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Abstract

We describe a specialized neuroinformatic data min-
ing technique in connection with a meta-analytic
functional neuroimaging database: We mine for func-
tional segregation within brain regions by identifying
journal articles that report brain activations within
the regions and clustering the abstract of the arti-
cles using non-negative matrix factorization on the
bag-of-words matrix. We divide the brain activations
reported in the articles according to the cluster as-
signment and test for difference between the spatial
distribution of the sets of activations. Among our
findings is that the memory and pain functions are
spatially segregated within the cingulate gyrus.

1 Introduction

Meta-analytic-oriented databases in functional neu-
roimaging, such as the BrainMap [1] and Brede [2]
databases, allow for automated data mining [3, 4, 5,
6]. These databases record so-called Talairach coor-
dinates (“locations”) [7] from published human brain
mapping studies made with, e.g., positron emission
tomography and functional magnetic resonance imag-
ing. The locations represent focal brain activations
and are each represented by a 3-dimensional coordi-
nate referenced with respect to a “Talairach” brain
atlas [7]. Typically a neuroanatomical term is also as-
sociated with the location. Apart from the locations
the databases contain description of the experiments
in the article that can be correlated to the spatial lo-
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cation information: For the Brede database we have
used the words from the abstracts [5] and the linkage
to a taxonomy of brain functions [6] as the basis for
automated meta-analysis.
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Figure 1: Part of the brain region taxonomy around
“cingulate gyrus”.

Besides the information from published human
brain mapping studies the Brede database has a tax-
onomy for brain regions, see Fig. 1 for a part of it. It
records, e.g., that the “cingulate gyrus” is a subregion
of the “cerebral cortex” and that it is a super-region
of the “left posterior cingulate gyrus”. This hierarchy
is partially built from information in the NeuroNames
database [8] and the Mai Atlas [9]. It also maintains
the variations in the naming, for, e.g., cingulate gyrus
they are “cingulate gyri”, “gyrus cinguli”, “gyrus cin-
gularis” and “cingulate cortex”. The taxonomy does
probably not capture all relevant variations for many
brain regions.

We have previously made a focused data mining
on the posterior cingulate brain region using textual
data from the PubMed database [10]. In that work we
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found that memory and pain (processing) were two
prominent functions for posterior cingulate, and that
their locations were not equally distributed within
this area. Below we will make a similar data mining
restricting the analysis to data taken from the Brede
database, but expanding the data mining to incor-
porate the many areas defined in the brain region
taxonomy.

2 Method

Our method involves a number of steps that each
relies on specific information in our database as well
as statistical modeling of relations between the items:

1. Robust kernel density modeling in 3-dimensional
brain space for identification of Talairach loca-
tions of interest

(a) Select a brain region.

(b) Get naming variations for the brain region
and all its subregions.

(c) Get locations that matches one or more of
the names.

(d) Model the distribution with kernel density
modeling and discard outliers.

(e) Include locations that did not match any
name but lies in the region.

2. Text mining of abstracts

(a) Get all abstracts that are associated with
the locations.

(b) Construct a bag-of-words matrix from
words in the abstract excluding non-
important words.

(c) Cluster the abstracts

3. Robust multivariate test between sets of Ta-
lairach locations.

(a) Extract locations based on cluster assign-
ment.

(b) Compare the distribution of set of locations.

We use the data from the Brede database [2] which
recorded information from 166 journal articles with
a total of 3389 locations. The taxonomy of brain re-
gions contained 313 items. Some of these regions are
functional and cytoarchitectonic defined areas and
these were ignored. For the rest of the areas steps

1–3 listed above are independently carried out. A fi-
nal fourth step involves the sorting and intertwining
of results from all the brain regions.

