
A Vehicle Routing Problem with
Time Windows and Shift Time

Limits

Irina Kupriyanova – s000328

March 2006

Master Thesis

IMM, DTU

Abstract

In this thesis a vehicle routing problem with time windows and shift time
limits is investigated. An additional specific feature of the problem is a non
homogeneous fleet with a limited number of vehicles of each type.

A two-phase solution method is developed and implemented. The first phase
deals with construction of a large set of good quality routes. In the second
phase a Lagrangian heuristic is used to solve a mixed set covering/packing
problem where columns of the constraint matrix correspond to the routes
generated in the first phase.

The developed solution approach is tested on a number of problems of dif-
ferent size. The computational results show that optimal solutions can be
found for the set covering/packing problems of small size, i.e. 120 rows and
up to 500 columns. As the problem size increases the performance of the
Lagrangian heuristic becomes worse.

Keywords: Vehicle routing, time windows, shift time limits, Lagrangian re-
laxation, set covering, set packing.

Contents

Preface v

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Motivation and Background 1

1.2 Problem Description . 2

1.3 Outline of the Report . 3

2 Theory 5

2.1 The Vehicle Routing Problem with Time Windows 5

2.1.1 Problem Formulation 5

2.1.2 The Mathematical Model 7

2.2 Literature Review - Solution Methods 10

3 The Vehicle Routing Problem with Time Windows and Shift
Time Limits 18

3.1 The Model Formulation . 19

3.2 Solution Approach . 21

4 A Case Study Data 23

4.1 Data Set Provided by Transvision A/S 23

ii

CONTENTS

5 Route Generation Phase 26

5.1 Insertion Heuristic . 26

5.1.1 Feasibility check . 28

5.1.2 Insertion cost . 38

5.1.3 Updating the route . 38

5.1.4 Finalizing the solution 42

5.2 Post-insertion Procedure . 44

5.2.1 Cycling issue in the post-insertion procedure 48

5.2.2 Time complexity of the post-insertion procedure 49

5.3 Embedded Improvement . 51

5.3.1 Swap move . 52

5.3.2 Re-insertion move . 54

5.4 Generation of the Pool of Routes 56

5.5 Route Generation Phase – Summary 56

6 A Lagrangian-based Heuristic for the Set Covering/Packing
Problem Formulation 58

6.1 Set Covering/Packing Problem Formulation 58

6.2 A Lagrangian-based Heuristic 61

6.2.1 Lower bound generation 61

6.2.2 Primal heuristic . 64

6.2.3 Subgradient optimization 69

6.3 The Lagrangian Heuristic – Further Extensions 71

6.4 Summary . 74

7 Data generation 76

7.1 Master Plans . 76

7.2 Demand Variation . 80

7.3 Test Data Sets for the Lagrangian Heuristic 80

iii

CONTENTS

8 Computational Results 82

8.1 Test of The Lagrangian Heuristic 82

8.1.1 Test results for the problem instances of type micro . . 84

8.1.2 Test results for the problem instances of type small . . 86

8.1.3 Test results for the problem instances of type medium . 87

8.1.4 Test results for the case study problem 90

8.2 Experiments with Master Plans 91

9 Discussion and Future Work 98

9.1 Performance of the Lagrangian Heuristic 98

9.2 Future Research . 99

10 Conclusion 102

A Proof of Statement 4.3 108

B Insertion Procedure – Small Example 110

C Generation of the Initial Lagrangian Multipliers 119

D Test of Improvement Moves 123

E Data for the Generated Problem Instances 128

F Results for Adjusting Master Plans According to Demand
Variation 133

iv

Preface

This project is a Master Thesis required for obtaining the degree of Master of
Science in Engineering. The project is carried out at Informatics and Math-
ematical Modelling (IMM), Technical University of Denmark in cooperation
with Transvision A/S. The supervisor at IMM, DTU is Jesper Larsen and
the supervisor at Transvision A/S is Jakob Birkedal Nielsen. The project
has been conducted from 15 September 2005 to 15 March 2006.

I am thankful for the opportunity of carrying out this project in cooperation
with Transvision A/S. I would like to thank my supervisors, especially Jesper
Larsen for his ideas and suggestions throughout the project.

I also appreciate the help I received from some of the operations researchers
around the world, namely Martin Savelsbergh and Ann Melissa Campbell.

Irina Kupriyanova

v

List of Tables

4.1 Problem data – Vehicle types . 24

4.2 Problem data – Product types . 24

5.1 Savings and insertion cost for the ejection procedure 47

5.2 Evaluation example of the swap move 54

6.1 Set of routes constructed during the route generation phase 60

6.2 The constraint matrix for the SCPP 60

7.1 Demand variation overview . 80

8.1 Test problem details . 84

8.2 Results for the problems of type micro 85

8.3 Results for the problems of type small 88

8.4 Results for the problems of type medium 89

8.5 Overview over SCPP instances for the problem considered in this thesis . 90

8.6 Results for the case study problem 91

8.7 New solutions obtained for a demand change of 3% 93

8.8 The average computation time for the modification strategies under dif-

ferent demand variation scenarios 95

8.9 New solutions obtained by the reconstruction strategy for a demand

change of 3% . 96

8.10 The average computation time for the reconstruction strategy under the

different demand variation scenarios 96

B.1 Small example – Distance table . 111

vi

LIST OF TABLES

D.1 Solution improvement by the re-insertion move 124

D.2 Solution improvement by the swap move 124

D.3 Solution improvement by the random-swap move 125

D.4 Solution obtained by the insertion procedure with embedded re-insertion

moves and re-insertion moves afterwards 126

D.5 Solution obtained by the insertion procedure with embedded re-insertion

moves and swap moves afterwards 126

D.6 Solution obtained by the insertion procedure with embedded re-insertion

moves and random-swap moves afterwards 127

F.1 New solutions obtained for a demand change of 5% 133

F.2 New solutions obtained for a demand change of 7% 134

F.3 New solutions obtained for a demand change of 10% 134

F.4 New solutions obtained for a demand change of 12% 134

F.5 New solutions obtained for a demand change of 15% 135

F.6 New solutions obtained for a demand change of 20% 135

F.7 New solutions obtained by the reconstruction strategy for a demand

change of 5% . 136

F.8 New solutions obtained by the reconstruction strategy for a demand

change of 7% . 136

F.9 New solutions obtained by the reconstruction strategy for a demand

change of 10% . 137

F.10 New solutions obtained by the reconstruction strategy for a demand

change of 12% . 137

F.11 New solutions obtained by the reconstruction strategy for a demand

change of 15% . 137

F.12 New solutions obtained by the reconstruction strategy for the demand

changes of 20% . 138

vii

List of Figures

2.1 Two different solutions produced by employing different objective functions 9

4.1 Geographical distribution of customers 25

5.1 Example of feasible insertion wrt. time windows 30

5.2 Example of infeasible insertion wrt. time windows 30

5.3 Example of insertion where en+1 is not changed 32

5.4 Example of infeasible insertion wrt. shift time limit 33

5.5 Partially constructed route with waiting time on the route 35

5.6 Partially constructed route without waiting time 40

5.7 Final route . 42

5.8 Final solution with start at the earliest departure time 43

5.9 Final solution with start at the latest departure time 43

5.10 Dependency of final solution on seeding criteria 44

5.11 Example of an ejection chain move 48

5.12 Example of cycle in the post-insertion procedure 49

5.13 Example of the swap improvement move 54

5.14 Example of the re-insertion improvement move 55

6.1 The solution approach – overview 74

7.1 Master plans 1-20 . 77

7.2 Master plans 21-40 . 78

7.3 Master plans 41-59 . 79

viii

LIST OF FIGURES

8.1 Solution improvement for the four different modification strategies . . . 94

8.2 Solution improvement – modification versus reconstruction 97

B.1 Small example of the insertion procedure 110

B.2 Small example of insertion procedure – solution obtained with customers

seeded according to decreasing distance from the depot. 117

B.3 Small example of the insertion procedure – solution obtained with cus-

tomers seeded according to increasing e–values 118

E.1 Data for the problems of type micro 129

E.2 Data for problem S1 . 130

E.3 Data for problem S2 . 130

E.4 Data for problem S3 . 131

E.5 Data for the problems of type medium 132

ix

Chapter 1

Introduction

In the following, an introduction to the problem considered in this thesis, the
aim of the project and the structure of the report are presented.

1.1 Motivation and Background

In the past years the distribution cost have become one of the largest cost
components for all businesses. The distribution costs can account for almost
half of the total logistic costs and even more in some industries such as food
and drink business [6]. Thus, how a company transports and delivers its
products is essential to its ability to maintain and increase profitability.

A key element of any distribution system is routing of vehicles through a set of
customers requiring service, i.e. deliveries of products. Careful and effective
route planning has therefore a crucial impact on a company’s distribution
costs and hence on profitability.

The company considered in this thesis is one of the largest retails distributors
in Denmark with its 5 large terminals and more than 3000 customers through-
out the country. The challenge for the company is to coordinate a huge
production with consecutive distribution of the products to the customers
subject to the strict delivery time restrictions imposed by the customers.
Obviously, solving transportation problems of this size and complexity is not
an easy task and will not be particularly efficient if done manually.

For a number of years development of transportation solutions for the com-
pany considered in this thesis has been outsourced to Transvision A/S. One of
Transvision’s standardised products Route Planner is now successfully used
by the company leading to the significant savings in distribution costs.

1

CHAPTER 1. INTRODUCTION

Due to the complexity of the problem, there are still some issues that can
be investigated further in order to produce better solutions and achieve even
larger savings. One of such issues is addressed in this thesis and can be shortly
described as follows: The daily distribution of company’s products is based
on the concept of master plans or fixed routes, constructed based on the
available vehicle fleet and geographical distribution of demand/customers.
The master plans are revised and can be changed once or twice per year
based on the changes in customer demand. A revision like this results in
significant savings in transportation costs. The question considered in this
thesis is whether a considerably better solution, hence larger savings, can be
obtained by revising the master plans more often, e.g. on a daily basis.

In the following section the problem of constructing master plans and the
issue mentioned above will be described in more details.

1.2 Problem Description

The problem considered in this thesis is a real-life problem faced by a number
of Transvision’s clients in connection with daily distribution of products.

The company has a fleet of vehicles available for making deliveries to the
customers. The routes for the vehicles are constructed based on the infor-
mation about geographical distribution of demand/customers with the main
objective of minimizing the total transportation costs. The secondary ob-
jective is maximizing the utilization of the available vehicles. A route is a
trip from the depot to a sequence of customers and back to the depot. Each
route must satisfy a number of different restrictions and requirements. Obvi-
ously, the customer demand must be satisfied, and the capacity of a vehicle
assigned to a route must not be exceeded. Each customer has to be ser-
viced within a prespecified time interval, called time window. A similar time
window restriction apply to the vehicles: Each vehicle is only available for
making deliveries during some prespecified hours of the day. In the following,
this type of time windows will be referred to as vehicle availability windows.
Furthermore, there are limits on how many hours the drivers can work – shift
time limits. This type of restriction can be present due to safety reasons or
scheduling reasons.

The routes are constructed once or twice per year and used as basis for the
daily distribution of products. The routes are fixed and are not changed
until the next revision, which is why they are called master plans. Based
on the above definitions the problem of constructing master plans can be

2

CHAPTER 1. INTRODUCTION

classified as a well-known problem called the vehicle routing problem with
time windows (VRPTW) and complicating constraints.

On the day of operation the routes are executed according to master plans
without any adjustments to reflect the possible changes in demand. The
change in demand considered in this problem is cancellation of deliveries to
some customers. It should be noted, that in this context possible changes in
demand are the changes known prior to the day of operation, e.g. the cus-
tomers calling in the day before and cancelling their deliveries. Operational
issues such as disruption management, handling additional delivery requests
on the day of operation etc. are not considered in this thesis.

The current practice is that the drivers get their route plans on the day of
operation. As mentioned above, if a number of customers have cancelled
their deliveries the day before, these customers will still be included in the
route plans given to the drivers. The vehicles will then drive past these
’empty’ customers without stopping. In some cases this will not affect the
effectiveness of the route. For example, if it is impossible to avoid driving
past an empty customer due to topological/geographical issues.

However, in most cases the current practice will result in less effective routes
than if the routes were adjusted to reflect the changes. This happens if
the empty customers can be eliminated from their respective routes hereby
achieving a shorter route length or savings in travel time.

The question is now whether another approach should be used as basis for
the daily distribution. One possibility could be to adjust the master plans
according to the changes in customer demand prior to the day of operation.
Another option is to construct the routes from scratch every day based on
the updated information about customer demand on that particular day.

The main objective of this thesis is to develop methods that provide good
solutions to the vehicle routing problem arising in connection with a daily
distribution of products. The new solutions will then be compared to the
existing practice to answer the question stated in the above.

1.3 Outline of the Report

The structure of the report is as follows. In chapter 2 the vehicle routing
problem with time windows is discussed, and the mathematical model for
the problem is presented. The chapter also includes a review of the existing
solution methods for the VRPTW.

3

CHAPTER 1. INTRODUCTION

In chapter 3 the model presented for the VRPTW is extended to handle the
complicating constraints, such as shift time limits and vehicle availability
windows. A two-phase solution approach used to solve the problem con-
sidered in this thesis is briefly introduced. A case study data provided by
Transvision A/S is described in chapter 4.

The first phase of the solution approach is discussed in chapter 5. The aim of
this chapter is to describe a route construction heuristic and route improve-
ment techniques used in this thesis. Chapter 6 describes the development of
the Lagrangian heuristic used in the second phase of the solution approach.

Chapter 7 presents an approach used to generate master plans and customer
demand variations. The chapter also includes a description of the test prob-
lems generated based on the case study data presented in chapter 4.

Chapter 8 presents the computational experiments conducted in this thesis.
Firstly, the performance of the Lagrangian heuristic both on the generated
test problems and the case study problem is discussed. Secondly, the mas-
ter plans are compared to the solutions generated based on the changes in
customer demand.

The future work is discussed in chapter 9 and in chapter 10 the conclusion
is presented.

4

Chapter 2

Theory

In this section the Vehicle Routing Problem with Time Windows is described,
and the model for the problem is presented. Furthermore, possible solution
methods are discussed based on a literature review.

2.1 The Vehicle Routing Problem with Time

Windows

The Vehicle Routing Problem with Time Windows is a well-known problem
which has received a considerable attention in recent years. This is due to
the fact that the VRPTW is a useful abstraction of many real-life problems
dealing with distribution of goods or services. Furthermore, finding good
solutions to this problem contributes to reducing transportation and distri-
bution costs of a company.

2.1.1 Problem Formulation

The following definition can be used to describe the problem [31]:

The VRPTW is concerned with the design of minimum-cost vehi-
cle routes, originating and ending at a central depot. The routes
must service a set of customers with known demands. Each cus-
tomer is to be serviced exactly once during the planning horizon
and customers must be assigned to the vehicles without exceeding
vehicle capacities. Furthermore, each customer must be serviced
during allowable delivery times or time windows.

5

CHAPTER 2. THEORY

In the following, the definitions and assumptions used to model the problem
will be presented.

The problem can be represented as a connected graph G = (V, E) consisting
of a set of n + 2 nodes. V = N ∪ {0} ∪ {n + 1} where nodes 0 and n + 1
refer to the depot and N is a set of customers indexed by i = 1, . . . , n or
j = 1 . . . n. For each edge (i, j) ∈ E a travel time tij and the associated
travel cost cij are given. In the following it is assumed that the travel cost
cij between customers i and j is proportional to the travel time tij between
these two customers.

Each customer i has a prespecified demand qi. The service time for customer
i is denoted si and servicing customer i must begin within a time window
[Ei, Li], where Ei is the earliest allowable time and Li is the latest allowable
time.

In some cases it is allowed to begin servicing a customer after its time window
has closed by paying a certain cost [35]. It can also be allowed to begin
servicing the customer before the time window opens if the vehicle arrives at
customer earlier than Ei. In this case the time windows are said to be soft.

For the problem considered in this thesis, the concept of hard time windows is
applied: If the vehicle arrives at the customer site before the earliest allowable
time, it must wait until the time window opens. Hereby a delay or waiting
time is incurred. Arrival after the latest allowable time is not permitted and
results in an infeasible solution.

All problem parameters such as customer demand and time windows are
positive constants and are assumed to be known with certainty. Furthermore,
split deliveries and multiple visits are not allowed, i.e. each customer must
be serviced by exactly one vehicle.

In many real-life applications the primal objective of the problem is to find
the minimal number of tours for a set of vehicles, i.e. to minimize the number
of vehicles required to service all customers. In the problem considered in this
project, the number of vehicles is fixed a-priori. Furthermore, it is assumed
that the fleet of vehicles is not homogeneous. Let M denote the set of all
vehicles indexed by k = 1, . . . , m and let Qk be the capacity of vehicle k. The
objective is now to design a set of minimum-cost routes for these vehicles.

To construct the routes, a sequence of customers to service must be deter-
mined for each vehicle, and for each customer on a route the time to begin
delivery must be specified. Thus, the following decision variables will be used

6

CHAPTER 2. THEORY

in the model:

xijk =

{
1 if vehicle k travels directly from customer i to customer j
0 otherwise

ti – the time to begin delivery at customer i
stk – departure time of vehicle k from the depot
fk – arrival time of vehicle k at the depot

It is assumed that the planning period begins at time 0 and ends at time T .

2.1.2 The Mathematical Model

Based on the problem formulation in the previous section, the mathematical
model for the problem can now be formulated as follows.

min
∑

(i,j)∈E

∑

k∈M

cij · xijk (2.1)

s.t.
∑

j∈V

xijk −
∑

j∈V

xjik = 0 ∀i ∈ N, ∀k ∈ M (2.2)

∑

i∈N

x0ik = 1 ∀k ∈ M (2.3)

∑

i∈N

xi,n+1,k = 1 ∀k ∈ M (2.4)

∑

k∈M

∑

j∈V

xijk = 1 ∀i ∈ N (2.5)

∑

i∈N

qi

∑

j∈V

xijk ≤ Qk ∀k ∈ M (2.6)

ti + si + tij − C(1 − xijk) ≤ tj ∀i, j ∈ N, ∀k ∈ M (2.7)

stk + t0i − C(1 − x0ik) ≤ ti ∀i ∈ N, ∀k ∈ M (2.8)

ti + si + tin+1 − C(1 − xi,n+1,k) ≤ fk ∀i ∈ N, ∀k ∈ M (2.9)

ti ≥ Ei ∀i ∈ N (2.10)

ti ≤ Li ∀i ∈ N (2.11)

stk ≥ 0 ∀k ∈ M (2.12)

fk ≤ T ∀k ∈ M (2.13)

xijk ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ M (2.14)

The objective (2.1) is to minimize the total costs of the routes. Constraints
(2.2) are flow constraints ensuring that if a vehicle visits a customer, it has to

7

CHAPTER 2. THEORY

leave the customer again. Constraints (2.3)-(2.4) state that each route starts
and terminates at the depot. Constraints (2.5) specify that each customer is
visited by exactly one vehicle. Constraints (2.6) are the capacity constraints
for the vehicles.
Constraints (2.7) ensure the arrival time compatibility between a pair of
customers and work as follows: Let C be a large constant. If xijk = 0, the
constraint is not binding. However, if customer j is serviced directly after
customer i, i.e. xijk = 1, the constraint becomes binding and ensures that
the condition ti + si + tij ≤ tj holds.
Constraints (2.8)-(2.9) are defined in a similar way for the depot and the first
customer on each route and for the depot and the last customer on each route,
respectively. Constraints (2.10)-(2.11) are time window constraints. Finally,
constraints (2.12)-(2.13) ensure that vehicles are used within the planning
period, and constraints (2.14) impose binary restrictions on the x-variables.

Discussion of the objective function

In real-life applications different objective functions are used when solving
the VRPTW. In the following, several optimization criteria and their impact
on the obtained solution are briefly introduced.

As it was mentioned in section 2.1.1, one of the objective function criteria
can be to minimize the number of vehicles required to serve all the customers.
This criterion will typically be used when some fixed cost must be paid for
each extra vehicle.

In the model presented in the above, the objective is to minimize the total
cost of the routes. As it is assumed that the cost of a route is proportional
to its length (distance or time), this objective corresponds to minimizing
the total travel distance or travel time. Another criterion is minimizing the
route duration or the total used time. It should be noted, that the terms
total travel time and total used time are not equivalent. The difference is
that the total used time also includes the total waiting time on the routes.
Thus, these two optimization criteria can produce different solutions. A
solution obtained when minimizing total travel time can contain a lot of
waiting time at the customers. On the other hand, a solution obtained by
minimizing the total time can suggest a large amount of extra driving. The
situation is illustrated in figure 2.1, where the two different solutions for a
small problem are displayed. The circles in the figure correspond to the
customers. It is assumed that the service time is set to 10 minutes for the
customers indicated by the small circles and to 20 minutes for the larger

8

CHAPTER 2. THEORY

circles. The travel distances and time windows for each customer are shown
in the figure.

���
�

�������
�

���
�

���
�

	�		�	
�

�

�������
�

�

�
������

���
� ��

��

��
�� ��

��
��

��

��

��

���
���

���
 � � � � � � � � � � � � � � � � � � � � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�""�"�"�"

#�##�#
#�##�#
#�##�#

$�$$�$
$�$$�$
$�$$�$

%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%%�%�%�%�%�%

&�&�&�&�&�&&�&�&�&�&�&&�&�&�&�&�&&�&�&�&�&�&&�&�&�&�&�&&�&�&�&�&�&&�&�&�&�&�&
(8,8:15)

(8:30,9)

(10:15,11)

20

15

10
25

25

15

15

20

25

10

20

(8,8:15)

(10,10:30)

(9,9:30)

(9:35,10:15)

2

3
(8:15, 9) 1

(a) Total travel time: 200 minutes, wait-
ing time: 65 minutes.

''(
(

)�))�)*
*

++,
,

--.
.

/�//�/0�00�0

1�11�12
2

3�33�34�44�4

556
6 7�7�7�7�7�7�77�7�7�7�7�7�77�7�7�7�7�7�7

8�8�8�8�8�88�8�8�8�8�88�8�8�8�8�8

9�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�99�9�9�9�9

:�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�::�:�:�:�:

;�;�;�;�;�;�;�;;�;�;�;�;�;�;�;;�;�;�;�;�;�;�;
<�<�<�<�<�<�<�<<�<�<�<�<�<�<�<<�<�<�<�<�<�<�<=�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�==�=�=�=

>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>?�?�?�?�?�??�?�?�?�?�??�?�?�?�?�??�?�?�?�?�??�?�?�?�?�?
@�@�@�@�@�@@�@�@�@�@�@@�@�@�@�@�@@�@�@�@�@�@@�@�@�@�@�@

A�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�AA�A�A�A

B�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�BB�B�B�B

C�CC�C
C�CC�C
C�CC�C

D�DD�D
D�DD�D
D�DD�D

E�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�EE�E�E�E�E�E

F�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�FF�F�F�F�F�F

G�G�G�G�G�G�G�G�G�G�G�GG�G�G�G�G�G�G�G�G�G�G�GG�G�G�G�G�G�G�G�G�G�G�GG�G�G�G�G�G�G�G�G�G�G�GG�G�G�G�G�G�G�G�G�G�G�G
H�H�H�H�H�H�H�H�H�H�H�HH�H�H�H�H�H�H�H�H�H�H�HH�H�H�H�H�H�H�H�H�H�H�HH�H�H�H�H�H�H�H�H�H�H�HH�H�H�H�H�H�H�H�H�H�H�H

I�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�II�I�I

J�J�JJ�J�JJ�J�JJ�J�JJ�J�JJ�J�JJ�J�JJ�J�JJ�J�JK�K�K�K�K�K�K�KK�K�K�K�K�K�K�KK�K�K�K�K�K�K�K
L�L�L�L�L�L�L�LL�L�L�L�L�L�L�LL�L�L�L�L�L�L�L

(8,8:15)

(8:30,9)

(10:15,11)

20

15

15

15

20

25

10

20

(8,8:15)

(10,10:30)

(9,9:30)

(9:35,10:15)

2

3
(8:15, 9) 1

40

25

15

(b) Total travel time: 225 minutes, wait-
ing time: 0 minutes.

Figure 2.1: Two different solutions produced by employing different objective functions.
In figure a) the total travel time is minimized, in figure b) the total used time, i.e. route
duration, is minimized.

The solution in figure 2.1.a is obtained by minimizing the total travel time.
The solution in figure 2.1.b is obtained by minimizing the total used time.
Consider route 1 in the solution in figure 2.1.a. There is a significant gap
between the time windows for the first two customers and the last customer
on the route. This results in 65 minutes of waiting time on this route. The

9

CHAPTER 2. THEORY

other two routes can be executed without any waiting time. The total travel
time for this solution is 200 minutes, and the total used time can be calculated
as the sum of travel, waiting and service times, i.e. 200+65+4·10+4·20 = 385
minutes. In the solution in figure 2.1.b route 3 is unchanged and routes 1
and 2 are modified to avoid the long waiting time. It is assumed that there
is enough capacity on the vehicle assigned to route 2 to handle the extra
request. The new solution has a total travel time of 225 minutes, but now all
the routes can be executed without any waiting time. The total travel time
for this new solution is 225 + 4 · 10 + 4 · 20 = 345 minutes.

Generally, long waiting times should be avoided for reasons such as driver
wages, driver satisfaction or the condition of the products (e.g. cooling prod-
ucts while waiting). On the other hand, longer travel times imply longer
travel distances, and this is not desirable due to the fuel cost. It is the respon-
sibility of the distribution manager to decide which objective is to be used
as optimization criterion. In many real-life applications, a multiple-criteria
objective function is used – i.e. a weighted sum of several components. For
the model presented in the previous section, the objective function could be
modified as follows:

min α
∑

(i,j)∈E

∑

k

tij · xijk + β
∑

k

(fk − stk) (2.15)

where α and β are positive constants. The first term of the function cor-
responds to the total travel time and the second term is the total time,
i.e. the sum of all route durations. Alternatively, a term penalizing wait-
ing time at each customer could be included in the objective function, i.e.
γ

∑

i∈N max{0, Ei − ti}. Finally, if the policy of soft time windows is em-
ployed, the objective function could also contain a term penalizing the vio-
lation of the time windows, i.e. δ

∑

i∈N max{0, ti − Li}.

2.2 Literature Review - Solution Methods

Due to its practical significance, the VRPTW has been the subject of inten-
sive research for both heuristic and exact optimization approaches.

Among the exact methods the best results are obtained by approaches based
on branch-and-bound, column generation and methods based on Lagrangian
decomposition. According to Kallehauge et al. [23] the exact methods are
able to solve problems with up to 100 customers. Only two larger problems
have been to date solved to optimality: two problems introduced by Gehring
and Homberger with 400 and 1000 customers respectively.

10

CHAPTER 2. THEORY

The VRPTW is proven to be NP-hard [38], and solving such problems to
optimality by use of exact methods is usually very time consuming and often
impossible. Thus, most approaches for the large problems are based on
heuristics. Heuristic methods can broadly be classified into two main classes:
classical heuristics developed in 1960-1990 and metaheuristics which have
become more popular in the last years [26]. An extensive review of methods
from both categories can be found in the article of Bräysy and Gendreau [6,
7]. In the following, some of the solution methods will be briefly introduced
starting with classical heuristics.

Classical heuristics

Most standard route construction and route improvement heuristics fall into
the first category of classical heuristics.

Solomon [34] describes different construction heuristics for the VRPTW: The
first two are an extension of the well-known savings method proposed by
Clark and Wright and the time-oriented nearest neighbour method. Next,
Solomon introduces three different sequential insertion methods and a time-
oriented sweep method. The most successful of the three insertion heuristics
is called I1, which aims to construct routes which maximize the benefit of
inserting a customer into a partially constructed route compared to serving
the customer directly from the depot.

