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Abstract. When analyzing multi-media data such as image and mu-
sic it is useful to extract higher-level features that constitute prominent
signatures of the data. We demonstrate how a 2D shift invariant sparse
coding model is capable of extracting such higher level features forming
so-called icon alphabets for the data. For image data the model is able
to find high-level prominent features while for music the model is able
to extract both the harmonic structure of instruments as well as indi-
cate the scores they play. We further demonstrate that non-negativity
constraints are useful since they favor part based representation. The
success of the model relies in finding a good value for the degree of spar-
sity. For this, we propose an ‘L-curve’-like argument and use the sparsity
parameter that maximizes the curvature in the graph of the residual sum
of squares plotted against the number of non-zero elements of the sparse
code. Matlab implementation of the algorithm is available for download.

1 Introduction

Sparse coding and the closely related independent component analysis (ica) are
well established principles for feature extraction [23, 22, 14, 7, 15]. [23] argue that
the brain might employ sparse coding since it allows for increased storage capac-
ity in associative memories; it makes the structure in natural signals explicit; it
represents complex data in a way that is easier to read out at subsequent level of
processing; and it is energy efficient. Thus, sparseness is a natural constraint for
unsupervised learning and sparse coding often results in parsimonious features.

Neurons in the inferotemporal cortex respond to moderately complex fea-
tures, icon alphabets, which are invariant to the position of the visual stimulus
[31]. Based on this observation, [13] formulated a model that estimates such shift
invariant image features. The resulting features are complex patterns rather than
the Gabor-like features often obtained by sparse coding or ica decomposition [22,
15]. These shift invariant features can potentially constitute such icon alphabet.

For audio, it has been demonstrated that sparse over-complete linear rep-
resentations solve hard acoustic signal processing problems [1]. These results
suggest that auditory cortex employs sparse coding. Receptive fields in auditory
cortex often have broad and complex time-frequency structure, and the auditory
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system uses a highly over-complete representation. The features in the sparse
over-complete representation are complex structures that form an “acoustic icon
alphabet”. Furthermore, infants can distinguish melodies regardless of pitch [32],
and since a change of pitch relates to a shift on a logarithmic frequency axis,
shift invariance appears a natural constraint for audio signals modelling.

Thus, we find ample motivation for sparse coding with shift invariance as a
starting point for analysis of image and audio signals. We present our ideas in
the context of image processing, but we also briefly include an example of their
application to audio processing.

In many existing image feature extraction methods, the image is subdivided
into patches, I(x, y), of the same size as the desired features. The image patches
are modeled as a linear combination of feature images Ψd(x, y) [23, 22, 14, 7,
15] I(x, y) ≈

∑
d αdΨd(x, y). A drawback of this approach is that the extracted

features depend on how the image is subdivided while similar features at different
locations have to be coded in separate components. To overcome this problem,
[13] propose a model which allows each feature to be shifted a given amount
within each image patch. In [8, 33] general invariance to transformation was
considered. Here, the features within a given patch are invariant to a pre-specified
set of linear operators. In [18, 2, 30] shift invariance was considered for time
series signals I(t) using sparse coding based on models that can be stated in
convolutional form I(t) ≈

∑
d,m αd(m)Ψd(t − m), such that αd(m) codes the

degree in which the dth component time series shifted m samples, Ψd(t − m),
is present. A similar approach was used in [21] to code video images I(x, y, t)
as a sparse convolution of component video images Ψd(x, y, t), i.e. I(x, y, t) ≈∑

d,m αd(m)Ψd(x, y, t −m). We presently generalize this convolutional form to
form a 2D shift invariant sparse coding model that work on the complete image
rather than relying on patching the image. We will exploit that convolution
can efficiently be implemented through the fast fourier transform (fft) and
generalize the model to accommodate multi-channel image and sound data.

The paper is structured as follows: First, we state our shift invariant sparse
coding model and give an algorithm for estimating its parameters. Next, we
present a method to find the sparseness parameter in the model based on evalu-
ating the tradeoff between quality of fit and number of non-zero elements in the
sparse code. Finally, we demonstrate how the model can identify components
that constitute high-level features, i.e. so-called icon alphabets, of both image
and music data.

