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Abstract

The Global Positioning System (GPS) has been commonly used throughout the last couple of decades
as a navigation system, that provide both military and private users, with accurate information about
there position. The system has been implemented in a long range of different things such as car and
boat navigation systems, cell phones and high precise geodetic surveying equipment. However as the
GPS signal is an electromagnetic signal, it can be blocked by mountains, dense forests and areas with
high buildings. Hence GPS will not provide a continuous and reliable position all the time. On the other
hand Inertial Navigation System (INS) is an autonomous, all-weather navigation system that can provide
continuous information of position, velocity and attitude regardless of the surroundings. However the

performance of INS deteriorates with time due to the inertial sensors performance.

The integration of GPS and INS is an efficient way of limit the INS derived position, velocity and attitude
errors by using the GPS measurements as update to the position and velocity whenever it is available.
Further the INS can be used to identify and correct GPS carrier phase cycle slips. This dissertation
therefore analyzes different integration methods of GPS and INS in order to increase the position,

velocity and attitude accuracy especially during and after GPS data outage.

The results from the analysis showed that the use of integrated INS and GPS solutions during partial or
complete GPS data outage can provide a significant improvement compared to the stand alone use of
the INS system. Further the time to fix ambiguity after a GPS data outage can be minimized significantly

using INS and different integration methods.
| would like to thank my supervisor Anna B.O. Jensen for support and guidance during this dissertation

and other geomatics related projects throughout the last couple of years of study. Further a thank to all

other members of the geoinformatic section at the department of Informatics and Mathematical
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Modelling (IMM), Technical University of Denmark (DTU) that have helped with other projects and

courses during my university studies.

A special thank will also go to the people from the PLAN group at the Department of Geomatics
Engineering, University of Calgary, Canada that | spend 3%z month together with during the winter and
spring of 2006. Especially Dr. Gérard Lachapelle that made it possible for me to get a temporary place
in the PLAN group and use there SAINT™ software, Dr. Mark Petovello that helped during processing
with the SAINT™ software and Saurabh Godha that provided me with a data set for processing and
helped my answering all kinds of question related to the data set. Last but not least a great thank to all
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Danish summary

Global Positioning System (GPS) har veeret vidt brugt de sidste par artier som et navigations system,
der let kan give information om ens position. Det er blevet implementeret i en lang raekke forskellige
systemer f.eks. bil og bad navigation, mobiltelefoner og hgj preecisions geodaetisk landmaling. Men da
GPS signalet er et elektromagnetisk signal vil det kunne blokeres a bjerge, teet skov og omrader med
hgje bygninger. GPS vil derfor ikke altid kunne give vedvarende og palidelige positioner. Inertial
Navigation System (INS) vil derimod i alt slags vejr og uanset sine omgivelser give konstante
information om ens position, hastighed og orientering. Problemet med INS er dog at fejl meget hurtigt

forages pga. sensoremes fejl og maden navigations parametrene beregnes pa.

Integration af henholdsvis GPS og INS er en effektiv made at begreense fejl fra INS pa positionen,
hastigheden og orienteringen, da den sa ofte som muligt bruger GPS positionen til at opdatere
positionen og hastigheden. Endvidere kan INS informationerne bruges til at identificere cycle slip i GPS
malingerne. Dette projekt omhandler derfor en analyse af forskellige mader til integration af GPS og INS
data i habet om at @ge praecisionen pa ens position, hastighed og orientering specielt i situationer hvor

der er eller har veeret afbrydelse af GPS signalet.

Resultatet fra analysen viser at brugen af integrerede INS og GPS data kan forbedre ngjagtigheden af
positionen, hastigheden og orienteringen betydeligt sammenlignet med de tilsvarende ved udelukkende
at bruge INS data. Endvidere kan tiden fra et GPS udfalds opher og til ambiguiteten er bestemt som

heltal mindskes signifikant ved at bruge forskellige integrations metoder.
Jeg vil takke min vejleder Anna B.O. Jensen for statte og vejledning gennem dette og andre

geoinformatik relaterede projekter gennem de sidste par ars studier. Endvidere vil jeg ogsa takke alle fra

geoinformatik sektionen pa instituttet Informatik og Matematisk Modellering (IMM), Danmarks Tekniske
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Universitet (DTU) der har hjulpet med andre projekter eller undervist i kurser indenfor geoinformatikken

gennem mine studiear.

En speciel tak skal ogsa ga til folk fra PLAN gruppen ved Department of Geomatics Engineering,
University of Calgary, Canada som jeg brugte 3% maned sammen med i vinteren og foraret 20086.
Speciel tak til Dr. Gérard Lachapelle som gav mig muligheden for at fa en midlertidig plads i hans PLAN
gruppe og bruge deres SAINT™ program, Dr. Mark Petovello der hjalp mig ved karslerne med SAINT™
og Saurabh Godha der skaffede mig data til kerslerne og hjalp med besvarelser af alverdens spargsmal
i relation hertil. Sidst men ikke mindst vil jeg gerne takke alle dem fra rum 309 pa CCIT. Vi havde en

fantastisk tid sammen og jeg haber vi vil fa genset hinanden i fremtiden.
Dette projekt er blevet til i bade Canada (pa University of Calgary, Alberta) og Danmark (Danmarks
Tekniske Universitet, Lyngby) fra medio januar 2006 til medio juli 2006, med en maneds ferie

indimellem. Projektet svarer til en arbejdsmeaengde pa 30 ECTS-point.

Rapporten er udarbejdet pa engelsk.
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Notation

Symbols

MSc Thesis, July 2006

Depending on the literature and research area the same variable can use different symbols and the

same symbol can mean different things! In order to ease the readers understanding of this dissertation

the most relevant symbols used are listed below sorted by their alphabet.

Starting with a small Latin letter

a

ion
dtrop

noise

dt
dT

.. acceleration vector

.. semi-major axis of the reference ellipsoid
.. accelerometer bias in the xh axis

.. speed of light in vacuum

.. gyroscope bias in the xth axis

.. orbital error

.. lonospheric error

.. tropospheric error

.. noise error (e.g. multipath)

.. satellite clock error

.. receiver clock error

.. linear eccentricity of the reference ellipsoid
.. specific force vector

.. gravitation vector

.. ellipsoidal height

.. code pseudorange measurement

.. quaternion

.. position vector
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S, .. accelerometer scale factor in the x axis
t ... time

v ... velocity vector

Vi ... velocity due to specific force

w ... process noise

X ... state vector

z ... observation vector

Starting with a capital Latin letter
F ... dynamic matrix
G ... noise coefficient matrix

.. Shaping matrix

.. identity matrix

H .. design matrix
K .. Kalman gain matrix
M .. radius of curvature in meridian
N .. radius of curvature in prime vertical
.. carrier phase ambiguity
N(a,b) ..._normal distribution with mean “a” and standard deviation “b”
P ... error covariance matrix
R ... radius of the Earth
.. measurement noise covariance matrix
R, .. rotation matrix about at axis (R, = X-axis, R, =Y-axis and R; = Z-axis)
R ... rotation matrix from frame “b” to frame “a”

Starting with a small Greek letter

o ... wander angle / reciprocal of the correlation time
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B ... reciprocal of the correlation time
Y ... hormal gravity vector

3(e) ... error of quantity (e)

€ ... misalignment error

n ... pitch

.. measurement noise

A ... geodetic longitude
.. wavelength
% ... innovation sequence

.. orthogonal vector to the specific force vector and the angular rate vector
3 ... roll
p ... geometric (true) range between receiver and satellite

.. standard deviation

T .. correlation time

[0} .. geodetic latitude

1} .. azimuth

0, .. Earth rotation rate (= 15.04 deg/hr = 7.29:10- rad/s)

o5, .. angular velocity vector of frame “c”, relative to frame “b” and expressed in frame “a”

Starting with a capital Greek letter
A(e) ... increment of quantity (e)
.. difference between quantity (e)
AB;, ... angular increments vector of frame “c”, relative to frame “0” and expressed in frame “a”
[0} ... carrier phase measurement
.. transition matrix
) ... Doppler range rate measurement

Q3 ... skew symmetric form of the angular velocity vector .
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Acronyms

.. lever arm

.. outlier or blunder vector

.. Quantity () in frame “a”

.. quantity () at the n'" epoch

.. nominal value of quantity (e)

.. average of quantity (e)

.. time derivative quantity ()

.. estimated (computed) values quantity ()
.. measurement of quantity (e)

.. quantity () before update

.. quantity () after update

.. quantity (®) as a function of time

. partial derivative with respect to ()

MSc Thesis, July 2006

The acronyms are fully described the first time they are mentioned from chapter 2 and forward. The

following times only the acronyms are used. The following acronyms listed in alphabetical order are

used in this dissertation.

C/A
CUPT
DGPS
DoD
DOP
DR

.. Anti-Spoofing

.. Coarse-Acquisition

.. Coordinate Update

.. Differential GPS

.. Department of Defense
.. Dilution Of Precision

.. Dead Reckoning
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ECEF
EKF
GPS
GNSS
IMU
INS

ISA
LAMBDA
LKF
MEMS
PDOP
PRN
RMS
SA
SHU
TEC
UTC
WGS84
WL
ZUPT

.. Earth-Centered-Earth-Fixed

.. Extended Kalman Filter

.. Global Positioning System

.. Global Navigation Satellite System
.. Inertial Measurement Unit

.. Inertial Navigation System

.. Inertial Sensor Assembly

.. Least Square Ambiguity Decorrelation Adjustment
.. Linearized Kalman Filter

.. Micro Electro-Mechanical System
.. Position Dilution Of Precision

.. Pseudo-Random Noise

.. Root Mean Square

.. Selective Availability

.. Small Heading Uncertainty

.. Total Electron Content

.. Universal Coordinated Time

.. World Geodetic System 1984

.. Widelane

.. Zero Velocity Update

MSc Thesis, July 2006
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1

Introduction

Integrated INS and GPS systems are not a new phenomenon, but have been used the last couple of
decade to a wide span of different systems. Ship, aircraft and submarine navigations systems are just
some of the most common applications (Petovello, 2003). Most of the applications will strive for the

following two characteristics:

1. Continuous and reliable navigation determination (most often position, velocity and attitude)

2. Acceptable accuracy level and the possibility to keep the accuracy over time

INS can provide the continuous and reliable navigation determination, but their errors are increasing
over time due to the integration algorithm they use. In stead GPS can be used as an aiding system in
order to minimize the errors over time by updating the position and velocity as often as possible (Godha,
2006). The main reason for integrating INS and GPS is therefore done in order to get a system that can

achieve both of the above mentioned characteristics.

The accuracy needed can vary a lot between each application. Navigation systems for autonomous car
and aircraft may require sub-metre level accuracy while others like car navigation systems only needs
10-30 meter of accuracy in order to achieve its goal (Godha, 2006). Most of the accuracy is determined
by the equipment used in the INS and GPS. Especially the performance from different inertial sensors
can vary a lot and low-cost INS systems may result in errors up to many hundreds of meters (and even

thousands of meters!) in just a few minutes of stand alone mode (EI-Sheimy, 2006).
This dissertation investigates the basics behind INS and GPS integration, and implements it in a

software program. Results from the software program are then used to determine the performance of

different integration techniques and the impact of changing some specific user parameters.
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1.1

Dissertation objectives

The main objective of this dissertation was to analyze the performance of integrated INS and GPS data.
In order to integrate the INS and GPS data a program was developed in MATLAB. The program turned
out to have a hidden and unfound bug in the mechanization equations, so in order to perform the

analysis another program was used.

In order to understand the analysis of integrated INS and GPS data a comprehensive description of the
two systems underlying theory is described first. The emphasis is put on the INS where GPS mainly is
described in order to understand the limitations of the system and the reason for the integrating. This is
followed by a description of different estimation techniques that are used in different integration

methods.

The work on the self-made MATLAB program is shown despite the bug and the main objectives behind

it are described. Finally a data analysis is performed followed by a conclusion for the entire dissertation.

Summarized the main objectives of this dissertation are therefore:

1. To describe the underlying theory behind INS and GPS in order to emphasize the limitations of both
systems and understand why integration can be important.

2. To describe different estimation techniques and there use in different INS and GPS integration
methods.

3. To develop a software program that can perform the integration between INS and GPS

4. To analyze the performance of position, velocity and attitude during complete GPS data outages
where only the INS solution are available and during partial GPS data outages where less than four
satellites are available.

5. To analyze the improvements of the time used to determine the fixed ambiguities after GPS data

outages with use of different integration methods.
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1.2 Dissertation outline

This dissertation contains 9 chapters and 1 appendix and is organized as described below.

Chapter 1: Presents the objectives for this dissertation and give a short description of the outline.

Chapter 2: Describes INS in detail with the emphasize put on the algorithm steps and the

advantage/limitations of using INS.

Chapter 3: Gives a short description of GPS in order to understand it limitations.

Chapter 4: Presents different estimation techniques for dynamic and non-linear systems that are part of

the theory behind integration of INS and GPS.

Chapter 5: Describes the different integration methods that can be used in integration of INS and GPS.

The lever arm effect and the time synchronization problem are briefly mentioned.

Chapter 6: Presents the objectives of the software program and gives an idea of the implementation

technique that was used.

Chapter 7: Presents various analyzed output data from SAINT™ in order to determine the performance

of different integration methods. The changes in specific user variables are analyzed too.

Chapter 8: Summarize the objectives of this dissertation.

Chapter 9: List the references used in this dissertation.

Appendix A: Show information about the ambiguities not shown in the dissertation.
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2

Inertial navigation

This chapter describes the principles of inertial navigation. First the basics about modeling motion in
space are described. This leads to Newton’s 1stand 2 law that are essential in understanding inertial
navigation. Second an introduction to inertial sensors is given followed by the relevant equations that
relate the output from inertial measurements to useful information like position, velocity and attitude.
Finally the limitations of Inertial Navigation Systems (INS) are investigated in order to understand why

INS sometimes is integrated with other navigation systems and not just operating in stand-alone mode.

2.1 Motion in space

In most aspects of navigation systems, describing the motion of an object is the main purpose. The
general motion of an object in space is typically described by three position and three orientation
parameters. Assuming a rigid body, the motion of any point in the body can be illustrated by two vectors

with 3 components as shown in figure 2.1 (EI-Sheimy, 2006).

Rigid body

Ze

Earth frame

Ye

Figure 2.1: Rigid body motion in space described by two vectors
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The first vector, 7 (t) describe the time variable position vector, of the rigid body’s center of mass in
the Earth-Centered-Earth-Fixed coordinate frame (ECEF, further shorten to just Earth frame). The
second vector, r° describe the rotation of the rigid body as a vector between the center of mass and the
point, P in the body. To describe the motion of P a time variable rotation matrix from body frame to
Earth frame, R§ (t) is needed. The motion of P can therefore be described as the time variable

position vector, 17 (t) given as (EI-Sheimy, 2006)

i (t) =15 () +RE (1)-r° (Eq. 2.1)

The position vector and rotation matrix as functions of time are called navigation states variables.
Normally the velocity vector as function of time is included in the navigation states variables, but as the
velocity is related to the position through differentiation it is only required to determine six parameters to
describe the general motion of an object in space. This is discussed further in chapter 2.5 about the

equation of motion.

Determining of all the navigation states variables require a system that can measure six independent
quantities. A navigation sensor measure one or more of the quantities. A system that combine a number
of navigation sensors so all six parameters can be measured is called a navigation system. lINS is such

a system, as its output contains all necessary information to georeference a moving object at all times.