Potvin and Rousseau [28] introduce a parallel version of Solomon’s insertion
heuristic I1, where a set of m routes is initialized at once. The sequential
version of the insertion heuristic is used to determine the initial number of
routes and the set of seed customers. Foisy and Potvin [17] implemented the
method on parallel hardware consisting of 2–6 Sun 3 workstation transputers.
The parallelism was utilized in the calculation of the insertion cost for each
customer. The authors conclude that the reduction in the total computing
time is linear with the number of processors for the distributed part of the
heuristic algorithm.

Iannou et al. [22] use the generic insertion framework proposed by Solomon
but with different customer selection and insertion criteria. The basic idea is
to minimize the impact the insertion of customer u has on the customer itself,
on the customers already in the route and on all the unrouted customers. The
method is tested on 56 problem instances proposed by Solomon. Compared
to the results produced by the original Solomon’s heuristic I1, Iannou et
al. produce better results for these problems, though at the cost of higher
computation times.

11

CHAPTER 2. THEORY

The construction heuristics can be considered as simple and fast methods to
generate feasible solutions to the VRPTW. However, the quality of solutions
produced by these simple procedures is often much worse than more sophis-
ticated approaches. A common approach is a two-phase method, where a
construction heuristic is applied first to construct an initial set of routes and
an improvement heuristic is applied afterwards to obtain a better solution.

Potvin and Rousseau [29] compare different edge-exchange heuristics for the
VRPTW such as 2-opt, 3-opt and Or-opt and introduce a new 2-opt* op-
erator. The 2-opt* operator is similar to the original 2-opt method, but is
applied to two different routes. The test results show a hybrid method based
on the oscillation between the 2-opt* and Or-opt approaches to be the most
successful. The initial routes are created with Solomon’s I1 heuristic.

Russel [31] proposes a hybrid algorithm which embeds the route improve-
ment procedures within the route construction process. The parallel inser-
tion heuristic similar to that of Potvin and Rousseau (1993) is applied to
construct the routes. An exchange operator which swaps two customers be-
tween different routes is then performed on the partially constructed solution
after f customers have been inserted. The size of f affects both the solution
quality and the computation time. The method is tested on Solomon’s test
problems, and the experimental results show that the improvement procedure
after every f = 0.10n . . . 0.16n customers added during route construction
yields the best results.

Hamacher and Moll [21] describe a heuristic for a real-life VRP with narrow
time windows in the context of delivery of groceries to restaurants. The algo-
rithm consists of two stages. In the first stage the clustering procedure based
on the minimum spanning tree algorithm is performed, and customers are
partitioned into regionally bounded sets. In the second stage route construc-
tion and improvement procedures are performed in each cluster. Routes are
constructed based on the simple cheapest insertion method and the Or-opt
operator is applied as local improvement method.

Shaw [33] presents a large-neighbourhood search (LNS) based on rescheduling
some of the customers using constraint programming (CP) techniques. The
search is performed by randomly choosing a set of related customers and
removing them from the routes. The removed customers are then rescheduled
by use of CP coupled with a branch-and-bound method. Due to the large
computational requirements, this approach can be applied only to problems
with a relatively low number of customers per route.

Schrimpf et al. [32] introduce a method close to the LNS that is named
’ruin and recreate’. The method works as follows: The initial solution is

12

CHAPTER 2. THEORY

’ruined’ by removing a set of customers from the solution according to one
of the proposed types of ruin-moves, i.e. radial, sequential or random ruin.
In the next step a new solution is constructed by inserting the removed cus-
tomers into the routes according to the best insertion criterion. The insertion
procedure must not violate any constraints so that the obtained solution is
feasible. During the search solutions that worsen the objective function are
accepted if the deterioration is within a certain threshold. The ’ruin and
recreate’ method has performed quite well on solving the Solomon problems
in terms of solution quality: The authors compare their results to the best
known solutions obtained by the heuristic approaches and to the solutions
obtained by the tabu search approach of Rochat and Taillard [30]. The meth-
ods are tested on 56 problem instances proposed by Solomon. Compared to
the heuristic approaches a better solution is found for 36 problems, and for
12 problems a solution value is the same as the best known one. Compari-
son to the tabu search described by Rochat et al. shows, that the ’ruin and
recreate’ method finds the same results in 24 cases and better results in 31
cases.

Bräysy [8] describes several local search heuristics using a new three-phase
approach for VRPTW. In the first phase, several initial solutions are con-
structed by different construction techniques. In the second phase, a new
ejection chain-based approach is used to reduce the number of routes. The
ejection chain approach has been originally developed by Glover and is de-
scribed in [6]. Finally, Or-opt exchanges are used in the third phase to
minimize the total travel distance. According to Bräysy and Gendreau [6],
the three-approach method of Bräysy produces the best results in terms of
solution quality for the Solomon test instances, along with the ’ruin and
recreate’ method of Schrimpf et al.

Metaheuristics

In the last part of this chapter the methods from the second category –
metaheuristics – will be presented. Metaheuristics are general solution pro-
cedures that explore the solution space in order to identify good solutions and
often embed some of the standard construction and improvement heuristics
[7]. The main difference between the classical methods and metaheuristics is
that metaheuristics allow deterioration of solutions during the search process
in order to escape a local optima. Thus, better solutions can be obtained
with metaheuristics compared to classical heuristics, though often at the
cost of additional computation time. The most well-known metaheuristics

13

CHAPTER 2. THEORY

are simulated annealing, tabu search, GRASP, ant optimization and genetic
algorithms.

There exist numerous tabu search implementations for the VRPTW. The ini-
tial solution in these implementations is usually constructed by some cheapest
insertion heuristic. In a few implementations a savings method or a sweep
heuristic is used as the route construction heuristics. After creating an ini-
tial solution, a local search procedure is performed in order to find a better
solution. Neighbourhood structures used in local search are the ones also
used in the context of route improvement techniques, such as 2-opt, Or-opt,
relocate, CROSS-, GENI- and λ–exchanges.

Different strategies are used to reduce the complexity and hence to speed up
the search: Garcia et al. [19] only allow moves involving arcs close in distance.
Taillard et al. [1] decompose solutions into a number of subsets and apply
tabu search to each set separately. A complete solution is then constructed
by merging the new routes found by tabu search. The performance of the
approach of Taillard et al. in terms of computation time has been improved
by the parallel implementation of the algorithm. To overcome restrictions
of the search space created by time window constraints, some authors allow
infeasibilities during the search, i.e. accepting solutions where capacity or
time windows constraints are violated [7].

A concept of adaptive memory is introduced as a tool of guiding the search
by Rochat and Taillard [30]. The adaptive memory is a pool of routes taken
from the best solutions visited during the search. New solutions are produced
by selection and combination of routes from the adaptive memory. The
selection of routes is a probabilistic procedure, and the probability of a route
being chosen depends on the value of the objective function in the solution
to which the route belongs. The algorithm is designed so as to allow the
search to change progressively from a diversification to an intensification
process. Diversification in the early iterations of the search allows to explore
various regions of the solution space. Intensification in the last stages of the
search aims at exploring the most promising regions. As an extra feature,
a post-optimization procedure is applied after the search has finished: A
set-partitioning problem is solved based on the routes from the adaptive
memory. The method proposed by Rochart and Taillard performed well on
the benchmark problem from the literature, e.g. they improved or reached
quality of about 27 of 56 best solutions published for the Solomon problem
instances.

Another diversification and intensification strategy is employed by Chiang
and Russell [12]. They propose a reactive tabu search that dynamically

14

CHAPTER 2. THEORY

adjusts the length of the tabu list. It is increased if identical solutions occur
too often and reduced if a feasible solution cannot be found.

Another widely used approach for the VRPTW is genetic algorithms. Than-
giah et al. [37] were the first to apply a genetic algorithm to the VRPTW.
Their approach is divided in two phases. In the first phase a genetic al-
gorithm GENSECT is applied to form clusters of customers based on the
sweep method. The routing of customers is then performed for each cluster
separately using the cheapest insertion method. In this first module of the
algorithm, the routes produced by GENSECT are allowed to contain infeasi-
bilities with respect to capacity constraints and time windows. In the second
phase, λ–exchanges and relocations are applied to remove the infeasibilities
and improve the quality of solution. Since that time many authors have
presented numerous implementations of genetic algorithms which differ by
representation of solution space, selection rules and recombination and mu-
tation strategies. According to [7] the authors who achieved the best results
for the Solomon benchmark problems are Mester (2002), Berger et al. (2003)
and Homberger and Gering (2005).

In addition to tabu search and genetic algorithms, the following metaheuris-
tics have also been applied to VRPTW:

Kontoravdis and Bard [25] use a two-phase greedy randomized adaptive
search procedure GRASP. In the first phase, the routes are initialized by
choosing a set of seed customers. For each unrouted customer the best fea-
sible insertion location is identified, and a penalty value is determined using
Solomon’s cost function. A customer to be inserted next is randomly selected
from a list of customers with the largest penalty value. In the second phase,
a local search is performed based on the route elimination method followed
by the 2-opt procedure to improve the solution in terms of travel distance.
The authors propose three different lower bounds for estimating the number
of routes.

Tan et al. [36] develop a fast simulated annealing approach based on the two-
interchanges with the best-accept strategy and a monotonously decreasing
cooling scheme. Czech and Czarnas (2002) [13] describe a parallel version of
a simulated annealing algorithm.

Gambardella et al. [18] use the multiple ant colony system to solve their
VRPTW. The first ant colony minimizes the number of vehicles, while the
second colony minimizes the travel distance. Cooperation between colonies is
performed by updating the best solution found through pheromone updating.
Both colonies are reactivated with the new parameters if a new best solution
with fewer vehicles is found. According to the authors, the approach proves

15

CHAPTER 2. THEORY

to be competitive with the best known existing methods both in terms of
solution quality and computation time.

Apart from the metaheuristics mentioned above, a number of hybrid ap-
proaches have been designed for the VRPTW, where different methods such
as local search, simulated annealing, tabu serach and constraint programming
are combined [7].

Conclusion and future development

It is difficult to compare the different approaches used to solve the VRPTW
due to several reasons such as different programming languages and hardware
used to implement the algorithms, differences in reporting the experimental
results, incompleteness of the reported results etc. Thus, it is impossible to
identify a single method as the best performing one both in terms of solution
quality and computation time. However, usage of memory and employment
of different route construction and improvement techniques can be mentioned
as main characteristics of the most efficient solution approaches.

In their review paper Bräysy and Gendreau have identified 10 different meta-
heuristic approaches which performed best on Solomon’s problem instances.
Five of this approaches are based on genetic algorithms, one of them is an
ant optimization algorithm and the others are combination of such methods
as simulated annealing, LNS and tabu search. The differences in solution
quality of these methods are quite small, i.e. within 0.5% and 1.2% in terms
of the number of used vehicles and the travel distance. As the methods were
run on different systems, it is difficult to compare their performance in terms
of computation time. To make the comparison easier the reported computa-
tion times have been scaled to equal Sun Sparc 10, using factors of Dongarra
[7]. For Solomon’s problem instances with 100 customers the time required
to produce the reported solutions varied from 106 minutes to 1458 minutes.

For the classical heuristic described in the first part of section 2.2 the best
solutions were obtained by Schrimpf and Bräysy. The quality of solutions in
terms of the number of used vehicles and the travel distance differed from
the solutions obtained by the best metaheuristics by 0.7% and 5.2%. The
computation time reported for the fastest of these two methods were 4.6
minutes on Pentium 400 MHz.

As pointed out by Bräysy and Gendreau one of the possible future trends
in developing the solution methods may include tailored solution approaches
based on careful analysis of the problem at hand. On the other hand, the

16

CHAPTER 2. THEORY

research on simpler and more flexible but effective metaheurtistics will also
increase.

17

Chapter 3

The Vehicle Routing Problem
with Time Windows and Shift
Time Limits

In this chapter the model for the problem of constructing master plans is
presented. As mentioned is section 1.2, the problem of constructing mas-
ter plans can be characterized as a VRPTW with complicating constraints.
Thus, the presented model is an extension of the model for the VRPTW
described in section 2.1.2.

The model is extended to handle the vehicle availability and shift time limit
constraints described in section 1.2.

In addition to the terminology in section 2.1.2, the following definitions are
introduced: Let (Ak, Bk) and STk denote the availability time window and
shift time limit for vehicle k. Vehicle k cannot be used for deliveries before Ak,
and must be back at the depot not later than Bk. This implies the following
restrictions on the variables denoting departure time from the depot and
arrival time back at the depot for the vehicle:

stk ≥ A (3.1)

fk ≤ B (3.2)

Furthermore, the difference between the departure time and the arrival time
of the vehicle must lie within the shift time limit, i.e.

stk − fk ≤ STk (3.3)

As mentioned before, the fleet of vehicles is not homogeneous. Typically, a
number of different types of vehicles are available in the fleet. The types can

18

CHAPTER 3. THE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS AND SHIFT TIME LIMITS

differ in capacity of the vehicles, availability time windows and the length of
shift time. The number of vehicles of each type is fixed a-priori and it is not
possible to get access to more vehicles. Thus, an additional constraint must
be added to the model ensuring that only available vehicles of each type are
used in the solution.

In the following the mathematical model for the problem of constructing mas-
ter plans is presented. In the rest of the report the problem of constructing
master plans will be denoted the vehicle routing problem with time windows
and shift time limits (VRPTWSTL).

3.1 The Model Formulation

Before presenting the model an overview of the model components is given.

Sets

N indexed by i = 1 . . . n or by j = 1 . . . n is the set of all customers

V indexed by i = 0 . . . n + 1 or by j = 0 . . . n + 1 is the set of all customers
and the depot, i.e. V = N ∪ {0, n + 1} where 0 and n + 1 denote
the depot

E is the set of all edges of the underlying graph

Ml indexed by k = 1 . . .ml is the set of vehicles of type l

M indexed by k = 1 . . .m is the set of all vehicles, M = ∪L
l=0Ml

where L is the number of vehicles types

19

CHAPTER 3. THE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS AND SHIFT TIME LIMITS

Parameters

qi demand of customer i

Ei time window start at customer site i

Li time window end at customer site i

si service time at customer i

Qk capacity of vehicle k

Ak time from which vehicle k is available for use

Bk time until which vehicle k is available for use

STk shift time limt for vehicle k

L number of vehicle types

ml number of vehicles of the same type

tij travel time between customers i and j

cij cost incurred by travelling directly from customer i to j

C a large number

Decision Variables

xijk =

{
1 if vehicle k travels directly from customer i to customer j
0 otherwise

ti the time to begin delivery at customer i

stk departure time of vehicle k from the depot

fk arrival time of vehicle k at the depot

A model for the vehicle routing problem with time windows and shift time
limits can then be formulated as follows:

20

CHAPTER 3. THE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS AND SHIFT TIME LIMITS

min
∑

(i,j)∈E

∑

k∈M

cij · xijk (3.4)

s.t.
∑

j∈V

xijk −
∑

j∈V

xjik = 0 ∀i ∈ N, ∀k ∈ M (3.5)

∑

i∈N

x0ik = 1 ∀k ∈ M (3.6)

∑

i∈N

xi,n+1,k = 1 ∀k ∈ M (3.7)

∑

k∈K

∑

j∈V

xijk = 1 ∀i ∈ N (3.8)

∑

i∈N

qi

∑

j∈V

xijk ≤ Qk ∀k ∈ M (3.9)

ti + si + tij − C(1 − xijk) ≤ tj ∀i, j ∈ N, ∀k ∈ M (3.10)

stk + t0i − C(1 − x0ik) ≤ ti ∀i ∈ N, ∀k ∈ M (3.11)

ti + si + ti,n+1 − C(1 − xi,n+1,k) ≤ fk ∀i ∈ N, ∀k ∈ M (3.12)

ti ≥ Ei ∀i ∈ N (3.13)

ti ≤ Li ∀i ∈ N (3.14)

stk ≥ Ak ∀k ∈ M (3.15)

fk ≤ Bk ∀k ∈ M (3.16)

fk − stk ≤ STk ∀k ∈ M (3.17)
∑

k∈Ml

∑

i∈N

x0ik ≤ ml l = 1 . . . L (3.18)

xijk ∈ {0, 1} ∀i, j ∈ V, ∀k ∈ M (3.19)

3.2 Solution Approach

As concluded in section 2.2, it is difficult to determine a single solution
method as the best performing one both in terms of solution quality and
computation time.

When this thesis was initiated, the intention was to test the developed so-
lution approach on problem faced by the company considered in this thesis,
which has up to 3000 customers in Denmark as mentioned in section 1.1.
The actual data set provided by Transvision A/S included 500 customers,

21

CHAPTER 3. THE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS AND SHIFT TIME LIMITS

whereas the best known exact methods are able to solve the problems with
up to 100 customers.

Due to the size of the problem and the fact that the solutions have to be
produced within a reasonable time frame, use of exact solution methods is
not considered.

Instead, the following 2-phase solution approach is employed in this thesis: In
the first phase, a set of feasible routes is constructed using an insertion heuris-
tic with embedded route improvement. The objective of the first phase is to
produce a large number of distinctive routes of good quality. In the second
phase the problem is formulated as a mixed set covering/packing problem,
where the rows of the constraint matrix correspond to the customers to be
covered, and the columns are the generated routes. The problem is then
solved heuristically based on Lagrangian relaxation, subgradient optimiza-
tion and a greedy heuristic for generating upper bounds.

In the next chapter the data for a case study problem, provided by Transvi-
sion A/S, is described. Chapters 5 and 6 describe the solution approach in
more details. In chapter 5 an algorithm for the insertion heuristic used in the
route construction phase is presented. Chapter 6 presents the mixed set cov-
ering/packing formulation of the problem and a Lagrangian-based heuristic
used to solve the problem.

22

Chapter 4

A Case Study Data

In the following, a case study data for the VRPTWSTL presented in the
previous chapter is described.

4.1 Data Set Provided by Transvision A/S

In chapter 1 it has been mentioned that the problem considered in this thesis
is a vehicle routing problem faced by one of Transvision’s client companies in
connection with the daily distribution of products to the customers. When
this project was started, the intention was to test the algorithm developed
to solve the routing problem based on the real-life information about the
changes in demand of the company’s customers. The quality of the obtained
solutions were then to be compared to the current practice.

As real life data from the company was not available, another data set has
been provided by Transvision A/S to function as test data in the project.

The problem described by the obtained data involves 500 customers and a
single depot. There are 60 vehicles available for servicing customers. These
vehicles are of three different types. An overview of the differences between
the vehicle types can be seen in table 4.1.

23

CHAPTER 4. A CASE STUDY DATA

Vehicle Capacity Availability window Shift time
type Qk Ak Bk limit, STk

311 25 02:00 18:00 600
312 35 03:00 16:00 600
313 35 00:00 14:00 600

Table 4.1: Problem data – Vehicle types. The shift time limit ST is expressed in minutes.

20 vehicles of each type are available. Furthermore, it is assumed that the
average speed of the vehicles is 40 km/h.

Products of several types can be delivered to the customers. For each product
type information about the unit volume of the product is available.

Product id Product type Unit volume
1534 ’Rullepaller’ 3
1535 ’Helbure’ 2
1536 ’Halvbure’ 0.5
1537 ’Kasser’ 0.1
1538 ’Æsker’ 0.0

Table 4.2: Problem data – Product types.

For each customer the following information is provided:

– time windows
– geographical position (x, y) expressed in meters
– customer demand, i.e. the product types and the ordered quantity

The service time at each customer is set to 10 minutes. In agreement
with Transvision A/S, the Euclidean distances are used when calculating
the distances and travel times between customers. For each pair of cus-
tomers i and j the travel distance between them is determined as dij =
√

(xi − xj)2 + (yi − yj)2, and the travel time is then computed as tij =
dij/speed.

The geographical distribution of customers can be seen in figure 4.1. The
depot coordinates are (530341,6147551), and the figure reveals several small
clusters in the distribution of the customers.

It was mentioned in chapter 1 that the time windows for the customers
usually are tight. This is not the case for the customers in the obtained
data set. The customers’ time windows are quite wide with an average time

24

CHAPTER 4. A CASE STUDY DATA

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

Figure 4.1: Geographical distribution of customers. � denotes the depot.

window length of 384 minutes. The tightest time window has a length of 90
minutes and the widest has a length of 720 minutes.

25

Chapter 5

Route Generation Phase

In this chapter the route generation phase of the solution approach is de-
scribed. An insertion heuristic used to construct a feasible set of routes is
presented in section 5.1. Section 5.2 describes a post-insertion procedure
applied in case where some customers are left uncovered after the insertion
procedure. Finally, route improvement techniques applied to the routes both
during the insertion procedure and after the initial set of routes is constructed
are described in section 5.3.

5.1 Insertion Heuristic

One of the well-known methods for constructing an initial feasible solution in
local search and metaheuristics for vehicle routing problems is to use insertion
heuristic. The advantages of the insertion heuristics are that they are easy
to implement, they are fast and produce decent solutions, and they can be
extended to handle complicating constraints [9].

Different variants of the insertion methods are described in the literature.
Generally, the existing insertion methods can be divided into broad cate-
gories of sequential and parallel methods. Sequential insertion heuristics
construct one route at a time, whereas parallel methods construct multiple
routes simultaneously. In parallel insertion heuristics the number of routes is
either fixed in advance or can be determined by the construction procedure.

For the problem considered in this thesis, a parallel version of the insertion
heuristic is implemented, as the number of vehicles and hence the number of
routes is known a-priori.

26

CHAPTER 5. ROUTE GENERATION PHASE

A feasible solution, i.e. a set of feasible routes, is constructed by repeat-
edly and greedily inserting an unrouted customer into the best position in
the partially constructed routes. A route is represented as (0, 1, 2, . . . , i, i +
1, . . . , n+1), where 0 and n+1 denote the depot and i refers to the customer
at position i in the route. A pseudocode for the insertion procedure can be
seen in algorithm 1 below.

Algorithm 1 Pseudo-code for the insertion procedure.

1: N – set of unassigned customers
2: R – set of routes
3: while N 6= ∅ do
4: for j=1 to |N | do
5: c∗ = ∞
6: for r=1 to |R| do
7: for (i, i + 1) ∈ r do
8: if (Feasible(i, j) & Cost(i, j) < c*) then
9: r∗ = r

10: i∗ = i
11: j∗ = j
12: c∗ = Cost(i,j)
13: end if
14: end for
15: end for
16: end for
17: Insert(r∗, i∗, j∗)
18: Update(r∗)
19: N = N \ j∗

20: end while

Initially, N is the set of all customers, and R is the set of empty routes,
one for each vehicle. In each major iteration of the algorithm, a customer
is selected and inserted into a partial route, which is subsequently updated.
The number of major iterations equals the number of customers to be routed,
n.

One way of selecting customers for insertion is evaluating all the unrouted
customers at every possible insertion point and then choosing the cheapest
insertion. As there are O(n) unrouted customers and O(n) possible insertion
places, this would lead to the following time complexity of a major iteration:

O(n2) · T (Feasible() + Cost()) + T (Update())

27

CHAPTER 5. ROUTE GENERATION PHASE

Another strategy is to select customers for insertion in a particular order. The
following ordering rules can be applied to selecting customers for insertion,
e.g.:

- choosing a customer farthest from the depot

- choosing a customer with the earliest allowed starting time

As the number of vehicles is fixed in advance, and both time windows and
shift time limit constraints apply to the vehicles, some customers may be
difficult or impossible to place in the routes in late iterations of the insertion
algorithm. Thus, the motivation for seeding the customers is to ensure that
the decision of placing these difficult requests into the routes is not postponed
until late iterations of the insertion process. If the customers are sorted in
advance, the overall complexity of a major iteration can be reduced to
O(n) · T (Feasible() + Cost()) + T (Update()).

In the above formulas the time used to check the feasibility and compute the
cost of an insertion has a crucial impact on the overall time complexity of the
algorithm. Straightforward implementations of the feasibility check perform
a physical insertion of customer j between two customers i and i + 1. The
route is then traversed to check feasibility, which takes O(n) time and leads
to the time complexity of O(n4)(or O(n3) if seeding is applied) for the overall
insertion procedure.

More efficient implementations of checking the feasibility have been suggested
in the literature. In this thesis the approach described by Campbell and
Savelsbergh [9] is applied when handling vehicle capacity and customer time
window constraints. Some of their ideas are then used when implementing
feasibility checks with respect to availability windows and shift time limits
for vehicles.

5.1.1 Feasibility check

For the VRPTWSTL problem considered in this thesis, there are four types
of constraints that have to be checked to verify the feasibility of the insertion.
Vehicle capacity constraints and time window constraints for the customers
are the typical constraints for the VRPTW. Furthermore, the problem is
complicated by the availability windows and shift time constraints for the
vehicles. In the work of Campbell and Savelsbergh [9] , efficient implementa-
tions of the feasibility checks are suggested for the VRPTW with complicat-
ing constraints, shift time limits being one of them. The authors state that

28

CHAPTER 5. ROUTE GENERATION PHASE

by maintaining the appropriate information about the partially constructed
route all feasibility checks can be performed in constant time.

In the following, the implementations of the feasibility checks for different
constraint types are discussed. It will be shown that the approach proposed
by Campbell and Savelsbergh holds for only three out of the four mentioned
constraints.

Vehicle capacity constraints

Verifying this type of constraints can be done in constant time if the informa-
tion about the sum of demands of customers already assigned to the route is
maintained. Let Dr denote the sum of delivery quantities currently assigned
to the route, and let qj denote the demand of the customer to be inserted
into the route. The insertion is feasible if qj < Qk − Dr, where Qk is the
capacity of the vehicle assigned to the route.

Time windows constraints for the customers

For each customer i already in the route the following information is main-
tained:

ei earliest time a delivery can begin at i
li latest time a delivery can begin at i

These values are used to capture the interactions between customers on the
same route. Initially ei = Ei and li = Li for all i ∈ N , where (Ei, Li) is a
time window of customer i.

For a new customer j to be inserted between customers i and i + 1, the
earliest and the latest time a delivery can begin at can be computed as
follows: ej = max(Ej, ei + si + tij) and lj = min(Lj , li+1 − tj,i+1 − sj), see
figure 5.1.

Given these quantities, the feasibility of the insertion with respect to time
window constraints can be verified by checking whether ej ≤ lj. This can be
done in constant time. In figure 5.1 insertion of customer j is feasible with
respect to the time window constraint.

29

CHAPTER 5. ROUTE GENERATION PHASE

MNM
MNM
ONO
ONO

PNPNP
PNPNP
QNQ
QNQ

PSfrag replacements

. . .

tij

ti,i+1

tj,i+1

ei

ej

li

lj

ei+1

li+1

si

sj

ei+1

Ej Lj

Figure 5.1: Example of feasible insertion wrt. time windows.

In figure 5.2 an example of an infeasible insertion is shown. The insertion is
infeasible as the travel time from customer i to j is too large compared to
the width of the time window for customer j. Thus, if customer j is to be
serviced after customer i, the vehicle will arrive at customer j after its time
window has closed. The feasibility check will fail as ej > lj.

RNRSNS

TNTNTUNUNU

PSfrag replacements

. . .

tij

ti,i+1

tj,i+1

ei

ej

li

lj

ei+1 li+1

si

sj

ei + 1
Ej lj = Lj

Figure 5.2: Example of infeasible insertion wrt. time windows. lj = li+1 − tj,i+1 − sj

Availability windows and shift time limit constraints for the vehi-
cles

The problem considered in this thesis is further complicated by the availabil-
ity windows and shift time limit constraints for the vehicles. Each vehicle
is available for use during some prespecified hours of the day – the vehicle
availability window. Furthermore, there are limits on how many hours the
drivers can work – shift time limits. This type of restriction can be placed
due to safety reasons or scheduling reasons.