2 Shift Invariant Sparse Coding

The shift invariant sparse coding (sisc) model reads

Xc(x, y) ≈ Lc(x, y) =
∑

d

sc,d

∑

u,v

αd(u, v)Ψd(x− u, y − v). (1)

where Xc(x, y) is the entire image of size X × Y at channel c, and the code,
αd(u, v), is sparse, i.e., most of its elements are zero. The image is modelled as
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a sum of 2-D convolutions of feature images, Ψd(x, y), of size Z ×W and codes,
αd(u, v) of size U×V . Due to the sparseness of the code, only a small number of
positions are active. For image data the sparse code will be the full image while
for audio data U will be set to cover potential changes in pitch of the harmonic
structure coded in Ψd. We have previously used a model similar to equation (1)
to separate music signals [26] and similar models have also been derived by [9,
28, 27]. The channel mixing matrix S encodes the color in images, i.e., the RGB
or CMYK channels; for music, S codes the mixing in multi-channel recordings.
The model handles data of more than one channel by assuming that the features
are consistent across channels, varying only in strength. For color image data,
this means that the features have a specific color; for audio data, it means that
the sources are mixed linearly and instantaneously into the channels.

It is naturally to assume that the code, αd(u, v); the features, Ψd(x, y); and
the channel mixing parameters, sc,d, are non-negative. A non-negative repre-
sentation is relevant when the data is non-negative since it tends to favor eas-
ily interpretable part based representations [16]. Furthermore, non-negativity
is a natural constraint both for image data [7, 14] and audio amplitude spec-
trograms [29, 28, 10, 26]. Finally, if data and model parameters can be assumed
non-negative, the component identification is improved by restricting the pa-
rameter space to the positive orthant. In the following, we will both derive an
unconstrained and a non-negativity constrained algorithm for sisc to compare
the results of the two approaches.

The sparseness of the code, αd(u, v), is needed for several reasons. First of all,
the sisc model is over-complete, i.e., the number of parameters is larger than the
number of data points. Second, the model is ambiguous even when constrained
non-negative if the data does not adequately span the positive orthant [6]. Third,
the sisc model suffers from a structural ambiguity, as image features can be
arbitrarily represented in αd(u, v) and Ψd(x, y). For instance, a gray scale image
can be completely described by a component αd(u, v) identical to the image with
Ψd(x, y) having one non-zero entry. By imposing sparseness, the over-complete
representation can be resolved [22, 21, 24], and uniqueness improved [7, 14].

2.1 Parameter Estimation

We base our derivation on a Gaussian noise model (i.e. a quadratic distance mea-
sure), but it can readily be generalized to other measures of distortion such as
Bregman and Csiszár’s divergence [17, 4]. We formulate the model in a probabilis-
tic framework, and focus on algorithmic issues for map estimation of S, α, Ψ . We
assume normal i.i.d. noise, P (X |α, Ψ ,S, σ2) ∼

∏
x,y,c N(Xc(x, y); Lc(x, y), σ2)

and we enforce sparsity on the sparse code α by the i.i.d. Laplace prior P (α) =∏
d,u,v

β
2 e−β|αd(u,v)| (if α is non-negative the normalization of the prior is triv-

ially changed to β instead of β
2 ). To alleviate the scale ambiguity inherent in

the sisc model we assign improper uniform priors over the unit hyper-sphere
for the feature images Ψd, P (Ψ ) ∝

∏
d δ(‖Ψd‖F − 1). The channel mixing, we

normalize across both features and channels, such that the relative importance
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of the features is captured in S, P (S) ∝ δ(‖S‖F − 1). This enables S to “turn
off” excess components, which results in a form of automatic model selection by
pruning unimportant features. Using Bayes theorem the joint posterior for α, Ψ

and S can be written as

P (α, Ψ ,S|X, σ2, β) ∝ P (X |α, Ψ ,S, σ2)P (α|β)P (Ψ )P (S). (2)

Ignoring constants and subjecting ‖Ψd‖F = 1 and ‖S‖F = 1, the negative log-
posterior is given by

− logP (α, Ψ ,S|X, β′) =
1

2

∑

c,x,y

(
Xc(x, y)− Lc(x, y)

)2
+ β′

∑

d,u,v

|αd(u, v)|,

where β′ = βσ2.
The minimization of the log posterior will be based on gradient descent, for

details on the derivation of the gradients see appendix A. For the optimization
under non-negativity constraints we derive a set of multiplicative update rules
[17] with exponentiated step sizes [25] which provide a simple yet efficient way
to estimate the model parameters, see Appendix B. The algorithm for estimat-
ing the parameters in the sisc model is given in Algorithm 1. Non-negativity
constrained updates are denoted by ⋄, unconstrained by ∗. By inspecting the
updates it can be seen that both A and B used to form the gradients are de-
rived by a series of 2D convolutions that can be efficiently calculated through
the fft. µs, µΨ and µα are estimated by line-search, i.e.µs is chosen such that
log P (αt, Ψ t,St+1|X, β′) > log P (αt, Ψ t,St|X, β′). For more details of this effi-
cient implementation of the algorithm see the Matlab script available from [20].