Navigation systems can be classified by two main concepts for obtaining the navigations state variables.
INS uses the “dead reckoning” (DR) system that determines the current position from knowledge of a
previous position and the measurement of the direction of motion and the distance traveled. Another
way is by using “position fixing” that determines the current position from knowledge of known reference
points. Position fixing is used e.g. by Global Positioning System (GPS) / Global Navigation Satellite
System (GNSS). These systems are further discussed in chapter 3.
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2.2

221

Principle of inertial sensors

The principle of inertial navigation is highly related to Newton’s 1stand 2nd law that in short term
concludes that “changes in motion are caused by outside forces” (15t law) and “acceleration is
proportional and in the same direction as the resultant force” (2" law) (EI-Sheimy, 2006). Taking an
object in space the 1st law tells that keeping an eye on all outside forces on the object, knowledge of
whether the object is moving or not and whether it is continuing its uniform motion or changes its course
are known. The 2 [aw tells that measuring the resultant forces that affect the object knowledge of the
objects acceleration is known. And from the acceleration it is easy to determine the velocity and
displacement by integration once and twice respectively. Similarity can be found for angular rotation so

e.g. angular velocity is related to angular rotation by integration. (EI-Sheimy, 2006)

A detector that measure acceleration therefore plays a crucial role in inertial navigation. Together with a
detector that measure angular velocity is it possible to determine the navigation state variables by
combining these detectors of each. Such detectors are called accelerometers and gyroscopes (together
they are called inertial sensors) and will be discussed below here. Another crucial thing is the
importance of relating the measurement of acceleration and angular velocity to some known
coordinates. Hence an inertial frame of reference is needed. This reference frame is fixed in space
(most often fixed by the stars) and is considered to be non-rotating and non-accelerating relative to far-
off galaxies. Any motion of an object or the surrounding medium (e.g. the Earth) can therefore be

described in relation to this reference frame. This is discussed in chapter 2.3.3.

Accelerometers

An accelerometer is generally a proof mass that is kept away from a case by a pair of springs. In zero
acceleration the proof mass will be in a specific calibrated position called the equilibrium position. Each
accelerometer has a sensitive axis indicated by the arrow in figure 2.2. Any acceleration along this axis

will cause the proof mass to be displaced along the axis. The movement of the proof mass is
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proportional to the force of acceleration (Newton’s 214 law), so measuring the amount of displacement

from the equilibrium position will give the acceleration along the axis.

Equilibrium
position

output
signal

s

Figure 2.2: Basic model of an accelerometer in zero acceleration (partly from Weston et al., 2000)

An accelerometer measure all types of acceleration irrespective of it comes from gravitational
acceleration or from e.g. vehicle acceleration. For an accelerometer in a gravitational field (with
acceleration in the negative direction of the sensitive axis) the proof mass will be displayed in positive of
the sensitive axis like on figure 2.3. But as this is also true for e.g. vehicle acceleration in the positive

direction, the output of gravitation and vehicle acceleration are opposite in sign.

L

Null Sensitive
Position Axis
Gravitational ___g_'

Acceleration
. . a
Linear vehicle PETTRARIINE
acceleration

Figure 2.3: The “difference” between gravitational acceleration and vehicle acceleration (EI-Sheimy, 2006)
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For use in inertial navigation the acceleration with respect to the inertial frame is needed. The output
from an accelerometer measure (vehicle) acceleration minus gravitational acceleration, called specific
force. As the acceleration with respect to the inertial frame is the same as the vehicle acceleration the

formula for calculating this is simply:

a=f-g (Eq.2.2)

Where a is the acceleration with respect to the inertial frame (vehicle acceleration), f is the
acceleration produced by non-gravitational forces (specific force) and g is the acceleration due to

gravity.

Different types of accelerometers have been invented since the first accelerometer, originally known as
the Atwood machine, was invented by the English physicist George Atwood (1746-1807) in 1783. There
are generally to main types known as the “open loop” and “closed loop” accelerometer. The difference is
in the way they measure the specific force. Open loop measures the proof mass displacement from the
equilibrium position (like in figure 2.2) while closed loop measures the force needed to keep the proof

mass in its equilibrium position.

Today accelerometers are used for a wide variety of scientific and engineering systems. Some of the
smallest accelerometers are part of the micro electro-mechanical system (MEMS) and can be less than
one mm in each dimension and weigh less than one gram. Such small devices are used in e.g. airbags
systems and therefore need to be very cheap to manufacture. More expensive accelerometers are used
for high performance purposes like in INS. Output from accelerometer is normally expressed in [m/s?]

for specific force and in [m/s] for velocity increment vector due to specific force.
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2.2.2 Gyroscopes
A gyroscope (often shorten to just a gyro) is a sensor that measure or maintain angular rotation. It works
with respect to the principle of conservation of angular momentum and was first invented in 1852 by the
French physicist Leon Foucault (1819-1868). The first gyroscopes were purely mechanical and worked
with a rotor (spinning mass) that could spin about one axis. The rotor was mounted in two gimbals
(rings) that further were mounted to a base. This gave a total of 3 degrees of freedom to the rotor and
made it possible to keep its orientation while the base was rotated in any direction. Due to friction
between the moving parts, errors in keeping the orientation will always occur. Figure 2.4 show a picture

of a traditional mechanical gyroscope.

Clockwise and
counter clockwise
light beam

. 4 .
Mirror Mirror

Figure 2.4: Basic model of a mechanical gyroscope and a ring laser gyroscope (partly from Weston et al. 2000)

Optical gyroscopes (ring laser gyroscopes and fiber-optic gyroscopes) without moving parts have been
invented to prevent friction errors and to minimize the size and cost of gyroscopes. The precision of the
optical gyroscopes is still not at the same high level as the best mechanical gyroscopes but they can
already replace a lot of the common applications for gyroscopes. The principle of the fiber-optic
gyroscopes is to measure the phase shift between two light beams send at the same time from a
common source. They both go through the same closed fiber optic cable but respectively clockwise and
counter clockwise. If the fiber-optic gyroscope is giving a rotation the two light beams will reach the
source (that now works as s detector) at different times due to increase/decrease of the beams

trajectory. It results in a phase shift that can be converted to angular velocity.
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223

Similar the ring laser gyro sends two laser beams against three or four mirrors to measure the
differences at arrival time. Smaller gyroscopes are possible through MEMS based technology but the
precision is still to far from both the optical and the mechanical gyroscopes in order too be used in high
performance INS. Like accelerometers the output from gyroscopes needs to be measured with respect
to an inertial frame. The output is normally expressed in [deg/hr or rad/s] for angular velocity or [deg or

rad] for angular rotation.

Sensor errors
Measurement from both accelerometers and gyroscopes are subject to errors. The following errors are
often subject to much confusion but are necessary to understand in order to evaluate performance of

inertial sensors:

Bias is the output that has no correlation with the input. It can be asymmetric for positive and negative
inputs and have an instability that is given by random variation if the output is computed over a specified
sample interval. The instability of bias is also called bias drift. Bias is normally expressed in [m/s? or mg]

for accelerometers and [deg/hr or rad/s] for gyroscopes.

Scale factor is the ratio of change in the measured output to the intended input. It will normally be
expressed in [ppm] (parts per million) for both accelerometers and gyroscopes. Like for bias scale factor
can be asymmetric for positive and negative inputs. Sensitivity is related to scale factor and is some
times mixed up by manufactories. The difference is that sensitivity relates to a secondary input e.g.

change in temperature while scale factor relates to an intended primary input.

Both bias (not bias drift) and scale factor can be determined by calibration. The most accurately
calibration methods is through use of e.g. three-axial turn tables, six-position static test and angle rate
tests. They generally determine the bias and scale factor by comparing known parameters e.g. the earth

gravity or well known angels to measured output.
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Repeatability is the closeness of repeated measurements of the same input variable under the same

conditions. It is expressed in [m/s? or mg] for accelerometers and [deg/hr or rad/s] for gyroscopes.

Resolution is the minimum value of input greater than the noise level that gives and output above a

certain level. It is expressed in [m/s2 or mg] for accelerometers and [deg/hr or rad/s] for gyroscopes.

Stability is the ability to give the same output while measuring a constant input. It is measured over a

single run. It is expressed in [m/s2 or mg] for accelerometers and [deg/hr or rad/s] for gyroscopes.

Noise is the random or stochastic error that occurs in output and can only be removed by stochastic
models. It is most often modeled as a 15t order Gauss Markov process. In evaluating accelerometers
and gyroscopes the term random walk is often used to describe a stochastic process with zero mean
and standard deviation that grows as the square root of time. The most common random walk process
is the angle random walk that for gyroscopes describe the error that build up with time due to white
noise in angular rate. Angle random walk is normally expressed in [deg/vh]. Parameters for the
stochastic models can be estimated through long time collection of static data for both accelerometers

and gyroscopes.

Accelerometers and gyroscopes are often mounted in groups of 3 sensors that make up an orthogonal
triad. Errors in orthogonality (also called axes misalignment) will result in errors of measurement as
two sensors measure part of the same input. Axes misalignment can be calibrated or modeled in the
INS error equation. Different calibration model will not be discussed further here, but the reader can see

examples of different calibration techniques in e.g. (Shin, 2001 and Shin et al., 2002)

Table 2.1 in chapter 2.3.2 gives an idea of the sensor errors for accelerometers and gyroscopes used in

different inertial systems.
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Importance of sensor calibration

The importance of sensor calibration can easily be seen when considering an orthogonal triad of
accelerometers that are tilted with respect to the normal of the Earth gravitational field. The tilt can be
observed by the accelerometers as two accelerometers measure part of the Earth gravitation. If the
accelerometers at the same time have a bias error will it be impossible to distinguish between the tilt
and the bias. The accelerometer bias will therefore determine the accuracy with which we can
determine the tilt of the triad. Bias error in accelerometer and gyroscopes will introduce error in velocity

and position according to the following (EI-Sheimy, 2006).

Error from accelerometer bias: Error from gyroscope bias:
1
Bu=b, t v=gbot (Ea.23)
1 2 q. 2.
or=—-Db, -t 1
o Pa 8r=g-bg-g-t3

Where dv and or are the velocity and position errors.

Sensor measurements

The raw accelerometer and gyroscope measurement can be expressed in different ways according to
the type of sensor output. Most low-cost sensors output specific force, fb and angular rate, Eﬁ, which
can be scaled to obtain velocity increments due to specific force, A\?? and angular increments, Aéﬁ,.
The inputs to the computational process (see chapter 2.5) are the increments but the scaling can be

performed as followed if specific force and angular rate is outputted instead (Shin, 2005 p. 29).

Velocity increment from specific force: Anqular increments from angular rate:

~b t, ~b ~b t, ~b
Avig =] * Tt ABiok = | ot (Eq. 2.4)

k=1

Where At =t,,,—t, is the time increment between two successive measurements at t, and t, .
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2.3

231

Principle of inertial navigation

Given an accelerometer that measure specific force, it is possible to provide estimates of velocity and
position through successive integrations. If the velocity and position are used in navigation it is required
that it can be related to a specific reference frame. Furthermore a continuous orientation of the
accelerometers is needed with respect to the reference frame. This is done through gyroscopes that
provide a measure of the attitude with respect to the same reference frame. A typical inertial navigation
system (INS) is therefore made up of three accelerometers and three gyroscopes mounted in an

orthogonal triad in order to determine the position and the orientation of the INS.

Gimbaled and strapdown systems

Inertial sensors can be implemented in two different ways to build up an INS. The first (and original) is
as a stable platform arrangement where the accelerometers are mounted on a gimbaled platform. The
platform is kept aligned to a specific navigation frame by mechanical gyroscopes and every output from
the accelerometers can therefore be integrated to provide velocity and position in the specific navigation
frame. Stable platform system (or gimbaled system) are relatively big and weighs a lot due to the

mechanical arrangement of gyroscopes.

The second is as a strapdown arrangement where both the accelerometers and gyroscopes are
mounted directly on e.g. a vehicle. As the accelerometers aren’t kept aligned to a specific navigation
platform the acceleration measurement needs to be transformed into the navigation frame. The rotation
rates measured by the gyroscopes are therefore used to update the transformation parameters from the

frame they are mounted to (often call body-frame) and to a specific navigation frame.
This dissertation will only describe the use of strapdown arrangement as this is the most common

system for general navigation application due to weight, cost and flexibility. The accuracy of the stable

platform arrangement is still better than the strapdown arrangement but due to there gimbal platform
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they are less immune to shock and vibration forces. They are therefore mainly used for high precision

system for e.g. military submarine.

2.3.2 Classification of inertial systems
Inertial systems can be classified into three different types that is cause to some confusion. The
simplest type is the inertial sensor assembly (ISA) which output raw data from the inertial sensors like
acceleration and angular velocity. If the output from the ISA is compensated for errors e.g. bias and
scale factor it is called an inertial measurement unit (IMU). Finally if the output from the IMU is
processed through navigation algorithms that determine position, velocity and attitude the strapdown
arrangement is called an inertial navigation system (INS). An INS will also be able to give the raw but

compensated data from the IMU as output. The difference between are also shown in figure 2.5.

=3
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=
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Inertial Sensor Assembly (ISA)

: i i Accelerometers Gyroscopes E i
i E i Acceleration [m/s?] Angular rotation [deg] E i
Co (uncompensated) (uncompensated) o
: E v v i
: i Acceleration [m/s?] Angular rotation [deg] :
P (compensated for (compensated for l
i : bias and scale factor) bias and scale factor) i

Navigation algoritm

A 4 A 4 A 4
Position [m] Velocity [m/s] Attitude [deg]

Figure 2.5: Difference between ISA, IMU and INS
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In addition to the three different types is it common to classify the inertial systems according to there

accuracy. Table 2.1 compares some general specifications for different grades of inertial systems and

gives an idea of the approximately prices of the different systems. The grayscale cells refer to

specifications for four specific IMUs with the abbreviations: # 1 refers to a Honeywell LRF-111, # 2

refers to a Litton LTN90-100, # 3 refers to a Honeywell HG1700 AG11 and # 4 refers to a low-cost

MEMS Crista IMU.

Grade Strategic Navigation Tactical Automotive Consumer
Performance
Stand alone <30 (mihr) 1—4(kmhr) | 20-40 kmhr) | 2 (kmimin) 3 (km/min)
position errors
Bias 0.0001 0.005-0.010 0.1-10 >100 360
o |[deg/hr] 0.003#1/0.01#2 1#3 1040#4 -
g 5-50 200 - 500 N/A
% | Scale factor [ppm]
=S 1#1/5#2 150#3 10000#4 -
© [ Noise (ARW) 0.002 - 0.005 02-05 N/A
[deg/hrNHz] 0.125#3 297 #4 -
Bias 1 50 - 500 500 - 1000 >1200 2400
% [ug] 250#1/500#2 1000#3 2500#4 -
£ 10-2 400 -1 N/A
S | Scale factor [ppm] 0-20 001000 :
£ 50#1/50#2 300#3 10000#4 -
< | Noise 5-10 200 - 400 N/A
[ug /hrNHz] 21643 370#4 :
Aoproximately orice > 200000 50000 - 200000 | 10000 - 50000 <10000 <100
PP yp us$ us$ us$ US$ Us$
i Ballistics missiles Ngwganop gnd INS/.G PS and Short time .
Applications . high precision | short time system Airbags
and submarines ; systems
georeferencing (weapons)

Table 2.1: Specifications for different grades of IMU (Shin, 2001, EI-Sheimy, 2006, Petovello, 2003 and Godha, 2006)

Reference frames

A couple of reference frames has already been mentioned. The different reference frames used in this

dissertation is described below.

Inertial frame (i -frame) has its origin at the centre of the Earth and axes which are non-rotating with

respect to fixed stars. Its axes points towards the following:
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e Zi-axis parallel to the spin axis of the Earth
e Xi-axis pointing towards the mean vernal equinox
e Yi-axis orthogonal to the X and Z axes to complete a right-handed frame

The inertial frame of reference is only referred to as the inertial frame in this dissertation.

Earth-centered-earth-fixed frame (e-frame) is also having its origin at the centre of the Earth but its
axes are rotating together with the earth. Its axes points towards the following:

e Ze-axis parallel to the spin axis of the Earth

e Xe-axis pointing towards the mean meridian of Greenwich

e Ye-axis orthogonal to the X and Z axes to complete a right-handed frame

The earth-centered-earth-fixed frame is for simplifying purpose referred to as the earth frame in this

dissertation.

Body frame (b-frame) has its origin at the centre of the IMU and axes that are assumed to be aligned
with the vehicle frame. Its axes points towards the following:

e Xb-axis pointing towards the right of the vehicle

e Yb-axis pointing towards the front of the vehicle

e Zb-axis orthogonal to the X and Y axes to complete a right-handed frame

Rotation about the axes is used to describe pitch, roll and heading of the vehicle.