Each time a new customer is inserted in a route one has to ensure that the
route can still be completed within the availability window of the vehicle

30

CHAPTER 5. ROUTE GENERATION PHASE

assigned to the route. Furthermore, the shift time limit must be respected.
Let the route duration be defined as the difference between the time the
vehicle leaves the depot and the time it arrives back at the depot. For an
insertion to be feasible, the route duration must not exceed the prespecified
shift time limit.

In the following, the approach suggested by Campbell and Savelsbergh for
verifying feasibility with respect to availability windows and shift time limits
will be introduced. It will also be shown, that in some case the checks
proposed by the authors are not sufficient, and the approach will fail to
produce feasible routes.

Campbell and Savelsbergh approach

The authors state that to be able to perform the feasibility check in constant
time the following information must be maintained for each route:

e0 earliest possible departure time from the depot
l0 latest possible departure time from the depot
en+1 earliest possible arrival time back at the depot

or earliest completion time of the route
ln+1 latest possible arrival time back at the depot

or latest completion time of the route

Furthermore, for each customer a cumulative time to the depot denoted ai is
maintained. The cumulative distance to the depot for customer i is defined
as follows: ai = si + ti,i+1 + ai+1. From this definition it is clear that the
cumulative time only includes travel time between customers and their service
times. It is important to note that it does not account for any possible waiting
time on the route.

Initially, the earliest/latest departure time and the earliest/latest arrival time
for each route are set to the availability windows of vehicle k assigned to the
route, i.e., (e0, l0) = (Ak, Fk) and (en+1, ln+1) = (Ak, Fk). The value of a0 is
set to 0.

Each time a new customer j is inserted into the route, the values of the
earliest and latest times for delivery at customer j are determined. Based
on these values, the earliest completion time of the route (earliest arrival
time at the depot) is determined as en+1 = max(en+1, ej + sj + tj,i+1 + ai+1).
The earliest completion time may be unchanged, i.e. the first term of the
maximum is dominating if there is a significant amount of waiting time on
the part of the route from customer i + 1 to the depot.

In figure 5.3 the earliest delivery time of the customer in position 2 is de-
termined by E2, opening of customer’s time window, and not by the travel

31

CHAPTER 5. ROUTE GENERATION PHASE

VNV
VNV
WNW
WNW

XNXNXYNY

PSfrag replacements

t1j

t12

tj2

e0 e1

ej

en+1

s1

sj

Ej Lj

e2 = E2

Figure 5.3: Example of insertion where the earliest completion time en+1 of the route
is unchanged.

time from the previous customer, i.e. e2 = E2 as e1 + s1 + t12 � E2. The
earliest completion time of the route is then computed as E2 + s2 + t2,n+1.
After customer j is inserted ej + sj + tj2 is still less than e2. Thus, this value
will not change, and en+1 will also remain the same.

However, if the earliest completion time is changed, the earliest departure
time might also change. The implied earliest departure time is computed
as e0 = max(e0, en+1 − ST). If e0 is determined by the second term, then
insertion of customer j will reduce the amount of time available on the part
of the route before customer j.

The latest departure time from the depot is computed as l0 = min(l0, lj −
tji − si − (a0 − ai)), and the implied latest completion time of the route
is ln+1 = min(ln+1, l0 + ST). If the latest departure time l0 is defined by
the second term, there is no waiting time on the part of the route from the
depot up to customer i. In that case, the latest completion time of the route
ln+1 may also change. Similarly to the earliest departure time, if ln+1 is
changed, the added time used to visit customer j will reduce the amount of
time available on the part of the route after customer j.

Campbell and Savelsbergh state that the insertion is feasible with respect to
vehicle availability windows and shift time limits if the following conditions
hold: e0 ≤ l0 and en+1 ≤ ln+1. Clearly, this check can be performed in
constant time.

It can be shown, however, that these conditions are not sufficient to ensure
the feasibility of the insertion with respect to shift time limit constraints.
The situation is illustrated by a small example in figure 5.4.

32

CHAPTER 5. ROUTE GENERATION PHASE

ZNZ[N[

0 18050 7010 130

PSfrag replacements

t0j

tj,n+1

tj,n+1

enew
0 = lnew

0 enew
n+1 = lnew

n+1
e0
en+1

l0
ln+1

ljlj = LjEj

ej

sj

sj

Figure 5.4: Example of infeasible insertion wrt. shift time limit. Shift time limit
ST = 120, availability window of the vehicle assigned to the route (Ak, Bk) = (0, 180),
lj = ln+1 − tj,n+1 − sj

As the route is empty, the earliest/latest departure times and the earli-
est/latest arrival times back at the depot are set to the availability window
of the vehicle assigned to the route: (e0, l0) = (en+1, ln+1) = (0, 180) and
a0 = 0. A customer with time window (Ej, Lj) = (50, 70) and service time
sj = 10 is to be inserted into an empty route. The distance between the
depot and the customer is 60, and the shift time limit is set to 120.

Firstly, the earliest and latest delivery times for customer j and the cumula-
tive time from customer j to the depot are calculated:

ej = max(Ej , e0 + s0 + t0j) = max(50, 0 + 60) = 60
lj = min(Lj , ln+1 − sj − tjn+1) = min(70, 180 − 10 − 60) = 70
aj = sj + t0j = 10 + 60 = 70

Based on ej and lj, the earliest completion time of the route and the latest
departure time from the depot become:

enew
n+1 = max(en+1, ej + sj + tj,n+1) = max(0, 130) = 130

lnew
0 = min(l0, lj − s0 − t0j) = min(180, 70 − 60) = 10

leading to changes in the earliest departure time e0 from the depot and the
latest completion time ln+1 of the route:

enew
0 = max(e0, e

new
n+1 − ST) = max(0, 130 − 120) = 10

lnew
n+1 = min(ln+1, l

new
0 + ST) = min(180, 130) = 130

After all these relevant values have been computed, the insertion seems to
be feasible according to Campbell and Savelsbergh, as ej ≤ lj, enew

0 ≤ lnew
0

and enew
n+1 ≤ lnew

n+1.

33

CHAPTER 5. ROUTE GENERATION PHASE

However, insertion of customer j is in fact infeasible with respect to the shift
time limit: If customer j is inserted, the cumulative time a0 from the depot
and back to the depot will become aj + t0j = 70 + 60 = 130 leading to the
violation of the shift time limit.

Cambell and Savelsbergh approach – revised

To ensure the feasibility with respect to shift time limit constraints, an addi-
tional check must be added to the conditions already mentioned by Campbell
and Savelsbergh.

Based on the above example, an obvious suggestion is to check that the value
of a0 does not exceed the prespecified shift time limit, i.e.

a0 ≤ ST (5.1)

However, it is important to keep in mind the difference between the route
duration and the a0-value maintained for the route during the insertion pro-
cess. In the current implementation a0 is defined as the sum of travel times
and service times on the route, whereas the route duration also takes possible
waiting times into account. Thus, the values of a0 and the route duration
will only be the same if the sum of waiting time on the route is zero as in
the above example. In that case, condition (5.1) is sufficient to ensure the
feasibility with respect to shift time limit. Each time a new customer j is
inserted between the customers i and i + 1, the new value of a0 can be com-
puted as follows: a0 = a0 + ti,j + tj,i+1 − ti,i+1 + sj. Clearly, this can be done
in constant time.

The next step is to consider a situation, where insertion of customer j causes
waiting time on the route. In that case, the updated value of a0 will not be
the same as the route duration, due to the waiting time. In the suggested
approach the actual delivery times for the customers and possible waiting
times at the customers are calculated after the insertion procedure is com-
pleted. Thus, the final value of the route duration is not known during the
insertion process.

It is possible to maintain the information about the delivery times and wait-
ing times on the route during the insertion process. However, checking how
the insertion of customer j will affect the delivery and waiting times, and
hence the route duration, will require a physical insertion of customer j into
the route and then traversing the route to update the needed values. After
this is performed, the route duration can be determined, and feasibility with

34

CHAPTER 5. ROUTE GENERATION PHASE

respect to shift time limit can be verified. As there are O(n) customers in
the route, this check cannot be performed in constant time.

In the following, it will be shown that route duration exceeding shift time
limit due to waiting will not be an issue for the problem considered in this
thesis. If the sum of waiting times on the route and the value of a0 should
exceed the shift time limit, then the feasibility check would fail on condition
en+1 ≤ ln+1.

Consider the partially constructed route 0, 1, 2, . . . , i − 1, i, n, n + 1 in figure
5.5 and a customer j which is to be inserted between customer i and the
depot n + 1. It is assumed that there is no waiting time on the route and
a0 < ST . Furthermore, it is assumed that insertion of customer j will cause
waiting time on the route, i.e. Ej � li + si + tij. Let wj denote waiting time
at customer j. Then the value of wj can be computed as follows:

wj = Ej − (li + si + tij) (5.2)

PSfrag replacements

. . .t01 t12 ti−1,i

tij

tin

tjn

tn,n+1

(e0, l0) (e1, l1) (e2, l2) (ei−1, li−1) (ei, li)

(Ej, Lj)

(en, ln) (en+1, ln+1)

s1 s2 si−1 si

sj

sn

Figure 5.5: Partially constructed route where insertion of customer j will cause waiting
time at the customer.

Statement 5.1. If a0 +
∑j

i=0 wi = a0 + wj > ST then en+1 > ln+1, i.e., the
insertion is infeasible with respect to availability windows.

Before the proof of statement 5.1 it is important to note the following:

• After the first customer is inserted into the route, l0 is changed from
its initial value of Bk to L1 − t01. If L1 − t01 + ST < Bk, then ln+1 is
changed to l0 + ST . Otherwise, ln+1 remains fixed to the upper limit
of availability window Bk.

• If the value of l0 is changed (decreased) as more customers are inserted
into the route, ln+1 can potentially be decreased to l0 + ST . Thus, the
following condition for these two values is valid throughout the whole
insertion procedure: ln+1 ≤ l0 + ST .

35

CHAPTER 5. ROUTE GENERATION PHASE

• If there are no gaps between the l-values on the part of the route
from customer i and back to the depot, then l0 can be computed as
li − ti−1,i − si−1 − (a0 − ai−1). No gaps means that li for each customer
i of the route is determined by travel time to the next customer, and
not by the closing of the customer’s time window Li.

• If there are gaps in the l-values, say on the part of the route from
customer 2 up to customer i, then l0 is determined by the l2 value, i.e.
l0 = l2 − t12 − s1 − (a0 − a1) = l2 − t12 − s1 − d01. Let l0 denote the
following value li− ti−1,i−si−(a0−ai−1). Then the following condition
holds:

l0 > l0 (5.3)

• If the insertion of customer j is feasible and causes a waiting time on
the route, then the earliest completion time of the route is determined
by Ej:

en+1 = Ej + sj + tjn + an (5.4)

Proof of statement 5.1. Assume that insertion of customer j is feasible.
Then one of the conditions which have to hold is

en+1 ≤ ln+1 (5.5)

Assume now, that the duration of the route exceeds the shift time limit if
customer j is inserted, i.e. a0 + wj > ST . Using the definition of waiting
time in equation (5.2), the following can be deduced:

a0 + wj > ST ⇔ (5.6)

a0 + Ej − (li + si + tij) > ST ⇔ (5.7)

Ej > ST + li + si + tij − a0 (5.8)

If the Ej-value in equation (5.4) is replaced by the right hand side of equation
(5.8), the following is obtained:

en+1 > ST + li + si + tij − a0 + sj + tjn + an (5.9)

Remember, that a0 is defined as the sum of travel times and service times
on the route. The value of a0 − ai−1 will then correspond to the sum of the

36

CHAPTER 5. ROUTE GENERATION PHASE

travel times and services times on the part of the route between the depot
and customer i − 1. Thus, the value of a0 can also be represented as:

a0 = a0 − ai−1 + si−1 + ti−1i + si + tij + sj + tjn + sn + tnn+1 (5.10)

Substitution of a0 in (5.9) with the right hand side of equation (5.10) yields
the following result:

en+1 > ST + li + si + tij − (a0 − ai−1) − si−1 − ti−1i

−si − tij − sj − tjn − sn − tnn+1 + sj + tjn + an ⇔ (5.11)

en+1 > li − ti−1i − si−1 − (a0 − ai−1)
︸ ︷︷ ︸

l0

+ST (5.12)

If there are no gaps in the l-values on the route, then l0 = l0, otherwise
l0 > l0. In both cases the following will hold:

en+1 > l0 + ST ≥ ln+1 ⇒ (5.13)

en+1 > ln+1 (5.14)

However, the last equation contradicts the assumption that the insertion of
customer j was feasible, i.e. equation (5.5).

The conclusion is that if the sum of waiting times on the route and the value
of a0 should exceed the shift time limit, then the feasibility check will fail on
condition en+1 ≤ ln+1.

Feasibility checks - summary

Based on the above discussion, verifying feasibility of the insertion for the
problem considered in this thesis amounts to checking the following condi-
tions:

qj < Q − Dr (5.15)

ej ≤ lj (5.16)

e0 ≤ l0 (5.17)

en+1 ≤ ln+1 (5.18)

a0 ≤ ST (5.19)

All five conditions can be checked in constant time. The insertion is infeasible
if any of these conditions are violated.

37

CHAPTER 5. ROUTE GENERATION PHASE

5.1.2 Insertion cost

The cheapest insertion criterion is applied in the algorithm to determine
the insertion place of an unrouted customer j. The insertion cost for each
possible insertion place is determined by the extra travel time caused by
inserting customer j between customers i and i + 1, i.e. ti,j + tj,i+1 − ti,i+1.
Customer j is then inserted into the position in a route with lowest insertion
cost, thus minimizing the total travel distance:

i∗ = argmin
i

ti,j + tj,i+1 − ti,i+1 (5.20)

It is obvious that computing the insertion cost can be done in constant time.

5.1.3 Updating the route

An inserted customer can impact the deliveries to customers that appear
both before it and after it on the route. For the customers earlier in the
route, there might not be as much time to postpone their deliveries, whereas
deliveries to the customers later in the route might have to start earlier.

Pseudocode for the Update()-procedure is shown in algorithm 2.

After the insertion of customer j in the route, the l-values of the customers
prior in the route and the e-values of customers later in the route have to be
updated, see lines 4–7 and 9–12 of the pseudocode. In practice, the latest
delivery time for the customers preceeding j have to be updated only as long
as the value for the recently updated customer has changed. For example, if
li−1 does not change, there is no need to recalculate li−2. The same holds for
the earliest delivery time for the customers following j.

38

CHAPTER 5. ROUTE GENERATION PHASE

Algorithm 2 Pseudo-code for the Update()-procedure.

1: {Update the total load on the route}
2: Dr = Dr + qj

3:

4: {Update the latest delivery time for the customers prior in the route}
5: for c = i . . . 0 do
6: lc = min(lc, lc+1 − tc,c+1 − sc)
7: end for
8:

9: {Update the earliest delivery time for the customers later in the route}
10: for c = i + 1 . . . n + 1 do
11: ec = max(ec, ec−1 + sc−1 + tc−1,c)
12: end for
13:

14: {Compute the implied earliest departure time and latest completion time}
15: e0 = max(e0, en+1 − ST)
16: ln+1 = min(ln+1, l0 + ST)
17:

18: {If the implied earliest departure time has changed, update the e-values
for the customers just before the point of insertion}

19: if e0 > e0 then
20: e0 = e0

21: for c = 1 . . . i do
22: ec = max(ec, ec−1 + sc−1 + tc−1,c)
23: end for
24: end if
25:

26: {If the implied latest completion time has changed, update the l-values
for the customers just after the point of insertion}

27: if ln+1 < ln+1 then
28: ln+1 = ln+1

29: for c = n . . . i + 1 do
30: lc = min(lc, lc+1 − tc,c+1 − sc)
31: end for
32: end if
33:

34: {Update the cumulative distance to the depot for the customers later in
the route}

35: for c = i . . . 0 do
36: ac = ac + (ti,j + tj,i+1 − ti,i+1) + sj

37: end for

39

CHAPTER 5. ROUTE GENERATION PHASE

Furthermore, if the latest completion time of route ln+1 or the earliest de-
parture time e0 has changed due to the insertion of a new customer j, the
additional updates have to be performed.

If e0 has increased, then after updating the e-values for the customers after
the insertion point, the values from e0 forward to ei have to be updated. Sim-
ilarly, if ln+1 has changed, then after updating the l-values for the customers
prior to the point of insertion, the values from ln+1 backward to li+1 must be
updated.

There is no further explanation of the updating procedure in the article of
Campbell and Savelsbergh, which makes it hard for the reader to see what
happens if a certain situation occurs. Consider the partially constructed
route in figure 5.6 with route duration less than the shift time ST .

PSfrag replacements

.

tij

t01 tii+1

tji+1

tnn+1

e0 e1 ei

ej = max(Ej, ei + si + tij)

en
ei+1 en+1

Figure 5.6: Partially constructed route with route duration less than shift time. Only
the earliest possible delivery times are displayed.

Customer j is to be inserted into the route between customers i and i + 1.
Assume that e0 has changed due to the insertion, and that e-value for the
customer in position i is changed in the updating process. Remember that
ej was computed as max(Ej , ei + si + tij). Due to the change in ei, it seems
necessary to re-evaluate ej. If ej is determined by the second term of the
maximum, then the e-values for the customers following customer j will
also have to change, including the value of the earliest completion time of
the route, en+1. The last change will cause e0 to change again due to the
shift time limit, and the whole updating procedure will have to be repeated.
The question is now how many times the updating procedure have to be
repeated and whether an O(n) complexity of the whole updating phase can
be preserved. The same doubtful situation occurs if the latest completion
time of the route, ln+1, is changed due to the shift time limit, and the l-value
for the customer in position i + 1 is changed during the updating procedure.

In the following, it will be shown that there will be no need to update the
values of ej, or lj, and thus going through the updating procedure several
times. It can be shown that if such updates are necessary, the insertion would
not have been feasible in the first place.

40

CHAPTER 5. ROUTE GENERATION PHASE

To simplify further explanations it is assumed, that service time for each
customer is included in travel time from this customer to the next.

Statement 5.2. Assume that insertion of customer j causes delay of the
earliest completion time and thus change of e0. Assume that ei is changed
in the updating process. The value of ej will remain unchanged, as otherwise
the insertion would have been infeasible with respect to shift time limit.

Proof of the statement 5.2. Assume that insertion of customer j be-
tween customers i and i + 1 is feasible. Then one of the conditions that
have to hold is

a0 ≤ ST (5.21)

After insertion the new value of en+1 can be computed based on the value of
ej:

en+1 = ej + tji+1 + ai+1 (5.22)

and e0 is re-calculated to:
e0 = en+1 − ST (5.23)

Due to the updating procedure, the e-value of customer i is changed to

enew
i = e0 + (a0 − ai) (5.24)

The only way for ej to change is if condition (5.25) holds.

enew
i + tij > ej ⇔ (5.25)

e0 + (a0 − ai) + tij > ej ⇔ (5.26)

e0 + (a0 − ai) + tij > en+1 − tji+1 − ai+1 (5.27)

By substitution of e0 in (5.27) with the right hand side of equation (5.23)
following is deduced:

en+1 − ST + a0 − ai + tij > en+1 − tji+1 − ai+1 ⇔ (5.28)

a0 + tij + tji+1 + ai+1 − ai > ST ⇔ (5.29)

a0 + tij + tji+1 − tij − tji+1 > ST ⇔ (5.30)

a0 > ST (5.31)

The last equation contradicts the assumption that the insertion of customer
j was feasible – see equation (5.21).

41

CHAPTER 5. ROUTE GENERATION PHASE

A similar statement can be proved for updating the l-values:

Statement 5.3. Assume that insertion of customer j causes the latest depar-
ture time to be decreased, and that the latest completion time is also changed
due to the shift time limit, ln+1 = l0 + ST . Assume that li+1 is changed in
updating process. The value of lj will remain unchanged, as otherwise the
insertion would have been infeasible with respect to the shift time limit.

Proof. Similar to the one for statement 5.2 and not presented here, but can
be found in appendix A.

Apart from the updates mentioned in the above, the total delivery volume of
the route and the cumulative travel distance to the depot of the customers
preceeding j have to be updated – lines 1-2 and 34-37 of the pseudocode
described in algorithm 2. Clearly, all these updates can be done in linear
time thus preserving the overall time complexity of O(n3) – O(n2) if seeding
is applied – for the proposed insertion algorithm.

5.1.4 Finalizing the solution

After a set of feasible routes is generated, the final solution, i.e. the actual
delivery times for each customer, can easily be constructed based on the in-
formation maintained for each customer. One of the approaches is to make
deliveries either at the earliest possible. Another approach is to begin deliv-
eries at the latest possible time for all the customers. Both choices will give
a feasible solution and require the same amount of travel time. Consider the
route in figure 5.7. For each customer i of the route the final values of (ei, li)
are determined. Furthermore, the earliest/latest departure times from the
depot and the earliest/latest completion times of the route are calculated.

60 40 40 30

PSfrag replacements

(0, 60) (60, 120) (130, 180)(200, 300)(240, 360)

Figure 5.7: Final route. Service times for all customers are set to 10.

In figure 5.8 the final solution for the route is constructed by starting from
the depot at the earliest possible time, e0.

The drawback of this approach is possible long waiting times on the routes,
e.g. if a vehicle arrives at the customer site before the time window opens.

42

CHAPTER 5. ROUTE GENERATION PHASE

0

2

n+1

3

1

600 300 360120 180 200 240

PSfrag replacements

t01

t12

t23
t3n+1

s1

s2

s3

Figure 5.8: Final solution with start at the earliest departure time. Solid lines indicate
the final interval (e,l) for the depot and the customers. Dashed lines indicate travel time
between customers and the depot. Dotted lines indicate waiting time at customer sites.

According to the solution in figure 5.8, there is waiting time of 10 and 20
minutes at customers 2 and 3, respectively. The total route duration is
calculated to be 240 − 0 = 240 minutes.

To minimize waiting time for a given route, it is best to depart from the depot
at the latest possible time (l0). Deliveries to the following customers must
then begin at the earliest feasible time. This approach minimizes the duration
of the route, thus minimizing the waiting time. The solution constructed
using this approach can be seen in figure 5.9.

0

2

n+1

3

1

600 300 360120 180 200 240

PSfrag replacements

t01

t12

t23

t3n+1

s1

s2

s3

Figure 5.9: Final solution with start at the latest departure time. Solid lines indicate
the final interval (e,l) for the depot and the customers. Dashed lines indicate travel time
between customers and the depot. Dotted lines indicate waiting time at customer sites.

As it can be seen from the figure, there is no waiting time on the route, and
the route duration is 260 − 60 = 200 minutes.

43

CHAPTER 5. ROUTE GENERATION PHASE

5.2 Post-insertion Procedure

As the number of vehicles is fixed a-priori, there might still be unrouted
customers after the insertion algorithm has finished. In the worst case some
of these customers cannot be served by the available vehicles due to the
violation of some constraints, e.g. not enough capacity on the vehicles or
time window incompatibilities. In that case it is not possible to construct a
feasible solution with all customers served.

In most cases, however, some customers will remain unserved due to the
particular order in which customers are chosen for insertion. In figure 5.10
two different solutions to the same problem are shown. In figure 5.10.a the
next customer chosen for insertion is the one farthest from the depot. In
figure 5.10.b the customer with the earliest allowed starting time is chosen
in each iteration. The problem data and the detailed insertion procedure
for the solution in figure 5.10.a can be found in appendix B. As it can be

\�\\�\]
]

^�^^�^_
_

`�``�`a
a

b�bb�bc�cc�c
d�dd�d
d�d
e�ee�e
e�e

f�ff�fg
g

h�hh�hi
i

j�jj�jk�kk�k

6 5

2 (480,510)

3

7

1

35

30

15

35

(570,600)

8

60

3045

600

705
660

4

810
20

760

835

565
750

725

790
850

900

r1

r2

r3

(a) Total cost: 420 minutes, two cus-
tomers unserved.

l�ll�lm
m

n�nn�no
o

p�pp�pq�qq�q

r�rr�rs
s

t�tt�tu�uu�u
v�vv�vw
w

x�xx�xy
y

z�zz�z{
{

5

2

7

35
20

10

30

20

15

15
8

840

1 765

750

6

790

510

3

4

60

r2

705

830

15 545

590

25

45 675
905 630

490
730

r1

r3

(b) Total cost: 470 minutes, all cus-
tomers served.

Figure 5.10: Dependency of final solution on seeding criteria. Service times for the
customers are not displayed in the figure.

seen from the figure two customers are left unserved if the ’farthest distance
from the depot’ -criterion is applied. Thus, a procedure for handling these
customers is required.

In this thesis an ejection chain based approach is applied to construct the final
feasible solution. The idea of this approach is trying to insert an unserved
customer in some route by removing another customer from the same route
[6].

44

CHAPTER 5. ROUTE GENERATION PHASE

Algorithm 3 Pseudocode for the post-insertion procedure. i∗ins denotes the position
in route r∗ where the unserved customer j is to be inserted. i∗rem denotes the position of
customer jout which is removed from the route.

1: Nuns – set of unserved customers
2: N ′

uns – set of still unserved customers after the procedure is finished
3: R – set of routes
4: repeatProc – is true if the procedure has to be repeated, i.e. if |N ′

uns| 6= 0
5: for j=1 to |Nuns| do
6: jin = j
7: while jin 6= −1 do
8: if ExistFeasible(R, jin) then
9: {direct insertion possible, chain terminated}

10: Insert(r∗, i∗, jin)
11: Update(r∗)
12: jin = −1
13: else
14: {direct insertion not possible, start the chain}
15: c∗ = ∞, r∗ = −1, i∗ins = −1 and i∗rem = −1
16: (c∗, r∗, i∗ins, i∗rem) = FindRemovalPlace(R, jin)
17: if (c∗ 6= ∞ & i∗ins 6= −1) then
18: jout = Remove(r∗, i∗rem)
19: Insert(r∗, i∗ins, jin)
20: Update(r∗)
21: jin = jout

22: else
23: N ′

uns = N ′
uns ∪ {jin}

24: jin = −1
25: end if
26: end if
27: end while
28: end for
29: if |N ′

uns| > 0 then
30: if (|Nuns| = |N ′

uns| & Nuns \ N ′
uns = ∅) then

31: repeatProc = false
32: else
33: repeatProc = true
34: end if
35: else
36: repeatProc = false
37: end if
38: return repeatProc

45

CHAPTER 5. ROUTE GENERATION PHASE

A pseudocode for the post-insertion procedure is presented in algorithm 3.
In each iteration of the post-insertion procedure an unserved customer j is
chosen from the set Nuns. The algorithm then tries to insert the customer into
existing routes by applying the insertion algorithm described in the previous
section – the ExistFeasible() procedure. If direct insertion is not possible, the
ejection chain is started. Procedure FindRemovalPlace() finds a route where
customer j can be inserted by removing another customer jout. Afterwards
the same procedure is applied to the removed customer. The insertion and
removal procedures are repeated until it is possible to insert a customer into
a route without removing another customer from that route. The ejection
chain (i.e. the while-loop in the pseudocode) is therefore terminated and the
next unserved customer is chosen from Nuns.

A pseudocode for the FindRemovalPlace() procedure is shown in algorithm
4.

Algorithm 4 Pseudocode for the FindRemovalPlace()-procedure.