2.2 Estimation of the Sparsity Parameter

The sparsity parameter, β′, is important to obtain good solutions of the sparse
code. A good solution is one which is parsimonious in the sense that the data
is well described by a small number of components, i.e., by a good trade-off
between the residual error and the sparsity of the code.

There are many different approaches to making this trade-off such as the
L-curve [12], generalized cross-validation or Bayesian approach [11]. Here, we
base the selection of β′ on the concept of the L-curve. The idea is to plot the
norm of the regularization versus the residual norm, which gives a graphical
display of the compromise between regularization and residual error. An ad-hoc
method for finding a good solution is to choose the point of maximum curva-
ture, which corresponds to the “corner” of the L-curve [12]. The L-curve was
originally developed in connection with Tikhonov regularization, but the idea
generalizes well to minimizing the number of non-zero elements in the sparse
code, i.e. L0-norm minimization. In the following, we plot the reconstruction
error ‖E‖2F =

∑
x,y,c(Xc(x, y) − Lc(X, y))2 against the L0-norm of the sparse

code α and choose the solution as the point of maximum curvature. Notice, we
regularize the problem by the Laplace prior corresponding to regularizing by the
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Algorithm 1 Shift Invariant Sparse Coding (sisc)

1: Initialization.

2: t = 0, s0
c,d, α0

d(u, v), and Ψ0
d (x, y) random uniform initialized.

3: repeat

4: Update channel mixing parameters.

5: Ãc,d =
∑

x,y Xc(x, y)
∑

u,v αt
d(u, v)Ψ t

d(x− u, y − v),

6: B̃c,d =
∑

x,y Lc(x, y)
∑

u,v αt
d(u, v)Ψ t

d(x− u, y − v),

7: Ac,d = Ac,d + st
c,d

∑
c′,d′ st

c′,d′B̃c′,d′ ,

8: Bc,d = Bc,d + st
c,d

∑
c′,d′ st

c′,d′Ãc′,d′ .

9: ⋄ st+1
c,d ← st

c,d

(
Ac,d

Bc,d

)µs

10: ∗ st+1
c,d ← st

c,d − µs(Bc,d − Ac,d)

11: st+1
c,d ←

s
t+1

c,d

‖st+1‖F
.

12: Update feature images.

13: Ãd(x, y) =
∑

c st+1
c,d

∑
u,v Xc(u, v)αt

d(u− x, v − y),

14: B̃d(x, y) =
∑

c st+1
c,d

∑
u,v Lc(u, v)αt

d(u− x, v − y),

15: Ad(x, y) = Ad(x, y) + Ψ t
d(x, y)

∑
x′y′ Ψ t

d(x
′, y′)B̃d(x

′, y′),

16: Bd(x, y) = Bd(x, y) + Ψ t
d(x, y)

∑
x′y′ Ψ t

d(x
′, y′)Ãd(x

′, y′).

17: ⋄ Ψ t+1
d (x, y)← Ψ t

d(x, y)
(

Ad(x,y)
Bd(x,y)

)µΨ

18: ∗ Ψ t+1
d (x, y)← Ψd(x, y)t − µΨ (Bd(x, y)− Ad(x, y))

19: Ψ t+1
d (x, y)←

Ψ
t+1

d
(x,y)

‖Ψ
t+1

d
‖F

.

20: Update sparse code.

21: Ad(u, v) =
∑

c st+1
c,d

∑
x,y Xc(x, y)Ψ t+1

d (x− u, y − v),

22: Bd(u, v) =
∑

c st+1
c,d

∑
x,y Lc(x, y)Ψ t+1

d (x− u, y − v),

23: ⋄ αt+1
d (u, v)← αd(u, v)t

(
Ad(u,v)

Bd(u,v)+β′

)µα

24: ∗
αt+1

d (u, v)← αt+1
d (u, v)− µα(Bd(u, v)− Ad(u, v))

αt+1
d (u, v) =

{
0 if |αt+1

d (u, v)| < µαβ′

αt+1
d (u, v)− µαβ′ sign(αt+1

d (u, v)) otherwise

25: t = t + 1
26: until convergence.

