.e. Watson & SQM)........cccooveivieerieeeeiiiiiiieeeeeeen,
4.26 LU LT o111 /RS
4.27 DeV & TeSt ESHMALEScciveiiieieiiie it
(O g T o1 (=] ST I T o | o PSR
5.1 BaSIC ClAaSS BSIGN.....ueiiiiiiiiiiitie ettt e e e et e e e e e e et eae e e e e e e e annes
5.2 Integration with the Best PractiCe tOOl...........oooiiiiiiiiiiiiee e
5.3 MEtHC StALISHICS ...ttt e e e e e e e e e e e e e naes

Chapter 6 IMplementationcooii oo ene s

L A o o] T o U PRTRT PP
8.2 BASE CIASSESeeiiiiiiiiie ittt
6.3 INtegration With BPccooiiiiiiic et e e e e e e e e
6.4 Metric IMPIEMENLALIONSuiiiiiie e e e e e e e s s e e e e e e e ennraeeees
6.5 StatiStICS gENEIALIONcci it e e e e s e e e e e e
(O o= 0 (=] Sl A 1= T SRR
A0 R O 1 0 (=) S PP OTPRPP
7.2 FUNCHONAI TEST ...ttt e e e e e e e e e e e e e e ennneneeas
7.3 AdhErence t0 OWN FUIBSooiiiiiiiiii et e e e e e e
Chapter 8 ANalySiS Of FESUILS........ooiiiiii e
8.1 RESUIES OVEIVIEW ...ttt e e e e e e ettt e e e e e e e e snbbnaeeeaeeeeaannes
8.2 DLAIIS ... e e e e e e e e b e ae e e e e e e e aanae
8.3 Comparison of selected MOAUIES..........c.uuviiiiie i
8.4 COMPAriSON DY tEAM ...eiiiiii i e e e e e e e e e e e e e e snraaeeeaeeeaannnes
Chapter 9 MetriC @ValUationcooiiiiiiiiiiieiic e r e e e erraae s
Chapter 10 FULUIre iIMPrOVEMENTSccoiiiieiiee e e e e e e e e enreae s
10.1 (@] 07=T o I 1SS U TS
10.2 [N =TT To 1= = TSRS
Chapter 11 1070] o Tox 11] o] o O USRS PPRRPPR
Chapter 12 BibliOQrapRny ...

Appendix A: Project diary

Appendix B: Source code

Appendix C: Setup instructions

Appendix D: CD with source code and the MBS Functional Specification

Chapter 1 Introduction

The ERP system Microsoft Dynamics AX contains the powerful programming language
X++. This language enables users and vendors to create their own business objects and
functions. When writing the code, it can be interesting to measure just how “good” quality
the code is. According to [McConnell04] “good” code has the characteristics of being both
maintainable and testable. Complexity has a very high impact on both the testability and
maintainability of code, since developers who can easily understand how the code works,
will be less prone to make errors.

The purpose of this project is to clarify which form of complexity analysis (eg. cyclomatic
complexity, number of lines, lines with comments etc.) will be relevant to X++ code. The
most relevant measurements should then be implemented for X++. A part of the project will
be to design a solution that has the right level of integration with any existing tools inside
Dynamics AX.

The target audience for this report is people with basic knowledge about developing in
Dynamics AX.

8 Introduction

Chapter 2 Project planning

This chapter contains information relevant for the planning and execution of the project.
Please note that although this section was created in the beginning of the project it also
contains information added at the end of the project.

2.1 Schedule

The shown project schedule was created to get an overview of how the project should
elapse. The project is rated to 10 weeks, but due to a lot of holidays in the period, it
actually lasted a little longer. Please note that the week numbers are the official European
week numbers, and not the internal DTU.

Week | Milestone Report Design Coding
18 Start 1/5 Project planning, Relevant
Theory metrics
19 Theory Integration with | Test of existing
existing tools tools
20 Dev + syntax Basic solution Metrics Framework
structure
21 All functionality | Non-OO metrics
22 Non-OO metrics Non-OO metrics
4/6
23 Test Non-OO OO metrics
24 OO metrics
25 OO0 metrics 25/6 | Implementation OO metrics
26 Test + analysis of GUI stuff
results
27 Code complete Finalize report
9/7
28 Finalize report
29 Hand-in 17/7

An up to date project diary can be found in Appendix A. This shows that all milestones
were met on or ahead of time. The Non-OO metric implementations were completed by
May 31* and the rest of the implementations were completed by June 20"

2.2 Development method

For this project | will use the Test-Driven Development (TDD) method, since this is
becoming more and more common at Microsoft. TDD is a part of what is called eXtreme
Programming (XP), and the main goal of TDD is not testing software, but helping the
programmer during the development process by having clear and unambiguous program
requirements. These requirements can be expressed in the form of tests, and when all
tests succeed the program is complete.

When coding, the steps are:

Write a test that specifies a small functional unit.

Ensure that the test fails, since you haven't built the functionality yet

Write only the code necessary to make the test pass

Refactor the code, ensuring that it has the simplest design possible for the
functionality built to date

This is somewhat different from the traditional approach of first implementing and then
testing, but gives the benefit of more testable code since it has been targeted towards
testing right from the beginning. When adding new features later in the product cycle, one
can always run the collection of tests, to ensure that new functionality will not break any
existing functionality.

For at full explanation of TDD and its advantages/disadvantages, please refer to
[NewkirkO4].

2.3 Security procedures

As the project period is very limited, it will be very critical to loose work from system
breakdown or theft of equipment. All the material for the project is stored in a single folder
on a laptop. At the end of every working day a backup of the contents will be written to a
CD that will be kept separate from the computer. Once a week a backup of the CD will be
saved on a separate server.

Since there is only one contributor of material on this project, it will not be a problem with
conflicting versions of documents or source code. However, every document (including the
source code) will have a version number and a last-changed date, to have a common
reference for review purposes.

10 Project planning

Chapter 3 Complexity and metrics

This chapter provides the reader with some theory regarding the field of software metrics
and complexity. A number of metrics will be introduced, including their definition and use.

3.1 Measurements & Metrics

Measurement has a long tradition in natural sciences. At the end of the 19th century the
physicist Lord Kelvin formulated the following about measurement; “When you can
measure what you are speaking about, and express it into numbers, you know something
about it; but when you cannot measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: It may be the beginning of knowledge,
but you have scarcely in your thoughts advanced to the stage of science.”

As the software development process matures, there is a bigger need to be able to
evaluate the software being created. As Lord Kelvin stated, this means that we must have
numerical values which describe the properties of the software. Many authors have
proposed desirable characteristics that these software metrics must posses: The value
must be computed in a precise manner; it should be reproducible; it must be intuitive and it
should provide some useful feedback to the user of the measure to allow him to get a
better understanding of how to make improvements. Also, a measure should be well suited
for statistical analysis.

3.2 Complexity

The word “complexity” is defined by [Encarta] as “the condition of being difficult to analyze,
understand, or solve”. Software complexity can be defined from a developer’s view, as the
complexity involved in developing and maintaining a software program. Figure 3-1 shows
that software complexity has three varieties: computational, psychological and
representational. The most important of these are probably the psychological, which is
composed of problem complexity, programmer characteristics and structural complexity.

Problem complexity reflects the difficulties in the problem space. The only measures of this
are subjective, as it will depend heavily on the observer’s insight into the problem area.
Also the programmer’s characteristics are hard to measure objectively, although some
sources argue that it can be measured using 1Q and personality tests.

The software literature has, due to the above problems, been focused primarily on
developing structural complexity metrics which measures the internal program
characteristics. An internal attribute of a product can be measured in terms of the product
itself. All information that is needed to quantify the internal attribute is available from a
representation of the product. Therefore, internal attributes are measurable during and
after creation of the product. Internal attributes do however not describe any externally

11

visible qualities of the product, but they can be used to get an estimate of some external
characteristics, such as testability or maintainability.

Software Complexity

Representational
complexity

Computational Psychological

complexity

complexity

A-kind-of e

Composed-of >

v
Problem Programmer Structural
complexity characteristics complexity

Figure 3-1 Classification of software complexity. Adapted from [Sellers96].

3.2.1 Effects on software quality

Figure 3-2 shows some of the elements that software quality consists of. The structural
complexity can have a direct impact on how easy the product will be to maintain, because
to maintain, one must first understand how the existing code works, then make the
required modifications and lastly verify that the changes are correct.

The lower the complexity, the more maintainable a system is, and thus it decreases the
time needed to fix bugs and speed up the integration/development of new features. Also,
the complexity will have an indirect influence on the reliability because the easier it is to
test a system the more errors are likely to be discovered before they reach the customer.
This will contribute further to the perceived quality of the product

Quality
h 4 ¢ l v A 4
Reliability Availability Maintainability Usability More ...
v 3 v
Understandability Modifiability Testability

Figure 3-2 Hierarchy of software quality

12 Complexity and metrics

3.3 Metrics in Object-Oriented systems

Traditional metrics have been applied to the measurement of software complexity of
structured systems since the early seventies. Many sets of metrics have been proposed,
and some have been established as de-facto standards, while some have only been used
for special purposes and programming languages.

Although Object-Oriented (OO) systems have things in common with structured systems
(e.g. basic algorithms), there are architectural differences that must be considered when
measuring OO systems. For example, in OO systems there is a focus on peer-to-peer
relationship rather than a hierarchical structure for control flow. Also, the presence of
inheritance structures and the effect it can have on the system’s complexity cannot be
described by any of the traditional metrics, hence there was a need to develop new metrics
that would better support the system’s special properties.

One application of metrics in both types of systems is in terms of a threshold value or
alarms. An alarm would occur whenever the value of a specific internal metric exceeds
some predetermined threshold. Values that are not within the acceptable range should be
used to draw attention to a particular anomalous part of the code. For many of the metrics
the alarm levels cannot be global absolute values, but are dependent on the particular
development environment and language constructs.

3.3.1 Traditional metrics

In this section some traditional code metrics are described. These have been chosen
based on how commonly they are mentioned in literature and based on review of what
other metric tools are using.

Note that in some of the theoretical descriptions of the metrics several ways to solve a
problem is discussed. Which method is actually chosen for the X++ implementation will be
stated in the Functional Specification.

3.3.1.1 Size (LOC/SLOC)

The size of the code is probably the oldest method of measuring how hard the code is to
understand, and the measurement hereof is mentioned in more than ten thousand
research papers. The size can be measured in many ways, where most of them include
some counting of the physical lines of code, e.g. how many “Carriage return/Line feed”
characters exists. Since most modern languages allows comments and blank lines in the
code, this Lines of Code (LOC) count has been further specialized as Source Lines of
Code (SLOC), where blank lines and comment-only lines will not be taken into account.
SLOC can both be counted at the module (class) and method level.

The problem with SLOC is, that it can be difficult to use to compare code written in different
languages, since the syntax may influence how much code is needed for a given
operation. Also, some languages can have more than one statement on each line, which
makes it hard to compare with more simple languages. The programmer’s personal coding

13

style can also affect the outcome of SLOC, as there is usually more than one way to write
the needed code.

Despite these problems SLOC is still an easy-to-understand metric that gives a good hint
of the amount of effort that will be required to understand how a piece of code works.
SLOC can also be valuable for the management as size measurements can be used in
connection with resource allocation and estimation.

3.3.1.2 Comment Percentage (CP)

Comments in source code assist developers and maintainers in understanding the code.
The Comment Percentage metric can be calculated as the total number of lines with
comments divided by the total lines of code less the number of blank lines.

[Rosenberg97] states that NASA Software Assurance Test Center has found that a
comment percentage of about 30% is most effective. Other authors suggest numbers
ranging from 10% to 20%, but it will depend highly on the level of the programming
language and the complexity of the computational problem.

3.3.1.3 McCabe Cyclomatic Complexity (V(G))

According to [Sellers96], the most established measure of module complexity is the
Cyclomatic Complexity, which was introduced by Thomas McCabe in 1976.

Cyclomatic Complexity is computed using a graph that describes the control flow of a
module, as shown on Figure 3-3. A module corresponds to a single function or subroutine
and has a single entry and exit point. The nodes of the graph correspond to the commands
of the module. A directed edge connects two nodes if the second command might be
executed immediately after the first command. There are a couple of different definitions
for the Cyclomatic Complexity, but the most common is:

V(G)=e—-n+2

where G is a program’s flow graph, e is the number of edges (arcs) in the graph and n is
the number of nodes in the graph.

The word “cyclomatic” comes from the number of fundamental cycles in a connected,
undirected graph. A strongly connected graph is one where each node can be reached
from another node by following directed edges in the graph. The cyclomatic number in
graph theory is defined as e — n + 1. Program control flow graphs are not strongly
connected, but they become strongly connected when a “virtual edge” is added,
connecting the exit node to the entry node. Adding one to the graph theory definition to
represent the virtual edge makes the Cyclomatic Complexity equal to the maximum
number of independent cycles through the directed acyclic graph. Note that V(G) is not the
number of test paths through the code, since there are often additional paths to test
[Sellers96].

14 Complexity and metrics

O

O O O

V(G)=4-5+2=1 V(G)=10-9+2=3 V(G)=10-9+2=3
Figure 3-3 Control flow graph with sequence (a), nested i f (b) and sequentiali f (c)

Figure 3-3 shows three examples of control flow graphs and what their Cyclomatic
Complexity numbers are. As can been seen, a sequential program with no branches will
always have V(G) = 1, no matter how many nodes the program consists of. It does not
matter how any branches are structured: (b) has two nested ifs whereas in (c) they are
ordered sequentially, but still they have the same complexity number. Some argue, that
intuitively (b) is of greater complexity than (c), but this is not the case when using the V(G)
formula.

According to [McCabe96] there are several practical ways of computing the Cyclomatic
Complexity. Of course one could create a complete control flow graph with all the nodes
and edges and apply the V(G) formula directly. This approach can however require a great
amount of computational work, since we are actually only interested in the decisions in the
graph and not all the individual nodes. Instead we can take advantage of that most
programming language constructs has a direct mapping to the control flow graph, and
there by adds a fixed amount to complexity. l.e. an i f statement, f or statement, whi |l e
statement and so on, are binary decisions, and therefore add one to complexity.

Boolean operators will either add one or nothing to complexity, depending on whether they
have short-circuit evaluation semantics that can lead to conditional execution. For example
the X++ operator && will add one, since the second part of the && statement will only be
evaluated if the first part is true. Note that many implementations do not take these short-
circuit Boolean operators into account. If these are suppressed it means that the
Cyclomatic Complexity number will not be equal to the number of paths in the code, and
thereby can not be directly interpreted as a measure of the number of test paths needed to
fully cover the code. No matter which approach is taken, the important thing when
calculating complexity from source code is to be consistent with the interpretation of
language constructs in the flow graph.

15

As with Boolean operators, there are also different opinions on how to treat multiway
decision constructs (like swi t ch). Some argue, that since the swi t ch statement only
evaluates one expression, the entire structure should only add one to the complexity. Also,
there is a discussion if the complexity contribution of the swi t ch statement is exactly the
number of case-labeled statements, even in the case where several case labels apply to
the same program statement (fall-through). [McCabe96] recommends that the swi t ch
statement only contribute with the number of edges out of the decision node, so that fall-
through case labels will not add to the complexity.

Values

A common application of the Cyclomatic Complexity is to compare it against a set of
threshold values. Table 3-1 shows such a set. As stated in section 3.2, it will depend very
much on the programmers experience and insight in the problem the code solves, how well
these threshold values apply, but [McCabe96] finds these guidelines appropriate.

Cyclomatic complexity Risk evaluation

1-10 Simple module without much risk
11-20 More complex, moderate risk
21-50 Complex, high risk

> 50 Un-testable module

Table 3-1 V(G) values

3.3.1.4 Function points (FP)

Function points are an ISO recognized software metric to size an information system
based on the functionality that is perceived by the user of the system, independent of the
technology used to implement the system. It is thereby probably the only metric that is not
restricted to code.

In FP, system size is based on the total amount of information that is processed, together
with a complexity factor that influences the size of the final product. The complexity factor
is based on these weighted items:

- Number of external inputs

- Number of external outputs

- Number of external inquiries

- Number of internal master files
- Number of external interfaces

The weights assigned to each item depend on the specific system being developed. This

is also one of the main arguments against FP, that two systems might not get the same
measurement, as the weights are a matter of individual interpretation.

16 Complexity and metrics

3.3.2 OO metrics

In this section, special metrics applying to Object-Oriented systems will be described. The
majority of the included metrics has been proposed by [Chidamber91].

3.3.2.1 Weighted methods per class (WMC)

A traditional metric suite for Non-OO systems often includes the Number of methods,
which is a simple count on how many methods a given code file contains. [Chidamber91]
introduces the Weighted Methods per Class (WMC) metric, which is the sum of the
complexities of the methods in a class. The complexity they mention can in principle be
calculated in a variety of ways, but for most applications the Cyclomatic Complexity V(G)
will be used. Some also sets the complexity per method to a fixed value of 1, which is
allowed according to the definition, thus making WMC = Number of methods.

The number of methods and the complexity of methods in a class is an indicator of how
much time and effort will be required to develop and maintain the class. The larger number
of methods in a class, the greater is the potential impact on its children, since the children
will inherit all the methods defined in the parent class. Also, classes with a large number of
methods are likely to be very application specific, which can limit the possibility of reusing
the class.

There are some problems in calculating WMC, since the metric does not specifically state
which type of methods to include (private, public, protected etc.). Also, it does not
distinguish class attributes (i.e. the “get” and “set” methods) from regular methods, so there
will be added one to the WMC count for each attribute.

Different limits for the WMC have been used in various metric tools. One way is to set the
WMC to a fixed maximum number, e.g. 50. Another way is to specify that a maximum of
10% of classes can have more than 20 methods. This allows some large classes but the
majority of classes should be small.

3.3.2.2 Response for a Class (RFC)

The metric Response for a Class (RFC) counts the number of methods (both internal and
external) in a class that can be potentially used by another class. If a large number of
methods can be invoked in response to a message to a class, the testing and debugging of
the class can become more complex, since it will require a greater level of understanding
from the tester or developer.

In [Chidamber91] RFC is defined as the number of distinct elements in RS (RFC = |RS)),
where the response set RS is expressed by:

RS = {M} Uain {Rj}
where {Mj} = set of all methods in the class and {R;} = set of methods called by {M;}. The

response set can also be expressed as the number of local methods plus the number of
remote methods.

17

Class B

B1

B2

Class A //
/ B3
A1 B4

C—
A3

Ad \\ Class C
C1

Cc2
C3

C4

Figure 3-4 RFC example illustration

In Figure 3-4 is shown classes A, B and C each containing four methods. The arrows show
method calls/usage from class A. The response set for the figure with regards to class A is
calculated as:

RS = {A1, A2, A3, A4} U {B1, B2} U {A2, B2, C1}
={Al, A2, A3, A4, B1, B2, C1}

From the above set will RFC equals 7, since it is calculated as the number of distinct
elements in the response set.

3.3.2.3 Lack of Cohesion in Methods (LCOM)

Cohesion measures to which degree the methods of a class are related to each other. A
cohesive class performs one function whereas a non-cohesive class performs two or more
unrelated functions. Correct object-oriented designs maximize cohesion since it promotes
encapsulation. A non-cohesive class might need to be refactored into two or more smaller
classes. Cohesion also has an impact on complexity, since well grouped functionality will
be easier to understand and maintain.

The original object-oriented cohesion metric was proposed by [Chidamber91] and
measures the inverse cohesion. They define Lack of Cohesion in Methods (LCOM) as the
number of pairs of methods on disjoint sets of instance variables (called P), reduced by the
number of method pairs acting on at least one shared variable (called Q). If P > Q then
LCOM=P-Q else LCOM=0. When LCOM equals zero it indicates that it is a cohesive class,
where as a number greater than zero indicates that the class may be split into two or more
classes.

For example, in class X of Figure 3-5, there are two pairs of methods accessing no

common instance variables (f,g and f,h), while one pair of methods (g and h) shares
variable E. This givesa LCOM of2 -1 = 1.

18 Complexity and metrics

void f() {...usesA,B,C ...}
voidg(){...usesDE ...}

void h(){ ... usesE, F ...} a() h()

class X
intA,B,C,D, E, F;

Figure 3-5 LCOM example illustration

This original definition of LCOM has received a great deal of criticism from various authors.
Among these are the facts that LCOM gives a value of zero for very different classes, that,
since it is defined on direct variable access, it's not well suited for classes that internally
access their data via properties, and that the resulting value of LCOM in some cases will
depend on the number of methods in the class.

To overcome the above-mentioned problems, several sources have suggested alternative
interpretations/methods for calculating LCOM. [Sellers96] proposes LCOM* defined as (m -
sum(mA)/a) / (m-1), where m=number of methods in the class, a=number of variables
(attributes) in the class and mA=number of methods that access a variable. LCOM*
decimal values will vary between 0 and 2, where 0 indicates high cohesion and 2 is
extreme lack of cohesion.

[Hitz95] changes the definition of LCOM to measure the number of connected components
in a class. A connected component is a set of related methods and class-level variables.
Methods a() and b() are related if they both access the same class-level variable, or a()
calls b() or b() calls a(). The “Improved LCOM” (ILCOM) equals the number of connected
groups of methods. ILCOM=1 indicates a cohesive class, which is the "good" class.
ILCOM>=2 indicates a problem, where the class should be split into several smaller
classes. ILCOM=0 happens when there are no methods in a class which is also a "bad"
class.

No matter which of the LCOM definitions one may choose, they all measures cohesion
between methods and data. In some cases data cohesion is not the right kind of cohesion.
Some argue that a class groups related methods, not necessarily data. If classes are used
as a way to group auxiliary procedures that does not work on class-level data, the
cohesion will be low. Although this is still a good cohesive way to code, it is not cohesive in
the "connected via data" way. A class that provides only storage will also get a low data-
cohesion, if it does not act on the data it stores.

3.3.2.4 Coupling Between Objects (CBO)

CBO is a count of the number of other classes to which a class is coupled. It is measured
by counting the number of distinct non-inheritance classes that a class depends on, i.e.
classes that are used either through local instance variables or used as parameters to the
methods of the class being measured.

19

Excessive non-inheritance coupling between classes prevents reuse, since a more
independent class will be easier to reuse in another context. If a class has a high CBO it
will also be more sensitive to changes in other parts of the design and therefore
maintenance is more difficult. Also, strong coupling will make a class harder to understand
or change by itself, if it is related to other classes. Designing systems that have the
weakest possible coupling between modules, but where one still adheres to the general
rules of the object’s responsibility, can thus reduce complexity.

3.3.2.5 Depth of inheritance tree (DIT)

Many authors of OO metrics literature note the need to measure a system’s inheritance
structures. This is due to the fact that the deeper a class is in the hierarchy the greater the
number of inherited methods will be, making it more complex. The most common of these
inheritance measures is the Depth of Inheritance Tree (DIT) metric that counts how many
ancestors (parent, grand-parent etc.) a class has.

In many OO based languages all classes inherit from some super class often called
Object. This will result in all user created classes having a minimum DIT of 1, although
some authors argue that Object should not be included when computing the DIT metric.

A recommended value for DIT is 5 or less, although some sources allow up to 8. The
reason for these values is that very deep class hierarchies are complex to develop and
comprehend.

3.3.2.6 Number of Children (NOC)

The number of children is the number of immediate subclasses to a class in the hierarchy.
It is thereby a measure of how many subclasses are going to inherit the methods of the
parent class. [Chidamber91] states that it is generally better to have depth than breadth in
the class hierarchy, since it promotes reuse of methods through inheritance. However, if a
class has a large number of children, it may require more testing of the methods of that
class and hence will increase the testing time.

3.3.2.7 Fan-In / Fan-Out

Fan-Out is another name for the CBO metric. Fan-In measures the number of other
classes having a reference to the class. Since Fan-In in particular is a system metric, it
requires knowledge of all classes in the program, and cannot be measured by just
evaluating the source code of a single class. Despite the possible implementation
problems, Fan-In can be a very useful metric since it gives an indication of how high
impact a change in the class can potentially have. The more who uses the class, the more
caution and testing should be exercised when making a modification.

20 Complexity and metrics

Chapter 4 Functional specification

Microsoft Business Solutions (MBS) has created document templates for documenting all
steps in the software development process, right from the initial Quick Specification
(describing idea/concept of the functionality) to the final test specification. This helps to
ensure that when all sections of the template has been filled out, all aspects of the
respective step will have been taken into consideration and nothing has been forgotten.

This chapter contains the sections from the MBS Functional Specification template that |
have filled out. Please refer to the CD (Appendix D) for the complete specification
document with descriptions of the sections included.

Product: Microsoft Dynamics AX 4.01
Feature name: BP Complexity Check

4.1 Abstract

The main goal of the feature is to supply the developer with measurements of how
complex the code is.

4.2 Overview & Justification

When handing over code between teams, it is vital that the new developers quickly can
understand the functionality of the code, and how the code is related to and affects other
parts of the system. Also, Independent Software Vendors (ISV) must be able to understand
the existing code in order to extend the functionality. It has been shown in various studies
that the complexity of a piece of code has a great impact on the maintainability,
understandability and testability of the code.

The new Complexity Check tool will provide developers with information of how well the
code performs in connection with complexity- and other OO metrics. It can also be used for
finding candidates among old parts of the code that may need rewriting to live up to the
current coding standards.

The Best Practice (BP) framework already contains functionality for checking different rules
when a class/method is compiled. It will thus be natural for the new tool to be based on the
BP framework since developers are already familiar with this and since it will save some
development time.

4.3 Target Market

This tool will both be targeted towards internal use and as well as Dynamics AX
developers in all markets.

21

4.4 Pillars

MBS Pillar

Release Theme

Functionality Description

1.

Best TCO

Low maintenance

It will decrease the Total Cost of Ownership by providing
information that can result in lower maintenance and testing
time

4.5 High Level Requirements

Number Category Requirement

0010 Required The developer must be able to select if the complexity check will be
included in the BP check

0020 Required The complexity checks must support all language constructs in
Dynamics AX version 4.0

0030 Required Must support both traditional and OO based metrics

0040 Required Outputs should be in the form of BP suppressible warnings and info.

0050 Required Output from BP must be in both human- and machine-readable
format so it can be post-processed automatically.

0060 Required Results of the complexity checks should be included in the
generation of the Best Practice Excel sheet.

0070 Optional It should be possible to create statistics on all metric values, and not
only those who causes BP warnings.

4.6 Overview Scenarios

Simon is developing a new feature in Dynamics AX. During the development of the actual
code, he has set the compiler output level to 4, to enable automatic best practice checks
when he compiles the code. Also, he has enabled check of the complexity best practice
rules. This helps him to limit the complexity of the code he writes, by pointing out classes
or methods where certain criteria are not met. By reducing the complexity, debugging or
finding errors in the code at a later point in time will become much easier, as he can
quickly understand what the code does and what impact any changes might have on other
classes.

4.7 Personas

No. | Persona Name Role Comments

1. Simon System Implementer

2. Ivar Inexp. VAR Sys implementer All developers in general.

3. Isaac ISV Biz App Dev Will only use Simon as persona in the use cases.
4. Mort IT Systems developer

4.8 Assumptions & Dependencies

No. | Description Type
1. The new feature will (partly) be build on top of the existing Best Practice tool. Dependency
22 Functional specification

4.9 Use Cases

With basis in the high level requirements and general domain knowledge, six separate use
cases have been identified for the new tool. The use cases are listed in Figure 4-1 and the
following sections will go through the details.

Select complexity
check

Perform complexity
check

Developer .
Investigate output

Generate BP excel
sheet

Generate metric
values

Generate team Manager

statistics

Figure 4-1 Use case diagram

4.9.1 Use Case 1: Select complexity check

4.9.1.1 Goals
Number Goal
0101 Enable the developer to select if the complexity check should be performed as part of the Best

Practice checks

4.9.1.2 Pre-conditions

Number Pre-condition
0201 Must have a developer license to Dynamics AX
0202 The Dynamics AX client should be opened

4.9.1.3 Post-conditions

Number

Post-condition

0301

The user’s selection is saved in the database

4.9.1.4 Basic Flow

Step Number

Action

Reaction

0401

Open the BP setup form, by selecting the
menu Tools\Options... and clicking on the
Best Practices button.

The “Best Practice parameters” form opens.

0402 In the tree expand the nodes “Best Practice Tree expands to make the new complexity tree
checks”, “Specific checks” and “Classes”. node visible.
0403 User checks/unchecks the complexity tree Tree node gets checked/unchecked

23

Step Number

Action

Reaction

node.

0404

The user clicks the “OK” button to save the
changes.

Changes to selection gets saved

4.9.2 Use Case 2: Perform complexity check

4.9.2.1 Goals
Number Goal
0101 To perform the BP complexity check and have violations reported

4.9.2.2 Pre-conditions

Number Pre-condition

0201 Must have a developer license to Dynamics AX

0202 The Dynamics AX client should be opened

0203 The complexity check option must be selected (use case 1)

4.9.2.3 Post-conditions

Number

Post-condition

0301

The complexity check has been performed and any violations to the complexity limits have been

reported.

4.9.2.4 Basic Flow

Step Number

Action

Reaction

0401

User right-click on a class in the Application
Object Tree (AOT) and selects Add-ins ->
Check best practices

The best practice complexity check will output
its results to the “Best practices” tab of the
compiler output window.

4.9.2.5 Variations (Sub Flows)

Step Number

Condition Action

Reaction

0401a

Compiler output
level has been set to
higher than 3.

the editor.

User performs an action that will

cause the class to be compiled. This
can be that he has edited the source
code of a class and selects “Save” in

The class will be compiled
followed by a best practice
check as in flow 0401.

24

Functional specification

4.9.3 Use Case 3: Investigate output

4.9.3.1 Goals
Number Goal
0101 Enable the developer to see where the metric violation occurs

4.9.3.2 Pre-conditions

Number Pre-condition
0201 The Dynamics AX client should be opened
0202 Must successfully have completed Use Case 2

4.9.3.3 Post-conditions

Number

Post-condition

0301

The code that has violated the metric is visible

4.9.3.4 Basic Flow

Step Number

Action Reaction

0401

Once the Best Practice has completed and
the Compiler output window has opened,
switch to the Best Practices tab

The Best Practice tab opens.

0402

The code for the class/method that contains
the metric violation will be shown in the

For each of the errors/warnings in the grid,
double click on the line.

MorphX Editor form.

4.9.3.5 Extensions (Alternative Flows)

Step Number

Condition Action Reaction

0402a

No Best Practice violations None, since the code has None

passed the BP checks

4.9.4 Use Case 4: Generate BP Excel sheet

4.9.4.1 Goals

Number Goal

0101 To have the output from the complexity check included in the Excel workbook, when using the
CheckBestPractices startup command

4.9.4.2 Pre-conditions

Number

Pre-condition

0201

Must have a developer license to Dynamics AX

25

4.9.4.3 Post-conditions

Number

Pre-condition

0301

Any warnings or errors from the complexity check will appear in the Excel workbook

4.9.4.4 Basic Flow

Step Number

Action Reaction

0401

Dynamics AX is started with the following parameter
-startupcmd=CheckBestPractices_<excel file>

All classes in the AOT are compiled
and the selected best practice checks
are performed. The results are then
grouped and inserted into the Excel
template workbook.

495 Use Case 5: Generate metric values

4.9.5.1 Goals

Number Goal

0101 Enable developers and managers to view metric values for a selected TreeNode and its
subnodes.

4.95.2 Pre-conditions

Number Pre-condition

0201 Must have a developer license to Dynamics AX

0202 The Dynamics AX client should be opened

0203 Cross references must be generated for the entire AOT

4.9.5.3 Post-conditions

Number

Post-condition

0201

Metric values have been generated and are viewable in a form.

4.9.5.4 Basic Flow

Step Number

Action Reaction

0401

Open the new form “Metric results” The “Metric results” form opens.

0402 Select or manually enter the path to an AOT Start path has been selected
TreeNode from where the generation must
commence.

0403 User click the “Start generation” button Metric values are generated for the selected
TreeNode and all its subnodes. Afterwards the
grid in the form is refreshed with the new data.

26 Functional specification

4.9.5.5 Extensions (Alternative Flows)

Step Number

Condition Action

Reaction

0403a

The path given is not a
valid TreeNode

User click the “Start
generation” button

The error message " Invalid
path to TreeNode” is shown

4.9.6 Use Case 6: Generate team statistics

4.9.6.1 Goals

Number Goal

0101 Enable developers and managers to view metric values for a selected TreeNode and its
subnodes.

4.9.6.2 Pre-conditions

Number Pre-condition

0201 Must have a developer license to Dynamics AX

0202 The Dynamics AX client should be opened

0203 Use case 5 “Generate metric values” must have completed with success

4.9.6.3 Post-conditions

Number

Post-condition

0201

Metric statistics per prefix/team has been generated and is viewable in a form.