Navigation frame (n-frame) is also having its origin at the centre of the IMU but its axes are rotating
together with the Earth. Its axes points towards the following:

e Xn-axis pointing towards the ellipsoid east (geodetic east)

e Yn-axis pointing towards the ellipsoid north (geodetic north)

e /n-axis pointing upward along the ellipsoid normal

This specific navigation frame is also known as the east-north-up (ENU) system. Other way of orienting

the axes is as the north-east-down (NED) system. The navigation frame is sometimes referred to as the

Side 26



INS and GPS integration MSc Thesis, July 2006

local level frame (I-frame) and further is a Horizontal frame (h-frame) mentioned once and is simply a

navigation frame where the X and Y-axis is pointing in arbitrary positions.

Wander azimuth frame (w-frame) is also a navigation frame with origin at the centre of the IMU but
mainly used at high latitudes (around the poles) in stead of the navigation frame mentioned above. As
the Yn-axis always points towards geodetic north an east-west movement close to the poles will result in
large rotation rates about the Zn-axis. In order to avoid this the Y-axis in the wander frame maintains its
original alignment according to an initial point P. Any east-west movement will therefore only result in a
rotation about the Z%-axis while there will be an azimuth angle between geodetic north and the Yw-axis.
(EI-Sheimy, 2006 and Titterton et al. 2004) Its axes therefore points towards the following:

e /Zv-axis pointing upward along the ellipsoid normal

e Yw-axis rotated in the level plane by the wander angle, o from north towards west

e Xw-axis orthogonal to the Y and Z axes to complete a right-handed frame

Figure 2.6 show the different frames and the rotation names about the body frame axes.
A Zi —7¢ s s mmimmmmo -

Lo,

Greenwich S ettt .
meridian

XW

é Centre
i of IMU;

X i

Towards
the vernal
equinox

Equatorial
plane

Figure 2.6: The different frames (inertial, Earth, navigation, body and wander azimuth)
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2.4 Alignment of strapdown systems

One of the most important things about strapdown systems is the need to establish a relationship
between the body frame and the navigation frame. This is needed because the body frame can take any
arbitrary orientation. The relationship is usually established through a stationary alignment process
before any kinematic measurement is done. In some situation is it necessary to do the alignment in

kinematic mode and the system then needs external data e.g. velocity information from GPS.

The above mentioned relationship is normally expressed through a rotation matrix Ry . From the
gyroscope measurement, R} is updated and used to transform the accelerometer measurements to the
navigation frame. Two times integration of the transformed acceleration will result in a position
difference of the IMU with respect to the navigation frame. As the initial position is known through e.g.
GPS a new position can be calculated. At the same time both velocity and attitude can be updated for

the new position. Chapter 2.5 describes this process called the mechanization equation.

The principle of the stationary initial alignment consists of two steps, accelerometer leveling and
gyroscope compassing. Accelerometer leveling refers to obtaining the roll and pitch (see figure 2.7)
using the accelerometer outputs (with knowledge of the normal gravity vector) and gyroscope
compassing refers to obtaining the heading information using the gyroscope outputs (with knowledge of
the Earth rotation rate). As the gyroscopes must be able to observe the Earth rotation of only
7.292115-107° rad/s or 15.041067 deg/hr only (high end) tactical grade, navigation grade or strategic
grade IMUs can perform the gyroscope compassing alignment. Low end tactical grade, automotive
grade and consumer grade IMUs need external heading data as there bias and noise levels are smaller
than the Earth rotation rate (se table 2.1). Alignment can be classified as either coarse or fine alignment

depending on the amount of attitude error it has to deal with.

The following chapter describes different alignment methods done in static mode with both coarse and

fine alignment. Alignment in kinematic (in-motion) mode is shortly mentioned.
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2.4.1 Coarse alignment
Coarse alignment in static mode is typically done through accelerometer leveling and gyroscope
compassing or alternatively through an analytical methods. If an orthogonal accelerometer triad is mis-
leveled in the navigation frame the pitch and roll in static mode (while only acting force is the Earth

gravity) (EI-Sheimy, 2006) can be illustrated according to figure 2.7.

Z"=27" z"

Zb
. Z-axis acc.
Z-axis acc.
Y-axisacc. yn _ b Y-axis acc.
X-axis acc.
X-axis acc.
XP Mis-leveled
Leveled plane plane
Xn — Xb

& =roll

VV’Y VV’Y

Figure 2.7: Stationary leveled and mis-leveled accelerometer triad

As shown in figure 2.7 a mis-leveling of the X-axis accelerometer result in a roll angle, & while a mis-
leveling of the Y-axis accelerometer result in a pitch angle, 1. As the normal gravity vector, 7y is known

the roll and pitch can be estimated as functions of the average raw velocity increments, Avt;’y during

the entire alignment process (Petovello, 2003 and Godha, 2006)

v AVP
£ = —sin1| AVx n=sin~| — (Eq. 2.5)
Y- At Y- At

Where At is the average time increment between two successive measurements and vy is the normal

gravityin y"=(0 0 )" v is given as a function of the geodetic latitude ¢ and the ellipsoidal
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height h (Shin, 2001, EI-Sheimy, 2006 and Godha, 2006). The reader should be aware that many other
gravity functions can be applied instead. See e.g. (Wei et al. 1990).

y=a,-(1+a,-sin’ @+a, - sin @)+ (a, +as - sin ) - h+a - h? (Eq. 2.6)

Where a, —ag are constants given as

a, =09.7803267715 a, =-0.0000030876910891
a, =0.0052790414 a;  =0.0000000043977311
a; =0.0000232718 ag  =0.0000000000007211

When roll and pitch are estimated the average raw angular increments, Ae_ﬁ, can be rotated into the

horizontal frame and the heading can be estimated as (Petovello, 2003 and Godha, 2006).

Al =Ry (=) -Ry(~&) - AB, (Eq. 27)
(263)

y=—tan" | —% (Eq. 2.8)
(Ae!‘b )Y

The rotation matrix between body frame and navigation frame, can then be found as (Godha, 2006)
R =R3(W)-Ry(—n)-Ry(=E) (Eq. 2.9)
Where Ry, R, and R; are rotation matrices about the X, Y and Z-axis as given in e.g. (Jekeli, 2000).
For low-cost IMUs there bias and noise exceeds the Earth rotation rate so equation 2.7 and 2.8 is not
possible. In order to estimate the heading an external heading source (e.g. a magnetic compass or a

magnetometer) is needed. This is not further discussed here but the reader can see more in (Godha,

2006).
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In stead of using the above mentioned methods an analytical method for the coarse alignment can be
used. The method uses a defined vector, v that is orthogonal to both the specific force vector, f and

the angular rate vector, w,, as (Britting, 1971).
v=fxawm, (Eq. 2.10)

The derivation of the rotation matrix, R between body frame and navigation frame is derived in (Shin,
2001) but only the one step solution is only mentioned here. It uses the average raw specific force
measurement, f_b and the average raw angular rate measurement, (o_ﬁ, during the entire alignment
process, together with the normal gravity vector, 1y (from Eq. 2.6), the Earth rotation rate, w, and the

geodetic latitude ¢ as follows.

_ 1 —
tj(”(p @, -COS P ° (fb )T
RI=| 0 0 m - (m_t;))T (Eq. 2.11)
I (9]

For both method apply that the rotation matrix between body frame and navigation are calculated for
average data over 3-10 min (see chapter 2.4.3). Hence both methods yield the average rotation matrix
over the alignment time. This can cause errors between the true and calculated attitude as the IMU
even under static condition are affected by small attitude changes from e.g. wind gusts. This is the
reason for performing the fine alignment after the coarse alignment and will be described further in

chapter 2.4.2.

Coarse alignment in kinematic mode is sometimes necessary as 3-10 min. of static mode isn’t always

possible. External forces will therefore act on the accelerometers so other alignment techniques must be

used. A GPS derived velocity is normally available during kinematic mode and can be used if the
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24.2

velocity vector is approximately parallel to the forward axis (X-axis). This is most often true for land
vehicle applications while aircrafts and ships can have lateral and vertical velocity due to wind or
maneuver. In such cases other alignment method must be used (Shin, 2005). For most land
applications the roll, &, pitch, n and heading, v can therefore be initialized or estimated as (Godha,

2006 and Shin, 2005).

u E
E=~0° n=tan"' Vees v =tan™ (Vﬂ] (Eq. 2.12)

\/(VEPS )2 + (Vgps )2 :

Vaps

Where v5pg U are the GPS-derived velocities in east, north and up direction respectively. The accuracy

of the heading is derived in (Godha, 2006) but it should be mentioned here that greater vehicle velocity
results in better heading accuracy. Hence heading estimated by GPS derived velocity is only used while

the vehicle speed is more than 5 m/s (Godha, 2006).

It should be mentioned that for IMUs where the heading is completely unknown an Extended Kalman
Filter (EKF) with a large heading uncertainty (LHU) must be used in order to perform the coarse

alignment. This is not discussed further here but the reader can see more in (Shin, 2005).

Fine alignment

Since the coarse alignment only give an estimate of the average of the rotation matrix a fine alignment
is most often done after the coarse alignment in order to get a more accurate estimate. This is usually
done through an Extended Kalman Filter (EKF) with small heading uncertainty (SHU). The main
purpose is to estimate the error states of the system based on updates from the EKF. Known quantities
in the filter are usually observations from e.g. zero velocity update (ZUPT) or coordinate update (CUPT)

(Petovello, 2003). This will be discussed further in chapter 4 about the Kalman filter.
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2.4.3 Alignment time

2.5

In order to achieve a specific azimuth accuracy the stationary alignment has to be done over a given
time period. The specific azimuth accuracy, 8A is inverse proportional with the alignment time, T, and
depends on the geodetic latitude, ¢ and the gyroscope angle random walk, ARW. Higher latitude will

result in longer alignment time in order to achieve the same azimuth accuracy (EI-Sheimy, 2006)

2
5= ARW = T = ARW (Eq. 2.13)
@, -c08(¢) /T, @, - C0S(@) - SA

Equation of motion

A mathematical way of describing the motion of a vehicle is through the equation of motion. It is a set of
first order differential equation that describes the changes of a system with time. As mentioned in
chapter 2.1 the position vector, r velocity vector, v and rotation matrix, R as functions of time are
called navigation state variables. A three dimensional vector including all the three mentioned state

variables are called a state vector and are given as (EI-Sheimy, 2006)

e=(i v R (Eq. 2.14)

Where a dot represents a time derivative and “a” represents the frame the state vector is formulated in.
The rotation matrix is always from the body frame as the accelerometer measurement, f* and
gyroscopes measurements, wﬁ, are given in the body frame (EI-Sheimy, 2006). It should be noted that
the rotation matrix can be given as a three dimensional vector as the matrix can be parameterized by

three independent angles (Euler angles).
The state vector can be formulated in different frames according to its use. In order to derive the

equation of motion in the navigation frame the time derivative of the position vector ", velocity vector,

v" and rotation matrix, R} need to be analyzed.
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The position vector as described in the navigation frame is expressed in terms of curvilinear coordinates

(geodetic latitude, @, geodetic longitude, A and ellipsoidal height, h) as (Shin, 2001).
M=(¢p A h) (Eq. 2.15)

The velocity as described in the (ENU) navigation frame is expressed by three components, Vg

along the three axes (east, north and up) and can be related to the curvilinear coordinates as (Shin,

2001)
VE 0 M+h 0) (¢
V= vy [=[ (N+h)-cos¢ 0 0 ||A (Eq. 2.16)
vy 0 0 -1)1lh

Where the radius of curvature in meridian, M and prime vertical, N are given as function of the semi-

major axis, a and linear eccentricity, e of the reference ellipsoid (Jekeli, 2000)

M= 2(1-¢) N= 2 (Eq. 2.17)
_(1_92-Sin2(p)3/2 _(1—e2-sin2(p)1/2 qg. <.

The time derivative of the position can therefore be expressed as (Shin, 2001 and EI-Sheimy, 2006)

0 T 0
¢ 1 * VE
"=|A|=|——— 0 0 []|vy =DV (Eq. 2.18)
. (N+h)-cos¢
h Vu
0 0 -1

The time derivative of the velocity as described in the navigation frame can be derived from the specific

N

force measurement considering the Earth rotation rate,

the change of orientation of the navigation
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frame with respect to the Earth, w;,, and the Earth gravity field, y". The specific force measurements

from the accelerometers can be transformed to the navigation frame as (EI-Sheimy, 2006).

f"=RJ.f° (Eq. 2.19)

The Earth rotation rate, «f, as described in the navigation frame is functions of the latitude and given

as an angular velocity vector as (EI-Sheimy, 2006).

—sinA COSA 0 0 0
o, =R} -, =| —sin@-cosA —sin@-sink coso [-| 0 |=| ®,-cos® (Eq. 2.20)
COS@-COSA  cos@-sink  sing ) | o, o, - Sing

The change of orientation of the navigation frame with respect to the Earth, f, is given as an angular

velocity vector as (EI-Sheimy, 2006).

—¢ l\\//l+h
o), =| A-cos@ |= N—fh (Eq. 2.21)
A-sing Ve -tano
N+h

Y'=| 0 (Eq. 2.22)

Taking into consideration all the above mentioned factors the time derivative of the velocity can

therefore be expressed as (EI-Sheimy, 2006).
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=Ry - (2-Q) + Q0 ) xV 4+ (Eq. 2.23)

Where Qf, and Q, are the skew symmetric matrices of the vectors in Eq. 2.20 and 2.21.

Finally the time derivative of the rotation matrix can be expressed as the following differential equation
(EI-Sheimy, 2006).

: b b b
RE =Rg - Qpp =RE'(Qib_Qin)

(Eq. 2.24)
The state vector in the navigation frame can therefore be written as (EI-Sheimy, 2006).
r'.n D_1 . Vn
= =] R [P]- 2. + Q0 )xv" 4 g (Eq. 2.25)
Ry RD- (24| -0)
Where the matrix D" is given as
0 1 0
M+h
D= — 1 o o (Eq. 2.26)
(N+h)-cos¢
0 0 -1

The variables in a square and |, | are the measurements from the accelerometers and
gyroscopes.

In a similar way the state vector can be formulated in the inertial and Earth frame (see EI-Sheimy,

2006). The solution to the equation of motion in the navigation frame is described in chapter 2.6.
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2.6 Mechanization equations
The solution to the equation of motion is called the mechanization equations and consists of four steps.
Chapter 2.6.1 — 2.6.3 are only describing the mechanization equations in navigation frame. For a
description of the mechanization equations in other frames the reader can see more in (Godha, 2006,

El-Sheimy, 2006 and Jekeli, 2000).

2.6.1 Known error compensation of raw data
Any measurements contain deterministic errors that can be corrected if the errors are known through
calibrations. The errors typically include bias, scale factor and axis non-orthogonalities as described in

chapter 2.2.3.

: ~b
The raw gyroscope measurement expressed as angular increments, A6, can be compensated for

gyroscope bias, d and gyroscope scale factor, Sg‘y‘z as (Godha, 2006).

1+S9) 0 0
A8 =| 0 (1489 0 -(Aéi% —d-At) (Eq. 2.27)
0 0 1/1+SY)

Where At =t,,,—t, is the time increment between two successive measurements at t, and t,_,,

Y o ~b
The raw accelerometer measurement expressed as velocity increments due to the specific force, Avs

can be compensated for accelerometer bias, b and accelerometer scale factor, S, , as (Godha, 2006).