L1-norm only because it mimics the behavior of the L0-norm [5] without intro-
ducing additional minima. Thus, we evaluate the quality of regularization by the
L0-norm rather than the L1-norm. This has the benefit that bias introduced by
the L1-norm regularization leaves the L0-norm unaffected. Consequently, poten-
tial improvements in the tradeoff are only achieved when elements are turned
off (set to zero).
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3 Results

We evaluated the algorithm on synthetic data as well as real image and music
data. The convergence criterion was to stop when the relative change in the log
posterior was less than 10−6 or at a maximum of 1000 iterations.

Colored Letters Image: To illustrate the sisc algorithm, we created an im-
age which conforms perfectly with the model. The image contains four features;
the letters A, B, C, D in different colors. The letters were placed at randomly
selected positions. The size of the image is 250× 250× 3 (height×width×color
channel) and the range of the data is [0; 765]. We ran the sisc algorithm both
constrained non-negative and unconstrained. We used eight components with
image features Ψd of size 32 × 32 in the analysis to ensure that the generat-
ing features could be captured by the estimated features. The L-curve method
suggested that a value of β′ = 100 was appropriate. The analysis correctly iden-
tified the generating image features when β′ was chosen according to the L-curve
method. The right choice of sparsity is crucial in order to identify the features
correctly and turn off excess components. The result of the analysis is illustrated
in figure 1. Notice, how both the unconstrained and non-negative constrained
analysis give similar results.

Image of honey comb: We next analyzed a gray scale image of a honey
comb. As the unconstrained analysis gave identical results we have for brevity
only included the non-negativity constrained solution. The size of the image was
160× 200 and the range of data [0; 250]. We set the feature images Ψd to have
size 25×25. From figure 2 it can be seen that for an adequate value of β′ = 50 the
image is coded into two features. One coding for the hexagon shape of the cubes,
the other coding whether the hexagons are filled or empty - hence constituting
an efficient icon alphabet to code for the image. Notice, how the sparse code α

shown for the first component codes where in the image the hexagon shape is
present.

Image of Brick house: Next, we performed a sisc analysis of a color pho-
tograph of a brick house, see figure 3. The image data was of size 432× 576× 3
with range [0; 255]. The size of the feature images Ψd were 25 × 25. The non-
negative sisc analysis captures components primarily corresponding to the brick
wall, vertical lines in window and fence, the sky, horizontal lines and the win-
dow grille, i.e. forming an icon alphabet of various parts of the image. The
unconstrained sisc model on the other hand form more complex patters since
components are allowed to be subtractive and does as such not yield features
pertaining to specific parts of the image. Hence, non-negativity favor part based
representation as also reported in [16] thus help to form more interpretable icon
alphabets constituting the image.

Single channel recording of mixed organ and piccolo: We analyzed the
single channel music of mixed organ and piccolo described in [34]. The analysis is
based on the amplitude of the log-spectrogram, and the data has previously been
analyzed by [34] using a harmonic structure model, i.e. by supervised learning
the harmonic structure of each instrument and then separate a mixed signal of
the instruments using these learned structures. Presently, we use the sisc algo-
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Fig. 1. sisc analysis of colored letters image. To the top the colored letter image is
given as well as the L-curve showing the tradeoff between reconstruction and sparsity of
the code given for the non-negative (blue) and unconstrained (red) estimation. Below
is given the results for different values of β′ including the value with optimal tradeoff
in the L-curve (β′ = 100). With this optimal value of β′ the four letters constituting
the image are identified and excess components turned off.
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Fig. 2. Non-negative sisc analysis of an image of a honey cube (unconstrained analysis
gave similar results). To the top is given the image as well as the L-curve of recon-
struction error vs. sparsity of the code. From the curve a good tradeoff is found when
β′ = 50. The feature extracted correspond for this value to a feature coding the hexagon
shape of the cubes and a feature coding weather the hexagon is filled or not forming
an efficient icon alphabet for the image. At the bottom is given the sparse code α for
the first component coding where the hexagon feature is present in the image. Notice,
again how sparsity turns off excess components.