4.9.6.4 Basic Flow

Step Number

Action

Reaction

0401

Open the new form “Metric results”

The “Metric results” form opens.

0402 Switch to the “Team statistics” tab The “Team statistics” tab is opened.
0403 Select or manually enter the filename/path to Filename has been entered
a text file containing combinations of teams
and prefixes.
0404 User clicks the “Generate team statistics” Statistics (average, minimum, maximum and

button

occurrences) are generated for the metric
values, using the selected filename as input.
Afterwards the grid in the form is refreshed
with the new data.

4.9.6.5 Extensions (Alternative Flows)

Step Number

Condition

Action

Reaction

0404a

The filename is not valid

User click the “Generate team
statistics” button

The error message " Invalid
filename” is shown

27

4.10 Functional Requirements

This section describes which metrics has been chosen and clarifies any open issues from

the theory section.

4.10.1 Chosen metrics

Since X++ is a highly Object-Oriented language, both traditional and OO metrics should be
used. In the table below can be seen which metrics must be implemented in the new
complexity metrics tool. Please refer to section 3.3 of this report for a detailed description

of the individual metrics.

Metric Level Measures Acceptable
range

SLOC — Source lines of code Method | Size [1;40]

CP — Comment percentage Method | Complexity [10%;100%]

V(G) — Cyclomatic complexity Method | Complexity [1;10]

WMC — Weighted methods per class (1) Class Size and complexity | [1;50]

DIT — Depth of inheritance tree Class Size [0;8]

NOC — Number of children Class Coupling/Cohesion [0;10]

CBO — Coupling between objects Class Coupling [0;20]

RFC — Response for class Class Communication and | [1:50]

complexity
LCOM - Lack of Cohesion in Methods Class Internal cohesion [1]
Fl —Fan In Class Coupling [1:50]

Computational notes:

(1) Only methods (both private, public and protected) specified directly in a class are
included so any methods inherited from a parent are excluded. V(G) will be used as the

complexity number in WMC calculation.

As can be seen in the table, mostly the metrics proposed by [Chidamber94] (WMC, DIT,
NOC, CBO, RFC, LCOM) has be chosen for the OO part. Although many other metrics
could have been included, the ones proposed by [Chidamber94] has, since their invention,
been implemented in many metrics tools, so some statistical data will be available for
comparing the X++ code with other systems. Among the users of these metrics is NASA's
Software Assurance Technology Center, which has found them quite useful. The Fan-In
has been included due to its unique ability to find classes that is not referenced from any

other classes (potentially dead code).

The SLOC, CP and V(G) metrics has been chosen because they are relatively easy to
understand, and although they are not directly aimed at OO systems, they still plays an
important part in evaluating method complexity. The Function Point metric described in the
theory section has not been included since it has a somewhat vague definition and is not

restricted to code only.

28

Functional specification

4.10.2 Elements from the AOT to check

In Dynamics AX there is a distinction between “pure” code classes, and classes
concerning the graphical representation of data. They are separated into the two
Application Object Tree (AOT) nodes called “Classes” and “Forms”. Forms are mostly used
to view/edit data, and the controls on the forms are in most cases bound directly to fields
from a data source. Both classes and forms can contain general methods, but on forms,
each control and field on the data source has their own “methods” node. Since it is vital to
limit method complexity no matter what type of object the methods is attached to, the
method-level metrics (V(G), SLOC, CP) will be calculated for all methods.

In X++, classes have a special method nhamed O assDecl ar at i on. This method contains
all class-level variables and the specification of the class (private/public + inheritance), but
no real code. This method should not be included in the method-level metrics, since it is a
class definition and not a regular method.

The class-level metrics will however only be calculated for the “pure” classes. This is
because on forms, a lot of the work is done by using the visual designer to set various
properties and not by creating code constructs. This means that the metric algorithms will
be really difficult to apply to forms without redefining the meaning of the metrics.

4.10.3 Handling methods within methods

As oppose to many other Object-Oriented languages, the X++ syntax gives access to
creating methods within other methods (referred to as “embedded methods”) like in C.
None of the algorithms for computing the metrics (this goes for both traditional and OO)
has taken this special case into account.

One of the main arguments for using embedded methods is that it can limit the use of the
embedded functionality to a specific method. It can however be argued, that if it is
necessary to have embedded methods to accomplish some functionality, then the outer
and the embedded method has higher coherency with each other than with the rest of the
methods in the class, and thus should be separated out in their own class. The use of
embedded methods is not yet considered a direct violation to the best practices however it
is generally not recommended when creating new functionality.

29

class A class A
{ {
public void met hodX() public void nethodX()
{
i nt subMet hodZ() net hodZ() ;
nmet hodZ() ;
If (sonething) }
dot hi s;
el se private int methodZ()
dot hat ;
} If (sonething)
dot hi s;
subMet hodZ() ; el se
subMet hodz() ; dot hat ;
} }
public void nethodY() public void nmethodY()
anotherCall (); anot herCall ();
anotherCall (); anot herCal I ();
} }
} }

Figure 4-2 Use of embedded method Figure 4-3 Use of private method
Figure 4-2 shows a class which uses an embedded method and Figure 4-3 shows its
equivalent class where the embedded method has been rewritten as a private method.
Converting from an embedded to a private method can be somewhat tricky, since an
embedded method has access to its outer method’s variables. However, having more
parameters in the new private method can solve this issue.

There are basically two approaches for dealing with embedded methods in the metrics
calculation: Either to see the embedded method as just a code block within the outer
method or to handle them as any other private method. If we “cut” out the code to convert it
to a private method, no complexity penalties will be given to a method that has embedded
methods, since calls to other methods do not contribute to the Cyclomatic Complexity
count. One could argue that this is intuitively incorrect since methods with embedded
methods will be of greater size and thus likely will require more effort to understand.

Using the first approach, where the embedded method is just considered a code block, will
result in methodX of Figure 4-2 having a higher complexity count (V(G)=2) than the
methodX of Figure 4-3 (V(G)=1), since the “if" in the embedded method will be included in
the count for methodX. If we however look at the sum of method complexities for the class,
using the “code block” approach, it will actually result in a lower total complexity than the
“cut” approach (V(G)=3 vs. V(G)=4), since the private methodZ will add 2 where the
embedded methodZ only will add 1 to the total V(G). This issue can be solved by letting
the “constructor” of the embedded methodZ add one to V(G) of methodX, the same way as
a normal method always has a V(G) of one. This will result in methodX of Figure 4-2
having V(G)=3, methodX of Figure 4-3 having V(G)=1 and both having a total class V(G) of
4,

30 Functional specification

Another advantage of using the “code block” approach is that measurement of SLOC and
CP will also be more understandable and consistent than if we were to split the method
into two parts. The downside is that we need to recognize the embedded method
“constructors”, so we cannot use simple text search to find the code constructs (like “if”,
“while”) for the V(G) count. Since this is only a minor problem, the “code block” method will
be used in the implementation.

4.10.4 Handling SQL statements

Besides having embedded methods, X++ has another special language feature, which is
the ability to have SQL statements directly in the code. Like with embedded methods, none
of the sources discusses how to address this.

In Table 4-1 is given examples of SQL statements representing different combinations of
keywords. The V(G) column suggest how much each statement should contribute to the
Cyclomatic Complexity. The reasoning behind the suggested numbers will be explained
below.

Case | V(G) | Example
1 0 Select t1 where t1.f1 == x;
2 0 Select t1 where t1.f1 == x & t1.f2 ==y || t1.f3 == z;
3 1 while select t1 where t1.f1 == x & t1.f2 ==y || t1.f3 ==z
4 1 Select t1 where t1.fl1l == x
join t2 where t2.f1 = t1.f1;
5 2 while select t1 where t1.f1 == x & t1.f2 ==y
join t2 where t2.f1 =t1.f1 && t2.f2 ==
6 0 delete_fromtl where t1.f1 == x & t1.f2 == vy;
7 0 update_recordset t1 setting f1 = x where t1.f1 ==y && t1.f2
8 0 insert_recordset t1 (fl1, f2) select f1l1, f22 fromt2 where
t2.f1 == vy;

Table 4-1 Calculation of Cyclomatic Complexity for SQL statements

As can be seen in the above table, the basic sel ect wher e does not add anything to the
complexity of the method. This is because it can be compared to retrieving a single object
from a regular function (e.g. a=method1();) which does not add to the complexity.

A whi | e in front of the sel ect will add one, since it will result in loop like a regular whi | e
or f or statement.

The Boolean operators & and | | in the SQL statements do not add one to V(G), as
opposed to when they occur in normal expressions. The reason for this is that the SQL
statement is executed by the Object Server, and all the elements of the Boolean operators
will always be evaluated, so they can not be seen as short-circuit operators. Also, they can
be considered as just being parameters to a function.

31

The reason why the j oi n also adds one is that it will result in an additional value being
returned. If we were to obtain the same without using the join, we would have to use a
nested whi | e sel ect statement, which also would have added one to the complexity.
However, if an exi st s or not exi st s keyword is in front of the j oi n, then nothing should
be added, since no value then will be returned by the SQL statement.

The keywords del ete_from updat e_recordset and i nsert_recordset in case 6-8 can
be seen as bulk commands. This is equivalent to regular function calls with parameters,
and thus they do not add anything to V(G).

4.10.5 Handling Switch-statements

As described in section 3.3.1.3, there are different opinions on how to handle swi t ch
statements when calculating the Cyclomatic Complexity. The solution suggested by
[McCabe96] will be adapted in the implementation, so swi t ch statements add the number
of edges out of the decision node to the complexity count. Following this approach, the
code represented on the next page will result in V(G)=3.

switch(a)

case 1:
doOne();
br eak;

case 2.

case 3.
doTwoThree();
br eak;

defaul t:
doSonet hi ng();
br eak;

}

Please note, that even if we were to remove the “break;” from the code, it would still result
in the same complexity, although the first cases would fall through and result in all the code
being executed. The reason behind this is that a test would still require min. 3 different test
paths to verify its correctness, no matter if the “break;” were there or not.

4.10.6 Handling break and continue

In X++, keywords “break” and “continue” can be used within loops to either jump out of the
loop or to immediately go to the top of the loop. It is quite common to use “break” and it is
reasonably easy to understand when appearing in code, but the use of “continue” is not
that widespread and the use of it might lead to confusing code and is generally not well
seen in an object oriented language such as X++.

The keywords will most often appear as the result of a branch operation like “if’, since
otherwise the code below the keyword would be superfluous as it never would be
executed. The branch before the keyword will have added one to the Cyclomatic
complexity, and since the branch and break/continue can be seen as one path through the

32 Functional specification

code, the actual keyword will not need to add additionaly to the Cyclomatic Complexity
count.

4.10.7 Handling Try-catch statements in V(G)

Error handling in X++ is done by surrounding code blocks by a try-catch statement. These
statements can be seen as binary decisions, since the “catch” part is only executed if a
certain (error) condition is met. As there can be more than one cat ch in the error handling
statement, each of the error types being caught will add one to the Cyclomatic Complexity
number.

4.10.8 Handling macros

In X++ macros can be defined the same way as in C. A macro is basically just a piece of
text that gets replaced in the source-code. Macros are usually used as a convenient way of
defining constants, but some macros also contains more complex code.

If the source code of a method is obtained by calling the AOTget Sour ce function on an
AOT node, the raw code without the macros expanded will be returned. If we however use
the SysScanner class to get the tokens, the macros will be expanded and any text from the
macro will be included in the tokens.

When calculating SLOC and CP, the macros should not be expanded, since one should
not get a line count penalty for declaring constants, which can make the source code a lot
more readable. In the V(G) calculation however, the macros should be expanded so all
branch keywords in the macro (if any) can be evaluated and included in the Cyclomatic
Complexity count. Although one could argue that the macro is just a method, having
application functionality outside well-defined objects is not in line with the Object-Oriented
philosophy. Also, hiding functionality in a macro can make it very difficult to use unit tests
to verify that the functionality works as intended. A “real” method should instead be added
to an object, so the function can be tested and verified as normal.

4.10.9 Types to include in Coupling Between Objects

As described in the theory section, the original definition for CBO states that it is a count of
the number of distinct classes that a class has references to. In X++ however, the
definition of a class is somewhat fluent, since classes can be divided into Class and Form
objects. Also, tables, extended data types and enumerations can be considered as a kind
of classes, since instances of these can be created directly in the code. As the purpose of
CBO is to identify classes which are coupled to a lot of other objects, the term “distinct
classes” in the definition of CBO will for X++ be interpreted as “distinct object types”, so
both regular classes, tables, forms, extended data types and so on, all will add to the CBO
count.

The CBO metric can be used to evaluate how sensitive a class is to changes in other

objects, and since the basic data types like i nt and str cannot be changed by the
developers, they will not be included in the CBO count. Also, the table fields will not add to

33

the CBO count, since these can be seen as just being methods/properties on the table, so
no matter how many fields of a table is referenced, the entire table will only contribute with
one to the count.

4.10.10 Calculation of LCOM

[Etzkorn97] compares some of the known interpretations of the LCOM metric, to find out
which one is most suitable. Their conclusion is that the LCOM as defined by Li and Henry
is properly the most accurate. They also states that the one proposed by [Hitz95] is the
same just calculated with basis in graph theory instead. Furthermore they have concluded
that the measure should not include inherited variables, but that any constructor methods
should be included in the calculations. The implementation will adhere to their conclusions
and use LCOM as defined by [Hitz95].

One thing [Etzkorn97] does not take into consideration is static methods. Per definition a
static method can not operate on instance variables, so a class with two independent static
methods will always have LCOM >= 2, which indicates that it should be split into two
separate classes. In X++ it is however common practice to group related static functions in
a single class. Also, many classes have a static method “description”, which is used for
reflection purposes. To avoid getting a misleading LCOM, the implementation should not
evaluate static methods.

Another issue is abstract methods. They can not contain any code, and thus will always

cause LCOM > 1 if they are included in the count. To avoid this problem, abstract methods
will not be included in the calculation of LCOM.

34 Functional specification

4.11Error Conditions

The new feature contains no error conditions or option boxes.

4.12 Notifications

All of the below mentioned notifications will appear in the Best Practices tab in the
Compiler Output window as warnings. They all have the developer as the recipient, have
no special requirements nor do they have any performance considerations. The
notifications will only appear if the complexity metrics have been enabled in the Best
Practices parameters window.

Notification name

Source Lines of code

Trigger condition

When BP check is run and the number of Source Lines of a class is
higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The number of Source lines (SLOC) of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for SLOC
[Value] - The SLOC of the class, i.e. 438

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Comment Percentage

Trigger condition

When BP check is run and the Comment Percentage of a class is lower
than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Comment Percentage (CP) of [Class name] is lower than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for CP
[Value] - The comment percentage of the class, i.e. 11%

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

35

Notification name

Cyclomatic complexity

Trigger condition

When BP check is run and the Cyclomatic Complexity of a method is
higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Cyclomatic Complexity (V(G)) of [Method name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Method name]- Name of the method that is evaluated
[Recommended] - The recommended value for V(G)
[Value] - The V(G) of the method, i.e. 12

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Weighted Method for Class

Trigger condition

When BP check is run and the Weighted Methods for Class number of a
class is higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Weighted Methods for Class (WMC) number of [Class name] is
higher than [Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for WMC
[Value] - The WMC number for the class, i.e. 55

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Depth of Inheritance Tree

Trigger condition

When BP check is run and the Depth of Inheritance Tree of a class is
higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short

The Depth of Inheritance Tree (DIT) of [Class name] is higher than
[Recommended]: [Value]

36

Functional specification

format)

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for DIT
[Value] - The DIT value, i.e. 8

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Number of children

Trigger condition

When BP check is run and the Number of children of a class is higher
than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Number Of Children (NOC) of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for NOC
[Value] - The NOC, i.e. 25

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Coupling Between Objects

Trigger condition

When BP check is run and the Coupling Between Objects metric of a
class is higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Coupling Between Objects (CBO) metric for [Class name] is higher
than [Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended value for CBO
[Value] - The CBO value for the class, i.e. 15

Special requirements

None

37

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Response For Class

Trigger condition

When BP check is run and the Response For Class value of a class is
higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Response For Class (RFC) value of [Class name] is higher than
[Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended max. value for RFC
[Value] - The RFC value of the class, i.e. 20

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

Notification name

Lack of Cohesion in Methods

Trigger condition

When BP check is run and the Lack of Cohesion in Methods value for a
class is higher than a set threshold value.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Lack of Cohesion in Methods (LCOM) value for [Class name] is
higher than [Recommended]: [Value]

Replacement variable
definitions

[Class name]- Name of the class that is evaluated
[Recommended] - The recommended max. value for LCOM
[Value] - The LCOM value of the class, i.e. 3

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices
parameters window.

38

Functional specification

Notification name

Fan In

Trigger condition

When BP check is run and the Fan In of a class is zero.

Recipient(s)

The developer

Notification content -
alert message (short
format)

The Fan-In of [Class name] is zero.

Replacement variable
definitions

[Class name]- Name of the class that is evaluated

Special requirements

None

Performance and
scalability
considerations

None

Configuration options

Complexity metrics can be enabled/disabled from in the Best Practices

parameters window.

4.13 Fields table

Fields Data Def. Req. Edit Save to Size Output Help text
Type Value (Y/N) (Y/N) Templ. constraint Format
(Y/N) in DB
SysBPParameters. | NoYes | No N Y N Check class
CheckComplexity complexity
metrics

4.14 Reports

The functionality will report its results through the compiler output window’s “Best

Practices” tab or the “Metric results” form, from which all the information can be sent to a
printer. Also, the Excel workbook generated (use case 4) can be printed or by other means
post-processed to form reports.

4.15 Testability

Using TDD will improve the potential for making the code testable through automation.
Also, most of the new functionality will be non-GUI oriented algorithms, which makes ideal
candidates for automated tests. To improve the testability the numeric values for each
metric should be obtained directly from a property on the classes.

4.16 Translation & Localization

No special considerations.
All texts must be defined as labels, like in the rest of the application.

39

4.17 Performance, Scalability & Availability (Client Apps)

The new feature should be fast, since it may be run every time a class is compiled (if
compiler is 4). The goal regarding performance is, that a best practice run on the entire
AOT, where only the complexity metric has been selected, should take no more than 45
minutes on a 3 GHz computer with 1 GB RAM.

This feature should have no impact on the scalability of Dynamics AX, since it only
operates on metadata and thus is independent on the amount of company specific
information in the database.

4.18 Setup (Client Apps)

User must have a regular Dynamics AX client deployed. In order to use the functionality, a
developer license must be installed.

4.19 Security & Trustworthy Computing

This tool will be used by developers who already have access to make changes in all parts
of the application X++ code, so it will not add any additional security risks to the program.

4.20 Extensibility & Customization

For some metrics the threshold (alarm) values are more or less static no matter who are
using them. Other threshold values will depend on specific company policies, which could
state that no methods over a certain size limit are allowed. Due to this, the threshold
values should be changeable on a company level.

Extensibility of the feature will happen through normal the layering strategy, where other
can add new classes in their own layer. To make it easy to add new metrics, the BP
complexity tool must be able to automatically find out which metrics exists across the
layers. This can be done by creating a super class from which all metric classes must
inherit.

4.21 Technology Configurations & Platform Considerations

The tool runs in the Dynamics AX client program, and thus it will have the same platform

limitations as the rest of the client. It will be written to support the syntax of Dynamics AX

4.0 and if any significant changes are made to the syntax in future releases, it will need to
be adjusted accordingly.

4.22 Sustainability Concerns

One of the goals of this tool is to help developers make code more understandable, and
thereby provide for an easier handover of code between teams. The code of this tool

40 Functional specification

should itself comply with the new complexity checks, so the Sustained Engineering Team
(SE) should be able to quickly understand and work through the code to resolve any issues
or errors that might occur after it has been released.

4.23 Supportability Concerns

Both customers and support will probably have no knowledge of how the various metrics
are computed. If they are to validate the measures, it is important that the help file
contains information of how to manually compute each metric. The theory section from
the report can be more or less directly used as help text, although it might need to be
joined with the functional specification to be more practical applicable.

4.24 Upgrade & Maintenance

The feature will not have any negative effect on upgrade or maintenance, since it only
requires one new field in the database and doesn’'t make any vital changes to the existing
functionality.

4.25 Monitoring & Instrumentation (i.e. Watson & SQM)

Dynamics AX uses Watson' as default, so any errors that occur within Dynamics AX (and
hence in the new tool) will be reported automatically. Evaluation of usage-tracking is not
within the scope of this report.

4.26 Usability

By building upon the existing BP framework, it will provide a recognizable user experience,
since most developers are already familiar with the terminology and usage of the BP tool.

4.27 Dev & Test Estimates

Due to the use of TDD as the development method, the below mentioned Developer Hours
will include the time needed to produce the unit tests during development. Test Hours will
be used for running tests on large amounts of data and analyzing the results.

No. | Feature Area Description UE FTE | UA FTE | Dev Test
Hours Hours Hours Hours

1. Traditional metrics 50 15

2. OO metrics 60 15

! For more info about Dr. Watson goto
http://support.microsoft.com/default.aspx?scid=kb;EN-US;308538

41

Chapter 5 Design

The chapter provides an overview of the solution structure, and how the various
components are linked together. Many of the basic decisions were made in the functional
requirements (section 4.10), so the purpose of the solution design is to create an
appropriate program structure that will fulfill these requirements.

5.1 Basic class design

All metrics share certain common properties, no matter how they are computed and what
level (class/method) they operate on. They all perform their computations on an AOT
TreeNode, which will represent either a method or a class. Also, all of them must be able
to return a string that states if the element violates the acceptable value ranges, and thus
causes a best practice warning.

Figure 5-1 shows how these common properties are gathered in an abstract class called
CodeMet ri cBase. The classes CodeC assMetri ¢ and CodeMet hodMet ri ¢ are also
abstract and are used to divide the metrics into two groups, according to the level they
operate on. All metrics will hence get their own class which then inherits from one of these
two sub-base classes.

CodeMetricBase

#node : TreeNode

+getValue() : int

+setElement(in _node : TreeNode) : void
+getBPStr() : str

+getErrorCode() : int

+getDescription() : str

+getBPSeverity() : BPSeverity

T

| CodeClassMetric | | CodeMethodMetric |

AN
CodeMetricWMC ———{ codeMetriccc |
CodeMetricRFC ———| CodeMetricSLOCMethod |
CodeMetricLCOM L] codeMetricCPMethod |

CodeMetricCBO

CodeMetricDIT

CodeMetricNOC

CodeMetricFI

il

Figure 5-1 Basic class structure

42 Design

5.2 Integration with the Best Practice tool

In the existing best practice tool, each kind of AOT object has its own corresponding BP
class, which will check for problems that apply to the specific object type. They all inherit
from the class SysBPCheckBase, which contains common functionality needed by all
checks.

When a user starts a check of the best practices on a given node, the class SysBPCheck is
responsible for iterating through all child nodes. Based on the type of the child node,
SysBPCheck passes the TreeNode to the correct implementation of SysBPCheckBase and
calls the check method on the BP class. Due to performance considerations, only one
instance of each of the BP classes is created. A list with these instances is kept in
SysBPCheck, so the classes can be used whenever needed.

To add the new complexity checks, new functionality must be added to the BP classes
SysBPCheckC assNode (checks “pure” code classes) and SysBPCheckMenber Funct i on
(checks methods, no matter of what their parent’s type is). As stated in the functional
specification, it is important that it will be easy to add new complexity checks in the future.
To avoid hard coding the names of the metric classes, reflection can be used to find the
available metrics. That way new metrics will automatically be included in the checks, if they
just inherit from either Coded assMetri ¢ or CodeMet hodMet ri c. Since it can take some
time for the reflection API to actually find the correct implementations, the two BP classes
will each hold a list with instances of the appropriate metric classes, so only one lookup will
be needed.

5.3 Metric statistics

The reason that the CodeMet ri cBase in Figure 5-1 has an abstract method called

get Val ue is to accommodate for the generation of metric values as described in Use Case
6. Also, all metric implementations must override the method get Descri pti on which
should return the short name (eg. “V(G)” or “WMC") of the metric. This name will, along
with the treenode path and value, be inserted into a table when the treenode is processed.
After all values have been generated, they can be viewed in a grid on a form. The user can
then use the grid’s build-in filter and sorting functionality to find any interesting data.

There was a wish from the managers to get some statistical values (average value,
minimum value, maximum value, number of occurrences) for each metric per team and
module. Internally, Microsoft has a list of which classes belongs to which team. This list is
based on the prefix (first letters) or postfix (last letters) of the object names. If more than
one prefix matches the object name, then it's the longest one that has the best match, and
if both a prefix and a postfix match then postfixes are considered as the best match.

To generate the statistical team/prefix values, the list needs to be supplied as an ASCII
text file. Each line should consist of a team and prefix par, separated by semicolon, like
this:

SCM Tech;Sys

43

Chapter 6 Implementation

This chapter explains how the different parts of the new complexity tool have been
implemented. Only fragments of the source code will be shown here. Please refer to
Appendix B for the complete source code listing.

6.1 Project

A new Private Project has been created in Dynamics AX, to hold all objects that are
created or modified as part of the new tool. By creating a new project it is easy to create
backups of the code, as one can merely export the private project as an xpo file. It also
makes it easier for others to quickly install the tool, by just importing a single file.

The new project called “Complexity” has the following folder structure and contents:

- Complexity (Main project folder)
- Modified (Existing AOT objects that has been modified)
- New (New objects)
- Metric Framework (Base classes and enumerations)
- Metric Implementations (Implementations of all ten metrics)
- Other (Support code)
- Statistics (Objects for creating statistics on the metrics)
- Extended data types (Extended data types for statistics tables)
- Test (Test main folder)
- Test dummy classes (Nonsense classes for test purposes)
- Unit tests (Unit tests for the new objects)
- Unit test helper classes (Classes for initialization of common functionality)

6.2 Base classes

As mentioned in the design chapter, the basic metric framework consists of three abstract
classes: CodeMet ri cBase, Coded assMet ri ¢ and CodeMet hodMet ri c. Although class-
and method level metrics are basically the same, they have individual needs.

Many of the class level metrics needs to have information about which other methods or
classes a class has references to. In Dynamics AX this sort of information is called “cross
references”. Cross references for a TreeNode can be generated using a build-in function,
and will be saved either to a single temporary table (which only exists as long as the
temporary table variable is in scope) or to a “real” set of tables. Using the temporary table
is somewhat faster than using the real tables, since writes to the database is avoided. In
principle, the temporary cross references could just be created in the individual metric
classes, but since it is needed for more than one metric, it is more effective if it can be
passed as a parameter to the classes implementing Coded assMet ri ¢c. The UML diagram
of Figure 6-1 shows the extra methods which have been added to Coded assMetri ¢ to
accommodate for the cross references issue.

44 Implementation

CodeMetricBase

#node : TreeNode

+getValue() : int

+setElement(in _node : TreeNode) : void
+getBPStr() : str

+getErrorCode() : int

+getDescription() : str

+getBPSeverity() : BPSeverity

T

CodeClassMetric CodeMethodMetric
-tmpxRefReferences : xRefTmpReferences -scanner : SysScannerClass
-XReflsInited : bool +setScanner(in _scanner : SysScannerClass)

#initTmpXRef() #getScanner() : SysScannerClass

+setElement(in _node : TreeNode) +setElement(in _node : TreeNode)
+setXRefTmpReferences(in _ref : xRefTmpReferences)

Figure 6-1 Base classes

The private variable xRef I sl ni t ed in Coded assMet ri c is set to false whenever a new
TreeNode is passed to the class. This is done by overriding the method set El enent from
CodeMet ri cBase. When a class inheriting from CodeC assMet ri ¢ needs to use the cross
references, it just calls the protected method i ni t TnpXr ef to make sure that is has been
properly created. The source code for that method can be seen below. It uses the class
xRef Updat eTnpRef er ences to perform the actual update.

protected void initTnpXRef()
xRef Updat eTnpRef er ences t npUpdat e;

if (!xReflslnited)
{

//Create tnmp references for the entire class

t npUpdat e = new xRef Updat eTnpRef erences();

t npUpdat e. fil | TnpxRef Ref er ences(node) ;

t npxRef Ref erences = t npUpdat e. al | TnpxRef Ref erences();

//Set the flag to true
xReflslnited = true;

}

The method level metrics can have a need to use a scanner class to get the tokens of the
source code. When the metrics are checked as part of a best practice check, the
SysScanner Cl ass have already been created, and since it might take a little time to create,
it would be beneficiary if the instance could be passed to implementations of the

CodeMet hodMet ri ¢ class, like with the cross references on the class level. Figure 6-1
shows which methods have been added to optimize the use of the SysScanner d ass.

45

6.3 Integration with BP

This section describes how the new tool integrates with the standard best practice tool.

6.3.1 Enabling the complexity checks

It can vary between the various VARs (Value Adding Reseller) and ISVs which best
practice checks they want to use, so each of the checks can be switched on and off. These
settings are saved in the table SysBPPar anet er s and can be edited in the form

SysBPSet up.

A new YesNo field called CheckConpl exi t y has been added to SysBPPar anet ers. To
display it in the form, the following code has been added to the method
bui | dSel ecti onTree (where t npNode is the parent node “Classes”):

el ement . addNode(t npNode, fi el dnum(SysBPPar aneters, CheckConplexity),
par anet er . CheckConpl exi ty);

Figure 6-2 shows the modified form, where the complexity node has been added below the
“Classes” node. Although the complexity metrics are both on class and method level, only
one checkbox has been added. This could be divided into two, which would allow having
only method level checks turned on, but for simplicity only a single checkbox is used.

B Best Practice parameters - User ID: Admin, All, User ID: Admin

iarning level: E,q|| w
Check class complexity metrics o 5 =
2 [+ Best Practice checks
#-[] General checks
= [Spexific checks
[Tables
[Table collections
= [Classes
[T abstract
[RunBase implementation

[] Documentation
|-[] Perspectives

)

Figure 6-2 Best Practice parameters

6.3.2 Loading the metric classes

As stated in the design section, it is important that the names of the metric implementation
classes are not hard coded in the BP tool, which would make adding new metrics more
complicated. Since it can take a little while to find the classes which inherit from

CodeC assMetri c or CodeMet hodMet ri c, a new Li st have been added to both

46 Implementation

SysBPCheckd assNode and SysBPCheckMenber Funct i on. The instances of the metric
implementations in these lists will then be reused to avoid too much overhead creating
classes.

To fill the lists, a new utility class called O assl nst anci at or has been created. So far, this
class only has a single static method cr eat eSubCl assl nst ances. It takes a variable of
type cl assl d as parameter and returns a Li st containing instances of classes that
implements the class with the specific id.

The utility class is used in the new method of classes SysBPCheckC assNode and
SysBPCheckMenber Funct i on, as shown below (from SysBPCheckd assNode):

protected void new()

{
super();
//Create a list that will hold instances of the netric cl asses
codeC assMetricList = O asslnstanci ator::createSubd assl nst ances
(cl assNum(CodeC assMetric));

}

6.3.3 Performing the checks

Figure 6-3 gives an overview of which steps are involved in performing the BP complexity
checks. Please note that although the figure is for class level metrics, most of it also
applies to method level metrics.

The check method on SysBPCheckC assNode will be called from SysBPCheck (not shown).
If the complexity check has been enabled (see previous section), the method
checkConpl exi ty is called. The source for this method is listed below:

voi d checkConpl exity()
{
Coded assMetric codeMetric;
Li st Enunerat or enum
str errMessage;
xRef Updat eTnpRef er ences t npUpdat e;
xRef TnpRef er ences t npxRef Ref er ences;

//Create tnmp references for the entire class (for optim zation)
t npUpdat e = new xRef Updat eTnpRef erences();

t npUpdat e. fi |l | TnpxRef Ref er ences(sysBPCheck. treeNode());

t npxRef Ref erences = t npUpdat e. al | TnpxRef Ref erences();

/1 Loop through all the metric classes that are avail able
enum = codeC assMetricLi st. get Enunerator();
whi | e(enum noveNext ())

/] Cast as CodeC assMetric
codeMetric = enumcurrent();

47

/[Pass the tree node of the method to check
codeMetri c. set El enent (sysBPCheck. treeNode());

//Pass the tnmp references already generated
codeMet ri c. set XRef TnpRef er ences(t npxRef Ref er ences) ;

/! Performthe check
err Message = codeMetric.getBPStr();

/11f the errMessage is not enpty then add a new BP nessage
if (errMessage !'="")

//Find out what to do with the nmessage
swi tch(codeMetric. get BPSeverity())

{

case BPSeverity::Info:

sysBPCheck. addl nf o(codeMet ri c. get Error Code(), 0, 0, err Message) ;
br eak;
case BPSeverity::Warning:

sysBPCheck. addVWar ni ng(codeMetri c. get Error Code(), 0, 0, err Message) ;
br eak;
case BPSeverity::Error:

sysBPCheck. addEr r or (codeMetri c. get Error Code(), 0, O, err Message) ;
br eak;
}

}

The first thing this method does is to create the temporary cross references for the current
TreeNode (which is a class-type node). Then the following is done for each of the class
level metric implementations: First, the current Tr eeNode is passed on to the metric class
by using the set El enent method and the cross references are passed on by using the

set XRef TnpRef enr eces method. Then the method get BPSt r on the metric implementation
is called, and if it results in an error message, the static method get BPSeveri ty on the
metric object is called to determine if an info, warning or error should be added to the list of
the best practice deviations.