1: R – set of routes
2: j – customer to be inserted into the routes
3: c∗ = ∞, r∗ = −1, i∗ins = −1 and i∗rem = −1
4: for r=1 to |R| do
5: for l ∈ r do
6: r′ = Remove(r,l)
7: savingsr

l = tl−1,l + tl,l+1 − tl−1,l+1

8: for (i, i + 1) ∈ r′ do
9: if (Feasible(i, j) & Cost(i, j) – savingsr

l < c*) then
10: i∗ins = i
11: i∗rem = l
12: r∗ = r
13: c∗ = Cost(i,j) - savingsr

l

14: end if
15: end for
16: end for
17: end for
18: return (c∗, r∗, i∗ins, i∗rem)

If several alternatives for inserting customer j are available then the one with
least cost is chosen:

(r∗, i∗ins, i
∗
rem) = argmin

r,i,l

Cost(i, j) − savingsr
l (5.32)

46

CHAPTER 5. ROUTE GENERATION PHASE

As mentioned before, whether all customers are served after the insertion
procedure is finished depends on the order in which the customers are cho-
sen for insertion. The same is true for the post-insertion procedure. Thus,
if customer jin cannot feasibly be inserted into the current routes neither
directly nor by removing another customer, it is placed in set N ′

uns – the set
of still unserved customers. After all customers of the initial set Nuns have
been tried for insertion, the algorithm checks whether some of them are still
unserved and whether the post-insertion procedure has to be re-run – lines
29 to 37 of the pseudocode in algorithm 3. Whether the post-insertion has
to be performed again is controlled by the repeatProc parameter. The initial
set Nuns is compared to the set of still unrouted customers N ′

uns. If these
sets are identical, then the customers in these sets cannot feasibly be inserted
into routes. Thus, there is no need to re-run the post-insertion procedure, i.e.
repeatProc = false. Otherwise, the post-insertion procedure should be re-
run on set N ′

uns and repeatProc = true. The value of parameter repeatProc
is returned to the main programme.

An example of the post-insertion procedure is shown in figure 5.11. The
unserved customer 2 is chosen to start the ejection chain. Customer 2 can
only be feasibly inserted into route 2 as the first customer on the route (see
appendix B for details), and the best alternative is pushing customer 6 out
of the route – see table 5.1 below.

Customer Id Position in Savingsi Cost of inserting Cost–Savings
the route, i customer 2

3 1 35+30-30=35 20+40-30=30 -5
5 2 30+15-40=5 20+15-35=0 -5
6 3 15+30-30=15 20+15-35=0 -15*

Table 5.1: Savings and insertion cost for the ejection procedure. * indicates the best
alternative, i.e. the ejection move with minimal cost.

Customer 6 can be inserted directly into route 3 terminating the ejection
chain.

47

CHAPTER 5. ROUTE GENERATION PHASE

|�||�|}�}}�}

~�~~�~�
�

�������
�

������������

������������

������������

�������
�

�������
�

6 5

(480,510)

3

7

1

35

30

15

8

60

3045

810
20

r1

r3

out

in 2

20

15

r2

35

30

40

40

4

(a) Routes before starting the ejec-
tion chain.

������������

������������

�������
�

�������
�

�������
�

������������

������������

������������

6 5

2

3

7

1

35

8

60

30

4

20

r1

r2

45

r3

3025 30

20

15

(b) Routes after the ejection chain
move.

Figure 5.11: Example of an ejection chain move.

5.2.1 Cycling issue in the post-insertion procedure

Consider the following situation: Customer 6 is pushed out of route 2 due to
the insertion of customer 2. A new insertion place for customer 6 is now to
be found. Obviously, one of the alternatives could be to insert customer 6 in
its old position in route 2 and to push customer 2 out again. If that is the
best (the cheapest) option, cycling will occur: The algorithm will alternate
between pushing one of the customers 2 and 6 out of the route and inserting
the other one. Thus, the ejection will never terminate.

To avoid this type of cycling, the following rule can be applied to the post-
insertion procedure: When searching for a new insertion place for the cus-
tomer just pushed out of some route r′, only the routes r 6= r′ are considered.

However, applying this rule will not be enough in some cases, e.g. in the
problem considered in figure 5.12.

Cycling occurs when customer 5 is pushed out of route r1 in step e). The
resulting routes are the same routes as in step a). As there is no rule prohibit-
ing the algorithm from performing such a move, cycling occurs. To avoid this
a so called tabu list is created and maintained throughout the post-insertion
procedure. The tabu list consists of pairs of customers which are forbidden to
appear again in the routes. For example, in figure 5.12 after step a) the tabu
list will contain two entries – (4,3) and (3,0). The list is expanded during
the post-insertion procedure. Each time a customer i is pushed out of the
route, the entries added to the tabu list are (i − 1, i) and (i, i + 1).

48

CHAPTER 5. ROUTE GENERATION PHASE

2

3

4

5

out

c)

in

1

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

out

in

in

out

in

outin

out

a) b)

d)e)

1

2

3

4

5

PSfrag replacements

r1 r1

r1
r1

r1

r2
r2

r2
r2

r2

Figure 5.12: Example of cycle in the post-insertion procedure.

In steps d) to e) the tabu list will prevent the algorithm from constructing the
same route as one of the routes in step a). Instead, the next-best alternative
will be used. In that case, a different set of routes will be produced and
cycling will be avoided.

5.2.2 Time complexity of the post-insertion procedure

In the following, the time complexity of the post-insertion algorithm pre-
sented in algorithm 3 is discussed.

In each major iteration (the for -loop in lines 5 to 28), an unserved customer
is selected from set Nuns. Let nuns denote the number of unserved customers,
i.e. nuns = |Nuns|. Then, there are nuns major iterations.

Furthermore, let Nwhile denote the length of the ejection chain, that is the
number of times the while-loop in lines 7 to 27 is performed.

Using this notation, the time complexity of the post-insertion procedure can

49

CHAPTER 5. ROUTE GENERATION PHASE

be estimated as follows:

Tpost insertion = nuns · Nwhile · [Tdirect insertion + Tejectionmove] (5.33)

Tdirect insertion in equation (5.33) is the time it takes to check whether a cus-
tomer can be directly inserted into some route, and to insert the customer if
a feasible insertion place has been found. As it was shown in section 5.1, the
feasibility check can be performed in constant time. As there are O(n) pos-
sible insertion places, the time complexity of the ExistFeasible()-procedure
is O(n). The physical insertion of a customer into a route takes constant
time, and updating the route can be performed in linear time, O(n). Thus,
Tdirect insertion takes O(n) time whether an insertion is performed or not.

Tejectionmove is the time it takes to find a route where a customer can be
inserted by pushing out another customer and, if such move is feasible, the
time it takes to perform this move. That is,

Tejectionmove =T (FindRemovalP lace()) + T (Remove())+

+ T (Insert()) + T (Update())

To estimate the time complexity of FindRemovalPlace(), consider the pseu-
docode for the procedure shown in algorithm 4. Based on each route r, a
number of different routes are constructed by removing one of the customers
from the original route. The number of new routes constructed in this pro-
cess equals to the number of already routed customers, O(n). The following
approach is applied in this thesis when removing a customer from a route:
If customer i has to be removed from route r, the Remove()-procedure will
start by removing all the customers from the route and then inserting one
customer at a time except customer i. As there are O(n) customers in the
route, and updating of the route when inserting a customer is done in linear
time, the Remove()-procedure can be performed in time O(n2). Evaluat-
ing whether a new customer j can feasibly be inserted into the route can be
performed in time O(n), while computing the cost of the move is done is con-
stant time. Thus, the time complexity of the FindRemovalPlace()-procedure
is calculated as O(n) · [O(n) + O(n2)] = O(n3), which gives following time
for the ejection move:

Tejectionmove = O(n3) + O(n2) + O(1) + O(n) = O(n3)

Thus, the time it takes to perform one iteration of the while-loop is Twhile =
O(n) + O(n3), which leads to an overall complexity of

Tpost insertion = nuns · Nwhile · [O(n) + O(n3)]

= nuns · Nwhile · O(n3) (5.34)

50

CHAPTER 5. ROUTE GENERATION PHASE

The next step is to find out how many times the while-loop is performed in
each major iteration of the post-insertion procedure.

In the best case, the length of the ejection chain is 2, i.e. an unserved
customer j is inserted into some route by pushing out another customer i,
which can be directly inserted into some other route. In the worst case, an
unserved customer j is inserted into some route by pushing another customer
out and then pushed out of this route again later during the iteration process.
In this case a new insertion place has to be found for customer j. Because of
the tabu list, customer j cannot be inserted in the position from which it was
removed (i.e. the least cost alternative). Thus, the second best alternative
for inserting this customer is chosen. If customer j is pushed out of the
routes again later in the process, the third best alternative is chosen and so
on. If all alternatives have been used, the ejection chain will terminate on the
condition that customer j cannot be inserted into the current set of routes.
The upper bound on the number of possible alternatives for insertion of the
unrouted customer j is O(n2). This can be derived as follows: Customer
j can potentially be inserted at all positions of each route constructed by
removing one of the customers from the original route. The number of new
constructed routes is O(n) and the number of possible insertion places is also
O(n), which gives O(n2) alternatives. However, due to the tabu list, only
O(n) of these alternatives can be used. Thus, each customer can only be
removed from and inserted into the routes O(n) times. And as there are
O(n) already routed customers, the upper limit on the number of times the
while-loop is executed is O(n2).

The overall complexity of the post-insertion procedure becomes

Tpost insertion = nuns · O(n2) · O(n3) = O(n5) (5.35)

5.3 Embedded Improvement

In the following, the approach used in this thesis to improve the solutions
obtained from the route construction procedure is described. It is a common
practice when solving vehicle routing problems to apply a two-phase approach
in which a route construction procedure is followed by a route improvement
procedure. It has been shown that a greater improvement can be achieved by
embedding the improvement process into the route construction procedure
[31].

The main idea of the embedded improvement approach used in this thesis
is to apply the route improvement techniques to the partially constructed

51

CHAPTER 5. ROUTE GENERATION PHASE

routes each time a certain number of customers have been inserted into the
routes. Let f denote the frequency of the improvement, i.e. the number of
customers to be inserted into the routes before the improvement procedure is
applied. The size of f affects both the solution quality and the computation
time of the route generation phase. Small values of f mean more frequent
improvement and tend to produce solutions of higher quality at the expense
of longer computation time. In the work of Russel it is shown that the
performance of embedded improvement is not always monotonic with respect
to the frequency of improvement. Thus, there is no specific value of f which
is optimal for all types of problems. Experiments conducted in the work of
Russel show that the most effective results can be achieved by applying the
improvement procedure after every f = 0.1n . . . 0.16n customers have been
routed. Based on this results, the value of f = 0.1n, where n is the number
of customers, is used in this thesis.

A number of different improvement methods, or improvement moves, have
been suggested in the literature. These methods can be applied to one
route – intra-route improvement, or to a number of routes simultaneously
– inter-route improvement. In this thesis two different inter-route improve-
ment moves are developed and tested on the problem.

5.3.1 Swap move

A swap move is performed on a pair of routes by exchanging two nodes
between the routes. The move is only accepted if the quality of the solution
is improved. Let i and j denote two customers considered for a swap move.
Let ri and rj denote the original routes for customer i and j. The routes
obtained by removing i and j from their original routes are denoted by r′i and
r′j. The cost of the move sCost is then computed as (iCost stands insertion
cost):

sCost = iCost(i, r′j) + iCost(j, r′i) − savingsri

i − savings
rj

j (5.36)

If sCost < 0, the move is accepted, and two customers are swapped between
the routes. Otherwise, the move is rejected.

When performing the improvement procedure, the following strategy is ap-
plied to each route: Two customers are considered for removal from the
route. The FindRemovalPlace()-procedure described in algorithm 4 is ap-
plied to each considered customer j and each route r 6= rj. If customer j
can be inserted into another route ri by pushing out some customer i, it is
checked whether this customer i can be inserted into j’s original route rj.

52

CHAPTER 5. ROUTE GENERATION PHASE

If such a move is feasible, its cost is calculated using equation (5.36). The
feasible move with the lowest cost is then performed. Note, that all positions
of route ri are checked when evaluating feasibility of insertion for customer
j, and not only the one from which customer i is removed, and visa versa.

Two different criteria were considered for choosing two customers which are
candidates for being removed from the route. By applying the first one,
customers with the largest waiting time are considered for removal. The
aim of this criterion is to minimize the waiting time on the route, hence
minimizing route duration. However, inspection of the routes constructed
by the insertion heuristic showed that removing a customer with a large
waiting time does not imply significant decrease in total waiting time on the
route. This can be explained as follows: If there is a large waiting time on
the route at customer i, it is typical that the next customer in the route is
located close to the customer i and that their time windows are similar. That
means that removing customer i will just ’push’ the waiting time to the next
customer. Another criterion focuses on minimizing travel time. Thus, the
customers considered are the ones by removal of which the largest savings in
travel time can be obtained. For each route, information about customers
(positions in the route) causing the largest savings if removed from the route
is maintained during the insertion procedure. Thus, no extra time is spent
on searching after these customers each time the embedded improvement
procedure is called.

In section 5.2.2 the time complexity of the FindRemovalPlace()-procedure
was determined to be O(n3). Evaluating feasibility of insertion of customer
i in route rj is performed in time O(n). Thus, finding the best feasible move
takes 2 · [T (findRemovalP lace(R, j)) + T (Feasible(i, rj))] = 2 · [O(n3) +
O(n) = O(n3). If such move is found, performing it can be done in time
2 · [O(n2) + O(n)] = O(n2). Let m′ denote the number of routes constructed
by the time the embedded improvement procedure is called. As each route
is considered for improvement, the whole procedure is performed in time
m′ · [O(n3) + O(n2)].

An example of a swap move can be seen in figure 5.13.

Consider route 3 in figure 5.13 which consists of only two customers. Thus,
both of them are considered for removal. Savings in travel distance are
calculated to be 60 + 35 − 45 = 50 and 60 + 45 − 35 = 70 for customer 1
and 7 respectively. First, customer 7 with the largest savings is considered.
Insertion of customer 7 into route 2 is infeasible due to the customer time
windows. For route 1 and customer 7 the following information is evaluated
to find the best move:

53

CHAPTER 5. ROUTE GENERATION PHASE

Customer id savingsr1
i iCost(i,r3′) iCost(7,r1′) sCost

5 15 45 75 45+75-15-70=35
6 5 Infeasible – –
8 15 40 15 40+15-15-70=–30*

Table 5.2: Evaluation example of the swap move. The best feasible move is marked with
*.

�������
�

�������
�

 � � ¡
¡

¢�¢¢�¢£�££�£

¤�¤¤�¤¥�¥¥�¥
¦�¦¦�¦§�§§�§

¨�¨¨�¨©
©

ª�ªª�ª«
«

5

2

7

35
20

10

30

20

15

15
8

840

1 765

750

6

790

510

3

4

60

r2

705

830

15 545

590

25

45 675
905 630

490
730

r1

r3

(a) Total cost: 470 minutes.

¬�¬¬�¬­�­­�­

®�®®�®¯�¯¯�¯

°�°°�°±�±±�±

²�²²�²³
³

´�´´�´µ
µ

¶�¶¶�¶·
·

¸�¸¸�¸¹�¹¹�¹

º�ºº�º»�»»�»

5

2

35
20

10

30

20

15

15

1 765

510

3

4

r2490730

15 545

590

630

7

750

6

8

45

705

675

25

30

790

855810

850

r1

r3

(b) Total cost: 440 minutes.

Figure 5.13: Example of the swap improvement move.

If customer 1 is removed from route 3, it cannot feasibly be inserted into
another route. Insertion into route 2 will fail due to the time window con-
straint, and insertion at any position of route 1 will fail due to the exceeded
shift time limit. Thus, the swap move performed is removing customer 8
from route r1 and inserting it into r3 by removing customer 7, which is then
inserted into r1. As it can be seen from the figure, the total cost of the
routes, i.e. sum of all route durations, has decreased as a result of the move.

5.3.2 Re-insertion move

A re-insertion move is performed by removing a customer from one route and
inserting it into another route. Let j and rj denote a customer considered
for a move and its original route. If r′j is the route where customer j can be
feasibly inserted, the cost of the move can be calculated as follows:

riCost = iCost(j, r′j) − savings
rj

j (5.37)

54

CHAPTER 5. ROUTE GENERATION PHASE

The move is accepted only if riCost < 0, i.e. if the solution is improved by the
move. The same strategy as for the swap move is applied when performing
a re-insertion move: For each route two customers with the largest savings
in travel time are considered. For each of these customers insertion in every
other route is evaluated and the cost of the move is computed according to
equation (5.37). The feasible move with the lowest cost is then performed.

Evaluating the feasibility of inserting customer j in all routes r 6= rj can be
done in O(n) time. Thus, finding the best feasible move takes 2·O(n) = O(n).
Performing the move, i.e. removing the customer, inserting it into another
route and updating both routes, can be done in time O(n2), due to the time
complexity of the Remove-procedure. As for the swap move, all the routes
are considered for improvement, and the whole improvement procedure is
performed in time m′ · (O(n) + O(n2), where m′ is the number of routes at
the time.

In figure 5.14 an example of a re-insertion move is shown. Consider route 1
where removing customer 5 and 8 gives the largest savings of 15.

¼�¼¼�¼½
½

¾�¾¾�¾¿
¿

À�ÀÀ�ÀÁ
Á

Â�ÂÂ�ÂÃ�ÃÃ�Ã

Ä�ÄÄ�ÄÅ�ÅÅ�Å
Æ�ÆÆ�ÆÇ�ÇÇ�Ç

È�ÈÈ�ÈÉ
É

Ê�ÊÊ�ÊË
Ë

5

2

7

35
20

10

30

20

15

15
8

840

1 765

750

6

790

510

3

4

60

r2

705

830

15 545

590

25

45 675
905 630

490
730

r1

r3

(a) Total cost: 470 minutes.

Ì�ÌÌ�ÌÍ�ÍÍ�Í

Î�ÎÎ�ÎÏ�ÏÏ�Ï

Ð�ÐÐ�ÐÑ�ÑÑ�Ñ

Ò�ÒÒ�ÒÓ�ÓÓ�Ó

Ô�ÔÔ�ÔÕ
Õ

Ö�ÖÖ�Ö×
×

Ø�ØØ�ØÙ�ÙÙ�Ù

Ú�ÚÚ�ÚÛ
Û

5

2

7

35
20

10

30

15

15

840

1

750

6

510

3

4

r2490

705

15 545

590

630
8

30

4520

30

675

r1

r3

795

720

755

800 905

(b) Total cost: 445 minutes.

Figure 5.14: Example of the re-insertion improvement move.

If customer 5 is removed, it cannot feasibly be inserted into any other route.
Insertion into route 2 is impossible due to the vehicle capacity constraints,
and insertion into route 3 will fail due to the time window constraints. If
customer 8 is removed, it can only be inserted into route 3 at position 2
yielding the following cost of the move: riCost = iCost(8, r3)− savingsr1

8 =
−25. As it can be seen from figure 5.14.b the total cost of the solution has
decreased by exactly this amount.

55

CHAPTER 5. ROUTE GENERATION PHASE

5.4 Generation of the Pool of Routes

As mentioned earlier, the aim of the route generation phase is to construct a
large pool of routes which is then used as input for the Lagrangian heuristic.

After the insertion heuristic with embedded improvement has finished, the
improvement procedure is applied to the set of constructed routes. To in-
crease the number of resulting routes, both old and new improved routes are
stored in the pool of routes. As the number of vehicles is limited, the number
of routes produced by a single execution of the route generation phase is at
most 2m, where m is the number of vehicles. Thus, the route generation
phase has to be repeated a number of times to obtain a sufficient number of
routes for the next phase of the solution approach.

After each execution run of the route generation phase, the original problem
data is permutated in the following way: P pairs of customers with the
shortest distances between them are chosen from each constructed route.
The distances between these customers are then set to a large number. The
purpose of such a permutation is to prevent these customers from appearing
together in the routes. Hereby a set of routes different from the previous
ones are constructed.

The larger the value of P is, the more constrained the route construction
problem becomes in the next execution of the route generation phase. Thus,
too large values of P can potentially result in a set of routes with some
customers left unserviced. On the other hand, small values of P will increase
the probability of producing routes which are similar to the other routes in
the pool.

5.5 Route Generation Phase – Summary

The general framework of the route construction phase can be summarized
as follows:

a. Perform the insertion heuristic with embedded improvement after every
0.1n customers have been routed.

b. Run the post-insertion procedure to handle the unserviced customers,
if any.

c. Apply the improvement procedure to the resulting set of routes.

56

CHAPTER 5. ROUTE GENERATION PHASE

d. Permutate the problem data based on the constructed routes and repeat
the route generation phase

As mentioned above the route generation phase has to be executed a number
of times to produce a large number of good quality routes. The obtained
pool of routes is used as input for the second phase of the solution approach
which is presented in the next chapter.

57

Chapter 6

A Lagrangian-based Heuristic
for the Set Covering/Packing
Problem Formulation

In this chapter the second phase of the solution approach is described. In
section 6.1 the VRPTWSTL is formulated as a mixed set covering/packing
problem. Section 6.2 presents a Lagrangian-based heuristic used to solve the
problem.

6.1 Set Covering/Packing Problem Formula-

tion

Set covering, set packing and set partitioning problem formulations can be
applied to a variety of problem types such as delivery and routing problems,
scheduling and location problems. For the VRPTW the solution methods
based on the set partitioning problem formulation usually involve column
generation or decomposition methods. In the work of Desrochers et al., a
set covering formulation of the VRPTW is used with column generation to
generate optimal or near-optimal solutions [14]. Their approach was able to
solve VRPTW instances with up to 100 customer to optimality.

Another approach based on the set covering problem formulation is to gener-
ate a large number of feasible routes and then use a heuristic to select the set
of minimum cost routes. After a set covering solution is obtained from the
heuristic, a set partitioning solution can be constructed by removing multiple
covered customers from all but one route. Effective heuristic approaches for

58

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

the set covering problem (SCP) based on Lagrangian relaxation have been
proposed in the literature: From the quite simple approaches of Beasley [3]
and Haddadi [20] to the more sophisticated algorithms of Ceria et al. [11]
and Carpara et al. [10] for solving large scale set covering problems arising
from crew scheduling at the Italian railways.

A set covering problem formulation for the VRPTW is presented below:

min
∑

r∈R

cr · yr (6.1)

s.t.
∑

r∈Ri

yr ≥ 1 ∀i ∈ I (6.2)

yr ∈ {0, 1} ∀r ∈ R (6.3)

where R is the set of columns (feasible routes), I is the set of rows (customers)
and Ri is the set of columns covering row i. The binary variable yr indicates
whether column r is in the solution or not. The advantage of such formulation
is that it is generic and can be applied to the different problems, as all the
problem specific constraints are ’hidden’ in the route generation phase.

The VRPTWSTL considered in this thesis is further complicated by different
vehicle types and the fact that there is a limited number of vehicles of each
type. Thus, the SCP formulation from above has to be extended to ensure
that the number of available vehicles is not exceeded in the final solution.
Adding these extra constraints lead to a mixed set covering/packing model
formulation for the VRPTWSTL – equations (6.4)–(6.7) below.

min
∑

r∈R

cr · yr (6.4)

s.t.
∑

r∈Ri

yr ≥ 1 ∀i ∈ I1 (6.5)

∑

r∈Ri

yr ≤ mi ∀i ∈ I2 (6.6)

yr ∈ {0, 1} ∀r ∈ R (6.7)

The set of rows I1 = {0, . . . n−1} corresponds to the set of customers N . For
each vehicle type an extra row is added to the problem. The set of these rows
is then denoted I2. The number of available vehicles of each type is denoted
mi, and there are L different vehicle types. Each route in R is a feasible
route with respect to all constraints of the original problem, i.e. equations
(3.9) –(3.17) of the model presented in section 3.1.

59

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

The objective (6.4) is to minimize the total route cost. The set covering
constraints (6.5) ensure that each customer is covered at least once in the final
solution, whereas the set packing constraints (6.6) ensure that the number
of available vehicles is not exceeded in the final solution. Finally, constraints
(6.7) impose binary restrictions on the decision variables.

To illustrate the problem, consider the example with 3 vehicle types and
8 customers described in the previous section. After the route generation
phase, i.e. the insertion heuristic and subsequent improvement procedure,
the following routes are constructed:

Vehicle type Customers in the route
2 2–3–4
1 1–7
3 5–6–8
1 1–8
3 5–6–7

Table 6.1: Set of routes constructed during the route generation phase.

As it can be seen from the table, the number of routes after the route gener-
ation phase is 5, while only 3 vehicles are available. This is due to the fact
that both old and new improved routes are stored in the pool of routes while
performing the improvement procedure, as mentioned in section 5.4.

Based on these routes, the constraint matrix for the mixed set covering/packing
problem (SCPP) can be presented as follows:

Columns, r

Rows, i 0 1 2 3 4
c1 0 1 1 ≥ 1
c2 1 1 ≥ 1
c3 2 1 ≥ 1
c4 3 1 ≥ 1
c5 4 1 1 ≥ 1
c6 5 1 1 ≥ 1
c7 6 1 1 ≥ 1
c8 7 1 1 ≥ 1
vt1 8 1 1 ≤ 1
vt2 9 1 ≤ 1
vt3 10 1 1 ≤ 1

Table 6.2: The constraint matrix for the SCPP.

60

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

The three last rows correspond to the set packing constraints (6.6) in the
model. There is one row for each vehicle type and for each column (route)
there is only a single 1 entry in one of these rows depending on the type of
the vehicle driving the route.

The data for the problem considered in this thesis includes 500 customers
and 3 vehicles types, see chapter 4 for the details. Thus, the number of
rows in the constraint matrix for this problem is 503: 500 set covering rows
corresponding to the customers and 3 set packing rows, one for each vehicle
type. The number of columns in the matrix is equal to the number of routes
produced by the route generation phase.

In the next section the approach applied in this thesis to solve SCPP is
described. The general framework is based on the Lagrangian algorithm
designed by Beasley [3]. Some of the ideas proposed in Fisher et al. [16] and
Carpara et al. [10] are used in the primal heuristic for generating feasible
solutions and calculating upper bounds.

6.2 A Lagrangian-based Heuristic

The general framework of the solution approach can shortly be described as
follows:

a. Generate a lower bound for the SCPP via Lagrangian relaxation

b. Use a primal heuristic to generate a feasible solution and an upper
bound for the SCPP

c. Attempt to maximize the lower bound via subgradient optimization

The algorithm terminates if either an optimal (or near-optimal) solution to
the problem is found or by another stopping criterion – e.g. the number of
subgradient iterations. In the following, the three major components of the
Lagrangian heuristic are discussed.

6.2.1 Lower bound generation

The Lagrangian relaxation of the set covering/packing problem described
above is discussed in the following.