rithm unsupervised on the mixed signal of the two instruments to both learn
the harmonic structures of each instrument as well as which notes were played
such that the mixed signal can be separated by identifying what parts of the log
spectrogram originates from each instrument. Since both the extracted harmonic
structures Ψd and scores coded in αd should be non-negative we fitted a four
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Fig. 3. A 16 component sisc analysis of a color photograph of a brick house. Top: The
photograph of the house and the L-curves obtained plotting the reconstruction error
versus number of non-zero elements in the sparse code α. Center: A 16 component
non-negative sisc analysis given for β′ = {10, 25, 100}. Clearly, features pertaining to
the image correspond to the brick wall, vertical lines in window frames and fence, the
sky, horizontal lines, and the window grilles have been extracted forming icon alphabets
for the image. Bottom: A 16 component sisc analysis given for β′ = {10, 25, 100}.
Although features are extracted coding for colors the features constitute more complex
patterns rather than pertaining to specific parts of the image.



10

component non-negative sisc model to the data. 1 From figure 4 it can be seen
that the non-negative sisc analysis extracts the two instruments in two sepa-
rate components while excess components are turned off at the optimal tradeoff
between reconstruction and sparsity of the code (β′ = 50). The spectrogram of
the instruments are coded into their harmonic structure Ψd as well as when and
at what pitch this structure is present (i.e. the scores of the instrument) coded
in the sparse code αd.

Fig. 4. Non-negative sisc analysis of the amplitude of the log-spectrogram of a music
signal. Top: spectrogram of the mixed signal of the organ and piccolo as well as the
L-curve obtained plotting the reconstruction error versus number of non-zero elements
in the sparse code α. Bottom: result obtained when analyzing the mixed spectrogram
using a 4-component single channel sisc model. From the L-curve, β′ = 50 was used
(the values of β′ just around β′ = 50 gave similar results). With this choice of β′

two components were turned off. The reconstructed spectrograms of the two remaining
components correspond well to the organ and piccolo respectively. Furthermore, the
harmonics of each instruments is given by Ψd to the left of the reconstructed spec-
trograms while the scores played is indicated in the sparse code αd shown above the
reconstructed spectrogram.

1 The music was sampled at 22 kHz and analyzed by a short time Fourier transform
based on a 8192 point Hanning window with 50% overlap providing a total of 146
FFT frames. We grouped the spectrogram into 373 logarithmically spaced frequency
bins in the range of 50 Hz to 11 kHz with 48 bins per octave, which corresponds
to four bins per half tone. We chose Z = 373 and W = 4 while U = 97 covering 2
octaves, i.e. slightly more than the range of the notes played while V = 146.
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4 Discussion

Although, the sisc model is highly overcomplete, the L1-norm regularization
is able to resolve the ambiguity of the representation and to find the correct
model order by turning off excess components. However, for identification of the
important features the choice of the regularization parameter β′ is important.
Too low values lead to ambiguous results while too large regularization removed
important features of the data. From the proposed L-curve approach a good value
of β′ could be found such that the important features of the data were identified
while excess components turned off. Hence, the L1-norm regularization worked
as a method for automatic relevance detection. We conclude that the value of
β′ with the maximum curvature in the plot of the reconstruction error against
the L0-norm of the sparse code α is very useful for the present sisc model. This
approach should also be useful for other types of L1 constrained models such as
sparse coding and sparse NMF [22, 7, 14].

The sisc model is capable of identifying relevant features of both image and
audio data that form icon alphabets for the data. While both the unconstrained
and non-negative constrained model found relevant features of both the image
data of letters and honey cubes non-negativity favor a more part based represen-
tation than the unconstrained optimization. Thus, for the analysis of the brick
house features more closely constituting specific parts of the image was extracted
when restricting the model to the positive orthant. In the analysis of the music
data, the sisc model assumes a constant timbre, i.e., no change in the structure
of the harmonics over pitch. In general, each component is likely to work only
within limited changes of pitch. Despite this shortcoming, the sisc model seem
promising in finding prominent higher-level features of multi-media data. Future
work will focus on feature extraction with more general types of invariance such
as invariance to scale and rotation. Presently, additional channels were modeled
as linear mixtures of the feature images Ψ . Alternatively, the channel informa-
tion can be directly coded in the feature images Ψ . This should be investigated
in future work.