In SysBPCheckd assNode the deviations are added by using one of the methods addI nf o,
addwar ni ng or addEr r or from the class SysBPCheck. For the memberfunction checks
however, the method addSuppr essabl eWar ni ng or addSuppr essabl eError on
SysBPCheckMenber Funct i on is used to add the deviations. Doing this enables the
developers to suppress the warning or error in the code should they wish to do so.

48 Implementation

SysBPCheckClassNode

Create instances of all
actual found classes

CodeClassMetric

T
new | }
|
I
| createSubClassinstances (classld) }
i »
I I
I
i i
I I
! I new
! List —
K !
] |
I I
check |
_—

I
]
iﬁ’\/, checkComplexity()

Repeat for each CodeClassMetricin the list

setElermentiTresNods)

seXRefTmpReferencesixRefTrmp Reference:

3]
i

g BRSNS

1
rarsade, message:

)

1
T
1

Figure 6-3 Sequence diagran]1 for checking class node

49

6.4 Metric implementations

In the following sections, the code for calculating each of the ten metrics will be explained
in depth.

Although the calculation part is different for each metric, the basic structures of the
methods are more or less the same for all implementations. They all override three
methods from CodeMet ri cBase, which basically just returns constants. The code shown
below is from the class CodeMet ri cSLOCMet hod, but could be from any of the
implementations:

public str getDescription()

{
/I Sour ce Lines of Code
return ' SLOC ;
}
public int getErrorCode()
{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cSLOCMet hod;
}
public BPSeverity getBPSeverity()
{
[/ Var ni ng
return BPSeverity:: Warning;
}

Another method that looks more or less the same is get BPSt r . Normally this starts with
calling the class’ get Val ue method. Then it compares the resulting value with a predefined
threshold limit from a local macro, and if necessary creates a string with the best practice
message.

public str getBPStr()

{
str ret;
int slocVval;
/1 Get the value for SLOC
sl ocVal = this.getValue();
/11f the value exceeds the threshold Ilimt, return an error string
if (slocVal > #MaxSLOCVal ue)
ret = strfnt(' The nunber of Source lines (SLOC) of method % is R
(Max. recommended 98)', node.treeNodeNane(),int2str(slocVal)
, i nt2str (#MaxSLOCVal ue));
return ret;
}

50 Implementation

In some metrics, the main computational function is a static method which takes some kind
of parameter. The reason for this is that the metric computation is used as a part of
another metric. The overridden instance method get Val ue, will then create the required
parameter object and then call the static method. Below is shown an example of this from
the V(G) calculation.

int getVal ue()
{

//Return the value for V(G for the source code
return CodeMetricVGwvet hod: : cal cVE t hi s. get Scanner());

6.4.1 SLOC (CodeMetricSLOCMethod)

Obtaining the source code for a method is very simple, since it is just a matter of calling the
method ACTGet Sour ce on the current TreeNode. To calculate the number of source code
lines, all comments must be removed from the code. When this is done, one can simply
count the number of carriage returns (\n’), less the number of blank lines. The primary
method for calculating SLOC is shown below:

public static int cal cSLOC(str sourcecode)

{

int sloc;

Text Buffer textBuffer;
str cfcode;

str |ine;

//Create TextBuffer and fill with comrent-free source code
cfcode = CodeMetri cSLOCMet hod: : r emoveComment s(sour cecode) ;
textBuffer = new TextBuffer();

t ext Buf f er. set Text (cf code) ;

/1 Get first line
line = textBuffer.next Token(false,'\n");

/1 Loop through Iines
whil e(line)

//1f the line is not blank then increase SLOC
if(strremline, ' ") !="")
sl oc++;

// Read next |ine
line = textBuffer.next Token(false,'\n");

}

return sloc;

51

The above method uses a TextBuffer to read through the lines of comment-free source
code. Each time a new non-blank line is fetched the SLOC count is increased.

To be able to remove comments from the source code, a new class Sour ceCodeChunker
has been created (see Figure 6-4 for an overview of the class). As the name suggests, its
job is to scan through some code to provide chunks of source code and comments. Each
time the method noveNext is called, it will fetch the next available source code and/or
comment. So, to remove comments from a piece of code, one simply can keep calling
noveNext and curr ent CodeChunk, until roveNext returns false. The method
renoveComrent s in CodeMet ri ¢cSLOCMet hod does exactly that, as shown in the code
snippet below:

CodeMetricSLOCMethod SourceCodeChunker
-source : str
+getValue() : int -sourcelen : int
+calcSLOC(in sourcecode : str) : int —f.romPos Z_IFT
+removeComments(in sourcecode : str) : str rlinscount : int
+getBPStr() : str -currentCode : str
+getErrorCode() : int —currer]tComment : St.r
+getDescription() : str -startLineComment : int
+getBPSeverity() : str -startLineComment : int

+new(in sourceCode : str)
+moveNext() : bool

-findMinPos(in vals : container) : int
-findStrEnd(in sourceCode : str, in startPos : int, in quote : str) : int
-resetOutput()
-scanForCommentsAndQuotes() : int
+codeStartLine() : int
+commentStartLine() : int
+currentCodeChunk() : str
+currentCommentChunk() : str
+lineCount() : int

Figure 6-4 Overview of CodeMetricSLOCMethod and SourceCodeChunker

public static str renoveComents(str sourceCode)

{
str cfcode ="''; //Coment-free code
Sour ceCodeChunker chunker = new Sour ceCodeChunker (sour ceCode) ;
/1 Get all code chunks
whi | e(chunker . noveNext ())
cfcode += chunker. current CodeChunk();
// Return the coment-free code
return cfcode;
}

52 Implementation

6.4.1.1 SourceCodeChunker

When scanning though the source code for comments there are a number of scenarios
that need to be taken into consideration:

Two kind of comments

Multi-line comments starts with / * and ends with */ .

Single-line comments starts with / / and ends when a newline ‘\n’ character is reached.
Comments in comments

Comments might include other comments.

Comment-characters inside strings

When regular comment character sequences appears inside a string (enclosed by
either “ " or * "), they should not be treated as comments.

The example method shown below (extracted from one of the unit tests) illustrates the
above mentioned challenges. It furthermore includes escaped characters and quotes (also
in combination with verbose strings starting with @, which can all pose problems when
trying to find the end of a string.

/*Starting coment
Comment line 2
/1 *]

int MyMet hod()

int a; //Coment here

str s='/* hello */ /] “ \' ;

/*coment*/ int c; //Line ends with conment
s=@hello \';

if (a==1)
t hi s. doSorret hi ng() ;

//Only conmment line /* nore comments */

}

The get Next method of the Sour ceCodeChunker (see next page) starts by clearing the
private output variables. It then calls the private method scanFor Comment sAndQuot es,
which finds the first occurrence (position) of one of the following character(s): /*, //,’, ".

If a multi-line or single-line comment is found, then the variable cur r ent Code is set to
contain all code from the last known end-position to the newly found position. Then the end
of the comment is found by searching for either */ or a newline character, the comment is
extracted, and the end-position is saved.

If the start of a string is found (double or single quote character), then the method
findStrEnd is called, to find the position where the string ends. Then

scanFor Comrent sAndQuot es is called again, starting at the end of the string. This will keep
repeating until a comment has been found or the end of the code is reached.

53

publ i c bool ean nmoveNext ()

{

int scanPos;

// Reset the output variables
this.resetQutput();

i f(fronPos < sourcel en)
{
/1 Scan for coments and strings
scanPos = this. scanFor Comment sAndQuot es();

// Repeat until we have found a comment
whi | e(scanpos > 0 && current Comrent == '")

swi t ch(substr (source, scanpos, #coment Lengt h))
{
case '/[*':
//Start of multi |ine comment found, so insert the
text and search for coment end
current Code += substr(source, fronPos, scanPos- fronpos);
fromPos = strscan(source,'*/', scanPos, sourcel en -
scanPos) +#coment Lengt h;
current Conmment = substr(source, scanPos, f ronpos-
scanPos) ;
br eak;

case '//"':

[/ Start of multi |ine comment found, so insert the
text and search for line end

current Code += substr(source, fronPos, scanPos- fronpos);

fromPos = strscan(source,'\n', scanPos, sourcel en -
scanPos) > 0 ? strscan(source,'\n', scanPos, sourcel en - scanPos)
sourcel en +1;

current Conment = substr(source, scanPos, f ronpos-
scanPos) ;

br eak;

defaul t:
/1Al text until the next quote pos will be included
regarding if it is a coment
scanPos = this.findStrEnd(source
scanPos+1, substr (source, scanpos, 1), substr (source, scanpos-1,1));
current Code += substr(source, fronPos, scanPos-

fronmPos+1);
fromPos = scanPos + 1;

}

/] Rescan

scanPos = this. scanFor Comment sAndQuot es();
}
if (currentComent =="")
{

54 Implementation

/1 No coments was found, so we rmust copy the last part of the
sourcecode to the current Code

current Code += substr(source, fromnPos, sourcel en-fronmpos+1);

fronPos = sourcelLen;

}

/1 Add to the |inecount

lineCount += StringUtil::CountCccurences(currentCode, '\n');
startLi neComrent = |ineCount;

lineCount += StringUtil::CountCccurences(currentComent,'\n');

return true;

}

return false;

}
6.4.2 CP (CodeMetricCPMethod)

To calculate the comment percentage, three numbers are needed: Total number of lines in
source code, number of blank lines and number of lines containing comments. By using
the Sour ceCodeChunker these can be obtained quite easily.

The method cal cCP of class CodeMet ri cCPMet hod (see code on next page) starts by
initializing a new Sour ceCodeChunker . Then it keeps calling the noveNext method of the
chunker, until it returns false and the end of the source code is reached. Each time a
comment is fetched, the position of it is evaluated to find out if the comment is on the same
line as a previous comment, and thus if it should add to the number of comment lines.

To find the number of blank lines in a code chunk, all spaces are removed from it and the
number of \n\n’ character sequences is counted. Since no standard functionality for
counting occurrences in a string exists, a new class Stri ngUti | with the static method
Count Cccur ences has been created. This method just uses the build-in method st r scan
to find the wanted sequence, and each time this happens, an integer variable is increased.

public static int cal cCP(str sourceCode)

o
int cp;
int newineslnConmment;
int |inesWthComents;
i nt bl ankLi nes;
int | astComment Line;

str tnp;

Sour ceCodeChunker chunker = new Sour ceCodeChunker (sour ceCode) ;
/1 Loop through code/ conment chunks
whi | e(chunker . noveNext ())

if (chunker. current Conment Chunk() !="")

55

{
newl i nesl nComment =
StringUtil:: Count Cccur ences(chunker. current Conment Chunk(),"'\n");

i f (chunker.conmmrent StartLine() > |astConmentLine)
linesWthConrents += new i nesl nCorment + 1;
el se
li nesWthComents += new i nesl nComment ;

| ast Conment Li ne = chunker. comment StartLine() +
new i nesl nComment ;

}

/I Renove spaces from the source code chunk
tnp = strren{chunker. current CodeChunk(),' ');

/1 Add the number of blank lines in the chunk
bl ankLi nes += StringUtil:: CountCccurences(tnp,'\n\n');

}

/Il Cal cul ate CP
i f((chunker.lineCount() - blankLines) > 0)
cp = (linesWthComments / (chunker.lineCount() - blankLines))*100;

return cp;

}

6.4.3 V(G) (CodeMetricVGMethod)

The primary method of the class CodeMet ri cVGVet hod is cal cVG. This static method takes
an instance of a SysScanner Cl ass as an argument, and returns the Cyclomatic complexity
value.

The scanner class provides a simple way of obtaining tokens from the source code of a
TreeNode. For each token, both a symbol number and the actual text can be retrieved. All
symbol numbers have been predefined in the macro TokenTypes, which makes it relatively
easy to decode the numbers.

As described in the theory section and in the functional specification, it is not necessary to
build the entire control flow graph when calculating V(G), so a scan for certain
combinations of symbols/keywords will be enough to find the loops and branches. Table
6-1 gives a list of the keyword combinations that are scanned for. Each of the
combinations will add one to the complexity count. Please note that although the table
shows the actual keywords, the symbol number is used instead in most cases.

56 Implementation

Keyword combination Conditions

2

&& Not inside a SQL statement

I

<st_end> <type> <identifier> (The <type> must be a simple datatype, void or the
name of a TreeNode object.

<st end> if

<st_end> while

<st_end> for

<st_end> case

<st_end> default

<st_end> try

else if

join <identifier> Must not be prefixed by “exists” or “notexists”

Table 6-1 List of keywords

The <st_end> denotes the beginning of a new statement. This is actually found by
searching for the end of a previous statement or the beginning of a new block, indicated by

the symbols “{", “}" or *;

To prevent the cal cVG method from becoming too big and complex, many of the symbol
combination checks has been split out into separate static functions. Since up to four
symbols are needed for detecting the combinations, a list of the four previous read
symbols and strings are preserved. These historical values can then be passed on to the
functions as needed. Below is an example of the function that determines if the current
symbol (symbol _1) is within a SQL statement. The parameter i sSQL will normally be the
result of the last call to the function.

public static bool ean i sSQ.St at ement (bool ean i sSQ., int synbol 1, int
synbol _2)
{

bool ean ret = isSQ;

if (isSQ && (symbol 1 == #LEFTBR SYM || synbol 1 == #SEM COLON_SYM)

// The SQ. statenent has ended
ret = fal se;

}
else if(!isSQ)

/11ts the first word of an expression
i f (CodeMetri cVGWet hod: : i sSt at ement Begi nEnd(synbol _2))
{

//11ts a SQ synbol

swi tch(synbol _1)

case #SEARCH SYM //sel ect
case #DELETE _SYM //delete

57

case #UPDATE_SYM //update_recordset
case #I NSERT_SYM //insert_recordset
ret = true;

}

}

[/ while select

el se if(synbol 2 == #WH LE_SYM && synbol _1 == #SEARCH SYM
ret = true;

}

return ret;

6.4.4 WMC (CodeMetricWMC)

In the functional specification it was decided that the Weighted Methods for Class metric
should use the Cyclomatic Complexity. So, since V(G) is already implemented, calculating
WMC can simply be done by looping through all methods on a class and summing op the
complexities.

Below is shown the overridden method get Val ue of class CodeMet ri cWVC.

int

58

get Val ue()

CodeMet ri cVGvet hod vgMetric = new CodeMetri cVGWet hod() ;
int sunvVG = 0;
TreeNode chil d;

/1 Loop through all child nethods
child = node. AOTfirstChild();
whi | e(chil d)
{
if (child.treeNodeNane() != 'classDeclaration')
{
// Pass the method to CodeMetri cCCMet hod
vgMetric. set El enent (chil d);

/1 Get the val ue
sunVG += vgMetric. get Val ue();

}

/1 Get next child method
child = child. AOTnext Si bl i ng();

}

// Return sum of conplexities
return sunVG

Implementation

6.4.5 DIT (CodeMetricDIT)

The implementation of the Depth of Inheritance Tree metric uses the build-in Di ct d ass.
The DictClass can provide a number of different metadata of a “pure” code class: if it is an
abstract class, which static and object methods it has and, what’s most interesting in this
case, which class it directly extends. To find the total depth of the tree, we must keep
iterating through the parent classes until the top class is reached. The depth is initialized to
one since all classes implicit inherit from obj ect . This however, means that if obj ect is
explicitly stated then we should not add an extract to the count. The source code for the
get Val ue function is listed below.

public int getVal ue()

{
Di ctCd ass dict = new Di ctd ass(node. appl Obj ectld());
int depth = 1; //Al classes inherit from Object
/| Repeat as long as we can go up in the hierarchy
whi | e(dict.extend())
{
/llncrease depth if its not object
if (dict.extend() != classNumobject))
{
dept h++;
}
//Create a DictCl ass for the parent
dict = new Dictd ass(dict.extend());
}
return depth;
}

6.4.6 NOC (CodeMetricNOC)

Obtaining the Number Of Children can also be done by using the Di ct Cl ass. Thisis a
matter of creating a new instance of the Di ct d ass and then calling the method

ext endedBy. It will return a list of all classes that extends the class, both direct and indirect
descendants. Each of the nodes in the list is then examined further, and if it is a direct
descendant then one is added to the NOC count. The get Val ue method of

CodeMet ri cNOC is shown below.

int getVal ue()

{
Dictd ass dict;

Di ct Cl ass subDict;
Enuner at or enum
int noc = 0;

//Create a new dict class

dict = new Dictd ass(node. appl Obj ectld());
/1 Get an enumerator containing all subcl asses

59

}

enum = di ct. ext endedBy() . get Enunerat or () ;

/1 Loop through all subcl asses
whi | e(enum noveNext ())

{
subDict = new Dictd ass(enumcurrent());
//1f the class in an imediate child then increase the count
if (subDict.extend() == node. appl Gbjectld())
noc++;
}

return noc;

6.4.7 CBO (CodeMetricCBO)

To find the amount of Coupling Between Objects the temporary cross references table is
used. All references of type xRef Ref er ence: : Read are evaluated, and the name of the
object is taken from either the Par ent Nane field or, if there is no parent, the nane field. To
make sure each object is only counted once, the found object names are kept in a Map. A
Map is like a hash table where the key field can be of an arbitrary type. The map is then
gueried to see if the name already exists, otherwise it is inserted into the map. This way,
when all records in the table have been processed, the CBO count equals the number of
elements in the map. The get Val ue method of CodeMet ri cCBOis shown below:

int getVal ue()

{

xRef TnpRef er ences t hi sRef er er ences;
Map nap;
str typeNane;

/1 Make sure xRef is updated for this class
this.initTmpXRef();

//Create a map for holding the type nanes
nmap = new Map(Types:: String, Types:: String);

/1 Get the paths of the objects used
t hi sRef erer ences. set TnpDat a(t npxRef Ref er ences) ;
whi |l e sel ect thisRefererences where thisRefererences. Reference ==

xRef Ref erence: : Read

60

{
/1 Get the type name (path)

if (thisRefererences. ParentNane == '")
t ypeNanme = thi sRef ererences. naneg;
el se
t ypeNanme = thi sRef ererences. Par ent Nane;

/11f the type does not already exists in the map then insert it

if (!map.exists(typeNane))
map. i nsert (typeNane, t ypeNane) ;

Implementation

/1 CBO = nunmber of distinct types
return map. el ements();

}
6.4.8 RFC (CodeMetricRFC)

Computation of the Response For Class is somewhat similar to CBO, since it also uses the
temporary cross references table and a map. In this case the map just holds
objectname\methodname, and uses references of type xRef Ref erence: : Cal | . As the
response set should include the class’ own methods, an additional loop has been added,
where the Di ct O ass is used for iterating through the class’ methods and inserting their
names into the map.

6.4.9 LCOM (CodeMetricLCOM)

The LCOM metric as defined by [Hitz95] is the number of connected components in a
class. Figure 6-5 shows an example of how the functions in a class might be connected to
each other. The class has three variables (a,b,c) and four methods (f ,g,h,x). The arrows in
the figure represent usage/call of other variables or methods. Note, that when determining
which components are connected in the LCOM metric, the direction of the relation does not

matter.

A A

OO

Figure 6-5 LCOM directed graph

It is intuitively clear that the LCOM of Figure 6-5 must be two, since there are two sets of
components. To implement this distinction in code however, some kind of undirected graph
algorithm is needed to detect how many separate sub-graphs the graph is made from. The
Depth First Search (DFS) graph algorithm is ideal for this purpose, as it will traverse
through all nodes in the graph and record each node’s parent node. After the DFS has
completed, the LCOM number will be equal to the number of nodes without a parent node.

Since there were no existing classes in Dynamics AX for representing graphs, the three
new classes shown in Figure 6-6 have been implemented.

61

GraphNode GraphEdge GraphUndirected
-data : anytype -node1 : GraphNode -nodes : List
-color : int -node2 : GraphNode -edged : List
-timeDiscovered : int +getNode1() : GraphNode -dfsTime : int
-timeFinished : int +setNode1(in _node1 : GraphNode) | [+addEdge(in node1 : GraphNode, in node2 : GraphNode) : GraphEdge
-parent : GraphNode +getNode2() : GraphNode +addNode(in data : anytype) : GraphNode
+getData() : anytype +setNode2(in _node2 : GraphNode) | |+getNodes() : List

+findNodeOnData(in findData : anytype) : GraphNode

+getColor() : int +findEdge(in node1 : GraphNode, in node2 : GraphNode) : GraphEdge
+setColor(in _color : int) +getListOfNeighbours(in node : GraphNode) : List

+getParent() : GraphNode -DFS(in node : GraphNode)

+setParent(in _parent : GraphNode) +runDFS()

+getTimeDiscovered() : int +nodesWithoutParent() : int

+setTimeDiscovered(in _timeDiscovered : int)
+getTimeFinished() : int

+setTimeFinished(in _timeFinished : int)

+setData(in _data : anytype)

Figure 6-6 Graph classes

A G aphNode is simply a data container which can carry some payload (dat a). In addition it
has some instance variables that are needed when performing the DFS routine. A

G aphEdge connects two nodes. The endpoints of the edge are simply called nodel and
node2, since no specific direction is needed. The G- aphUndi r ect ed contains a list of
nodes and edges and has methods for executing the DFS (r unDFS). Since the
implementation of the DFS is standard text book material from [Cormen01] it will not be
further explained here. The only two non-standard methods that G aphUndi r ect ed has are
fi ndNodeOnDat a, which will search for a node in the graph based on the node’s data, and
nodesW t hout Par ent , which will return the number of nodes that has no parent.

To build the graph, the get val ue method of CodeMet ri cLCOMuses the temporary cross
references. Each reference is treated as follows: If it is the definition of a class level
variable or the definition of a non-static method then a new node is added to the graph. If
the reference is a call to an internal method of if it is a read/write of a class level variable,
then a new edge is added. The code for the get Val ue method is listed below.

int getVal ue()

{
GraphUndi rected graph = new GraphUndirected();
xRef TnpRef er ences t hi sRef er er ences;

str graphNodeVal ;
G aphNode frontGraphNode;
G aphNode t oG aphNode;

/1 Make sure xRef is updated for the class
this.initTnpXRef();

t hi sRef ererences. set TnpDat a(t npxRef Ref er ences) ;
whil e sel ect thisRefererences order by Reference

{

/! Declaration of class |evel variables so add node
if(this.isC assLevel Var(thi sRef ererences))
{

gr aphNodeVal = thi sRef ererences. nane;

gr aph. addNode(gr aphNodeVval) ;

62 Implementation

/I Definition of class nmethod so add node
el se if(this.isMethodDef (thisRefererences))

gr aphNodeVal = thi sRefererences. Pat h;
gr aph. addNode(gr aphNodeVal) ;

//Call to class nmethod so add edge
el se if(this.islnternal MethodCal |l (thi sRef ererences))

f romGraphNode = graph. fi ndNodeOnDat a(t hi sRef er erences. Pat h);
t oGraphNode = graph. fi ndNodeOnDat a(node. treeNodePath() + "\\'
+ t hi sRef ererences. nane) ;

/11f toG aphNode is null then it is a call to an inherited
nethod, else it is a regular internal nmethod call
gr aph. addEdge(f r onTar aphNode, t oG aphNode) ;

// Read or wite of variable

el se if(thisRefererences. Reference == xRef Reference:: Read | |
t hi sRef ererences. Ref erence == xRef Ref erence: : Wite)
{

//1f the variable can be found as a node, then it nust be a
cl ass-1evel variable

t oG aphNode = graph. fi ndNodeOnDat a(t hi sRef er er ences. nane) ;

fronGraphNode = graph. fi ndNodeOnDat a(t hi sRef er erences. Pat h);

gr aph. addEdge(f r onlzr aphNode, t oG aphNode) ;
}

//Start a Depth First Search on the graph
graph. runDFS() ;

//LCOM = the nunber of connected conponents = the nunber of sub-graphs
return graph. nodesWt hout Parent () ;

}
6.4.10 FI (CodeMetricFl)

As the only of the chosen metrics, Fan-In is a system level metrics. As mentioned in the
theory section 3.3.2.7, computing this metric requires that all relations in the code have
been established. In the other class level metrics, the temporary references were used, but
since they are only created on a per-class basis, we need to use the full-blown cross
reference tables here. The problem with using these tables is that we cannot be sure that
they are up-to-date or if the cross references have been created at all. Of course, the
entire cross references could be created each time the FI metric is computed, but since
this operation would take 3-4 hours to complete each time, this is not a feasible solution.
Due to this, it is assumed that the cross references are up-to-date when the CodeMet ri cFl
needs it, and it will then be up to the users to make sure that this is so.

When the cross references are at hand, it is quite simple to find out which other classes
have references to a class. As can be seen in the source code below, it can be done by

63

building a select statement that finds the references where the path includes the class’
treenode path.

int getVal ue()

{
xRef Ref erences xRef erences;
xRef Pat hs xPat hs;
xRef Pat hs xFr onPat hs;
xRef Pat h t oLi kePat h;
str t ypeNane;
Mep map;

//Create a map for holding the type nanes
map = new Map(Types:: String, Types:: String);

//Add \'* in the end of the path for node to find, and doubl e the amput

/1 This is needed to make the "like" work correctly
toLi kePath = strRepl ace(node.treeNodePath() + "*' "\\' "\\\\');

/* Since Fan-In is a system|evel nmeasure, we need to use x-ref from
the normal tables,
and not fromthe tenporary xref

*/
whil e sel ect xFronPat hs
join xReferences where xFronPaths. Recl d == xRef erences. xRef Pat hRecl d
&&
(xRef erences. Ref erence == xRef Reference: : Decl aration
[
xRef erences. Ref erence == xRef Reference:: Call)
join xPaths where xPat hs. Recld == xRef erences.referencePat hRecld &&
(xPat hs. Path == node. treeNodePath() ||
xPat hs. Path |ike toLikePath
)
{

/1 CGet the name of the class/fornmtable
t ypenanme = SysTreeNode: : appl Obj ect Pat h(xFr onPat hs. Pat h) ;

/llnsert the found type(class) nane into the map if it's not
al ready there
/land if it is not the class itself
if (!map.exists(typeNane) && typeNanme != node.treeNodePath())
map. i nsert (typeNane, t ypeNane) ;

/1 FI = nunber of other types having a reference to this class
return map. el ements();

64 Implementation

6.5 Statistics generation

The following sections provide details of the Tables, Classes and Form used to implement
the metric statistics.

6.5.1 TmpCodeMetrics (table)

This table is used for storing the raw values for each of the measurements being made.
Since the metrics operates on application code with are shared between all companies in
the system, the data in the TnpCodeMet ri cs table is not saved per company.

To follow the Best Practice guidelines, new extended data types have been created for
each of the fields. By using the extended data types we make sure that the same logical
type of information stored in different tables also will have the same format, length, display
adjustment and so on.

Field name (Extended) Data type Default value
TreeNodePath TreeNodePath (str 400) i
Metric Metric (str 10) i
Value MetricValue (int) 0

6.5.2 TmpCodeMetricsTeamStat (table)

This table stores statistics values summed up per Metric, Team and Prefix.

Field name (Extended) Data type Default value
Metric Metric (str 10) i

Team TeamName (str 25) i

Prefix PrefixName (str 50) i

Occurences MetricOccurences (int) 0

MinValue MetricValue (int) 0

MaxValue MetricValue (int) 0

ValueSum MetricValue (int) 0
AverageValue MetricAverage (real) 0.0

6.5.3 CodeMetricGenerator (class)

The purpose of this class is to get the metric values for all classes/methods from a given
starting point, and insert the values into the table TmpCodeMetrics. The main static
method is called gener at eMet ri cs, and takes a start Tr eeNode as parameter. This
method starts by creating two lists containing instances of the available class- and method-
level metrics. This is done by using the Cl assl nst anci at or: : cr eat eSubCl assl nst ances
method, the same way as in the BP classes. Then a Tr eeNodeTr aver ser is used to iterate
through all the treenode’s subnodes. Depending of the type of the node, either the

doMet hodMet ri ¢ or the doCl assMet ri ¢ static method is called with the appropriate metric
list as argument.

65

public static void generateMetrics(TreeNode startnode)

//Create lists with instances of CodeMet hodMetric/ Coded assMetric
cl asses
Li st codeMet hodMetri cList =
Cl asslnstanci ator:: creat eSubC assl nst ances(cl assNun(CodeMet hodMetric));
Li st coded assMetriclList =
Cl asslnstanci ator:: creat eSubCl assl nst ances(cl assNum Coded assMetric));

TreeNode treeNode;
TreeNodeTr aver ser treeNodeTraverser;

#avifiles
SysOper ati onProgress sinpl eProgress;

// Create a progress indicator
si mpl eProgress = SysQOperati onProgress: : newGener al (#avi Updat e,
"Metrics', startnode. AOTchi | dNodeCount ());

//Traverse the startnode
treeNodeTraverser = new TreeNodeTraver ser(startnode);
whil e (treeNodeTraverser. next())
{
//CGet the current node
treeNode = treeNodeTraverser. current Node();

/'l ncrenent and set text on progress
si npl eProgress. i ncCount () ;
si npl eProgr ess. set Text (treeNode. t reeNodePat h()) ;

/I Performdifferent actions depending on the type of TreeNode
switch (treeNode. handl e())
{

case cl assnunm(Menber Function):
if (treeNode.treeNodeNane() != 'classDeclaration')
CodeMet ri cGener at or: : doMet hodMet ri c(treeNode,
codeMet hodMet ri cLi st);
br eak;
case cl assnun(Cl assNode):
CodeMet ri cGenerator::doC assMetric(treeNode,
coded assMetricList);
br eak;
}

// Done!!
}

The functionality of methods doMet hodMet ri ¢ and dod assMet ri ¢ are very similar to the
checkConpl exi t y method of the BPCheckMenber Funct i on and BPCheckC assNode, since
in both cases all metric classes in the list is looped through, and passed the Tr eeNode and
the scanner or cross references. The common job of actually retrieving the value and

66 Implementation

inserting the information into the table is handled by the static method savel nDB, which
must have the metric instance and the path to the TreeNode passed on. The source code

for savel nDB is shown below:

public static void savel nDB(CodeMetri cBase codeMetric, TreeNodePath path)

{
TnpCodeMetri cs t npCodeMetrics;

1

/! Performthe check
t npCodeMet ri cs. Val ue = codeMetri c. get Val ue();

/1 Add standard info and insert into the table

t npCodeMetrics. Metric = codeMetric. get Description();
t npCodeMet ri cs. TreeNodePat h = pat h;

t npCodeMetrics.insert();

6.5.4 CodeMetricTeamStatGenerator, CodeMetricStatltem (class)

The purpose of the class CodeMet ri cTeantt at Gener at or is to group the raw data from
the table TnpCodeMet ri cs per metric/team/prefix. The information is saved in a
datastructure as shown in Figure 6-7. It consists of an outer map, where the key is the
name of the metric. Inside that map is another map, which has the prefix name as key.
This inner map stores elements of the class CodeMet ri ¢St at I t em The reason for using
the Map datastructure, is that it allows for fast lookups, which is a necessity since there
might be a lot of raw data to be processed (currently some 419.000 records).

Map (key=metric)

Map (key=prefix)

CodeMetricStatltem

-prefixName : str
-groupName : str
-itemCount : int
-minValue : int
-maxValue : int
-valueSum : int

+new(in _groupName : str, in _prefixName : str)
+addValue(in value : int)
+getAvg() : real
+getltemCount() : int
+getMax() : int
+getMin() : int
+getName() : str
+getPrefixName() : str
+getSum() : int

Figure 6-7 Temporary storage of team statistics
To start the generation of team statistics, the static method st at By Teamon

CodeMet ri cTeantt at Gener at or must be called with the filename of the file containing
combinations of team and prefix names (as explained in section 5.3). The information from

67

the file is loaded into a Map by the method | oadPr ef i xMap. This map is then passed on to
i ni t St at Map which will use it to initialize the data structure from Figure 6-7.