61

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

Both types of constraints are chosen for relaxation. In order to bring them
into objective function Lagrangian multipliers are attached to each con-
straint:

λi – for the set covering constraints, λi ≥ 0, ∀i ∈ I1

µi – for the set partitioning constraints, µi ≤ 0, ∀i ∈ I2

The Lagrangian lower-bound program (LLBP) is given by

min
∑

r∈R

cr · yr +
∑

i∈I1

λi · (1 −
∑

r∈Ri

yr) +
∑

i∈I2

µi · (mi −
∑

r∈Ri

yr) (6.8)

s.t. yr ∈ {0, 1}, ∀r ∈ R (6.9)

i.e.

min
∑

r∈R

(cr −
∑

i∈I1

λi −
∑

i∈I2

µi · mi) · yr +
∑

i∈I1

λi +
∑

i∈I2

µl · mi (6.10)

s.t. yr ∈ {0, 1}, ∀r ∈ R (6.11)

Let Cr be defined as Cr = cr −
∑

i∈I1 λi −
∑

i∈I2 µi · mi. The LLBP then
becomes

min
∑

r∈R

Cr · yr +
∑

i∈I1

λi +
∑

i∈I2

µi · mi (6.12)

s.t. yr ∈ {0, 1}, ∀r ∈ R (6.13)

Based on the formulation (6.12)–(6.13), the solution to the LLBP can be
found by inspection. Let Yr denote the solution values of yr. Then

Yr =

{
1 , if Cr ≤ 0
0 , otherwise

(6.14)

and the solution value of the LLBP is given by:

ZLB =
∑

r∈R

Cr · Yr +
∑

i∈I1

λi +
∑

i∈I2

µi · mi (6.15)

The solution value of the LLBP, ZLB , is a lower bound on the optimal solution
to the original problem SCPP. Clearly, one is interested in finding a lower
bound that is as close as possible to the optimal integer solution. This
problem is called the Lagrangian dual problem and involves finding multipliers
such that

max
λ≥0
µ≤0

{
min

∑

r∈R

Cr · yr +
∑

i∈I1

λi +
∑

i∈I2

µi · mi

s.t. yr ∈ {0, 1}, ∀r ∈ R

}

62

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

To find the initial values of the Lagrangian multipliers, a property of the
SCPP is exploited. As the solution to the LLBP for all possible values of the
Lagrangian multipliers is unchanged by replacing the integrality constraint
yr ∈ {0, 1} by its linear relaxation 0 ≤ yr ≤ 1, the Lagrangian relaxation
of the SCPP is said to have the integrality property. Due to the integrality
property of SCPP the following holds: Any optimal solution u∗ to the dual of
the Linear Programming (LP) relaxation of SCPP is also an optimal solution
to the Lagrangian lower-bound program [4].

The dual problem of the LP relaxation of the SCPP is given by:

max
∑

i∈I1

ui +
∑

i∈I2

mi · ui (6.16)

s.t.
∑

i∈Ir

ui ≤ cr ∀r ∈ R (6.17)

ui ≥ 0 ∀i ∈ I1 (6.18)

ui ≤ 0 ∀i ∈ I2 (6.19)

In the above model I is the set of all matrix rows, I = I1 ∪ I2. The set Ir is
then defined as the set of rows covered by column r.

Two approaches for solving the dual problem are implemented and tested in
this thesis (for more details see appendix C):

- The dual greedy heuristic proposed by Fisher and Kedia [16] is used to
generate a feasible solution to the problem

- The optimization package COIN is used to solve the problem to opti-
mality

For large scale instances the second approach can be time consuming, but
as the problem considered in this thesis is of limited size, COIN is able to
find an optimal solution in reasonable time. On the other hand, the problem
size is sufficiently large to note the difference in quality of solutions pro-
duced by these two approaches. Tests performed during the implementation
of both approaches showed that the performance of the Lagrangian heuristic
was better when using the solution obtained by COIN as the initial values
for the Lagrangian multipliers rather than the solution obtained from the
dual heuristic. This is not surprising as solving the dual problem to opti-
mality leads to a better lower bound compared to the heuristic approach.
Furthermore, in some cases the lower bound obtained by COIN is equal to

63

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

the optimal solution value of the original integer problem, i.e. no duality gap
exists between the original and the LP dual problem.

In the final implementation the second approach is used to find the initial
values of the Lagrangian multipliers. The first |I1| entries of the optimal
solution vector obtained from COIN correspond to the multipliers of the set
covering constraints, λi, for all i ∈ I1. The last |I2| entries of the solution
vector are the multipliers for the set packing constraints, µi, for all i ∈ I2.
Based on the multiplier values, the Lagrangian costs Cr are computed, the
solution to the LLBP is determined according to the rule in (6.14), and the
lower bound is calculated as in (6.15).

Let Zmax represent the maximum lower bound found. Initially, Zmax is set to
−∞ and then updated in each iteration of the Lagrangian heuristic according
to the following rule: Zmax = max(Zmax, ZLB).

6.2.2 Primal heuristic

The purpose of the primal heuristic is to construct a feasible solution to the
problem and to compute the upper bound on the value of the optimal so-
lution. In the algorithm described by Beasley [3], a feasible solution to the
problem can be constructed by modifying the solution of the LLBP. How-
ever, due to the set packing constraints another approach inspired by the
work of Fisher and Kedia [16] is used in this thesis. The problem considered
by Fisher et al. is a mixed set covering/partitioning problem, but in their pri-
mal heuristic the partitioning constraints are treated as packing constraints.
The main difference and challenge of the problem considered in this thesis
compared to the problem in Fisher et al. is that the right hand side of the
packing constraints can be any positive integer, and not only 1.

The primal heuristic starts by setting yr to 0 for all r ∈ R. In each iteration yr

for a selected column r is incremented to 1 to satisfy the covering constraints
while keeping

∑

r∈Ri
yr ≤ mi for all i ∈ I2. Given the current partial solution

y, the following is defined:

U(y) set of uncovered rows, U(y) = {i ∈ I :
∑

r∈Ri
yr = 0}

S(y) set of already covered rows, S = I \ U(y).
Ir(y) set of rows covered by column r and not covered in the solution yet,

Ir(y) = Ir ∩ U(y)
cvri number of times row i is covered in the solution, for all i ∈ I2

J(y) set of columns that can feasibly be selected into solution,
J(y) = {r ∈ R : cvrIr∩I2 + 1 ≤ mIr∩I2}

64

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

In addition to the above notation let F be the set of solution columns selected
by the primal heuristic and ZUB be the value of the best feasible solution
found so far. ZUB is the upper bound on the value of the optimal solution
to the original problem. Initially ZUB = ∞, but the value is updated each
time the primal heuristic is applied to the problem.

A pseudocode for the primal heuristic is shown in algorithm 5. The following
pre- and post-processing procedures are applied in the primal heuristic:

- If there are any rows covered by only one column, these columns are
included in the final solution before any other columns.

- After the final solution has been constructed, it is checked for redundant
columns. A column is redundant if the solution obtained by removing
the column is still a feasible solution for the SCPP.

Algorithm 5 Pseudocode for the primal heuristic.

1: U(y) = I
2: S(y) = ∅
3: cvri = 0, ∀i ∈ I2

4: J(y) = R
5: F = ∅
6: for ∀i ∈ {i ∈ I : |Ri| = 1} do
7: y∗

r = 1, J(y) = J(y) \ {r∗} and cvrIr∩I2 = cvrIr∩I2 + 1
8: Update sets U(y), S(y) and J(y)
9: end for

10: while U(y) 6= ∅ or J(y) 6= ∅ do
11: Select the best column r∗ according to some rule
12: yr = 1, F = F ∪ {r∗} and cvrIr∩I2 = cvrIr∩I2 + 1
13: Update sets U(y), S(y) and J(y)
14: end while
15: remove redundant columns from the solution F
16: ZUB = min(ZUB ,

∑

r∈F cr)

The key step of the primal heuristic is to select the best column among all
the other columns to add to the solution. Several different approaches for
selecting columns have been proposed in the literature. Some of them just
choose a column with the lowest cost cr or with the lowest cost per covered
row cr

|Ir|
. The most successful of these methods are the ones taking into

account the dual information associated with the still uncovered rows [10].

65

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

Different rules implemented and tested in this thesis are discussed below:

a) Fisher and Kedia [16] suggest first choosing an uncovered row i∗ ∈
U(y) to maximize ui · |Ri|. No further explanation is presented for
this criterion. After some row i∗ has been chosen, one of the columns
covering that row will be selected into the solution. The best column
is determined as follows:

r∗ = argmin
r∈Ri∗∩J(y)

(cr −
∑

i∈Ir(y) ui)

|Ir(y)|

b) Carpara, Fischetti and Toth [10] use a similar approach, except that
any column r ∈ J(y) can be selected as the next solution column, i.e.
they do not restrict the search to a set of columns covering only one
selected row.

Let γr be defined as follows:

γr =
(cr −

∑

i∈Ir(y) ui)

|Ir(y)|

The cost σr for each column is then calculated as

σr =

{ γr

|Ir(y)|
, ifγr > 0

γr · |Ir(y)| , otherwise

c) The most critical row i∗ is chosen first, i.e. the row covered by the least
number of columns. Afterwards a column is chosen according to rule
b).

d) The columns are selected according to rule a) but without choosing a
row first.

All the implemented rules give priority to the columns having low cost and
covering a large number of uncovered rows.

It is important to keep in mind that if the primal heuristic terminates because
J(y) = ∅, the obtained solution may not be feasible, i.e. some rows are still
left uncovered. This proved to be an issue for the problem considered in
this thesis. Computational experiments showed especially poor performance
of rule a). Applying this rule leads to selecting a row with no more feasible
columns to choose from already in the early iterations of the primal heuristic.

66

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

In fact, none of the above rules could produce a feasible solution for the
problem considered in this case. Further investigations revealed the following
two issues which both stemmed from the route construction phase of the
solution approach.

The routes generated during the route construction phase proved to be quite
similar. Two routes are considered similar if they have a prespecified number
of customers in common. For the problem considered in this thesis it was
checked how many routes obtained from the route generation phase had at
least 3 customers in common (the average route length was 8 customers). It
was found that 81% of all generated routes had at least one similar route,
and 31.5% had at least 3 similar routes. Thus, choosing a new solution
column quite often implied an overlap, i.e. some of the rows covered by the
column were already covered by other columns in the solution. Such overlaps
are allowed according to the set covering constraints, i.e. each row can be
covered more than once in the final solution. However, an overlap can also be
interpreted as an unnecessary use of the vehicle capacity. As the number of
vehicles is limited for the problem considered here, a large amount of overlap
leads to lack of capacity for covering the rest of the rows.

Another issue arises if a customer i′ is only covered by the routes executed
by vehicles of only one type. As there is a limited number of vehicles of each
type, this represents a problem. Assume that during the iteration process
of primal heuristic all mi columns having an entry of 1 in the row i ∈ I2

are selected and none of them covers the row corresponding to the customer
i′. Then row i′ can not be covered in the final solution, as all the columns
covering i′ have been marked as infeasible for selection due to the set packing
constraints.

To avoid the first problem the following approach is applied when choosing
the columns: An upper bound on the overlap that can be allowed for the
column to be selected is defined. If the column found by applying one of
the above rules has an overlap greater than the allowed value, the algorithm
tries to find another column to select. The selection rule is applied to the
rest of the columns until a column with none or less than the allowed overlap
is found. Ties are broken to maximize the number of new covered rows, i.e.
|Ir(y)|. If no columns satisfying these conditions can be found, a column
with the least amount of overlap is chosen.

To solve the problem with the customers covered by only one or several
but not all vehicle types, the following extensions are introduced in the route
construction phase: After a set of routes for all available vehicles is generated,
a list of uncovered customers is constructed for each vehicle type. A set of

67

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

extra routes covering the customers in these lists is then constructed for each
vehicle type and added to the pool of routes.

Furthermore, the following iterative procedure was developed to produce
even more routes: For each vehicle a number of routes equal to the number
of customers was initialized, i.e. one route for each customer. In the next
iteration, n′ customers are considered for insertion at the last position of each
route. These customers are the nearest neighbours of the last customer of
a route. The routes constructed by choosing the nearest neighbour as the
next customer in the route are expected to be of good quality with respect
to the objective of the problem considered in this case, i.e. minimizing the
travel distance. In the current implementation n′ is set to 2. If both nearest
neighbours can feasibly be inserted, the original route is transformed into
two new routes. If only one of the customers can be inserted, the original
route is added to the final pool of routes, and the new transformed route
becomes an original route for the next iterations. The procedure is repeated
until no more customers can be inserted into the routes.

The drawback of this approach was that the number of routes produced
was too large to handle in reasonable time, especially when constructing
the constraint matrix for COIN to compute the initial values for the mul-
tipliers. Therefore, the approach was modified in the following way: The
LP-relaxation of the SCPP with the columns produced only by the route
generation phase was solved using COIN. The obtained fractional solution
was examined in order to find out which customer sequences were the most
common for the solution and therefore had the potential to also be in the
integer optimal solution for the problem. For each customer, information
about all its successors was stored and used when constructing the addi-
tional routes. A nearest neighbour of each customer was only considered for
insertion if it was among the successors of that customer in the LP-solution.

Technically, a situation where some of the customers can only be served
by the vehicles of one type is possible, e.g. due to the incompatibility of
the time windows of these customers and the availability windows for the
vehicles. To ensure that such customers are covered in the final solution,
the pre-processing procedure is modified in the following way: If a row is
covered only by columns of the same type, the best column to cover this row
is chosen and included in the solution. Columns are said to be of the same
type if they have an entry of 1 in the same set packing row i ∈ I2.

68

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

6.2.3 Subgradient optimization

Each time a feasible solution is obtained from the primal heuristic, the value
of ZUB is updated and compared to value of the maximum lower bound Zmax.

If there is a gap between these values, the algorithm will try to improve
the lower bound via subgradient optimization. Subgradient optimization is a
procedure which from a set of initial Lagrangian multipliers generates a set
of new multipliers in a systematic way.

Before calculating new values for the multipliers, a problem reduction pro-
cedure is performed based on the values of the Lagrangian cost Cr and the
solution to the LLBP obtained in the lower bound generation phase.

Let Pr denote the lower bound when column r is forced to be in the solution.
Initially, Pr is set to cr for each column r ∈ R. If a particular column r′

is forced to be in the optimal solution, the resulting lower bound becomes
ZLB + Cr′ if Yr′ = 0. The lower bound remains unchanged if column r′ is
already in the solution to the LLBP, i.e. if Yr′ = 1. Hence, Pr for all r ∈ R
can be updated using:

Pr =

{
max(Pr, ZLB + Cr) , if Yr = 0
max(Pr, ZLB) , otherwise

All the columns with Pr > ZUB can be removed from the problem, since the
lower bound corresponding to an optimal solution containing these columns
is greater than the upper bound. Thus, these columns cannot be in the
improved feasible solution. To remove a column from the problem its cost
cr is set from its original value to infinity. In this way the column will not
appear in the solution to the LLBP, nor in the solution generated by the
primal heuristic.

After the problem reduction procedure has been performed, new values for
the Lagrangian multipliers are calculated. First, subgradients Gi are com-
puted for each row using

Gi = 1 −
∑

r∈Ri

Yr, ∀i ∈ I1 (6.20)

Gi = mi −
∑

r∈Ri

Yr, ∀i ∈ I2 (6.21)

Based on the findings in the work of Beasley [3], the subgradients are adjusted
according to the following rule:

Gi = 0, if λi = 0 and Gi < 0, ∀i ∈ I1 (6.22)

Gi = 0, if µi = 0 and Gi > 0, ∀i ∈ I2 (6.23)

69

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

The step size T is defined by

T =
θ(1.05ZUB − ZLB)

∑

i∈I(Gi)2
(6.24)

where θ = 2 initially. If Zmax has not increased during the last K iterations
of the subgradient procedure, the initial value of θ is halved. Due to the lack
of time no experiments are conducted to find the best value of K for the
problem under consideration. Both the strategy for reducing θ and the value
of K = 30 are taken from the original Lagrangian-based heuristic designed
by Beasley [3].

The reason for adjusting the subgradients is that under conditions (6.22)–
(6.23) the corresponding multipliers λ or µ will not be altered, thus there is
no reason to include the term G2

i in the calculation of the step size T .

The new values of the Lagrangian multipliers are calculated as follows

λi = max(0, λi + TGi) ∀i ∈ I1 (6.25)

µi = min(0, µi + TGi) ∀i ∈ I2 (6.26)

and the problem is resolved.

The subgradient optimization procedure is applied to the problem until one
of the stopping criteria is met.

- If ZUB = Zmax the algorithm is terminated as the optimal solution
has been found (the optimal solution is F with the objective value of
ZUB = Zmax).

- If
∑

i∈I G2
i = 0, then the suitable step size T cannot be determined and

the procedure is terminated. In that case, if the current LLBP solution
is feasible for the original problem, then it is the optimal solution for the
original problem. Otherwise, value of Zmax presents the lower bound
on the optimal solution to the original problem.

- The subgradient procedure is terminated if the value of θ becomes too
small, i.e. a significant number of iterations have been performed. In
the implemented algorithm, the condition of θ ≤ 0.0005 proposed by
Beasley is used as one of the stopping criteria.

70

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

6.3 The Lagrangian Heuristic – Further Ex-

tensions

The tests performed during the implementation of the Lagrangian heuristic
described above showed that the primal heuristic was still unable to produce
a feasible solution. This caused the whole algorithm to fail already in the
first iteration. The primal heuristic failed in spite of constructing the addi-
tional routes and trying to minimize the overlap with the other columns in
the solution when selecting a new column. The number of uncovered rows
after the primal heuristic finished was still surprisingly large. Among the
rules described in section 6.2.2, the best performing ones were rule b) and
c) with an average of 101 and 64 uncovered rows (of 503). In fact, applying
a deterministic rule, in which the column with the highest number of yet
uncovered rows was chosen as the best one, yielded the best result with 34
uncovered rows. Clearly, this rule cannot be applied in the final implementa-
tion, as it is independent of both the cost of the columns and the multiplier
values and will produce the same result in each iteration.

Based on the above, further action was required to solve the infeasibility
issue. It was noticed during the tests that the primal heuristic often chose
columns with only 2 or 3 covered rows, for example if the columns cover-
ing a larger number of rows had an overlap greater that the allowed value.
Choosing the columns with a small number of covered rows can also be con-
sidered as unnecessary use of capacity. Thus, a situation can occur where a
large number of rows are still uncovered and and where there are not enough
columns to cover them. The solution to this problem can be to produce
the additional routes ’on the fly’ and then restarting the primal heuristic.
This approach requires that a problematic situation can be detected during
the primal heuristic, i.e. the situation leading to an infeasible solution. In
that case the primal heuristic is terminated, and the additional routes are
generated only for the customers corresponding to uncovered rows and only
using the vehicles which are still available. The additional routes are pro-
duced by the insertion heuristic with embedded improvement followed by the
post-insertion procedure.

The drawback of this approach is that the overall performance of the La-
grangian heuristic becomes much slower. Typically, the additional routes
have to be produced at least once in each iteration. The time it takes to
produce the routes is highly dependent on how many customers are yet un-
covered and on how many and which type of vehicles are left available. In
the worst case the unserviced customers are the those which are difficult to

71

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

serve by the remaining vehicles. This can lead to the post-insertion proce-
dure being repeated a number of times and, as discussed in section 5.2.2, the
running time of the post-insertion procedure is O(n5) in the worst case.

Several conditions were tested as a termination criterion for the primal heuris-
tic. The conditions were based on the number of new covered rows that a
selected column would bring into the solution compared to the amount of
overlap with the other solution columns. The primal heuristic was stopped if
the number of the new covered rows was less than nrnew, and at the same time
the value of overlap was greater than the allowed value ovlall. Different values
were tried for these two parameters: nrnew = {3, 4, 5} and ovlall = {0, 1, 2}.
A condition where the primal heuristic was stopped if the value of overlap
exceeded the allowed limit was also tested. The best result was obtained
for the most strict condition forbidding overlaps, i.e. where the set cover-
ing constraints of the problem were treated as set partitioning constraints.
The primal heuristic was terminated as soon as the selected column had at
least one common row with the columns already in the solution. Further-
more, it was noticed that the best performing rule for selecting new columns
was the one proposed by Carpara, Fischetti and Toth – rule b) described in
section 6.2.2. This rule is therefore used in the final implementation of the
Lagrangian heuristic.

In algorithm 6 a pseudocode for the final version of the Lagrangian heuristic
is presented.

It should be noted that each time new columns are added to the constraint
matrix, the initial problem is changed. In some cases the optimal solution
to the new problem will be the same as for the initial problem. However,
it is reasonable to assume that after a substantial number of columns has
been added to the constraint matrix, the problem will change so much that
a new optimal solution can now be found. This situation occurs e.g. if the
primal heuristic returns a feasible solution with the objective value ZUB less
than the value of Zmax (the maximum value of the lower bound found so
far). However, another optimal solution can exist even if the new upper
bound is larger than Zmax. Thus, the following strategy is applied in this
thesis: Let Zmin denote the value of the lowest upper bound found so far. In
each iteration the objective value ZUB of the solution returned by the primal
heuristic is compared to Zmin. If ZUB < Zmin, there is a possibility that a
new optimal solution to the problem can now be found. In this case, a new
set of multipliers is generated by COIN based on the new constraint matrix.
A new solution to the LLBP is then constructed, and the values of Zmax and
Zmin are updated – lines 14-19 of the pseudocode. It should be noted, that
since a new set of multipliers is generated, the multipliers will not be

72

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

Algorithm 6 Pseudocode for the Lagrangian heuristic. ite is the current iteration,
number max ite denotes the upper limit on the number of performed iterations. status is
a parameter indicating by which stopping criterion the algorithm is terminated. feasible

is a parameter indicating whether a feasible solution is found by the primal heuristic.

1: R – set of initial columns
2: Rite – set of columns in iteration ite

3: Zmax = ZLB = −∞, Zmin = ZUB = ∞ and θ = 2
4: The initial multipliers are computed using COIN
5: stop = false, ite = 0 and status = −1
6: while stop 6= true & ite < max ite do

7: Solve LLBP with the current set of multipliers and compute ZLB

8: Zmax = max(Zmax, ZLB)
9: feasible = false

10: while feasible 6= true do

11: Run the primal heuristic
12: if feasible solution is returned then

13: feasible=true
14: if ZUB < Zmin then

15: Zmin = ZUB

16: Compute new values for the multipliers based on Rite

17: Re-solve LLBP and set Zmax = ZLB

18: Pr = cr for all r ∈ Rite

19: end if

20: else

21: if all vehicles are used in the returned solution then

22: ZUB = ∞ and feasible = true

23: else

24: Construct extra routes for the available vehicles and the remaining customers
25: end if

26: end if

27: end while

28: if Zmax = ZUB then

29: status = 0
30: stop = true

31: else

32: Update P -cost and fix columns to 0
33: Calculate subgradients Gi for all i ∈ I

34: if
∑

i∈I G2
i = 0 then

35: stop = true and status = 1
36: else

37: if θ ≤ 0.005 then

38: stop = true and status = 2
39: else

40: Calculate the step size T and update the multipliers
41: end if

42: end if

43: end if

44: end while

73

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

re-computed again in this iteration, i.e. updating procedure in line 40 of the
pseudocode will not be performed.

If the primal heuristic returns an infeasible solution, it is accepted but the
upper bound is set to infinity – lines 20-22 of the pseudocode.

6.4 Summary

In this chapter the second phase of the solution approach used in this thesis
has been described. An overview over both phases of the solution approach
is given in figure 6.1.

Insertion with embedded
improvement

Post−insertion

Route improvement

Data permutation

no

yes

repeat ?
yes

RG−phase

no

Solve LLBP

Primal heuristic

terminated in
process ?

Extra RG

all routed ?

no

yes

no

stop ? yes

LH−phase

Subgradient optimization

Figure 6.1: The solution approach – overview. RG is the route generation phase. LH

is the Lagrangian heuristic phase.

74

CHAPTER 6. A LAGRANGIAN-BASED HEURISTIC FOR THE SET
COVERING/PACKING PROBLEM FORMULATION

The general framework of the Lagrangian heuristic originally proposed by
Beasley was modified to take the set packing constraints into account. Dur-
ing the implementation of the heuristic, it was tested both on the example
described in the beginning the chapter and on the problem considered in this
thesis.

The Lagrangian heuristic was able to find the optimal solution for the exam-
ple problem introduced in the beginning of the chapter. This is not surpris-
ing due to the size of the problem in the example. However, for the problem
considered in this thesis the Lagrangian heuristic failed to produce feasible
solutions. This led to the further extensions of the heuristic, i.e. generation
of new columns (routes) ’on the fly’. To investigate the performance of the
Lagrangian heuristic a number of test problems were constructed based on
the data set provided by Transvision A/S. In the next chapter the approach
used to generate the test problems is described. Chapter 8 presents the re-
sults obtained by the Lagrangian heuristic both for the generated data sets
and for the problem considered in this thesis.

75

Chapter 7

Data generation

The problem data provided by Transvision A/S and described in chapter 4
does not include any information about the master plans or variations in the
customer demand. In the first two sections of this chapter the approach used
to generate master plans and customer demand variations will be described.
In the last section the data sets generated for the test purposes are briefly
introduced. These data sets are used to evaluate the performance of the
Lagrangian heuristic described in the previous chapter.

7.1 Master Plans

During the test of the improvement strategies described in section 5.3, a num-
ber of different solutions to the problem has been generated. The best found
solution used 59 vehicles and had the total cost of 21245.2 minutes. The so-
lution was produced using re-insertion moves in the embedded improvement
and swap moves after the insertion procedure.

In the following the routes of the best solution found will be referred to as
master plans. In figures 7.1-7.3 the master plans are displayed.

76

CHAPTER 7. DATA GENERATION

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) Routes 1-10.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(b) Routes 11-20.

Figure 7.1: Master plans 1-20.

77

CHAPTER 7. DATA GENERATION

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) Routes 21-30.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(b) Routes 31-40.

Figure 7.2: Master plans 21-40.

78

CHAPTER 7. DATA GENERATION

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) Routes 41-50.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(b) Routes 51-59.

Figure 7.3: Master plans 41-59.

79

CHAPTER 7. DATA GENERATION

7.2 Demand Variation

The demand changes considered in this project are defined as cancellation
of deliveries to some customers. Based on the available information about
customer demand, a number of new data sets are generated.

The data sets are generated by randomly choosing a certain number of cus-
tomers and setting their demand to 0, i.e. cancelling the deliveries to these
customers. Several scenarios, i.e. variations in demand of different scale, are
considered. The number of customers removed from the original data set in
the different scenarios corresponds to 3, 5, 7, 10, 12, 15 and 20% of the total
number of customers. For each scenario, 5 different data sets were generated.

In table 7.1 the demand variation is summarized as follows: For each scenario
the number of the customers who cancelled their deliveries is shown. The
last column of the table indicates the number of master plans affected by
demand variation. For example, in the data sets generated for the demand
variation of 3%, between 12 and 14 master plans will be affected by the
cancelled deliveries.

Demand No. of No. of

change cancelled affected

% deliveries routes

3 15 12 – 14
5 25 19 – 22
7 35 25 – 28
10 50 32 – 40
12 60 38 – 41
15 75 41 – 46
20 100 48 – 51

Table 7.1: Demand variation overview.

New solutions are then constructed for each data set, and the quality of
solutions both in terms of total cost and computational time is discussed.
The presentation of the obtained results can be found in chapter 8.

7.3 Test Data Sets for the Lagrangian Heuris-

tic

The problem described the data provided by Transvision A/S proved to be
difficult to solve by the developed Lagrangian heuristic. The key issue was

80

CHAPTER 7. DATA GENERATION

constructing a feasible solution to the problem using the primal heuristic.

For test purposes a number of smaller data sets are constructed based on the
original problem. The aim of the test is to find out whether the performance
of the primal heuristic is dependent on the size of the problem.

The constructed data sets are divided into 3 classes:

- micro – 3 vehicles of each type and 60 customers

- small – 5 vehicles of each type and 125 customers

- medium – 10 vehicles of each type and 250 customers

The ratio between the number of customers and the number of vehicles in the
original problem is maintained in the new data sets. For each class, 3 problem
instances are generated by randomly selecting a number of customers from
the original data set.

In appendix E the geographical distribution of the customers together with
the information about the customers time windows is presented for each
generated data set. In the rest of the report the problem instances of different
types are denoted in the following way: M1–M3, S1–S3 and Md1–Md3 for
the problems of type micro, small and medium, respectively.