11+SY) 0 0
A=l 0 1148 0 -(AQ?—b-At) (Eq. 2.28)
0 0 11+S%

As shown in chapter 5 the deterministic errors can also be estimated during the navigation process.
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2.6.2 Attitude update
Three different method is commonly used for determine the updated rotation matrix Rp . Euler angle,
direction cosines and quaternion. Because of the robustness of the quaternion against singularities and
their computational efficiency (Shin, 2001 and EI-Sheimy, 2006) this dissertation only uses the

quaternion method. The two other methods can be seen in many navigation books e.g. (Jekeli, 2001).
The quaternion method is based on an idea that a transformation from one frame to another can be

affected by a single rotation about a vector. A basic in this method is a four dimensional vector called

the quaternion expressed as (Shin, 2001).
a=(% o 9 q) (Eq. 2.29)
The elements of the quaternion should satisfy a normality condition given as (Shin, 2001).
o +a5+05+a5 =1 (Eq. 2.30)
And if the normality condition isn’t fulfilled the quaternion can be normalized as (Shin, 2001).

d (Eq. 2.31)

Nell
Il

The transformation between the quaternion, g and the rotation matrix Rp is given as (Shin, 2001)

0.5-(Ry3 —R4¢)-y/1+R +R,, +R
q= % |_ (Ri3 31)\/ 11 TRy T Ra3 (Eq. 2.32)

G4 0.5-\/1+Ry; +Ry +Ry,

and
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(F-g-q+dF) 2(a9—05-0) 2-(%05+0,-qy)
Rp=|2-(ay 9 +050) (B-af-3+af) 2:(q-05—0-q) (Eq. 2.33)
2+(0y-0s—=0p-Qs) 2+(0p-0a+0-q) (03—f - +0f)

Where R; is the (i,j)" elements of Ry .

The time derivative of the quaternion is described by a first-order differential equation as (Shin, 2001)

0 o -0 o

o1 1|~ 0 , my
=—.0O(w)-g=-—- . Eq. 2.34
a 2 (©)-6 2l o -0 0 o a (Eq )

-0, -0, -0, 0

;
Where o, =(®, ®, ®,) isthe angular velocity of the body rotation.

If the rotation matrix is updated using the angular increments, Amﬁb then Euler's method give the

following solution to the first order differential equation in Eq. 2.34 (Shin, 2001 and EI-Sheimy, 2006).

1
Ot11 ZQt"‘E‘Q(wt)'Q'A’[ =

s-AG, -—S-AB, $-AB,

Qy Qy c qy
—s-A9 c s-AB, s-AO
Q| _|% +1_ z x y || % (Eq. 2.35)
s s 2| s-AB, —s-AB, C s-AO, | | 43
U4 )1 \Ya ), -s-AB, —s-AB, —s-AH, c A4 )y

Where AB], =(A6, A8, AS,)" =A6) —AB) =A6) —R? - (a0, +@f,)-At. RY, @ff and o], is

from the previous updated rotation matrix and angular velocity vectors. The coefficients ¢ and s are

computed by ¢ =2-(cos(A8/2)—1) and s =2/A6-sin(A8/2), where A6=\/A9)2( +AOZ + A6 .

When g, are obtained, Eq. 2.33 can be used to update the rotation matrix (EIl-Sheimy, 2006).
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2.6.3 Transformation of specific force and velocity/position integration
In order to transform the body frame velocity increment due to specific force, Av? into the navigation

frame, the rotation matrix, R} either before or after the update is used as (Godha, 2006).

1 ~0.5-A8, 0.5-A8,
Av =(Rp) | 0.5-A6, 1 ~0.5-A8, |- Av? (Eq. 2.36)
Before update
~0.5-A8, 0.5-A8, 1
1 05-48, -05-A8,
n = n . —_— . . . b
AVf =( b)After e | 05726 1 0.5-A6, | AV (Eq. 2.37)

05-A8, -05-48,

Where A8, , is given in Eq. 2.35.

After transformation the velocity increment needs to be corrected for Coriolis acceleration and gravity

similar to the time derivative of the velocity from Eq. 2.23 as (Shin, 2001).
AV" = Av{ — (200, + @f, )x V" - At+ 9" - At (Eq. 2.38)
The updated velocity in the navigation frame at t+1 can be found by simple integration as (Shin, 2001).
V?+1 = V? +AV?+1 (Eq. 2.39)
And finally the new updated position can be found by integration using the second order Runge-Kutta
method as. The second order Runge-Kutta is expected to be a good second order approximation of the
analytic solution. Other numerical integration techniques e.g. Euler's method (first order) and four stage

Runge-Kutta method (fourth order) can also be used in order to perform the integration. They are not

discussed here but the reader can see more in (EI-Sheimy, 2006 and Jekeli, 2000).
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The updated position is given as (Shin, 2001)

1
0 ——— 0
(N+h)-coso
n n 1 1 n n
=R 0 0 [-(v] +Viy)-At (Eq. 2.40)
0 0 1

A summarize of all mechanization equations described can be illustrated as in figure 2.8.

Y Gravity @A
IMU ‘ computation |
b n + n n n
A | = f o !+ Av A o
ﬁi@? "| R CT | | > @Ah
Gyros- O d~ O ! a0\
copes > _ I (2 "W + W )XV < » Compute @, oA N
t I N | !
Ry fe _CJ‘H\‘ r Compute R}
o e of, e
Earth constant " in y
rotation rate o
e

Figure 2.8: The INS navigation frame mechanization
The mechanization equations real input from accelerometers and gyroscopes are grey-scaled to the left
while the curvilinear coordinates that are the real output are grey scaled to the right. The integration-

signs are referring to the integration happening in Eq. 2.35, 2.39 and 2.40.

Similar figures for the mechanization equations in other frames can be seen in (EI-Sheimy, 2006).
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2.7

INS error state model

The equation of motion and mechanization equations discussed in the previous chapters gives no
information about the errors of the system. It blindly processes the data from the IMU in order to update
the state vector. The raw data from the IMU contain errors that will increase with time due to the time
integration performed during the mechanization equations. Hence error models are required for

estimation of the different errors.

As the state vector, X" includes a position vector, a velocity vector and a rotation matrix, an error state

vector, 8x" includes position errors, velocity errors and attitude errors as (EI-Sheimy, 2006)
T T
5'=(&" 8" 8Rp) =(8¢ S1 dh &F &M &Y & & dy) (Eq. 2.41)

Where 8" =(8¢ &\ 8h) are the position errors described in curvilinear coordinates,
V" = (SVE S SVU) are the Earth referenced velocity errors given in the navigation frame and

ORp =(8n & Bdy) are the attitude errors due to errors in the rotation matrix Ry .

The accelerometer and gyroscope measurements was compensated for known deterministic errors in
chapter 2.6.1 but since the measurements still contain stochastic errors these are modeled to in the

error state vector. (EI-Sheimy, 2006) The error state vector therefore becomes

5'=(&" " 8R) o Sfb)T@ (Eq. 2.42)
SX”:(&p S sh &F " &Y on & Sy do, dw, dw, o SfZ)T

Where 0= (3w, 80, 8w, ) isthe gyroscope bias error and &° = (&f &, &f, ) is the
accelerometer bias error. Since all the errors are variable in time due to the dynamics of the system they
are usually described by differential equations. As the state vector is non-linear the most common way

to derive a set of linear differential equations are done by linearization.
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2.7.1 Position errors

The time derivative of the position was defined in Eq. 2.18. As the position errors is the difference
between the unknown true coordinates r" and the computed coordinates ", the differential equation
for the position error can be described using a Taylor series expansion to a 1st order approximation as

(El-Sheimy, 2006).

0 T 0
M+h
VE
o oon O (. ) 1
8r”=r”—r”=—(rn)5r”=— —— 0 0 [ vy][or" (Eq. 2.43)
or" or"| | (N+h)-cose v
0 0o 1NV

After differentiation this will lead to (EI-Sheimy, 2006).
8" =D"'&" +D 7D, &r" (Eq. 2.44)

Where D" is given in Eq. 2.26 and D, is given as (EI-Sheimy, 2006)

Vv
—vetang 0 —E
eland N+h
D= 0 0 ﬁ (Eq. 2.45)
0 0 0

Fully written Eq. 2.44 will be as (EI-Sheimy, 2006).

1 0 (J—
0 — 0 2
M+h
1 M+h v, | (M+h) 50
5= — 0 || vy [+] —E2"® = 51 | (Eq. 2.46)
(N+h)-coso (N+h)-coso (N+h)*-coso
ovy oh
0 0 -1 0 0 0

As the term to the right with the velocity components, (vg,vy) divided by the radius of curvature in

meridian, M or prime vertical, N are very small it can be neglected (EI-Sheimy, 2006).
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2.7.2 Velocity errors
The time derivative of the velocity was defined in Eq. 2.23. As similar with the position errors, the
velocity errors is the difference between the unknown true velocities, v" and the computed velocities,
v". The differential equation for the velocity error can be described using a Taylor series expansion to a
1st order approximation as (EI-Sheimy, 2006).
d 0

& =" " =w(vn)5v” =ﬁ(RB A= (2-Q +Q5, )xv" +77) 30" (Eq. 2.47)

After differentiation this will lead to (EI-Sheimy, 2006).

8" = SRy —(2- Qf +Qf, 3" - (230, +5Q, )v" + 8y +R}8i° (Eq. 2.48)
or

S = —F"e" +Rgb_(2.gig +an)6v” —\" (2-89?e +5£zgn)+67“ (Eq. 2.49)

Where F" is the skew symmetric matrix of the specific force vector, ", €" = (SE N eﬂ) are the
misalignment error states for the transformation between body frame and navigation frame,
b=(b, b, b;) isthe accelerometer bias errors from &f°, V" is the skew symmetric matrix of the

velocity vector, v" and &y" is the gravity error.

The full derivation of Eq. 2.49 will not be given here but the reader can see it in (EI-Sheimy, 2006) and
(Shin, 2001). However the solution can fully write be given as (EI-Sheimy, 2006).

0 & —f) o of

X

v —f 0 )(dy of

z
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e 0059 N+h
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VnNVE 0
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(Eq. 2.50)

The two last terms with the velocity components, (vg,vy,vy ) divided by the radius of curvature in

meridian, M or prime vertical, N are very small and can eventual be neglected (EI-Sheimy, 2006).

Attitude errors

The differential equation for the rotation matrix can also be defined using a Taylor series expansion to a

1st order approximation as (EI-Sheimy, 2006).

g"=-Qle" — 80, +Rpd

(Eq. 2.51)

Where d=(d,; d, dj) isthe gyroscope bias error from 8. Again the full derivation of Eq. 2.51 will

not be given here as the reader can see it in (EI-Sheimy, 2006) and (Shin, 2001). But the solution can

fully written be given as (EI-Sheimy, 2006).

o 1
N+h
&= el
M+h
—tano
N+h

Ove dw

dvy [+Rp| S, |+...
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2.74

0 0 —E—lﬁtji
M+h
v o
®, SINQ 0 v
(N+h) sh
E
v ve tang
-, C08Q————>— 0 £
P (N+h)cos’ ¢ (N+h) (Eq. 2.52)
0 oaesin(p+VEtﬂ 0, COS(p——E—
N+h N+h o
, Vg tan v
'*%sm@__ﬁiﬁg ° _Mih &
VE VN o
, COSQ+—— — 0
N+h M+h

Similarly to the velocity error the two last terms with the velocity components, (vg,vy,vy) divided by
the radius of curvature in meridian, M or prime vertical, N are very small and can be neglected (El-

Sheimy, 2006).

Gyroscope bias error
The residual stochastic part of the gyroscope bias (also called gyro drift and therefore the reason for the
name d) can be modeled as a first order Gauss-Markov process with a differential equation as (El-

Sheimy, 2006).

o, 0 0 )(d
d=—ad+wg=| 0 -o, 0 [d,|+w, (Eq. 2.53)
0 0 -a, )\

Where o is the reciprocal of the correlation time, T and wy is the Gauss-Markov process noise. The
Gauss-Markov correlation time and Gauss-Markov temporal standard deviation (used in calculating wy)
are obtained from the autocorrelation function of raw static data. Many other noise models can be used
in stead of a Gauss-Markov process but it is the most common used in navigation systems (Godha,

2006).
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2.7.5

2.7.6

2.1.7

Accelerometer bias error

The residual stochastic part of the accelerometer bias can also be modeled as a first order Gauss-

Markov process with a differential equation as (EI-Sheimy, 2006).

B, 0 0 b,
b=—Bb+w,=| 0 B, 0 b, |+w, (Eq. 2.54)

Where 3 is the reciprocal of the correlation time, T and wy, is the Gauss-Markov process noise similar

to the one from Eq. 2.53.

Error state equation

Combining Eq. 2.46, 2.49, 2.52, 2.53 and 2.54 give a set of linear differential equations for the error

states in the navigation frame as (EI-Sheimy, 2006).

- D&v"
5\;” —F"e" +Rb—(2- Qf + O, |v" - V" (2.8} +5Q], |+ &Y'
()= & |= —Q"e" — 5! +RId (Eq, 2.55)
d —od 4wy
b —Bb+w,

Process model

With the error state equation given in Eq. 2.55 it can be applied in a model for describing the process of

a dynamic system. One of the most common process models for INS is given as (EI-Sheimy, 2006)

x(t)=F(t)x(t)+G(t)w(t) (Eq. 2.56)

Where x(t) is the error state, F(t) is a system dynamic matrix, G(t) is a noise coefficient matrix

(shaping matrix) and w(t) is the process driving noise. See more in chapter 5.
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2.8 Advantage and limitations of INS
Seen in an overall perspective is INS a perfect navigation system, as it provides continuous navigation
information without being affected by the surrounding environment. Orthogonal mounted
accelerometers and gyroscopes measure specific force and angular rate that can be combined with the
mechanization equation and error state equation in order to get position, velocity and attitude
increments in a certain navigation frame. When the increments are integrated over time, they describe

any motion of the INS as a function of time (Godha, 2006).

However the INS computation process is more complicated as it sounds because any errors in the
accelerometer or gyroscope measurements will lead to errors in the determined position, velocity and
attitude. Gyroscope errors will result in errors in the transformation matrix between body and navigation
frame, while accelerometer errors will result in errors in the integrated velocity and position. The
integration will result in errors proportional to the integration time, t and its square, t2 for velocity and
position respectively. For inertial sensors with large errors this will lead to errors increasing without limits
in a very short time. The main problem about using INS to navigation systems is therefore the unlimited
errors that will occur over time if no precautions are taken. The system therefore seems to drift with time

(EI-Sheimy, 2006).

In order to minimize these errors, external measurements at regular time intervals must be utilized.
Different types of update measurements can be used in order to update the position, the velocity or the
attitude. GPS is one of the main position update methods and the only one discussed in this dissertation
(see chapter 3). Other methods could be velocity update from a wheel speed sensor or attitude update

from a compass.
Integration between the INS measurement and the one from the external systems are normally done by

use of different filtering techniques. Kalman filtering is a very common method in order to limit the noise

from the two systems. This will be discussed in chapter 4 and 5.
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3.1

GPS

This chapter describes the principles of the Global Positioning System (GPS) with emphasis to the
advantages and limitations. First the basics about system and the signal structure are reviewed followed

by a short introduction to differential GPS and the different errors that must be expected.

GPS signal and system structure

The NAVSTAR GPS (NAVigation System with Timing And Ranging — Global Positioning System) is a all
weather, worldwide, satellite-based navigation system, developed by the United States Department of
Defense (DoD) during the late 1960s, and approved in 1973 (Misra et al., 2001). In 1978 the first

prototype satellite was launched and the system was fully operational in July 1995 (Lachapelle, 2005).

It was original designed for metre-level positioning accuracies but due to several developments since
the beginning, centimetre-level positioning is now common. Its main concept is the ability to determine
range from a known signal transmitted from a satellite to a user, by measuring the transmit time. The
transmit time is measured as precise time marking on the signal is performed by very precise

synchronized clock onboard the satellites (Misra et al., 2001).

The system consists of three segments shown in figure 3.1.

Space segment M

A
Data from the satellite
Data both from
and to the satellite

User segment

Control segment

The Earth
Figure 3.1: Segments of the GPS system
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3.141

3.1.2

313

Space segment

The space segment consists of 24 satellites (minimum 21 active) plus a number of active spares in
almost circular orbits with a radius of approximately 20.200 km above the Earth. The satellites are
arranged in six planes with an inclination of 55° relative to the equatorial plane and have a circulation
time of 11 hours and 58 minutes (Lachapelle, 2005). Each satellite contains a couple of high precision
clocks (cesium and rubidium) that manage the time onboard. The GPS system uses its own time system
(GPS-time) that is a continuous timescale characterized by the number of weeks since the 5t of
January 1980 at. 00.00 Universal Coordinated Time (UTC) and the number of seconds since the
beginning of the present week (midnight between Saturday and Sunday). As UTC-time sometimes adds
an extra second (leap second) due to the Earth rotation, and GPS-time doesn't the difference between

the two time-systems are 14 seconds as of July 2006 (Misra et al. 2001 and Lachapelle, 2005).