For each record in the TrpCodeMet ri cs table, the prefixmap is searched to find the best
matching prefix. This prefix, along with the metric name, can then be used to lookup the

correct CodeMet ri cSt at | t emfrom the data structure. The method addVval ue on the item
will then be called with the measured value, so the ni nval ue, maxVal ue, val ueSumand

i t enCount can be updated.

public static Map statByTean{(str _teanFil eNane)

//Load map with prefix/teampairs fromfile
Map teanPrefi xMap =
CodeMet ri cTeantt at Gener at or: : | oadPr ef i xMap(_t eanFi | eNane) ;

/1 Get map to hold maps of CodeMetricStatltens per teamper netric
Map stat Map =
CodeMet ri cTeantt at Gener at or: : i nit St at Map(teanPrefi xMap) ;
Map nmet ri chvap;
CodeMetricStatltem statltem

str path ="'";
str team
str prefix;

TnpCodeMetrics result;

#avifiles
SysOper ati onProgress sinpl eProgress;

// Create a progress indicator

sel ect count(value) fromresult;

si mpl eProgress = SysQOperati onProgress: : newGener al (#avi Updat e,
"Statistics', result. Value);

//Loop through all records in tnpCodeMetrics to deci de which
prefix/metric map they should be added to
whil e select result order by TreeNodePath, Metric

if (result.TreeNodePath != path)
{

/] Save the path

path = result. TreeNodePat h;

/1 Find the team nane from prefix map
prefix = CodeMetri cTeantt at Generator: :findPrefix(path,
t eanPr ef i xMap) ;
}

//lncrement and set text on progress
si npl eProgress. i ncCount () ;
si npl ePr ogr ess. set Text (pat h) ;

68 Implementation

/1 Get the map for the netric (ie. SLOC
metricMap = statMap. | ookup(result.Metric);

/1 Get statltem from prefix
statltem = netricMap. | ookup(prefix);

if (statltem!= null)

/1 Update item
statltem addVal ue(resul t. Val ue);

}

return statMap;

6.5.5 CodeMetricResults (form)

The form CodeMet ri cResul t s displays data from the two statistics tables. It has two tabs:
Raw data (TnpCodeMet ri cs table) and Team Statistics (TnpCodeMet ri csTeantt at table).

On the “Raw data” tab a generation of values can be started by selecting a start node from
the drop down and the pressing the button “Start generation”. When the button is pressed
the form method st art Gener at i on will be called. This starts by deleting all data from the
TnpCodeMet ri cs table, and then calls CodeMet ri cGener at or : : gener at eMet ri cs which
does the actual work. When that has completed the grid’s data source is refreshed to show
the new values. Figure 6-8 shows what the “Raw data” tab looks like (in this case a user
filter has been applied to the grid).

E Matric resules

Flasdata | Taam ctatidics
st s .
Patty Matnc L= 1T o
- bmmmennt |5 stk un Ui hmc kB P racbices™ T ¥y 3B
T braseed SeaShar mdC heckBestPractioss Cr 45
| 2 lamsas Systhapn mCmdC heokBestPractioss RFRC a2
I Khmﬂmmlﬂ.nﬁrﬂtmﬂim LCOM i
| Kbﬂmmvmmtm«m HOC n
W kasnasl Srthaibin i heckBastPrartioas F1 1]
o bramand SheaShartun g hach B R ac tioas g rifofLn Qo Lo
- bgnmeed bty heck BesiFrachoss rfcRn Wi z
'ﬂhﬁxﬂﬁﬂﬂﬂtmﬂmﬂhﬁkﬂﬁﬁuﬁmﬁ-‘pm P 3z
; EESITN i
KWMMWEMWH& WE) al
e b Sk d ek hark Ratrar fieas el Frrsliteakba ol B i L

Figure 6-8 Metric results - Raw data

69

Figure 6-9 shows the “Team statistics” tab of CodeMet ri cResul t s. This has a button that
will trigger generation of the team/prefix statistics, based on the selected prefix file. After
the CodeMet ri cTeanBt at Gener at or : : st at ByTeammethod returns, the mentioned data
structure is inserted into the TrpCodeMet ri csTeanst at , by looping through the items in
the two nested maps, and the grid is refreshed to show the new data.

1 Mctric resolis

Paudata 'Itﬁ';'lilﬂllﬂ:l-ﬁ-

Team File name: @=@ (Ganar aka baam ctabistics
Mekiic Taam Prafis LaT = T Bucrigelale Molaks (LTI #
b . ¥ b ¥ ¥ ¥ ¥
[ot Proi [T 25 1 w
WG] =M Porch ZTLE Z= 1 =
W) Proect PurchCreatia Or derFoem. .. | 3 1,3 1 i
Wi Froget | PrchLneType Pt | 33 | Lea 1 IE
(iG] Froject: PurchTshleForm_Projed | 5 LE0 | 1 z
iG] Pt PrchTablTyea Projet | @2 LE 1 3
e s e i ! S =
WG] S0 Tech (R 5 [R 4
Yis) SCM Tach Raredom 15 340 1 it X
il Al0 Relpace Bl +3& 11 e Ao

Figure 6-9 Metric results - Team statistics

70 Implementation

Chapter 7 Test

This chapter describes what has been done to verify that the new tool work as intended
and that the metrics are computed correct according to the theory. Please refer to
Appendix C for instructions of how to install the tool.

7.1 Unit tests

As mentioned in section 2.2, Test Driven Development has been used for this project. This
has led to the development of 21 unit test classes with a total of 58 test methods. As the
complexity project contains 25 non-test non-form classes, tests for four classes are
missing: CodeMet ri cBase, CodeCl assMetri ¢, CodeMet hodMet ri ¢ and SysBPCheckBase.
The first three framework classes are abstract, and such it is impossible to instantiate them
directly. Although SysBPCheckBase is not declared abstract and thus could be
instantiated, it does not make sense to test it directly. However, the methods that the four
classes contain have all been indirectly tested, since they are used by some of the classes
which have been tested.

No unit tests have been created for the form CodeMet ri cResul t s, since it can be very
difficult to write code that tests how the graphical user interface works. The methods on the
form rely on functionality from the “pure” code classes, which have already been tested, so
the primary purpose of a test of the form is to confirm that the code classes and methods
are invoked correct.

Not every class method has been given its own test method. This is because some of the
methods rely on data being setup, and as such it does not make sense to do a stand-alone
test. One example of this is the method t est AddVal ue from the test class

CodeMetri cSt at | t enffest , which is shown below. This tests the interaction between the
addVal ue method and the “get” methods like get Avg.

voi d test AddVal ue()

//Create new item
CodeMetricStatltem statltem = new
CodeMetricStatlten(' group', ' prefix');

// Check that no val ues are added, and that the initialize values are
correct

t hi s. assert Equal s(0,statltem getltenmCount(),"Zero itenms shoul d be
added");

t hi s. assert Equal s(0, statltem get Avg(), "Average should be 0");

thi s. assert Equal s(0, statltem get Max(), "Max val ue should be 0");

t hi s. assert Not Equal (0, statltemgetM n(),"M n val ue should not be 0");

this. assert Equal s(0, statltem get Sun(), " Sum shoul d be 0");

//Add the first value
statltem addVal ue(100);

71

// Check that the correct values are conputed

this.assertEqual s(1,statltem getltenCount(),"One item should be
added");

t hi s. assert Equal s(100. 00, statltem get Avg(), "Average shoul d be 100");

t hi s. assert Equal s(100, statltem get Max(), "Max val ue should be 100");

t hi s. assert Equal s(100,statltemgetMn(),"Mn val ue should be 100");

t hi s. assert Equal s(100, statltem get Sum(), "Sum shoul d be 100");

/[Add anot her val ue
statltem addVal ue(200);

// Check again

this.assertEqual s(2,statltem getltenCount(),"Two itens should be
added");

t hi s. assert Equal s(150. 00, statltem get Avg(), "Average shoul d be 150");

t hi s. assert Equal s(200, statltem get Max(), "Max val ue should be 200");

t hi s. assert Equal s(100,statltemgetMn(),"Mn val ue should be 100");

t hi s. assert Equal s(300, statltem get Sum(), "Sum shoul d be 300");

}

During the development two Dynamics AX XUnit tools have been used: One is the
XUnitToolbar and the other is the XUnitTestBrowser. The toolbar is very handy for
repeating running a single test, while the test browser can be used for running all the unit
tests at once. Figure 7-1 shows the result of all the unit tests, where it can be seen that all
58 tests have completed with success.

72 Test

Bl Unit Test Browser

Unk ke sk browessr
AlTests | CheckIn Tests [z
= 139 Tost Casses ~ Asfresh

5 CodeMetrc S0 ethod Tast
T Codebetric EMekhodTest
% CoceMetizCPMsthodrest

7o SowrospdsshunberTedt

5 Sl kTt
“1¢ dassinstardatorTest

T CodebebnicLOT Teat

O Codefietic WS Test

T Codebetiic CBOTest

& CodeMetric AR Tast
% CodefetncLOOM Test

 GraphbiodsTest

& GraphUndi ectedTest

T GrephBdgsTest

5 CodeMetiic T ast
<5 CodeMetrcFITest

T Codebetic Teamtathenerbor Test

o CodeMetricGereranTest

15 CodeMetiicTatltsnTest

L SyeRPChackMemter FuncdtionTaest
% susBPChechClassndeTast bl

Resulks
Sumamary: 58 run, O Failed

Cleefiarma Prez 2| | petar |
Ol el O e o Test -

Coderereaethod Tes | Passed

et e B o b d Tt [Baccad

{
|
|

Figure 7-1 Results of unit tests

7.2 Functional test

To find out if the functionality of the new tool is correct, all items stated in the functional
specification must be verified. The table below shows how each of the high level
requirements have been fulfilled or implemented.

Number Solution

0010 The developer is able to select if the complexity check will be included in the BP check by
selecting/deselecting the “Complexity” node in the tree in the “Best Practices parameters” form.

0020 The complexity checks supports all language constructs in Dynamics AX version 4.0

0030 Both traditional (method level) and OO based (class level) metrics have been implemented.

0040 Outputs are shown in the best practice tab in the compiler output window.

0050 The output from BP can be machine post-processed by using the error code to distinguish
between the metrics.

0060 The warnings generated by the BP Complexity checks will automatically be included in the Best
Practice Excel sheet, since this just selects all warnings from the SysConpi | er Cut put table.

0070 Metric values can be extracted by using the “Metric results” form. Values can be grouped per
metric/team/prefix level.

73

Of all the items in the functional specification, there is one that has not been fulfilled, and
that has to do with the performance of the tool. It was the goal that a complexity-only best
practice run on the entire AOT should take no more than 45 minutes on a 3 GHz computer
with 1 GB RAM. A test of this has showed that it takes around 3% hours to run on a laptop
with a 1,6 GHz processor and 1 GB RAM, so although it was a somewhat slow processor,
the requirement is not likely to be met. This speed requirement was set by me as a
qualified guess, so further end-user investigation is needed to find out if the current speed
is fast “enough” or if optimizations of the tool are necessary.

7.3 Adherence to own rules

As stated in the functional specification, the code for the new tool should of course not
generate any complexity best practice warnings, errors or info messages. To verify this, a
best practice check has been started from the top node of the new project. However, doing
this revealed a lot of best practice deviations, 987 in total. These will be explained further
below.

The vast majority of the deviations come from the following areas:
Use of single quoted texts and constants, mostly in the unit tests (361 deviations).
Classes prefixed with CodeMetricDummy resulted in 115 deviations. This is intentional
since they are used to test that the metrics checks works correctly.
207 of the deviations came from the modified objects, but not from the methods that
have been added or changed as part of this tool.
Missing labels and help texts on the two tables TnpCodeMet ri cs and
TnpCodeMet ri csTeanSt at and the form CodeMet ri cResul t s (52 deviations).
56 warnings because the test methods are not directly referenced by anone.
77 messages of how to set method availability to private
93 misc. info messages

The last 26 messages are violations of the LCOM metric. All of the unit tests which have
more than one method (14) will get LCOM > 1, due to the way the unit test framework is
constructed. Each of the test methods in a xUni t DevTest class must be independent of
each other, so the data cohesion of the class is of course very low. Having a LCOM > 1
indicates that the test classes should be split into multiple smaller classes. Although this
could be done, the semantic coherence of the unit test classes is still valid so there is
actually no need to split them up.

LCOM is 5 and 2 for the two new classes Gr aphNode and Gr aphEdge. As mentioned in the
theory (section 3.3.2.3), LCOM has a problem with classes that acts purely as data
containers, which is exactly what G aphEdge and G aphNode do, so these can also safely
be ignored.

Each of the 10 metric implementations also gets LCOM deviations, because of the
overridden methods like get Descri pti on, which does not operate on any instance
variables. These methods are semantic correct so the can also be ignored.

The conclusion to this test is that the new tool adheres nicely to the best practice rules,
both the existing and the new complexity related rules.

74 Test

Chapter 8 Analysis of results

To extract some statistics about the various metrics, | have used the new form “Metric
results” to start a generation of metrics for all objects in the entire AOT. This took around
3% hours to complete on a regular Laptop with 1GB RAM, and resulted in more than
419.000 measurements being inserted into the TnpCodeMet ri cs table.

8.1 Results overview

An overview of the results can be seen in Table 8-1. The three method level metrics CP,
SLOC and V(G) have been run on a total of 127.650 methods. As mentioned in the
functional specification, the method level metrics are not limited to “pure” class methods,
but also include methods on Tables, Forms and so on. The class level metrics WMC, DIT,
NOC, CBO, RFC, LCOM and FI have been executed on 5.162 pure code classes.

Violations
Metric Range Count Avg. Max. Count %
SLOC [1;40] 127.650 13,04 1.152 6.709 5,26
CP [10;100] 127.650 4,41 98 101.684 79,66
V(G) [1;10] 127.650 2,54 358 3.912 3,06
WMC [1;50] 5.162 35,98 1.280 950 18,40
DIT [0;8] 5.162 2,34 8 0 0,00
NOC [0;10] 5.162 0,73 344 42 0,81
CBO [0;20] 5.162 21,43 232 1.903 36,87
RFC [1:50] 5.162 36,84 548 1.095 21,21
LCOM [1] 5.162 4,75 123 3.496 67,73
FI [1:50] 5.162 6,36 5.137 76 1,47

Table 8-1 Results overview

8.2 Details

This section will go into detail with the results for each of the metrics implemented. Some
of the details of the results have been found by creating various SQL queries against the
TnpCodeMet ri cs table, while others come from the table TnpCodeMet ri csTean$t at
which contains statistics based on the prefix/postfix of the object names.

8.2.1 SLOC

On average, the number of source lines per method is 13 which is well under the maximum
recommended limit of 40. The reason for this low average number may be due to the fact
that Dynamics AX has a lot of methods (28%) with only 4 lines of code, and thus helps
drive the average down. These methods are most likely getters/setters which are used to
expose class level variables to the public.

75

A total of 6.709 methods are over the limit, and more than 1.100 methods have a SLOC
count of more than 100. Nearly all of these methods at the same time have a V(G) of more
than 10, so many of these methods are definitely candidates for a rewrite or at least a
thorough inspection.

8.2.2 CP

Nearly 80% of the methods contain less than 10% comments and thus will create a Best
Practice warning.

A total of 93.469 methods (73%) do not have any comments at all. Approx. 1/3 of the
methods without any comments are probably used as simple getters/setters of class
instance variables or are returning a constant, as they have only have 5 or less source
lines. However more than 3.000 methods are especially critical, as they both violates
SLOC (>40) and still have no comments.

8.2.3 V(G)

As a whole, the average Cyclomatic complexity is acceptable. Even if we do not take the
many getters/setters into account, it is still only 3,19. Only little more than 3% of the
methods are violating the constraint.

In Table 8-2 is shown the top 15 with regards to the Cyclomatic complexity, which all have
more than 10 times the recommended limit. These objects also have a really high SLOC,
especially method setAllocationDimension in class COSCalculationRun, which is the
owner of the overall highest SLOC value (28 times the SLOC limit!).

V(G) [SLOC | Path

358 | 644 \Classes\LedgerSIEExportFile\getSRU

247 | 476 \Classes\SysContextMenu\verifyltem

173 | 625 \Forms\SyslInetCSSEditor\Methods\updateProperties

170 1152 \Classes\COScCalculationRun\setAllocationDimension

155 428 \Classes\WebFormHtml\initVersion

150 | 755 \Data Dictionary\Tables\InventltemBarcode\Methods\findltemDimensions

139 709 \Classes\CustVendSettle\settleNow

128 | 823 \Forms\SyslInetCSSEditor\Methods\loadProperties

122 | 550 \Classes\smmSalesManagementQueries\defaultQuery

117 | 480 \Classes\XBRLProcessonimportLinkbase

114 | 225 \Forms\SyslInetHTMLEditor\Methods\runTool

111 | 657 \Data Dictionary\Tables\InventSum\Methods\findSum

110 | 109 \Classes\SysSpellChecker\wordLanguageld

108 | 644 \Classes\ReleaseUpdateDB39 PBA\updatePBAValidationRules

102 | 476 \Classes\CCAdoSqlScanner\tokenStr

Table 8-2 Methods with V(G) > 100

76 Analysis of results

8.2.4 WMC

The average sum of complexities per class is 35,98 which is an adequate number. Around
18% of the classes exceed the limit for WMC of 50, and 349 classes have as WMC greater
than 100 and should therefore be further evaluated to see if it is possible to separate some
of their functionality out into other classes.

8.2.5 DIT

The Depth of Inheritance Tree is the only metric where no classes violate the constraint of
a maximum depth of eight. In Figure 8-1 a histogram for the DIT values can be seen. No
classes have a DIT of zero since they all explicitly inherit from Object. 74% (3.808) of the
classes inherit from something other than Object, and only one of these has the maximum
depth allowed. These numbers all indicate that in Dynamics AX the use of inheritance is
well thought out as many classes inherit, but the trees do not get excessively deep.

Depth of Inheritance Tree
2000

1800

1600

1400

1200 -
1000 -
800 -
600 -
400 -
200 -
L O W
1 2 3 4 5 6 7

Depth

Count

Figure 8-1 Histogram for the DIT metric

8.2.6 NOC

17% (881) of the pure code classes are being extended by another class. 531 are only
extended by one or two classes, while others are being heavily used. In Table 8-3 the top
ten most extended classes is shown. Many of these are part of the AX framework so it is
quite natural that they are heavily used.

77

NOC Path

344 | \Classes\RunBase

209 | \Classes\RunBaseBatch

140 | \Classes\SysCOMBase
64 | \Classes\AxInternalBase
58 | \Classes\SysConsistencyCheck
44 | \Classes\ImageListAppl
40 | \Classes\VendOutPaymRecord
39 | \Classes\RunBaseReport
37 | \Classes\VendOutPaym
35 | \Classes\SysWizard

Table 8-3 Top 10 NOC

8.2.7 CBO

On average, the Coupling Between Objects is too high, and 36% of all the classes has
exceeded the maximum allowed value for CBO. This indicates that a lot of references to
other classes are needed to perform a function, and that the various modules/components
rely very much on each other.

A suggestion to solve this issue might be to make greater use of Facade patterns, so the
modules can have a much sharper distinction between them. This way, developers do not
need to know exactly how the referenced modules are internally structured they just need
to know which methods to call.

8.2.8 RFC

In Figure 8-2 a histogram for RFC is shown. As can be seen, around 50% of the classes
can potentially invoke less than 25 distinct methods. 21% violates the maximum RFC of
50, and 10% of the classes has a RFC of 80 or more.

Response For Class

700

600 — —

500+ —{ [—

400

Count

00— — — =

200 — — — =

S I HA NI g e

1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 41-45 46-50 50-55 56-60 61-65 66-70 71-75 76-80 >80

Figure 8-2 Histogram of RFC

78 Analysis of results

8.2.9 LCOM

The average value for LCOM is more than 4 times higher than the recommended value. In
theory this should mean, that there should be four times as many classes, as all classes
with a LCOM > 1 should be split into smaller classes. This might not be the case, as
coherence can be something else than the data cohesion that the LCOM metric measures.
Each of the classes with LCOM higher than one should however be manually inspected by
someone with both domain- and programming knowledge, to asses if the coherence is
sufficient.

8.2.10 FI

On average, each class is being referenced by 6 other classes. This relatively high number
is due to some classes having an extremely high FI. The most used is the @ obal class
which really brings up the average. In Table 8-4 is shown the ten highest classes with
regards to Fl. Please note that the number of Fan-Ins per class is counted not only from
the pure code classes, but also from other objects like Forms and tables.

FI Path

5137 | \Classes\Global

1339 | \Classes\RunBase

1036 | \Classes\Dialog
926 | \Classes\DialogRunbase
916 | \Classes\DialogField
588 | \Classes\SysQuery
451 | \Classes\RunBaseBatch
437 | \Classes\ClassFactory
411 | \Classes\Box
368 | \Classes\RunbaseProgress

Table 8-4 Top 10 FI

8.3 Comparison of selected modules

In Table 8-5 the results (average values) are compared by module (prefix). Please note
that this is not a complete list of the modules, since objects in Dynamics AX are split into
422 modules based on the object name prefix. All the selected modules have lots of
classes, so a fair average value can be obtained.

As can be seen DSO and Web are at the opposite ends of the scale. This is because
classes prefixed DSO acts as simple wrappers for COM objects which is most evident in
SLOC =4 and V(G) = 1, which basically means that each method only has one “real” line
of code. Web, on the other hand, contains quite big methods that are somewhat complex.

The classes prefixed with Ax also stand out, as they have the highest WMC. The V(G) is

not particularly high, hence each of the classes contains lots of methods. One other thing
to notice is that despite the high WMC and CBO, there are almost no comments (0,1%).

79

Prefix/Metric [SLOC CP| V(G)| WMC| DIT| NOC| CBO FI| RFC|LCOM
DSO 4,00| 17,99| 1,00 37,73| 2,00/ 0,00 8,33| 2,71| 68,78| 37,68
Cos 19,03| 4,07| 281| 36,39| 2,14| 0,27| 20,88| 1,74| 21,89| 2,86
Vend 10,82 6,30 194| 18,36| 4,07| 0,83| 13,27| 0,89| 26,46| 3,72
Invent 11,72| 3,21| 247| 37,22 257| 066 2233 6,99| 36,96| 4,30
Ledger 1535| 2,81 294| 39,39| 2,38 059| 2381 351| 3504 3,37
Proj 11,57 2,58| 256| 36,55| 2,53 0,71| 23,00] 3,21| 34,42| 6,60
Sys 14,40 6,75| 2,68| 27,22 181| 0,77| 1570| 6,97| 29,97| 3,54
Ax 10,13| 0,10 2,33| 177,76| 2,08| 0,13| 40,76| 2,33|109,11| 2,68
Web 20,63| 4,02 4,12| 63,09| 2,17| 1,02| 2266| 945| 51,19| 441
Table 8-5 Comparison of results by modules (prefix)
8.4 Comparison by team
Table 8-6 shows the average values for each of the metrics by teams. One of the teams
that stand out negatively is SCM Collaboration. They have somewhat big classes (WMC)
and very low comment percentage. Also their RFC value is not good. This might be
somewhat concerning since Fan-In is high, which means that a lot of other classes are
depending on the functionality they provide.
Team/Metric SLOC CP| V(G)| WMC DIT [NOC| CBO FI| RFC|LCOM
AID 20,94| 6,65| 3,33]| 49,88| 2,29| 0,93]29,52| 2,95]| 47,23| 6,61
AlF 15,31| 9,59| 2,73| 23,71| 1,13| 0,00|18,92| 5,58| 27,87| 2,26
All 10,96| 7,11| 2,02| 10,04| 2,42|0,20| 8,16| 1,89| 14,67| 2,09
Business Intel. 8,35| 13,76| 1,69| 4558| 1,77| 0,41|15,00] 3,36| 58,98| 21,89
Circle Capital 12,83| 2,85| 2,551| 25,10| 2,07| 0,26 20,74| 1,67| 30,81| 2,59
Circon 19,03| 407| 2,81| 36,39| 2,14| 0,27|20,88| 1,74| 21,89| 2,86
Client and EP 17,44| 3,76| 3,38| 43,23| 2,17| 0,76 21,33| 5,72| 41,42] 3,39
FIM 14,23| 3,99| 2/59| 31,32| 287|0,72|22,40| 3,15| 33,19| 3,78
Fixed Assets 1566 6,82| 2,97| 33,10] 2,04| 0,55| 20,75| 2,70| 30,22| 3,17
GDL 12,77| 6,46| 2,43| 34,77 2,41| 2,23|23,99| 9,46| 38,21| 4,50
MSO 13,68 4,78| 2,70| 46,98| 2,31| 0,36 28,71| 2,38| 46,65| 4,11
Project 11,43| 2,51| 2,52| 32,65| 2,65|0,71|2058| 292| 31,25| 6,44
SCM 11,87 2,66| 2,47| 35,16| 2,49| 0,66|22,04| 4,79| 36,91| 4,29
SCM Collab. 11,17| 0,81 2,43| 90,39| 1,95| 0,46| 29,72| 16,92| 68,88 3,31
SCM Tech 1480 6,31| 2,82| 28,97| 1,84| 0,67|1556| 18,97| 29,56| 3,01
Server & Tools | 1491| 492| 2,73| 3454| 1,71|0,31|17,59| 10,53| 34,11| 2,48
Tectura 1240| 1,69| 2,42| 26,46| 2,11| 0,68|20,40| 2,52| 31,38| 3,03
Thy 15,16| 3,66| 2,95| 30,13| 2,38| 0,13| 23,76 1,90| 30,50| 3,04
Table 8-6 Comparison of results by teams
80 Analysis of results

Chapter 9 Metric evaluation

In the beginning of this project ten metrics were selected and implemented in X++ as
described previously in this report. After having used the new tool and analyzed the
generated data, it has become clear that not all the ten selected metrics are equally useful,
or at least that they have different target groups.

The three traditional metrics SLOC, CP and V(G) have proven quite easy to understand
and once the relatively simple rules has been studied and are in the back of the developers
minds, they will automatically begin to write code of a lower complexity. And should they
forget the rules, the issued BP deviations will help them remember.

The WMC metric is very useful for evaluating the total complexity of a class. When a class
with a high WMC is identified, a good strategy for solving the problem, is to use the new
form “Metric results” to find out if a single method in the class contributes with a very high
V(G) number and should be rewritten, or if the high WMC is due to a high number of small
methods which should be split into separate classes.

The CBO and RFC are good for pinpointing classes with excessive coupling. If a developer
gets a BP deviation for these metrics he should consider using a Facade pattern to simplify
the class’ communication.

The DIT metric will most likely be used by the developer to find out how many ancestors a
new class will get. Most of the classes in Dynamics AX do not have a very deep hierarchy,
so in most cases the depth will not become a problem.

Fan In and NOC are probably most useful for the Dev Leads, as the developers will
seldom see the BP deviations issued. The reason for this is that when creating a new
class, the FI and NOC metric on that class will not trigger, since it's the FI and NOC metric
of the referenced or parent class that will be affected by the change. Both of these metrics
do not directly help in reducing the class complexity, but can nevertheless provide
information of how high effect a change in the class will have. This may be used in
connection with a source control system where the most vital classes could be given a
higher security level.

As section 7.3 revealed, the metric implementations do not themselves adhere to the
LCOM metric, as they have LCOM = 3 or 4. The people who reviewed the classes agreed
that the classes have a correct OO design and are semantically coherent. This raises the
guestion if LCOM is able to measure the coherence in real OO systems. The current
implementation of the LCOM metric has been found to be unsuitable in a number of cases:
- A method, which only operates on data defined in a parent class will be treated as a
separate component and adds to the LCOM value.
If a method does not use any instance variable at all, it will add to the LCOM. This
happens frequently when a method from a parent class (e.g. get Descri pti on) is
overridden.

81

A class that is only used for data-storage and which does not operate on the data but
merely uses get/set methods for the instance variables will get a very high LCOM
value, although it is perfectly alright to have such a class according to the OO
principles.

If all instance values of a class are initialized in the constructor (new) method, then the
class will nearly always get LCOM=1, because all variables are then connected. This
should indicate that it has perfect coherence, but this is not always the case.

One of the dangers of having a metric that is somewhat misleading is that developers
might be tempted to write bad code that satisfies the metric rules, instead of writing correct
OO code that then causes BP complexity deviations. It is therefore recommended that the
current LCOM metric is excluded from a retail version of the BP complexity tool.

82 Metric evaluation

Chapter 10 Future improvements

After having finished the implementation some open issues still remains. These could or
should be solved if the code is to be included in the retail version of Dynamics AX. The
following section describes these issues and suggests possible solutions.

10.1 Open issues

All hardcoded texts should be replaced by the use of labels, so they can be localized
according to the functional specification.

As mentioned in the previous chapter, the LCOM metric may be removed to avoid
unnecessary or even incorrect re-factoring.

All users are generating metric statistics into the same table. Although its name starts
with “Tmp” it is not a real temporary table, since it exists as a physical table in the
database. The reason it is not a real temporary table, is that the metric generation
takes quite some time, and it would be annoying to loose all the data when the form is
closed. This has the downside that if two users are generating metrics at the same
time, they might overwrite each others changes. The problem could be solved by
saving all metric data per user, although this would increase the storage space
needed.

When generating metric statistics the program starts with deleting all data in the
TnpCodeMet ri cs table. This makes it impossible to generate statistics for a selected
number of classes, since only one starting node can be selected from the AOT. This
could be solved by letting the user decide if the table should be wiped before starting a
new metric generation.

Calculation of WMC and V(G) should be optimized, since the Cyclomatic complexity is
actually calculated twice per method: one time as part of the WMC and one time as the
“stand alone” V(G). It could be done by running the V(G) BP check as we process the
individual methods in the WMC calculation. Then V(G) should somehow be excluded
from the method-level checks, but only if the check was started at class level or higher
and only if the method belongs to a class (and not to a Form, Table etc.).

All code for the new tool has been developed in the “usr” layer. The code should be
transferred to the “sys” layer where the rest of the build-in system functionality resides.

Microsoft might encounter a legal issue, if the tool is included in a release version of
Dynamics AX, due to the great number of Best Practice warnings that will be
generated. This could make the customers/partners sue MS for bad code quality,
because the specific ranges for the metrics are not met. This issue could be resolved
by changing the BP warnings to info messages instead, and/or by not specifically

83

stating the maximum recommended value (instead write “Low is good” or “High is
good”).

10.2 New ideas

84

An internal presentation of the new tool was held for the entire Dynamics AX
Development management. During the great discussion of the prospects for the tool
there was an idea to couple the findings of the new tool to Product Studio (internal
Microsoft bug tracking tool) to see/verify if there is a connection between the number
of bugs and the complexity of a module. There might be some technical challenges to
get this feature to work, but it would be of great value to management.

Future improvements

Chapter 11 Conclusion

Process

Although | have tried to use Test Driven Development as much as possible, | have not
completely adhered to this (for me) new development method. | have however found it very
useful to have unit tests for most of the methods, since there has been a lot of refactoring
during the process. These tests really help ones peace of mind with ensuring that a
change does not break existing functionality.

In the beginning of this project, | set up a time schedule, where important milestones were
highlighted. Every day | wrote in a Project Diary about what was accomplished. This has
really helped track the progress and been an important tool in assuring that | was not
behind schedule. In fact, for the first time | have been ahead of schedule, thereby having
more time to test and document the product.

Product

The new tool can asses the complexity of classes and individual methods. Three traditional
(method level) metrics and seven object-oriented (class level) metrics have been
implemented. Although more than 200 different metrics have been identified in literature,
the chosen ten metrics are all more or less accepted as being valid measures of
complexity. For some of the metrics there was an issue with how to handle specific X++
syntax, since the language contains some constructs (e.g. embedded SQL) that the
original authors did not take into account. This was solved by finding out what the original
intend of the metric was, and then deriving a reasonable solution from this.

On each level (class and method), a new check has been added to the existing Best
Practice tool. This check computes the metric values and, if the values are not within an
acceptable range, a BP warning or info message is asserted. This information can then
directly help the developer to find out what areas can be improved to decrease complexity
and thereby increase the quality of the code.

In connection with an intermediate presentation of this project, | found a need to extract
statistics for the metrics, which would also include methods/classes that did not create BP
warnings. The new form “Metric results” can generate and show raw metric data that are
computed from a specific starting point (node) in the AOT. The form also contains
functionality to group the metric values based on the object’s prefix. This allows the
creation of team/module based statistical values.

85

Findings

To get an overview of how the measures perform in general for the X++ code, a generation
of values was started for the entire AOT. Several interesting observations were made. The
main points are

More than 100.000 methods did not have the required amount of comments.
Although the average Cyclomatic complexity was low, some methods had extremely
high numbers (more than 10 times the accepted limit)

Depth of Inheritance Tree was the only metric where no classes violated the
constraint.

A comparison of the modules and teams revealed big differences.