81

Chapter 8

Computational Results

In this chapter the computational experiments conducted during the thesis
are presented and discussed. The developed solution approach is programmed
in C++, and all the experiments are performed on a Sun Fire 3800 with a
1200 MHz Sun Sparc processor.

8.1 Test of The Lagrangian Heuristic

The Lagrangian heuristic is tested on both the generated data sets described
in section 7.3 and on the problem presented in chapter 4.

The following strategies are applied to each problem when executing the
route generation phase:

a) Customers are seeded according to decreasing distance from the depot.
The route generation phase is executed 3 times.

b) Customers are seeded according to decreasing distance from the depot.
At the end of the route generation phase a list of unserviced customers
is constructed for each vehicle type. Additional routes are generated
for the customers in these lists and added to the pool of routes. It
should be noted, that for each vehicle type the constructed routes only
include the customers from the corresponding list, and not any other
customers. The route generation phase is executed 3 times.

c) The procedure described by a) is performed twice. The second time
the customers are seeded according to a different criterion, i.e. the next
customer chosen for the insertion is the one with the earliest allowed
starting time.

82

CHAPTER 8. COMPUTATIONAL RESULTS

d) The procedure described by b) is performed twice. The second time the
customers are seeded according to a criterion where the next customer
chosen for the insertion is the one with the earliest allowed starting
time.

e) The procedure described under c) is performed first. Afterwards the
route generation phase is executed twice for each vehicle type and all
the customers. The produced routes are added to the pool of routes.

f) This strategy is similar to the one described by e) except that the
procedure c) is replaced by d).

In each execution of the route generation phase the following is performed:
the insertion heuristic with embedded re-insertion moves, the post-insertion
procedure if necessary and the improvement procedure with both re-insertion
and swap moves. Based on the routes obtained from the insertion heuristic
with embedded improvement, the distance data of the original problem is
permutated as described in section 5.4. The number of pairs of customers
P chosen from each route is set to 4. The larger values of P resulted in the
generation of sets of routes with some customers left unserviced in the second
or third execution of the route generation phase.

For each test problem six different SCPP instances were constructed. The
SCPP instances differ by the number of columns in the constraint matrix
which depends on the strategy applied to the route generation phase. It
seems reasonable to assume that a large number of columns in the SCPP
will increase the probability of finding a good solution to the corresponding
routing problem. According to this assumption, strategies d), e) and f)
which all generate larger number of routes compared to the other strategies
are expected to perform best.

Table 8.1 presents a summary of the resulting SCPP instances for each prob-
lem type.

83

CHAPTER 8. COMPUTATIONAL RESULTS

Problem Strategy No. of No. of

type RG rows columns

M1 – M3 a 63 41, 27, 54
M1 – M3 b 63 86, 68, 102
M1 – M3 c 63 89, 88, 116
M1 – M3 d 63 192, 186, 223
M1 – M3 e 63 120, 112, 139
M1 – M3 f 63 219, 204, 240
S1 – S3 a 128 65, 76, 128
S1 – S3 b 128 160, 175, 167
S1 – S3 c 128 164, 193, 180
S1 – S3 d 128 367, 398, 382
S1 – S3 e 128 223, 244, 240
S1 – S3 f 128 420, 446, 437

Md1 – Md3 a 253 159, 142, 120
Md1 – Md3 b 253 329, 328, 288
Md1 – Md3 c 253 401, 338, 318
Md1 – Md3 d 253 763, 725, 674
Md1 – Md3 e 253 513, 448, 417
Md1 – Md3 f 253 866, 826, 768

Table 8.1: Test problem details. RG stands for route generation phase.

Apart from the three stopping criteria described in section 6.2.3, the La-
grangian heuristic is terminated if no columns are added to the problem
after the extra route generation procedure has been performed. This can
happen if no routes can be generated for the remaining uncovered customers
and the available vehicles, or if the generated routes exist in advance and
therefore are not added to the problem. The iteration limit of 100 subgra-
dient iterations is introduced as the last stopping criterion. In the following
the results obtained by the Lagrangian heuristic for the different problem
types are discussed.

8.1.1 Test results for the problem instances of type

micro

In table 8.2 the results obtained by the Lagrangian heuristic for the problem
instances of type micro are presented.

Because of the small size of the problems, it was possible to solve the gen-
erated SCPP instances to optimality using COIN. The values of the optimal
solutions for both the initial SCPP (IP) and the final SCPP (FP) are dis-
played in column 2 and 3 of the table. The values of the best solutions found

84

CHAPTER 8. COMPUTATIONAL RESULTS

Solution value
Optimal Optimal Best Max Extra No. of
for IP for FP found LB cols. subgr. Time,
Z∗

init Z∗

f ZUB Zmax ExtC ite. sec. Status

M1.a 2867.14 2867.14 2867.14 2867.14 – 1 0.01
M1.b 2867.14 2867.14 2909.25 2848.07 102 16 3.7 zc
M1.c 2867.14 2867.14 2867.14 2867.14 65 12 1.79
M1.d 2867.14 2856.75 2870.16 2840.71 200 52 12.69 zc
M1.e 2867.14 2867.14 3018.07 2858.49 57 14 3.13 zc
M1.f 2867.14 2799.56 2953.53 2809.15 57 12 2.63 zc
M2.a 3036.3 3036.3 3036.30 3036.30 – 1 0.01
M2.b 3036.3 3015.14 3015.14 3015.14 12 2 0.43
M2.c 3036.30 3009.04 3009.04 3009.04 55 11 1.29
M2.d 3036.30 3036.30 3704.79 2895.48 46 11 2.47 zc
M2.e 3036.30 2997.10 2997.10 2880.39 53 22 6.81 zc
M2.f 3036.30 2981.77 3065.47 28116.44 73 16 3.08 zc
M3.a 2873.94 2873.94 2873.94 2873.94 – 1 0.02
M3.b 2873.94 2759.77 2759.77 2759.77 110 21 4.03
M3.c 2873.94 2873.94 2873.94 2873.94 – 1 0.03
M3.d 2873.94 2786.8 2809.62 2738.38 227 65 17.26 zc
M3.e 2873.94 2732.88 2732.88 2732.88 9 2 0.53
M3.f 2873.94 2873.94 2944.33 2707.36 122 71 16.5 zc

Table 8.2: Results for the problems of type micro. The optimal solutions found by the
Lagrangian heuristic are displayed in bold face. Italic style indicates that the obtained
solution is better than the optimal solution to the IP, but not optimal for the FP. zc in
the status column indicates that the Lagrangian heuristic was stopped due to zero added
columns.

by the Lagrangian heuristic are shown in column 4 of the table. The number
of columns added to the initial problem during the solution process can be
seen in column 6. Information about the maximum lower bound, the number
of subgradient iterations and the solution time is also included in the table.

Table 8.2 shows that the optimal solution is found for 10 out of 18 SCPP
instances. In 5 cases the optimal solution found by the Lagrangian heuris-
tic is better than the optimal solution to the the initial SCPP due to the
generation of extra columns. Furthermore, in one case a solution found by
the Lagrangian heuristic is better than the optimal solution to the initial
problem, though it is not the optimal solution to the final problem, see the
solution obtained for M3 by applying strategy d).

For problem M1 the best solution is found by applying strategy a) and c) to
the route generation phase. If strategy a) is used the optimal solution is found
already in the first iteration of the Lagrangian heuristic without generating

85

CHAPTER 8. COMPUTATIONAL RESULTS

extra columns. When applying strategy c) 12 iterations are performed, and
65 columns are added to the problem before the optimal solution is found.
Thus, the assumption about the expected performance of different strategies
does not hold in this case.

For M2 the best solution value found is 1.29% better than the value of the
optimal solution to the initial SCPP. The number of subgradient iterations
and the number of added columns are 22 and 53, respectively. The solution
is found by applying strategy e) to the route generation phase. Strategies b)
and c) also produce the optimal solutions better than the optimal solution
to the IP.

For problem M3 the best solution is found by applying strategy e), and the
solution value differs from the optimal solution value to the initial problem
by 4.91%. 2 subgradient iterations are performed and 9 new columns are
added to the problem. A solution better than the optimal solution to the IP
is also found by applying strategy b).

Based on the obtained results, it can be concluded that for the problem
instances of type micro the Lagrangian heuristic is able to find the optimal
solutions to the problems in reasonable time, i.e. within 20 seconds. It is
difficult to select a single strategy which is the best for all three problems,
though applying strategy e) gives the best results for problem M2 and M3.
In the worst case, the solution found by the Lagrangian heuristic is 5%, 18%
and 2.39% worse than the optimal solution for problem M1, M2 and M3,
respectively.

8.1.2 Test results for the problem instances of type

small

In table 8.3 the results obtained by the Lagrangian heuristic for the problem
instances of type small are presented.

According to the table the Lagrangian heuristic found the optimal solution
to 7 out of the 18 SCPP instances. It is quite obvious that a longer time is
required to solve the problems of type small than of type micro, though with
a longest solution time of just above 3 minutes.

For problem S1 the best solution is found by applying strategy f). The
solution is obtained after 63 subgradient iterations, and 320 extra columns
have been added to the problem in the process. The value of this solution
is 9.34% better than the optimal solution to the initial problem. The worst

86

CHAPTER 8. COMPUTATIONAL RESULTS

solution obtained for S1 lies within 10.03% of the value of the optimal solution
to the problem.

For problem S2 the best solution is 7.99% better than the optimal solution
to the IP and is obtained after 30 subradient iterations. The number of
columns added to the problem is 281, and strategy d) is applied to the route
generation phase. As it can be seen in the table, no solution has been found
by applying strategy e). The Lagrangian heuristic has terminated because
no columns were added to the problem in iteration 2, and no feasible solution
was found in the first iteration.

For problem S3 the best solution is found by applying strategy f). The
number of subradient iterations performed and the number of added columns
are 26 and 147 respectively. The solution value is 3.42% better than the
optimal solution to the initial problem. In the worst case the Lagrangian
heuristic is not able to find a feasible solution to the problem in 100 iterations,
and the algorithm is terminated due to the iteration limit, see the results
when applying strategy d).

As for the problem instances of type micro, no singe strategy can be pointed
out as the best performing one for the problem instances of type small. How-
ever, the best solutions to problems S1 and S3 are found by applying strategy
f) to the route generation phase, which is consistent with the assumption
about the best preforming strategies.

8.1.3 Test results for the problem instances of type
medium

For the problem instances of type medium the limit on the number of subgra-
dient iterations was set to 50 instead of 100. This was necessary due to the
long computation times, e.g. performing 100 iterations for problem Md1.b
took about 25 minutes. At the same time it was noticed that the best solu-
tion returned by the Lagrangian heuristic was found in the early iterations
and was not improved since.

It should also be noted that due to the problem size, computing the optimal
solution for the initial and the final problem by COIN was very time consum-
ing and in some cases impossible. Thus, the objective values for the optimal
solutions are not available for comparison with the solutions found by the
Lagrangian heuristic. Instead, the value of the best feasible solution found
during the route generation phase by the insertion procedure with embedded
improvement is used as a reference value.

87

CHAPTER 8. COMPUTATIONAL RESULTS

Solution value
Optimal Optimal Best Max Extra No. of
for IP for FP found LB cols. subgr. Time,
Z∗

init Z∗

f ZUB Zmax ExtC ite. sec. Status

S1.a 5781.56 5781.56 5884.13 5679.66 297 45 24.99 zc
S1.b 5781.56 5135.15 5135.15 5135.15 9 1 0.39
S1.c 5570.92 5570.92 5731.8 5427.45 671 100 81.36 il
S1.d 5570.92 5570.92 6192.49 5060.35 288 100 144.7 il
S1.e 5570.92 5267.13 5337.98 5214.90 42 4 1.57 zc
S1.f 5570.92 5034.13 5034.13 4927.53 320 63 135.6 zc
S2.a 5608.47 5608.47 5609.9 5608.47 261 53 35.53 zc
S2.b 5608.47 5515.36 5515.36 5432.2 90 13 6.83 zc
S2.c 5608.47 5581.80 5581.80 5569.66 272 25 44.66 zc
S2.d 5608.47 5160.66 5160.66 5160.66 281 30 58.68
S2.e 5608.47 5608.47 – 5300.74 0 2 1.04 zc
S2.f 5608.47 5608.47 5610.86 5190.07 313 31 89.31 zc
S3.a 5771.00 5745.54 5748.52 5745.54 298 55 81.58 zc
S3.b 5771.00 5768.61 5768.61 5418.73 507 100 152.9 il
S3.c 5771.00 5771.00 6093.07 5771 204 37 70.89 zc
S3.d 5771.00 5771.00 – 5383.61 246 100 192.75 il
S3.e 5771.00 5696.42 5767.87 5386.47 641 100 192.57 il
S3.f 5771.00 5573.59 5573.59 5232.46 147 26 84.26 zc

Table 8.3: Results for the problems of type small. The optimal solutions found by the
Lagrangian heuristic are displayed in bold face. Italic style indicates that the obtained
solution is better than the optimal solution to the IP, but not optimal for the FP. zc in
the status column indicates that the Lagrangian heuristic was stopped due to zero added
columns. il in the status column indicates that the Lagrangian heuristic was stopped due
to the iteration limit.

In table 8.4 the results obtained by the Lagrangian heuristic for the problem
instances of type medium are presented.

As it can be seen from the table the performance of the Lagrangian heuristic
can be described as poor for the problems of this type: For 9 problems
instances of 18 the solution returned by the Lagrangian heuristic is worse
than the best solution found in the route generation phase. It is possible that
increasing the iteration limit can give better solutions. However, the time
required to perform 50 iterations is already quite large. Thus, increasing the
iteration limit will lead to longer computation times without guarantee for
finding a better solution.

The optimal solution is only found in one case, i.e. for problem Md2 if strat-
egy c) is applied in the route generation phase. The obtained solution is
1.08% better than the best feasible solution found duering the route genera-
tion phase.

88

CHAPTER 8. COMPUTATIONAL RESULTS

Solution value
Best feasible Best Max Extra No. of

from RG found LB cols. subgr. Time,
Z∗

ins ZUB Zmax ExtC ite. sec. Status
Md1.a 10486.10 10604.00− 10398.90 699 50 188.35 il
Md1.b 10486.10 10421.80 10216.60 1053 50 507.97 il
Md1.c 10486.10 11116.80− 10398.90 1245 50 503.05 il
Md1.d 10486.10 10775.00− 9729.78 1080 50 1299.76 il
Md1.e 10486.10 10270.30 9761.73 1153 50 866.71 il
Md1.f 10486.10 10460.20 9648.55 1044 50 1034.6 il
Md2.a 11112.30 10944.20 10644.10 717 50 120.28 il
Md2.b 11112.30 10967.20 10352.00 990 50 228.55 il
Md2.c 11112.30 10992.20 10992.20 51 1 1.85
Md2.d 11112.30 11958.30− 10064.10 990 50 899.1 il
Md2.e 11112.30 10773.30 10139.10 573 50 109.53 il
Md2.f 11112.30 12097.70− 9728.31 1135 50 1230.79 il
Md3.a 10205.20 11039.00− 10011.90 975 50 341.01 il
Md3.b 10205.20 10064.80 9487.87 573 50 479.12 il
Md3.c 10205.20 10531.40− 10011.90 1222 50 595.94 il
Md3.d 10205.20 10855.50− 9401.40 748 50 516.05 il
Md3.e 10205.20 10176.70 9589.71 101 2 5.83 zc
Md3.f 10205.20 10218.90− 9172.95 768 50 1002.22 il

Table 8.4: Results for the problems of type medium. RG stands for route generation
phase. 10604− means, that the solution value found by the Lagrangian heuristic is worse
than the best feasible solution obtained from the insertion heuristic. zc in the status
column indicates that the Lagrangian heuristic was stopped due to zero added columns.
il in the status column indicates that the Lagrangian heuristic was stopped due to the
iteration limit.

Though there is a general tendency to longer computation times for large
problem instances, the performance of the Lagrangian heuristic is obviously
problem specific: The optimal solution is found in 1.85 seconds for the prob-
lem instance with 253 rows and 338 columns (Md2.c), whereas almost 6
minutes are used to perform 50 iterations for the problem with 235 rows and
120 columns (Md3.a) without finding a good solution to the problem.

The long computation times can be explained by the following two factors:
Firstly, the additional route generation was performed a significant number
of times during the iteration process. For the problems of type medium
the extra route generation was activated at least once in every subgradient
iteration. Secondly, the routing problem defined by the available vehicles
and the remaining unrouted customers after the primal heuristic is stopped
is hard to solve. This is explained in more details in section 6.3.

89

CHAPTER 8. COMPUTATIONAL RESULTS

8.1.4 Test results for the case study problem

In the following table the results obtained by the Lagrangian heuristic for
the problem considered in this thesis will be presented.

Based on the performance of the Lagrangian heuristic on the problem in-
stances of type medium, the iteration limit is also set to 50 for the problem
considered in this thesis.

In table 8.5 an overview of the size of the SCPP instances obtained by use
of different strategies in the route generation phase is given. The same 6
strategies are applied to the route generation phase as for the other test
problems. Furthermore, some of the routes constructed based on the nearest
neighbour principle described in section 6.2.2 are added to the problem. The
added routes are those with lengths of at least 6 customers, 724 routes in all.

Strategy No. of No. of
RG rows columns
a 503 965
b 503 1330
c 503 1377
d 503 2124
e 503 1586
f 503 2322

Table 8.5: Overview over SCPP instances for the problem considered in this thesis. RG

stands for route generation phase.

The results obtained by the Lagrangian heuristic for the problem considered
in this thesis (OP) are displayed in table 8.6. The status column is not
included in the table, as in all cases the Lagrangian heuristic is terminated
due to the iteration limit. The computation time is not reported in the table,
but performing 50 iterations took at least one hour in all cases.

90

CHAPTER 8. COMPUTATIONAL RESULTS

Solution value
Best feasible Best Max Extra No. of

from RG found LB cols. subgr.
Z∗

ins ZUB Zmax ExtC ite.
OP.a 21402.20 22592.90− 20499.40 2238 50
OP.b 21402.20 20631.80 18928.80 2324 50
OP.c 21402.20 21217.50 19758.10 1974 50
OP.d 21402.20 20681.20 18440.70 2240 50
OP.e 21402.20 20027.70 18600.10 2212 50
OP.f 21402.20 20929.30 18122.90 2985 50

Table 8.6: Results for the case study problem. RG stands for route generation phase.
22592.90− means that the solution value found by the Lagrangian heuristic is worse than
the best feasible solution obtained from the insertion heuristic.

As it can be seen from the table, the best result is obtained by applying strat-
egy e) to the route generation phase. The solution found by the Lagrangian
heuristic is 6.4% better than the best solution found by the insertion heuris-
tic. However, the computational effort needed to find that solution is quite
high: 2212 columns are added to the initial problem, and the computation
time is about 70 minutes. A more detailed analysis of the iteration process
showed that, in spite of the extra column generation, the primal heuristic was
unable to find a feasible solution in the first k iterations of the Lagrangian
heuristic. For the different strategies the value of k varied from 4 and up to
15.

It is difficult to point out a single reason for the bad performance of the
Lagrangian heuristic on the problems of large size. A more detalied discussion
of the issues, which need to be investigated further, is given in chapter 9.

Based on the reported results, it can be concluded that the current implemen-
tation of the Lagrangian heuristic cannot always find acceptable solutions for
real life problems in reasonable time.

8.2 Experiments with Master Plans

As mentioned in chapter 1 the current practice in the daily distribution of
products is that master plans are executed without taking the changes in
customer demand into account. It is reasonable to assume that adjusting the
master plans on the day of operation according to the changes in customer
demand would result in a better solution in terms of total costs. In the
following the question of how beneficial such a revision of master plans can

91

CHAPTER 8. COMPUTATIONAL RESULTS

be will be discussed.

The master plans for the problem considered in this thesis are described in
section 7.1. According to the master plans solution, 59 vehicles are used to
service 500 customers. The total cost of this solution is 21245.2 minutes.

In the following, different strategies for adjusting the master plans according
to the demand changes are discussed. The easiest option will be to remove
the customers which have cancelled their deliveries from the master plans.
This strategy requires almost no computation time, and the master plans
are changed by the least possible amount. However, it is reasonable to as-
sume that the savings in the total cost obtained by this method will also be
minimal.

There is a trade-off between the amount of changes in the master plans and
the savings in the total cost of the solution. The main objective of the
routing problem is to minimize the total cost. However, a significant change
in the master plans is not desirable due to reasons such as driver satisfaction.
Frequent changes in the master plans may not be welcomed by drivers who
are used to execute the same routes every day. On the other hand, adjusting
the master plans can also imply shorter working days for the drivers due to
the improved routes.

After the customers with cancelled deliveries have been removed from the
master plans, the total cost of the resulting routes can potentially be reduced
even further by applying the improvement moves described in section 5.3. As
both the re-insertion and the swap move are aimed at changing the routes, a
third type of improvement move is introduced. The within route re-insertion
move works as follows: Each customer of a route is considered for removal
and insertion at another position in the same route. The move is accepted
only if it leads to a reduction in the total cost. As this approach is designed
to preserve the structure of the routes as much as possible, only the routes
affected by the changes in customer demand are considered for improvement.

The last option to take the changes in demand into account is to construct
a new set of routes from scratch every day based on the information about
customer demand. As concluded in the previous section, the performance of
the Lagrangian heuristic on the problem considered in this thesis was not sat-
isfactory. Thus, only the first phase of the solution approach will be applied
in the following to construct the new routes. Before performing the insertion
heuristic, the customers are seeded according to decreasing distance from
the depot. During the implementation and tests of the solution approach it
was noticed that this seed criterion produces better results than seeding the
customers according to the earliest allowed starting time. Due to the time

92

CHAPTER 8. COMPUTATIONAL RESULTS

complexity of the improvement moves, the best strategy is to use the re-
insertion moves in the embedded improvement. After the insertion heuristic
has finished, the improvement procedure based on the swap moves is ap-
plied. The performance of the improvement moves described in section 5.3
has been evaluated, and the results can be found in appendix D. According
to the results presented is appendix D, the embedded improvement proved
to be beneficial in terms of solution quality.

Before presenting the results, a short summary of the suggested strategies
for master plans adjustment is given:

1. simple removal of customers from their respective routes

2. simple removal followed by re-insertion moves

3. simple removal followed by swap moves

4. simple removal followed by within route re-insertion moves

5. construction of the routes from scratch

The first four strategies can be characterized as modification strategies, and
the last one as a reconstruction strategy.

Different scenarios for the changes in customer demand are described in sec-
tion 7.2.

In table 8.7 the results obtained by applying the modification strategies to
adjust the master plans are presented for the case where the customer demand
is changed by 3%. The demand change of 3% corresponds to the situation
where 15 customers (of 500) have cancelled their deliveries.

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 20939.36 1.44 20517.72 3.42 20542.14 3.31 20927.93 1.49
2 21054.44 0.90 20662.59 2.74 20704.26 2.55 20993.51 1.18
3 21024.08 1.04 20614.59 2.97 20845.70 1.88 21035.98 0.98
4 21008.06 1.12 20596.11 3.06 20870.28 1.76 20996.88 1.17
5 20997.79 1.16 20606.67 3.01 20842.69 1.89 20973.51 1.28

21004.74 1.13 20599.53 3.04 20761.01 2.28 20985.56 1.22

Table 8.7: New solutions obtained for a demand changes of 3%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

93

CHAPTER 8. COMPUTATIONAL RESULTS

As it can be seen from the table, simple removal of customers from the routes
leads to a reduction in total cost of only 1.13% on average. Applying the
within route re-insertion moves yields an average reduction of the total cost
of 1.22%. The best results are achieved by the re-insertion moves with the
average savings of 3.04% in total cost. Similar results are obtained for the
other scenarios in the demand change. The corresponding result tables can
be seen in appendix F.

In figure 8.1 the average improvement rate of the solution value is shown for
the four modification strategies and for each scenario in demand variation. As
it can be seen from the figure, the best performing method for all scenarios is
removing the customers with cancelled deliveries from their respective routes
and then applying re-insertion moves to the resulting routes. The solutions
obtained by the first four strategies in all scenarios include the same number
of vehicles as in the master plans, i.e. 59 vehicles are used to serve the
customers.

0 3 5 7 10 12 15 20
0

2

4

6

8

10

12

14

16

18

Demand changes, %

 Im
pr

ov
em

en
t r

at
e,

 %

R
ed

uc
tio

n
in

 to
ta

l c
os

t

Simple removal (SR)
SR + re−Insertion
SR + swap
SR + re−InsertionWR

Figure 8.1: Solution improvement for the four different modification strategies.

In table 8.8 the computational effort needed to produce the solutions by
applying the modification strategies is illustrated.

94

CHAPTER 8. COMPUTATIONAL RESULTS

Demand Time required by the

change modification strategies, sec.

% SR SR+riWR SR+rI SR+S

3 0.010 0.064 0.393 30.103
5 0.016 0.106 0.392 28.644
7 0.022 0.128 0.387 27.697
10 0.028 0.170 0.394 26.212
12 0.030 0.178 0.398 24.932
15 0.036 0.192 0.379 22.829
20 0.040 0.200 0.377 21.361

Table 8.8: The average computation time for the modification strategies under different
demand variation scenarios. SR stands for simple removal, SR + riWR: simple removal
followed by within route re-insertion, SR + rI : simple removal followed by re-insertion
and SR + S: simple removal followed by swap.

As it can be seen from the table, the computation time needed to perform the
simple removal is almost negligible. Obviously, the larger change in demand,
the more time it takes to perform the first two modification procedures. This
is due to the fact that their computation time depends directly on the number
of cancelled deliveries and the number of affected routes. The computation
time needed when applying the third strategy is almost the same for the
different demand variation scenarios. For the last procedure based on simple
removal followed by swap improvement, the computation time is decreasing
as the percentage of demand changes increases. This can be explained by
the fact that when more customers are removed from the routes, less time is
needed to perform the swap procedure.

Combining the results displayed in figure 8.1 and table 8.8, the SR+rI strat-
egy can be declared to be the best performing one among the modification
strategies. It gives the largest reduction in the total cost of the solution, and
it requires at most 0.4 seconds to perform.

In table 8.9 the results obtained by the reconstruction strategy are presented
for a demand change of 3%. The result tables for the rest of demand variation
scenarios can be found in appendix F.

The table shows that a reduction in the total cost is 2.38% on average,
though a slightly worse solution is produced in a single case. In 4 of 5 cases
the number of vehicles used to serve the customers is smaller compared to
the master plan solution.

The average computation time needed when applying the reconstruction pro-
cedure, the average reduction in the total cost and the average number of
vehicles used in the solution are presented in table 8.10.

95

CHAPTER 8. COMPUTATIONAL RESULTS

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 57 21358.38 -0.53 31.65
2 59 20619.94 2.94 32.69
3 58 20026.21 5.74 32.02
4 57 20864.54 1.79 31.68
5 58 20823.92 1.98 31.37

57 20738.60 2.38 31.88

Table 8.9: New solutions obtained by the reconstruction strategy for a demand change
of 3%. Reduction in total cost is calculated with respect to the master plan solution value,
21245.2 minutes.

Demand

change Time Red. No. of

% sec. % veh

3 31.88 2.38 57
5 31.29 5.33 56
7 29.47 5.83 55
10 27.92 8.93 54
12 26.34 10.61 52
15 24.76 12.52 51
20 21.44 17.70 48

Table 8.10: The average computation time for the reconstruction strategy under the
different demand variation scenarios.

The best modification strategy is compared to the reconstruction strategy in
figure 8.2.

The figure shows that for small demand variations, i.e. less than 3%, the
modification strategy performs best. This seems reasonable, as it makes
little sense to build a new set of routes if only 5-15 customers of 500 have
cancelled their deliveries. For the changes in demand bigger than 3%, a larger
reduction in the total cost can be obtained by applying the reconstruction
strategy.

