Linking CoCoMac and Brede databases

Finn Årup Nielsen

Lundbeck Foundation Center for Integrated Molecular Brain Imaging
at
Informatics and Mathematical Modelling
Technical University of Denmark
and
Neurobiology Research Unit,
Copenhagen University Hospital Rigshospitalet

May 29, 2006
Linking CoCoMac and Brede databases

CoCoMac database records anatomical connectivity of the macaque.

Brede database contains stereotaxic coordinates in the human.

Combining these databases will enable visualization of the 3-dimensional connectivity.

Project with Jesper Rønager, Copenhagen University Hospital Rigshospitalet, Neurology.

Some functionality already exists via the Catacomb and Carat software (Kötter, 2004; Cannon et al., 2003; Van Essen et al., 2001), e.g., a network with 95 nodes and 2402 connections has been constructed (Kaiser and Hilgetag, 2004; Sporns et al., 2004).
CoCoMac connectivity database

CoCoMac records anatomical connectivity in the Macaque brain with data from presently 410 papers (Stephan et al., 2001).

Brain region ontology (Stephan et al., 2000).

Stores “from”, “to” and how strong the link is, what tracer, etc.

Database on the Internet with output as HTML or XML.
CoCoMac brain region ontology ("mapping")

An entry in the "mapping" table of the CoCoMac database records:

"AI92-23 I AP84-23 AI92 Figs. 2-3"

This means:

"Area 23 of (Amaral and Insausti, 1992) is identical to area 23 of (Amaral and Price, 1984) according to (Amaral and Insausti, 1992, Figs. 2–3)"

Other "23" areas:

AI92-23, AP84-23, ASM94-23, B05-23, B09-23, B88-23, ... , V93-23, VPR87-23, YP88-23
CoCoMac brain region ontology ("mapping")

CoCoMac brain regions (brain sites) are often ordered in a hierarchy, e.g.:

B09-23 L PHT00-23a PHT00

...means Brodmann area 23 is larger than (a suprastructure of) 23a of (Paxinos et al., 1999) (!?).

Particularly the so-called generalized hierarchy names (GM ontology) (Kötter and Wanke, 2005).
Connectivity in CoCoMac

Connectivity entry:

AI92-23 A L 0 - I AI92-Bi A L

means

Area 23 of (Amaral and Insausti, 1992) in the left (L) hemisphere has zero connection (0) to “intermediate part of the basal amygdaloid nucleus” (Bi) of (Amaral and Insausti, 1992) in the left (L) hemisphere. Both areas are named explicitly (A).

Both mapping and connectivity are available as XML...
Brede Database (Nielsen, 2003).

Interesting fields here: 3906 “location” structures with 3D stereotaxic coordinates, lobar anatomy and functional area textual labels and Brodmann areas.

Functions in the Brede Toolbox (Nielsen and Hansen, 2000) are able to find all coordinates with a given lobar anatomy label.
Brede brain region taxonomy

Organizes brain areas in a hierarchy.

Variations on naming of a brain area.

Extended significantly to link to the detailed brain areas from CoCoMac.

Links to stereotaxic volumetric definitions of brain area (Tzourio-Mazoyer et al., 2002; Hammers et al., 2002).

Figure 1: Brede brain region taxonomy at cingulate gyrus.
Example entry in XML of the Brede Database

```xml
<Roi>
    <woroi>5</woroi>
    <name>Posterior cingulate gyrus</name>
    <abbreviation>PCgG</abbreviation>
    <abbreviation>CGp</abbreviation>
    <brainInfo>144</brainInfo>
    <cocomacSite>OMG96-CGp</cocomacSite>
    <type>roi</type>
    <variation>Posterior cingulate</variation>
    <variation>Posterior cingulate area</variation>
    <variation>Posterior gyrus cinguli</variation>
    <variation>Posterior cingulate cortex</variation>
    <parent>4</parent>
</Roi>
```
Finding a representative coordinate

Search on lobar anatomy, if no coordinates are found try parent (supra-region).

Problem with, e.g., 8a and 8b which fall back on coordinates labeled BA8.

Model the distribution of stereotaxic coordinates with kernel density modeling (Nielsen and Hansen, 2002) and pick the coordinate with the highest probability density.
Explicitly (manually) added individual CoCoMac brain sites to their specific entry in the Brede brain region taxonomy.

Helped by NeuroNames (Bowden and Martin, 1995), atlases (Mai et al., 1997) and texts with human/macaque comparative studies, e.g., (Van Essen, 2003; Scott and Johnsrude, 2003).

What to do about certain area (macaque and human brains are not completely homologous), e.g., Brodmann areas 13, 14, 15 and 16 are defined for monkeys — not humans?

Examples on presently missing matches:

"PBK86-region 1", VV19-4a, RACR99-V1_V (i.e., layer five of visual area 1), SA94b-ECL (Caudal limiting field of entorhinal cortex), PK85-1_Face (i.e., face area of Brodmann area 1), ... and 625 others.
Linking CoCoMac and Brede databases

Example on connectivity matrix

308 entries for area 23 (i.e., BA23) as source brain site when querying CoCoMac.

27 unmatched to Brede brain region taxonomy.

86 brain areas left.

33 brain areas with non-zero connections

Figure 2: Connection-"matrix" from BA23.
Example 3D visualization

Query CoCoMac database for connections *from* BA7 (precuneus).

Here no distinction between left and right.

Figure 3: Connections from BA7. 3D plot from left posterior.
Linking CoCoMac and Brede databases

Finn Årup Nielsen
Summary

Brain region taxonomy in the Brede Database originally developed for human molecular neuroimaging extended to accommodate (many) brain sites of CoCoMac.

Brede Toolbox extended to handle CoCoMac data and match it against information in the Brede Database.

It is difficult/problematic to match all brain areas.

The major part of macaque connections in CoCoMac can be plotted in 3D human stereotaxic space.
References

References

Finn Årup Nielsen

May 29, 2006