After having worked with the new tool and analyzed the data of the metrics, | have found
that not the all the chosen metrics are equally useful in practice. The values of the LCOM
metric may be so misleading that | recommend that LCOM is not included in a retail
version of the complexity tool.

86 Conclusion

Chapter 12 Bibliography

[Chidamber91]

Title: Towards A metrics suite for Object Oriented Design
Author: Shyam R.Chidamber, Chris F. Kemerer
Published: ACM Sigplan Notices 26(11), P.197-211, 1991

[Chidamber94]

Title: A metrics suite for Object Oriented Design

Author: Shyam R.Chidamber, Chris F. Kemerer

Published: IEEE Transactions on Software Engineering, P.476-493, June 1994

[Cormen01]

Title: Introduction to Algorithms, Second Edition
Author: Thomas H. Cormen, Charles E. Leis
Published: The MIT Press, 2001

[Encarta]
Page name: MSN Encarta Dictionary
URL: http://encarta.msn.com/encnet/features/dictionary/dictionaryhome.aspx

[Etzkorn97]

Title: A Statistical Comparison of Various Definitions of the LCOM Metric
Author: Letha Etzkorn, Carl Davis, Wei Li

Published: University of Alabama in Huntsville, Computer Science Dept., 1997

[Hitz95]

Title: Measuring Coupling and Cohesion In Object-Oriented Systems.

Author: Martin Hitz, Behzad Montazeri

Published: Proc. Int. Symposium on Applied Corporate Computing, Oct. 25-27 1995

[Hudlio4]

Title: Software Metrics for Object-Oriented Designs
Author: Hudli, R.V.; Hoskins, C.L.; Hudli, A.V.
Published: IEEE Comput. Soc. Press, P.492-495, 1994

[1ISO03]

Title: Software engineering — product quality: Part 3: Internal Metrics
Author: British Standards Institution

Published: ISO/IEC 9126-3:2003

[McCabe96]

Title: Structured Testing: A Testing Methodology Using the Cyclomatic Complexity Metric
Author: Arthur H. Watson, Thomas J. McCabe

87

Published: Computer Systems Laboratory, National Institute of Standards and Technology,
1996

[MSDNO6]

Page name: X++ grammar

URL: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/Axapta/Appendix_about EBNF/LANG_X+-+grammar.asp

[McConnell04]

Title: Code Complete, Second edition
Author: Steve McConnell

Published: Microsoft Press, 2004

[Newkirk04]

Title: Test-Driven Development in Microsoft.Net
Author: James W. Newkirk; Alexei A. Vorontsov
Published: Microsoft Press, 2004

[Rosenberg97]

Title: Software Quality Metrics for Object-Oriented Environments
Author: Dr. Linda H. Rosenberg, Lawrence E. Hyatt

Published: NASA Software Assurance Technology Center, 1997

[Sellers96]

Title: Object-Oriented Metrics — Measures Of Complexity
Author: Brian Henderson-Sellers

Published: Prentice Hall, 1996

88 Bibliography

Appendix A: Project diary

The following project diary has been continuously updated during the project period, so |
have been able to track the progress.

Week 18
Mon 1/5

Tue 2/5

Wed 3/5

Thu 4/5
Fri 5/5

Week 19
Mon 8/5
Tue 9/5

Wed 10/5
Thu 11/5
Fri 12/5

Week 20
Mon
15/5
Tue 16/5
Wed
17/5
Thu 18/5

Fri 19/5

Week 21
Mon 22/5
Tue 23/5
Wed 24/5
Thu 25/5
Fri 26/5

Week 22
Mon 29/5
Tue 30/5

Start of project. Installation of Ax on my laptop. Report template created.
Project schedule determined. Theory section started.

Work on theory section. Meeting with MFP where we discussed how the
solution could be integrated with the BP tool. Also decided that | will use Test-
Driven Development when that time comes. Got the MS templates for writing
the functional specification.

Researching. Added to theory section. Meeting with Smed discussing report
contents and general questions.

Theory work

Theory work

Theory work + beginning functional specification.

More work on the functional specification. Installed the unit test framework and
read about how to use it.

Discussed the functional specification with MFP and got some great inputs.
Functional specification and beginning overall solution design

Holiday: Store bededag

Functional specification.

Created dummy classes for test. Design of class structure.

Deciding what to do about embedded methods and how to handle Forms.
Status meeting with Smed.

Got a Virus so formatted and reinstalled the laptop. Merged the Functional
Specification into main report.

Exam of ITU project

Job interview at MS. Added “Select statements” to the functional requirements.
Started on implementing SLOC

Finished SLOC

Holiday: Kr. Himmelfartsdag

Started on implementing V(G)

Implementing V(G). Implemented the framework for methods.
Finished implementing V(G). Found and corrected errors in implementation of

Al

Wed 31/5

Thu 1/6

Fri 2/6

Week 23
Mon 5/6
Tue 6/6

Wed 7/6
Thu 8/6
Fri 9/6

Week 24
Mon 12/6
Tue 13/6
Wed 14/6
Thu 15/6

Fri 16/6

Week 25
Mon 19/6
Tue 20/6
Wed 21/6
Thu 22/6
Fri 23/6

Sat 24/6

Sun 25/6

Week 26
Mon 26/6
Tue 27/6
Wed 28/6
Thu 29/6
Fri 30/6

Week 27
Mon 3/7
Tue 4/7
Wed 5/7
Thu 6/7
Fri 7/7
Sat 8/7

A2

SLOC. Started on implementing CP.

Finished implemented CP. All traditional metrics complete!!!! Started on
implementing metrics calculation outside of the BP framework, for easier
access to creating statistics.

Ran calculation of V(G), SLOC & CP metrics on 75.000 methods (!) and
analyzed the data.

Created powerpoint presentation for Mid-way presentation

Holiday: 2. Pinsedag

Mid-way presentation for Smed, Fruergaard and Ola. Discussed some issues
regarding SQL, classDeclaration, break and continue. Changed the program
so classDeclaration methods are not used in calculating method metrics.
Changed calculation of V(G) to reflect yesterdays discussion.

Implemented DIT. Started on WMC

Finished WMC. Started on CBO.

Finished CBO. Implemented RFC.

Started on LCOM.

Implemented a support class for doing DFS on graphs.

Changed class level metrics so they use temporary xRef. Continued LCOM
implementation.

Finished LCOM. Implemented NOC.

Started on implementing FI

All implementation complete!!!!

Implemented creation of statistics on team/prefix level
Data analysis

Prepared powerpoint presentation of results for Sunday

Presentation of results for all Dynamics Ax developer-leads

Documentation: Analysis of results

Documentation: Analysis of results, Future improvements
Cleaning up source code. Documentation: Adherence to own rules
Documentation: Design

Documentation: Implementing base classes and BP integration

Documentation: Integration with BP, SLOC, CP

Documentation: V(G), WMC, DIT, NOC

Documentation: CBO, RFC, LCOM, FI

Documentation: Statistics implementation

Documentation: Unit tests, functional test, Conclusion
Documentation: Summary. Report version 1 is ready for review!

Project diary

Week 28
Mon 10/7
Tue 11/7

Wed 12/7
Thu 13/7
Fri 14/7

Week 29
Mon 17/7

Proof-reading report.

Review of report with Michael Fruergaard, Ola Mortensen & Morten Gersborg-
Hansen. Report updated with spelling and phrasing.

Method names of SourceCodeChunker changed. retrieveAndinsert removed
from sysBPCheckBase and similar functionality implemented in XXX. Report,
figures and appendixes updated to reflect this change.

New Metric evaluation chapter added and reviewed

Printing and final check.

Report hand-in!

A3

A4

Project diary

Appendix B: Source code

1Yo o 11T I 3
Class: SysBPCheckMemberFUNCLON...........uuiiiie e 3
Class: SySBPCheCKCIASSNOUEcccveeiiiiiiiiiiiie et er e e e e e e e e enenne e 5
MaCTO: SYSBPCRECKcciii it a e 7
FOIM: SYSBP SEUUD .. ——— 7

Y (Lol o =T 4 [S1TAY 0] £ T 12
Class: COUEMEINCBASEuuiiiiii ettt e e e e e e e e e e e e e s eaaseeeees 12
Class: COUECIASSIMEBIIIC.cuueieiiiie et e e e et e e et e e e s e e e s e st e e eebaesseaaaseeeees 12
Class: COAEMETNOAMELTICiiieei et e e e e e e e e e e e e e e eeees 13
ENUMEration: BPSEVEIITY ...ttt e e e e e e e e 14

Metric IMPIEMENTALIONS ..ot e e e e e e e e aeeeaaaaeas 15
Class: CoAdeMEtCCPMETINOMoiiiiiiieeeee e 15
Class: COAEMENCVGMELNOUiiiiiiiieeeeee et e e e e e e s 16
Class: CodeMetriCSLOCMETNOM............oeuviii e 20
(O P TS 0o o [0V, =Y 5 (o o 22
(08P TSI 00 o [1Y, =Y 5 o 1 [1 23
Class: COUEMETIHCLCOMccueeiiiiii et e e e et e e e e e s s s e e e eba e e e eaaaseeeees 24
Class: COUAEMELINCRICot e et e e et e e e e e e e e s s eaaaseeeees 26
(01 P T 00 [0 (<11 1] £ £ (o1 O = O L 28
Class: COUEMEITICWIMC.... ..ottt e et e e e e e e e e e e s s s b e e se bt e s s enaaeesees 29
(Od P T Of0 1o (<11 11 £ { (o1 B] N 30

(@] 1 =] T 32
(01 P TS €] =1] 110 LT 11 £=Tox 1Yo SRR 32
(O F= TS €] =1 0] 1] o o = SRR 35
(O F= TS €] = 1] 1] LT [PR 36
Class: ClaSSINSIANCIALONuuuuiiiiiiii i e e e e e e e e e eer b e e e e s e e e aabaaaees 37
(O =TS 11 o | PSSR 38
Class: SOUrCECOUECRIUNKETuuuieiiiiieeeeeee et e e e e e e e e e e aaaa s 38

] =] (o1 43
FOrm: COAEMELINCSRESUILSeeiiiiie et e e e e et e e e e e e eeaa e 43
(01 F= TS 00 [0 (<Y1 [d f (o C =T (] = 1 (o) G 46
Class: COUEMEITICSIALITEM it e e e e e e e e e s s s e s e e b e s s snaaseeeees 48
Class: CodeMetriCTeamMSIAtGENEIALONcocevuieeieeee e e et e e e e e e e e e e s e eaaaaeeeees 49

L1 1 (1) £ 53
Class: CodeMetricTeamStatGeNEratOrTESE........cccvuvueieie e e 53
Class: COAEMEHCGENEIAIOITESE .. .cciiiiieeeeee e e e e e e e e et e e e s e e e aaaa s 53
(08 TSI 00 To (o1 Loy ([0 e= LA (=] 1 41) 54
(08 TSI 00 1o [V, =Y 1 (o1 ot I =) S 55
Class: COUEMETICNOCTESLcuuuuiiiieiiiieeeee e e e e e e ra e e e e e e s e er b e e e e s s e e aaraanes 56
(O T S €] = T g o [0 Tl TS PR UPUPPPRRPP 57
Class: GraphUNdIir€CteATESTuiiiiiieiiiiiieie e e e e e e 57
Class: GrapNNOGETESEciiiiiiiiiiiii et e e e e e e e e s s beeeeaaeeeaaanes 60

B1

Class: COUEMEIICLCOMTEST .. .ccuuiieiee ettt e e et e e e e s e e e et e s s eaaaeeesees 60
(01 F- TS 000 1o (1Y 1] £ {101 4 O =) 61
(O TSI 00 1o (=11, 1= 1 (o O =@ I =) 62
Class: COUEMEITICWIMECTESE ...cuuvueieiieiiieeeeie e e et e e e e e e e e e e e e e e e b b s e e e s s e e aabaan s 64
(O TSI 00 1o (=11, 1= 1 (o1 B I =) 65
Class: ClasSINSIANCIALOITESEuuueiiiiiiiieiees e et e e e e et e e e e e e ee e e e e e e eeraraa e as 66
Class: SINQUEITESEuviiiiiie i e e e e e e e e e s e raareeaeesaannnes 66
Class: SOUrCECOUECNUNKEITESEccioiiieieeiee et e e e e e e e e s 67
Class: CodeMetriCCPMETNOATESEc.uuiiieie et e e e e e e ees 69
Class: CodeMetriCVGMETNOATESLuuiiieie ettt e e e e e e e e e e e e e eeees 70
Class: CodeMetriCSLOCMEINOUTEST.......covuiiiie e e e e a e e e ee 71
Class: SysBPCheckMemberFUNCHONTESE........coiiiiiiiiiiiieee et 73
Class: SySBPCheCKCIasSNOUETESTccoiiiiiiiiiiiee et e e e e 74
LIS Q0] F= YT 76
Class: COdeMELHICDUMMYLuiiiiiiiie e e i e e e e e s s s e e e e e s s s r e e e e e e s e snntraeeeeaeesannnnes 76
Class: COAEMELHICDUMMY2iiiiiiiiee e e et e e e e e e s e e e e e e s s st r e e e e e e s s sannrnaeeeaeesaannnes 79
Class: COdeMELHICDUMMY3iiiiiiiie e ee e e e e e s e s s e e e e e s s et r e e e e e e s e sanrrnareaaeesannnnes 79
Class: COAEMELHICDUMMYAuiiiiiiie et e e e e e e e e e et r e e e e e e s e sntraaeeaaeesaannnes 79
UNit tE€St NEIPET CIASSES ... e e e e e e rarraaae s 80
Class: SysBPCheckComplexityENabIer............coooiiiiiiiiiiiieeeiiiee e 80

B2

Source code

Modified

This section contains any existing items that have been modified to make the new tool.
Please note that only the methods that have been modified/added will appear in this
document! Existing code is marked with grey color and new code is black.

Class: SysBPCheckMemberFunction

cl ass SysBPCheckMenber Functi on extends SysBPCheckBase

{
SysMet hodl nf o sysMet hodl nf o;
SysScanner d ass scanner;
xRef TnpRef er ences t npxRef Ref er ences; /'l the source, as the xRef sees it
Menber Functi on nmenber Functi on;
bool ean xRef | sl nited;
Util El enent Type par ent Type;
i dentifiernane par ent Nane;
bool ean al | owHar dcodedText s;
/1
/1 Do not dispose these maps as their content is static
11
Map CASSer ver Mapl nst ance;
Map CASSer ver MapSt ati c;
Map CASAIl | Mapl nst ance;
Map CASAl | MapSt ati c;
//List with instances of classes that inherits from CodeMet hodMetric
Li st codeMet hodMet ri cLi st ;
#define.del (' DEL_")
}
public void check()
{

super () ;
i f (sysMethodl nfo.conpil edXX() && nenber Functi on. AOTget Source())
{
t hi s. checkSource();
thi s. checkUselLocal Obj ects();
t hi s. checkl ndentation();
t hi s. checkConstants();
i f (paraneters. CheckTwC)
{
t hi s. checkUseCOf Danger ousCl asses() ;
t hi s. checkUseCOf Danger ousFunctions();

t hi s. checkUseCOf CASPr ot ect edAPI s() ;
}

i f (paraneters. CheckEnpt yMet hods)

t hi s. checkEnpt yMet hod() ;
}

i f (paraneters. CheckDat e)

B3

thi s. checkDat e();

i f (paraneters. CheckACS)

thi s. checkUseCOf Fi el dLi sts();

i f (paraneters. CheckPrivacy)

thi s. checkAccessSpecifier();

i f (paraneters. CheckDi sconti nuati on)

t hi s. checkDi sconti nuation();

i f (paraneters. CheckFut ureReser vedWr ds)

t hi s. checkFut ur eReservedWord() ;

i f (paraneters. CheckVari abl es)

t hi s. checkVari abl es();

i f (parameters. CheckSour cePrint AndPause)

thi s. checkUseCOf Pri nt AndPause() ;

i f (parameters. CheckConpl exity)

t hi s. checkConpl exi ty();

}
}
}
voi d checkConpl exi ty()
{

CodeMet hodMet ri ¢ codeMet hodMetri c;
Li st Enunerat or enum
str errMessage,;

if (sysBPCheck.treeNode().treeNodeNane() != 'classDeclaration')

//Loop through all the netric classes that are avail able
enum = codeMet hodMet ri cLi st. get Enunmerat or () ;
whi | e(enum moveNext ())
{
/] Cast as CodeMet hodMetric
codeMet hodMetric = enumcurrent();

/'l Pass the tree node of the nethod to check
codeMet hodMet ri c. set El ement (sysBPCheck. t reeNode());

B4 Source code

|/ Pass the scanner already created
codeMet hodMet ri c. set Scanner (scanner) ;

/I Performthe check
err Message = codeMet hodMetric. getBPStr();

/11f the errMessage is not enpty then add a new BP nessage
if (errMessage !="")

//Find out what to do with the nessage
swi t ch(codeMet hodMet ri c. get BPSeverity())
{

case BPSeverity::Info:

sysBPCheck. addl nf o(codeMet hodMet ri c. get Error Code(), 0, O, err Message) ;
br eak;
case BPSeverity::Warning:

t hi s. addSuppr essabl eWar ni ng(codeMet hodMetri c. get Error Code(), O, O, err Message) ;
br eak;
case BPSeverity::Error:

t hi s. addSuppr essabl eError (codeMet hodMetri c. get Error Code(), O, O, err Message) ;

br eak;
}
}
}

}
}
protected void new()
{

’super();

//Create a list that will hold instances of the netric cl asses

codeMet hodMet ri cLi st =
Cl asslnstanci ator:: createSubd assl nst ances(cl assNun{ CodeMet hodMetric));

}

Class: SysBPCheckClassNode

//List with instances of classes that inherits from CodeMet hodMetric
Li st coded assMetricLi st;

B5

i f (parameters. CheckConpl exi ty)

t hi s. checkConpl exi ty();

voi d checkConpl exity()

{

B 6

Coded assMetric codeMetri c;

Li st Enunerat or enum

str errMessage;

xRef Updat eTnpRef er ences t nmpUpdat e;
xRef TrpRef er ences t npxRef Ref er ences;

//Create tnp references for the entire class (for optimzation)
t npUpdat e = new xRef Updat eTnpRef er ences();

tnpUpdat e. fil | TnrpxRef Ref er ences(sysBPCheck. treeNode());

t npxRef Ref erences = tnpUpdat e. al | TnpxRef Ref er ences() ;

/1 Loop through all the nmetric classes that are avail able
enum = codeCl assMetri cLi st. get Enumerator () ;
whi | e(enum nmoveNext ())

/] Cast as CodeCl assMetric
codeMetric = enumcurrent();

/1l Pass the tree node of the method to check
codeMetri c. set El ement (sysBPCheck. treeNode());

//Pass the tnp references already generated
codeMetri c. set XRef TnpRef er ences(t mpxRef Ref er ences) ;

/1 Performthe check
err Message = codeMetric.getBPStr();

Source code

/11f the errMessage is not enpty then add a new BP nessage
if (errMessage !="")

//Find out what to do with the nmessage
switch(codeMetric. get BPSeverity())
{
case BPSeverity::Info:
sysBPCheck. addl nfo(codeMetri c. get Error Code(), O, O, err Message) ;
br eak;
case BPSeverity:: \Warning:

sysBPCheck. addWar ni ng(codeMetri c. get Error Code(), O, O, err Message) ;
br eak;
case BPSeverity::Error:
sysBPCheck. addError (codeMetri c. get Error Code(), O, 0, err Message) ;

br eak;
}
}

}
}
protected void new()

super();

//Create a list that will hold instances of the netric cl asses

codeCd assMetriclList =
Cl assl nstanci ator:: createSubd assl nst ances(cl assNun{ Coded assMetric));

}

Macro: SysBPCheck

Note: Only the added lines are shown here

/1 Conplexity netrics

#def i ne. BPErr or CodeMet ri c(880)

#def i ne. BPErr or CodeMet ri cSLOCMet hod(881)
#def i ne. BPErr or CodeMet ri cVGVet hod(882)
#def i ne. BPErr or CodeMet ri cCPMet hod(883)
#def i ne. BPErr or CodeMetri cDI T(884)

#def i ne. BPErr or CodeMet ri cWMC(885)

#def i ne. BPErr or CodeMet ri cNOC(886)
#def i ne. BPErr or CodeMet ri cCBQ(887)

#def i ne. BPErr or CodeMet ri cRFC(888)

#def i ne. BPErr or CodeMet ri cLCOM 890)
#def i ne. BPErr or CodeMetri cFl (891)

Form: SysBPSetup

B7

nodeRoot = element.addNode(selectionTree.getRoot(), O, #disabled, #gotChilds,
"@SYS70918");

/I General Checks
nodeGeneral = element.addNode(selectionTree.getRoot(), 0, #disabled, #gotChilds,
"@SYS72390");

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckProperties),
parameter.CheckProperties);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAOTPathUnique),
parameter.CheckAOTPathUnique);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckObjectld),
parameter.CheckObjectld);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAQOS),
parameter.CheckAQS);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckTwC),
parameter.CheckTwC);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckUsed),
parameter.CheckUsed);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckReferences),
parameter.CheckReferences);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckDiscontinuation),
parameter.CheckDiscontinuation);

element.addNode(hodeGeneral, fieldnum(SysBPParameters,
CheckTableAndRecldReferences), parameter.CheckTableAndRecldReferences);

Il Keys

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckConfigurationKeys),
parameter.CheckConfigurationKeys);

element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckSecurityKeys),
parameter.CheckSecurityKeys);

/I Labels

tmpNode = element.addNode(nodeGeneral, 0, #disabled, #gotChilds, "@SYS13322");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckLabelUse),
parameter.CheckLabelUse);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckHelpUse),
parameter.CheckHelpUse);

/I Analysis Visibility
element.addNode(nodeGeneral, fieldnum(SysBPParameters, CheckAnalysisVisibility),
parameter.CheckAnalysisVisibility);

/I Specific Checks

nodeSpecific = element.addNode(selectionTree.getRoot(), 0, #disabled, #gotChilds,
"@SYS72391");

B8 Source code

/] Tables

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS9678");

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldPnameUniqueness), parameter.CheckTableFieldPnameUniqueness);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTablelndexUse),
parameter.CheckTablelndexUse);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableDeleteActions),
parameter.CheckTableDeleteActions);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableTitleFields),
parameter.CheckTableTitleFields);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableFormRef),
parameter.CheckTableFormRef);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableAxBCParmFields), parameter.CheckTableAxBCParmFields);

/I Table Fields

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldlsFieldGroupMember), parameter.CheckTableFieldlsFieldGroupMember);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldHasSameNameAsMethod),
parameter.CheckTableFieldHasSameNameAsMethod);

/I Table Fields Group

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableFieldGroupNumberOfFields),
parameter.CheckTableFieldGroupNumberOfFields);

/I Analysis Behavior, Totaling, CurrencyCodeFields and CurrencyDateFields

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableAnalysisBehavior
), parameter.CheckTableAnalysisBehavior);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCurrencyCodeFields), parameter.CheckTableCurrencyCodeFields);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCurrencyDateFields), parameter.CheckTableCurrencyDateFields);

/| Table Relations
element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTableRelations),
parameter.CheckTableRelations);

I/l Table Collections

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS25433");

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckTableCollectionRelation), parameter.CheckTableCollectionRelation);

/I Maps

/I Views

B9

/I Extended Data Types

/I Classes

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS60851");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckClassAbstract),
parameter.CheckClassAbstract);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckRunBaselmplementation), parameter.CheckRunBaselmplementation);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckMissingMember),
parameter.CheckMissingMember);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckConstructors),
parameter.CheckConstructors);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckComplexity),
parameter.CheckComplexity);

/I Methods (Member Functions)

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS25613");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckEmptyMethods),
parameter.CheckEmptyMethods);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckDate),
parameter.CheckDate);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckPrivacy),
parameter.CheckPrivacy);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckSourcePrintAndPause),
parameter.CheckSourcePrintAndPause);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckVariables),
parameter.CheckVariables);

element.addNode(tmpNode, fieldnum(SysBPParameters,
CheckFutureReservedWords), parameter.CheckFutureReservedWords);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckTextinSingleQuotes),
parameter.CheckTextInSingleQuotes);

/I Forms

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #GotChilds, "@SYS98083");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormSize),
parameter.CheckFormSize);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckDisablingTechnique),
parameter.CheckDisablingTechnique); // CheckFormControlDisablingTechnique

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormControlINames),
parameter.CheckFormControlNames);

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckFormTabPages),
parameter.CheckFormTabPages);

/I Labels

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #gotChilds, "@SYS83850");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckSpelling),
parameter.CheckSpelling);

B 10 Source code

/I Perspectives

tmpNode = element.addNode(nodeSpecific, 0, #disabled, #gotChilds, "@SYS94647");

element.addNode(tmpNode, fieldnum(SysBPParameters, CheckPerspectives),
parameter.CheckPerspectives);

SysFormTreeControl::setTreeStatelImage_CheckBox(selectionTree, nodeRoot);
selectionTree.expand(nodeRoot);

selectionTree.expand(nodeGeneral);
selectionTree.expand(nodeSpecific);

B11

Metric Framework

Class: CodeMetricBase

public abstract class CodeMetricBase

{
/11 nport nmacro SysBPCheck
#SysBPCheck
/1 The node to run the netric cal cul ations on
Tr eeNode node;
}

// Return the BP info/warning string if the value violates the linits
public abstract str getBPStr()

{
}

/1 The cal cul ated nmetric val ue shoul d be returned
public abstract int getVal ue()

{
}

voi d set El enent (TreeNode _node)

/1 Saves the node for |ater use
node = _node;

}

public BPSeverity getBPSeverity()

//Return info as default severity |evel
return BPSeverity::Info;

}
public str getDescription()

/1Bl ank as default val ue.
return '’

}

public int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMetri c;

Class: CodeClassMetric

public abstract class CodeC assMetric extends CodeMetricBase

xRef TrpRef er ences t npxRef Ref er ences;
bool ean xRefl sl nited,;

}
protected void initTmpXRef ()

B 12 Source code

xRef Updat eTnpRef er ences t nmpUpdat e;

if (!'xReflslnited)

{
/I Create tnp references for the entire class
t npUpdat e = new xRef Updat eTnpRef er ences() ;
tnpUpdat e. fil | TnrpxRef Ref er ences(node) ;
t npxRef Ref erences = t npUpdat e. al | TnpxRef Ref erences() ;
/1Set the flag to true
xReflslnited = true;
}
}
voi d set El enent (TreeNode _node)
{
super (_node) ;
//Reset the flag for generation of tnpXref
xReflslnited = fal se;
}
public void set XRef TnpRef er ences(xRef TnpRef erences _ref)
{
//Save the tnp ref in class level variable and set flag to true
t npxRef Ref erences = _ref;
xReflslnited = true;
}

Class: CodeMethodMetric

public abstract class CodeMet hodMetric extends CodeMetricBase

/1 Scanner cl ass used for reading synbols of the method source code
SysScanner d ass scanner;

}
protected SysScanner Cl ass get Scanner ()

/11f no scanner class have been provided, then generate a new scanner cl ass
based on the TreeNode
if (scanner == null)

{
}

// Returns the scanner with informati on of nmethod synbols
return scanner;

scanner = new SysScanner Cl ass(node);

}
voi d set El enent (TreeNode _node)
{ super (_node) ;
/] Reset the scanner
) scanner = nul|;

B 13

/1 Save to |ocal

PROPERTI ES
Nanme
UseEnunVval ue

ENDPROPERTI ES

TYPEELEMENTS
#None
PROPERTI ES
Name
Label
EnunVval ue
ENDPROPERTI ES

#l nfo

PROPERTI ES
Nanme
Label
Enunval ue

ENDPROPERTI ES

#WAr ni ng
PROPERTI ES
Nanme
Label
Enunval ue
ENDPROPERTI ES

#Error
PROPERTI ES
Name
Label
EnunVval ue
ENDPROPERTI ES

public void setScanner(SysScannerC ass _scanner)

vari abl e
scanner = _scanner;

Enumeration: BPSeverity
ENUMIYPE #BPSeverity

#BPSeverity
#Yes

#None
#None

#l nfo
#l nfo

#WAr ni ng
#WAr ni ng
#2

#Err or
#Error
#3

ENDTYPEELEMENTS
ENDENUMTYPE

B 14

Source code

Metric Implementations

Class: CodeMetricCPMethod

cl ass CodeMetri cCPMet hod ext ends CodeMet hodMetri c

//The m ni mum al | oned Comment Percent age
#def i ne. M nCPVal ue(10)

}
public BPSeverity getBPSeverity()
[V\ar ni ng
return BPSeverity:: Warning;
}
public str getBPStr ()
{
str ret;
int cpval;

/1 CGet the value for CP for the source code
cpVal = this.getValue();

/11f the value exceeds the threshold limt, return an error string
if (cpVal < #M nCPVal ue)
ret = strfm (' The Comrent Percentage (CP) of method %4 is %2 (Mn.
recommended 98)', node.treeNodeNane(),int2str(cpVal),int2str(#M nCPVal ue));

return ret;

}
public str getDescription()

// Comrent Per cent age

return ' CP;
}
public int getErrorCode()
{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cCPMet hod;
}
int getVal ue()
{
// Return the value for CP for the source code
return CodeMetri cCPMet hod: : cal cCP(node. AOTget Source());
}
public static int cal cCP(str sourceCode)
{

int cp;

int new inesl nCorment;
int linesWthConments;
i nt bl ankLi nes;

int | ast Corment Li ne;

B 15

str tnp;

Sour ceCodeChunker chunker = new Sour ceCodeChunker (sour ceCode) ;

/1 Loop through code/ corment chunks
whi | e(chunker . noveNext ())
{

i f (chunker.current Comment Chunk() !'="")

{
new i nesl nCorment =
StringUtil:: Count Cccurences(chunker. current Conment Chunk(),"'\n");

i f (chunker. comrent StartLine() > |astComrentLine)
linesWthComments += new i nesl nComment + 1;
el se
li nesWthComents += new i nesl nCorment ;

| ast Comment Li ne = chunker.coment StartLine() + new i nesl nConment;

}

/I Remove spaces fromthe source code chunk
tnp = strren{chunker. current CodeChunk(),"' ');

/1 Add the nunber of blank lines in the chunk
bl ankLi nes += StringUWil:: Count Cccurences(tnp, ' \n\n');

}

I/ Cal cul ate CP
i f((chunker.lineCount() - blankLines) > 0)
cp = (linesWthComrents / (chunker.lineCount() - blankLines))*100;

return cp;

Class: CodeMetricVGMethod

cl ass CodeMetri cV@wet hod ext ends CodeMet hodMetri c

{
/I Expl anati ons of the synbol val ues
#TokenTypes
/] The maxi mum al | owed val ue for the Cyclomatic Conplexity
#def i ne. MaxCCval ue(10)
}
public BPSeverity getBPSeverity()
{
[V\ar ni ng
return BPSeverity:: Warning;
}
public str getBPStr ()
{
str ret;
int ccval;

/1 Get the value for V(G for the source code
ccVal = this.getValue();

B 16 Source code

/11f the value exceeds the threshold limt, return an error string
if (ccval > #MaxCCval ue)
ret = strfm (' The Cyclomatic Conplexity of nethod %4 is % (Max.
recommended 98)', node. treeNodeNane(),int2str(ccVal),int2str(#MaxCCval ue));

return ret;

}
public str getDescription()

// Return the description
return 'V(Q"';
}

public int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMetri cVGVet hod,;

}

int getVal ue()

//Return the value for V(G for the source code
return CodeMetri cVGWet hod: : cal cVE t hi s. get Scanner());

}
[* oo
Need to | ook for:
st at ement begi nend typenane + identifier + "(" -> Definition of enbedded
nmet hod
" &&" -> Conditional operator, must not

be within SQ
" -> Conditional operator, nust not
be within SQ
e -> Inline If branch

st at ement begi nend + "if" -> |f Branch
st at enment begi nend + "whi |l e" -> Either normal or SQL while Loop
st at ement begi nend + "for" -> For Loop
st at ement begi nend + "case" -> Non-fallthrough label in switch
st at enment begi nend + "defaul t*" -> Non-fallthrough default in
sw tch
st at ement begi nend + "try" -> Tryl/ catch
"join" + name -> SQ Branch (nust be followed by

a class or variabl e nane)

The statenentbeginend is one of the follow ng synbols: "{" "}" ";"
The not(indicates that it nust not be followed by "("

public static int cal cVE SysScannerCl ass scanner)

{
int cc, synbol, synbol Hi st_4, synbol Hi st_3, synbol Hi st_2, synbol H st_1;
str strHi st_4, strHist_3, strH st_2, strHist_1;
bool ean i sSQ = fal se;

B17

/llnitialize cc to 1
cc = 1;