Control segment

The control segment consists of a number of ground elements (three ground antennas, six monitor
stations and one master control station) that operates the entire GPS system. The monitor stations track
the satellites and send back data from the satellites to the master control station in Colorado Springs,
U.S. The master control station analysis the data and send back updated and corrected information to

the satellites, through the ground antennas (Misra et al., 2001).

User segment

The user segment is the largest and most dynamic segment as it consist of several hundreds (maybe
even thousand) different antennas and receiver-processor models. All capable of measure and
decoding the signal from the satellites, in order to give useful position information to the user. The sale
of private GPS receivers has increased dramatically during the last decade and more and more GPS
applications become a bigger part of our daily live. Take e.g. GPS receivers in cell phones, hand-held
navigation systems, car navigation systems, surveying instruments etc. (Godha, 2006 and Misra et al.,

2001).
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3.1.5

Signal structure

Each satellites continuously transmit a signal on two different carrier frequencies (L1 = 1575.42 MHz
and L2 = 1227.60 MHz). These signals are modulated by two Pseudo-Random Noise (PRN) codes and
a navigation message telling information about the satellite ephemeris, clock bias and health status. The
first PRN code is the Coarse-Acquisition code (C/A-code) only modulated on L1, with a frequency of
1.023 MHz and repeated each millisecond. The second is the Precise code (P-code) that is modulated
on both L1 and L2 with a frequency of 10.23 MHz. It has a length of 266 days but is reset every week.
The P-code is encrypted by a Y-code in order to limit its use to military applications. This is referred to
as Anti-Spoofing (AS) (Lachapelle, 2005). From the signals three different types of measurements can
be obtained namely, pseudorange code measurements, carrier phase measurements and Doppler

measurements (Petovello, 2003).

Pseudorange code measurement

The first measurement is derived from the PRN codes where a copy of the entire code is generated in
the receiver and then compared to the measured code. Whenever the two codes correlates the best the
transmit time of the signal can be determined, and from that the pseudorange. The pseudorange is the
distance between satellite and receiver including the clock bias between the satellite and receiver clock
(if the clock bias is removed from the distance it would only be a range instead). An observation
equation for the pseudorange by code measurements can be expressed as (Godha, 2006 and

Lachapelle, 2005).

p=p+c-dt—c-dT+d,,, —d;

ion + Girop + Gnise (Eq. 3.1)
Where p is the measured pseudorange from code measurements, p is the true range between satellite
and receiver, ¢ is the speed of light in vacuum, dt is the satellite clock error, dT is the receiver clock
error, d,y, is the satellite orbital error, d,,, is the ionospheric error, dy, is the tropospheric error and
doise 1S the error due to noise (e.g. multipath). The errors sources will be discussed in chapter 3.5.
Further information about pseudorange code measurements is given in almost any basic GPS book see

e.g. (Misra et al. 2001 and Dueholm et al. 2002).
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3.1.6
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Carrier phase measurement

The second set of measurements is derived from the phase of the incoming carrier frequencies. The
method is similar to the first mentioned, as a copy of the signal is generated by the receiver and
compared to the measured. The ambiguity (an unknown number of whole wavelengths between the
satellite and the receiver) need to be known and several methods have been developed for this purpose
(e.g. the LAMBDA method shown in (Lachapelle, 2005)). After each period with lack of data (known as a
cycle slip) a new ambiguity has to be determined. An observation equation for the range by carrier

phase measurements can be expressed as (Dueholm et al., 2002, Godha, 2006).

O=p—AN+c-dt—c-dT +dqy — digy +dyop + dngise (Eq.3.2)

Where ¢ is the measured range from phase measurements, A is the carrier phase wavelength, N is
the ambiguity and the rest of the variables is the same as in Eq. 3.1. The errors sources will be
discussed in chapter 3.5. Further information about carrier phase measurements is given in almost any

basic GPS book see e.g. (Misra et al. 2001 and Dueholm et al. 2002).

Doppler measurement

The third and last set of possible measurements is derived from the rate of change of the carrier phase
measurements and known as the Doppler shift. If the rate of change is scaled by the carrier phase
wavelength (typically L1) an observation equation for the range rate by Doppler measurements can be

expressed as (Godha, 2006 and Lachapelle, 2005).

d):p"'c'di_c'd-i-"'dorb_dion+dtrop+d (Eqg. 3.3)

noise
Where ¢ is the measured range rate from Doppler measurements, p is the true range rate between
satellite and receiver, ¢ is the speed of light in vacuum, dt is the satellite clock error drift, dT is the
receiver clock error drift, d,,,, is the satellite orbital error drift, d.,,, is the ionospheric error drift, dtrop is

the tropospheric error drift and d is the drift error due to noise (e.g. multipath). It should be noted

noise

that that the ambiguity term is gone after time derivation calculus.
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3.2 Absolute GPS

When the code pseudorange between the satellite and the user are known, the user position can be
determined by knowledge of the satellites position. This is called absolute GPS. From the navigation
message (see chapter 3.1.4) a large number of ephemeris parameters are known for each tracked
satellite. By use of these parameters the satellite position can be determined to a given time. The
procedure can be seen in many GPS books e.g. (Tsui, 2005). If the data processing is performed in
post-mission mode the satellite coordinates can be determined from post-processed precise ephemeris.
Depending on the precision of the ephemeris are they available from a couple of hours an up to 2 week
after the measurement. The International GNSS Services (IGS) (formerly the International GPS

Services) make the post-processed ephemeris available on their website (see http://igscb.jpl.nasa.gov).

A simple relationship between the coordinates for the user and a given satellite (all expressed in the

Earth frame) together with the pseudorange can be given as (Dueholm et al., 2002).

’ +(Zuser _Zsat )2 +c-dT (Eq- 3-4)

range = \/ (Xyser = Xsat )2 +(Zyser —Zsat)
Where ‘range” is the measured pseudorange from either code or carrier phase measurements,
(X/Y1Z,s ) are the unknown user coordinates, (X/Y/Z, ) are the known satellite coordinates
calculated from the ephemeris parameters, c is the speed of light in vacuum and dT is the unknown
receiver clock error. All other error terms given in Eq. 3.1 and 3.2 are, as described later (see chapter
3.3), small compared to the receiver clock error and therefore not mentioned in Eq. 3.4. They can

instead be minimized by modulation or other techniques as shown later.

As Eq. 3.4 contains four unknown, is it necessary to have measurements between four satellites and
the user, in order to determine all unknown parameters. If more than four measurements to different
satellites are known it will result in more equations than needed and the least square method can be

used in order to perform an element smoothing of the unknown parameters (Dueholm et al. 2002).
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3.3

3.31

3.3.2

Differential GPS

In stead of using absolute GPS another and more precise technique can be used. It is called differential
GPS and the idea is to measure simultaneous with a minimum of two receivers. One of the receivers

(the master) is placed in a well known point, while the other (the rover) measure relative o it.

DGPS

If the pseudorange measurement is used in differential GPS the technique is shorten to just DGPS. It
was original developed to eliminate Selective Availability (SA), an error on the satellite clock and in the
ephemeris parameter. SA is controlled by the DoD, in order to degrade the precision of GPS for civil
users. It was removed on the 2nd of May 2000 and instantaneously the accuracy of using pseudorange
code measurement was increased by a factor ten (Dueholm et al., 2002). When SA is no longer active
the technique is mainly used to minimize the atmospheric errors in the signal (see chapter 3.4). If two
receivers are measuring close to each other (the distance between the receivers is called baseline) the
atmospheric conditions above them are almost the same. As the master point is known, the measured
coordinates can be compared to the computed ones. The difference is therefore an estimate of the
actual error caused by the atmosphere and the other error terms in Eq. 3.1. Hence the error can be
used as a correction for the pseudorange measured by the rover to the same satellite. The corrected
pseudorange can then be used to calculate the position of the rover by using Eq. 3.4 (Lachapelle,

2005).

Relative positioning

If the carrier phase measurement is used instead, the technique is called relative positioning. It deviate
from DGPS in the way that is makes linear combinations of the observation equation from Eq. 3.2 in
order to reduce the different error term. A linear combination is then the difference between two
observation equations. The most simple is to make a difference between two receiver observations to
the same satellite. As the difference is made to the same satellite, the satellite clock error, dt and the
satellite orbital error, d,,, is the same and can be removed. With a short baseline the atmospheric
conditions is assumed the same and the ionospheric and tropospheric error, d,, and d,,, can be

removed. This difference is called a single-difference and can be written as (Lachapelle, 2005).
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Ot =Pri—ANgq +C-dt—c-dTg +dgp — digy + dyop + noise
Ory =Pro —ANgy +C-dt—c-dTgy +dgy —digy + i, +d
)

Or1z = Or — Oz = Pri—Pro —A(Nry —Nrg ) +C - (dTry —dTgy ) + drgise

noise (Eq. 3.5)

Where the subscript “R1” and “R2” refer to two different receivers and all other variables is described in
the previous equations. If a new difference is made for two single differences for different satellites it is
called a double-difference. As the receiver clock is the same for two different but simultaneous

measurements it can be remove and the double-difference can be written as (Lachapelle, 2005).

Ri2 = PRI~ PRI —X(N% —N%)JFC‘(dTm —dTgy) +droise
R2 = PRt — PR? —X(Ngf _Ns$)+c'(dTR1 —dTg; )+ dogise
)

S12_ .81 .82 _ 1§t 2, §2 ST NSt NS2 L NS2
OR12 = Qr12 —Or12 =PRI — PRI — PRI T PR2 —X(Nm —Ngr1 —Ngy +Ng} )+dnoise

(Eq. 3.6)

Where the subscript “S1” and “S2” refer to two different satellites and all other variables is described in
the previous equations. Finally if a new difference is made for two double-differences for two different
time epoch, the ambiguities would be the same and can be removed as long as no cycle slip occurs.

This is called a triple-difference and can be written as (Lachapelle, 2005).

212 (1) = PR1 (1) — PRI (1) = PRT (t) + PR3 (1) — A (NGT —N&} —N&T +N&F )+ g
ORis (t2) = Pri (t2) —PRi (t2) = PR (t2) + PR3 (tz)—k(N% —NR1 —N&y +N§$)+dnoi3e
)

ORis (tity) = 0r1z (t2) — OR1z (t4)
)
riz (tt2) = PRi(t2) = Pri (t2) —PRi (t2) +PR2 (t2) —PRi (t) +pRi (1) + PRt () — PRz (1)

(Eq. 3.7)

Normally the ambiguity is found through specific methods (see chapter 3.1.6) and only the double-

difference is used. The triple-difference can be used for coarse error check (Dueholm et al., 2002)
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GPS errors

A number of different errors are mentioned in the previous chapters and they can be classified into two
different groups. The common errors are the one that are common to all receivers operated in a limited
geographic area and include satellite clock error, orbital error, ionospheric error and tropospheric error.
On the other hand the on-common errors are the one that are on-common to receivers operated in the

same geographical area and include receiver clock error, multipath and noise (Godha, 2006).

Satellite clock error

The satellite clock error is the offset of the satellite clock with respect to the GPS-time. It is getting
smaller as the satellite clocks are getting better and the corrections for the error can be determined
better and better by the control segment (see chapter 3.1.2). The error is typically around a few meters

and changes only slowly over time. It can be fully removed by differential GPS (Misra et al., 2001).

Orbital error

The orbital error (also known as satellite ephemeris error) is the prediction error of the satellite position
derived from the ephemeris compared to the true satellite positions. They are also slowly changing over
time and gets smaller as the predicting by the control segment gets better. A typical orbital error is a few
meters and can be almost fully removed through differential GPS. Large orbital errors will only occur if
the baseline is very large, due to fact that the line of sight (geometrical line between the receiver and the
satellite) is separated more from each other when the baseline is long. But as given in (Misra et al.,
2001), an estimate of the uncompensated orbital error after performing of differential GPS is less than 5

cm.

lonospheric error

The ionospheric error is the error caused by a delay of the signal as it travels through the ionosphere.
The ionosphere is the layer from about 50 to 1000 km above the earth (Godha, 2006) and consist of
ionized air (free electrons and ions) caused by the suns radiation. When the signal travels through the
ionized air, the signal speed decrease from the vacuum speed of light and therefore results in phase

advance and code delay. This can be expressed through the Total Electron Content (TEC) over the
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signals entire path through the ionosphere as described in e.g. (Misra et al., 2001). The ionospheric
error is typically around 2 to 20 m depending on the elevation angle but most of it can be removed
through differential GPS (Dueholm et al., 2002 and Misra et al., 2002). After performing of differential
GPS the ionospheric error is around 5 to 20 cm for baseline length of up to 100 km, but can be up 1 m

during high ionospheric activity (Godha, 2006).

Tropospheric error

The tropospheric error is caused by the troposphere layer from the Earth surface and up to around 50
km above. Like the ionosphere it will cause a delay of the signal, but this delay is instead due to the
moisture, pressure and temperature along the signals path in the troposphere. Normally the delay is
divided into a dry and wet component. The dry component results in around 90 % of the total delay in
the troposphere and is due to the dry gases. The wet component is instead a result of the moisture and
is much more difficult to predict as it can vary a lot due to e.g. clouds and other weather phenomenon
(Godha, 2006). The tropospheric error is uncompensated around a couple of meters but can be reduced
significantly while performing differential GPS and/or meteorological modeling. The compensated error
is therefore around 0.1 to 1 m after modeling and around 0.2 m after differential GPS (Misra et al.,
2001). Due to longer signal path for satellites at lower elevation angels, an obliquity factor is added to

the measurements (Godha, 2006).

Receiver clock error

The receiver clock error is the offset of the receiver clock with respect to the GPS-time. It is a constant
error for the same receiver at simultaneous measurements, but is else varying with time. It is normally
calculated in the least square method of a minimum of four equations of Eq. 3.4 but can also be
removed from the double differences in Eq. 3.6. The receiver error can vary from a couple of meters and

up to many thousand meters depending on the quality of the receiver (Godha, 2006).

Multipath

Multipath is the phenomenon that a signal — instead of going directly from the satellite to the receiver

antenna (line of sight) — reaches the antenna after a couple of reflections performed by local reflectors
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such as glass and metal. The signal path therefore gets longer and this can result in huge errors that
sometimes dominate the entire error budget (Godha, 2006). Since it is a very local phenomenon it can
not be removed by differential GPS. Instead a couple of different techniques have been developed in
order to minimize the amount of highly reflective things close to the antenna. High elevations masks are
also one of the main solutions to multipath. The error is way higher for code measurements (0 to 5 m
(Dueholm et al., 2002)) compared to phase measurements (1 to 3 cm (Godha, 2006)) and it is therefore

one of the biggest advantage of using phase measurements instead of code measurements.

Noise

Noise mainly includes receiver noise on both code and phase measurements. It is introduced by e.g.
antennas and cables in the receivers and is normally estimated by an initial zero-baseline test, as it can
not be reduced through differential GPS. In the test two receivers are connected to a single antenna
through a signal splitter (Godha, 2006). Then performing double differencing removes all significant
errors except for the receiver specific errors (noise) and multipath. The receiver noise is generally about
0.25 t0 0.5 m for code measurements and only a couple of mm for phase measurements (Misra et al.,

2001).

Satellite constellation

The accuracy of the position measurement also depends on the satellite constellation. Satellites being
split apart from each other on the sky will give a more accurate position than satellites being close to
each other. This is expressed through different Dilution Of Precision (DOP) values. For three
dimensional positions the most common to use is the position DOP (PDOP). It is the reciprocal value of
the volume spanned by the four satellites (remember that four satellites were needed to determine a
position) and the receiver (Stenseng, 2002). If PDOP is less than 4 there is very good measure
conditions, and up to 6 is acceptable. As future PDOP values can be predicted through knowledge of
the satellite constellation in the ephemeris, the best period for measuring can be determined from home

(Dueholm et al., 2002).
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Finally all the errors discussed in the previous chapter can be summarized in order to get an idea of the

total errors for GPS measurements. A summarize is performed in table 3.1.