The decision as to which strategy should be used in real life is a question
of priorities. Constructing the routes from scratch takes longer time than
just modifying the existing master plans. However, the average computation
time for the reconstruction strategy is only about 30 seconds for the demand
variation of 3% and it is even less for the larger variations, see table 8.10.
Thus, if the main objective is to minimize the total cost and the change in
customer demand is greater than 3%, the reconstruction strategy should be
chosen.

96

CHAPTER 8. COMPUTATIONAL RESULTS

0 3 5 7 10 12 15 20
0

2

4

6

8

10

12

14

16

18

Demand changes, %

 Im
pr

ov
em

en
t r

at
e,

 %

R
ed

uc
tio

n
in

 to
ta

l c
os

t

SR + re−Insertion
Reconstruction strategy

Figure 8.2: Solution improvement – modification versus reconstruction.

The solutions produced by the reconstruction procedure tend to involve fewer
vehicles than suggested by the master plans. Whether these solutions can
be accepted depends on several factors such as the lease agreements for the
vehicles and the contracts with the drivers. In the case where it is desirable to
use all the available vehicles, and if the time issue is of high importance, the
modification strategy based on re-insertion improvement is to be preferred.

97

Chapter 9

Discussion and Future Work

In this chapter the solution approach which has been developed in this thesis
is discussed based on the results presented in the previous chapter. Further-
more, some areas for future work are suggested.

9.1 Performance of the Lagrangian Heuristic

Before discussing the performance of the developed solution method, a short
summary of the problem considered in this thesis is given. As mentioned in
chapter 1, the daily distribution of products of the company, which has been
considered in this thesis, is based on the concept of master plans. The master
plans are executed without taking into account that changes in customer
demand will occur, and they are revised only once or twice per year.

Based on the results presented in section 8.2, it can be concluded that revising
the master plans on a daily basis can be beneficial for the company, especially
in case of large variations in demand. Several strategies for adjusting master
plans have been proposed in section 8.2. Depending on the magnitude of the
demand variation, different strategies can be chosen. For changes in demand
larger than 3%, the reconstruction strategy provides the best results, i.e. the
largest reduction in the total cost suggested by the master plans.

Obviously, applying the reconstruction strategy requires development of a
solution method that provides good solutions to the routing problem within
a reasonable time.

The solution method developed in this thesis is a two-phase approach, where
a large set of good quality routes are constructed in the first phase, and a
Lagrangian heuristic is used to solve the resulting SCPP in the second phase.

98

CHAPTER 9. DISCUSSION AND FUTURE WORK

As mentioned in chapter 8 the performance of the Lagrangian heuristic on
the problem considered in this thesis is not satisfying. One of the issues for
the current implementation of the Lagrangian heuristic is long computation
times. As the problem considered in this thesis is a real-life problem, the
time issue is important. If all the changes in demand are known prior to
the day of operation, a longer time can be spent on searching for a solution
that is close to being the optimal solution. However, if the master plans are
adjusted just before the final route plans are given to the drivers, the solution
has to be produced in a short time.

Furthermore, the performance of the Lagrangian heuristic is not stable is
terms of solution quality. This means that in some cases the Lagrangian
heuristic produces solutions worse than the best feasible solution obtained
from the route generation phase. Based on these two issues, it can be con-
cluded that the current implementation of the Lagrangian heuristic is not
suitable for use in real life.

A key issue of the Lagrangian heuristic is the step where a feasible solution to
the problem is constructed, i.e. the primal heuristic. The following attempts
have been made to improve the performance of the primal heuristic: different
selection rules for the next solution column, controlling the overlap, and
generating columns ’on the fly’. These attempts seem to give results for
the problems of type micro and small. However, no plausible explanation
has been found of the fact that the problem instances of type medium and
the present case study problem are so hard to solve for the primal heuristic.
Several problematic areas for further research on this subject are outlined in
the following section.

9.2 Future Research

For the route generation phase a further investigation of the route updating
procedure is needed for cases where a customer is removed. As mentioned in
chapter 5, the time complexity of the removal and subsequent updating pro-
cedure is O(n2) in the current implementation. For the traditional VRPTW,
updating of a route after removal of a customer can be performed in linear
time. However, the shift time limit constraints make the corresponding up-
dating procedure for the VRPTWSTL more complicated. This is due to the
interaction between the values of the earliest departure time from the depot
and the earliest completion time of the route, and the latest departure time
from the depot and the latest completion time of the route. In some situa-
tions the removal of a customer will imply that the route can be completed

99

CHAPTER 9. DISCUSSION AND FUTURE WORK

earlier. Due to the shift time limit, the earliest departure time from the
depot can also be changed. In this case, the e-values of the other customers
on the route have to be re-evaluated, eventually leading to a change of the
earliest completion time of the route again. The aim of the investigation
should be to establish the rules for the updating procedure and to find out
whether it can be performed in linear time. Reducing the time complexity
of the updating procedure after removal of a customer will have a positive
impact on the time complexity of the post-insertion and the improvement
procedures.

To improve the overall performance of the Lagrangian heuristic a thorough
investigation of the following areas is needed:

- Route similarity : The computational experiments showed that extra
routes were generated at least once in almost every iteration of the
Lagrangian heuristic. For the large problem instances, the route gen-
eration procedure was activated 2 or 3 times in a single iteration. This
indicates that the columns of the matrix are still too similar. There-
fore, at some point no more columns with a zero overlap can be found,
and more routes have to be generated. Thus, some attention should be
given to the route generation phase with focus on developing methods
for producing distinctive routes.

- Column selection: During the experiments it was noticed that columns
with a small number of covered rows were included in the solution.
This would not be an issue if the number of available vehicles was
unlimited. However, in the presence of the set packing constraints,
including such columns in the solution corresponds to an unnecessary
use of vehicle capacity. One way to solve this problem is to exclude
the columns covering less than 2 or 3 rows from the constraint matrix.
On the other hand, it seems reasonable to assume that there exist
good feasible solutions with columns covering a small number of rows.
Such solutions have been produced during the route generation phase.
Thus, excluding these columns from the constraint matrix would lead
to a reduction of the search space for the heuristic and potentially to
a less optimal solution. Instead, further investigation of the column
selection rules and the cost structure of the problem is needed to find
out why such columns become more ’attractive’ than the columns with
a large number of covered rows.

- Problem reduction: In the current implementation, only one type of
problem reduction method is performed, i.e. fixing some variables to

100

CHAPTER 9. DISCUSSION AND FUTURE WORK

zero. This procedure means that some columns can be deleted from
the problem, as they can never be present in the optimal solution.
Another problem reduction method is to fix some variables to 1. This
would enable the algorithm to delete not only a single column from
the problem, but also the rows covered by that column. This problem
reduction can potentially improve the performance of the Lagrangian
heuristic in terms of computation time.

Finally, in this thesis it has been assumed that the only changes in demand
are the cancellations of deliveries to some customers. Another type of de-
mand variation can also be considered in the future, namely variations in the
volumes to be delivered to each individual customer.

101

Chapter 10

Conclusion

The aim of this project is to design an efficient solution method for solving
the Vehicle Routing Problem with Time Windows and Shift Time Limits
(VRPTWSTL).

The implemented solution approach consists of two phases. In the first phase
an insertion heuristic with embedded improvement is used to construct the
initial set of routes. To handle the unrouted customers a post-insertion
procedure has been developed based on the ejection chain approach. The
improvement procedure is applied to the routes at the end of the route gen-
eration phase. The aim of the first phase is to produce a large number of
good quality routes, which is accomplished by executing it several times. In
order to produce distinctive routes, the problem data is permutated after
each execution run of the route generation phase.

In the second phase a mixed Set Covering/Packing Problem instance (SCPP)
is constructed based on the generated routes. The packing constraints are
necessary in this case, as there is limited number of vehicles in the prob-
lem. Furthermore, the available vehicles are of different types, so packing
constraint has to be introduced for each vehicle type. The resulting SCPP
problem is then solved by the Lagrangian heuristic.

During the implementation of the solution approach the greatest challenge
in the first phase has been incorporating the shift time limit constraints into
the insertion heuristic. This issue has been successfully solved. In the sec-
ond phase of the solution approach the key issue has been to find a feasible
solution to the SCPP. The primal heuristic developed for this purpose failed
in spite of producing a large number of routes in the route generation phase.
Thus, the initial implementation of the Lagrangian heuristic has been ex-
tended to be able to produce additional routes ’on the fly’.

102

CHAPTER 10. CONCLUSION

The final version of the solution approach has been tested on a number of
problems of different sizes. Based on the results of the test the conclusion
is that the Lagrangian heuristic is able to produce optimal solutions to the
problems of small sizes. However, as the problem size increases, the perfor-
mance of the Lagrangian heuristic becomes worse both in terms of solution
quality and computation time.

Due to the long computation time, the current implementation of the La-
grangian heuristic cannot be applied in real life. Thus, only the first phase
of the solution approach has been used to construct the solutions to the
VRPTWSTL considered in this thesis.

The secondary objective of this thesis is to answer a question faced by com-
panies whose daily distribution is based on the concept of master plans. The
master plans do not take the demand changes into account. Therefore, it
would be reasonable to assume that a reduction in total cost of the routes
can be achieved by adjusting the master plans according to changes in the
customer demand. The question is how large the variation in demand should
be before such a revision is beneficial for the company.

Based on the experimental results it can be concluded that for changes in
demand less than 3%, it can hardly be beneficial to reconstruct the routes.
Instead, the master plans are modified in the following way: The customers
with cancelled deliveries are removed from the routes and the re-insertion
improvement procedure is applied to the resulting set of routes. For the case
study problem considered in this thesis, such a revision resulted in a cost
reduction of 3.04% on average compared to the master plan solution. This
may not seem as a large saving on a single day, but in the long run substan-
tial savings in distribution costs are accumulated. The main advantage of
this modification method is an almost negligible computation time. For the
changes in demand greater 5% the largest savings are achieved by building a
new set of routes based on the updated information about customer demand.
For the changes in demand of 5 to 15% the reduction in total cost lies within
5.33% – 12.52%. The computation time needed to produce the new solutions
is about 30 seconds for the problem solved in this thesis. Obviously, the
reconstruction procedure takes longer time than a simple modification, but
the required time is still reasonable for real life settings.

Finally, as only the first phase of the solution approach has been used in
the reconstruction procedure, it can be assumed that even large savings can
be obtained by applying the whole approach. However, this requires further
investigation and extensions of the current implementation of the Lagrangian
heuristic.

103

References

[1] P. Badeau, F. Guertin, M. Gendreau, J.-Y. Potvin and E.D.

Taillard: A Parallel Tabu Search Heuristic for the Vehicle Routing
Problem with Time Windows. Transporation Research Part C: Emerging
Technologies, 1997, Vol. 5, No. 2, pp. 109-122.

[2] J. E. Beasley: An Algorithm for Set-Covering Problems. European
Journal of Operational Research, 1987, Vol. 31, No. 1, pp. 85-93.

[3] J. E. Beasley: A Lagrangian Heuristic for Set-Covering Problems.
Naval Reserach Logistics, 1990, Vol. 37, No. 1.

[4] J.E. Beasley: Chapter 6: Lagrangian Relaxation.

[5] O. Bräysy, G. Hasle, W. Dullaert: A Multi-start Local Search
Algorithm for the Vehicle Routing Problem with Time Windows. Euro-
pean Journal of Operational Research, 2004, Vol. 159, No. 3, pp. 586-605.

[6] O. Bräysy and M. Gendreau: Vehicle Routing Problem with
Time Windows, Part I: Route Construction and Local Search Algorithms.
Transportation Science, 2005, Vol. 39, No. 1, pp. 104-118.

[7] O. Bräysy and M. Gendreau: Vehicle Routing Problem with Time
Windows, Part II: Metaheuristics. Transportation Science, 2005, Vol. 39,
No. 1, pp. 119-139.

[8] O. Bräysy: Fast Local Searches for the Vehicle Routing Problem with
Time Windows INFOR Journal, 2003, Vo. 40, No. 4.

[9] A.M. Campbell and M. Savelsbergh: Efficient Insertion Heuris-
tics for Vehicle Routing and Sceduling Problems. Transportation Science,
2004, vol. 38, no. 3, s. 369-378.

104

REFERENCES

[10] A. Carpara M. Fischetti and P. Toth: A Heuristic Method
for Set Covering Problem. Operations Research, 1999, vol. 47., No. 5,
pp.730-743.

[11] S. Ceria, P. Nobili and A.SassNO: A Lagrangian-based Heuris-
tic for Large-scale Set Covering Problems. Mathematical Programming,
1998, Vol. 81, pp. 215-228.

[12] W.C. Chiang and R.A. Russel: A Reactive Tabu Search Meta-
heuristic for the Vehicle Routing Problem with Time Windows. IN-
FORMS Journal on Computing, 1997, Vol. 9, No. 4.

[13] Z.J. Czech and P. Czarnas: Parallel Simulated Annealing for the
Vehicle Routing Problem with Time Windows Parallel, Distributed and
Network-based Processing, 2002, pp. 376-383.

[14] M. Desrochers, J. Desrochers and M. Solomon: A New Op-
timization Algtorithm for the Vehicle Routing Problem with Time Win-
dows. Operations Research, 1992, Vol. 40, No. 2.

[15] M.L. Fisher, K.O. Jornsten and O.B.G. Madsen : Vehicle
Routing with Time Windows: Two Optimization Algorithms. Operations
Research, 1997, vol. 45., No. 3.

[16] M.L. Fisher and P. Kedia: Optimal Solution of Set Cover-
ing/Partitioning Problems Using Dual Heuristics. Management Science,
1990, Vol. 36, No. 6.

[17] C. Foisy and J.-Y. Potvin: Implementing an insertion heuristic for
vehicle routing on parallel hardware Computers and Operations Research,
1993, Vol. 20., No. 7.

[18] L.M. Gambardella, E.D. Taillard ans G. Agazzi: MACS-
VRPTW: A Multiple Colony Ant System for Vehicle Routing Problems
with Time Window Constraints New Ideas in Optimization. McGraw-
Hill, London, pp. 63-76.

[19] B.-L. Garcia, J.-Y. Potvin, J.M. Rousseau: A Parallel Imple-
mentation of the Tabu Search Heuristic for Vehicle Routing Problems
with Time Window Constraints Computers and Operations Research,
1994, Vol. 21, No. 9.

[20] S. Haddadi: Simple Lagrangian Heuristic for the Set Covering Prob-
lem European Journal of Operational Research, 1997, Vol. 97, pp. 200-
204.

105

REFERENCES

[21] A. Hamacher and C.Moll A new heuristic for vehicle routing with
narrow time windows Operations Research Proceedings, 1996, pp. 301-
310.

[22] G.Ioannou, M. Kritikos, G. Prastacos: A Greedy Look-Ahead
Heuristic for the Vehicle Routing Problem with Time Windows The Jour-
nal of the Operational Research Society, 2001, Vol.52, No. 5.

[23] B. Kallehauge, J.Larsen and O.B.G. Maden: Lagrangian Du-
ality Applied to the Vehicle Routing Problem with Time Windows. Com-
puters and Operations Research, 2006, Vol. 33, No. 5.

[24] J.P. Kelly and J. Xu: A Set-Partitioning Heuristic for the Vehicle
Routing Problem. INFORMS Journal on Computing, 1999, Vol. 11, No.
2.

[25] G. Kontoravdis and J. Bard: A GRASpfor the Vehicle Routing
Problem with Time Windows. ORSA Journal on Computing, 1995, Vol.
7, No. 1.

[26] G. Laporte, M. Gendreau, J.-Y. Potvin and F. Semet: Classi-
cal and Modern Heuristics for the Vehicle Routing Problem. Operational
Research, 2000, vol. 7, s. 285-300.

[27] A. Olsen and A.N. Nielsen: COIN: A simple guide for getting
started with the OsiSolverInterface. IMM, DTU, September 3, 2005.

[28] J.-Y. Potvin and J.-M. Rousseau: A Parallel Route Building
Algorithm for the Vehicle Routing and Scheduling Problem with Time
Windows. European Journal of Operational Research, 1993, No. 66, pp.
331-340.

[29] J.-Y. Potvin and J.-M. Rousseau: An Exchange Heuristic for
Routing Problems with Time Windows. The Journal of the Operational
Research Society, 1995, Vol.46, No. 12.

[30] Y. Rochat and E.D. Taillard: Probabilistic Diversification and
Intensification in Local Serach for Vehicle Routing. Journal of Heuristics
1, 1995, pp. 147-167.

[31] R.A. Russel: Hybrid Heuristics for the Vehicle Routing Problem
with Time Windows. Transportation Science, 1995, Vol. 29, No. 2.

106

REFERENCES

[32] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt and G.

Dueck: Record Breaking Optimization Results Using the Ruin and
Recreate Principle. Journal of Computational Physics, 2000, Vol. 159,
pp. 139-171.

[33] P. Shaw: Using Constraint Programming and Local Search Methods
to Solve Vehicle Routing Problems. Principles and Practice of Constraint
Programming – CP98, Lecture Notes in Computer Science. Springer-
Verlag, New York, pp. 417-433.

[34] M. Solomon: Algorithms for the Vehicle Routing and Scheduling
Problems with Time Windows Constraints. Operations Research, 1987,
vol. 35., No. 2.

[35] E.D. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.-

Y. Potvin: A Tabu Search Heuristic for the Vehicle Routing Problem
with Soft Time Windows. Transporation Science, 1997, Vol. 31, No. 2.

[36] K.C. Tan, L.H. Li, Q.L. Zhu, K. Ou: Heuristic Methods for the
Vehicle Routing Problem with Time Windows. Artificial Intelligence in
Engineering, 2001, Vol. 15, pp. 281-285.

[37] S.R. Thangiah, K.E. Nygård and P.L. Juell: GIDEON: A
Genetic Algorithm System for Vehicle Routing with Time Windows. Ar-
tificial Intelligence for Applications, 1991, Vol.i, 322-328.

[38] P. Toth and D. Vigo: The Vehicle Routing Problem SIAM Society
for Industrial ans Applied mathematics, Philadelphia, 2002, p. 157.

107

Appendix A

Proof of Statement 4.3

Statement 4.3. Assume that insertion of customer j causes the latest de-
parture time to decrease, and that the latest completion time is also changed
due to the shift time limit, ln+1 = l0 + ST . Assume that li+1 is changed in
updating process. The value of lj will remain unchanged, as otherwise the
insertion would have been infeasible with respect to shift time limit.

Proof of the statement 5.3. Assume that insertion of customer j be-
tween customers i and i + 1 is feasible. Then one of the conditions that
have to hold is

a0 ≤ ST (A.1)

After insertion the new value of l0 can be computed based on the value of lj:

l0 = lj − tji − (a0 − ai) (A.2)

and ln+1 is re-calculated to:

ln+1 = l0 + ST (A.3)

Due to the updating procedure l-value of customer i + 1 is changed to

lnew
i+1 = ln+1 − ai+1 (A.4)

The only way for lj to change is if condition (A.5) holds.

enew
i+1 − tji+1 < lj ⇔ (A.5)

ln+1 − ai+1 − tji+1 < lj ⇔ (A.6)

ln+1 − ai+1 − tji+1 < l0 + tji + (a0 − ai) (A.7)

108

APPENDIX A. PROOF OF STATEMENT 4.3

By substitution of ln+1 in (A.7) with the right hand side of equation (A.3),
the following is deduced:

l0 + ST − ai+1 − tji+1 < l0 + tji + (a0 − ai) ⇔ (A.8)

ST + (ai − ai+1) − tji+1 − tji < a0 ⇔ (A.9)

ST + tij + tji+1 − tji+1 − tji < a0 ⇔ (A.10)

ST < a0 (A.11)

The last equation contradicts the assumption that insertion of customer j
was feasible – see equation (A.1).

109

Appendix B

Insertion Procedure – Small
Example

In the following the insertion algorithm described in chapter 5 is applied
to the small problem instance with 8 customers and 3 vehicles. The prob-
lem is displayed graphically in figure B.1 below. The distances between the

ÜNÜÜNÜÝ
Ý

ÞNÞÞNÞßNßßNß

àNààNàá
á

âNââNâãNããNã

äNääNäå
å

æNææNæçNççNç

èNèèNèéNééNé

êNêêNêëNëëNë

(750,780)

(705,750)
6

(750,810)

8

5
(660,720)

2 (480,510)

3
(540,600)

4
(570,600)

(780,840)

7

1

7

3
2
1

5
6

8 20
20
15
30
30
30
20
15

70

30
50
40

60
70

50
40

Customers

4

1
2
3 150

200
150 600 900 180

420 780 240
300960600

Vehicles

35
20

10

3030

20

40

15

15

30

35

15

25

20 45

0

15
PSfrag replacements

i si qi

Qk Ak Bk STkVT

Figure B.1: Small example of the insertion procedure.

customers and the depot are shown in table B.1.

110

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

0 1 2 3 4 5 6 7 8

0 - 35 20 35 10 30 30 45 20
1 35 - 40 60 50 80 60 60 30
2 20 40 - 15 25 40 45 90 45
3 35 60 15 - 15 30 40 80 60
4 10 50 25 15 - 15 20 30 35
5 30 80 40 30 15 - 15 40 35
6 30 60 45 40 20 15 - 25 25
7 45 60 90 80 30 40 25 - 20
8 20 30 45 60 35 35 25 20 -

Table B.1: Small example – Distance table.

Before starting the insertion procedure, customers are seeded according to
the two criteria mentioned in chapter 5:

- decreasing distance from the depot: {7, 1, 3, 5, 6, 2, 8, 4 }

- increasing earliest allowed starting time: {2, 3, 4, 5, 6, 1, 8, 7}

Three routes, one for each vehicle, are initialized as follows:
r1: [(600,900),0] – (600,900)
r2: [(420,420),0] – (420,780)
r3: [(600,960),0] – (600,960)

Customers are inserted then one at a time in the specified seeding order. In
the following the first seeding criterion is applied.

Insertion procedure with customers seeded according to

decreasing distance from the depot

Iteration 1 – Insert Customer 7

Insertion of customer 7 in route 2 is infeasible due to the customer’s time
windows, i.e. ej > lj:

e7 = max(780, 420 + 45) = 780
l7 = min(840, 780 − 45 − 20) = 715

For routes 1 and 3 insertion is feasible – see the table below:

111

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

r1 r3

ej max(780,600+45)=780 max(780,600+45)=780

lj min(840,900-45-20)=835 min(840,960-45-20)=840

e0 max(600,845-180)=665 max(600,845-300)=600

l0 min(900,835-45)=790 min(960,835-45)=790

en+1 max(600,780+20+45)=845 max(600,780+20+45)=845

ln+1 min(900,790+180)=870 min(960,790+300)=960

a0 45+20+45=110 45+20+45=110

Dr 50 50

cr 45+20+45=110 45+20+45=110

Customer 7 is inserted in route r1 in position 1:
r1: [(665,790),110] – 7[(780,835),65] – (845,900)
r2: [(420,780),0] – (420,780)
r3: [(600,960),0] – (600,960)

Iteration 2 – Insert Customer 1

For route 1 insertion in only feasible in position 1, as insertion in position 2
will fail on condition ej ≤ lj.

r1 position 1 position 2

ej max(750,665+35)=750 max(750,780+20+60)=860

lj min(780,835-15-60)=760 min(780,870-15-35)=820

e0 max(665,890-180)=790 -
l0 min(790,760-35)=725 -
en+1 max(845,750+15+60+65)=890 -
ln+1 min(900,725+180)=900 -
a0 110+(15+35+60-45)=175 -
Dr 90 -

cr 35+60-45=50 -

Insertion into route 2 is also infeasible with respect to customer time windows,
whereas insertion into route 3 is feasible but more expensive compared to
route 1.

r2 r3

ej max(750,420+35)=750 max(750,600+35)=750

lj min(780,780-35)=745 min(780,960-35)=780

e0 - max(600,800-300)=600
l0 - min(960,780-35)=745

en+1 - max(600,750+15+35)=800

ln+1 - min(960,745+300)=960

a0 - 35+15+35 = 85

Dr - 40

cr - 35+35=70

Customer 1 is inserted in route r1 in position 1, and the obtained routes are

112

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

shown below. Note, that the earliest delivery time for the customer 7 next in
the route is updated due to the insertion , e7 = max(780, 750+15+60) = 825.

r1: [(710,725),175] – 1[(750,760),140] – 7[(825,835),65] – (890,900)
r2: [(420,780),0] – (420,780)
r3: [(600,960),0] – (600,960)

Iteration 3 – Insert customer 3

Insertion of customer 3 is infeasible with respect to the customer time window
for both route 1 and 3: er1

0 = 710 > L3 = 600 and er3
0 ≥ L3. For route 2 the

insertion is feasible:

r2

ej max(540,420+35)=540

lj min(600,780-30-35)=600

e0 max(420,605-240)=790

l0 min(780,600-35)=565

en+1 max(420,540+30+35)=605

ln+1 min(780,600+240)=780

a0 35+30+35=95

Dr 70

cr 35+35=70

The resulting routes are:

r1: [(710,725),175] – 1[(750,760),140] – 7[(825,835),65] – (890,900)
r2: [(420,565),100] – 3[(540,600),65] – (605,780)
r3: [(600,960),0] – (600,960)

Iteration 4 – Insert customer 5

According to the tables below, customer 5 can feasibly be inserted into routes
3 and 2.

r1 r3

ej max(660,710+30)=740 max(660,600+30)=660

lj min(720,760-30-80)=650 min(720,960-30-30)=720

e0 - max(600,720-300)=600

l0 - min(960,720-30)=690

en+1 - max(600,660+30+30)=720

ln+1 - min(960,690+300)=960

a0 - 30+30+30=90

Dr - 70

cr - 30+30=60

113

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

r2 position 1 position 2

ej max(660,420+30)=660 max(660,540+30+30)=660

lj min(720,600-30-30)=540 min(720,780-30-30)=720

e0 - max(420,720-240)=480

l0 - min(565,720-30-30-35)=565

en+1 - max(605,660+30+30)=720

ln+1 - min(780,565+240)=780

a0 - 100+(30+30+30-35)=155

Dr - 130

cr - 30+30-35=25

The best alternative is to insert customer 5 into route 2 at position 2:
r1: [(710,725),175] – 1[(750,760),140] – 7[(825,835),65] – (890,900)
r2: [(480,565),155] – 3[(540,600),120] – 5[(660,720),60] – (720,780)
r3: [(600,960),0] – (600,960)

Iteration 5 - Insert customer 6

Insertion into route 1 is infeasible at all positions due to time window con-
straints.

r1 ej lj
position 1 max(705,710+30)=740 min(750,760-60-15)=685

position 2 max(705,750+15+60)=825 min(750,835-20-25)=750

position 3 max(705,825+20+25)=870 min(750,900-15-30)=750

Likewise, insertion into route 2 is infeasible at positions 1 and 2.

r2 position 1 position 2

ej max(705,480+30)=705 max(705,540+30+40)=780

lj min(750,600-40-15)=545 min(750,720-15-15)=690

Two feasible alternatives exist for insertion of customer 6 – route 2 at position
3 or the empty route 3.

r2, position 1 r3

ej max(705,660+30+15)=705 max(705,600+30)=705

lj min(750,780-15-30)=735 min(750,960-30)=750

e0 max(480,750-240)=510 max(600,750-300)=600

l0 min(565,735-15-30-95)=595 min(960,750-30)=720

en+1 max(720,705+15+30)=750 max(600,705+15+30)=750

ln+1 min(780,595+300)=780 min(960,720+300)=960

a0 155+15+15+30-30=185 30+15+30 = 75

Dr 160 30

cr 15+30-30=15 30+30=60

Customer 6 is inserted into route 2 at the last position. Note, that the
latest delivery time for customer 5 prior in the route is changed during the
updating process, i.e. l5 = min(720, 735− 13− 30) = 690. Furthermore, the

114

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

earliest delivery time for customer 3 is updated due to the change in e0, i.e.
e3 = max(540, 510 + 35) = 545.

r1: [(710,725),175] – 1[(750,760),140] – 7[(825,835),65] – (890,900)
r2: [(510,565),185] – 3[(545,600),150] – 5[(660,690),90] –

– 6[(705,735),45] –(720,780)
r3: [(600,960),0] – (600,960)

Iteration 6 - Insert customer 2

Insertion of customer 2 into routes 1 and 3 is infeasible due to time windows,
as er1

0 = 710 > L2 = 480 and er3
0 = 600 > L2 = 480. Insertion into route 2 is

also infeasible due to the vehicle capacity constraint, as D2 +q2 = 160+50 =
210 > Qk = 200.