After selection of a brain region r (step 1a) we
obtain the variations of names from the brain re-
gion taxonomy (step 1b). This includes variation of
names for the brain region itself as well as all its sub-
regions. For, e.g., “cingulate gyrus” this amounted
to 48 different names. We query the database for
locations where the neuroanatomical name matches
any of the variations (step 1c), and obtain a set of
Lr 3-dimensional coordinates that can be represented
in a matrix L(Lr × 3). We model this data with a
kernel density estimator and excluded the 5% most
extreme locations in terms of probability density to
get rid of outliers (step 1d) [3] giving a smaller set of
coordinates. We can augment this smaller set by in-
cluding coordinates associated with high probability
density (step 1e), adding the extra locations that did
not match any of the variations in the neuroanatom-
ical names. Some initial tests were made with the
inclusion of these locations. Often this would lead
to inclusion of location with the label of the neigh-
boring region. There are variation in the applica-
tion of the Talairach atlas: The locations in the so-
called MNI-space are converted by a Brett’s piecewise
affine transformation [11]. This will exclude some of
the variation. However, there still is some overlap
between regions when locations are collected across
studies. The result presented below are did not in-
clude this step.

When we have identified all relevant locations for
the brain region r we obtain the abstract of all the
articles that contain the locations (step 2a). A bag-
of-words matrix X(Nr×P ) is constructed by counting
the frequency of each of the P words in the Nr ab-
stracts (step 2b). A very large stop list is used to
exclude ordinary stop words as well as words for neu-
roanatomy and frequent words not associated with
human brain function. To avoid that abstracts where
some words occur with high frequency will dominate,
the element-wise square root

√
xnp is used in the fur-

ther processing.

For “clustering” the abstract (step 2c) we perform
non-negative matrix factorization (NMF) [12] with an
algorithm for updating an “Euclidean” cost function
[13]. We factorize the bag-of-words matrix into three
matrices plus a residual matrix U whose Frobenius
norm is to be minimized

WSH + U = X, (1)
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Figure 2: Illustration showing with arrows all the
possible comparisons performed between locations in
the NMF components (clustered articles). y-axis is
size of the NMF K and x-axis the kth component.

where W(Nr×Kr) and H(Kr×Pr) are non-negative
matrices W ≥ 0, H ≥ 0 and normalized [14],
e.g., with the vectorial 2-norm ‖wk‖2 = ‖hk‖ = 1.
S(Kr ×Kr) is a non-negative diagonal matrix. Kr is
the size of the subspace, i.e., the number of compo-
nents/topics. We distribute the scaling contained in
S equally over the two matrices W and H

w̃k = wk

√
sk (2)

h̃k = hk

√
sk. (3)

A winner-take-all function is invoked for exclusive as-
signment of each abstract n to a component k

w̆nk =

{

w̃nk if ∀k′ 6= k : w̃nk ≥ w̃nk′

0 otherwise.
(4)

A row vector hk in the H matrix contains loading for
words on the kth component. The words associated
with the highest load are used to label the component.

We vary Kr between 2 and K̃r =
⌈

√

min(Nr, Pr)
⌉

and thus generate a set of factorized matrices for each
brain region r: W̆K=2,r . . .W̆K=K̃,r. Each of the ma-
trices contains an assignment of each of the Nr arti-
cles to a specific component/topic, and we construct
sets of articles for the kth component in the K-sized
NMF for the rth brain region:

Ak,K,r = {n : w̆n,k,K,r > 0} (5)

All locations from these articles are extracted. All
combination of two sets of location within each brain

region and within each of the K-sized NMF are com-
pared, Ak,K,r ↔ Ak′,K,r, e.g., for an NMF with five
components (K = 5) that gives K!/(2(K − 2)!) = 10
comparisons. We perform this procedure for all the
different sizes of NMF subspaces, see Fig. 2 for an
illustration with K̃ = 4.