Error source Uncompensated code measurement After differential GPS
Satellite clock error 0-3m Om

Orbital error 0-3m ~0m
lonospheric error 2-20m 0.05-0.20 m
Tropospheric error 0.5-5m 0.1-1m
Receiver clock error 0-10m Om
Multipath 0-5m No effect (0-5 m)
Noise (other errors) 0.25-0.50 m No effect (0.25-0.50 m)
Total error summary ~10-15m 0-3m

Table 3.1: Error summary (Dueholm et al., 2002, Misra et al., 2001 and Godha, 2006)

3.5 Advantages and limitations of GPS

Under good conditions will GPS be able to provide continuous and accurate positioning to the user at all

time. But unfortunately good conditions will not always occur as the signal from the satellites can be

blocked be e.g. mountains and high buildings. Further as the electromagnetic signal travels from the

satellites to the Earth it can be influenced by magnetic fields, areas with high amount of free electrons

and moisture air that cause the signal to travel slower than expected (speed of light in vacuum). At the

Earth the signal can be extended by reflections from e.g. glass and the clocks onboard the satellites and

in the receivers can be unsynchronized and therefore cause more errors on the signal. Some of these

errors can be reduced or even removed by use of e.g. differential GPS but not all.

Hence any sophisticated urban navigation system can not depend on GPS as a stand-alone system. In

stead one can integrate two (or more) different navigation systems. This dissertation uses integration of

GPS with INS. The idea is that as INS solutions tend to drift with time, it will be updated as often as

possible with measurements from the GPS. Further there error dynamics are totally different and

uncorrelated what makes them perfect for integration (Jekeli, 2000).
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4.1

Estimation techniques

Estimation is basically the method of obtaining unknown parameters from a set of observations. Many
different estimation techniques can be used dependent on the amount of observations available and the
system that want to be estimated. One of the simplest estimation techniques is the least square
technique used when only measurements of the system are available. However if knowledge of the
systems dynamic over time are available a better estimate of the parameters can be obtained (Godha,
2006). As most navigation systems behave as non-linear systems is it common to perform a
linearization of the system (Julier et al. 2004). This chapter describes estimation techniques commonly

used in integration of INS and GPS. A direct use of the techniques can be seen in chapter 5.

Estimation of dynamic systems
The dynamics of an INS system could be described as the process model given in Eq. 2.56. Al

subscripts indicate a certain time epoch.

X, =FXx; +Gw, (Eq. 4.1)
In order to compute optimal estimates of the state vector, x; while using knowledge of the behaviors of
the systems dynamic a Kalman filter is used. It is recursive algorithm that uses a series of prediction and
measurement update steps with @ minimum of variance (Godha, 2006).
The Kalman filter assumes that the process can be modeled as (Petovello, 2003).

Xt = Propq X + W (Eq.4.2)

Where ®,,, is the transition matrix of the system taking it from time epoch t to t+1 and the other

variables are described at Eq. 2.56.
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The transition matrix can under the assumption that the time interval between the two time epoch t and

t+1 are small (high data rate) be given as an exponential function as (Gelb, 1974).

2 3
F At F At
Dy =™ :|+FtAt+( t2') +( tS') +... (Eq. 4.3)

Where | is the identity matrix and At is the time interval between the two time epoch t and t+1. Often

will the higher order terms be neglected (EI-Sheimy, 2006).

A measurement model is needed in the Kalman filter in order to relate the observation to the unknown

parameters. The measurement model for the time epoch t can be written as (Petovello, 2003).

z =Hx +m; (Eq. 4.4)

Where z, is the observation matrix, H, is a design matrix and 1, is the measurement noise with a

covariance matrix, R;.

When we assume that the process driving noise, w, and the measurement noise, ), are zero mean
white noise sequences with zero correlation, an updated estimate of the state vector and its covariance

can be found as (Petovello, 2003).

X{ =X +Kv, (Eq. 4.5)

P =(1-KH)Pr (Eq. 4.6)

Where ““ and “+” denotes before and after measurements update respectively, K, is the Kalman gain,

v, is the innovation sequence and P, is the covariance.

The Kalman gain, K, is given as (Petovello, 2003).
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1
K =P H{ (HtPt_HtT + Rt) (Eq. 4.7)

And the innovation sequence, v, is the difference between the actual observation, z, and the predicted

observation, Z, given as (Godha, 2006).

Hence the innovation sequence is the amount of new information being introduced into the system. If no
new information is introduced to the system, the actual and the predicted observation is equal and thus
follow that the updated state vector, X; equals the predicted ones, X; . On the other hand if there is a
difference between the actual and predicted observation then some new and unpredictable information
is introduced to the system. As measurements contain measurement noise (see Eq. 4.4) it is not given
that the system should fully accept the new measurement. The Kalman gain matrix is therefore a
weighting factor that indicates how much of the new information that should be accepted in order to
produce a minimum of error variance. If the measurement noise covariance, R, is small then the
Kalman gain will be large as the measurement is very reliable, but on the other hand if the measurement

noise covariance is small then the Kalman gain will be small as the measurement contain noise.

The predicted state vector and its covariance forward in time can be found as (Petovello, 2003).

L Wy (Eq. 4.9)

Pt = PP Pl +Q (Eq. 4.10)

Where ®,,,, is the transition matrix given as in Eq. 4.3 and Q; is the process noise matrix given as

(Godha, 2006).

t-+1
Q = Iq’c,t,t+1 G(t) Qc(t) G'(t) Py dt (Eq.4.11)
t
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Where @, is the continuous-time transition matrix between the two time epoch t and t+1, Q. is the

continuous-time spectral density matrix of w, and G(t) is defined in Eq. 2.56.

Combining Eq. 4.5, 4.6, 4.7, 4.9 and 4.10 results in a step by step Kalman filter algorithm as figure 4.1.

/—\A

Prediction step

1) Predict the state ahead

= _ o+
X = PrryrXy
2) Predict the error covariance ahead

- _ +5 T
1 = PPl Poygg +Q

tt+

A A
Initial conditions A priori info
)A(t Pt Rt Qt Ht+1 Gt q)t,t+1

Update step

1) Compute the Kalman gain

_ _ -1
Kt = I:’t+1H-tr+1 (Ht+1Pt+1H;r+1 + Rt+1)

2) Update the estimate with measurements
Xt = Xy +Kipg (Zt+1 - Ht+1)‘it_+1)
3) Update the error covariance

Pt:1 :(l_Kt+1Ht+1) t+1

Figure 4.1: Step by step Kalman filter algorithm

The above section describes a Kalman filter used when the process model in Eq. 4.1 and the

measurement model in Eq. 4.4 are assumed to be linear. However in many situations non-linear

process models or non-linear measurements model occur. Hence a linearization technique is therefore

needed in order to linearize the non-linear models and then use the Kalman filter algorithm in figure 4.1

(Godha, 2006).

4.2 Estimation of non-linear systems

A non-linear process model and measurement model can be given as (Petovello, 2003).

X, =f(x,,t)+Gw,

(Eq. 4.12)
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zy =h(x,t)+mn, (Eq. 4.13)

Where f and h are non-linear functions representing the behavior of the process model and the relation

relating between the state and the observation respectively.

In order to linearize Eq. 4.12 and 4.13 a nominal state vector, x: is selected as (Godha, 2006).

X; = X, + %, (Eq. 4.14)

Where 8x; is the perturbation from the nominal state vector value.

If it can be assumed that the perturbation from the nominal state vector are small, a first order Taylor

series expansion of Eq. 4.12 and 4.13 can be performed about the nominal state vector as (Godha,

2006).
8z, =H;0x; +m; (Eq. 4.16)

In stead of process and measurement models expressed by the state vector (see Eq. 4.2 and 4.4), Eq.
4.15 and 4.16 forms new linear models expressed by the error state vectors, dx, and the difference

between the actual and predicted measurements 8z, (Godha, 2006).
If the linearization is done about the nominal state vector as described above the Kalman filter is called
a Linearized Kalman Filter (LKF). However if the linearization is done about the last computed solution,

X;_s the Kalman filter is called an Extended Kalman Filter (EKF) (Petovello, 2003).

After the linearization the Kalman filter algorithm from figure 4.1 can be used in order to obtain the errors

state estimate, dx; and Eq. 4.14 can be used to obtain the state vector, x, (Godha, 2006).
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4.2 Reliability testing

As the update measurement used in the previous sections can contain errors a test for detecting such
errors (blunders) is needed in order to maintain the optimal state. The ability to identify and reject errors
is called reliability and it is performed via testing of the innovation sequence (difference between the
actual and predicted observation, see Eq. 4.8). If the measurement comes from e.g. GPS the errors
could due to e.g. multipath or poor satellite geometry (see chapter 3). Such errors are not detected by
the measurement model since they are distinct from the measurement noise in Eq. 4.4 (Godha, 2006

and Petovello, 2003).

By testing the innovation sequence one will find that any measurement outlier will cause the innovation

sequence to depart from the otherwise zero mean and normally distribution given as (Godha, 2006).

vi ~N(0,0,) (Eq. 4.17)

Where o, is the variance of the innovation sequence at time t given as (Godha, 2006).

o, =HPH +R, (Eq. 4.18)

Where all variables are described in the previous sections. In stead the innovation sequence will be

biased and follow a normally distribution given as (Godha, 2006).

v ~N(MV,,0,,) (Eq. 4.19)

Where M, is a design matrix that maps the outlier, V, into the observations at time t.
In order to detect the outlier a global Chi-Square test is performed for two hypotheses (bias free and
biased) with the number of freedoms equal to the assumed number of outliers (Petovello, 2003). An

isolation of the outlier can then be done by a local Chi-Square test.

The reader can see more about reliability testing in (Petovello, 2003).
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5

5.1

5.1.1

Integration of INS and GPS

Integration of INS and GPS data can be done by several methods. This chapter discusses the most
common methods followed by a description of the conditions of the lever arm effect and the time

synchronization problems.

Integration methods

The basic of all methods used in integration of INS and GPS data is that the IMU provide the reference
trajectory while the GPS serves as the updating system. This is mainly due to the fact that the INS
measurement frequency is many times higher than the one from GPS (normally around 100-400 Hz for
INS and 1-10 Hz for GPS) (Jekeli, 2000). The state vector parameters will therefore be determined with
high frequency but only updated (corrected) with low. The main difference between them then lies in the
data flow. Some methods share the same data e.g. the raw INS and GPS data in a common filter while
other use the data individual of each other in separate filters. Further some methods provide feedback

information to improve its performance while others don’t (Godha, 2006).

As the loose and tight integration strategy are the most commonly used methods (Petovello, 2003) they
will be used in the later data analysis and will be discussed the most. Two other methods will be

mentioned briefly.

Loose integration

The loose integration method contains two different Kalman filters that operates individual of each other.
One for the GPS measurements (called the GPS Kalman filter) and one for the INS measurements
(called the INS Kalman filter). The two filters are discussed further in chapter 5.2.1 and 5.2.2. The basic

step in the loose integration method can be described through the following steps (Jekeli, 2000).
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1) Processing of the raw GPS measurements through a GPS Kalman filter in order to determine the

position and velocity from GPS, (rC“;‘F,S,v”GF,S )

2) Processing of the raw INS measurements, (Aeﬁ),Avb) through the mechanization equations in

order to determine the position and velocity from INS, (nﬁs,v{‘Ns) :
3) Use of the position and velocity from 1) as input to an INS Kalman filter. The filter takes the
difference between the position and velocity from 1) and 2), (Ar”,Av”) in order to determine the

error estimates of the position and velocity, (6r”,8v”) plus the misalignment error, (e”) .

4) Use the error estimates from 3) to update the position and velocity from 2) in order to get a full state

vector, (r”,v”,RB )

The loose integration method is shown in figure 5.1.

MU AB% | Mechanization s | Pos. / Vel. / Att.
AVP equations Ve d M VR
o | v £"
INS
Kalman filter

GPS

GPS Kalman filter

A 4

Figure 5.1: Loose integration

The advantage of the loose integration method is mainly its simplicity in implementation and its

robustness, as if one of the sensors (INS or GPS) fail, a solution is still given by the other sensor
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5.1.2

(Godha, 2005). Other advantage of the loose integration can be seen in the processing time of the
algorithm due to generally smaller state vectors (Petovello, 2003). This is not discussed further here as
all processing is done in post-mission and the processing time is then only of minor importance.

The disadvantage is mainly that it is impossible to provide measurement update from the GPS filter
during poor GPS cover (less than four satellites). This is not the case for the tight integration method
and therefore one of the reasons why tight integration method often do better than loose integration
especially in urban areas (Godha, 2006). Due to the two different Kalman filters the loose integration

strategy in some literature is referred to as the decentralized integration method (Jekeli, 2000).

Tight integration
The tight integration method contains only a single Kalman filter (called the INS/GPS Kalman filter). The
filter is discussed further in chapter 5.2.3. The basic step in the tight integration method can be

described through the following steps (Godha, 2006)

1) Processing of the raw INS measurements, (Aeﬁ),Avb) through the mechanization equations in

order to determine the position and velocity from INS, (nﬁs,v{‘Ns) :

2) Use the raw GPS ephemeris information and the position and velocity from 1) to predict

pseudoranges and Doppler measurement, (q)INS’d)INS)'

3) Use of the predicted pseudorange and Doppler measurements from 2) as input to an INS/GPS
Kalman filter. The filter takes the difference between the pseudorange and Doppler measurements
from 2) and the raw GPS pseudorange and Doppler measurements, (q)GPS,d)GPS) in order to

determine the error estimates of the position and velocity, (6r”,8v”) plus misalignment error, (s”) .

4) Use the error estimates from 3) to update the position and velocity from 1) in order to get a full state

vector, (r”,v”,RB )
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The main advantage of the tight integration is that even during poor satellite coverage (less than four

satellites) updating of the INS can still be performed. This is due to the use of predicted and raw

pseudorange and Doppler measurements (Godha, 2005). The tight integration is therefore mainly used

in urban areas where it is common that the GPS solution falls out now and then.

The disadvantages are mainly that the state vector increases in size, due to single Kalman filter with

both INS and GPS measurements, and this leads to larger processing times (Petovello, 2003). Due to

the main (and only) Kalman filter the tight integration strategy in some literature is referred to as the

centralized integration method (Jekeli, 2000).

The tight integration method is shown in figure 5.2.

5.1.3 Other integration methods

MU AB2 Mechanization s ViNs
AV equations Pos. / Vel. / At.
rn Vn B
iNs | Vins
A 4
Predicted range Oins -
and Doppler : "
Oins +
Ephemeris & | ov"
E:,’I"I
GPS Measuredrange | ®Peps X Ag INS/GPS
and Doppler %Ps +'<> A ™ Kalman filter

Figure 5.2: Tight integration

Of other integration methods are the “uncoupled” and the “deep/ultra-tight” integration the most

common. The first is a simple method that uses the GPS solution if available and otherwise uses the
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INS solution. When the GPS solution is available it resets the INS position and velocity to the current
one from the GPS. The system gives no feedback of errors estimate back to the mechanization
equation so the position and velocity error will keep increasing during periods with no GPS solutions
(Jekeli, 2000). This method is normally not very accurate and is therefore not used in high-accuracy

navigation systems (Petovello, 2003).

The second methods combine the INS and GPS in an extremely tight way (therefore the name ultra-
tight) with update from GPS to INS solutions and aiding the reverse way. It requires access to the GPS

receiver firmware and is therefore mainly used by the manufacturers of the GPS (Petovello, 2003).

Implementation strategies

There are mainly two different ways to implement the loose and tight integration. One is called “closed
loop” or “feedback” and the other is called “open loop” or “feed forward”. In the “closed loop” all the error
estimates plus misalignment error from either the INS Kalman filter (loose integration) or the INS/GPS
Kalman filter (tight integration) is used to correct the mechanization parameters. The mechanization
equation therefore propagates small errors (Godha, 2006). From the two mentioned Kalman filters
estimates of the bias for both accelerometers and gyroscopes is possible output. These bias estimates
are therefore feed back to raw sensor output and used in the known error compensation (see chapter

2.6.1).