/1 Loop through all synbols in the source
synbol = scanner.firstSynbol ();

whi l e (synbol)

{

/1 Add the new synbol to the synbol and string history
synbol H st _4 synbol Hi st _3;

synbol H st _3 synbol Hi st _2;

synbol H st _2 synbol Hi st _1;

synbol H st _1 synbol ;

strH st_4
strHi st_3
strH st_2
strH st_1

strH st_3;
strH st_2;
strH st_1;
scanner. strVal ue();

/1 Find embedded net hod definitions
if (CodeMetricVGvet hod: : i sEnbMet hodDef (synbol Hi st _1, synbol Hi st _2,
synbol H st _3, synbol Hi st_4, strHi st_3))
CC++;

//Find out if we are in a SQ statenent
i sSQL = CodeMetri cVGwet hod: : i sSQSt at enment (i sSQL, synbol H st _1,
synbol Hi st _2);

/1 Find single synbols that will count towards cc, if they are not with a
SQ. st at enent
if (isSQL == fal se)
swi tch(synbol Hi st _1)
{
case #QUEST_SYM case #AND_SYM case #OR_SYM
CC++;

}

/1 Find cases where the first synbol of the statement matches our |ist
if (CodeMetricVGvet hod: :isStatenent Begi nEnd(synbol Hi st_2))

swi tch(synbol Hi st_1)

{

case #l F_SYM case #WH LE_SYM case #FOR_SYM case #CASE_SYM case
#DEFAULT_SYM case #CATCH SYM
CC++;
}

/IFind else if
if (CodeMetricVGQvethod: :isElself(synbol Hi st_1, synbol Hi st_2))
cC++;

//Find SQ "join" constructs
if (CodeMetricVGwvethod: :isSQ.Join(synbol H st_1, synbol Hi st_2,
synbol Hi st _3))
cC++;

/1 Get the next synbol fromthe scanner
synbol = scanner. next Synbol ();

return cc;

B 18 Source code

}
public static bool ean isDataType(int synbol)

bool ean ret = fal se;

//Return true if the synbol is a sinple datatype
swi t ch(synbol)

case #vO D _TYPE_SYM //void
case #| NT_TYPE_SYM /1int
case #I NT64_TYPE_SYM //int64
case #DBL_TYPE_SYM //real
case #DATE _TYPE_SYM //date
case #STR TYPE_SYM /lstr
case #CGU D TYPE_SYM //guid
ret = true;

}

return ret;

}
public static boolean isElself(int synbol_1, int synbol_2)

//Return true if the synbols are "else if"
return synbol 2 == #ELSE SYM && synbol _1 == #| F_SYM
}

public static bool ean i sEnbMet hodDef (i nt synbol _1, int synbol _2, int synbol _3, int
synbol _4, str strVal _3)

{

bool ean ret=fal se;

//Must end with "("
if (synbol _1 == #LEFT_PAR_SYM

/12nd | ast nmust be a identifier |ike "Methodl"
if (synmbol _2 == #STD | D)

//Before the nethod definition starts an end of the |ast statenent nust
be present
if (CodeMetricVGwet hod: : i sStatenent Begi nEnd(synbol _4))

/] Check that there is a valid return type present
if (TreeNode: :isValidbjectNane(strVal _3) ||
CodeMet ri cVGWet hod: : i sDat aType(synbol _3))

/ /W have an enbedded nethod definition!!!
ret = true;

}

return ret;

}

public static boolean i sSQJoin(int synbol_1, int synbol_2, int synbol_3)
{

B 19

/1! [exitsts||notexists] join nane

return (synbol _1 == #STD | D && synbol _2 == #JO N_SYM && synbol _3 ! = #EXI STS_SYM

&8 symbol _3 | = #NOTEXI STS_SYM);
}

public static bool ean i sSQSt at ement (bool ean i sSQ., int symbol _1, int synbol _2)
{

bool ean ret = isSQ,;

if (isSQL & (symbol 1 == #LEFTBR SYM || symbol 1 == #SEM COLON_SYM)

/1 The SQ statenent has ended
ret = fal se;

}
else if(lisSQ)

{
//1ts the first word of an expression
i f (CodeMetri cVGWet hod: : i sSt at enent Begi nEnd(synbol _2))
/1lts a SQL synbol
switch(synbol _1)
{
case #SEARCH SYM //sel ect
case #DELETE _SYM //delete
case #UPDATE_SYM //update_recordset
case #|l NSERT_SYM //insert_recordset
ret = true;
}
}
//while select
el se if(synbol _2 == #WH LE_SYM && synbol _1 == #SEARCH_SYM
ret = true;
}
return ret;
}
public static bool ean isStatenentBegi nEnd(int synbol)
{
}/Return true, if the synbol is "{", "}" or ";"
return (synbol == #LEFTBR SYM || synbol == #RI GHTBR_SYM || synbol ==
#SEM COLON_SYM ;
}

Class: CodeMetricSLOCMethod

cl ass CodeMetri cSLOCMet hod ext ends CodeMet hodMetri c

/1 The maxi mal allowed val for SLOC
#def i ne. MaxSLOCVal ue(40)
}

public BPSeverity getBPSeverity()

[/ \\ar ni ng
return BPSeverity:: Warning;

B 20 Source code

public str getBPStr()
{

str ret;
int slocVval;

/1 Get the value for SLOC
sl ocVal = this.getVal ue();

/11f the value exceeds the threshold limt, return an error string
if (slocval > #MaxSLOCVal ue)

ret = strfnt (' The nunber of Source lines (SLOC) of method %4 is %2 (Max.

recommended 98)', node. treeNodeNane(),int2str(slocVal),int2str(#MaxSLOCVal ue));

return ret;

}

public str getDescription()

/1 Source Lines of Code
return ' SLCC ;

}

public int getErrorCode()

{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cSLOCMet hod;

}

public int getVal ue()

/1 Get the value for SLOC for the source code
return CodeMetri cSLOCMet hod: : cal cSLOC(node. ACTget Sour ce());

}

public static int cal cSLOC(str sourcecode)

int sloc;

Text Buf fer textBuffer;
str cfcode;

str line;

//Create TextBuffer and fill with comment-free source code
cfcode = CodeMetri cSLOCMet hod: : removeConmment s(sour cecode) ;
textBuf fer = new Text Buffer();

t ext Buf f er. set Text (cf code);

/1Get first line
line = textBuffer.nextToken(false,'\n");

//Loop through Iines

whi | e(line)
{
/1lf the line is not blank then increase SLCC
if(strrtrin(stritrimline)) !'="")
sl oc++;

/1 Read next |ine
line = textBuffer.nextToken(false,'\n"');

B21

return sloc;

}
public static str renoveComment s(str sourceCode)
{
str cfcode = ''; //Coment-free code
Sour ceCodeChunker chunker = new Sour ceCodeChunker (sour ceCode) ;
/1 Get all code chunks
whi | e(chunker . noveNext ())
cf code += chunker. current CodeChunk();
//Return the coment-free code
return cfcode;
}

Class: CodeMetricFI

cl ass CodeMetri cFl extends Coded assMetric

{
/1 The maxi mum al | owed value for Fan In
#def i ne. MaxFl Val ue(50)
}
public str getBPStr()
{
str ret;
int val;

/1 Get the value for FI for the class
val = this.getValue();

/11f the value exceeds the threshold linmt, return an error string
if (val > #MaxFl Vval ue)
ret = strfm('Fan In (FI) of class % is % (Max. recomended
%3) "', node. treeNodeName(),int2str(val),int2str(#MaxFl Val ue));

return ret;
}
public str getDescription()
{
//Fan In
return 'Fl';
}
public int getErrorCode()
{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMetri cFl;
}
int getVal ue()
{
xRef Ref erences xRef erences;
xRef Pat hs xPat hs;
xRef Pat hs xFr onPat hs;

B 22 Source code

t abl

xRef Pat h t oLi kePat h;

str t ypeNane,;
Map mep;

//Create a map for holding the type nanes
map = new Map(Types:: String, Types:: String);

//Add * in the end of the path for node to find, and doubl e the anout of \
/1 This is needed to nake the "like" work correctly
toLi kePath = strRepl ace(node.treeNodePath() + "*' "\\' "\\\\");

/* Since Fan-In is a systemlevel neasure, we need to use x-ref fromthe normal
es,
and not fromthe tenporary xref
*
/
whi | e sel ect xFronPat hs
join xRef erences where xFronPat hs. Recld == xRef erences. xRef Pat hRecl d &&
(xRef erences. Ref erence == xRef Reference:: Decl aration ||
xRef erences. Ref erence == xRef Reference:: Call)
join xPaths where xPaths. Recl d == xRef erences. referencePathRecld &&
(xPat hs. Pat h == node. treeNodePat h() ||
xPat hs. Path |ike toLi kePath

)

{
/1 CGet the nane of the class/formtable
typenane = SysTreeNode: : appl Obj ect Pat h(xFr onPat hs. Pat h) ;
//1nsert the found type(class) nane into the map if it's not already there
/land if it is not the class itself
if (!map.exists(typeNane) && typeNane ! = node.treeNodePath())
map. i nsert (typeNane, t ypeNane) ;
}
/1 FI = nunber of other types having a reference to this class

return map. el ements();

Class: CodeMetricNOC

cl ass CodeMetri cNOC extends Coded assMetric

}

publ
{

/1 The maxi mum al | owed val ue for the Nunber O Children
#def i ne. MaxNOCVal ue(10)

ic str getBPStr()

str ret;
int val;

/1 Get the value for NOC for the class
val = this.getValue();

/11f the value exceeds the threshold linmt, return an error string
if (val > #MaxNOCval ue)
ret = strfm (' The Nunber O Children (NOC) of class % is 9% (Max.

recommended 98)', node. treeNodeNane(),int2str(val),int2str(#MaxNOCVal ue));

B 23

return ret;

}

public str getDescription()

[/ Nurmber of children

return ' NOC ;
}
public int getErrorCode()
{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cNOC;
}
int getVal ue()
{
Di ctd ass dict;
Di ct d ass subbDict;
Enuner at or enum
int noc = 0;
//Create a new dict class
dict = new Di ctd ass(node. appl Obj ect1d());
/1 Get an enunerator containing all subcl asses
enum = di ct. ext endedBy() . get Enunerator ();
/1 Loop through all subcl asses
whi | e(enum nmoveNext ())
subDi ct = new DictC ass(enumcurrent());
/11f the class in an imedi ate child then increase the count
if (subDict.extend() == node. appl Objectld())
noc++;
}
return noc;
}

Class: CodeMetricLCOM

cl ass CodeMetri cLCOM ext ends Coded assMetric

#def i ne. LCOWal ue(1)

}
public str getBPStr()
{

str ret;

int val;

/1 CGet the value for LCOM for the node
val = this.getValue();

/11f the value is greater then #LCOWal ue, return an error string

//We will also allow value of zero, since this nmight indicate a collection of
static methods

if (val > #LCOwal ue)

B 24 Source code

}
publ
{

publ

ret = strfm (' The Lack of Cohesion O Methods (LCOM of class %4 is %
(Recommended 98) ', node. treeNodeNane(),int2str(val),int2str(#LCOWal ue));

return ret;

ic str getDescription()

/'l Lack of Cohesion O Methods
return ' LCOM ;

ic int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cLCOM

get Val ue()

GraphUndi rected graph = new G aphUndirected();
xRef TnrpRef er ences t hi sRef er erences;

str graphNodeVal ;
G aphNode fronmG aphNode;
G aphNode t oG aphNode;

/I Make sure xRef is updated for the class
this.initTmpXRef();

t hi sRef ererences. set TnpDat a(t npxRef Ref er ences) ;
whil e sel ect thisRefererences order by Reference

{

|/ Declaration of class |level variables so add node
if(this.isdassLevel Var(thi sRefererences))

graphNodeVal = thi sRef ererences. nane;
gr aph. addNode(gr aphNodeVal) ;

//Definition of class nmethod so add node
el se if(this.isMethodDef(thisRefererences))

graphNodeVal = thisRefererences. Path;
gr aph. addNode(gr aphNodeVal) ;

//Call to class nmethod so add edge
el se if(this.islnternal MethodCall (thi sRefererences))

from& aphNode = graph. fi ndNodeOnDat a(t hi sRef er er ences. Pat h) ;

t oG aphNode = graph. fi ndNodeOnDat a(node. t reeNodePat h() + "\\'

t hi sRef er er ences. nane) ;

it

+

/11f toG aphNode is null then it is a call to an inherited nethod, else

is aregular internal method call

gr aph. addEdge(f r omGr aphNode, t oG aphNode) ;

// Read or wite of variable

el se if(thisRefererences. Reference == xRef Reference:: Read | |
t hi sRef ererences. Ref erence == xRef Reference:: Wite)
{

B 25

/11f the variable can be found as a node, then it nust be a class-Ievel

vari abl e
t oG aphNode = graph. fi ndNodeOnDat a(t hi sRef er er ences. nane) ;
from& aphNode = graph. fi ndNodeOnDat a(t hi sRef er er ences. Pat h) ;
gr aph. addEdge(f r omGr aphNode, t oG aphNode) ;
}
}

//Start a Depth First Search on the graph
graph. runDFS() ;

//LCOM = the nunber of connected conponents = the nunber of sub-graphs
return graph. nodesWt hout Parent () ;

}

private bool ean isC assLevel Var (xRef TnpRef er ences t hi sRef er er ences)

{

/I Declaration of class |level variables
return (thisRefererences. Reference == xRef Reference: : Decl arati on &&
t hi sRef ererences. Path == node. treeNodePath() + '\\cl assDecl aration');

}

private bool ean islnternal Met hodCal | (xRef ThpRef er ences t hi sRef er er ences)
{

//Call to class method
return (thisRefererences. Reference == xRef Reference:: Call &&
t hi sRef er erences. Par ent Name == node. t r eeNodeNane()) ;

}

private bool ean i sMet hodDef (xRef TnpRef er ences t hi sRef er erences)
{

bool ean ret = fal se;
SysMet hodl nfo sysMet hodl nf o;

}/Definition of class nethod
if (thisRefererences. Reference == xRef Reference: : Definition &
t hi sRef ererences. Ki nd == xRef Ki nd: : O assl nst anceMet hod)

//Get nethod info to find out if the method is abstract
sysMet hodl nfo = new
SysMet hodl nfo(Uti | El ement Type: : C assl nst anceMet hod, 0, ' ') ;
sysMet hodl nf 0. set Met hod(Tr eeNode: : fi ndNode(t hi sRef ererences. Path));

if (!sysMethodl nfo.isAbstract())
ret = true; //It nust be a "nornmal" nethod

}

return ret;

Class: CodeMetricRFC

cl ass CodeMetri cRFC extends CodeC assMetric

#def i ne. MaxRFCVal ue(50)
}

public BPSeverity getBPSeverity()

B 26 Source code

[/ \\ar ni ng
return BPSeverity::\Warning;

}
public str getBPStr()
{

str ret;

int val;

/1 Get the value for RFC for the source code
val = this.getValue();

/11f the value exceeds the threshold limt,
if (val > #MaxRFCval ue)

ret = strfnt(' The Response For Class (RFC) of class % is % (Max.
recommended 93)', node. treeNodeNane(),int2str(val),int2str(#MaxRFCVal ue));

return ret;

}
public str getDescription()

/I Response For O ass

return ' RFC ;

}

public int getErrorCode()

{
/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cRFC,

}

int getVal ue()

{

xRef TnpRef er ences t hi sRef ererences;

DictC ass dict;
int nmethodNo;

Map nap;
str met hodNane;
/I Make sure xRef is updated for this class

this.initTnpXRef();

//Create a nap for holding the nethod nanes
map = new Map(Types::String, Types::String);

/1 Add all the nmethods of the class to the Iist

dict = new D ctd ass(node. appl Goj ectld());

for(methodNo = 1;methodNo <= dict. obj ect Met hodCnt () ; met hodNo++)

{
/1 The cl assDecl aration should not be included
if (dict.object©Mthod(nmethodNo) != 'classDeclaration')
met hodNanme = node. treeNodeNanme() + '
map. i nsert (net hodName, net hodNane) ;
}
}

return an error string

+ di ct. obj ect Met hod(met hodNo) ;

B 27

/1 CGet the paths of the objects used

t hi sRef er er ences. set TnpDat a(t npxRef Ref er ences) ;

whil e sel ect thisRefererences where thisRefererences. Reference ==
xRef Ref erence: : Cal |

{
/1 Get the method nane (path)
met hodName = t hi sRef ererences. ParentNanme + '\\' + thi sRefererences. nane;
/11f the type does not already exists in the map then insert it
if (!map.exists(methodNane))
map. i nsert (net hodNane, met hodNane) ;
}

/1 RFC = nunber of distinct possible nmethod calls
return map. el ements();

Class: CodeMetricCBO

cl ass CodeMetri cCBO ext ends Coded assMetric

#def i ne. MaxCBOVal ue(20)

}
public BPSeverity getBPSeverity()
[V\ar ni ng
return BPSeverity::Warning;
}
public str getBPStr ()
{
str ret;
int val;

/1 Get the value for CBO for the source code
val = this.getValue();

/11f the value exceeds the threshold linmt, return an error string
if (val > #MaxCBOval ue)
ret = strfnt(' The Coupling Between Objects (CBO of class % is % (Max.
recommended 98)', node. treeNodeNane(),int2str(val),int2str(#MaxCBOval ue));

return ret;

}

public str getDescription()
/] Coupl i ng Between Objects

return ' CBO ;
}

public int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cCBG,

B 28 Source code

int getVal ue()
xRef TnrpRef er ences t hi sRef ererences;

Map nap;
str typeNane;

/I Make sure xRef is updated for this class
this.initTnpXRef();

//Create a map for hol ding the type nanes
map = new Map(Types:: String, Types:: String);

/1 CGet the paths of the objects used
t hi sRef er er ences. set TnpDat a(t npxRef Ref er ences) ;
whi | e sel ect thisRefererences where thisRefererences. Reference ==
xRef Ref er ence: : Read
{
/] Get the type name (path)
if (thisRefererences. ParentNane == "'")
typeNane = thi sRefererences. nang;
el se
typeNane = thi sRef ererences. Par ent Nane;

/11f the type does not already exists in the map then insert it

if (!map.exists(typeNane))
map. i nsert (typeNane, t ypeNane) ;

}

/1 CBO = nunber of distinct types
return map. el ements();

Class: CodeMetricWMC

cl ass CodeMetri cWMC ext ends Coded assMetric

#def i ne. MaxWMCVal ue(50)

}
public BPSeverity getBPSeverity()
[/ V\ar ni ng
return BPSeverity:: Warning;
}
public str getBPStr ()
{
str ret;
int val;

/1 Get the value for WMC for the class
val = this.getValue();

/11f the value exceeds the threshold limt, return an error string
if (val > #MaxWMCval ue)

B 29

ret = strfnt (' The Wei ghted Met hods per Cass (WMC) of class % is 9% (Max.
recommended 98)', node. treeNodeNane(),int2str(val),int2str(#MaxWWVal ue));

return ret;

}

public str getDescription()

{
/1 Wi ght ed Met hods per d ass
return ' WC ;

}

public int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMet ri cWWC,

}
int getVal ue()

CodeMet ri cVGWet hod vgMetric = new CodeMetri cVGwet hod() ;
int sunVG = 0;
TreeNode chil d;

/1 Loop through all child methods
child = node. AOTfirstChild();
whi | e(chil d)

{

if (child.treeNodeNanme() != 'classDeclaration')

{
/1 Pass the nmethod to CodeMetri cCCMet hod

vgMetric. set El ement (chil d);

/1 CGet the val ue
sunVG += vgMetri c. get Val ue();
}

/1 Get next child method
child = child. AOTnext Si bl i ng();

}

// Return sum of conplexities
return sunvVG

Class: CodeMetricDIT

class CodeMetricDl T extends Coded assMetric

/1 The maxi mum al | owed val ue for the Depth of Inheritance Tree
#def i ne. MaxDI TVal ue(8)

}
public BPSeverity getBPSeverity()

[/ V\ar ni ng
return BPSeverity::Warning;

}
public str getBPStr ()

B 30 Source code

str ret;
int ditval;

/1 CGet the value for DIT for the class
ditVal = this.getValue();

/11f the value exceeds the threshold linmt, return an error string
if (ditval > #MaxDl TVal ue)
ret = strfnt (' The Depth of Inheritance Tree (DIT) of class % is % (Max.
recommended 9%8) ', node. treeNodeNanme(),int2str(ditVal),int2str(#MaxDl Tval ue));

return ret;

}

public str getDescription()

/1 Depth of Inheritance Tree
return 'DIT;

}
public int getErrorCode()

/1 Errorcode defined in macro SysBPCheck
return #BPError CodeMetricDI T,

}
public int getValue()

Dictd ass dict = new Di ctd ass(node. appl Obj ect1d());
int depth = 1; //A|l classes inherit from Object

/] Repeat as long as we can go up in the hierarchy
whi | e(dict.extend())

{
/llncrease depth if its not object
if (dict.extend() != classNum(object))
dept h++;
}
//Create a DictC ass for the parent
dict = new Dictd ass(dict.extend());
}

return depth;

B 31

Other
Class: GraphUndirected

cl ass GraphUndirect ed

{
Li st nodes; //List of nodes
Li st edges; //List of edges
int dfsTime; //For time-keeping in DFS
#def i ne. whi te(0)
#define. grey(1)
#defi ne. bl ack(2)
}

publi ¢ GraphEdge addEdge(G aphNode nodel, G aphNode node2)

G aphEdge edge = nul |;

/11f there is no edge with that that already, then create a new
if (nodel != null && node2 != null)

if (!this.findEdge(nodel, node2))

{
edge = new G aphEdge();
edge. set Nodel(nodel);
edge. set Node2(node2) ;
/1 Add the edge to the list
edges. addEnd(edge) ;

}

}

return edge;

}
publi ¢ GraphNode addNode(anytype data)

G aphNode newNode = nul | ;

//Try to find an existing node with the sanme data
newNode = this. findNodeOnDat a(dat a);

/11f the data is not present in a node, then create a new node
if (newNode == null)

{
newNode = new G aphNode();
newNode. set Dat a(dat a) ;
//Add to the list
nodes. addEnd(newNode) ;

}

return newNode;

B 32 Source code

private void DFS(G aphNode node)

Li st nei ghbours;
G aphNode nei ghbour Node;
Li st Enuner at or enum

/1Set the start time and change color to grey
df sTi me++,

node. set Ti neDi scover ed(df sTi ne) ;

node. set Col or (#grey);

/1 Get the list of neighbours to this node
nei ghbours = this. getListO Nei ghbours(node);
i f (neighbours. elenents() > 0)

enum = nei ghbour s. get Enunmerat or () ;

//Loop through all the neighbours
whi | e(enum moveNext ())

{
nei ghbour Node = enum current();
/11f the nei ghbour has not been discovered then perform DFS recursively
i f (nei ghbour Node. get Col or () == #white)
nei ghbour Node. set Par ent (node) ;
t hi s. DFS(nei ghbour Node) ;
}
}
}
// Node conpl eted so set finish tine and change col or to bl ack
df sTi me++,

node. set Ti neFi ni shed(df sTi ne) ;
node. set Col or (#bl ack) ;

}
public G aphEdge findEdge(G aphNode nodel, G aphNode node2)
{
Li st Enunerat or enum = edges. get Enunerator () ;
G aphEdge edge;
int edgeNum
//Loop through all the edges
whi | e(enum nmoveNext ())
{
edge = enumcurrent();
/11f the edge contains the two nodes then we're done
if ((edge.getNodel() == nodel && edge.get Node2() == node2) ||
(edge. get Nodel() == node2 && edge. get Node2() == nodel))
return edge;
}
return null;
}

B 33

publ i c GraphNode fi ndNodeOnDat a(anytype findDat a)

Li st Enuner at or enum = nodes. get Enunerat or () ;

G aphNode node;
int nodeNum

/1 Loop through all the nodes
whi | e(enum rmoveNext ())

{
node = enumcurrent();
/11f the node contains the data that we're done
if (node.getData() == findData)
return node;
}
return null;

}

public List getListO Neighbours(G aphNode node)

Li st Enunerat or enum = edges. get Enunerator () ;

G aphEdge edge;
int edgeNum

//Create new list to hold the found nodes
Li st nei ghbours = new Li st (Types::d ass);

/1 Loop through the edges
whi | e(enum nmoveNext ())

{

edge

/11f nodel or node2 equal s the node,

the list

= enumcurrent();

if (edge. get Nodel() == node)

nei ghbour s. addEnd(edge. get Node2());

el se if (edge.getNode2() == node)

}

nei ghbour s. addEnd(edge. get Nodel());

return nei ghbours;

}

public List getNodes()

// Return the list of nodes
return nodes;

//lnitialize the lists of nodes and edges

}
voi d new()
{
nodes
edges
}

new Li st (Types:: C ass);
new Li st (Types:: d ass);

public int nodesWthout Parent ()

B 34

then add the other end of the edge to

Source code

Li st Enunerat or enum = nodes. get Enunerator () ;
G aphNode node;

int nodeNum

int noParent = 0;

//Loop through all the nodes
whi | e(enum nmoveNext ())

{
node = enumcurrent();
/llncrease the count if the parent is null
if (node.getParent() == null)
noPar ent ++;
}
return noParent;
}
public void runDFS()
{
Li st Enunerat or enum = nodes. get Enunerat or () ;
G aphNode node;
int nodeNum
/1 Loop through all the nodes and initialize
whi | e(enum nmoveNext ())
{
node = enumcurrent();
node. set Col or (#whi te);
node. set Parent (nul |');
}
// Reset tinme
df sTime = O;
//Loop through the nodes again and performDFS is the color is white
enum = nodes. get Enuner at or () ;
whi | e(enum nmoveNext ())
{
node = enumcurrent();
if (node.getColor() == #white)
t hi s. DFS(node) ;
}
}

Class: GraphEdge

cl ass G aphEdge

G aphNode nodel;
G aphNode node2;

}
publ i c GraphNode get Nodel()

/I Return the first node
return nodel;

B 35

}
publ i ¢ GraphNode get Node2()
{

// Return the second node
return node2;

}
public void set Nodel(G aphNode _nodel)
//Save in class variable
nodel = _nodel;
}
public void set Node2(G aphNode _node2)
/] Save in class variable
node2 = _node2;
}
Class: GraphNode
cl ass G aphNode
{
anytype dat a; /| Payl oad
int color; /'l For graph traversal
int timeDiscovered; //For graph traversal
int timeFinished, /I For graph traversal
G aphNode parent; /'l For graph traversal
}

public int getColor()

// Return col or for graph travsersal

return col or;

}
publ i c anytype getData()

/I Return the payl oad
return data;

}
publ i ¢ GraphNode get Parent ()

/] Return the parent
return parent;

}

public int getTinmeDi scovered()

/! Return the tineD scovered
return tinmeDi scovered;

}
public int getTimeFinished()

/! Return the tineFinished
return timeFini shed;

B 36

Source code

public void setColor(int _color)

{

/1 Save color in class variable
color = _color;

}
public void setData(anytype _data)

//Save in class variable
data = _data;

}

public void setParent (G aphNode _parent)

/1 Save in class variable
parent = _parent;

}

public void setTineDi scovered(int _tineDi scovered)

//Save in class variable
ti meDi scovered = _tineD scovered;

}
public void setTi meFini shed(int _tinmeFinished)

/1 Save in class variable
ti meFi ni shed = _tinmeFi ni shed;

Class: Classinstanciator

class d assl nstanci at or

{
}

static List createSubd asslnstances(classld superC assl d)

{

Li st instancelist;

Set set;
Set Enumer at or enuner at or;
SysDi ct O ass di ctd ass;

//Create a list that will hold instances of the classes
i nstanceli st = new List(Types::C ass);

/1 Get a Set containing the ids for classes that inplenents the superclass
set = SysDictd ass:: getlnpl ements(superd assld);
enunerator = set.get Enunerator();
whi | e(enumer at or . mroveNext ())
{
//Create a new SysDictC ass for the classid
di ctd ass = new SysDi ct G ass(enunmerator.current());

if (dictdass.id() != superd assld)
{

B 37

/1 Add a new i nstance of the inplenenting class to the
codeMet hodMet ri cLi st
i nstanceli st. addEnd(di ct d ass. nakehj ect());
}

}

return instanceli st;

Class: StringUtil

class StringUil

/I No class |level variables, since this class is used for grouping of related
string function

}
public static int CountOccurences(str sourcetxt, str findtxt)
t
int cnt = O;
int scanpos = 1;
//Find first occurence
scanpos = strscan(sourcetxt, findtxt, scanpos, strlen(sourcetxt) - scanpos + 1);
whi | e(scanpos > 0)
{
/1 Add one to the count
cnt ++;
/| Rescan
scanpos = strscan(sourcetxt, findtxt, scanpos+1, strl en(sourcetxt) - scanpos);
}
return cnt;
}

Class: SourceCodeChunker

cl ass Sour ceCodeChunker
{

str source; /] Source code to work on

int sourcelen; //Length of the source code, so we don't need to use
strlen(sourcecode) all the tine

int fronPos; //The current position in the source code
int linecount; [/ Nunber of lines (newine characters) read
str current Code; /] Last created code chunk

str currentCorment; //Last created comment chunk

int startLineCode; //The line nunber where the code starts
int startLineConmment; //The |ine nunber where the comment starts

#defi ne. comment Lengt h(2) //For use with the getNext function

}

public int codeStartLine()

// Return the line nunber where the code chunk starts

B 38 Source code

return startLi neCode;

}

public int comrent StartLine()

// Return the line nunber where the code chunk starts
return startLi neConment;

}
public str current CodeChunk()

// Returns the |last created code chunk
return current Code;

}
public str current Conment Chunk()

/1 Returns the last created comment chunk
return current Comment ;

}

/1 Finds the m ni num val ue, where value <> 0
private int findM nPos(container vals)
{
int mnval = 0;
int val;
int i;
//Loop for all value in the container
for(i=1;i<=conlen(vals);i++)
{

/1 Get val ue from contai ner
val = conpeek(vals,i);

//Check if the val is a new mini num
if (val < minval & val !'= 0 || mnval == 0)
mnval = val;

}

return mnval;

}

//Finds the end of a quoted or doubl e-quoted string
private int findStrEnd(str sourceCode, int startPos, str quote, str presynbol)

{
#def i ne. escapedW dt h(2)

i nt endPos=st art Pos;

whi | e(endPos <= strl en(sourceCode))
// Done when we find the end quote
i f (substr(sourceCode, endPos, 1) == quote)
br eak;

/I Verbose strings has no escape characters
if (presynbol !'="'@)

//11f \ or ' is escaped then ignore the next character
swi t ch(substr (sourceCode, endPos, #escapedW dt h))

B 39

case "\\\\':
case '\\' + quote:
endPos++;

}

/1 Next character
endPos++;

}

return endPos;

}
int lineCount()

[/ Number of lines (newine characters) read
return |ineCount;

}

publ i ¢ bool ean nmoveNext ()

{

int scanPos;

/] Reset the output variables
this.resetQutput();

i f(fronmPos < sourcel en)
{
/1 Scan for comments and strings
scanPos = this.scanFor Conment sAndQuot es() ;

// Repeat until we have found a conment
whi | e(scanpos > 0 && currentCorment == '")

swi t ch(substr(source, scanpos, #comment Lengt h))
{
case '/*':
//Start of multi line coment found, so insert the text and
search for comrent end
current Code += substr(source, fronPos, scanPos- fronpos) ;
fromPos = strscan(source,'*/"', scanPos, sourcel en -
scanPos) +#comrent Lengt h;
current Comment = substr(source, scanPos, fronpos- scanPos) ;
br eak;

case '//"':

//Start of nulti line comment found, so insert the text and
search for line end

current Code += substr(source, fronPos, scanPos-fronpos);

fromPos = strscan(source,'\n', scanPos, sourcel en - scanPos) > 0
? strscan(source,'\n', scanPos, sourcel en - scanPos) : sourcelen +1;

current Comment = substr(source, scanPos, fronpos- scanPos) ;

br eak;

defaul t:
/TA'l text until the next quote pos will be included, regarding
if it is a comrent
scanPos = this.findStrEnd(source,
scanPos+1, substr(source, scanpos, 1), substr(source, scanpos-1,1));
current Code += substr(source, fronPos, scanPos-fronPos+1);

B 40 Source code

fronPos = scanPos + 1;

}

/] Rescan

scanPos = this.scanFor Comrent sAndQuot es() ;
}
if (currentComrent == "'")

//No comments was found, so we nust copy the last part of the
sourcecode to the current Code

current Code += substr(source, fronPos, sourcel en-fronpos+1);

fromPos = sourcelen;

}

//Add to the |inecount

lineCount += StringUtil:: CountCccurences(currentCode, ' \n');
startLi neComrent = |ineCount;

lineCount += StringUtil::CountCOccurences(currentComment,'\n');

return true;