For comparison of the distributions between two
sets of locations we perform multivariate statistical
tests in 3-dimensional Talairach space. We apply the
Hotelling’s T 2 test [15] and a Monte Carlo permu-
tation test on the “peeling mean” [15, p. 111–112].
The peeling mean provides a robust estimate of the
mode by successively deleting the convex hull layers
of the data points and taking the mean of the points
associated with the last and innermost convex hull
[16], see Fig. 3. The permutation test on the peel-
ing mean is performed by randomizing the locations
between the two sets. This test is performed since
the Hotelling’s T 2 is not reliable with non-Gaussian
distributed locations.

The Hotelling’s T 2 test is applied in two different
ways: The first computes the test statistics from the
original two sets of locations and the second computes
it by first finding the average within each article and
then making the test statistics based on the two sets
of averages. The latter way is to ensure that an ar-
ticle containing many coordinates in a specific area
will not dominate the test statistics. Neither of the
three tests allows us to say in which way two sets of
coordinates differ.

We use an Internet search engine reporting style,
where results are reported in a sorted list with the
most relevant information on the top. The results we
will present are ordered according to a conjunction
P -value, where the resulting P -value is the maximum
across the P -values from the three different statistical
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Figure 3: Convex hull peeling mean in 2 dimensions.
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# P-values (First set) - (Second set) - Brain region

-----------------------------------------------------------------------

1 0.000 0.000 0.000 (pain, painful, 211) - (visual, eye, 565) - Cerebral Cortex (14)

2 0.000 0.000 0.000 (pain, painful, 230) - (visual, eye, 587) - Telencephalon (13)

3 0.000 0.000 0.002 (pain, painful, 97) - (memory, retrieval, 141) - Cingulate gyrus (4)

4 0.000 0.002 0.003 (pain, painful, 269) - (visual, eye, 607) - Forebrain (12)

5 0.000 0.005 0.000 (expressions, facial, 15) - (recognition, humans, 10) - Amygdala and Hippocampus (202)

6 0.000 0.004 0.005 (memory, retrieval, 22) - (pain, painful, 5) - Anterior cingulate gyrus (8)

7 0.000 0.004 0.005 (memory, retrieval, 22) - (pain, painful, 5) - Posterior medial prefrontal cortex (204)

8 0.000 0.006 0.000 (ear, musical, 5) - (retrieval, faces, 13) - Right frontal lobe (82)

9 0.000 0.000 0.006 (pain, painful, 100) - (memory, retrieval, 159) - Limbic gyrus (125)

10 0.009 0.002 0.000 (memory, episodic, 27) - (motor, sensorimotor, 20) - Cerebellum (32)

11 0.001 0.004 0.011 (artefacts, categorization, 2) - (memory, word, 28) - Precentral gyrus (68)

12 0.000 0.001 0.015 (pain, painful, 71) - (words, memory, 45) - Limbic lobe (2)

13 0.000 0.000 0.016 (pain, painful, 79) - (memory, episodic, 72) - Prefrontal cortex (22)

14 0.000 0.000 0.024 (artefacts, categorization, 7) - (verbal, visual, 16) - Middle frontal gyrus (148)

15 0.000 0.002 0.029 (memory, episodic, 26) - (pain, painful, 5) - Medial prefrontal cortex (55)

16 0.000 0.031 0.002 (musical, ear, 6) - (artefacts, decision, 10) - Right temporal lobe (86)

17 0.002 0.037 0.009 (pain, noxious, 25) - (motor, visual, 20) - Insula (67)

18 0.000 0.042 0.000 (memory, retrieval, 34) - (pain, painful, 25) - Posterior cingulate gyrus (5)

19 0.006 0.006 0.044 (memory, episodic, 15) - (sensory, visual, 6) - Right fusiform gyrus (134)

20 0.000 0.003 0.047 (visual, emotional, 13) - (faces, familiar, 7) - Left superior temporal gyrus (129)

21 0.000 0.049 0.027 (retrieval, memory, 10) - (rest, memory, 6) - Left anterior cingulate gyrus (94)