In the “open loop” no error estimates, misalignment errors or sensor bias are send back to the
mechanization equation or the raw sensor output. The errors will therefore grow more rapidly and some
of the neglected second order terms in the mechanization equations could be of significant impact
(Godha, 2006). “Open loop” implementation is therefore only possible for high end inertial sensors as

there sensor errors are small.
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In stead the “closed loop” implementation is used where sensor errors are large e.g. in low cost MEMS-
based IMUs. The “closed loop” implementation is shown in figure 5.3. Only the relevant part of the loose

and tight integration is shown as the rest is shown in figure 5.1 and 5.2.

INS "Closed loop” in
Kalman filter loose integration
b | d o | v g" o [ ov" €"
A 4 A 4
IMU A® | Mechanization TN | Pos. / Vel. / Att.
AV equations Vi \‘d M v OR!
A A
b | d or" | &v" € & | v g
INS/GPS "Closed loop” in
Kalman filter tight integration

Figure 5.3: Closed loop implementation for loose and tight integration

5.1.5 INS and GPS Kalman filters

As mentioned in the previous chapter a number of different Kalman filter are used in the loose and tight
integration methods. They will not be described further in this dissertation but the reader can see more

in e.g. (Godha, 2006 and Petovello, 2003).

5.2 Lever arm effect
Since both the IMU and GPS cannot be installed at the same place the position and velocity of the IMU
is different from the one of the GPS. This is called the lever arm effect (Shin, 2001). In order to correct
this, knowledge of the vector from the centre of the IMU and to the GPS antenna must be known.
Usually this is done through a total station survey in a temporary mapping frame (m-frame) and the

vector is given as (EI-Sheimy, 2006).
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5.3

m m
IMU ~ A\GPs
0™ =| Yty = Yeps (Eq. 5.X)
Ziwy — Zaps

m

Mu/Gps are the coordinate of the

Where ¢™ is the lever arm vector in the mapping frame and (X,Y,Z)

IMU and the GPS respectively given in the mapping frame. Either the rotation matrix between the body
frame, and mapping frame, an or the rotation matrix between the navigation frame and the mapping

frame, R, must be known in order to calculate the corrected position of the IMU as (Shin, 2001).

L 0 0
M+h
1
M =rhoe — — 0 |RDL M Eq.5.X
MU = TGPs (N+h)COS(p m (Eq )
0 0 —1

Where 1y, and ry,, are the curvilinear coordinates of the IMU and GPS respectively expressed in the

navigation frame. The corrected velocity can be calculated as (Shin, 2001).
Vi = Veps + ('er:a + an) 00" —RpQp°

Where 1, and ry, are the velocity of the IMU and GPS respectively as described in the (ENU)
navigation frame, (Q{L,an) are the skew symmetric matrices of the vectors in Eq. 2.20 and 2.21 and

Qﬁ) is the skew symmetric matrix of the gyroscope measurements.

Measurement time and synchronization

As the IMU and GPS measurements usually are made at different time the IMU position and velocity
need to be interpolated or extrapolated in order to coincide with the GPS measurements. If instead the

last IMU measurements before the GPS measurement was used an error will occur that for high
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dynamic vehicles (e.g. aircrafts) could be a couple of meters for a 100 Hz IMU (EI-Sheimy, 2006). Even

for low dynamic vehicle (e.g. cars) the interpolation/extrapolation is still done.

A linear interpolation method between the IMU measurements before and after the GPS measurement

is usually enough and can be performed as (Shin, 2001)

rtr;Ps _ ttk _ttGPS rtr:_1 " tct;Ps _ttk—1 rtn (Eq. 5X)
k ~ k-1 k ~ k-1
?Gps _ t —taps V?H " tops — tit V?k (Eq. 5.X)
b=ty t =ty

Where the time subscript refer to the time epoch in figure 5.4.

IMU measurements

tk—2 tk—1 tk tk+1
S L

tGPS

GPS measurements

Figure 5.4: IMU and GPS measurements

If high dynamic vehicles are used other integration techniques must be used. Usually the La-grange
interpolation is used. More about the La-grange interpolation can be seen in e.g. (Shin, 2001). Further it
can be mentioned that if the IMU isn't time tagged with GPS-time, synchronization need to be done.
This is done by use of the 1 pulse per second signal send from the GPS to the computer that collects

the IMU measurement (EI-Sheimy, 2006).
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6

6.1

MATLAB program

In order to analyze the performance of the INS and GPS integration theory as described in the previous

four chapters, a program was created in MATLAB.

Program objective and expectations

The main objective of the program was to integrate INS and GPS data in a post-mission mode. The
input to the program was data from two GPS receivers working in differential mode and from an IMU
placed in a rigid body with the rover. The data from the GPS receivers were observation data (that
contained the raw code, phase and Doppler measurements) and navigation data (that contained the
ephemeris parameters). Only the navigation data from the master receiver was used. The input format

was limited to the following format:

Observation data (GPS) Binary files and RINEX obs. files
Navigation data (GPS) Binary files and RINEX nav. files
IMU data Binary files and text files

Table 6.1: Input formats

The binary and text files where easy to load into the program as all data where stored in rows (for each
measurement epoch) with equal number of columns (for all the measured variables). In loading the
RINEX files other methods had to be used as some of the information where written in a header where
the program had to perform a search in the header labels. Further all the observation where written in
groups with different amount of rows depending on how many satellites where available. The process
made it a little more difficult to read RINEX files compared to more raw measurement files from the

receiver in either binary or text files format.
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Many expectations were put in the program, but some had to be limited. The loose integration was given
most attention and therefore the method that was tried implemented first. The tight integration could
then be implemented at a later stage. For the loose integration the INS and GPS derived positions
where calculated independent of each other and the program could therefore be split in two different

parts.

The first part calculates the GPS derived position by using the differential method. The implementation

strategy for this part could be expressed by the following steps.

1. Calculate the coordinates for the satellites by using the ephemeris data from the navigation file.

2. Calculate the (true) ranges between the satellites and the master station by using the coordinates
from 1. and the known coordinates from the master station (initial condition).

3. Calculate the range between the satellites and the master station by using the pseudorange and
carrier phase measurements from the observation file. This is done by carrier smoothing where the
very accurate range differences derived from carrier phase complements the pseudorange
measurements.

4. Calculate corrections for the difference between the ranges from 2. and 3.

5. Calculate the ranges between the satellites and the GPS receiver by using the pseudorange and
carrier phase measurements from the observation file (same procedure as for 3.).

6. Add the corrections from 4. to the ranges from 5.

7. Calculate the position of the GPS receiver by using the corrected ranges from 6. This is done

through the least square method.

The next part calculates the INS derived position by using the mechanization equation described in
chapter 2.6. Before the mechanization can be used an alignment over a user specified interval has to be
done in order to determine the rotation matrix between the body frame and the navigation frame. A
search for the first kinematic measurement is found by analyzing the difference between two successive

GPS derived positions. A stop criterion can be a difference of e.g. 5 cm/s. From the first kinematic
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measurement the start time of alignment can be calculated and the alignment can be performed as
described in chapter 2.4. The user specified alignment interval can eventually be calculated according to

the wanted azimuth accuracy and the angle random walk of the gyroscopes.

When the rotation matrix is calculated in the alignment procedure, the mechanization equation can be
used to estimate a new INS-derived position and velocity. The difference between these and the one
derived from GPS is then used in a Kalman filter (according to chapter 5.1.1) in order to get error
estimates of the position and velocity together with misalignment error. These are then used to update
the INS-derived position and velocity (these are the final guidance estimates) and calculate a new

rotation matrix that can be used with a new set of measurements in the same way.

Program bugs

When the programming started a number of problems occurred. The first was that the corrections to the
calculated and true ranges for some satellites were too high (up to a couple of hundred kilometers!!).
There was surely a bug in the differential part of the program but even during intense debugging the bug
wasn'’t found. In order to limit the expectations and still perform the integration of INS and GPS data,
Trimble Geomatics Office (TGO) was used to the differential part of the program. When the observation
and navigation data were processed in TGO, the position could be exported to a file and then loaded

into the program.

A second problem occurred when the mechanization equation was implemented. Apparently another
bug occurred here and it resulted in wrong INS derived positions. The program code was again checked
for errors but not even after intense debugging the bug was found. The bug resulted in wrong INS
derived position when it was compared to the GPS derived positions. Of cause errors between them
could occur (especially the INS stand alone position was expected to drift away from the GPS derived),

but when the same trajectory was plotted over a short period (100 seconds) the INS simply couldn’t
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keep up with the GPS derived. This can be seen in figure 6.1 where the two lines indicate the GPS and

INS derived trajectory for the same time interval.

51.0971 T T T |

— GPS derived trajectory

51.057 — NS derived trajectary

51.0969

51.0965

81.0967

51.0966

51.0965

Latitude [deg]

51.0964

51.0963

51.0962

51.0961

14374 114372 11437 114368 4114366 114364 -114.362 <1436
Longitude [deg]

Figure 6.1: Trajectory from own program with bug (the GPS and INS derived trajectory should have been same length!)

If it wasn't known, the INS derived trajectory errors in figure 6.1 would look like drift errors. But as the
two trajectories were expected to be the same length (they are plotted over the same time interval),
something was wrong. Further it looks like the INS derived position just kept following a line without
changing orientation. But on figure 6.2 the beginning of the two trajectories are plotted and it can be
seen that the INS derived position actually changes orientation in the beginning. A check for the IMU
data has also been performed as the GPS derived trajectory is from the GPS only measurements. An
error in the INS data would therefore make it impossible to compare the two results. Unfortunately no
error was found in the INS data (the raw gyroscopes measurement showed the same swing tendency
as on the GPS derived trajectory). The error was therefore somewhere in the mechanization equations

but became unfound.
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Figure 6.2: Zoom in on the start of the two trajectories from figure 6.1

Due to the unfound bugs of the program another method had to be used in order to analyze integrated
INS and GPS data. During my month in Calgary | used a complete INS and GPS integration program
from the University of Calgary to some different processing. To my luck | was still having the processed
data and could therefore use them in the data analysis in chapter 7. Further processing than the one

already done was impossible as the program was encoded and needed a special program key to run.

6.2.1 Program run from CD

The reader can see the code of all the program files and data files on the enclosed CD following this
dissertation. The program that results in figure 6.1 and 6.2 can be seen by running the MATLAB m-file
“GINIS.m”. Make sure that all the other files contained on the CD are in the same directory as “GINIS.m”

when running it.

It is the program files named “Alignment.m” and “MechanizationEquation.m” that have a bug.
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Data analysis

This chapter presents a data analysis performed on output from processed INS and GPS data. The
main objectives is to assess the integrated systems performance hereby determine the position and
velocity accuracy during data outages and under different conditions. Details of the data and the
analysis method used are presented first followed by determination of the position, velocity and attitude
accuracy. Finally the time in which the ambiguities are fixed after a data outages are presented followed

by a small analysis of the accelerometer and gyroscopes bias calculated during the processing.

As the MATLAB program had some hidden and unfound bugs (see chapter 6) the data analysis had to
be done with use of another program. In stead the C++ class based SAINT™ (Satellite And Inertial

Navigation Technology) software was used.

SAINT™

SAINT™ was developed in 2003 by the Position, Location and Navigation (PLAN) group in the

Department of Geomatics Engineering at the University of Calgary at the University of Calgary. It is a
software that is capable of integrating data from INS and GPS in order to obtain precise estimates of
position, velocity and attitude in both real-time and post-mission mode. All data analysis was done in

post-mission mode.

The software starts with reading an option file in which the user can select different processing
strategies and specify different parameters and variables including simulated GPS data outage (gaps).
Once the option file was successfully read all data processing happened automatically. After processing
a wide variety of output files was available. It is the data from the different output files that are analyzed

in the following sections.
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7.2 Test data
The test data was collected by Saurabh Godha in February 2005 as part of another GPS/INS project.
They test area was situated west of Calgary near Spring Bank airport and was selected because it
provided good satellite visibility and had some reference pillars with well known coordinates. This made
it possible to determine a good reference trajectory before GPS data outages were simulated in
SAINT™. The dataset began with a static alignment period of about 12 minutes and were followed by
30 minutes of kinematic data. The kinematic data were split up by five short periods of 1-2 minutes with
zero velocity update. The zero velocity update was not used in this data analysis. Figure 7.1 show the
reference trajectory in an east-north coordinate system with marks where the static alignment and ZUPT
were done including the position of the master station. In order to make it easier to compare two
coordinates all positions are transformed into a local north-east-up (N,E,U) frame with origin at the place
where the static alignment were done. As the terrain around Spring Bank is relatively flat only the east

and north trajectory are shown in figure 7.1 and 7.2.
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Figure 7.1: Reference trajectory
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Figure 7.2: Zooms at the reference trajectory

As it can be seen the test data were measured in a trajectory with both turns and straight forward
driving. This was done in order to imitate different dynamic performance. Due to the chosen area most
of the roads were going east-west or north-south, so during two turnaround situations marked A and B a

couple of circular movements were done. These areas are shown in two zoomed windows.

Measurement instruments

The IMU and GPS that was used in collection of the test data were the tactical grade Honeywell HG
1700 AG11 and the NovAtel OEM4 dual-frequency receiver with a NovAtel 600 antenna. The IMU data
was time tagged with the GPS-time from the GPS and the synchronization was expected to be better
than 1 ms (Petovello, 2003). Both the master and rover were using the above mentioned receivers and
antennas. The IMU and GPS for the rover were rigidly fixed to a wooden board that was mounted to the
roof of a test van from University of Calgary. The lever arm between the GPS antenna and IMU was

measured with a total station (Godha, 2006). Technical specifications of the IMU are seen in table 7.1.

Specifications for HG 1700 Accelerometers Gyroscopes
Bias (10) 1.000 ug 1 deg/hr
Scale factor (10) 300 ppm 150 ppm
Random walk (max) 0.00216 m/s/\hr 0.125 deg/\hr

Table 7.1: Specifications for Honeywell HG 1700 tactical grade IMU (Petovell0, 2003 and Godha, 2006)
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Analysis method

In order to perform the data analysis two different trajectories were needed. The first computed the
reference trajectory with constant full coverage of GPS, while the second computed a trajectory with
simulated GPS data outages (only INS measurements during the GPS outage). The difference between
the two trajectories during and after the GPS outages was then used in the analysis of how well the

integrated INS/GPS solution was computed.

Processing parameters

Before processing of the data a lot of parameters and variables were determined in the option file. Most
of the parameters were kept fixed during all data processing and only two parameters were chosen to
be changeable in order to analyze there impact on the performance. As the data weren’t collected with
this dissertation in purpose, the changeable parameters could have been chosen better if further
processing were possible (this were not the case due to the encoding of the program and the need for a

special program key). Table 7.2 shows important parameters and variables determined in the option file.

Constant parameters

Parameter Fixed values
Coarse alignment time [s] 90
Fine alignment time [s] 600
Elevation mask [deg] 10
Use Code measurements Yes
Code standard deviation [m] 0.50
Use L1 Doppler measurements Yes
L1 Doppler standard deviation [m/s] 0.03
L1 carrier phase standard deviation [m] 0.03
L2 carrier phase standard deviation [m] 0.025

Changeable parameters

Parameter Values
Phase measurements L1/ WL
INS/GPS integration strategy Tight / Loose

Table 7.2: Constant and changeable parameters during the data processing in SAINT™ (Petovello, 2003 and Godha, 2006)

As seen in table 7.1 only the choice of phase measurements, L1 or Wide Lane (a linear combination of
L1 and L2) and the GPS/INS integration strategy was changeable during processing. Comparison

between the changeable values is analyzed in chapter 7.4.
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7.3.2 Reference trajectory

The reference trajectory was performed by using both GPS and INS measurements in order to get the
highest quality. Of the two changeable parameters from table 7.4, L1 and tight integration was used. It
was expected that L1 had lesser noise than WL, and that tight integration was better than loose

because even during poor satellite coverage (less than four satellites) updating of the INS could still be

performed (Petovello, 2003).

As it can be seen in figure 7.3 the GPS satellite visibility was good during the test. The average number
of satellites being tracked were a little more than 7 and a minimum of 6 satellites were all the time
available. Unless other is mentioned all figures and plots are from the start of the alignment and to the

end of the kinematic measurements.