Thus, customer 2 can not be feasibly inserted into the current routes and is
placed into the pool of unserved customers.

Iteration 7 - Insert customer 8

Inserting customer 8 into route 1 at any position is infeasible due to the shift
time limit. The cumulative travel time from depot to depot is a0 = 175 and
the service time of customer 8 is s8 = 40. Thus, only the sum of these two
components without including extra travel time will exceed the shift time
limit of 180.

For route 2 the insertion is infeasible at position 2 and 3 with respect to the
shift time limit. The values of a0 if customer 8 is inserted at position 2 and 3
are calculated to 185+60+20+35−30 = 270 and 185+35+20+25−15 = 250,
respectively. Both of these values are greater than the shift time limit of 240.
For positions 1 and 4 of route 2, the insertion is infeasible with respect to
the customer time windows:
r2 position 1 position 4

ej max(750,510+20)=750 max(750,660+15+25)=750

lj min(810,600-60-20)=520 min(810,780-20-20)=740

The only feasible alternative is the insertion of customer 8 into the empty
route 3 – see the table below.

115

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

r3

ej max(750,600+20)=750

lj min(810,960-20-20)=810

e0 max(600,790-300)=600

l0 min(960,810-20)=790

en+1 max(420,750+20+20)=790

ln+1 min(960,790+300)=960

a0 20+20+20=60

Dr 40

cr 20+20=40

The routes after insertion of customer 8 are:

r1: [(710,725),175] – 1[(750,760),140] – 7[(825,835),65] – (890,900)
r2: [(510,565),185] – 3[(545,600),150] – 5[(660,690),90] –

– 6[(705,735),45] –(720,780)
r3: [(600,790),60] – 8[(750,810),40] – (790,960)

Iteration 8 - Insert customer 4

Insertion of customer 4 is infeasible for routes 1 and 2 due to the vehicle
capacity constraints, as D1 + q2 = 90 + 70 = 160 > Qk = 150 and D2 + q4 =
160 + 70 = 230 > Qk = 200 respectively for routes 1 and 2.

For route 3 the insertion is infeasible with respect to the time windows:

r3 position 1 position 4

ej max(570,600+10)=610 max(570,750+20+35)=805

lj min(600,810-35-30)=600 min(600,960-10-20)=600

Thus, customer 4 can not feasibly be inserted into the current routes and is
added to the pool of unserved customers.

Finalizing the solution

To find the final solution, the following approach is applied in this thesis: The
vehicle departs from the depot at the latest possible time l0 and deliveries to
the customers are then performed at the earliest feasible times. After a route
is finalized, the duration of the route is calculated as the difference between
the route completion time and the departure time for the depot. The cost of
the route is then set to the route duration.

The final routes can be seen in figure B.2 below.

116

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

ìNììNìíNííNí

îNîîNîï
ï

ðNððNðñ
ñ

òNòòNòóNóóNó

ôNôôNôõ
õ

öNööNö÷
÷

øNøøNøù
ù

úNúúNúûNûûNû

6 5

2 (480,510)

3

7

1

35

30

15

35

(570,600)

8

60

3045

600

705
660

4

810
20

760

835

565
750

725

790
850

900

r1

r2

r3

PSfrag replacements

i

si

qi

Qk

Ak

Bk

STk

VT

Figure B.2: Small example of insertion procedure – solution obtained with customers
seeded according to decreasing distance from the depot. Customers 2 and 4 are still
unserved. The numbers at the depot indicate the starting and completion times for each
route.

The total cost of the routes is calculated as follows: (900 − 725) + (750 −
565) + (850 − 790) = 175 + 185 + 60 = 420.

To demonstrate the dependency of the final solution on the order in which
customers are chosen for insertion, the insertion procedure is applied to the
same set of customers but with a different seed criterion. In the following
the solution produced by the insertion procedure with customers seeded in
increasing earliest allowed starting time is presented.

Insertion procedure with customers seeded according to

increasing earliest allowed starting time

The order in which the customers are inserted is {2, 3, 4, 5, 6, 1, 8, 7}. The
routes obtained in this case after the insertion procedure is finished are:
r1: [(610,675),155] – 5[(660,705),125] – 6[(705,750),80] –

– 8[(750,810),40] – (790,855)

r2: [(420,490),135] – 2[(480,510),115] – 3[(540,555),85] –
4[(585,600),40] –(620,730)

r3: [(600,730),175] – 1[(750,765),140] – 7[(825,840),65] – (890,960)

The routes are displayed graphically in figure B.3 below.

117

APPENDIX B. INSERTION PROCEDURE – SMALL EXAMPLE

üNüüNüýNýýNý

þNþþNþÿ
ÿ

������������

�������
�

������������

�������
�

	�		�	

������������

5

2

7

35
20

10

30

20

15

15
8

840

1 765

750

6

790

510

3

4

60

r2

705

830

15 545

590

25

45 675
905 630

490
730

r1

r3

Figure B.3: Small example of the insertion procedure – solution obtained with customers
seeded according to increasing e–values. The numbers at the depot indicate the starting
and completion times for each route.

As it can be seen from the figure all customers are served in the solution.
The total cost of the routes is calculated as follows: (830 − 675) + (630 −
490) + (905 − 730) = 155 + 140 + 175 = 470.

118

Appendix C

Generation of the Initial
Lagrangian Multipliers

In the following, two approaches implemented and tested in this thesis to find
the initial values of the Lagrangian multipliers are described. As mentioned
in chapter 6 the optimal values of Lagrangian multipliers are the same as
the optimal solution to the dual LP problem of SCCP, due to the integrality
property of SCPP.

The dual problem of the LP relaxation of SCPP is given by:

max
∑

i∈I1

ui +
∑

i∈I2

ml · ui (C.1)

s.t.
∑

i∈Ir

ui ≤ cr ∀r ∈ R (C.2)

ui ≥ 0 ∀i ∈ I1 (C.3)

ul ≤ 0 ∀i ∈ I2 (C.4)

Dual greedy heuristic

In the following it is assumed that the columns of the original problem are
sorted so that cr+1 ≥ cr for all r ∈ R. The constraints of the dual problem
are then scanned in the natural order to construct a feasible solution.

For each ui the following is defined:

∆i(u) = min
r∈Ri

(cr −
∑

i∈Ir

ui)

119

APPENDIX C. GENERATION OF THE INITIAL LAGRANGIAN
MULTIPLIERS

and the set I(u) is then defined as I(u) = {i ∈ I : ∆i(u) > 0}.

The algorithm for the greedy heuristic is presented below:

1. Initialize ui = 0 , for all i ∈ I.

2. Choose i∗ ∈ I(u) to minimize |Ri|. The ties are broken to maximize
∆i(u). Set u∗

i = ui∗ + ∆i∗(u).

3. Update ∆i(u) for all i ∈ I and I(u).

4. Stop if I(u) = ∅. Otherwise go to step 2.

To illustrate the heuristic consider the small problem from section 6.1 with 8
customers and 3 vehicles. The matrix for the primal problem is shown in the
table below. In step 1 of the heuristic all dual values are set to 0. According
to the table, four rows are covered by only one column, i.e. the minimal
size of Ri. As all four rows have the same ∆-values, the tie can be broken
arbitrarily. If row 1 is chosen, u1 is set to 120 and the ∆-values for rows 2,
3 and 9 are updated, i.e. set to 0. Thus, after first iteration set of available
rows to choose from is I(u) = {0, 4, 5, 6, 7, 8, 10}.

Cost, cr

Rows, i 120 140 155 175 180 ∆i(u) |Ri|
0 1 1 120 2
1 1 140 1
2 1 140 1
3 1 140 1
4 1 1 155 2
5 1 1 155 2
6 1 1 175 2
7 1 1 120 2
8 1 1 155 2
9 1 140 1
10 1 1 120 2

In the second iteration row 6 will be chosen, as all the remaining rows are
covered by the same number of columns, and ∆6u has the largest value. u6

is then set to 175, and the ∆-values for rows {0,10,4,5} are updated.

After the dual heuristic is finished, the following solution is obtained: u =
{0, 140, 0, 0, 5, 0, 175, 120, 0, 0, 0}, where the first 8 entries correspond to the

120

APPENDIX C. GENERATION OF THE INITIAL LAGRANGIAN
MULTIPLIERS

Lagrangian multipliers λi for the set covering constraints for all i ∈ I1. The
last three entries in the solution vector are the multipliers for the set packing
constraints, µi, for all i ∈ I2. The value of objective function, hence the
lower bound on the solution value of the original problem, is 440.

Optimal solution by COIN

The Common Optimization INterface for Operations Research (COIN-OR)
is a collection of Open-source libraries, which can be used to solve different
kinds of optimization problems. In this project the Open Solver Interface
(OSI) component of COIN is used. OSI is an interface for calling mathemat-
ical programming solvers, including the commercial solver CPLEX available
at IMM, DTU.

As the problem that needs to be solved is an LP problem, the built-in Open
Source COIN-LP solver can be used. One of the advantages of using LP
solver in this case is that the program is not dependent on the availability of
a commercial solver, e.g. CPLEX.

To solve a problem using COIN, the information about the problem can be
read in from an mps file or the elements of the model can be constructed and
loaded into the solver interface. The last approach is used in this thesis.

The model components which need to be constructed are the objective co-
efficients, columns’ upper and lower bounds, the constraint matrix and the
upper and lower bounds for the rows in the model. The number of variables
equals the number of columns in the problem, and for each variable there is
a lower and upper bound. Each constraint of the problem corresponds to a
row of the COIN model and has a lower and upper bound.

For the small problem described above, the COIN model with 11 columns
and 5 rows is constructed, loaded into the LP-solver and solved to optimality
yielding the following solution to the dual LP problem: u = {120, 0, 0, 140,
0, 155, 25, 0, 0, 0, 0}. The objective value is 440 which is the same as the
value obtained by the dual heuristic.

This will not be the case for the problems of large sizes. Obviously, the
optimal solution to the dual LP problem obtained by COIN provides a better
starting point for the Lagrangian heuristic described in chapter 6 than a
heuristic solution.

As a final remark it needs to be said that during the implementation and
test of the Lagrangian heuristic, the CPLEX solver is used in the programme.
This is done to be able to compute the optimal solutions for the SCPP test

121

APPENDIX C. GENERATION OF THE INITIAL LAGRANGIAN
MULTIPLIERS

instances. The optimal solution values are then used to evaluate the perfor-
mance of the Lagrangian heuristic. In the final implementation the built-in
LP solver is used to make the programme independent of the commercial
solvers.

122

Appendix D

Test of Improvement Moves

In the following results of experiments with different improvement strategies
are presented.

Improvement after the insertion procedure without em-

bedded improvement

First, the improvement moves are tested on the routes constructed by the in-
sertion procedure without the embedded improvement. Customers are sorted
according to decreasing distance from the depot and the insertion procedure
with subsequent improvement is performed 10 times.

As mentioned in section 5.3 the improvement moves are applied to each route
of the route set generated by the insertion procedure. Re-insertion and swap
moves consider two customers on each routes as candidate for the move.
These customers are the ones by removal of which from the route the largest
savings in travel time can be achieved. For the sake of experiments the third
improvement move, random-swap, with an element of randomness is intro-
duced: for each route a random number between 0 and nr is generated. nr

is the number of customers in the route, and the generated number indicates
how many of these will be considered as candidates for a swap move. The
candidate customers are then selected randomly.

Tables D.1-D.3 show the improvement that can be achieved by applying
re-insertion, swap or random-swap moves after the insertion procedure has
finished. The entries in the last line of each table are the averages of the
values in the corresponding columns.

123

APPENDIX D. TEST OF IMPROVEMENT MOVES

Run Total cost Improvement
No. before re-insertion after re-insertion %
1 25038.1 24150.6 3.55
2 25519.5 24098.7 5.57
3 26397.8 25860.9 2.03
4 26612 2 25282.7 4.995
5 26448.2 26135.8 1.18
6 27475.9 25906.7 5.71
7 27505 26059.2 5.26
8 26952.2 25669.7 4.76
9 27972 26947.5 3.66
10 29149.5 27545.7 5.50
average 26907.04 25765.75 4.22

Table D.1: Solution improvement by the re-insertion move.

By applying the re-insertion improvement moves, the solution obtained from
the insertion procedure can be improved by 4.22% on average.

Run Total cost Improvement
No. before swap after swap %
1 25038.1 23974.6 4.25
2 25160.7 24044.4 4.44
3 26525.4 25527.9 3.76
4 26094.4 24833.3 4.83
5 25595.5 25233.3 1.42
6 27403.8 25978.1 5.20
7 27457.3 26660.1 2.90
8 27330 26769.5 2.05
9 27864.9 26897.4 3.47
10 27720.3 27207.9 1.85
average 26619.04 25712.65 3.42

Table D.2: Solution improvement by the swap move.

Applying the swap moves to the solution obtained from the insertion heuristic
results in an average improvement of 3.42%. Performing the improvement
procedure based on swap moves takes considerably longer time than using the
re-insertion moves. This is not surprising considering the time complexity of
the moves discussed in section 5.3.

124

APPENDIX D. TEST OF IMPROVEMENT MOVES

Run Total cost Improvement
No. before r-swap after r-swap %
1 25038.1 24910.7 0.51
2 25651.3 25471.8 0.699
3 26371.5 26328 0.17
4 25680.5 24997.9 2.66
5 27077.3 26579.6 1.84
6 26425.7 26117 1.17
7 27318.4 27089.6 0.84
8 28081.8 27342.3 2.63
9 27203.2 26769.9 1.59
10 27714.9 27266.8 1.62
average 26656.27 26287.36 1.37

Table D.3: Solution improvement by the random-swap move.

The average solution improvement when applying the random-swap moves
is 1.37%, which makes this improvement strategy the worst performing com-
pared to the other two.

The total costs of the obtained routes can be directly compared only for
the first iteration, where the three improvement strategies have the same
starting point. This is due to the fact that the routes constructed in the next
execution of the route generation phase depend on the final routes produced
in the previous run. The tables show that the best result in the first run is
obtained by applying the swap moves, but at a higher computational cost.
On average, applying the swap moves yielded better results than using the
re-insertion moves but the difference was only about 0.2%.

Improvement after the insertion procedure with embed-
ded improvement

Due to the long computation time of the improvement procedure based on
the swap moves, it was decided not to use this type of moves in the embedded
route improvement. The only type of moves applied in the embedded route
improvement is re-insertion.

Tables D.4-D.6 contain the results obtained by the insertion procedure with
embedded re-insertion followed by different improvement strategies.

It is quite obvious that embedded improvement proves to be very beneficial in

125

APPENDIX D. TEST OF IMPROVEMENT MOVES

Run Total cost Improvement
No. with embedded re-ins after re-ins %
1 21402.2 21377.4 0.12
2 21910.3 21770.7 0.64
3 22281.8 22213.3 0.31
4 23517.6 22928.6 2.51
5 22552.6 22021.5 2.36
6 23112 22540.2 2.47
7 23615.5 22998.9 2.61
8 23232.6 23124.4 0.47
9 23625.9 22907.6 3.04
10 23319.7 23177.4 0.61
average 22817.69 22506 1.51

Table D.4: Solution obtained by the insertion procedure with embedded re-insertion
moves and applying re-insertion moves afterwards.

Run Total cost Improvement
No. with embedded re-ins after swap %
1 21402.2 21245.2 0.73
2 22492.2 21976.6 2.29
3 22215.9 22093.1 0.55
4 22934.1 22669.3 1.16
5 22486.8 22242.1 1.09
6 22759.2 22635.7 0.54
7 23279.5 22822.6 1.96
8 23076.2 22798 1.21
9 24379.1 24061.4 1.30
10 23513.8 23238.7 1.17
average 22853.9 22578.27 1.20

Table D.5: Solution obtained by the insertion procedure with embedded re-insertion
moves and applying swap moves afterwards.

terms of solution quality. The best solution obtained by insertion procedure
followed by the improvement procedure was 23974.6 minutes, see table D.2.
For the insertion procedure with embedded improvement, all the obtained
solutions, except two, are below this value. Further improvements of about
0.8-1.5% on average were achieved by applying the improvement procedure
after the insertion procedure had finished. The random-swap improvement

126

APPENDIX D. TEST OF IMPROVEMENT MOVES

Run Total cost Improvement
No. with embedded re-ins after swap %
1 21402.2 21277.2 0.58
2 21841 21663.5 0.81
3 22113.6 22003.8 0.49
4 23088.8 22836.9 1.09
5 24246.9 24060.5 0.77
6 23440.4 23129.1 1.33
7 24280.7 23916.5 1.499
8 24036.3 23860.2 0.73
9 23620.2 23572.4 0.20
10 23735.7 23619.9 0.49
average 23180.58 22994 0.80

Table D.6: Solution obtained by the insertion procedure with embedded re-insertion
moves and applying random-swap moves afterwards.

procedure was once again the worst performing one, while the difference in
performance between the other two was insignificant.

127

Appendix E

Data for the Generated
Problem Instances

As mentioned in section 7.3 a number of problem instances was constructed
to test the performance of the Lagrangian heuristic. In the following the
geographical distribution of customers and the customer time windows are
illustrated for the problems of each type.

Problem Instances of type micro

Problem instances of type micro contain 60 customers and 3 vehicles of 3
different types, i.e. 9 vehicles in total. The problems are denoted M1, M2
and M3.

128

APPENDIX E. DATA FOR THE GENERATED PROBLEM INSTANCES

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) M1, geography.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

t, min

cu
st

om
er

s

(b) M1, time windows.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(c) M2, geography.

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

t, min

cu
st

om
er

s

(d) M2, time windows

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(e) M3, geography.

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

t, min

cu
st

om
er

s

(f) M3, time windows

Figure E.1: Data for the problems of type micro.

129

APPENDIX E. DATA FOR THE GENERATED PROBLEM INSTANCES

Problem Instances of type small

Problem instances of type small contain 125 customers and 5 vehicles of 3
different types, i.e. 15 vehicles in total. The problems are denoted S1, S2
and S3.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) S1, geography.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

t, min
cu

st
om

er
s

(b) S1, time windows.

Figure E.2: Data for problem S1.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) S2, geography.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

t, min

cu
st

om
er

s

(b) S2, time windows.

Figure E.3: Data for problem S2.

130

APPENDIX E. DATA FOR THE GENERATED PROBLEM INSTANCES

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) S3, geography.

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

t, min

cu
st

om
er

s

(b) S3, time windows.

Figure E.4: Data for problem S3.

Problem Instances of type medium

Problem instances of type medium contain 125 customers and 10 vehicles of
3 different types, i.e. 30 vehicles in total. The problems are denoted Md1,
Md2 and Md3.

131

APPENDIX E. DATA FOR THE GENERATED PROBLEM INSTANCES

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(a) Md1, geography.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

t, min

cu
st

om
er

s

(b) Md1, time windows.

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(c) Md2, geography.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

t, min

cu
st

om
er

s

(d) Md2, time windows

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4

x 105

6.06

6.08

6.1

6.12

6.14

6.16

6.18

6.2
x 106

x

y

(e) Md3, geography.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

t, min

cu
st

om
er

s

(f) Md3, time windows

Figure E.5: Data for the problems of type medium.

132

Appendix F

Results for Adjusting Master
Plans According to Demand
Variation

In the following tables the results obtained by adjusting the master plans
according to the changes in customer demand are shown. Different strategies
for adjusting the master plans are presented in section 8.2 of chapter 8.

Modification strategies

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 20729.46 2.43 20161.25 5.10 20479.40 3.60 20694.24 2.59
2 20990.08 1.20 20572.41 3.17 20738.80 2.38 20963.25 1.33
3 20912.93 1.56 20372.12 4.11 20500.37 3.51 20879.18 1.72
4 20976.10 1.27 20450.67 3.74 20812.63 2.04 20900.83 1.62
5 20963.20 1.33 20502.80 3.49 20634.86 2.87 20914.82 1.56

20914.35 1.56 20411.85 3.92 20633.21 2.88 20870.47 1.76

Table F.1: New solutions obtained for a demand change of 5%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

133

APPENDIX F. RESULTS FOR ADJUSTING MASTER PLANS
ACCORDING TO DEMAND VARIATION

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 20799.19 2.10 20061.17 5.57 20373.70 4.10 20745.84 2.35
2 20787.07 2.16 20120.71 5.29 20574.81 3.16 20745.82 2.35
3 20845.92 1.88 20260.24 4.64 20420.14 3.88 20764.40 2.26
4 20752.20 2.32 20229.98 4.78 20441.29 3.78 20658.77 2.76
5 20780.25 2.19 20319.06 4.36 20495.44 3.53 20732.77 2.41

20792.92 2.13 20198.23 4.93 20461.08 3.69 20729.52 2.43

Table F.2: New solutions obtained for a demand change of 7%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 20549.31 3.28 19673.74 7.40 20108.66 5.35 20471.91 3.64
2 20613.27 2.97 19884.43 6.41 20427.43 3.85 20546.39 3.29
3 20514.74 3.44 19749.21 7.04 19952.95 6.08 20421.30 3.88
4 20301.11 4.44 19534.08 8.05 19947.37 6.11 20202.56 4.91
5 20581.71 3.12 19892.88 6.37 20114.08 5.32 20524.72 3.39

20512.03 3.45 19746.87 7.05 20110.10 5.34 20433.38 3.82

Table F.3: New solutions obtained for a demand change of 10%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 20569.08 3.18 19413.76 8.62 20068.95 5.54 20483.22 3.59
2 20333.33 4.29 19529.31 8.08 19743.43 7.07 20226.88 4.79
3 20472.05 3.64 19390.74 8.73 19922.87 6.22 20333.48 4.29
4 19890.13 6.38 19046.69 10.35 19514.63 8.15 19808.31 6.76
5 20365.99 4.14 19625.70 7.62 19705.54 7.25 20294.29 4.48

20326.11 4.33 19401.24 8.68 19791.08 6.84 20229.24 4.78

Table F.4: New solutions obtained for a demand change of 12%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

134

APPENDIX F. RESULTS FOR ADJUSTING MASTER PLANS
ACCORDING TO DEMAND VARIATION

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 19810.15 6.75 18869.49 11.18 19182.76 9.71 19702.23 7.26
2 19904.67 6.31 18943.05 10.84 19452.59 8.44 19772.46 6.93
3 19902.66 6.32 19045.82 10.35 19496.74 8.23 19806.03 6.77
4 20200.24 4.92 19255.01 9.37 19602.23 7.73 20024.42 5.75
5 20323.29 4.34 19464.26 8.38 19787.03 6.86 20225.97 4.80

20028.20 5.73 19115.52 10.02 19504.27 8.19 19906.22 6.30

Table F.5: New solutions obtained for a demand change of 15%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

Total route cost

Set Simple Red. With Red. With Red. With Red.

No. removal % re-ins % swap % re-insWR %

1 19882.82 6.41 18486.42 12.99 19354.10 8.90 19797.41 6.81
2 19721.81 7.17 18686.42 12.04 19292.90 9.19 19663.67 7.44
3 19974.14 5.98 18755.15 11.72 19309.88 9.11 19879.00 6.43
4 19907.26 6.30 18681.70 12.07 19472.04 8.35 19884.13 6.41
5 19925.13 6.21 18766.43 11.67 19210.75 9.58 19791.11 6.84

19882.23 6.42 18675.22 12.10 19327.94 9.02 19803.06 6.79

Table F.6: New solutions obtained for a demand change of 20%. Reduction in total cost
is calculated with respect to the master plan solution value, 21245.2 minutes.

135

APPENDIX F. RESULTS FOR ADJUSTING MASTER PLANS
ACCORDING TO DEMAND VARIATION

For all scenarios in demand variation the best performing method is removing
the customers with cancelled deliveries from their respective routes and then
applying the re-insertion moves to the routes. The second best approach is
to apply the swap moves instead of the re-insertion moves.

Reconstruction strategy

In the following the results obtained by applying the reconstruction strategy
are presented in the number of tables, one for each demand variation scenario.

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 57 20007.09 5.83 30.62
2 56 20292.18 4.49 31.51
3 57 20065.44 5.55 31.53
4 57 19702.10 7.26 31.83
5 56 20496.13 3.53 30.95

56 20112.59 5.33 31.29

Table F.7: New solutions obtained by the reconstruction strategy for a demand change
of 5%. Reduction in total cost is calculated with respect to the master plan solution value,
21245.2 minutes.

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 57 19860.48 6.52 29.77
2 55 20477.91 3.61 29.68
3 56 20091.12 5.43 29.25
4 55 19913.12 6.27 29.18
5 55 19694.02 7.30 29.49

55 20007.33 5.83 29.47

Table F.8: New solutions obtained by the reconstruction strategy for a demand change
of 7%. Reduction in total cost is calculated with respect to the master plan solution value,
21245.2 minutes.

136

APPENDIX F. RESULTS FOR ADJUSTING MASTER PLANS
ACCORDING TO DEMAND VARIATION

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 54 18904.40 11.02 27.86
2 55 19672.17 7.40 27.77
3 54 18870.40 11.18 28.56
4 54 19596.98 7.76 27.10
5 54 19692.64 7.31 28.33

54 19347.32 8.93 27.92

Table F.9: New solutions obtained by the reconstruction strategy for a demand change
of 10%. Reduction in total cost is calculated with respect to the master plan solution
value, 21245.2 minutes.

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 53 18840.02 11.32 25.98
2 53 19328.47 9.02 25.95
3 53 19040.42 10.38 26.35
4 52 18794.43 11.54 26.40
5 53 18952.82 10.79 27.00

52 18991.23 10.61 26.34

Table F.10: New solutions obtained by the reconstruction strategy for a demand change
of 12%. Reduction in total cost is calculated with respect to the master plan solution
value, 21245.2 minutes.

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 52 19056.04 10.30 25.53
2 51 18064.03 14.97 24.72
3 50 18153.30 14.55 24.49
4 52 18596.95 12.47 24.28
5 51 19053.81 10.31 24.78

51 18584.83 12.52 24.76

Table F.11: New solutions obtained by the reconstruction strategy for a demand change
of 15%. Reduction in total cost is calculated with respect to the master plan solution
value, 21245.2 minutes.

137

APPENDIX F. RESULTS FOR ADJUSTING MASTER PLANS
ACCORDING TO DEMAND VARIATION

Set No. of Total Red. Time

No. vehicles Cost % sec.

1 48 17480.46 17.72 21.44
2 50 18393.21 13.42 21.31
3 48 17049.39 19.75 21.98
4 48 17376.75 18.21 20.97
5 48 17123.90 19.40 21.52

48 17484.74 17.70 21.44

Table F.12: New solutions obtained by the reconstruction strategy for a demand change
of 20%. Reduction in total cost is calculated with respect to the master plan solution
value, 21245.2 minutes.

138