22 0.000 0.056 0.006 (memory, episodic, 165) - (artefacts, categorization, 24) - Frontal lobe (18)

23 0.000 0.056 0.042 (facial, faces, 12) - (memory, words, 28) - Left cingulate gyrus (305)

24 0.001 0.039 0.063 (ear, musical, 5) - (artefacts, decision, 10) - Right inferior frontal gyrus (296)

25 0.003 0.070 0.027 (recognition, word, 9) - (eye, attention, 15) - Precuneus (171)

Table 1: Automatically generated list of the 25 most relevant functional segregations in brain regions.
Columns 2–4 are P -values for the Hotelling’s T 2 test with the original coordinates of the locations (column
2) and with the averaged-within-article coordinates used for the test (column 3). Column 4 is the P -value
for the peeling permutation test. The words in parentheses are the words associated with the highest load
on the components and the number in the parentheses are the number of locations in the component. To
the right of the name of the brain region is shown the Brede database identifier for the region.

tests [17].

The data processing uses the Brede toolbox [18],
and once the data are entered in the Brede database
the entire processing pipeline runs automatically.

3 Results and discussion

Table 1 lists the most relevant functional segrega-
tions — one for each brain region. The top entries
are in a sense trivial since they indicate a high-level
segregation for areas such as “cerebral cortex”, “te-
lencephalon” and “forebrain”, and the most relevant
functional segregation our method reports is between
“pain” and “visual”. The most frequent words in the
abstracts of the Brede database are “visual”, “mem-
ory”, “motor” and “perception”, and many of the
studies in the Brede database are pain studies. So
it is not surprising that we with the Brede database
find that major high-level segregation in the brain is
between “pain” and “visual”. “Pain” locations are
mostly distributed in the anterior part of the brain,

while “visual” locations have their major share in the
posterior part.

Apart from this high-level segregation the most
prominent functional segregation appears in the “cin-
gulate gyrus” between pain and memory. Fig. 4
shows the locations for this area colored accord-
ing to component. A number of subregions and
super-region to this area also appear with a segrega-
tion between these two functions: “anterior cingulate
gyrus”, “posterior medial prefrontal cortex”, “limbic
gyrus” and ”posterior cingulate gyrus”. Many of the
studies that make up these areas were included in
connection with our previous study of posterior cin-
gulate [5], where this segregation was identified, and
it is thus not surprising that this is refound.

The compound region “amygdala and hippocam-
pus” is segregated into “expressions” and “recogni-
tion”, and corresponds to a well known functional
division in the medial temporal lobe where the hip-
pocampus area is mainly associated with memory
whereas the amygdala is involved in the processing
of emotional stimuli such as facial expression [20].
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Figure 4: The most relevant functional segregation for “cingulate gyrus” within the Brede database: memory
(dark/magenta) and pain (light/yellow). The two sets of locations are plotted in a Corner Cube Environment
where each location is represented by a glyph in 3-dimensional space and projected onto “walls” [19] (In this
plot only the sagittal projections are visible). The view is from back upper left.

Our method has shortcomings, e.g., some of the re-
sults are affected by a number of studies from a single
group that investigates artefacts and categorization
and reports many activations in specific parts of the
brain across articles. Since approximately the same
wording is used the abstracts are clustered together,
and when the locations from the associated articles
are extracted these are spatially clustered often giv-
ing rise to segregation when tested against other sets
of locations. Furthermore, all the words in a specific
article will be modeled together with all locations in
that article, e.g., for “cerebellum” a segregation be-
tween “memory” and “motor” is found. Actually the
“memory” studies have some kind of movement re-
sponse — overt speech or button pressing — and this

is probably why the memory studies activate in cere-
bellum.

4 Conclusion

We have devised a method that mines a neuroimag-
ing database to extract the main functional modules
within a brain region. Such a tool would allow the
individual researcher to access the growing base of
knowledge generated by the functional imaging stud-
ies.
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