N ' : :

Number of satellites

a
A07E00 A0E500 A05400 510300
14:00 14:15 14:30 14:45

GPS-Time and Local Time

Figure 7.3: Satellite availability

Side 83



INS and GPS integration MSc Thesis, July 2006

Fixed ambiguities were found for all the satellites except for one (satellite 21) during the static alignment
and kept during all dynamic mode. This can be seen in appendix A. The problem with satellite 21 was
that it became visible during the dynamic mode and had problem solving its ambiguity to a fixed value
on-the-fly. But as it were the only one of the satellites with ambiguity problems, the position accuracy

was still expected to be high.

Further the distance from the vehicle to the master was only between 0 and 4.7 km as seen on figure
7.1 and the accuracy of the differential GPS solution was therefore expected to be good as the orbital,

tropospheric and ionospheric errors could be corrected very precise (see also chapter 3.4).

All of the above mentioned have been relate to the GPS measurement, but in order to evaluate the
influence of the INS measurement, the magnitude of the corrections applied to the INS derived position,
velocity and attitude from GPS update are shown in table 7.3. It gives a good indication of how smooth

the reference trajectory is, as large corrections after each update will result in a saw tooth like behavior

of the trajectory.
Position correction Velocity correction Attitude correction
East 51 mm East 1.8 mm/s Pitch 0.14 mrad
North 4.7 mm North 1.5 mm/s Roll 0.30 mrad
Up 3.3mm Up 0.8 mm/s Azimuth 0.41 mrad
3D 7.6 mm 3D 2.4 mm/s

Table 7.3: RMS corrections of INS position, velocity and attitude during GPS update for reference trajectory

As the three-dimensional (3D) RMS (root mean square) correction is at centimeter level for the position,
it is expected that the reference trajectory is accurate to a couple of centimeters in 3D position at all
time. The 3D velocity is at the same time accurate to about 3 mm/s and therefore will the reference
trajectory be good enough to compare with during the next sections. Further as the precision is at
centimeter level all fixed ambiguities that where found are assumed to be correct as they are significant

small compared to a wavelength of both the L1 and WL (Petovello, 2003).
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7.3.3 Simulated GPS data outage
In order to analyze the performance of integrated INS and GPS data, five different GPS data outage

(gaps) were simulated. The gaps were selected to encompass different dynamic situations of a vehicle

and the duration were up to 40 seconds for each gap. The locations of the gaps are shown in figure 7.4.
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Figure 7.4: Satellite availability

The gaps shown in figure 7.4 are the full 40 seconds gaps. It can be seen that the location of the gaps
also where chosen in order to get different baseline length from the master station as this could affect

some of the common errors (see chapter 3.4).

Instead of only simulation gaps without any GPS coverage, two different levels of data gaps were used.
The complete gap was the used in order to simulate e.g. tunnel situations where no form of GPS signal
was available (only the INS solution was used), while the partial gap was used in order to simulate

urban area situations. Here the elevation mask was raised to 50° in order to minimize the amount of
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satellites so less than four were available. A stand alone GPS solution was therefore impossible. When
so, the GPS measurements were useless unless the tight integration solution was used (remember from
chapter 5.1.2 that it had a INS/GPS Kalman filter that could use any raw GPS measurements regardless
of how few there were). The number of visible satellites during the partial gaps was therefore important

during partial gaps.

Position accuracy

The position accuracy of the integrated INS and GPS solution, where calculated as the RMS error
between the position of the reference trajectory and the position found during the outage. The RMS
error was calculated across all five gaps in order to minimize the effect of large errors for a single gap
and get a better estimate for the average accuracy. As the reference trajectory was assumed to be of
centimeter precision (see chapter 7.2.2), the position error of the integrated solution was expected to be
the main reason for the RMS error. Hence the RMS error was a good estimate of the performance of the
integrated solution to centimeter level. Five different RMS errors were computed in the analysis. The
east, north and up position error were single axis errors while the horizontal and 3D error were two and

three axis errors respectively. All RMS errors are shown as function of time since outage was started.

Comparison between complete and partial data outage

The RMS error for complete and partial gaps using L1 carrier phase measurements and the tight
integration can be seen in figure 7.5 and 7.6 (next page). As shown in figure 7.5 will the position
accuracy degrade with the square of the time from the beginning of the complete outage. This was
expected as the position error was the double integrated of the acceleration bias (see chapter 2.2.4).
The RMS 3D error is about 1 m after the entire 40 seconds gap. As no GPS signals are available during
complete gaps the error is only due to the use of the INS solution. From table 3.1 it was shown that the
accuracy of the differential GPS code solution was a couple of meters. Hence use of the INS solution
will result in almost the same level of accuracy after 40 seconds of complete gaps than for the
differential GPS code solution. A clear effect can be seen between using complete and partial gaps. For
partial gaps and during tight integration the error is a function of the quality of the remaining visible

satellites. For all the gaps either two or three satellites were visible during the partial gaps.

Side 86



INS and GPS integration MSc Thesis, July 2006

RMS position error - Complete gaps - L1 - Tight integration

RS e Ereeeees e e e e s
— North B
= : : : : :
— Up : : : : :
— Horizontal
ED ! ! ! ! !
—_ ]
E
-
L=
=
o
oy
¥
0.5

0 g 10 15 20 25 30 35 40
Time into data gap [s]

Figure 7.5: RMS position error during complete gaps and using L1 carrier phase measurement and tight integration
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Figure 7.6: RMS position error during partial gaps and using L1 carrier phase measurement and tight integration

Side 87



INS and GPS integration MSc Thesis, July 2006

7.4.2 Comparison between loose and tight integration

In stead of comparing complete and partial gaps for L1 and tight integration the integration method is
changed. Figure 7.7 show the RMS error for complete gaps using L1 carrier phase measurements and
the loose integration method. It can be seen that there is there is no significant difference when figure
7.7 is compared to figure 7.5. This was expected too as there is little difference between the loose and
tight integration when there is no GPS signal. The difference is instead seen for partial gaps where the
tight integration is better than the loose due to the information from the remaining satellites. Even that
two or three satellites is available during the gaps it is enough to get a better position accuracy. After 40
seconds of partial gaps the RMS position error is 0.75 m and 1 m for tight and loose integration
respectively. During vehicle movements in e.g. urban areas where the line of sight to a number of

satellites sometimes disappear (so less than four satellites are available) the tight integration therefore

show better performance compared to the loose.
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Figure 7.7: RMS position error during complete gaps and using L1 carrier phase measurement and loose integration
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RMS position error - Partial gaps -L1 - Loose integration
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Figure 7.8: RMS position error during partial gaps and using L1 carrier phase measurement and loose integration
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7.4.3 Comparison between L1 and WL phase measurements

Finally in the comparison of the position accuracy, using either the L1 carrier phase measurements or
the Wide Lane (WL) (linear combination of L1 and L2 carrier phase measurements) are also analyzed.
Figure 7.9 and 7.10 (next page) show the RMS position error during complete and partial gaps and
using WL. They can be compared to figure 7.5 and 7.6. Due to longer wavelength of WL (0.89 m
compared to 0.19 m for L1 (Petovello, 2003)) it was expected that the measurement noise would
increase and that the accuracy of using WL was worse than using L1. This is especially true for partial
gaps where the accuracy of the few GPS signals that were available played a crucial role. Using L1

instead of WL therefore show better performance for partial gaps.

Overall will the RMS position error be about 25 ¢cm for gaps less than 20 seconds in most of the
previous comparisons. For larger gaps there is a more clear difference. It has been shown that the tight
integration show better performance than loose, and that use of L1 show better performance than WL. It

is especially shown for partial gaps as the influence of just a few available GPS signals is clear.
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Figure 7.9: RMS position error during partial gaps and using WL carrier phase measurement and tight integration
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Figure 7.10: RMS position error during partial gaps and using WL carrier phase measurement and loose integration
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7.5 Velocity accuracy
The same kind of comparisons that were done in the previous sections for the position accuracy can be
done for the velocity accuracy. As seen in figure 7.11 and 7.12 (next page) will the velocity RMS error
grow more linearly compared to the position RMS error. This is due to the fact that the error from the
mechanization of the specific force only is integrated once compared to the position that is integrated
twice. The RMS velocity error during complete gaps with use of L1 carrier phase measurements and
tight integration are about 7 cm/s after 40 seconds and about 3.5 cm/s for partial gaps for the same
duration. The north and east error looks a little bit strange in figure 7.11 as they cross each other about
13 seconds into the gaps. The reason has been impossible to find, but a guess could be strange

behavior in one or more of the gaps due to special vehicle movements.
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Figure 7.11: RMS velocity error during complete gaps and using L1 carrier phase measurement and tight integration

Figures of the velocity accuracy can be made for other combinations of phase measurements and

integration strategy, but as they acted in a similar ways they are not further mentioned here.
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Figure 7.12: RMS velocity error during partial gaps and using L1 carrier phase measurement and tight integration

7.6 Attitude accuracy
Finally the attitude accuracy can be seen in figure 7.13 (next page). The attitude accuracy is split up in
roll, pitch and azimuth RMS errors. As the test area mainly was flat, most of the angle rotation would
occur as changes in azimuth. This can clearly be seen in figure 7.13 as the error in azimuth therefore
becomes larger than similar ones from pitch and roll. For azimuth the RMS attitude error is growing up
to around 0.03 degrees for complete gaps up to 40 seconds while it's only about 0.01 degrees for roll
and pitch. If we compare these values with the specifications for the gyroscopes from table 2.1 (1 deg/hr
which is similar to 0.01 degrees in 40 seconds) the performance is similar for the pitch and roll but

worse for the azimuth.
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RMS attitude error - Complete gaps - L1 - Tight integration
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Figure 7.13: RMS attitude error during complete gaps and using L1 carrier phase measurement and tight integration

7.7 Time to fix ambiguity after outage
The previous part of the data analysis has mainly been analyzing the performance during either
complete or partial gaps. Another important thing is the ability to recover after the gaps and determine
correctly fixed ambiguities. This is important in order to get high accurate position updates from the GPS
as the GPS solution provides most of the accuracy to the integrated INS and GPS solution (Petovello,
2003). Figure 7.14 (next page) shows the average time to fix the ambiguities after complete gaps with
use of different integration methods. The loose integration with seeding refer to the use of the INS-
derived position to help fix the ambiguity. It can be seen that for all gaps the INS can help fix the
ambiguity faster than with only loose integration. The time can be reduced even more with use of tight
integration. Figure 7.15 (next page) shows the time to fix the ambiguities as functions of the gaps
duration (only gap 1). The biggest advantage of using tight integration or loose integration with seeding
is seen for small gaps less than 10 seconds. No significant difference can be seen for larger gaps.

Similar figures can be made for gap 2 to 5 but in general they show the same tendency as for gap 1.
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Figure 7.14: Average time to fix L1 ambiguities after complete data gap using different integration methods
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Figure 7.15: Average time to fix L1 ambiguities after complete data gap 1 using different integration methods

Side 94



INS and GPS integration

7.8 Accelerometer and gyroscope bias

MSc Thesis, July 2006

The final part of the data analysis looks at the computed accelerometer and gyroscope bias from

SAINT™. The biases were calculated for each epoch (every second) and were another sign for the

performance of the integrated system. Table 7.5 shows the gyroscope bias as an average at different

epochs for all five gaps. It can be seen that there is no significant difference between the calculated

biases during the gaps. This is due to the relatively small gap period of only 40 seconds. In stead there

is a larger difference between the bias at the beginning and the end of the dynamic mode. The changes

in bias for the Z-gyroscope (the one that mainly show the azimuth rotation from turns as the area is

relatively leveled) is up to 0.5 deg/hr for the entire dynamic period (about 30 minutes). It should be

remembered that the specifications for the IMUs gyroscope bias were 1 deg/hr (see table 7.1). For most

of epochs will the average bias therefore be under the specification level.

Average Without gap With complete gap
gyroscope End of End of . . End of
bias [deg/hr] alignment | dynamic mode SREp | AUsERmEED | AUese MEEp dynamic mode
X-gyroscope 0.116 0.255 0.320 0.320 0.317 0.255
Y-gyroscope 1172 0.899 1.104 1.106 1.106 0.899
Z-gyroscope 0.065 0.595 0.533 0.548 0.550 0.596

Table 7.5: Average gyroscope bias with or without complete gap using L1 carrier phase measurements and tight integration

Similar average biases for the accelerometers can be calculated at different epochs as shown in table

7.6. The same tendency is seen as the only large changes in bias occur over long time and not within

the 40 seconds gaps. Again the specifications for the IMUs accelerometer bias were 1000 pg and

during no epoch this level was crossed.

Average Without gap With complete gap
accelerometer
; End of End of ) . End of
bias [ug] alignment | dynamic mode Bdpamy | A0S EEy | VSR 10Eay dynamic mode
X-accel. 347 593 565 565 565 593
Y-accel. 436 657 697 697 697 658
Z-accel. 796 705 759 759 759 705

Table 7.6: Average gyroscope bias with or without complete gap using L1 carrier phase measurements and tight integration
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8 Conclusion

Different conclusions can be drawn upon this dissertation. In general it has shown the basic about INS
and GPS together with different integration methods and estimation techniques. All the theory was
necessary in order to develop a small software program that was able to perform an integration of the

raw INS and GPS measurements.

MATLAB program

The MATLAB program turned out to have a couple of bugs which turned out to be impossible to find (at
least in limited amount of time). This was not part of the original plan so a backup plan was needed.
Instead the data were processed by a complete INS and GPS program that was used at a latter stage.
The problem with the new program was that it required a key in order to work. This key was not

available in Denmark so only the old processed data could be used in the data analysis.

Data analysis

The main objectives of the data analysis was to assess the integrated systems performance hereby
determine the position and velocity accuracy during data outages and under different conditions. The
simulated gaps showed that the stand alone INS performance was capable of providing sub meter level
position accuracy for complete gaps lasting up to almost 40 seconds. (Petovello, 2003) showed only a
maximum of about 20 seconds for the same IMU. During partial gaps the performance was generally
improved by a factor 1.5-2. The analysis showed further that using tight integration instead of loose, the
position accuracy could be improved especially for partial gaps. Finally the use of L1 compared to WL

were investigated and it showed that due to more measurement noise on the WL, L1 was to prefer.
Hence use of the INS solution (for a tactical grade IMU) with tight integration and L1 phase

measurements would result in almost the same level of accuracy after 40 seconds of complete gaps

than for the differential GPS code solution.
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For the velocity accuracy the same tendency were seen with better accuracy using tight instead of loose
integration and using L1 instead of WL. For the attitude accuracy the azimuth error tended to be the

largest (compared to roll and pitch) due to the vehicle movement and flatness of the test area.

The ability for the integrated system to resolve its ambiguities to fixed values after a data outage was
investigated. It showed that the use of tight integration instead of loose reduced the time to fix
ambiguities after gaps, but mainly for small gaps with duration under 10 seconds. The use of loose
integration with seeding could also reduce the time compared to only loose integration, but not as much

as the tight integration.

Allin all is the main conclusion of this dissertation that the use of integrated INS and GPS can result in
better accuracy and performance for navigation systems that operates in areas where the line of sight to
the satellites sometime is blocked for shorter periods. Further investigations could therefore compare
different types of IMUs in order to determine the level (grade) of which navigation system that can be

used for different navigation applications.
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A  Ambiguities for reference trajectory during alignment and dynamic mode

1163800 — - - :
— PRN2
PRM 4
— PRME
1163780 -
@
a2
S1163760 - g
i
£
>
-5 1163740 - -
£
<
1163720 | -
1163700 L= L L L
S07600 508500 509400 510300
14:00 14:15 14:30 14:45
GPS-Time and Local Time
E0 — . . :
— PRNE
— PRNA10
PRI 25
A0+ PRN 30
iy
@
S ot ]
i
2
)
5 0
E
<
101 -
D 1 1 1 1
507600 508500 509400 £10300
14:00 14:15 14:30 14:45
GPS-Time and Local Time
2409060 — : : :
— PRM 21
2409070 -
iy
2
4
52409080 -
£
3J
=
§-2409090 .
£
<
2409100 F ]
2409110 = L L L
S07600 £08500 509400 510300
14:00 14:15 14:30 14:45

GPS-Time and Local Time

Side 102