A Derivation of the sisc algorithms

To incorporate the constraints ‖Ψd‖F = 1 and ‖S‖F = 1 we recast the log likeli-

hood in the normalization invariant variables Ψ̃d(x, y) = Ψd(x,y)
‖Ψd‖F

and s̃c,d =
sc,d

‖S‖F

such that L̃c(x, y) =
∑

d s̃c,d

∑
u,v αd(u, v)Ψ̃d(x−u, y−v). Hence, by formulating

the log likelihood in these variables Ψd and S can be normalized at each iteration
without impacting the log-likelihood, i.e.

− logP (α, Ψ̃ , S̃|X, β′) =
1

2

∑

c,x,y

(
Xc(x, y)− L̃c(x, y)

)2
+ β′

∑

d,u,v

|αd(u, v)|.

The gradients are derived by differentiation by parts. Differentiating a given
element of L̃c with respect to a given element of αd(u, v) and Ψ̃d(x, y) and s̃c,d
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gives

∂L̃c(x, y)

∂Ψ̃d′(x′, y′)
=

∂
∑

d

s̃c,d

∑

u,v

αd(u, v)Ψ̃d(x− u, y − v)

∂Ψ̃d′(x′, y′)
= s̃c,d′αd′(x− x′, y − y′),

∂L̃c(x, y)

∂αd′(u′, v′)
=

∂
∑

d

s̃c,d

∑

u,v

αd(u, v)Ψ̃d(x− u, y − v)

∂αd′(u′, v′)
= s̃c,d′ Ψ̃d′(x− u′, y − v′),

∂L̃c(x, y)

∂s̃c′,d′

=

∂
∑

d

s̃c,d

∑

u,v

αd(u, v)Ψ̃d(x− u, y − v)

∂s̃c′,d′

=
∑

u,v

αd′(u, v)Ψ̃d′(x − u, y − v).

Furthermore, the derivatives of s̃c,d and Ψ̃d(x, y) with respect to sc,d and Ψd(x, y)
is given by

∂s̃c′,d′

∂sc′,d′

=
∂

sc′,d′

‖S‖F

∂sc′,d′

=
1

‖S‖F
− sc′,d′

∑

c,d

sc,d

‖S‖3F
,

∂Ψ̃d′(x′, y′)

∂Ψd′(x′, y′)
=

∂
Ψd′(x′,y′)
‖Ψd′‖F

∂Ψd′(x′, y′)
=

1

‖Ψd′‖F
− Ψd′(x′, y′)

∑

x,y

Ψd′(x, y)

‖Ψd′‖3F
.

Thus, by differentiation by parts we now find for instance when differentiating
the negative log-likelihood with respect to Ψd′(x′, y′)

∂ − log P

∂Ψd′(x′, y′)
= −

∑

x,y,c

(Xc(x, y)− L̃c(x, y))
∂L̃c(x, y)

∂Ψ̃d′(x′, y′)

∂Ψ̃d′(x′, y′)

∂Ψd′(x′, y′)
. (3)

The variables are then updated by gradient descent or for the non-negative sisc

by the multiplicative updates described in the following section.

B Multiplicative updates

Multiplicative updates were introduced in [16, 17] for non-negative matrix fac-
torization (nmf). Although, other types of updates exists for non-negativity
constraint optimization such as projected gradient [19] and active sets [3], mul-
tiplicative updates are simple to implement and extend well to sparse coding
[7]. Consider the objective function C(θ) of the non-negative variables θ. Let

further
∂C(θ)+

i

∂θi
and

∂C(θ)−
i

∂θi
be the positive and negative part of the derivative

with respect to θi. Then the multiplicative update has the following form:

θi ← θi




∂C(θ)−

∂θi

∂C(θ)+

∂θi




µ

. (4)
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A small constant ε = 10−9 can be added to the denominator to avoid potential
division by zero. By also adding the constant to the numerator the corresponding

gradient is unaltered. When the gradient is zero ∂C(θ)
∂θi

+
= ∂C(θ)−

∂θi
such that θ is

left unchanged. If the gradient is positive ∂C(θ)+

∂θi
>

∂C(θ)−

∂θi
hence θi will decrease

and vice versa if the gradient is negative. Thus, there is a one-to-one relation
between fixed points of the multiplicative update rule and stationary points
under gradient descend. One attractive property of multiplicative updates is

that, since θi,
∂C(θ)+

∂θi
and ∂C(θ)−

∂θi
all are non-negative, non-negativity is naturally

enforced as each update remains in the positive orthant. µ is a step size parameter
that potentially can be tuned to assist convergence. When µ→ 0 only very small
steps in the negative gradient direction are taken.
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