}
return fal se;
}
voi d new(str sourceCode)
{
/1 Set source and cal cul ate sourcel en
source = sour ceCode;
sourcel en = strlen(source);
/llnitialize the counters
fronPos = 1;
l'i necount = 1;
// Reset all the output variables
this.resetQutput();
}
private void resetQutput()
{
//Cear all the output variables
current Code = '';
current Conment = "'
startLi neComment = |ineCount;
startLi neCode = |ineCount;
}
private int scanFor Conment sAndQuot es()
{

int singlePos, multiPos, quotePos, doubl eQuotePos;

//Find the next positions of comments and quotes

mul ti Pos = strscan(source,'/*', fronPos, sourcel en);

si ngl ePos = strscan(source,'//", fronPos, sourcel en);
quot ePos = strscan(source,'\"'"', fronPos, sourcel en);
doubl eQuot ePos = strscan(source,' "', fronPos, sourcel en);

B 41

//Return the first position that is not zero
return this.findM nPos([nultiPos, singlePos, quotePos, doubl eQuotePos]);

B 42 Source code

Statistics

Form: CodeMetricsResults

public class FornRun extends ObjectRun

{
}

voi d start GenerateTeantStats(str fil enane)
{
Map st at Map;
Maplterator netriclterator;
Maplterator itemterator;
str metric;

CodeMetricStatltemitem
TnpCodeMetri csTeantt at stat;

if (filename !="")
{
//Start calcul ation
stat Map = CodeMetri cTeantt at Gener at or: : st at ByTean(fil enane) ;

//Clear the teamstatistics table
del ete_fromstat;

metriclterator = new Maplterator(statMap);
while(netriclterator.nore())

{

metric = metriclterator. key();

itemterator = new Maplterator(netriclterator.value());
while(itemterator.nore())

{

item=itenmterator.val ue();

/1 Clear record
stat.clear();

/[IFi1l wth val ues

stat. Metric = netric;

stat. Team = item get Nane() ;
stat.Prefix = item getPrefixName();

stat. Qccurences = itemgetltenCount();
stat.Val ueSum = item get Sum() ;
stat. AverageVal ue = i tem get Avg();

stat. MaxVal ue = item get Max();

if (itemgetltemCount() == 0)
stat. M nVal ue = 0;

el se
stat. M nValue = itemgetMn();

//lnsert into table
stat.insert();

/1 CGet next item
itemterator. next();

}

metriclterator. next();

}

/! Refresh grid datasource
t npCodeMet ri csTeanftt at _ds. research();

}
}
contai ner fil eNanmeLookupFilter()
{

#File

Fi | enane filepath;

Fi | enane fil enane;

Fi | enane fileExtention;

/'l Extract path, filename and extension fromany existing fil enane
[filepath, fileName, fileExtention] =
G obal ::fileNameSplit(teanFileNane.text());

/1 Set default file extension to .txt
if (!fileExtention)

fileExtention = #txt;
}

return [WnAPI::fileType(fileExtention),#Al | Fi|l esName+fil eExtenti on,
#Al | Fi | esExt, #Al|Fil esType];

}

/1 ACSRunMdde: : cl i ent
str fil eNameLookupl niti al Pat h()

{
#W nAPI
Fi | enane fil epath;
Fi | enane fil enane;
Fi | enane fileType;
[filepath, fileNanme, fileType] = Gobal::fileNanmeSplit(teanFileNane.text());
/1 Default path
if (!filePath)
filePath = WnAPI :: get Fol der Pat h(#CSI DL_Per sonal) ;
}
return filepath;
}

/1 AOCSRunMbde: : cl i ent
str fil eNameLookupTitle()

{

return teantil eNane. | abel ();
}
str fil eNanmeLookupFi | ename()

Fi | enane fil epath;

Fi | enane filenane;

B 44 Source code

Fi | enane fileType;

//Split nane into the tree parts
[filepath, fileNane, fileType] = fileNameSplit(teanFileNane.text());

return fileName + fileType;

}

voi d startGeneration()

TreeNode st art Node;

startNode = TreeNode:: fi ndNode(treePath.text());
if (startNode)

{
//Clear the data first
ttshegin;
del ete_from TnpCodeMetri cs;
ttscommit;
/] Start generating
CodeMetri cGenerator::generateMetrics(startNode);
//Update the grid
t npCodeMet ri cs_ds. research();
grid.update();
}
el se
{
error('Invalid path to TreeNode');
}

}

public int nouseDbl Cick(int _x, int _y, int _button, boolean _ctrl, bool ean
_shift)

int ret;
Tr eeNode node;

ret = super(_x, _y, _button, _ctrl, _shift);

//Find the treenode that corresponds to line that was clicked
node = TreeNode: : fi ndNode(t npCodeMetri cs. TreeNodePat h) ;

/1 Edit the node
node. AOTedi t ();

return ret;
}
voi d clicked()
{
super () ;
//Start the generation
el ement . start Generation();
}

voi d clicked()

B 45

super();

//Call nethod to start generation of statistics per teanfprefix
el enent . st art Gener at eTeantSt at s(t eanFi | eNane. text ());

Class: CodeMetricGenerator

cl ass CodeMetri cGener at or

}

/1 No instance variables, since all methods are static

public static void dod assMetric(TreeNode treeNode, List codeMetriclList)

{

Coded assMetric codeMetric;
Li st Enunerat or netri cEnum

xRef Updat eTnpRef er ences t mpUpdat e;
xRef TnrpRef er ences t npxRef Ref er ences;

//Create tnp cross references for the entire class (for optim zation)
t npUpdat e = new xRef Updat eTnpRef er ences() ;

tnpUpdat e. fil | TnpxRef Ref er ences(treeNode);

t npxRef Ref erences = t npUpdat e. al | TnpxRef Ref erences() ;

//Loop through all the netric classes that are avail able
metri cEnum = codeMetri cLi st. get Enunmerator();
whi | e(et ri cEnum nmoveNext ())

// Cast as Coded assMetric
codeMetric = SysDictd ass::as(nmetri cEnumcurrent(),

cl assNum(Coded assMetric));

}

/1 Pass the tree node of the class to check
codeMetri c. set El enent (treeNode) ;

/1 Pass the cross references to the netric class
codeMetri c. set XRef TnpRef er ences(t npxRef Ref er ences) ;

//CGet the value and insert into database
codeMetri cGenerator::savel nDB(codeMetric, treeNode.treeNodePath());

public static void doMet hodMetric(TreeNode treeNode, List codeMetriclList)

{

CodeMet hodMetri c codeMetri c;
Li st Enunmerat or netri cEnum

SysScanner d ass scanner;

/| Create scanner
scanner = new SysScanner Cl ass(treeNode);

//Loop through all the netric classes that are avail able
metri cEnum = codeMetri cLi st. get Enunmerator();
whi | e(et ri cEnum nmoveNext ())

B 46 Source code

/] Cast as CodeMet hodMetric
codeMetric = SysDictd ass::as(nmetri cEnumcurrent(),
cl assNum(CodeMet hodMetric));

/1 Pass the tree node of the class to check
codeMetri c. set El enent (treeNode) ;

|/ Pass the scanner for optim zation
codeMetri c. set Scanner (scanner);

//CGet the value and insert into database
codeMetri cGenerator:: savel nDB(codeMetric, treeNode.treeNodePath());

}

public static void generateMetrics(TreeNode startnode)

//Create lists with instances of CodeMet hodMetric/ Coded assMetric cl asses
Li st codeMet hodMetricList =

Cl asslnstanci ator: : creat eSubd assl nst ances(cl assNun{ CodeMet hodMetric));
Li st coded assMetricList =

Cl assl nstanci ator:: createSubd assl nst ances(cl assNun{ Coded assMetric));

Tr eeNode treeNode;
Tr eeNodeTr aver ser treeNodeTraver ser;

#avifiles
SysQper ati onProgress si npl eProgress;

//Create a progress indicator
si npl eProgress = SysQperati onProgress:: newGener al (#avi Update, 'Metrics',
startnode. AOTchi | dNodeCount ());

//Traverse the startnode
treeNodeTraverser = new TreeNodeTraver ser (startnode);
whil e (treeNodeTraverser.next())
{
/1 CGet the current node
treeNode = treeNodeTraverser. current Node();

/'l ncrenent and set text on progress
si mpl eProgress.incCount();
si nmpl eProgress. set Text (treeNode. t reeNodePat h()) ;

//Performdifferent actions depending on the type of TreeNode
switch (treeNode. handl e())
{
case cl assnum(Menber Functi on):
if (treeNode.treeNodeNane() != 'classDeclaration')
CodeMet ri cGenerator: : doMet hodMetri c(treeNode,
codeMet hodMetri cLi st);
br eak;
case cl assnum(d assNode):

CodeMetricGenerator::dod assMetric(treeNode, coded assMetricList);

br eak;

}

/| Done!!

B 47

}

public static void savel nDB(CodeMetri cBase codeMetric, TreeNodePath path)

{
TnpCodeMetri cs tnpCodeMetri cs;

/I Performthe check
t npCodeMet ri cs. Val ue = codeMetri c. get Val ue();

/1 Add standard info and insert into the table
tnpCodeMetrics. Metric = codeMetric. getDescription();
t npCodeMet ri cs. TreeNodePat h = pat h;

t npCodeMetrics.insert();

Class: CodeMetricStatltem

cl ass CodeMetricStatltem
{

str prefixNane;
str groupNamne;
int itenCount;
int mnVval ue;
int maxVal ue;
int val ueSum

#define.infinity(9999999)

public void addVal ue(int val ue)

/11 ncrease count
i t emCount ++;

/1 Add val ue to sum
val ueSum += val ue;

//Set min and max
i f(val ue < m nVval ue)
m nVal ue = val ue;
i f(val ue > naxVal ue)
maxVal ue = val ue;
public real getAvg()
real avgval ue = 0;
/11f the itenCount is greater than zero, then cal cul ate the average val ue
if (itemCount > 0)

avgVal ue = val ueSum/ itenCount;

return avgval ue;
int getltenCount()

// Return the nunber of itens
return itenCount;

B 48 Source code

int getMax()

{
// Return the maxi mum val ue recorded
return maxVal ue;
}
int getMn()
{
//Return the nininumval ue recorded
return mnVal ue;
}
str get Nane()
{
//Return the nane of the team
return groupNane;
}
public str getPrefixNanme()
{
// Return the name of the prefix
return prefixNane;
}
int getSum)
{
//Return the sum of recorded val ues
return val ueSum
}
void new(str _groupNane, str _prefixNane)
{
/llnitialize val ues
prefi xName = _prefixNane;
groupNane = _groupNane;
maxVal ue = 0;
val ueSum = 0;
itenCount = O;
//Set the mnvalue to a high nunber so we can track the actual min value
m nValue = #infinity;
}

Class: CodeMetricTeamStatGenerator

cl ass CodeMetri cTeantt at Gener at or

{
}

static str findPrefix(str path, Map teanPrefixMap)

{
#define. firstPostFi xPos(2)

str prefix ="'";
str okPrefix ="'";
bool ean ok;

int pos;

B 49

/1 CGet the object nane fromthe path
str obj Name = SysTreeNode: : appl Obj ect Narme(pat h) ;

/1 Loop through all prefixes in the map
Maplterator prefixlterator = new Maplterator(teanPrefixMap);
whi l e(prefixlterator.nore())

prefix = prefixlterator.key();
ok = fal se;

if (strscan(prefix,'*',1,1) == 1)

/1ls really a postfix
pos = strscan(objnane, substr(prefix, #firstPostFi xPos, strlen(prefix)-
1), 1, strl en(obj Nane));
if (pos >0 & pos == (strlen(obj Nanme) - strlen(prefix) +
#first Post Fi xPos))
ok = true;

else if (strscan(obj Nane, prefix, 1,strlen(obj Name)) == 1)
ok = true;

/11f match found and its |onger than the previous one, and a prefix is not
overriding a postfix
if (ok == true & strlen(prefix) >= strlen(okPrefix) && !(
(strscan(okPrefix,'*',1,1) == 1 & & strscan(prefix,'*',1,1) == 0)))
okPrefix = prefix;

/1 Read the nex prefix
prefixlterator.next();

}

// Return the found prefix
return okPrefix;

public static Map initStatMap(Map teanPrefixMap)
CodeMetricStatltem newltem

//Create new map for hol ding maps of CodeMetricStatltens per netric
Map metricStat Map = new Map(Types:: String, Types:: d ass);

Map st at Map; /I Map for holding CodeMetricStatltens per team
Maplterator iterator; //lterator for |ooping through prefix/team names

Set Enuner at or netri cEnunerator;
Dictd ass dict;
str netric;

//Loop through avalible netrics
netri cEnunerator =
SysDi ct O ass: : get | npl ement s(cl assNum(CodeMetri cBase)). get Enunmerat or () ;
whi | e(net ri cEnumer at or . nroveNext ())
{
/1 Get netric name
dict = new Dictd ass(netri cEnunerator.current());
metric = dict.call Static('getDescription');

/I New nmap for this netric

B 50 Source code

stat Map = new Map(Types:: String, Types:: d ass);

// Loop through team nanes
iterator = new Maplterator(teanPrefixMap);
while(iterator.nore())

{
//Create new CodeMetricStatltemand insert int nap
new tem = new CodeMetricStatlten(iterator.value(),iterator.key());
stat Map. i nsert (new tem get Prefi xNane(), newtemn;
iterator.next();
}

/1 Add statMap to netricStat vap
metricStat Map.insert(netric, statMp);

}

return metricStat vap;

}

public static Map | oadPrefixMap(str _fil eNane)

#def i ne. prefi xrecordLen(2)
#ile

Map map = new Map(Types:: String, Types::String);
lo file;
cont ai ner dat a;

/1 Check that the file exists
if (WnAPI::fileExists(_fileNane))

{
file = new Textlo(_fil eName, #io_read);
/1 Each record is on a single line, and field are delineted by ';’'
file.inRecordDelimter('\r\n");
file.inFieldDelimter(';"');
//Loop through all lines in the file
while(file.status() == 1O _Status:: k)
data = file.read();
if (conlen(data) == #prefixrecordLen)
map. i nsert (conpeek(dat a, #prefi xrecordLen), conpeek(data, 1));
}
}
}

return map;

}
public static Map statByTean(str _teanFileNane)
{
//Load map with prefix/teampairs fromfile
Map teanPrefixMap =
CodeMet ri cTeantt at Gener at or: : | oadPr ef i xMap(_t eanFi | eNane) ;
/1 Get map to hold maps of CodeMetricStatltenms per team per netric

Map stat Map = CodeMetri cTeantt at Generator::initStatMap(teanPrefixMap);
Map nmetri cMap;

B 51

CodeMetricStatltemstatltem

str path ="'";
str team
str prefix;

TrpCodeMetrics resul t;

#avifiles
SysOper at i onProgress si npl eProgress;

//Create a progress indicator

sel ect count(value) fromresult;

si nmpl eProgress = SysQperati onProgress:: newCeneral (#avi Update, 'Statistics',
resul t. Val ue);

/1 Loop through all records in tnpCodeMetrics to decide which prefix/metric map
they shoul d be added to
whil e select result order by TreeNodePath, Metric

if (result.TreeNodePath != path)

{

// Save the path

path = result. TreeNodePat h;

//Find the team nane fromprefix nap

prefix = CodeMetricTeanttat Generator::findPrefix(path, teanPrefixMap);
}

//lncrenent and set text on progress
si mpl eProgress.incCount();
si npl eProgr ess. set Text (pat h);

//CGet the map for the netric (ie. SLOO)
metricMap = stat Map. | ookup(result. Metric);

/] Get statltemfromprefix
statltem = metricMap. | ookup(prefix);

if (statltem!= null)

//Update item
stat!ltem addVal ue(result. Val ue);

}

return statMap;

B 52 Source code

Unit tests

Class: CodeMetricTeamStatGeneratorTest
cl ass CodeMetri cTeantt at Gener at or Test ext ends XUni t DevTest

#define. TeanPrefixFile('c:\\teanmist.txt")
}

voi d testFindPrefix()

{
Map prefixMap = CodeMetri cTeanftt at Generator: : | oadPrefixMap('c:\\teamist.txt');

/| Test of prefixes

this.assertEqual s('',
CodeMetri cTeantt at Generator:: findPrefix('\\d asses\\kj hadkj hasdkj ashd',
prefixMap),' No prefix should be found');

thi s. assert Equal s(' SysSi gn',
CodeMet ri cTeantt at Generator:: findPrefix('\\d asses\\ SysSi gnDi al ogForm ,
prefixMap),' SysSign should be found');

t his. assert Equal s(' Sys',
CodeMet ri cTeantt at Generator: : findPrefix('\\d asses\\ SysShel |', prefixMap),"' Sys
shoul d be found');

// Test of postfixes

this.assertEqual s(' *FI ',
CodeMet ri cTeantt at Generator: : findPrefix('\\d asses\\ PaynivbneyTransferSlip_Fl',
prefixMap),' *Fl should be found');

}

void testlnitStatMp()
{

Map prefixMap = CodeMetri cTeantt at Generator: : | oadPrefi xMap(#TeanPrefi xFil e);

//Check that a nmap with the statistics is actually created
Map stat Map = CodeMetri cTeantt at Generator: :init Stat Map(prefixMap);
thi s. assert Not Equal (0, st at Map. el enents(),' Map with statictics should not be

enpty');
}

voi d testLoadPrefixMap()
{

//Load the prefix nap and check that it is not enpty
Map result = CodeMetri cTeantt at Generator: : | oadPrefi xMap(#TeanPrefi xFile);
thi s. assertNot Equal (0, result.elenents(),' Map with teani prefixes should not be

enpty');
}

Class: CodeMetricGeneratorTest

cl ass CodeMetricGeneratorTest extends XunitDevTest

{
}

voi d testGenerateMetrics()

B 53

TrpCodeMetri cs tnp;

// Make sure to clean up the TnpCodeMetrics before we start
del ete_fromtnp;

//Start a generation of netrics

CodeMetri cCGenerator:: generateMetrics(TreeNode: : fi ndNode(@\ Cl asses\ CodeMet ri cDummy1
"))

/] Check that 22 metrics (7 class level + 5*3 nethod | evel) has been generated
sel ect count(Val ue) fromtnp;
thi s. assert Equal s(22,tnp. Val ue, "I ncorrect nunber of netrics generated");

Class: CodeMetricStatltemTest

class CodeMetricStatlteniTest extends XuUnitDevTest

{
}

voi d testNew()

{
CodeMetricStatltemstatltem

//Create new item
statltem = new CodeMetricStatltem(' group','prefix');

/] Check that the correct group and prefix are saved/returned correct
this.assert Equal s(' group', statltem get Nane(), "G oup nane not saved/fetched
correct");
this.assertEqual s(' prefix',statltem getPrefixName(),"Prefix name not
saved/ fetched correct");

}

voi d test AddVal ue()
{
//Create new item
CodeMetricStatltem statltem = new CodeMetricStatlten(' group', ' prefix');

/] Check that no values are added, and that the initialize values are correct
this.assert Equal s(0, statltem getltenCount(),"Zero itens should be added");
this. assert Equal s(0O, statltem get Avg(), "Average should be 0");

thi s. assertEqual s(0, statltem get Max(), "Max val ue shoul d be 0");

thi s. assert Not Equal (0, statltem getM n(), "M n val ue should not be 0");

this. assert Equal s(0, statltem get Sun(), " Sum should be 0");

/1 Add the first value
stat|tem addVal ue(100);

/I Check that the correct values are conputed

this.assertEqual s(1,statltemgetltenCount(),"One item should be added");
thi s. assert Equal s(100. 00, statltem get Avg(), "Average shoul d be 100");

thi s. assert Equal s(100, statltem get Max(), "Max val ue shoul d be 100");
this. assert Equal s(100, statltemgetMn(),"Mn val ue should be 100");
this. assert Equal s(100, stat|tem get Sun(), "Sum shoul d be 100");

/1 Add anot her val ue

B 54 Source code

stat|tem addVal ue(200);

/] Check again

this.assertEqual s(2,statltemgetltenCount(),"Two itens should be added");
thi s. assert Equal s(150. 00, statltem get Avg(), "Average shoul d be 150");

t his. assert Equal s(200, stat|tem get Max(), "Max val ue should be 200");

this. assert Equal s(100, statltemgetMn(),"Mn val ue should be 100");

thi s. assert Equal s(300, statltem get Sum(), " Sum shoul d be 300");

Class: CodeMetricFITest

cl ass CodeMetri cFl Test extends XuUnitDevTest
#SysBPCheck

CodeMetricFl fid ass;
}

voi d testGet BPStr ()
{
CodeMetricFl fi;
str bp;

/1 Fl for the class CodeMetricFl = 1 should not result in BP warning
fi = new CodeMetricFl();

fi.setEl ement (TreeNode: : fi ndNode(@\ Cl asses\ CodeMetricFl'));

bp = fi.getBPStr();

this.assertEqual s('',bp,"FI for CodeMetricFl should not result in BP warning");

/1FI for the class BOX = 411 should result in BP warning

fi.setEl ement (TreeNode: : fi ndNode(@\ Cl asses\ Box'));

bp = fi.getBPStr();

this.assertNot Equal ("', bp,"FI for Box should result in BP warning");

}
voi d test Get Description()

CodeMetricFl fi = new CodeMetricFl();

}/Call instance method to get description
this.assertEqual s('FI', fi.getDescription(), 'Wong description');

}
voi d test Get Error Code()

CodeMetricFl fi = new CodeMetricFl();

//Call instance method to get errorcode

t hi s. assert Equal s(#BPError CodeMetricFl, fi.getErrorCode(), 'Wong errorcode');

}
voi d test Get Val ue()

B 55

CodeMetricFl fi;
int val;

/1 FI for CodeMetricFl Test should be 0

fi = new CodeMetricFl();

fi.setEl ement (TreeNode: : fi ndNode(@\ Cl asses\ CodeMetri cFl Test'));
val = fi.getValue();

this. assert Equal s(0, val ,"FI for CodeMetricFl Test should be 0");

/1 FI for CodeMetricFl should be 1, since CodeMetricFl Test has a dependency on
fi.setEl ement (TreeNode: : fi ndNode(@\ Cl asses\ CodeMetricFl"'));

val = fi.getValue();
this.assert Equal s(1, val ,"FI for CodeMetricFl should be 1");

Class: CodeMetricNOCTest

cl ass CodeMetri cNOCTest extends XuUnit DevTest

#SysBPCheck
}
voi d test Get BPStr ()
{

CodeMet ri cNOC noc;
str bp;

/I NOC for the class CodeMetricBase = 2 should not result in BP warning

noc = new CodeMetri cNOC();

noc. set El enent (TreeNode: : fi ndNode(@\ O asses\ CodeMet ri cBase'));

bp = noc.getBPStr();

this.assertEqual s('', bp, "NOC for CodeMetricBase should not result in BP
war ni ng");

/I NOC for the class Axlnternal Base = 64 should result in BP warning

noc. set El enent (TreeNode: : fi ndNode(@\ O asses\ Axl nt er nal Base'));

bp = noc. getBPStr();

this.assertNot Equal (' ', bp, "NOC for Axlnternal Base should result in BP
war ni ng") ;

}
voi d testGetDescription()
CodeMet ri cNOC noc = new CodeMetri cNOC() ;

}/Call instance method to get description
this.assertEqual s(' NOC , noc. getDescription(), 'Wong description');

}
voi d test Get Error Code()

CodeMet ri cNOC noc = new CodeMetri cNOC() ;

B 56 Source code

//Call instance nethod to get errorcode

t hi s. assert Equal s(#BPErr or CodeMet ri cNOC, noc. get Error Code(), 'Wong

errorcode');

}

voi d test Get Val ue()
CodeMet ri cNOC noc;

int val;

/1 NOC for \d asses\ CodeMetricDumy4 should be 0
noc = new CodeMetri cNOC();

noc. set El enent (TreeNode: : fi ndNode(@\ O asses\ CodeMet ri cDunmy4'));

val = noc. get Val ue();
thi s. assert Equal s(0, val , "NOC for CodeMetri cDumy4 shoul d be 0");

/I NOCC for \d asses\CodeMetricBase should be 2

noc. set El enent (TreeNode: : fi ndNode(@\ O asses\ CodeMetri cBase'));
val = noc. get Val ue();

this. assert Equal s(2, val,"NOC for CodeMetricBase should be 2");

Class: GraphEdgeTest

cl ass GraphEdgeTest extends XunitDevTest

{
}
voi d test Set Nodel()
{
G aphNode nodel = new G aphNode();
G aphNode node2 = new G aphNode();
G aphEdge edge = new G aphEdge();
//Set the two nodes in the edge
edge. set Nodel(nodel);
edge. set Node2(node2) ;
/] Check that we can retrieve them again
thi s. assert Equal s(nodel, edge. get Nodel(), 'getNodel did not return the correct
val ue');
thi s. assert Equal s(node2, edge.get Node2(), 'getNode2 did not return the correct
val ue');
}

Class: GraphUndirectedTest

cl ass GraphUndirectedTest extends XuUnitDevTest

{
}

voi d test AddEdge()
GraphUndi rected graph = new G aphUndirected();

G aphNode nodel;
G aphNode node2;

B 57

G aphEdge

/1 Add two

edge;

nodes

nodel = graph. addNode(' hello0');
node2 = graph. addNode(' worl d');

/1 Add edge between nodes
edge = graph. addEdge(nodel, node2);

this. asse
this.asse
this. asse

rt Equal s(1, edge != null, 'new edge should be added');

rt Equal s(nodel, edge. getNodel(), 'nodel not added correct');
rt Equal s(node2, edge. get Node2(), 'node2 not added correct');

//Try to add the sane nodes as an edge again
edge = graph. addEdge(nodel, node2);

this.assert Equal s(1, edge == null, 'new edge should not be added');
}
voi d test AddNode()
{
GraphUndi rected graph = new G aphUndirected();
G aphNode node;
str testStr = "hello world';
/] Test for enpty when initialized
t his. assert Equal s(0, graph. get Nodes().elenents(),
el enents');
/1 Add an el enent and test that is was added
node = graph. addNode(testStr);
this.assertEqual s(1, node != null, 'node should be added');
thi s. assert Equal s(1, graph. getNodes().el ements(),
el enent');
/1 Find the node containing 'hello world'
node = graph.findNodeOnData(testStr);
this.assertEqual s(1, node != null, 'node should be found');
}

void testGetlL
{

G aphUndi rected graph = new G aphUndi rected();

G aphNode
G aphNode
G aphNode

G aphEdge
G aphEdge

Li st neig

/1 Add nod

nodel = g
node2 = g
node3 = g
edgel3 =
edge32 =
/1 Get the

B 58

i st Of Nei ghbour s()

nodel;
nodez2;
node3;

edgel3;
edge32;

hbours;

es and edges

raph. addNode("' hell 0");

raph. addNode(' wor 1 d');

raph. addNode(' t oday') ;

gr aph. addEdge(nodel, node3);
gr aph. addEdge(node3, node2);

nei ghbours of nodel

' graph shoul d not contain any

' graph shoul d contain one

Source code

nei ghbours = graph. get Li st Of Nei ghbour s(nodel);
this. assert Equal s(1, nei ghbours. el enents(), 'nodel should have 1 nei ghbour');

/] Get the neighbours of node3
nei ghbours = graph. get Li st Of Nei ghbour s(node3);
this. assert Equal s(2, nei ghbours. el enents(), 'node3 should have 2 nei ghbours');

/1 Get the neighbours of node2
nei ghbours = graph. get Li st Of Nei ghbour s(node2) ;
this. assert Equal s(1, nei ghbours. el enents(), 'node2 should have 1 nei ghbour');

}
voi d test RunDFS()

Li st Enuner at or enum
G aphNode node;
int nodesWt hQut Parent;

GraphUndi rected graph = new G aphUndirected();
/*The test graph consists of two disconnected parts:

A-B-C
|/
E D- F

*/

G aphNode nodeA
G aphNode nodeB
G aphNode nodeC
G aphNode nodeD
G aphNode nodeE
G aphNode nodeF

graph. addNode(' A") ;
graph. addNode(' B') ;
gr aph. addNode(' C) ;
gr aph. addNode(' D) ;
graph. addNode(' E') ;
gr aph. addNode(' F');

/1 Add t he edges

gr aph. addEdge(nodeA, nodeE);
gr aph. addEdge(nodeA, nodeB);
gr aph. addeEdge(nodeB, nodeCQ);
gr aph. addEdge(nodeD, nodeF);

//Before we run the DFS none of the nodes shoul d have a parent
this. assert Equal s(6, graph. nodesW t hout Parent (), 'nodesW thout Parent shoul d
equal the nunber of nodes before runDFS);

/1 Do the DFS
graph. runDFS() ;

/] Check that only two nodes does not have a parent

this. assert Equal s(2, graph.nodesWthoutParent(), 'nodesWthoutParent did not
return the correct value, so runDFS nust have failed');

}

B 59

Class: GraphNodeTest

cl ass GraphNodeTest extends XunitDevTest

{
}

voi d test Set AndGet ()
{
G aphNode gnode = new G aphNode();
G aphNode gnodeParent = new G aphNode();

/1 Add sone data and retrive it again

gnhode. set Dat a(gnodePar ent) ;

t hi s. assert Equal s(gnodeParent, gnode.getData(), 'getData did not return the
correct value');

/1 Add the color and retrive it again

gnhode. set Col or (2);

this. assert Equal s(2, gnode.getColor(), 'getColor did not return the correct
val ue');

/1 Set timediscovered and retrive it again

gnode. set Ti meDi scovered(3);

this. assert Equal s(3, gnode. get Ti neDi scovered(), 'getTi neDi scovered did not
return the correct value');

//1Set tinme finished and retrive it again

gnode. set Ti meFi ni shed(4);

thi s. assert Equal s(4, gnode. get Ti neFi ni shed(), 'getTineFinished did not return
the correct value');

//Set parent and retrive it again
gnode. set Par ent (gnodePar ent) ;

t hi s. assert Equal s(gnodePar ent, gnode. getParent(), 'getParent did not return the
correct value');

}
Class: CodeMetricLCOMTest

cl ass CodeMetri cLCOMIest extends XUnitDevTest

#SysBPCheck
}
voi d test Get BPStr ()
{

CodeMet ri cLCOM | com
str bp;

//LCOM for the class CodeMetricDunmy4 = 2 should result in BP warning

| com = new CodeMetri cLCOM) ;

| com set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDummy4'));

bp = lcomgetBPStr();

thi s. assertNot Equal ("', bp, "LCOM for CodeMetri cDummy4 should result in BP
war ni ng");

//LCOM for the class SourceCodeChunker = 1 should not result in BP warning

B 60 Source code

| com = new CodeMetri cLCOM) ;

| com set El enent (Tr eeNode: : fi ndNode(@\ Cl asses\ Sour ceCodeChunker'));

bp = lcomgetBPStr();

this.assertEqual s('', bp, "LCOM for SourceCodeChunker should not result in BP
war ni ng");

}
voi d test Get Description()

CodeMetri cLCOM | com = new CodeMetri cLCOM) ;

}/Cal | instance nethod to get description
this.assert Equal s(' LCOM, |com getDescription(), 'Wong description');

}
voi d test Get Error Code()

CodeMetri cLCOM | com = new CodeMetri cLCOM) ;

}/Call instance nethod to get errorcode
t hi s. assert Equal s(#BPError CodeMetri cLCOM | com get Error Code(), 'Wong
errorcode');

}

voi d test Get Val ue()

{
CodeMet ri cLCOM | com

int val;

/* LCOM for CodeMetricDumy4 = 2:
a b c

| | I
fl() - 9(0) - r() x()
*/
| com = new CodeMetri cLCOM) ;
| com set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDunmy4'));

val = | com get Val ue();
this. assert Equal s(2, val ,"LCOM for CodeMetricDumy4 should be 2");

Class: CodeMetricRFCTest

cl ass CodeMetri cRFCTest extends XUnitDevTest

#SysBPCheck
}
voi d test Get BPStr ()
{

CodeMetri cRFC rfc;
str bp;

/I RFC for the class CodeMetricDummy3 = 6 should not result in BP warning
rfc = new CodeMetri cRFC();

B 61

rfc.setEl enent (TreeNode: : fi ndNode(@\ d asses\ CodeMet ri cDunmy3'));

bp = rfc.getBPStr();

this.assertEqual s('', bp, "RFC for CodeMetri cDummy3 should not result in BP
war ni ng");

/I RFC for the class SysStartupCndCheckBest Practices should result in BP
war ni ng
rfc = new CodeMetri cRFC();

rfc.setEl ement (TreeNode: : fi ndNode(@\ Cl asses\ SysSt art upCndCheckBest Practices'));
bp = rfc.getBPStr();
thi s.assertNot Equal (' ', bp, "RFC for SysStartupCndCheckBest Practices shoul d
result in BP warning");

}
voi d testCGetDescription()

CodeMetri cRFC rfc = new CodeMetri cRFC();

}/Call i nstance method to get description
this.assertEqual s(' RFC , rfc.getDescription(), 'Wong description');
}

voi d test Get ErrorCode()

CodeMetri cRFC rfc = new CodeMetri cRFC() ;

}/Call instance nethod to get errorcode
t hi s. assert Equal s(#BPError CodeMetri cRFC, rfc.getErrorCode(), 'Wong
errorcode');

}

voi d test Get Val ue()

CodeMetri cRFC rfc;
int val;

/*RFC for the class CodeMetricDumy3 = 6:
\ A asses\ CodeMet ri cDummy 3\ net hodX

\ d asses\ Di ct d ass\ new
\ O asses\ O assl nst anci at or\ cr eat eSubd assl nst ances
\ Ol asses\ List\el ements
\ O asses\ Li st\ addEnd
\ d asses\ CodeMet hodMet ri c\ new
*/
rfc = new CodeMetri cRFC();
rfc.setEl enent (TreeNode: : fi ndNode(@\ d asses\ CodeMet ri cDummy3'));

val = rfc.getVal ue();
thi s. assert Equal s(6, val ,"RFC for CodeMetri cDummy3 shoul d be 6");

Class: CodeMetricCBOTest

cl ass CodeMetri cCBOTest extends XUnitDevTest
{

#SysBPCheck

B 62 Source code

}

voi d test Get BPStr ()

{
CodeMet ri cCBO cbo;

str bp;

/1CBO for the class CodeMetricDummy3 = 9 should not result in BP warning

cbo = new CodeMetri cCBQ();

cbo. set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDummy3'));

bp = cbo. getBPStr();

this.assertEqual s('', bp, "CBO for CodeMetricDumy3 should not result in BP
war ni ng");

/1 CBO for the class SysStartupCndCheckBest Practices should result in BP
war ni ng
cbo = new CodeMetri cCBQ();

cho. set El ement (TreeNode: : fi ndNode(@\ O asses\ SysSt art upCrdCheckBest Practices'));
bp = cbo. getBPStr();
thi s. assertNot Equal (' ', bp, "CBO for SysStartupCndCheckBest Practices shoul d
result in BP warning");

}
voi d testCGetDescription()

CodeMet ri cCBO cbo = new CodeMetri cCBQ();

}/Cal | instance nethod to get description
this. assertEqual s(' CBO, cbo.getDescription(), 'Wong description');

}
voi d test Get Error Code()

CodeMet ri cCBO cbo = new CodeMetri cCBQ();

}/Call instance nethod to get errorcode
t hi s. assert Equal s(#BPErr or CodeMet ri cCBO, cho. get Error Code(), 'Wong
errorcode');

}

voi d test Get Val ue()

CodeMet ri cCBO cho;
int val;

/*CBO for the class CodeMetri cDummy3 = 10:
\ Cl asses\ Addr ess
\ O asses\ Addr essW zar d
\ d asses\ d assl nst anci at or
\ d asses\ CodeMet hodMetri c
\ O asses\ CodeMet ri cDunmy?2
\C asses\StringUtil
\ Data Dictionary\ Tabl es\ Addr ess
\ Data Di ctionary\ Tabl es\ Cust Tabl e

B 63

\ Syst em Docunent ati on\ Cl asses\ Di ct Cl ass
\ Syst em Docunent ati on\ Cl asses\ Li st
*/

cbo = new CodeMetri cCBQ();

cbo. set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDummy3'));
val = cbo. get Val ue();

thi s. assert Equal s(10, val , "CBO for CodeMetricDumy3 shoul d be 10");

Class: CodeMetricWMCTest

cl ass CodeMetri cWMCTest extends XUnit DevTest

#SysBPCheck
}
voi d testGet BPStr ()
{

CodeMet ri cWMC wirt;
str bp;

/I WMC for the class CodeMetricDummyl = 33 should not result in BP warning

wnt = new CodeMetri cWMC() ;

wnt. set El emrent (Tr eeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumyl'));

bp = wnt. getBPStr ();

this.assertEqual s('', bp, "WMC for CodeMetricDummyl should not result in BP
war ni ng");

/ITWMC for the class SysStartupCndCheckBest Practices should result in BP

war ni ng
wnt = new CodeMetri cWMC() ;

wnt. set El ement (Tr eeNode: : fi ndNode(@\ O asses\ SysSt art upCmdCheckBest Practices'));
bp = wnt. getBPStr();

this.assert Not Equal (' ', bp, "WMC for SysStartupCndCheckBest Practices shoul d
result in BP warning");

}
voi d test GetDescription()
CodeMetri cWMC wrt = new CodeMet ri cWMC() ;

}/Call instance method to get description
this. assert Equal s(' W', wnt. get Description(), 'Wong description');

}
voi d test Get Error Code()
CodeMetri cWMC wrt = new CodeMetri cWMC() ;
}/Call instance nethod to get errorcode
t hi s. assert Equal s(#BPError CodeMetri cWMC, wnt. get Error Code(), 'Wong

errorcode');

}

B 64 Source code

voi d test Get Val ue()

CodeMet ri cWMC wirt;
int val;

//WMC for the class CodeMetricDumyl =9 + 5 + 2 + 16 + 1 = 33
wnt = new CodeMet ri cWMC() ;

wnt. set El ement (Tr eeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumyl'));
val = wnt. get Val ue();

/] Test that we get the correct val ue
thi s. assert Equal s(33,val ,"W/C for CodeMetricDummyl shoul d be 33");

Class: CodeMetricDITTest

cl ass CodeMetricDl TTest extends XuUnit DevTest

#SysBPCheck
}
voi d test Get BPStr ()
{

CodeMetricDI T dit;
str val;

/DI T.CGetBpStr for the class CodeMetricDIT ="'

dit = new CodeMetricD T();

dit.set El enent (TreeNode: : fi ndNode(@\ Cl asses\ CodeMetricDI T'));

val = dit.getBPStr();

this.assertEqual s('',val,'getBPStr for CodeMetricDI T should be blank');

//DT.GetBpStr for the class CodeMetricDumy2 != "'

dit.set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDumy2'));

val = dit.getBPStr();

this.assertNot Equal (' ', val,'getBPStr for CodeMetricDummy?2 shoul d not be
bl ank');

}
voi d test Get Description()
CodeMetricDI T dit = new CodeMetricDI T();

//Call instance nethod to get description
this.assertEqual s('DIT', dit.getDescription(), 'Wong description');

}

voi d test Get Error Code()
CodeMetricDI T dit = new CodeMetricDI T();
}/Call instance nethod to get errorcode

t his. assert Equal s(#BPError CodeMetricDI T, dit.getErrorCode(), 'Wong
errorcode');

B 65

}

voi d test Get Val ue()

{

CodeMetricDI T dit;

int val;

//DIT for the class CodeMetricDumyl = 1

dit = new CodeMetricD T();

dit.set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDumyl'));

val = dit. getVal ue();

thi s. assert Equal s(1, val, "get Val ue for CodeMetricDumyl should be 1");

//DIT for the class CodeMetricDIT = 3

dit = new CodeMetricD T();

dit.set El ement (TreeNode: : fi ndNode(@\ Cl asses\ CodeMetricDI T'));

val = dit. getVal ue();

this. assert Equal s(3, val, "get Val ue for CodeMetricD T should be 3");

//DIT for the class CodeMetricDumy2 = 9

dit = new CodeMetricD T();

dit.set El enent (Tr eeNode: : fi ndNode(@\ C asses\ CodeMet ri cDumy2'));

val = dit.getValue();

thi s. assert Equal s(9, val , "get Val ue for CodeMetricDumy2 should be 9");
}

Class: ClasslnstanciatorTest

class d asslnstanci at or Test extends xUnitDevTest

{

}

voi d testCreat eSubd assl nst ances()

to
List list;
//Check that it will return an enpty list if no subclasses exists
list =

Cl asslnstanci ator:: creat eSubd assl nst ances(cl assnun{ C assl nst anci at or Test)) ;
this.assertEqual s(0, list.elements(), 'List should be empty');

//Check that the list is not enpty, when called with the CodeMet hodMetric id
list = dasslnstanciator::createSubd assl nst ances(cl assnun{ CodeMet hodMetric));
this.assertNot Equal (0, list.elenments(), 'List should contain elenents');

Class: StringUtilTest
class StringUtilTest extends xUnitDevTest

{
}

void testCountOccurences()

{

B 66 Source code

str orgtext =" \n\n\n \n *;

/[Test of finding single character
this.assertEquals(4, StringUtil::CountOccurences(orgtext, \n"),
'StringUtil::CountOccurences failed on finding single character");

/[Test of finding multiple character sequence
this.assertEquals(2, StringUtil::CountOccurences(orgtext, \n\n'),
'StringUltil::CountOccurences failed on finding multiple character sequence’);

/[Test of finding character sequence that does not exist
this.assertEquals(0, StringUtil::CountOccurences(orgtext, 'hello’),
'StringUtil::CountOccurences failed on finding character sequence that does not exist');

}

Class: SourceCodeChunkerTest

cl ass SourceCodeChunker Test extends xUnitDevTest
{

}
public void setUp()

str orgCode;

super();

/*Create dummy code for test
Is in setup since it is shared by various tests

*/
orgCode = '/*Starting comment\n'
+ ' Coment line 2*/\n'
+ 'int MyMethod()\n'
+"{\n
+ ! int a;\n'
+ ! int b; //Coment here\n'
+ str s=\"/* hello */ \\\\ // \\\" \'";\n'
+ ! /*comrent*/ int c¢; //Line ends with comment\n’
+'\n'
+ s=@ "' hello \\\";\n'
+ ! \n'
+ ! if (a==b)\n'
+ ! thi s. doSonet hing();\n'
+'\n'
+ //Only comrent |ine\n'
+ '"}I\n";
}
voi d test Get Next ()
{
str newCode;

Sour ceCodeChunker chunker = new Sour ceCodeChunker (orgCode); //Use the code from
vari abl e orgCode

/1 Get the first chunk

B 67

thi s. assert Equal s(true, chunker.noveNext (), 'SourceCodechunker.nmoveNext failed
on call 1');

this.assertEqual s('', chunker. current CodeChunk(),
' Sour ceCodechunker . current CodeChunk failed on call 1');

this.assertEqual s('/*Starting conment\n Coment |ine 2*/',
chunker . cur r ent Comment Chunk(), ' SourceCodechunker. current Corment Chunk failed on
call 1');

thi s. assert Equal s(1, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 1');

this. assert Equal s(1, chunker.coment StartLine(),
' Sour ceCodechunker.coment StartLine failed on call 1');

/1 Get and test subsequent chunks
thi s. assert Equal s(true, chunker.noveNext (), 'SourceCodechunker.nmoveNext failed
on call 2');
this. assert Equal s('\nint MyMet hod()\n{\n int a;\n int b; ',
chunker . cur r ent CodeChunk(), ' SourceCodechunker. current CodeChunk failed on call 2');
thi s. assertEqual s('//Comrent here', chunker. current Conment Chunk(),
' Sour ceCodechunker . current Comment Chunk failed on call 2');
this. assert Equal s(2, chunker.codeStartLine(), 'SourceCodechunker.codeStartlLine
failed on call 2');
thi s. assert Equal s(6, chunker.coment StartLine(),
' Sour ceCodechunker.coment StartLine failed on call 2');

thi s. assert Equal s(true, chunker.noveNext (), 'SourceCodechunker.nmoveNext failed
on call 3");
this.assertEqual s('\n str s=\"/* hello */ \\\\ // \\\'" \';\n ",
chunker . current CodeChunk(), ' SourceCodechunker. current CodeChunk failed on call 3');
this.assertEqual s('/*comrent*/', chunker. current Corment Chunk(),
' Sour ceCodechunker . current Commrent Chunk failed on call 3');
this. assert Equal s(6, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 3');
thi s. assert Equal s(8, chunker.coment StartLine(),
' Sour ceCodechunker . comrent StartLine failed on call 3');

this. assert Equal s(true, chunker.noveNext (), ' SourceCodechunker.noveNext fail ed
on call 4");

this.assertEqual s(' int c; ', chunker.current CodeChunk(),
' Sour ceCodechunker . current CodeChunk failed on call 4");

this.assertEqual s('//Line ends with comment', chunker. current Corment Chunk(),
' Sour ceCodechunker . current Comment Chunk failed on call 4');

thi s. assert Equal s(8, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 4");

t his. assert Equal s(8, chunker.coment StartLine(),
' Sour ceCodechunker.coment StartLine failed on call 4');

thi s. assert Equal s(true, chunker.noveNext (), 'SourceCodechunker.nmoveNext failed
on call 5);

this.assertEqual s('\n\n s=@"' hello \\\';\n \n if (a==b)\n
thi s. doSonet hi ng();\n\n ', chunker. current CodeChunk(),
' Sour ceCodechunker . current CodeChunk failed on call 5');

this.assertEqual s('//Only comment |ine', chunker. current Corment Chunk(),
' Sour ceCodechunker . current Comment Chunk failed on call 5');

thi s. assert Equal s(8, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 5");

t hi s. assert Equal s(15, chunker.coment StartLine(),
' Sour ceCodechunker.coment StartLine failed on call 5');

thi s. assert Equal s(true, chunker.noveNext (), 'SourceCodechunker.nmoveNext fail ed
on call 6');

B 68 Source code

this.assertEqual s('\n}\n', chunker. current CodeChunk(),
' Sour ceCodechunker . current CodeChunk failed on call 6');
this.assertEqual s('', chunker. current Corment Chunk(),
' Sour ceCodechunker . current Commrent Chunk failed on call 6');
thi s. assert Equal s(15, chunker.codeStartLine(), 'SourceCodechunker.codeStartLine
failed on call 6');
this. assert Equal s(17, chunker.coment StartLine(),
' Sour ceCodechunker . comrent StartLine failed on call 6');

/W shoul d now have reached the end of the source code, so any subsequent
calls to getNext should return fal se!

thi s. assert Equal s(fal se, chunker.noveNext (), ' SourceCodechunker.noveNext fail ed
on call 7");

}

Class: CodeMetricCPMethodTest

cl ass CodeMetri cCPMet hodTest extends xUnit DevTest

#SysBPCheck
}
voi d testCal cCP()
{
TreeNode node;
int val ue;
/* Calculation for: \C asses\ CodeMet ri cDummy1\ net hodl
Lines with comments = 16
Total lines = 34
Bl ank lines = 6
CP=(16/(34-6))*100 = 57%
*/
node = TreeNode: : fi ndNode(@\ d asses\ CodeMet ri cDummy1\ met hod1') ;
val ue = CodeMetri cCPMet hod: : cal cCP(node. AOTget Source());
this. assert Equal s(57, value, 'CP of CodeMetricDumyl. net hodl not correct');
}
voi d testGet BPStr ()
{
CodeMet ri cCPMet hod cp;
str val;
/I No best practice nessage shoul d occur
cp = new CodeMetri cCPMet hod() ;
cp. set El enent (TreeNode: : fi ndNode(@\ Cl asses\ CodeMet ri cDummy1\ net hodl'));
val = cp.getBPStr();
this.assertEqual s(val ,"","getBPStr for CodeMetricDumyl\ met hodl shoul d be
bl ank");

/1 A best practice warning should occur
cp. set El enent (TreeNode: : fi ndNode(@\ C asses\ CodeMet ri cDunmy 1\ noComents')) ;

B 69

val = cp.getBPStr();
t his. assert Not Equal (val ,"", @get BPStr for CodeMetricDummyl\ noComments shoul d
result in a BP warning");

}
voi d testCGetDescription()

CodeMet ri cCPMet hod cp = new CodeMet ri cCPMet hod() ;

}/Call instance nethod to get description
this.assertEqual s(' CP', cp.getDescription(), 'Wong description');
}

voi d test Get Error Code()
CodeMet ri cCPMet hod cp = new CodeMet ri cCPMet hod() ;
}/Call static nethod to get errorcode

t hi s. assert Equal s(#BPError CodeMet ri cCPMet hod, cp. get Error Code(), 'Wong
errorcode');

}

Class: CodeMetricVGMethodTest

cl ass CodeMetri cVGAWet hodTest extends XUnit DevTest

#SysBPCheck
}
voi d testCal cVE)
{

TreeNode node;
SysScanner d ass scanner;
int val ue;

/1V(G with two enbedded net hods, and all other code-constructs (besides SQ)
that will add to the CC

node = TreeNode: : fi ndNode(@\ d asses\ CodeMet ri cDummy1\ et hod2') ;

scanner = new SysScanner Cl ass(node);

val ue = CodeMetri cVGWet hod: : cal cV@E scanner) ;

thi s. assert Equal s(16, value, 'V(G of CodeMetricDumyl. met hod2 not correct');

I1V(G with just one enbedded nethod.

node = TreeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumy1\ met hod1') ;

scanner = new SysScanner Cl ass(node);

val ue = CodeMetri cVGWet hod: : cal cV@E scanner);

this. assert Equal s(2, value, 'V(G of CodeMetricDumyl. nethodl not correct');

/] Test of V(G in SQL

node = TreeNode: : fi ndNode(@\ O asses\ CodeMetri cDumy1\if');

scanner = new SysScanner Cl ass(node);

val ue = CodeMetri cVGWet hod: : cal cV@E scanner) ;

thi s. assertEqual s(5, value, 'V(GQ of CodeMetricDumyl.if not correct');

/1 Test of method definitions

node = TreeNode: : fi ndNode(@\ O asses\ CodeMet ri cDummy1\ abc');
scanner = new SysScanner Cl ass(node);

val ue = CodeMetri cVGWet hod: : cal cV@E scanner) ;

B 70 Source code

thi s.assertEqual s(9, value, 'V(G of CodeMetricDumyl.abc not correct');

}
voi d testGet BPStr ()
{
CodeMet ri cVGWet hod vg;
str val;
/I No best practice nessage should occur, since the CC val ue=2
vg = new CodeMetri cVGVet hod();
vg. set El ement (Tr eeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumy 1\ et hodl1'));
val = vg.getBPStr();
this.assert Equal s(val ,"","getBPStr for CodeMetricDummyl\ net hodl shoul d be
bl ank") ;
/1 A best practice nmessage shoul d occur, since the CC val ue=16
vg. set El enent (Tr eeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumy 1\ net hod2'));
val = vg.getBPStr();
thi s. assert Not Equal (val ,"", "get BPStr for CodeMetri cDunmyl\ net hod2 shoul d not be
bl ank");
}

voi d test Get Description()
CodeMet ri cVGWet hod vg = new CodeMet ri cVGWet hod() ;

//Call instance nmethod to get description
this.assertEqual s(' V(Q', vg.getDescription(), 'Wong description');

}

voi d test Get Error Code()
CodeMet ri cVGWet hod vg = new CodeMet ri cVGWet hod() ;
}/Cal | instance nethod to get errorcode

t hi s. assert Equal s(#BPEr r or CodeMet ri cVGWet hod, vg. get Error Code(), 'Wong
errorcode');

}
Class: CodeMetricSLOCMethodTest

cl ass CodeMetri cSLOCMet hodTest extends XUnit DevTest

#SysBPCheck
}
public void testCal cSLOC()
{
Tr eeNode node;
int val ue;
//Load treenode and call static nethod to cal cul ate SLOC
node = TreeNode: : fi ndNode(@\ O asses\ CodeMet ri cDummy1\ met hod1') ;
val ue = CodeMetri cSLOCMet hod: : cal cSLOC(node. AOTget Source());
thi s. assert Equal s(15, value, 'SLOC of CodeMetricDumyl. met hodl not correct');
}

B71

voi d test Get BPStr ()

{

CodeMet ri cSLOCMet hod sl oc;

str val;

/1 No best practice nessage shoul d occur

sl oc = new CodeMet ri cSLOCMet hod() ;

sl oc. set El enent (Tr eeNode: : fi ndNode(@\ O asses\ CodeMet ri cDumy 1\ net hod1'));

val = sloc.getBPStr();

this.assertEqual s(val ,"","getBPStr for CodeMetricDumyl\ met hodl shoul d be
bl ank");

/1 A best practice warning should occur

sl oc. set El enent (Tr eeNode: : fi ndNode(@\ O asses\ SysSt art upCrdCheckBest Pract i ces\ updat
eExcel Wor kbook')) ;
val = sloc.getBPStr();
thi s. assert Not Equal (val ,"", @get BPStr for
SysSt art upCndCheckBest Pract i ces\ updat eExcel Wr kbook should result in a BP
war ni ng") ;

}
voi d testCGetDescription()
CodeMet ri cSLOCMet hod sl oc = new CodeMet ri cSLOCMet hod() ;

}/Cal | instance nethod to get description
this.assertEqual s(' SLOC , sloc.getDescription(), 'Wong description');

}

voi d test Get Error Code()
CodeMet ri cSLOCMet hod sl oc = new CodeMet ri cSLOCMet hod() ;
//Call instance nethod to get errorcode

t hi s. assert Equal s(#BPEr r or CodeMet ri cSLOCMet hod, sl oc. get Error Code(), 'Wong
errorcode');

}
public void test RenoveConment s()
{

str orgCode;

str expect edNewCode;

str newCode;

/1 Check of code with coments

orgCode = "/* hello */\nprivate int something{\n int x; //coment\n /*1\n
2*/\n\n [/* 123 /] */x=4;/* 123 */\n}";

expect edNewCode = "\nprivate int something{\n int x; \n \n\n x=4;\n}";

newCode = CodeMetri cSLOCMet hod: : r enoveConment s(or gCode) ;

thi s. assert Equal s(expect edNewCode, newCode, 'Renpval of comments failed');

/] Check of code wi thout any conments
orgCode = "\nprivate int something{\n int x; \n \n\n x=4;\n}";

B 72 Source code

expect edNewCode = or gCode;

newCode = CodeMetri cSLOCMet hod: : r enoveConment s(or gCode) ;

t hi s. assert Equal s(expect edNewCode, newCode, 'Code contains no comments but has
changed anyway!');

/] Check of code with strings containing escaped comment chars
orgCode = "'int MethodA \n str a; \n\na=\"\"\"; a=\"*/\"; a=\"\\\\\"

expect edNewCode = or gCode;

newCode = CodeMetri cSLOCMet hod: : r enoveConment s(or gCode) ;

t hi s. assert Equal s(expect edNewCode, newCode, 'Code contai ni ng escaped coment
chars!');

/| Check where code end with sigle coment and no new i nes
orgcode = '// Start comment \n'
"void nethodl() \n'
T
o
"/l End comment';
expect edNewCode = '\ n'
+ 'void nmethodl() \n'
+ "{\n'
+'}\n';
newCode = CodeMetri cSLOCMet hod: : r enoveConment s(or gCode) ;
thi s. assert Equal s(expect edNewCode, newCode, 'Code ending w th single coment
and no newins');

++ 4+ +

Class: SysBPCheckMemberFunctionTest

cl ass SysBPCheckMenber Functi onTest extends XuUnit DevTest
{
}

voi d test CheckConpl exi ty()
#SysBPCheck

TreeNode test Node =
TreeNode: : fi ndNode(@\ O asses\ SysSt art upCndCheckBest Pract i ces\ updat eExcel Wr kbook')

SysConpi | er Qut put out put;
TrpConpi | er Qut put t mpout ;

int bpcount;

//Start by enabling the conplexity check
SysBPCheckConpl exi t yEnabl er: : set BPConpl exi ty(true);

/1 ear the output
i nfol og. cl ear (0);

/1 Do the check
SysBPCheck: : checkTr eeNode(t est Node) ;

/] Get out put
out put = infol og. conpilerQutput();

B73

t npout = out put. conpil erCQutput();

whi | e sel ect tnpout
wher e t npout. SysConpi | er Qut put Tab == SysConpi | er Qut Put Tab: : Best Practi ces
&& (t npout . Conpi | eEr r or Code == #BPErr or CodeMet ri cSLOCMet hod
|| tnpout. Conpil eError Code == #BPError CodeMet ri cVGvet hod
|| tnpout. Conpil eError Code == #BPError CodeMet ri cCPMet hod)

{
}

/1 Check that three BP deviations occured

thi s. assert Equal s(3, bpcount, @3 BP conpl exity deviations should occur for
met hod \ O asses\ SysSt art upCndCheckBest Pract i ces\ updat eExcel Wor kbook') ;

}

bpcount ++;

Class: SysBPCheckClassNodeTest

cl ass SysBPCheckd assNodeTest extends Xunit DevTest

{
}

voi d test CheckConpl exi ty()
{
#SysBPCheck

TreeNode test Node =

TreeNode: : fi ndNode(@\ O asses\ SysSt art upCndCheckBest Practi ces');
SysConpi | er Qut put out put ;
TrpConpi | er Qut put t mpout ;

int bpcount;

//Start by enabling the conplexity check
SysBPCheckConpl exi t yEnabl er: : set BPConpl exi ty(true);

/1 Cl ear the output
i nfol og. cl ear (0);

/1 Do the check
SysBPCheck: : checkTr eeNode(t est Node) ;

/] Get out put
out put = infol og. conpilerQutput();
t npout = out put. conpil erCQutput();

whi | e sel ect tnpout
wher e t npout. SysConpi | er Qut put Tab == SysConpi | er Qut Put Tab: : Best Practi ces
&& t npout . Conpi | eErr or Code >= #BPError CodeMetricD T
&& t npout . Conpi | eError Code <= #BPError CodeMetri cFl

{
}

/] Check that only BP deviations occured
t hi s. assert Equal s(3, bpcount, @3 BP conpl exity deviations should occur for class
\ O asses\ SysSt art upCndCheckBest Practi ces (WMC, CBO, RFQC)');

bpcount ++;

B 74 Source code

B 75

Test classes

Class: CodeMetricDummy1l

cl ass CodeMetri cDummyl extends object

{
}

voi d abc()

}

|/ Each of these enbedded net hods adds one to CC
int a() { ;return 1;}

int64 b() { ;return 2;}

bool ean c() { ;return true;}

real d() { ;return 3.0;}

date e() { ;return today();}

tineofday f() { ;return tinenow);}

str g() { ;return "hello';}

guid h() { ;return str2guid('hello');}

/1 These should not add anything to CC
startLengt hyQperation();
endLengt hyOperati on(true);

/1 Here CC=9

void if(str soneval)

{

Cust Tabl e cust;
Cont act Person cont act ;

//Adds 0 to CC
sel ect cust where Cust.Account Num == "4000";

//Adds 0 to CC

sel ect cust where Cust.Account Num == "4000" && cust.Name == "Hell 0" ||
cust. BankAccount == "123456";

//Adds 1 to CC
whi l e sel ect cust where Cust.Account Num == "4000"

cust . BankAccount == "123456"

{

}

//Adds 1 to CC
sel ect cust where cust.Account Num == "4000"

print cust.NaneAlias, " ", cust.Phone, '"\n';

join contact where contact.Address == cust. Address;

//Adds 2 to CC

whi | e sel ect cust where Cust.Account Num == "4000" && cust. Nane

&& cust. Name == "Hel | 0" ||

= "Hell o"

join contact where contact.Address == cust. Address && contact. Assi st ant Name ==
"Wor | d"

{

B 76

Source code

print cust.NaneAlias, " ", cust.Phone, '"\n';

}

//Adds 0 to CC

del ete_from cust where cust.Account Num == "4000" && cust.Nane == "Hel | oWorl d";

//Adds 0 to CC

updat e_recordset cust setting Name = ' NewNane' where cust.Account Num == "4000"
&& cust. Name == "Hel | oWorl d";

//Adds 0 to CC
insert_recordset cust (Nanme, Address) select Name, Address from contact;

/| Here CC=5
}

[*Conmment before net hod nane
Conment line 2% //

*/

public void nmethodl()

{

str thisname; //in-line comment followed by 3 bl anks
int x;

/1 Comment before nethod in nethod
int plus(int a, int b)

/*Comment i ndside nethod in nethod
*/
int z;
z = b+a;
return z;
/1 Comment right after method in nethod
ihi shane = net hodStr (CodeMetri cDunmyl, nethodl);

/* comment before code*/x = plus(plus(1,2),3);/*coment after code*/

Box::info('x in the method ' + thisnane + ' exuals ' + int2str(x)); /*
multiline comment start here

and ends

/1l after here

*/
}
public int method2()
{

/1 CC=1

int a=4;

int i;

/1 This adds 2 to CC
int enbedMet hod(int x)
{

B 77

if (x==1)
return x*x;
el se
return Xx;

}
//This adds 1 to CC

SysBPCheckBase get Base()

{
’

return SysBPCheckBase: :construct();

/1 This adds nothing to CC

this.if('hello world");

i = enbedMet hod(a);
get Base();

//This adds 1 to CC
for (i=0;i<1;i++)

{

}

/1 This adds 2 to CC
while(a==2 || a==3)
{

at++;

a--;

}

//This adds 1 to CC
do

{ a++:
}whi | e(a==0) ;

//This adds 4 to CC
switch(a)

case 1:
a=1;
case 2:

{
}

case 3:

case 4:
a=2+3;

defaul t:
a=99;

a=2;

}

/1 The try/catch adds 1 to CC

try

//This adds 3 to CC

if(a==1 && a==2 ||

a=0;
el se
a=1;

B 78

a==3)

Source code

int

cat ch(Exception:: Error)

print "error';

}
/! Here CC=16

return a;

noComment s(int x)

return x+x;

Class: CodeMetricDummy?2

cl ass CodeMetri cDummy2 extends ProdJournal CheckPost Rout eJob

{
}

Class: CodeMetricDummy3

cl ass CodeMetri cDunmy3

{

publ

CodeMet ri cDunmy?2 d2;
Addr ess add;

#SysBPCheck

i c AddressW zard nethodX(int a, StringUil b)
DictC ass dict;

Cust Tabl e cust;

List list;

int xx;

dict = new Dictd ass(cl assNun{ CodeMetri cDumy?2));

sel ect cust where Cust.Account Num == "4000";

list = dasslnstanciator::createSubd assl nst ances(cl assNun{ CodeMet hodMetric));

if (list.elenments() == 0)
|'i st.addEnd(new CodeMetri cSLOCMet hod());

return null;

Class: CodeMetricDummy4

cl ass CodeMetri cDunmmy4

{

int ab,c;

B 79

voi d f()
a=a+1;
this.g();

voi d g()

{

int |ocalvar;
| ocal var = 2;

}
voi d h()
{
b=b+ 2
this.f();
this.g();
}
voi d x()
{
c=c+4
}

Unit test helper classes

Class: SysBPCheckComplexityEnabler

cl ass SysBPCheckConpl exi t yEnabl er

{
}

static voi d set BPConpl exi ty(bool ean conpl exi ty_enabl ed=f al se)
{

SysBPPar anet ers paraneters;

ttsbegin;
paraneters = SysBPParaneters::find(curuserid(), true);

/'l Enabl e all best practice checks
paraneters.initValue();

/1 Enabl e/ di sabl e the conpl exity check
par anet ers. CheckConpl exity = conpl exity_enabl ed;

// Report all
par anet ers. War ni ngLevel = SysBPWarni ngLevel :: Al |;

/] Save the new settings
paranet ers. update();

/1 Enabl e best practice check in conpiler
xUser | nf o: : conpi | er War ni ngLevel (Conpi | er War ni ngLevel : : Level 4);

ttscomit;

//Let the conpiler output get the new paraneters
SysConpi | er Qut put : : updat ePar n() ;

B 80

Source code

Appendix C: Setup instructions

The following document gives step-by-step instructions of how to install the BP complexity
tool.

Prerequisites

Dynamics AX 4.0 Client must be installed on the machine and be connected to an AX
Object Server.

Developer license must be installed

The SysTest (previously named XUnit) framework must be imported

Make sure that any source control in Dynamics AX has been disabled

Import XPO file

1.

2.
3.
4

ou

Open the Dynamics AX Client.
Open the Application Obvjrect Tree (AOT), by pressing <CTRL+D>.

Click the Import button &3 in the AOT.

In the Import form, enter the path and filename of the complexity xpo file (e.g.
PrivateProject_Complexity final version.xpo).

Press the Import button to start the import.

The result of the import can be seen in the Infolog.

Enable complexity check

1.

2.
3.
4

oo

Select the menu item Tools -> Options ...

In the Options form, press the Best Practices button

In the Best Practice parameters form, set the warning level to “All”

In the treeview on the Best Practice parameters form, check the node
Best Practice checks -> Specific checks -> Classes -> Complexity
Press the OK button to save the parameters.

Restart the Dynamics AX Client for the changes to take effect

C1

Appendix D: CD

Contents of CD

] Appendix B — SourceCode.doc
MBS Functional Specification - Complexity.doc
PrivateProject_Complexity final version.xpo

CD

